L. '`-ere-archéozo¨archéozo¨?que-est-celle-de-la-vie-primitive, Elle s'´ etale de la formation du globe, il y a 4,6 milliards d'années, ` a -570 millions d'années, et est le témoin despremì eres traces de vie, sous la forme de bactéries associéesassociéesà des algues bleues, et de l'apparition de la photosynthèse ainsi que de son sousproduit , l'oxygène, qui va amener une profonde modification de l'atmosphère primitive

. Le-gisement-norvégien-de-troll and . Nordégalementnordégalement, est classé dans les super-géants. Sa production annuelle est de 20×10 9 m 3 et peut durer 60 ans. En Indonésie, les champs de Tambora et de Tunu produisent annuellement 2, 9×10 9 m 3 . Pour dégager les grandes tendances, nous allons appliquer nos réflexions au cas de Mallik 2L-38 et, plus précisément

. Nousétudionsnousétudions-un-m, 95 MJ, soit un total de 25,88 MJ. Par conséquent, dans le cas de Mallik 2L-38, la chaleur sensible du réservoir n'est pas suffisante pour permettre une dissociation totale des hydrates sans formation de glace. Comme ces 25,88 MJ représentent 34,98% de l'´ energie nécessairè a la dissociation totale des hydrates, seule cette proportion sera dissociée. Cela correspondàcorrespondà la dissociation de 61,1 kg. La quantité d'hydratè a la fin de cette dépressurisation quasi-adiabatique sera donc de 113, MJ, vol.3, issue.2, pp.43-62

. Le-reste-de-la, Dans ce cas, pour atteindre la différence entre la chaleur absorbée par la dissociation des hydrates et la chaleur sensible libérée par le milieu environnant, soit 48,11 MJ, il faut une durée de 28 ans. En d'autres termes, il faut 28 ans pour dissocier les 113,6 kg d'hydrates résiduels contenus dans un m` etre cube de sédiment. Sachant qu'un kilogramme d'hydrates renferme 0,1834 m 3 de gaz dans les conditions STP, la production annuelle durant cettedeuxì emé etape estégalè estégalè a 0,7511 m 3 de gaz par m` etre carré. Pour un champ de 10 km 2 , la production annuelle est donc de 7,511×10 6 m 3 de gaz. En réalité, l'´ energie provient du centre de la terre par conduction mais il faut ajouter la contribution des sédiments autour de la couche d'hydrates

E. En-supposant-négligeables-les-transferts-de-masse-dans-la-secondé-etape and . Permet, 511×10 6 m 3 de gaz. A titre de comparaison, la production annuelle de Messoyakah imputable aux hydrates est de l'ordre de 6×10 6 m 3 [8] Cette capacité de production estàestà moduler par deux effets contradictoires. D'une part, le flux de chaleur est en réalité plus important car la baisse de température du sédiment environnant (par conduction) libère uné energie additionnelle quiaccéì ere la dissociation des hydrates. Uné etude numérique sur un logiciel commercial (Femlab par exemple) donnerait sans doute un ordre de grandeur réaliste. D'autre part, les transferts de masse peuvent devenir limitants

. Un-modèle-prédictif, u les paramètres sont contrôlés (population monodisperse de billes sphériques en arrangement ordonné il est sans doute possible de simuler l'´ ecoulement d'un fluide en résolvant l'´ equation de Navier-StokesàStokesà l'aide d'ordinateurs puissants mais l'intérêt scientifique est bien faible puisqu'aucun phénomène nouveau n'estétudiéestétudié. L'intérêt pratique n'est pas beaucoup plusélevéplusélevé car les milieux poreux réels s'´ ecartent considérablement de ces cas d'espèce puisque de nombreux facteurs, comme la distribution en taille des grains, la topologie du milieu poreux, la morphologie des cristaux ou bien encore leur quantité, ont une influence certaine sur la perméabilité, En fin de compte, il nous semble qu'une approche statistique, réalisée en traitant un grand nombre d'expériences sur des milieux réels bien documentés est un pis-aller raisonnable et peut constituer un point de départ intéressant du point de vue pratique en conduisantàconduisantà des corrélations dont le domaine de validité sera suffisammentétendusuffisammentétendu pour les applications visées

L. Etude, interaction entre deux particules d'hydrate ou bien entre une particule d'hydrate et undeuxì eme corps (particule de glace ou grain de sédiment) offre des possibililités de prolongement dans l'´ etude du phénomène d'agglomération et de sa cinétique. Le calcul rendu possible de la constante de Hamaker permettra sans doute de mieux prédire le comportement de cristaux d'hydrates en suspension. Cela peut aussi bienêtrebienêtre au repos (formation d'un bouchon dans un pipelinè a l'arrêt) qu'en présence d'unécoulementunécoulement (rhéologie d'un slurry d'hydrates)

C. Annexe and . Données, Cette phase est enéquilibreenéquilibre avec la phase gazeuse pour les pressions inférieuresinférieuresà la pression P eq d'´ equilibre des hydrates (´ equation 1.1 en page 9) et avec la phase hydrate dans le cas contraire. Les deuxpremì eres données sont expérimentales [52]. Le nombre d'hydratation est calculé en utilisant les constantes de Langmuir données par Munck (tableau 1.13 en page 17) et la fugacité expérimentale [52]. La solubilité dans le domaine LV est calculéè a parir de la constante de Henry d'après Sloan (´ equation 1.15 en page 26) modifiée en ce qui concerne H 3 et d'un terme de Poynting avec un volume molaire partiel du méthane dans l'eau calculé selon l'´ equation 1.14 en page 25. Dans le domaine LH, la solubilité est calculée en intégrant l'´ equation 1.16 (page 27) entre P eq et P et en prenant, pour la solubilitésolubilitéà P eq , la valeur calculée dans le domaine HV pour (P eq ,T ) Les volumes V e

D. Annexe and . Données-récapitulatives-pour-le-dioxyde-de-carbone-chaque-case-contient, hydratation n et la fraction molaire x de gaz dissous dans la phase liquide Cette phase est enéquilibreenéquilibre avec la phase gazeuse pour les pressions inférieuresinférieuresà la pression P eq d'´ equilibre des hydrates (´ equation 1.1 en page 9) et avec la phase hydrate dans le cas contraire. Les deuxpremì eres données découlent de l'utilisation de l'´ equation d'´ etat de Soave-Redlich-Kwong. Le nombre d'hydratation est calculé en utilisant les constantes de Langmuir données par Munck (tableau 1.13 en page 17) et la fugacité calculée selon l'´ equation d'´ etat de Soave-Redlich-Kwong, La solubilité dans le domaine LV est calculéè a parir du modèle de Duan & Sun en page 23. Dans le domaine LH, la solubilité est calculée en intégrant l'´ equation 1.16

A. V. Milkov, Global estimates of hydrate-bound gas in marine sediments: how much is really out there?, Earth-Science Reviews, vol.66, issue.3-4, pp.183-197, 2004.
DOI : 10.1016/j.earscirev.2003.11.002

K. A. Kvenvolden, Methane hydrate -a major reservoir of carbon in the shallow geosphere ? Chemical Geology, pp.41-51, 1988.

P. Hesselbo, D. R. Groecke, H. C. Jenjyns, C. J. Bjerrum, P. Farrimond et al., Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event, Nature, vol.104, issue.6794, pp.392-395, 2000.
DOI : 10.1038/35019044

O. Bonnefoy, F. Gruy, and J. Herri, Van der Waals interactions in systems involving gas hydrates, Fluid Phase Equilibria, vol.231, issue.2, pp.176-187, 2005.
DOI : 10.1016/j.fluid.2005.02.004

URL : https://hal.archives-ouvertes.fr/emse-00497660

O. Bonnefoy, J. Herri, J. Montfort, P. Henry, P. Bernada et al., A new experimental set-up for the study of the formation and dissociation of methane hydrates in sediments, Proc. Of the 63rd EAGE Conference, 2001.

J. Munck, S. Skjold-jorgensen, and P. Rasmussen, Computations of the formation of gas hydrates, Chemical Engineering Science, vol.43, issue.10, pp.2661-2672, 1988.
DOI : 10.1016/0009-2509(88)80010-1

Y. Makogon, Hydrates of hydrocarbons. PennWell, 1997.

M. Elimelech, J. Gregory, X. Jia, and R. Williams, Particle Deposition and Aggregation, 1995.

J. Bear, Dynamics of Fluids in Porous Media, Soil Science, vol.120, issue.2, 1972.
DOI : 10.1097/00010694-197508000-00022

R. K. Mcmullan and G. A. Jeffrey, Polyhedral Clathrate Hydrates. IX. Structure of Ethylene Oxide Hydrate, The Journal of Chemical Physics, vol.42, issue.8, p.2725, 1965.
DOI : 10.1063/1.1703228

T. C. Mak and R. K. Mcmullan, Polyhedral Clathrate Hydrates. X. Structure of the Double Hydrate of Tetrahydrofuran and Hydrogen Sulfide, The Journal of Chemical Physics, vol.42, issue.8, p.2732, 1965.
DOI : 10.1063/1.1703229

J. A. Ripmeester, J. A. Tse, C. I. Ratcliffe, and B. M. Powell, A new clathrate hydrate structure, Nature, vol.6, issue.6100, p.135, 1987.
DOI : 10.1038/325135a0

D. W. Davidson, The Motion of Guest Molecules in Clathrate Hydrates, Canadian Journal of Chemistry, vol.49, issue.8, p.1224, 1971.
DOI : 10.1139/v71-201

O. Bonnefoy, F. Gruy, and J. Herri, A priori calculation of the refractive index of some simple gas hydrates of structures I and II, Materials Chemistry and Physics, vol.89, issue.2-3, pp.336-344, 2005.
DOI : 10.1016/j.matchemphys.2004.09.007

URL : https://hal.archives-ouvertes.fr/hal-00125048

E. Gallicchio, M. M. Kubo, and R. M. Levy, Enthalpy???Entropy and Cavity Decomposition of Alkane Hydration Free Energies:?? Numerical Results and Implications for Theories of Hydrophobic Solvation, The Journal of Physical Chemistry B, vol.104, issue.26
DOI : 10.1021/jp0006274

G. D. Holder, S. P. Zetts, and N. Pradhan, Phase Behavior in Systems Containing Clathrate Hydrates: A Review, Reviews in Chemical Engineering, vol.5, issue.1-4, pp.1-4, 1988.
DOI : 10.1515/REVCE.1988.5.1-4.1

M. S. Selim and E. D. Sloan, Heat and mass transfer during the dissociation of hydrates in porous media, AIChE Journal, vol.35, issue.6, pp.1049-1052, 1989.
DOI : 10.1002/aic.690350620

J. H. Van, J. C. Waals, and . Platteeuw, Clathrate solutions, Adv. Chem. Phys, vol.2, issue.1, pp.1-57, 1959.

M. M. Mooijer-, . Van, and . Heuvel, Phase behaviour and structural aspects of ternary clathrate hydrate systems, 2004.

V. A. Kamath, Study of heat transfer characteristics during dissociation of gas hydrates in porous media, 1984.

S. O. Yang, S. H. Cho, H. Lee, and C. S. Lee, Measurement and prediction of phase equilibria for water + methane in hydrate forming conditions, Fluid Phase Equilibria, vol.185, issue.1-2, pp.53-63, 2001.
DOI : 10.1016/S0378-3812(01)00456-3

G. D. Holder and D. J. Manganiello, Hydrate dissociation pressure minima in multicomonents systems, Chem. Eng. Sci, vol.37, issue.1, p.16, 1982.

J. A. Ripmeester and D. W. Davidson, 129Xe nuclear magnetic resonance in the clathrate hydrate of xenon, Journal of Molecular Structure, vol.75, issue.1, p.67, 1981.
DOI : 10.1016/0022-2860(81)85151-4

A. Klapproth, E. Goreshnik, D. K. Staykova, H. Klein, and W. F. Kuhs, Structural studies of gas hydrates, Canadian Journal of Physics, vol.81, issue.1-2, pp.503-518, 2003.
DOI : 10.1139/p03-024

R. Ohmura and Y. H. Mori, Pond Surfaces:?? A Mechanistic Study, Environmental Science & Technology, vol.32, issue.8, pp.1120-1127, 1998.
DOI : 10.1021/es9700764

K. S. Pitzer, Ion interaction approach : theory and data correlation, Activity coefficients in electrolyte solutions, pp.75-153, 1991.

G. D. Holder, G. Corbin, and K. D. Papadopoulos, Thermodynamic and Molecular Properties of Gas Hydrates from Mixtures Containing Methane, Argon, and Krypton, Industrial & Engineering Chemistry Fundamentals, vol.19, issue.3, pp.282-286, 1980.
DOI : 10.1021/i160075a008

W. R. Parrish and J. M. Prausnitz, Dissociation Pressures of Gas Hydrates Formed by Gas Mixtures, Industrial & Engineering Chemistry Process Design and Development, vol.11, issue.1, pp.26-35, 1972.
DOI : 10.1021/i260041a006

V. Mckoy and O. Sinagoglu, Theory of Dissociation Pressures of Some Gas Hydrates, The Journal of Chemical Physics, vol.38, issue.12, p.2946, 1963.
DOI : 10.1063/1.1733625

Y. Du and T. M. Guo, Prediction of hydrate formation for systems containing methanol, Chemical Engineering Science, vol.45, issue.4, pp.893-900, 1990.
DOI : 10.1016/0009-2509(90)85011-2

I. Nagata and R. Kobayashi, Prediction of Dissociation Pressures of Mixed Gas Hydrates from Data for Hydrates of Pure Gases with Water, Industrial & Engineering Chemistry Fundamentals, vol.5, issue.4, p.466, 1966.
DOI : 10.1021/i160020a005

M. Z. Bazant and B. L. Trout, A method to extract potentials from the temperature dependence of Langmuir constants for clathrate-hydrates, Physica A: Statistical Mechanics and its Applications, vol.300, issue.1-2, pp.139-173, 2001.
DOI : 10.1016/S0378-4371(01)00339-9

J. Vidal, Thermodynamique : méthodes appliquées au raffinage et au génie chimique, 1973.

G. Soave, Equilibrium constants from a modified Redlich-Kwong equation of state, Chemical Engineering Science, vol.27, issue.6, pp.1197-1203, 1972.
DOI : 10.1016/0009-2509(72)80096-4

D. Y. Peng and D. B. Robinson, A New Two-Constant Equation of State, Industrial & Engineering Chemistry Fundamentals, vol.15, issue.1, pp.59-64, 1976.
DOI : 10.1021/i160057a011

M. A. Trebble and P. R. Bishnoi, Development of a new four-parameter cubic equation of state, Fluid Phase Equilibria, vol.35, issue.1-3, pp.1-18, 1987.
DOI : 10.1016/0378-3812(87)80001-8

M. A. Trebble and P. R. Bishnoi, Extension of the Trebble-Bishnoi equation of state to fluid mixtures, Fluid Phase Equilibria, vol.40, issue.1-2, pp.1-21, 1988.
DOI : 10.1016/0378-3812(88)80020-7

. Thermodynamic-tables-hydrocarbons, . Thermodynamics, and . Center, Texas, am university system edition

Z. Duan, N. Moller, and J. H. Weare, An equation of state for the CH4-CO2-H2O system: I. Pure systems from 0 to 1000??C and 0 to 8000 bar, Geochimica et Cosmochimica Acta, vol.56, issue.7, pp.2605-2617, 1992.
DOI : 10.1016/0016-7037(92)90347-L

R. Kruse and E. U. Franck, at High Temperatures and Pressures, Berichte der Bunsengesellschaft f??r physikalische Chemie, vol.281, issue.11, pp.1036-1038, 1982.
DOI : 10.1002/bbpc.198200012

Z. Duan and R. Sun, An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar, Chemical Geology, vol.193, issue.3-4, pp.257-271, 2003.
DOI : 10.1016/S0009-2541(02)00263-2

L. W. Diamond and N. N. Akinfiev, Solubility of CO2 in water from ???1.5 to 100 ??C and from 0.1 to 100 MPa: evaluation of literature data and thermodynamic modelling, Fluid Phase Equilibria, vol.208, issue.1-2, pp.265-290, 2003.
DOI : 10.1016/S0378-3812(03)00041-4

P. G. Hill, O, Journal of Physical and Chemical Reference Data, vol.19, issue.5, pp.1233-1274, 1990.
DOI : 10.1063/1.555868

URL : https://hal.archives-ouvertes.fr/hal-00015877

I. R. Krichevsky and J. S. Kasarnovsky, Thermodynamical Calculations of Solubilities of Nitrogen and Hydrogen in Water at High Pressures, Journal of the American Chemical Society, vol.57, issue.11, pp.2168-2171, 1935.
DOI : 10.1021/ja01314a036

R. H. Perry and G. Don, Perry's Chemical Engineers' Handbook, volume 6th edition, 1984.

T. Enns, P. F. Scholander, and E. D. Bradstreet, Effect of Hydrostatic Pressure on Gases Dissolved in Water, The Journal of Physical Chemistry, vol.69, issue.2, p.389, 1965.
DOI : 10.1021/j100886a005

Y. P. Handa, Effect of hydrostatic pressure and salinity on the stability of gas hydrates, The Journal of Physical Chemistry, vol.94, issue.6, pp.2652-2657, 1990.
DOI : 10.1021/j100369a077

I. Aya, K. Yamane, and H. Nariai, Solubility of CO2 and density of CO2 hydrate at 30 MPa, Energy, vol.22, issue.2-3, pp.263-271, 1997.
DOI : 10.1016/S0360-5442(96)00093-X

S. O. Yang, I. M. Yang, Y. S. Kim, and C. S. Lee, Measurement and prediction of phase equilibria for water+CO2 in hydrate forming conditions, Fluid Phase Equilibria, vol.175, issue.1-2, pp.75-89, 2000.
DOI : 10.1016/S0378-3812(00)00467-2

P. Servio and P. Englezos, Effect of temperature and pressure on the solubility of carbon dioxide in water in the presence of gas hydrate, Fluid Phase Equilibria, vol.190, issue.1-2, pp.127-134, 2001.
DOI : 10.1016/S0378-3812(01)00598-2

R. Kojima, K. Yamane, and I. Aya, Dual nature of CO 2 solubility in hydrate forming regions, 6th International Conference on Greenhouse Gas Control Technologies, 2002.

Y. Seo and H. Lee, Hydration number and two-phase equilibria of CH 4 hydrate in the deep ocean sediments, Geophys. Res. Letter, vol.29, 2002.

G. Besnard, K. Y. Song, J. W. Hightower, R. Kobayashi, D. Elliot et al., New method of temperature-ramping, isobaric experiments to study the hydrate formation and composition

H. Teng and A. Yamasaki, in Synthetic Sea Water at Temperatures from 278 K to 293 K and Pressures from 6.44 MPa to 29.49 MPa, and Densities of the Corresponding Aqueous Solutions, Journal of Chemical & Engineering Data, vol.43, issue.1, pp.2-5, 1998.
DOI : 10.1021/je9700737

R. Ohmura and Y. H. Mori, Comments on (( solubility of liquid CO 2 in synthetic sea water at temperatures from 278k to 293k and pressures from 6.44 MPa to 29.49 MPa, and densities of the corresponding aqueous solutions )) (teng h. and yamasaki a., chem. eng, pp.2-5, 1998.

S. L. Miller, Natural gases in marine sediments, pp.151-177, 1974.

O. Ye, B. A. Zatsepina, and . Buffet, Thermodynamic conditions for the stability of gas hydrate in the sea floor, J. Geophys. Res, vol.103, issue.B10, pp.24127-24139, 1998.

A. Mersmann, Crystallization technology Handbook, 1995.

O. Sohnel and J. Garside, Precipitation. Basic principles and industrial applications, 1992.

D. Kashchiev, Nucleation : basic theory with applications, 2000.

D. Kashchiev and A. Firoozabadi, Nucleation of gas hydrates, Journal of Crystal Growth, vol.243, issue.3-4, pp.476-489, 2002.
DOI : 10.1016/S0022-0248(02)01576-2

L. A. Stern, S. H. Kirby, and W. B. Durham, Peculiarities of Methane Clathrate Hydrate Formation and Solid-State Deformation, Including Possible Superheating of Water Ice, Science, vol.273, issue.5283, pp.1843-1848, 1996.
DOI : 10.1126/science.273.5283.1843

D. Lysne, An Experimental study of Hydrate Plug Dissociation by Pressure reduction, 1995.

L. A. Stern, S. H. Kirby, W. B. Durham, S. Circone, and W. F. Waite, Laboratory synthesis of pure methane hydrate suitable for measurement of physical properties and decomposition behavior, Natural Gas Hydrate in Oceanic and Permafrost Environments, pp.323-349, 2000.
DOI : 10.1007/978-94-011-4387-5_25

G. D. Holder and D. A. Wright, Heat and mass transfer during the growth and dissociation of gas hydrates in porous media, 1984.

S. L. Miller, The occurence of gas hydrate in the solar system, Proc. Nat. Acad. Sci. US, p.1798, 1961.

D. Nguyen and . Hong, Dissociation des bouchons d'hydrates de gaz dans les conduitespétrolì eres sousmarines, 2005.

B. Tohidi, R. Anderson, M. Ben, C. , R. W. Burgass et al., Visual observation of gas-hydrate formation and dissociation in synthetic porous media by means of glass micromodels, Geology, vol.29, issue.9, pp.867-870, 2001.
DOI : 10.1130/0091-7613(2001)029<0867:VOOGHF>2.0.CO;2

B. Tohidi, R. Anderson, C. Ben, J. Yang, A. Bashir et al., Application of high pressure glass micromodels to gas hydrates studies, Annals ICGH IV, pp.761-765, 2002.

B. A. Buffett, O. Ye, and . Zatsepina, Formation of gas hydrate from dissolved gas in natural porous media, Marine Geology, vol.164, issue.1-2, pp.69-77, 2000.
DOI : 10.1016/S0025-3227(99)00127-9

I. L. Moudrakovski, C. I. Ratcliffe, and J. A. Ripmeester, Application of magnetic resonance microimaging to monitor the formation of gas hydrate, Fourth Int. Conf. on Gas hydrates, pp.444-448, 2002.

I. L. Moudrakovski, G. E. Mclaurin, C. I. Ratcliffe, and J. A. Ripmeester, Methane and Carbon Dioxide Hydrate Formation in Water Droplets: Spatially Resolved Measurements from Magnetic Resonance Microimaging, The Journal of Physical Chemistry B, vol.108, issue.45, pp.17591-17595, 2004.
DOI : 10.1021/jp0473220

R. F. Benenati and C. W. Brosilow, Void fraction distribution in beds of spheres, AIChE Journal, vol.8, issue.3, pp.359-361, 1962.
DOI : 10.1002/aic.690080319

S. Liu, A. Afacan, and J. Masliyah, Steady incompressible laminar flow in porous media, Chemical Engineering Science, vol.49, issue.21, pp.3565-3586, 1994.
DOI : 10.1016/0009-2509(94)00168-5

G. R. Jerauld and S. J. Salter, The effect of pore-structure on hysteresis in relative permeability and capillary pressure: Pore-level modeling, Transport in Porous Media, vol.112, issue.2, p.103, 1990.
DOI : 10.1007/BF00144600

I. Nikuradse, Laws governing turbulent flow in smooth tubes, Probl. Turbulentnosti, pp.75-150, 1936.

G. Schneebeli, Expériences sur la limite de validité de la loi de darcy et l'apparition de la turbulence dans unécoulementunécoulement de filtration, pp.141-149, 1955.

C. R. Dudgeon, An experimental study of the flow of water through coarse granular media, La Houille Blanche, vol.7, issue.7, pp.785-801, 1966.
DOI : 10.1051/lhb/1966049

D. E. Wright, Nonlinear flow through granular media, Proc. Amer. Soc. Civil Eng. Hydraulic. Div, vol.94, issue.HY4, pp.851-872, 1968.

G. Chauveteau and C. Thirriot, Régimes d'´ ecoulement en milieu poreux et limite de la loi de darcy, pp.1-8, 1967.

J. Kozeny, Uber kapillare leitung des wassers im boden, Sitzungsber. Akad. Wiss. Wien, vol.136, pp.271-306, 1927.

T. B. Hovekamp, Experimental and numerical investigation of porous media flow with regard to the emulsion process, 2002.

R. Haas and F. Durst, Die Charakterisierung viskoelastischer Fluide mit Hilfe ihrer Str??mungseigenschaften in Kugelsch??ttungen, Rheologica Acta, vol.179, issue.2, pp.150-166, 1982.
DOI : 10.1007/BF01736414

J. Vorwerk and P. O. Brunn, Shearing effects for the flow of surfactant and polymer solutions through a packed bed of spheres, Journal of Non-Newtonian Fluid Mechanics, vol.51, issue.1, pp.79-95, 1994.
DOI : 10.1016/0377-0257(94)85004-6

C. Marle, LesécoulementsLesécoulements polyphasiques en milieu poreux, volume IV of Cours de Production, 1972.

W. F. Brace, Permeability of crystalline rocks: New in situ measurements, Journal of Geophysical Research: Solid Earth, vol.89, issue.B8, pp.4327-4330, 1984.
DOI : 10.1029/JB089iB06p04327

C. David, M. Darot, and D. Jeannette, Pore structures and transport properties of sandstone, Transport in Porous Media, vol.37, issue.3, pp.161-177, 1993.
DOI : 10.1007/BF01059632

C. Morrow, D. Lockner, S. Hickman, M. Rusanov, and T. Rockel, Effects of lithology and depth on the permeability of core samples from the Kola and KTB drill holes, Journal of Geophysical Research, vol.95, issue.B7, pp.7263-7274, 1994.
DOI : 10.1029/93JB03458

Y. Bernabe, The effective pressure law for permeability in Chelmsford granite and Barre granite, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol.23, issue.3, pp.267-275, 1986.
DOI : 10.1016/0148-9062(86)90972-1

J. Geerstma, The effect of fluid pressure decline on volumetric changes of porous rock, Soc. Petroleum. Eng, pp.331-340, 1957.

A. W. Skempton, Effective Stress in soils, concrete and rock, in pressure and suction soils, 1961.

D. C. Wiggert, O. B. Andersland, and S. H. Davies, Movement of liquid contaminants in partially saturated frozen granular soils, Cold Regions Science and Technology, vol.25, issue.2, pp.111-117, 1997.
DOI : 10.1016/S0165-232X(96)00020-1

C. A. Mccauley, D. M. White, M. R. Lilly, and D. M. Nyman, A comparison of hydraulic conductivities, permeabilities and infiltration rates in frozen and unfrozen soils, Cold Regions Science and Technology, vol.34, issue.2, pp.117-125, 2002.
DOI : 10.1016/S0165-232X(01)00064-7

C. R. Stewart, A. Lubinski, and K. A. Blenkarn, The use of alternating flow to characterize porous media having storage pores, J. Petroleum Technology, vol.222, pp.383-389, 1961.

A. A. Trofimuk, N. V. Cherskiy, and V. P. Tsarev, Accumulation of natural gases in zones of hydrate formation in the hydrosphere, Doklady Akademii Nauk SSSR, vol.212, pp.931-934, 1973.

V. A. Soloviev, Global estimation of gas content in submarine gaz hydrate accumulations, Russian Geology and Geophysics, vol.43, pp.609-624, 2002.

K. A. Kvenvolden, Potential effects of gas hydrate on human welfare, Proceedings of the National Academy of Sciences, vol.95, issue.6, pp.3420-3426, 1999.
DOI : 10.1038/374046a0

G. R. Dickens, C. K. Paull, P. Wallace, and O. , Direct measurement of in situ methane quantities in a large gas-hydrate reservoir, Nature, vol.385, issue.6615, pp.426-428, 1997.
DOI : 10.1038/385426a0

A. V. Milkov and R. Sassen, Estimate of gas hydrate resource, northwestern Gulf of Mexico continental slope, Marine Geology, vol.179, issue.1-2, pp.71-83, 2001.
DOI : 10.1016/S0025-3227(01)00192-X

K. A. Kvenvolden, A primer on the geological occurence of gas hydrate, Gas Hydrates : relevance to world margin stability and climate change, pp.9-30, 1998.

A. V. Milkov and R. Sassen, Economic geology of offshore gas hydrate accumulations and provinces, Marine and Petroleum Geology, vol.19, issue.1, p.1, 2002.
DOI : 10.1016/S0264-8172(01)00047-2

T. S. Collett and G. D. Ginsburg, Gas hydrates in the messoyakha gas field of the west siberian basin : a re-examination of the geologic evidence, International Journal of Offshore polar Engineering, vol.8, issue.1, pp.22-29, 1998.

H. Kobayashi, Researches in gas hdrates at the national institute for resources and environment, Japanese with english abstract, pp.307-313, 1999.

M. D. Max and A. Lowrie, Oceanic Methane Hydrate Development: Reservoir Character and Extraction, Offshore Technology Conference, pp.235-240, 1997.
DOI : 10.4043/8300-MS

M. D. Max and K. Chandra, The Dynamic Oceanic Hydrate System: Production Constraints and Strategies, Offshore Technology Conference, pp.217-226, 1998.
DOI : 10.4043/8684-MS

M. D. Max and M. Cruickshank, Extraction of Methane from Oceanic Hydrate System Deposits, Offshore Technology Conference, 1999.
DOI : 10.4043/10727-MS

S. Lammers, E. Suess, and M. Hovland, A large methane plume east of Bear Island (Barents Sea): implications for the marine methane cycle, Geologische Rundschau, vol.84, issue.1, pp.56-66, 1995.
DOI : 10.1007/BF00192242

U. Tsunogai, N. Yoshida, J. Ishibashi, and T. Gamo, Carbon isotopic distribution of methane in deep-sea hydrothermal plume, Myojin Knoll Caldera, Izu-Bonin arc: implications for microbial methane oxidation in the oceans and applications to heat flux estimation, Geochimica et Cosmochimica Acta, vol.64, issue.14, pp.2439-2452, 2000.
DOI : 10.1016/S0016-7037(00)00374-4

J. M. Brooks, Deep Methane Maxima in the Northwest Caribbean Sea: Possible Seepage Along the Jamaica Ridge, Science, vol.206, issue.4422, pp.1069-1071, 1979.
DOI : 10.1126/science.206.4422.1069

G. Rehder, R. S. Keir, and E. Suess, Methane in the northern Atlantic controlled by microbial oxidation and atmospheric history, Geophysical Research Letters, vol.24, issue.5, pp.587-590, 1999.
DOI : 10.1029/1999GL900049

S. Watanabe, N. Higashitani, N. Tsurushima, and S. Tsunogai, Methane in the western North Pacific, Journal of Oceanography, vol.50, issue.Suppl. 2, pp.39-60, 1995.
DOI : 10.1007/BF02235935

J. P. Kennett, K. G. Cannariato, I. L. Hendy, and R. J. Behl, Carbon Isotopic Evidence for Methane Hydrate Instability During Quaternary Interstadials, Science, vol.288, issue.5463, pp.128-133, 2000.
DOI : 10.1126/science.288.5463.128

S. C. Tyler, The global methane budget Microbial production and consumption of greenhouse gases : methane, nitrogen oxides, and halomethanes, pp.7-38, 1991.

G. P. Glasby, Potential impact on climate of the exploitation of methane hydrate deposits offshore. Marine and Petroleum Geology, pp.163-175, 2003.

B. U. Haq, Natural gas hydrates: searching for the long-term climatic and slope-stability records, Geological Society, London, Special Publications, vol.137, issue.1, pp.303-318, 1998.
DOI : 10.1144/GSL.SP.1998.137.01.24

B. U. Haq, Climatic impact of natural gas hydrate Natural gas hydrate in oceanic and permafrost environments, pp.137-148, 2000.

G. S. Odin, Numerical Dating in Stratigraphy, 1982.

C. Pomerol and M. Renard, Eléments de géologie, 1997.

J. R. Marchesi, A. J. Weightman, B. A. Cragg, R. J. Parkes, and J. C. Fry, Methanogen and bacterial diversity and distribution in deep gas hydrate sediments from the Cascadia Margin as revealed by 16S rRNA molecular analysis, FEMS Microbiology Ecology, vol.34, issue.3, pp.221-228, 2001.
DOI : 10.1111/j.1574-6941.2001.tb00773.x

B. A. Cragg, R. J. Parkes, J. C. Fry, A. J. Weightman, P. A. Rochelle et al., Bacterial populations and processes in sediments containing gas hydrates (odp leg 146 : Cascadia margin) Earth and Planetary Science Letters, pp.497-507, 1996.

K. A. Kvenvolden, A review of the geochemistry of methane in natural gas hydrate, Organic Geochemistry, vol.23, issue.11-12, pp.997-1008, 1995.
DOI : 10.1016/0146-6380(96)00002-2

M. J. Whiticar, E. Faber, and M. Schoelll, Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation???Isotope evidence, Geochimica et Cosmochimica Acta, vol.50, issue.5
DOI : 10.1016/0016-7037(86)90346-7

B. Bernard, J. M. Brooks, and S. W. , Natural gas seepage in the Gulf of Mexico, Earth and Planetary Science Letters, vol.31, issue.1, pp.48-54, 1976.
DOI : 10.1016/0012-821X(76)90095-9

T. Uchida, T. Ebinuma, S. Takeya, J. Nagao, and H. Narita, Effects of Pore Sizes on Dissociation Temperatures and Pressures of Methane, Carbon Dioxide, and Propane Hydrates in Porous Media, The Journal of Physical Chemistry B, vol.106, issue.4, pp.820-826, 2002.
DOI : 10.1021/jp012823w

M. B. Clennell, M. Hovland, J. S. Booth, P. Henry, and W. J. Winters, Formation of natural gas hydrates in marine sediments: 1. Conceptual model of gas hydrate growth conditioned by host sediment properties, Journal of Geophysical Research: Solid Earth, vol.103, issue.17, pp.22985-23003, 1999.
DOI : 10.1029/1999JB900175

Y. P. Handa and D. Stupin, Thermodynamic properties and dissociation characteristics of methane and propane hydrates in 70-.ANG.-radius silica gel pores, The Journal of Physical Chemistry, vol.96, issue.21, pp.8599-8603, 1992.
DOI : 10.1021/j100200a071

P. Henry, M. Thomas, and M. B. Clennell, Formation of natural gas hydrates in marine sediments: 2. Thermodynamic calculations of stability conditions in porous sediments, Journal of Geophysical Research: Solid Earth, vol.103, issue.B10, pp.23005-23022, 1999.
DOI : 10.1029/1999JB900167

W. Sachs and V. Meyn, Pressure and temperature dependence of the surface tension in the system natural gas/water principles of investigation and the first precise experimental data for pure methane/water at 25??C up to 46.8 MPa, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.94, issue.2-3, pp.291-301, 1995.
DOI : 10.1016/0927-7757(94)03008-1

H. Y. Jennings and G. H. Newman, The Effect of Temperature and Pressure on the Interfacial Tension of Water Against Methane-Normal Decane Mixtures, Society of Petroleum Engineers Journal, vol.11, issue.02, p.171, 1971.
DOI : 10.2118/3071-PA

E. W. Hough, M. J. Rzasa, and B. B. Wood, Interfacial Tensions at Reservoir Pressures and Temperatures; Apparatus and the Water-Methane System, Journal of Petroleum Technology, vol.3, issue.02, pp.57-60, 1951.
DOI : 10.2118/951057-G

S. C. Hardy, A grain boundary groove measurement of the surface tension between ice and water, Philosophical Magazine, vol.35, issue.2, p.471, 1977.
DOI : 10.1063/1.1699713

W. B. Hillig, Measurement of interfacial free energy for ice/water system, Journal of Crystal Growth, vol.183, issue.3, pp.463-468, 1998.
DOI : 10.1016/S0022-0248(97)00411-9

Y. P. Handa and M. Zakrzewski, Effect of restricted geometries on the structure and thermodynamic properties of ice, The Journal of Physical Chemistry, vol.96, issue.21, pp.8594-8599, 1992.
DOI : 10.1021/j100200a070

Y. P. Handa, Compositions, enthalpies of dissociation, and heat capacities in the range 85 to 270 K for clathrate hydrates of methane, ethane, and propane, and enthalpy of dissociation of isobutane hydrate, as determined by a heat-flow calorimeter, The Journal of Chemical Thermodynamics, vol.18, issue.10, p.915, 1986.
DOI : 10.1016/0021-9614(86)90149-7

E. D. Sloan and F. Fleyfel, Hydrate dissociation enthalpy and guest size, Fluid Phase Equilibria, vol.76, pp.123-140, 1992.
DOI : 10.1016/0378-3812(92)85082-J

K. Seshadri, J. W. Wilder, and D. H. Smith, Measurements of Equilibrium Pressures and Temperatures for Propane Hydrate in Silica Gels with Different Pore-Size Distributions, The Journal of Physical Chemistry B, vol.105, issue.13, p.2627, 2001.
DOI : 10.1021/jp0040244

J. W. Wilder, K. Seshadri, and D. H. Smith, Modeling Hydrate Formation in Media with Broad Pore Size Distributions, Langmuir, vol.17, issue.21, pp.6729-6735, 2001.
DOI : 10.1021/la010377y

R. R. Gilpin, Wire regelation at low temperatures, Journal of Colloid and Interface Science, vol.77, issue.2, pp.435-448, 1980.
DOI : 10.1016/0021-9797(80)90314-8

M. B. Baker and J. G. Dash, Charge transfer in thunderstorms and the surface melting of ice, Journal of Crystal Growth, vol.97, issue.3-4, pp.3-4770, 1989.
DOI : 10.1016/0022-0248(89)90581-2

T. Ishizaki, M. Maruyama, Y. Furukawa, and J. G. Dash, Premelting of ice in porous silica glass, Journal of Crystal Growth, vol.163, issue.4, pp.455-460, 1996.
DOI : 10.1016/0022-0248(95)00990-6

C. Bily and J. W. Dick, Naturally occuring gas hydrates in the mackenzie delta, n.w.t. Bulletin of Canadian Petroleum Geology, pp.340-352, 1974.

W. S. Borowski, A review of methane and gas hydrates in the dynamic, stratified system of the Blake Ridge region, offshore southeastern North America, Chemical Geology, vol.205, issue.3-4, pp.311-346, 2004.
DOI : 10.1016/j.chemgeo.2003.12.022

R. G. Markl, G. M. Bryan, and J. I. Ewing, Structure of the Blake-Bahama Outer Ridge, Journal of Geophysical Research, vol.9, issue.8, pp.4539-4555, 1970.
DOI : 10.1029/JC075i024p04539

J. I. Ewing and C. H. Hollister, Regional aspects of deep sea drilling in the western north america, Intitial Reports of the Deep Sea Drilling Project, pp.951-973, 1972.

M. E. Torres, J. Mcmanus, D. E. Hammond, M. A. De, A. et al., Fluid and chemical fluxes in and out of sediments hosting methane hydrate deposits on Hydrate Ridge, OR, I: Hydrological provinces, Earth and Planetary Science Letters, vol.201, issue.3-4, pp.525-540, 2002.
DOI : 10.1016/S0012-821X(02)00733-1

M. E. Torres, K. Wallmann, A. M. Trehu, G. Bohrmann, W. S. Borowski et al., Gas hydrate growth, methane transport, and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia margin off Oregon, Earth and Planetary Science Letters, vol.226, issue.1-2, pp.225-241, 2004.
DOI : 10.1016/j.epsl.2004.07.029

R. Luff and K. Wallmann, Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin: numerical modeling and mass balances, Geochimica et Cosmochimica Acta, vol.67, issue.18, pp.3403-3421, 2003.
DOI : 10.1016/S0016-7037(03)00127-3

M. Haeckel, E. Suess, K. Wallmann, and D. Rickert, Rising methane gaz bubbles form massive hydrate layers at the seafloor, Geochimica et Cosmochimica Acta, issue.21, pp.684335-4345, 2004.

E. Bertrand, Transitions de mouillage des alcanes sur l'eau, 2000.
URL : https://hal.archives-ouvertes.fr/tel-00000965

R. Eisenschitz and F. London, ???ber das Verh???ltnis der van der Waalsschen Kr???fte zu den hom???opolaren Bindungskr???ften, Zeitschrift f???r Physik, vol.60, issue.7-8, p.491, 1930.
DOI : 10.1007/BF01341258

H. B. Casimir and D. Polder, The Influence of Retardation on the London-van der Waals Forces, Physical Review, vol.73, issue.4, pp.360-372, 1948.
DOI : 10.1103/PhysRev.73.360

W. H. Keesom, Die van der waalsschen kohäsionskräfte, Physikalische Zeit, vol.22, p.129, 1921.

P. Debye, Molekularkraefte und ihre elektrische deutung, Physikalische Zeitschr, vol.22, p.302, 1921.

F. London, The general theory of molecular forces, Transactions of the Faraday Society, vol.33, pp.8-26, 1937.
DOI : 10.1039/tf937330008b

H. C. Hamaker, The London???van der Waals attraction between spherical particles, Physica, vol.4, issue.10, pp.1058-1072, 1937.
DOI : 10.1016/S0031-8914(37)80203-7

S. Bhattacharjee and A. Sharma, Lifshitz-van der Waals Energy of Spherical Particles in Cylindrical Pores, Journal of Colloid and Interface Science, vol.171, issue.2, pp.288-296, 1995.
DOI : 10.1006/jcis.1995.1183

L. Zeman and M. Wales, of Synthetic Membranes : HF and UF Uses, Amer. Chem. Soc. Symp. Ser, vol.154, 1981.

K. D. Papadopoulos and C. Kuo, The van der Waals interaction between a colloid and its host pore, Colloids and Surfaces, vol.46, issue.2, pp.115-125, 1990.
DOI : 10.1016/0166-6622(90)80160-6

M. Von, H. R. Stackelberg, and . Muller, Feste gashydrate ii. struktur und raumchemie, Zeitschrift für Elektrochemie, vol.58, issue.1, pp.25-39, 1954.

I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii, The general theory of van der Waals forces, Advances in Physics, vol.37, issue.38, pp.165-209, 1961.
DOI : 10.1143/PTP.14.351

L. D. Landau and E. M. Lifshitz, Statistical physics, 1980.

B. W. Ninham and V. A. Parsegian, van der Waals Forces, Biophysical Journal, vol.10, issue.7, pp.646-663, 1970.
DOI : 10.1016/S0006-3495(70)86326-3

V. A. Parsegian and B. W. Ninham, Application of the Lifshitz Theory to the Calculation of Van der Waals Forces across Thin Lipid Films, Nature, vol.40, issue.5225, pp.1197-1198, 1969.
DOI : 10.1039/df9664200007

B. W. Ninham and V. A. Parsegian, van der Waals Forces across Triple???Layer Films, The Journal of Chemical Physics, vol.52, issue.9, pp.4578-4587, 1970.
DOI : 10.1063/1.1673689

V. A. Parsegian and B. W. Ninham, Van der Waals forces in many-layered structures: Generalizations of the lifshitz result for two semi-infinite media, Journal of Theoretical Biology, vol.38, issue.1, p.209, 1973.
DOI : 10.1016/0022-5193(73)90227-0

V. A. Parsegian, Physical Chemistry : Enriching Topics from Colloid and Surface Science, 1975.

C. M. Roth and A. M. Lenhoff, Improved Parametric Representation of Water Dielectric Data for Lifshitz Theory Calculations, Journal of Colloid and Interface Science, vol.179, issue.2, pp.637-639, 1996.
DOI : 10.1006/jcis.1996.0261

L. A. Klein and C. T. Swift, An improved model for the dielectric constant of seawater at microwave frequencies, IEEE Trans. Antenna and Propagation, pp.25104-111, 1977.

W. M. Irvine and J. B. Pollack, Infrared optical properties of water and ice spheres, Icarus, vol.8, issue.1-3, pp.324-360, 1968.
DOI : 10.1016/0019-1035(68)90083-3

J. Daniels, Bestimmung der optischen konstanten von eis aus energie - verlustmessungen von schnellen elektronen, Optics Communications, vol.3, issue.4, pp.240-243, 1971.
DOI : 10.1016/0030-4018(71)90012-5

M. Seki, K. Kobayashi, and J. Nakahara, Optical Spectra of Hexagonal Ice, Journal of the Physical Society of Japan, vol.50, issue.8, pp.2643-2648, 1981.
DOI : 10.1143/JPSJ.50.2643

S. G. Warren, Optical constants of ice from the ultraviolet to the microwave, Applied Optics, vol.23, issue.8, pp.1206-1225, 1984.
DOI : 10.1364/AO.23.001206

L. D. Landau and E. M. Lifshitz, Electrodynamics of continuous media, 1960.

D. B. Hough and L. R. White, The calculation of hamaker constants from liftshitz theory with applications to wetting phenomena, Advances in Colloid and Interface Science, vol.14, issue.1, pp.3-41, 1980.
DOI : 10.1016/0001-8686(80)80006-6

J. G. Th and . Overbeek, Colloid science, p.266, 1952.

J. H. Schenkel and J. A. Kitchener, A test of the Derjaguin-Verwey-Overbeek theory with a colloidal suspension, Transactions of the Faraday Society, vol.56, p.161, 1960.
DOI : 10.1039/tf9605600161

A. Anandarajah and J. Chen, Single Correction Function for Computing Retarded van der Waals Attraction, Journal of Colloid and Interface Science, vol.176, issue.2, pp.293-300, 1995.
DOI : 10.1006/jcis.1995.9964

J. Chen and A. Anandarajah, Van der Waals Attraction between Spherical Particles, Journal of Colloid and Interface Science, vol.180, issue.2, pp.519-523, 1996.
DOI : 10.1006/jcis.1996.0332

E. J. Clayfield, E. C. Lumb, and P. H. Mackey, Retarded dispersion forces in colloidal particles???Exact integration of the casimir and polder equation, Journal of Colloid and Interface Science, vol.37, issue.2, pp.382-389, 1971.
DOI : 10.1016/0021-9797(71)90306-7

B. V. Derjaguin, Untersuchungen ??ber die Reibung und Adh??sion, IV, Kolloid-Zeitschrift, vol.69, issue.2, pp.155-164, 1934.
DOI : 10.1007/BF01433225

K. D. Papadopoulos and H. Y. Cheh, Theory on colloidal double-layer interactions, AIChE Journal, vol.30, issue.1, pp.7-14, 1984.
DOI : 10.1002/aic.690300103

S. N. Thennadil and L. H. Garcia-rubio, Approximations for Calculating van der Waals Interaction Energy between Spherical Particles???A Comparison, Journal of Colloid and Interface Science, vol.243, issue.1, pp.136-142, 2001.
DOI : 10.1006/jcis.2001.7851

R. Camargo and T. Palermo, Rheological properties of hydrate suspensions in an asphaltenic crude oil, 4th Int. Conf. on Gas Hydrates, pp.880-885, 2002.

S. Yang, D. M. Kleehammer, Z. Huo, E. D. Sloan, and K. T. Miller, Micromechanical measurements of hydrate particle attractive forces, 15th Symp. on Thermophysical Properties, 2003.

M. Elbaum and M. Schick, Application of the theory of dispersion forces to the surface melting of ice, Physical Review Letters, vol.66, issue.13, pp.1713-1716, 1991.
DOI : 10.1103/PhysRevLett.66.1713

V. A. Parsegian and G. H. Weiss, Spectroscopic parameters for computation of van der waals forces, Journal of Colloid and Interface Science, vol.81, issue.1, pp.285-289, 1981.
DOI : 10.1016/0021-9797(81)90325-8

. Kirk, Othmer Encyclopedia of chemical technology, Wiley Interscience, vol.9, 1994.

P. Fofonoff and R. C. Millard, Algorithms for computation of fundamental properties of seawater, Marine Sciences, p.44, 1983.

C. Ji, G. Ahmadi, W. Zhang, and D. H. Smith, Natural gas production from hydrate dissociation : a comparison of axisymmetric models, ICGH IV, pp.791-796, 2002.

E. A. Bondarev and T. A. Kapitonova, Simulation of multiphase flow in porous media accompanied by gas hydrate formation and dissociation, Russ. J. Eng. Thermophys, vol.9, issue.12, pp.83-95, 1999.

A. W. Rempel and B. A. Buffett, Formation and accumulation of gas hydrate in porous media, Journal of Geophysical Research: Solid Earth, vol.101, issue.13, pp.10151-10164, 1997.
DOI : 10.1029/97JB00392

J. B. Klauda and S. I. Sandler, Predictions of gas hydrate phase equilibria and amounts in natural sediment porous media. Marine and Petroleum Geology, pp.459-470, 2003.

M. K. Davie and B. A. Buffet, A numerical model for the formation of gas hydrate below the sea floor, Journal of Geophysical Research -Solid Earth, vol.104, issue.B12, pp.29261-29274, 2001.

F. A. Dullien, Porous Media : Fluid Transport and Pore Structure, 1992.

Y. Masuda, M. Kurihara, H. Ohuchi, and T. Sato, A field-scale simulation study on gas productivity of formations containing gas hydrates, ICGH IV, pp.40-46, 2002.

L. Jeannin, R. Vially, O. Bonnefoy, and J. Herri, Numerical modelling of formation and dissociation of methane hydrates in sediments, 2004.

R. Cosse, Techniques d'exploitationpétrolì ere. Le Gisement. Collection des cours de l'enspm edition, 1988.

M. H. Yousif and E. D. Sloan, Experimental Investigation of Hydrate Formation and Dissociation in Consolidated Porous Media, SPE Reservoir Eng., volume SPE 20172, pp.452-458, 1991.
DOI : 10.2118/20172-PA

G. J. Moridis, T. S. Collett, S. R. Dallimore, T. Satoh, S. Hancock et al., Numerical studies of gas production from several CH4 hydrate zones at the Mallik site, Mackenzie Delta, Canada, Journal of Petroleum Science and Engineering, vol.43, issue.3-4, pp.219-238, 2004.
DOI : 10.1016/j.petrol.2004.02.015

A. Chapoy, C. Coquelet, and D. Richon, Solubility measurement and modeling of water in the gas phase of the methane/water binary system at temperatures from 283.08 to 318, 2003.

W. J. Swinkels and R. J. Drenth, Thermal reservoir simulation model of production from naturally occuring gas hydrate accumulations, Society of Petroleum Engineers. Annual Conference, pp.465-477, 1999.

H. C. Kim, P. R. Bishnoi, R. A. Heidemann, and S. S. Rizvi, Kinetics of methane hydrate decomposition, Chemical Engineering Science, vol.42, issue.7, pp.1645-1653, 1987.
DOI : 10.1016/0009-2509(87)80169-0

K. S. Pitzer and R. F. Curl, The Volumetric and Thermodynamic Properties of Fluids.: III. Empirical Equation for the Second Virial Coefficient, J. Am. Chem. Soc, vol.79, p.2369, 1957.
DOI : 10.1142/9789812795960_0045

C. Tsonopoulos, An empirical correlation of second virial coefficients, AIChE Journal, vol.45, issue.7, p.263, 1974.
DOI : 10.1002/aic.690200209

J. M. Smith, H. C. Van, and . Ness, Introduction to chemical engineering thermodynamics, Journal of Chemical Education, vol.27, issue.10, 1975.
DOI : 10.1021/ed027p584.3

J. D. Van-der and . Waals, Over de Constinuiteit van den gas-en Vloeistof-toestand, p.1873

O. Redlich and J. N. Kwong, On the Thermodynamics of Solutions. V. An Equation of State. Fugacities of Gaseous Solutions., Chemical Reviews, vol.44, issue.1, pp.233-244, 1949.
DOI : 10.1021/cr60137a013

M. Benedict, G. B. Webb, and L. C. Rubin, ???Butane, The Journal of Chemical Physics, vol.10, issue.12, pp.334-345, 1940.
DOI : 10.1063/1.1723658

J. O. Hirschfelder, R. J. Buelher, H. A. Mcgee, and J. R. Sutton, Generalized Equation of State for Gases and Liquids, Industrial & Engineering Chemistry, vol.50, issue.3, pp.375-385, 1958.
DOI : 10.1021/ie50579a039