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                                                                                                                                          Introduction 

1 R.P. Feynman, in: Miniturization, ed H.D. Gilbert (Reynhold, New York, 1960) p. 282 
2 S. Nakamura and G. Fasol, The Blue Laser Diode (Berlin: Springer, 1997). 

2 

 

t is not astonishing that the Nobel Prize Committee decided to single out in 2000 

milestone concepts of Zores I. Alferov, Jack S. Kilby, and Herbert Kroemer. Actually, 

the outcome of the laureate ideas is surpassing the speculations of Richard Feynman 

about manipulating and controlling things on a small scale1, regarded as totally unrealistic 

in time of his visionary speech 40 years ago. Kilby was among those who put forward the 

notion of integrated circuits. By now, semiconductor processors and memories, despite 

containing several hundreds of millions of submicron elements, are both cheap and 

redundant.  

 

Semiconductor materials constitute today basic building blocks of emitters and 

receivers in cellular, satellite, and fibreglass communication.  Among them, the III-nitrides 

which are nowadays widely used by the industry. With respect to ”classical” III-V 

semiconductors, the group-III nitrides semiconductors have attracted much attention in 

recent years to their great potential for technological applications. AlN and GaN are 

regarded as promising wide bandgaps semiconductors, ranging from the ultraviolet (UV) to 

the visible regions of the spectrum. They have a high melting point, a high thermal 

conductivity, and a large bulk modulus. These properties, as well as the wide band gaps are 

closely related to strong (ionic and covalent) bonding. These materials can therefore be 

used for short-wavelength light-emitting diodes (LEDs) laser diodes and optical detectors 

as well as for high-temperature, high-power and high-frequency electronic devices. Bright 

and highly efficient blue and green LEDs are already commercially available and diode 

lasers have been reported, emitting in the blue-violet range initially under pulsed 

conditions and subsequently under continuous operation2. 

 

When the nitrides are doped with magnetic elements they give birth to Dilute 

magnetic semiconductors (DMS’s) which have attracted considerable attention, because 

they hold the promise of using electron spin, in addition to its charge, for creating a new 

class of ‘‘spintronic’’ semiconductor devices with unprecedented functionality. It has been 

intensively studied in order to fabricate a new functional semiconductor taking advantage 

of the spin degree of freedom in DMS’s.  

I
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3 G. Prinz, Science, 282, 1660 (1998);  
4 G. Burkard et al, Phys. Rev. B 59, 2070 (1999). 
 

3 

 

The suggested applications include, e.g., ‘‘spin field effect transistors,’’3 which 

could allow for software reprogramming of the microprocessor hardware during run time, 

semiconductor-based ‘‘spin valves,’’ which would result in high-density nonvolatile 

semiconductor memory chips, and even ‘‘spin qubits,’’ to be used as the basic building 

block for quantum computing4 

 

Owing to the development of the computational power of recent computers and the 

progress in the calculation method for the electronic structure, it has become to calculate 

the electronic structure of a crystal with high precision from first principles without any 

empirical parameters. Today, it is possible not only to explain the already known 

properties of a given material but also to predict what property will be expected for a 

hypothetical material. 

 

Given the complexity of the synthesis/characterization procedure, computer-

modeling investigation has here been used to determine and to predict their material 

properties. The computational methods have already been applied to many, with great 

success, provoking a considerable interest in investigating other materials for example AlN 

and GaN and doped with Mn. 

 

From crystallography point of view and under ambient conditions AlN and GaN 

crystallize in the hexagonal wurtzite structure. Recent epitaxy of thin GaN films has been 

demonstrated to result in the cubic zincblende structure (3C). The remarkable progress in 

the synthesis of such 3C-GaN films is related to the plasma-assisted molecular beam 

epitaxy on GaAs (001) or 3C-SiC (001) substrates. Due to the reactivity of AlN, high-

purity source material and an oxygen-free environment are required to grow AlN crystals 

of good quality. Some problem may arise during the growth process of nitrides layers on 

crystalline substrates like e.g. SiC, Si or GaAs. This is related to the large lattice mismatch 

and the difference in the thermal expansion coefficients between epitaxial layer and 

substrate, which can cause large stresses in the epitaxial layers.  
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In order to help understand and control the material and device properties, we 

report in this thesis numerical investigations based on a first-principles study of ground 

states properties and comparison between GGA and LDA calculations of the both 

zincblende and wurtzite AlN and GaN and under high pressure. Electronic properties such 

as band structures, density of states and charge density are detailed for GGA and LDA 

calculations of the both zincblende and wurtzite AlN and GaN. In addition, the influence of 

hybridization on the chemical bonding and stability has been discussed in terms of the site 

projected densities of states as well as the crystal orbital overlap population. Thus, we 

study the elastic properties, as well as their behavior when a hydrostatic pressure is 

applied. Principal features of the calculated band structures such as energy bandgaps and 

ionic character are examined when we apply a hydrostatic stress. Moreover, we determine 

the piezoelectric constants and transverse effective charges and their behavior under 

pressure. Finally, we study the structural optimization, electronic structures and magnetic 

properties of the AlN and GaN-based diluted magnetic semiconductors. The results show 

the half-metallic ferromagnetism for the AlN:Mn and GaN:Mn.   

 

The present thesis is divided into five chapters. In Chapters 1 and 2, we give a 

general introduction to the domain of the III-nitride semiconductors and diluted magnetic 

semiconductors and their technological applications. In particular, Chapter 3 resumes the 

basic ideas behind the DFT, while Chapter 4 contains a brief description of the method of 

calculations. Chapter 5 is divided into two parts. In part I, we report the numerical 

investigations of the structural, elastic and electronic properties under hydrostatic pressure. 

The study of pressure effect consolidates and leads us to achieve the essential goal of this 

part. In part II, we report an analysis of the magnetic and electronic properties of the AlN 

and GaN doped with Mn. Finally a general conclusion is presented for each of the 

investigated class of systems. 



 
 

 

Chapter  I 
 

 

 

 

Group III-Nitride Semiconductors  

- AlN and GaN - 

 

 

 
Abstract : 

We attempt in this chapter to draw the motivation and aims of our study. This chapter 

begins with an introduction to the current interest of the III-nitride semiconductors. In the next 

section, we will present the some basic physical properties and thermodynamic stability of 

these materials. The last section is devoted to the presentation of the different technological 

applications of AlN and GaN. 
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I. 1. Current interest 

Wide band gap semiconductor materials extend the field of semiconductor applications 

to the limits where classical semiconductors such as Si and GaAs fail [1-7]. They can emit 

light at shorter wavelengths (blue and ultraviolet). In addition, AlN and GaN have a high 

melting point, a high thermal conductivity, a large bulk modulus [8-10] and chemical 

inertness. These properties, as well as the large bandgaps, are closely related to their strong 

(ionic and covalent) bonding.  

There have been few periods of semiconductor materials research more stimulating and 

satisfying than that currently experienced by the rapidly growing of III-V researchers who 

have taken up the study of group III nitrides. Not only have some formidable materials 

problems been overcome in a remarkably short time, but also commercially viable 

applications are immediately clear for all to see. Much progress is yet to be made in 

developing these materials. 

The excitement generated by these recent developments, which is well illustrated by 

the number of review articles already written [1,3,4,11-20] stems from the fact that the nitride 

semiconductors AlN and GaN are indirect and direct band gap materials, what is more, they 

form a complete serie of ternary alloys which spans the whole of the visible spectrum and 

extends well into the ultraviolet (UV) region, i.e. continuously variable from 650 to 200 nm, 

for those readers who think more readily in wavelength terms. This makes them ideal 

candidates for carefully tailored optoelectronic devices operating anywhere within this 

wavelength range, but more specifically, for visible light emitters in the previously difficult 

blue and green parts of the spectrum. 

Two important applications have been apparent some time, for example, those of short 

wavelength laser diodes (LDs) for optical disk readout and high-efficiency light-emitting 

diodes (LEDs) for full colour display. Red LEDs with efficiencies greater than 10% have been 

commercially available for some years (see, for example, Smith [21]) but the efficiencies of 

green and, particularly, blue diodes fell a long way short of this, seriously restricting the 

possibilities for LED display panels.  
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While attempts to improve the efficiency of blue devices using II-VI compounds have 

been partially successful (see, for example, Gunshor et al [22]), the problem of achieving 

acceptably long operating lifetimes has yet to be solved, leaving the field open to the III-V 

alternative. Much of the current euphoria depends on the recent commercial development of 

both green and blue InGaN LEDs with efficiencies in the 5–10% range by The Nichia 

Chemical Company in Japan [8,23,24,25]. This led rapidly to the development of large 

outdoor full color displays [26] and opens up many other display possibilities, which are yet to 

emerge. In addition, it has stimulated work towards the long-sought blue LD, which now 

shows considerable promise. Several reports have appeared which describe room-temperature-

pulsed operation of short wavelength LD’s based on the same materials system [15,27-31]. 

 

I. 2. III-Nitride physical properties 

I. 2. 1. Some basic material properties 

Concerning the physical and electronic properties of the nitrides, we present the several 

obvious differences between the nitrides and the better known III-V compound 

semiconductors, which can be related to two basic properties of the N atom, its size and the 

nature of the chemical bond between it and the relevant group III atom.  

The small covalent radius of N (0.7 Å, compared with 1.10 for P, 1.18 for As, 1.36 for 

Sb) [32] results in significantly reduced lattice parameters for the nitrides, (4.37 Å for AlN and 

4.50 Å for GaN) [32], compared with other III-V compounds (5.4505 Å for GaP, 5.653 Å for 

GaAs and 6.095 Å for GaSb) [32], and the large bond energies (2.28 eV for AlN, 2.2 eV for 

GaN) [33] imply high melting temperatures. Both are critical in relation to the growth of bulk 

crystals and to epitaxy. First, the relatively small size of N compared with the group III atoms 

appears to play a role in determining the crystal structure, the thermodynamically stable 

structure for these materials (AlN and GaN) being the hexagonal wurtzite (WZ) structure [13] 

which corresponds to that of several of the well known II–VI compounds, i.e. CdS, ZnS and 

CdSe. We should point out that the cubic zincblende (ZB) structures do exist and GaN, in 

particular, has been studied in some depth [13], nevertheless by far the majority of work 

reported so far concerns the hexagonal form.  



Chapter I                                                                 Group III nitride semiconductors - AlN and GaN – 

 

 8

High melting temperatures make for serious difficulty in the growth from the melt and 

the only bulk crystals so far available are relatively small GaN crystals grown from gallium 

solution, which again requires high temperatures combined with high nitrogen pressures 

[34,35]. Such crystals take the form of hexagonal platelets with the hexagonal c-axis normal to 

the plane of the plate. This is convenient for epitaxial growth but they are not yet widely 

available. The lack of a ready supply of bulk substrate material has resulted in epitaxial growth 

being performed largely on foreign substrates, with all the problems associated with this form 

of deposition. What is more, the small lattice parameters make for large mismatch with any of 

the well-established group IV or III-V semiconductor crystals and have led to the use of 

sapphire substrates by the majority of workers. However, this, also, implies a large lattice 

mismatch and significant differences in the thermal expansion coefficient, both of which cause 

serious problems in achieving adequate crystal quality in the deposited films. The fact that it is 

an electrical insulator can also be a disadvantage in certain applications. SiC has been used by 

some workers because of its much closer lattice match and the fact that it can be doped both n 

and p-type but it is relatively expensive for routine applications. Two other consequences of 

the high bond energies are noteworthy. It is good to recognize that high-quality epitaxy 

requires good surface mobility for the group III atom and this, also, implies a choice of growth 

temperature somewhat higher than usual for other III-V compounds. On the other hand, it 

seems clear that GaN, at least, is an unusually stable compound, which probably has some 

bearing on its apparent immunity to the deleterious effects of extended defects. 

The reduced symmetry of the WZ structure (compared with the ZB structure of the 

majority of III-V compounds) has immediate consequences for the band structure (in 

particular for the valence band structure) of the nitrides. In the ZB compounds the valence 

band maximum at the Γ point in the Brillouin zone is doubly degenerate, the so-called heavy 

and light hole bands being coincident at k  = 0, while the ‘split-off’ band is typically a few 

tenths of an electron volt lower in energy.  
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As it is well known from studies of quantum well (QW) structures, in the presence of 

an axial component of crystal field the degeneracy at the zone centre is lifted, yielding three 

separate valence bands whose relative energies are determined by a combination of spin–orbit 

coupling and the strength of the axial crystal field. This, then, is the situation found for WZ 

semiconductors even in the absence of any artificially imposed structural perturbation (see, for 

example, Dimmock [36]).  

 

I. 2. 2.  Common Crystal Structures 

There are three common crystal structures shared by the group III-V nitrides : the 

wurtzite, zincblende, and rocksalt structures. At ambient conditions, the thermodynamically 

stable structures are wurtzite for bulk AlN and GaN [37-39]. The zincblende structure for GaN 

has been stabilized by epitaxial growth of thin films on the (001) crystal planes of cubic 

substrates such as Si, 3C-SiC, MgO, and GaAs [40-46]. The remarkable progress in the 

synthesis of such cubic AlN layers is related to the plasma-assisted molecular beam epitaxy 

[43]. In these cases, the innate tendency to form the wurtzite polytypes is overcome by 

topological compatibility. The rocksalt structure can be induced in AlN and GaN at very high 

pressures. The wurtzite polytype has a hexagonal unit cell and thus two lattice constants, c and 

a. It contains 6 atoms of each type. The space group for the wurtzite structure is P63mc ( 4
6vC ). 

The wurtzite structure consists of two interpenetrating hexagonal close-packed (HCP) 

sublattices, each of which is with one type of atoms, offset along the c axis by 5/8 of the cell 

height (5/8 c).  

The zincblende structure has a cubic unit cell, containing four group III and four 

nitrogen elements. The space group for the zincblende structure is F-43m ( 2
dT ). The position 

of the atoms within the unit cell is identical to the diamond crystal structure in that both 

structures consist of two interpenetrating face-centered cubic sublattices, offset by one quarter 

of the distance along a body diagonal. Each atom in the structure may be viewed as situated at 

the center of a tetrahedron, with its four nearest neighbors defining the four corners of the 

tetrahedron.  
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The zincblende and wurtzite structures are similar. In both cases, each group III atom is 

coordinated by four nitrogen atoms. Conversely, each nitrogen atom is coordinated by four 

group III atoms. The main difference between these two structures is in the stacking sequence 

of the closest packed diatomic planes. For the wurtzite structure, the stacking sequence of 

(0001) planes is ABABAB in the <0001> direction. For the zincblende structure, the stacking 

sequence of (111) planes is ABCABC in the <111> direction.  

 

I. 2. 3. Phase Diagram 

The data on phase diagrams of GaN and AlN are limited and contradictory by reason 

of high melting temperatures (TM) and high nitrogen dissociation pressures ( dis
NP 2 ). 

Dissociation Pressure of MN, where M stays for Al and Ga is defined as nitrogen pressure at 

the thermal equilibrium of the reaction [18]: MN(s) =M(l) + (1/2)N2(g), where s, l and g stay 

for solid, liquid and gas. Reported values for dis
NP 2  for GaN (see Figure I.1) show large 

discrepancies. Sasaki and Matsuoka [47] concluded that the data of Madar et al. [48] and 

Karpinski et al. [49] are the most reliable. According to Figure I.1 the nitrogen dissociation 

pressure equals 1 atm. at approximately 850 °C, and 10 atm. at 930 °C. At 1250 °C the GaN 

decomposed even under pressure of 10.000 bar of N2. It should therefore come as no surprise 

that; the incorporation of nitrogen is not a trivial problem at high temperatures. For the 

pressures below equilibrium at given temperatures, the thermal dissociation occurs at a slow 

and apparently constant rate suggesting a diffusion controlled process of dissociation. 

Due to the above mentioned N dissociation, the data on the melting points are 

contradictory. Landolt and Börnstein [50] give TM of AlN equal to 2400 °C at a pressure of 30 

bar, and TM of GaN >1700 °C at a pressure of 2000 bar. Thus, the nitrogen dissociation 

pressure of AlN is orders of magnitude smaller than that of GaN. Massalski [51] cites TM of 

AlN equal to 2800 °C. There are reports estimating TM of AlN at 2200 °C [52] and 2450 °C 

[53]. Van Vechten [54] determined theoretically the TM of AlN to be 3487 K. Porowski and 

Grzegory [34] estimate TM of AlN to be larger than 3000 K at a dissociation pressure of a few 

hundred bar, and TM of GaN larger than 2500 K at tens of kbar. Moon and Hwang [55] and 
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Goumri-Said et al [56] determined theoretically the TM of GaN and AlN in zincblende phase 

to be 2302 K and 2387 K respectively.  

 

 

Figure I. 1. Equilibrium pressures of phase as function to the opposite of the temperature  
(s=solid, g=gaseous, l= nitrogen dissolved in Ga liquid) according to I. Grzegory [35] 

(1bar=0,1MPa) 
 

 
 
 
I. 3. Technological applications : 

        I. 3. 1. Light-emitting diodes (LEDs) : 

The LEDs present an important market, with for applications the signaling, the display 

with color screens, or again sources of white light with especially the public lighting [57,58].  

The red LEDs based on GaAlAs alloy have been commercialized for a long time 

already, with a luminous efficiency of 20-30 m.W-1 and a high brilliance of 2Cd. since a 

certain time, the green LEDs based on AlInGaP alloy are also produced but they are green-

yellowish (564nm) instead of green pure, and possess a weak efficiency external quantum 

(0,6%) and a weak intensity (0,1Cd). These materials being equally useful for the signaling. 
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The white LEDs are based either on the association of three LEDs (red, green, blue) or 

on the association of a blue LED or UV and a material that, excited, emits lower energy 

photons, the combination giving then the white light. The realization of LEDs to basis of GaN 

has become a contest since the beginning of years 1990, period to which their realization has 

been able to be envisaged thanks to a certain improvement of the crystalline film quality 

epitaxy of GaN. Some LEDS have been conceived and are currently commercialized.  

 

        I. 3. 2. Laser diodes (LDs) 

The market of the laser diodes [Laser Diodes (LDs)] is for half attributed to 

communications and for half to the impression and to the storage of the information. 

Concerning communications, used optical fibers being transparent between 1,3 and 1,55µm. 

The used LDs are manufactured from GaAs and InP. However, an emission to 1,55µm has 

been put in obviousness for InGaAsN on GaAs [57]. 

Concerning the impression and the storage of the information, the market is for the 

moment dominated by red LDs to 780nm for CD and to 635 or 650nm for DVD. Very 

compact LDS emitting at shot wave length (400-600nm) and medium (5mW) or high (35 -

50mW) power are required to enhance performances. Indeed, a diminution of the length of 

wave allows a best focusing of the spotlight of a beam, the surface of the spotlight being 

proportional to the square of the length of wave. The quality of the impression and the density 

of storage on optical disks will be therefore considerably improved by the utilization of blue or 

violet LDs. Thus, the capacity of storage of a DVD would pass from 2,9Gbyte to 30Gbyte by 

decreasing the length of wave from 635-650nm to 410nm. Furthermore, the perusal asks only 

a power of 5mW while the handwriting (engraving) necessitates a power of 35-50mW [57]. 

 The Blue LDs currently produced are LDs DBR infrared high power associated with 

materials nonlinear as LiNbO3 capable to generate a beam at 425nm (violet-blue). The former 

are powerful enough (15mW), with less noise effects and have a coherent beam. They are 

however very expensive, not compact and necessitate a precise mechanical alignment. The 

LDs based on InGaN are therefore promised to a great future for less expensive and simpler 

devices [57]. 
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       I. 3. 3. UV detectors 

 The sun produces a great quantity of UV, whose a great part is absorbed by the ozone 

and gas layer of the atmosphere. Alone radiation whose wave length is large than 280nm get 

on earth. Detectors of UV radiation produced on earth, told "solar blind", have to detect 

radiations between 265nm and 280nm, zone presenting the less parasitic radiation. UV 

detection possesses military or civil applications as the personal dosimeters for UV rich 

environments, detection of fires, and identification of missiles by their trail, or the guidance of 

missiles [59]. 

The photo-detectors currently available are based on thin film of diamond (Eg =5,4eV - 

230nm), or of SiC  (Eg=2,9eV - 430nm). However, they necessitate the usage of filters and do 

not present a good UV/visible selectivity. The nitrides of elements of column III present a 

strong interest for optical detection because the gap of alloy AlInGaN can vary between 1,9eV 

(650nm) and 6,2eV (200nm). Especially, the UV detection can be realized with the help of 

AlGaN alloy, GaN having an absorption at 365nm and AlN at 200nm. Moreover the III-V 

nitrides are stable in severe physical and chemical environment [60]. 
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Abstract : 

In this chapter, we are going to present the position and the interest of a new branch of 

the electronic fields namely spin-electronics. Furthermore we give a historical overview on 

the advent of magnetic semiconductors and their interest for application in the technological 

area. Finally, we present the motivation of our choice of materials and their novelty as 

compared to other. 
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II. 1. Spintronics 

Spin electronics (spintronics) is a young interdisciplinary field of nanoscience. Its rapid 

development, like that of competing new branches of electronics – molecular electronics, 

bioelectronics, and electronics of polymers, …etc, has its roots in the conviction that the 

progress that is being achieved by miniaturization of active elements (transistors and memory 

cells) cannot continue forever. Therefore, the invention of future information technologies 

must involve new ideas concerning the design of both devices and system architecture. 

The main goal of spintronics is to gain knowledge on spin-dependent phenomena, and 

to exploit them for new functionalities. Hopes associated with spintronics stem from the well 

known fact that the magnetic fields present in the ambient world are significantly weaker than 

the electric fields. For this reason magnetic memories are non-volatile, while memories based 

on the accumulated electric charge (Dynamic Random Access Memory - DRAM) require a 

frequent refreshing. At present, one can already specify a set of problems to be solved by spin 

electronics. One of them is a construction of efficient microsensors of the magnetic field, 

which would replace devices employing magnetic coils. It is obvious that the increase in 

spatial resolution requires a reduction in size of the sensor. In the case of the coil, however, 

this is accompanied by a decrease in the sensitivity. Intensive research and development work 

carried out over last fifteen years or so, resulted in the developing of the appropriate device.                                                                                                                                                                                                  

The new generation sensors are exploiting a giant magnetoresistance effect (GMR) of multiple 

layer structures made of alternating ferromagnetic, antiferromagnetic, and paramagnetic 

metals [1,2]. The GMR results from the increase of electrical conductivity in the presence of 

the magnetic field that aligns the direction of magnetization vectors in neighboring layers. In 

contrast to the traditional sensors containing the Hall probe, the operation of the GMR sensor 

depends on the electron spin, and not on the charge, i.e., the Lorenz force.  

The most recent research on the field sensors focuses on spin-dependent electron 

tunneling between ferromagnetic layers through an isolator, typically thin aluminum oxide. It 

is expected that the tunneling effect will lead to a significant increase of magnetoresistance [3-

5]. A side issue concerns the phenomenon of the Coulomb blockade that plays an important 

role whenever a tunnel junction becomes small [5]. One can expect that the parameters of 

tunneling magnetoresistance (TMR) sensors will make them suitable not just for reading 
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devices, but also as position detectors, for instance, in electric and gasoline engines, where 

Hall-effect sensors dominate today [6].  

A much more ambitious spintronic objective is to develop magnetic random access 

memories (MRAM). These devices would combine the advantages of magnetic memories and 

those of DRAM. For this purpose, it is necessary to find means of writing and reading the 

direction of magnetization in given cells without employing any moving parts. An important 

step would be the elaboration of methods of controlling magnetization isothermally – by light 

or electric field, like in semiconductor DRAM, in which information writing proceeds via 

voltage biasing of the addressed transistor. In the magnetic memories presently available, the 

magnetization switching requires rather large power, as it is triggered either by the magnetic 

field generated by electric currents or by the laser heating above the Curie temperature. 

Obviously, research in this direction combines materials science, nanotechnology, and 

strongly correlated systems.  

Elaboration of “intelligent” methods enabling magnetization control would also make 

it possible to fabricate spin transistors [7,8]. This device consists on two ferromagnetic metals 

separated by a nonmagnetic conductor. Simple considerations demonstrate that if spin 

polarized carriers injected to the nonmagnetic layer conserve spin orientation, the device 

resistance will depend on the relative directions of magnetization in the two ferromagnetic 

layers. Since the switching process does not involve any change in the carrier density, this 

transistor will be characterized by a favorable value of the product of electric power 

consumption and switching time, provided that the spin injection would be efficient and no 

mechanisms of spin relaxation would operate.  

Perhaps the most important challenge for spintronics is the development of quantum 

computation and communication [9]. Particular importance of spin degree of freedom in this 

context originates from the fact that it can preserve phase coherence for a much longer time 

than the orbital degrees of freedom. Thus, the electron spin is much more promising than the 

electron charge for materialization of the present revolutionary ideas on quantum computing, 

quantum cryptography, data compression and teleportation [9]. Thus, spin quantum devices, 

such as quantum dots [10,11], may change not only the principles of devices operation, but 

also the basis of the halfcentury-old computer architecture. Some researchers suggest that the 
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best candidate to carry quantum information would be nuclear spins of 31P in isotopically pure 
28Si, where the spin coherence time reaches several hours [12].  

However, it has also been shown experimentally that the spin polarization lifetime in 

doped semiconductors may be several orders of magnitude longer than the time of momentum 

relaxation [13]. One has to mention, although, that up to now the research on quantum 

computation is theoretical. Any experimental achievement, independently of the material used 

and the experimental method applied will be regarded as a significant breakthrough. 

 

II. 2. Diluted magnetic semiconductors 

Modern information technology utilizes the charge degree of freedom of electrons in 

semiconductors to process the information and the spin degree of freedom in magnetic 

materials to store the information. Magnetoelectronics is a new fastly developing field, where 

the two degrees of freedom, the charge and the spin of the carriers, are utilized simultaneously 

to create new functionalities. In more general terms, this new field is referred to as spin-

electronics or spintronics to include those spin-utilizing devices that need neither the magnetic 

field nor magnetic materials. The magnetoresistance (MR) sensors made of multilayers 

containing metal ferromagnets, showing giant magnetoresistance (GMR) or tunneling 

magnetoresistance (TMR), are today’s best known successful magnetoelectronics devices 

based on the interplay between the two degrees of freedom [6,14-18].  

In semiconductor devices, the spin of carriers has played a minor role so far because 

the most-well established semiconductor devices based on Si and GaAs are non-magnetic and 

show only negligible effects of spin. On the other hand, from the physical points of view, the 

enhanced spin-related phenomena due to the coexistence of the magnetism and semiconductor 

properties have been recognized in magnetic semiconductors and diluted magnetic 

semiconductors (DMS) (or semimagnetic semiconductors; SMSC) since the 60s. The family 

of magnetic semiconductors encompasses europium and chromium chalcogenides (rock-salt 

type: EuSe, EuO and spinels: CdCr2S4, CdCr2Se4), which show ferromagnetic order at low 

temperatures with the Curie temperature TC = 100 K. They have been extensively studied, 

because of their peculiar properties resulting from the exchange interaction between itinerant 

electrons and localized magnetic spins (s-f and s-d exchange interactions) [19-21]. Owing to 
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these interactions, magnetic semiconductors exhibit a rich variety of striking optical and 

transport phenomena, which are strongly affected by the magnetic field and the magnetic 

order, particularly near the metal-to-insulator transition (MIT). However, difficulties in 

material preparation and in fabrication of heterostructures make this family of compounds less 

attractive from the application point of view. Manganites (perovskite: (La,Sr)MnO3 and 

related materials), which show colossal magnetoresistance (CMR), are magnetic 

semiconductors, whose studies have been particularly active over the recent years. Their 

ferromagnetic order, beginning at ~350 K, originates from the double-exchange interaction. 

Properties of manganites and their epitaxial heterostructures are currently studied aggressively 

[22-24]. Their compatibility to the well-established electronic devices is an open issue because 

of the differences in both crystal structure and constituting elements. 

DMS are based on non-magnetic semiconductors, and are obtained by alloying them 

with a sizable amount (a few percents or more) of magnetic elements, such as Mn. The studies 

of DMS and their heterostructures have offered a wide variety of materials and structures, 

making it possible to explore further the effect of the exchange interaction in semiconductors. 

Most of the work had been centered around II-VI based materials such as (Cd,Mn)Te, 

(Zn,Co)S, (Hg,Fe)Se, where the valence of group II cations is identical to that of most 

magnetic transition metals [25-27]. Although this made them relatively easy to prepare, 

difficulties in doping of II-VI-based DMS to either p- or n-type as well as relatively weak 

bonds made these materials less attractive for applications. The magnetic properties of II-VI 

DMS are dominated by the antiferromagnetic super-exchange interactions among the localized 

spins, which result in paramagnetic, spinglass or antiferromagnetic behavior depending on the 

concentration of the magnetic ions and temperature. Recent progress in doping of II-VI 

materials is gradually changing this situation [28-29], for example, hole mediated 

ferromagnetism was found in p-type II-VI DMS with TC < 10 K [30-32]. Understanding of the 

carrier-mediated ferromagnetism in semiconductors was put forward by a study of 

ferromagnetism in IV-VI DMS such as (Pb,Sn,Mn)Te [33]. However, IV-VI DMS and their 

heterostructures are again rather difficult to prepare.  

An approach compatible with the present-day electronic materials is to make non-

magnetic semiconductors magnetic, and even ferromagnetic, by introducing a high 
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concentration of magnetic ions. III-V compound semiconductors are widely used for high-

speed electronic devices as well as for optoelectronic devices. Moreover, heterostructures 

based on the GaAs/(Al,Ga)As systems have proven to be a convenient test bench for a new 

physics and device concepts. Introduction of magnetic III-V compounds opens, therefore, up 

the possibility of using a variety of magnetic and/or spin-dependent phenomena, not present in 

the conventional non-magnetic III-Vs, in the optical and electrical devices already established 

(see Figure II.1). The proposal of III-V based magnetic semiconductors with various sets of 

host materials and transition metals was put forward in 1970s [34], and some experimental 

studies were then initiated. At that time, however, III-V materials with a sizable concentration 

of uniformly distributed magnetic elements were not obtained due to the low solubility of 

transition metals in III-V semiconductors [35]. The application of non-equilibrium methods to 

grow III-V-based DMS was rewarded by successful molecular beam epitaxy (MBE) of 

uniform (In,Mn)As films on GaAs substrates [36]. Subsequent discovery of the hole-induced 

ferromagnetic order in p-type (In,Mn)As [37] encouraged researchers to investigate GaAs-

based system [38] and led to the successful growth of ferromagnetic (Ga,Mn)As [39]. 

Currently, a number of groups is working on the MBE growth of (Ga,Mn)As and related 

heterostructures to advance the understanding of this new class of materials [40-49]. 

Figure II.1: Concept of spin-electronics (spintronics). In semiconductor spin-

electronics spin properties as well as electronic and optical properties are utilized at the same 

time. 
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II. 3. Ferromagnetic semiconductors  

Today’s research on spin electronics involves virtually all material families, the most 

mature being studies on magnetic metal multilayers, in which spin-dependent scattering and 

tunnelling are being successfully applied, as already mentioned in reading heads of high 

density hard-discs and in magnetic random access memories (MRAM). However, in the 

context of spin electronics particularly interesting are ferromagnetic semiconductors, which 

combine complementary functionalities of ferromagnetic and semiconductor material systems. 

One of the relevant questions is to what extend the powerful methods developed to control the 

carrier concentration and spin polarization in semiconductor quantum structures could serve to 

tailor the magnitude and orientation of magnetization produced by the spins localized on the 

magnetic ions. 

Another important issue concerns the elaboration of methods of injecting and 

transporting spin currents. In addition of consisting the important ingredient of field sensors 

and magnetic transistors, spin injection can serve as a tool for fast modulation of light 

polarization in semiconductors lasers [27].  

Since the fabrication of quantum structures is most mature in the case of III-V 

semiconducting compounds, the milestone discovery was the detection of the carrier induced 

ferromagnetism in In1-xMnxAs and Ga1-xMnxAs by Ohno and Munekata at IBM [37] and 

Tohoku University [50] groups, respectively. While the divalent Mn introduces both spins and 

holes in the III-V materials, the magnetic ion and carrier concentrations can be varied 

independently in II-VI materials, like in the case of IV-VI materials in which the hole-

controlled ferromagnetism was put into the evidence in Warsaw University [51].   

A systematic experimental and theoretical study of the carrier-induced ferromagnetism 

in II-VI semimagnetic semiconductors has been undertaken by the Grenoble-Warsaw 

collaboration [52]. In agreement with the theoretical model proposed by the team for various 

dimensionality II-VI semimagnetic semiconductors [52], the ferromagnetic order has been 

observed above 1 K in two dimensional modulation-doped p-type Cd1-xMnxTe/Cd1-y-

zMgyZnzTe:N heterostructures [53,54]. The obtained results lead to suggest [53] that it will be 

possible to control magnetic properties by methods elaborated earlier to tune the carrier 

concentration in quantum structures, such as voltage biasing and light illumination. More 



Chapter II                                                                               Diluted Magnetic semiconductors - DMS – 

 25 

recently, epitaxial layers of Zn1-xMnxTe:N with the hole concentration above 1020 cm-3 have 

been obtained. By means of transport and magnetic measurements, the ferromagnetism was 

found in this three dimensional system [31,55], corroborated the theoretical predictions 

mentioned above [55]. Ferromagnetic correlation has been detected also in Be1-xMnxTe:N [56] 

as well as in bulk crystal of Zn1-xMnxTe:P [55,56]. At the same time, in agreement with the 

theoretical expectations [52], no ferromagnetism has been detected above 1 K in n-type films 

of Zn1-xMnxO:Al [55]. The stronger ferromagnetism in p-type materials comparing n-type 

compounds stems from a large magnitude of the hole density of states and a strong spin-

dependent hybridization between the valence band p-like states and the Mn d orbitals. These 

two effects conspire to make the hole-mediated ferromagnetic interactions strong enough to 

overcome the antiforromagnétic super-exchange, specific to intrisic DMS. 

Theoretical studies undertaken simultaneously lead to the elaboration of a theoretical 

model of thermodynamic, magneotoelastic and optical properties of III-V and II-VI 

ferromagnetic semiconductors [3157,58]. The model takes into account the k.p and spin-orbit 

interactions, biaxial strain and confinement; it applies for both zincblende and wurzite 

compounds. It has been demonstrated that this model describes, with no adjustable parameters, 

the Curie temperature, the dependence of magnetization on temperature and the magnetic 

field, and the magnetic anisotropy energies in p-Ga1-xMnxAs [56,57] as well as the magnetic 

circular dichroism [58,59]. The theoretical and numerical analysis [31,52-54,58,59] made it 

possible to describe quantitatively the dominant mechanism accounting for the 

ferromagnetism of the studied systems as well as for the demonstration of the role played by 

the space dimensionality, spin-orbit interaction, and interband polarization as well as for the 

identification of main differences between properties of III-V and II-VI compounds. 

Furthermore, theory of magnetic domains in III-V materials has been developed providing, 

among other things, the width of domains walls as well as the critical film size corresponding 

to the transition to a single domain structure [60]. Theoretical studies [57,58,60] have 

demonstrated that the spin-orbit coupling in the valence band, not at the magnetic ion, 

accounts for the magnetoelastic properties and magnetic anisotropy in the systems in question. 
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One has to emphasize that the results described above have been obtained for magnetic 

semiconductors in which the highest value of Curie temperature does not exceed 110 K [50]. 

For this reason, the theoretical work has been undertaken [57] aiming at evaluation the 

magnitudes of expected Curie temperatures in various III-V and II-VI compounds as well as in 

elemental group IV semiconductors [57,58]. The results shown in Figure II.2 demonstrate that 

in semiconductors consisting of light elements, the critical point may exceed the room 

temperature [57,58]. These predictions have encouraged many groups to synthesize such 

materials as GaN and ZnO containing Mn or other transition metals as well as to search of 

ferromagnetic elemental semiconductors. Before presenting promising experimental results we 

have to caution the readers that in some cases the observed ferromagnetism might have been 

resulted from ferromagnetic or ferrimagnetic inclusions or precipitates. 

 

 

 

Figure II.2. Computed values of the Curie temperature TC for various p-type semiconductors 

containing 5% of Mn per cation (2.5% per atom) and 3.5 × 1020 holes per cm3. (after [61,62]). 
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II. 4. III-Nitrides based diluted magnetic semiconductors 

From the standpoint of technology, superdoping (here doping beyond 1%) is relatively 

easy only in the case of ‘‘soft’’ semiconductors like GaAs, InAs, or CdTe. This is not the case 

with ‘‘hard’’ semiconductors like GaN or AlN. These materials need relatively high growth 

temperatures to obtain good crystalline quality. At such high temperatures superdoped 

transition-metal impurities cause segregation or form a compound with the host semiconductor 

elements. In order to obtain an extremely heavy doping of Mn, a highly nonequilibrium 

growth process is necessary. That is why less attention was paid to magnetically doped GaN: 

(3d -transition-metal) systems, although this class of DMS has been predicted to be 

ferromagnetic at room temperature [57].  

GaN-based DMS’s are quite promising for various spin controlled and photonic 

devices because of the wide gap corresponding to visible light. Another attractive property of 

GaN:Mn is its half-metallic ferromagnetism, that is, a 100% spin polarization of carriers at the 

Fermi energy. This provides an opportunity to overcome the intrinsic difficulty of injecting 

spins into a nonmagnetic semiconductor. Recently, a similar injection and evidence of spin-

polarized current in III-V semiconductor has been demonstrated and a large signal from half-

metallic DMS’s was predicted [61]. The growth of superdoped GaN:Mn using an ultrahigh-

vacuum chemical vapor description system was reported [62]. In that study superconducting 

quantum interference device (SQUID) magnetization measurements showed the magnetic 

hysteresis at room temperature, i.e., the existence of room temperature ferromagnetism in 

granular GaN:Mn [63]. Moreover Curie temperatures for the epitaxial wurtzite GaN:Mn films 

were also recently reported as high as 940 K (Ref. 62 (deduced from extrapolating SQUID 

measurements) and around room temperature [63] (from the anomal Hall effect). These 

experimental results give a strong impetus to band structure studies of superdoped GaN:Mn. A 

quantitative understanding of the properties of a material, especially the electronic states 

induced by a transition-metal dopant, is a clue to the material design of a class of magnetic 

semiconductors.  
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Chapter  III 
 
 

 

Density Functional Theory  

- DFT - 

 

 
 

Abstract : 

In solids one often starts with an ideal crystal that is studied on the atomic scale at 

zero temperature. The unit cell may contain several atoms (at certain positions) and is 

repeated with periodic boundary conditions. Quantum mechanics governs the electronic 

structure that is responsible for properties such as relative stability, chemical bonding, 

relaxation of the atoms, phase transitions, electrical, mechanical, optical or magnetic 

behavior, etc. Corresponding first principles calculations are mainly done within density 

functional theory (DFT) which is mapped to a series of one-electron equations, the so-

called Kohn–Sham (KS) equations.  

This chapter is devoted to deal with the current advances in the theoretical 

modeling of DFT. The basic principles of this method are more detailed. The exchange-

correlation part of this functional is discussed, including both the local density 

approximation and generalized gradient approximation. 
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III. 1. Introduction : 

The predominant theoretical picture of solid-state and/or molecular systems involves 

the inhomogeneous electron gas: a set of interacting point electrons moving quantum 

mechanically in the potential field of a set of atomic nuclei, which are considered to be static 

(the Born-Oppenheimer approximation). Solution of such models generally requires the use of 

approximation schemes (the independent electron approximation, the Hartree theory, and 

Hartree-Fock theory). However, there is another approach (density functional theory (DFT) 

[1-5]) which over the last 30 years or so has become increasingly the method of choice for the 

solution of such problems (see Figure III.1). This method has the double advantage of being 

able to treat many problems to a sufficiently high accuracy, as well as being computationally 

simple (simpler than even the Hartree scheme). 

 

Figure III.1. One indicator of the increasing use of DFT is the number of records retrieved from the 

INSPEC databases by searching for the keywords ‘‘density,’’ ‘‘functional,’’ and ‘‘theory.’’ This is 

compared here with a similar search for keywords ‘‘Hartree’’ and ‘‘Fock,’’ which parallels the overall 

growth of the INSPEC databases for any given year, approximately 0.3% of the records have the 

Hartree–Fock keywords [6]. 
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Condensed matter physics and materials science are basically related to the 

understanding and exploiting the properties of systems of interacting electrons and atomic 

nuclei. In principle, all the properties of materials can be addressed given suitable 

computational tools for solving this quantum mechanics problem. In fact, through the 

knowledge of the electronic properties it is possible to obtain information on structural, 

mechanical, electrical, vibrational, thermal and optical properties. However, the electrons and 

nuclei that compose materials constitute a strongly interacting many body systems and 

unfortunately this makes the direct solution of the Schrödinger's equation an impractical 

proposition. As stated by Dirac in the far 1929 [7], progress depends mostly on the elaboration 

of sufficiently accurate and approximate techniques.  

The development of density functional theory and the demonstration of the tractability 

and accuracy of the local density approximation (LDA) represents an important milestone in 

condensed matter physics. First principles quantum mechanical calculations based on the LDA 

have become one of the most frequently used theoretical tools in materials science. 

Nonetheless, the great contribution of the local density approximation calculations remained 

limited until the late 1970's when several works have demonstrated the accuracy of the 

approach in determining properties of solids [8-11]. Even though it has been a great deal to 

state why the LDA should or should not be adequate for calculating properties of materials, 

there is however no doubt that the most convincing arguments have been derived from the 

direct comparison of calculations with experiments.  

In particular, despite its simplicity the local density approximation has been very 

successful in describing materials properties during the last decades. However, it is worth to 

note that there are also situations where the above approach does not lead to sufficiently 

accurate results. This can be the case when the differences in the total energy, which are 

usually relevant in calculating structural properties and binding, are to be estimated very 

accurately. As a matter of fact, small inaccuracies may have here dramatic effects.  
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In general, LDA suffers from more or less well-known failures and therefore there 

have during the last decade been several attempts to go beyond this local approximation by 

including effects depending on the variation of the electron density. Nowadays, improved 

theoretical schemes and the rapid growth in computing facilities have caused many types of 

systems and properties to be studied successfully with density functional methods. In the next 

following Sections we briefly resume the fundamental concepts, which are at the base of this 

important and fascinating theory. 

 

III. 2. The basic principles of the method : 

The well-established scheme to calculate electronic properties of solids is based on the 

DFT, for which Walter Kohn has received the Nobel Prize in chemistry in 1998. DFT is a 

universal approach to the quantum mechanical many-body problem, where the system of 

interacting electrons is mapped in a unique manner onto an effective non-interacting system 

that has the same total density. Hohenberg and Kohn [5] have shown that the ground state 

electron density ρ (in atoms, molecules or solids) uniquely defines the total energy E, must be 

a functional of the density.  

)(ρEE =                                                                  (III-1) 

They further showed that the true ground state density is the density that minimises E (ρ) and 

that the other ground state properties are also functionals of the ground state density. The 

extension to spin-polarised systems is also possible where E and the other ground state 

properties become functionals of both the up and down spin densities: 
 

),( ↓↑= ρρEE                                                            (III-2) 

Thus one does not need to know the many-body wave function. The non-interacting particles 

of this auxiliary system move in an effective local one-particle potential, which consists of a 

classical mean-field (Hartree) part and an exchange-correlation part Vxc (due to quantum 

mechanics) that, in principle, incorporates all correlation effects exactly.  
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In order to do this, the unknown functional E (ρ) is rewritten as the Hartree total 

energy plus another smaller unknown functional called exchange-correlation (xc) functional, 

Exc (ρ). 
 

( ) ( ) ( ) ( ) ( ) ( )ρρρρρρ xciiHCs EEEETE ++++=                         (III-3) 

In equation III-3, Ts [ρ] represents the single particle kinetic energy while EC [ρ] denotes the 

Coulomb interaction energy between the electrons and the nuclei. The term Eii [ρ] arises from 

the interaction of the nuclei with each other and EH [ρ] is the Hartree component of the 

electron-electron energy. 

( ) ( ) ( )∫ −
=

'

'
'33

2

2 rr
rr

rrddeEH rr
rr ρρρ                                       (III-4) 

According to the variational principle a set of effective one-particle Schrödinger equations, the 

so-called Kohn–Sham (KS) equations [12], must be solved. Its form is 
 

( ) ( )[ ] ( )[ ][ ] ( ) ( )rrrVrVrVT iiixcHCs

rrrrr Φ=Φ+++ ερρ                      (III-.5) 

when written in Rydberg atomic units for an atom with the obvious generalization to 

molecules and solids. The four terms represent the kinetic energy operator, VH is the Hartree 

potential, the Coulomb-, and exchange-correlation potential, VC and Vxc: The KS equations 

must be solved iteratively until self-consistency is reached. The iteration cycles are needed 

because of the interdependence between orbitals and potential.  
 

( ) ( )[ ]∑=
occ

i
i rr 2rr φρ                                                    (III-6) 

From the electron density the VC and Vxc potentials for the next iteration can be calculated, 

which define the KS orbitals. This closes the self-consistent loop. The exact functional form of 

the potential Vxc is not known and thus one needs to make approximations.  
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Early applications were done by using results from quantum Monte Carlo calculations 

for the homogeneous electron gas, for which the problem of exchange and correlation can be 

solved exactly, leading to the original local density approximation (LDA). LDA works 

reasonably well but has some shortcomings mostly due to the tendency of overbinding, which 

cause e.g., too small lattice constants. 

Modern versions of DFT, especially those using the generalized gradient 

approximation (GGA), improved the LDA by adding gradient terms of the electron density 

and reached (almost) chemical accuracy, as for example the version by Perdew, Burke, 

Ernzerhof (PBE) [13]. 

 

III. 3. The local -(spin-) density approximation (LDA, LSDA):  

In the effective potential of the Kohn-Sham equation, the only term that cannot be 

determined exactly is the exchange-correlation energy Exc. The most commonly used 

technique for calculating Exc is the local-spin-density approximation (LSDA) or simply local-

density approximation (LDA) [14]. We summarize the essence of the LDA bellow: 

• The inhomogeneous system is divided into a certain set of small regions containing a 

homogeneous interacting electron gas. Such a gas is completely characterized by the 

density ρσ (r), where  ↓=↑ orσ . 

• In each region, the exchange-correlation energy per particle of the homogeneous gas,  

( ) ( ) ( )↓↑↓↑↓↑ +≡ ρρερρερρε ,,, cxxc , can be calculated. The analytic expression for the 

exchange energy ( )↓↑ ρρε ,x  can be obtained from the Hartree-Foch approximation [15-17]. 

For the correlation energy ( )↓↑ ρρε ,c , we use an analytical expression of Volso, Wilk and 

Nusair (VWN) [18], which is based on the quantum Monte-Carlo result of the ground-state 

energy for the homogenous electron gas [19]. 
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• The total exchange-correlation energy is the sum of the contribution of all regions : 
 

( ) ( ) ( )( ) ( ) rdrrrE
xc

LDA
xc

3,,
rrr ρρρερρ ↓↑↓↑ ∫=                               (III-7) 

where ( ) ( ) ( )rrr
rrr

↓↑ +≡ ρρρ . The exchange-correlation potential is calculated from 
 

( ) ( ) ( ) ( )
( ) ( )r
rr

E
xV xc

xc
xcLDA

xc

r
rr ρ

δρ
ρρδε

ρρε
δρ
δ

σσ

↓↑
↓↑ +==

,
,                       (III-8) 

The derivation of ( )xV LDA
xc  with the VWN expression is given by Painter [20]. 

 

III. 4. Generalized gradient approximation (GGA): 

In the generalized gradient approximation, the exchange-correlation energy Exc is a 

functional of the local electron spin densities ρσ (r) and their gradients : 
 

( ) ( ) ( )( ) ( ) ( ) rdrrrrE
xc

GGA
xc

3,,
rrrr ρρρρερρ ∇= ↓↑↓↑ ∫                        (III-9) 

From incorporating the additional information contained in the local gradient a better 

description of the system is expected [21-23]. Several different parameterisations of the GGA 

functional have been proposed [23] and tested on a wide variety of materials. The GGA 

improve significantly the ground state properties of light atoms, molecules and solids and 

generally tends to produce larger equilibrium lattice parameters with respect to the LDA. 

 

III. 5. Single particle Kohn-Sham equation: 

Depending on the representations that are used for density, potential and KS orbitals, 

different DFT based electronic structure methods can be classified. Many different choices are 

made in order to minimise the computational and human costs of calculations, while 

maintaining sufficient accuracy. A brief summary of the many possibilities to solve the 

Schrödinger's equation is given in Figure III.2. In this Thesis calculations have been mostly 

concerned with the Linearized / Augmented Plane Wave plus Local Obitals (L/APW+lo). 
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However, this computational approache is usually reliable only when applied to crystalline 

materials with high symmetry and large compactness. 

The explicit use of a basis can be avoided in constructing the KS orbitals by 

numerically solving the differential equations on grids. However, it is important to note that 

nearly all approaches that have been proposed for solids, including the L/APW+lo methods, 

do rely on a basis set expansion for the KS orbitals. Because of this, the discussion is here 

confined to methods that do use a basis in which the KS orbitals are: 
 

( ) ( )∑= rCr i

rr
ααφϕ                                                 (III-10) 

where the ϕ(r) are the basis functions and the Ciα are the expansion coefficients. Given a 

choice of basis, the coefficients are the only variables in the problem, since the density 

depends only on the KS orbitals.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III.2: Schematic representation of various DFT-based methods of calculation. 
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Since the total energy in DFT is variational, the solution of the self-consistent KS 

equations permits to determine the Ciα for the occupied orbitals that minimise the total energy. 

In order to eliminate the unknown functional Ts[ρ] the total energy can be rewritten using the 

single particle eigenvalues: 
 

( ) ( ) ( ) ( ) ( ) ( )∫∑ 





 +−++= rVrVrrdEEE Hxcxc

occ
iii

rrr

2
13 ρρερρ                (III.11) 

 

where the sum is over the occupied orbitals and ρ, VH and Vxc are given by Eqs. III-4, III-6 and 

III-8, respectively. 

Density functional calculations require the optimisation of the Ciα and the 

determination of the charge density (see Figure III.3). This procedure is usually performed 

separately and hierarchically. Using standard matrix techniques it is possible to repeatedly 

determine the Ciα that solve the single Eq. III-5 for a fixed charge density. Hence, given the 

basis, the Hamiltonian and the overlap matrices, H and S, can be constructed and the following 

matrix eigenvalue equation, 

 

0)( =− ii CSH ε                                                      (III-12) 

The equation (III-12) is solved at each k-point in the irreducible wedge of the Brillouin zone. 

The optimised Ciα will yield the exact self-consistent solution only if the true occupied KS 

orbitals can be expressed as a linear combination of the basis functions. In the case where they 

cannot be expressed exactly in term of the basis, an approximate optimal solution (i.e the one 

that gives the lowest possible total energy for the basis) will be found. Therefore, the quality 

of a basis set can be measured by comparing how much the total energy evaluated with the 

orbitals of Eq. III-10 differs from the true KS energy. 

 

 

 

 

 



Chapter III                                                                                        Density Functional Theory – DFT–    

 41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III.3: Flow-chart for self-consistent density functional calculations. 
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III.  6. The basis sets 

With the general term efficiency we usually refer to the number of basis functions 

needed to achieve a given level of convergence, whereas with the bias we describe whether or 

not a basis could favour certain regions of space over the others like, for example, being more 

flexible near the nuclei than the interstitial regions. By looking at the difficulty in estimating 

the matrix elements, the simplicity of the basis is also defined. The basis completeness 

indicates whether the basis can be improved by increasing the number of the functions. Plane 

wave sets are known to be inefficient in the above sense for a large part of solids. However, 

this is not necessary a defect since it only reflects the fact that they are unbiased. Moreover, 

plane waves form a simple and complete basis. Accuracy can be reached by increasing the 

number of plane waves in the basis and the convergence of a calculation can be monitored by 

changing the plane wave cut-off.  

Furthermore, due to the simplicity of this basis the implementation of the plane wave 

codes is relatively easy and the matrix elements of many operators can be rapidly estimated. 

Many operators can be made diagonal since the plane waves expanded wave functions can be 

transformed efficiently from reciprocal space, i.e. coefficients of the plane wave expansion, to 

real space using Fast Fouries Transforms (FFT). In particular, it is important to note that the 

kinetic energy and momentum operators are diagonal in reciprocal space and the operation of 

the local potentials is diagonal in real space. Looking at the Eq. III-10 it is evident that the 

most efficient basis set consists of the KS orbitals themselves and an exact calculation is thus 

achieved using a basis set size equal to the number of occupied orbitals. However, despite this 

possibility the KS orbitals are, in general, unknown at the beginning of the calculation. 

 

III. 7. The Self Consistent Field in DFT 

As shown by the theorem of Hohenberg-Kohn the total energy is variational and this 

means that the true ground state density is that which minimises the energy. When the LDA 

approximation is introduced to the Exc [ρ] the true variational principle does not exists 

anymore and there is no guarantee that the energy obtained by minimising the energy 

functional will be higher than the exact ground state energy. Consequently, the true ground 
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state charge density will in general not minimise the approximate energy functional. However, 

the calculations can be done by knowing that minimising a good approximation to the energy 

functional, a good energy and density should be obtained. The procedure is thus exact only for 

the true energy functional. Since we do not know the form of the single particle kinetic energy, 

Ts [ρ], in Eq. III-3, the minimisation proceeds through the KS equations, where the variation is 

with respect to the orbitals, or in a basis set expansion to the coefficients Ciα. With a fixed 

basis these are the only parameters that can be varied. The problem is to find the coefficients 

that minimise the energy functional (Eq. III-11) paying attention on keeping the orbitals 

orthonormal to each other. The direct minimisation of the total energy with respect to the Ciα 

was proposed by Bendt and Zunger in 1982 [24] and is the core of the Car-Parrinello (CP) 

method [25].  

In spite of the computational advantages, this approach has not yet become popular for 

methods that use non-plane wave basis sets. This is due to the complexity of the optimisation 

problem where typically hundreds or thousands of parameters are present even for small 

problems. Therefore, it is because of this complication that historically the standard self-

consistency cycle shown in Figure III.2 has been used to refine iteratively the density by 

alternately solving the Eqs. III-5 and III-6. For a given charge density the Eq. III-12 is 

diagonalised (ensuring the orthonormal orbitals) and an output charge density is constructed 

from the eigenvectors using Eq. III-6. This charge density is then mixed with the input to yield 

a refined input for the next iteration. The simplest mixing scheme is represented by the straight 

mixing: 

 

( ) i
out

i
in

i
in αρραρ +−=+ 11                                                (III-13) 

The superscript refers to the iteration number and α is the mixing parameter. In order to avoid 

the decreasing of the radius of convergence with the increasing, for example, of the unit cell 

volume a more sophisticated mixing procedure which takes into account the information from 

previous iterations is used. The convergence is normally accelerated by using the Broyden's 

method [26]. 
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Full Potential Linearized / Augmented 

Plane Wave plus Local Orbitals  

- FP-L/APW+lo - 
 

 

 
Abstract : 

In this chapter, we attempt to present the fundamental concepts of the linearized / 

augmented plane wave plus local orbitals (L/APW+lo). We show also the differents versions of 

(L/APW+lo) and thier main developing steps in terms of linearization, full potential, local 

orbitals and mixed basis sets. 
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Once the DFT equations are defined in terms of the functional, there are several 

techniques to solve them. A natural basis for calculating the one-electron wave functions in 

periodic solids are plane waves (PWs) corresponding to Bloch functions labeled by the k-

vector of the first Brillouin zone (BZ). PWs are, however, a very inefficient basis set for 

describing the rapidly varying wave functions close to the nuclei. In order to overcome this 

difficulty one can either eliminate these oscillations, due to the presence of the core 

electrons, as done in pseudopotential calculations or one can augment the PW basis set. 

One example of the latter approach has led to the linearized /augmented plane wave plus 

local orbitals (L/APW+lo) method that is now established to be one of the most accurate 

schemes and thus will be the focus of the present chapter.  

 
 

IV. 1. The augmented plane wave method (APW): 

In 1937 Slater [1,2] introduced augmented plane waves (APW) as basis functions 

for solving the one-electron equations, which now correspond to the Kohn–Sham equations 

within DFT. In the APW scheme the unit cell is partitioned into two types of regions: (i) 

spheres centered around all constituent atomic sites rα with a radius Rα, and (ii) the 

remaining interstitial region, abbreviated as I (see Figure IV.1). In this case the wave 

functions are expanded into PWs each of which is augmented by atomic solutions in the 

form of partial waves, i.e. a radial function times spherical harmonics. In particular, radial 

solutions of Schrödinger's equation are employed inside non overlapping atom centered 

spheres and plane waves in the remaining interstitial zone. 
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Figure IV.1: Adaptation of the basis set by dividing the unit cell into atomic spheres and 

interstitial regions. 

 

 

 

 The introduction of such a basis set is due to the fact that close to the nuclei the 

potential and wave functions are very similar to those in an atom, while between the atoms 

then are smoother. The APWs consist of : 

 

( )
( ) ( )

( )





∈+Ω
=

∑
∑
− Ir         ,).(exp

Rr        ,,

2/1

G
G

lm
lmlmlm

rGkiC

rYrua
r rrr

p
r

r α
αα ε

ϕ                                 (IV-1) 

In the above relations ϕ is the wave function, Ω is the unit cell volume, r
r

 is the position 

inside sphere α with the polar coordinates r
r

, k
r

 is a wave vector in the irreducible 

Brillouin zone (IBZ) and u lm is the numerical solution to the radial Schrödinger equation at 

the energy ε. The KS orbitals ψi(r
r

) are expressed as a linear combination of APWs ϕ(r
r

).  
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Inside the MT sphere a KS orbital can only be accurately described if ε in the APW basis 

functions is equal to the eigen-energy, εi . Therefore, a different energy-dependent set of 

APW basis functions must be found for each eigenenergy. CG and a lm are expansion 

coefficients; El is a parameter (set equal to the band energy) and V the spherical component 

of the potential in the sphere. 
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The use of these functions has been motivated by Slater by noting that plane waves 

are the solutions of the Schrödinger's equation in a constant potential and radial functions 

are solutions in a spherical potential. This approximation to the potential is called "muffin-

tin" (MT). 

Since the continuity on the spheres boundaries needs to be guaranteed on the dual 

representation defined in Eq. IV-1, constraint must be imposed. In the APW method this is 

done by defining the u lm in terms of CG in the spherical harmonic expansion of the plane 

waves. 
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The coefficient of each lm is matched at the sphere boundary and the origin is taken at the 

centre of the sphere (R is the sphere radius). The u lm are determined by the plane wave 

coefficients (CG) and the energy parameters El, which are the variational coefficients in 

APW method. The functions labelled G are the augmented plane waves (APWs) and 

consist of single plane waves in the interstitial zone, which are matched to the radial 

functions in the spheres.  

A more flexible and accurate band structure calculational scheme is the LAPW 

method where the basis functions and their derivatives are made continuous by matching to 

a radial function at fixed El plus its derivative with respect to El. 
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IV. 2. The linearized augmented plane wave method (LAPW) : 

Several improvements to solve the energy dependence of the basis set were tried 

but the first really successful one was the linearization scheme introduced by Andersen [3] 

leading to the linearized augmented plane wave method. In LAPW the energy dependence 

of each radial wave function inside the atomic sphere is linearized by taking a linear 

combination of a solution u at a fixed linearization energy and its energy derivative u&  

computed at the same energy. 
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where the b lm are coefficients for the energy derivative analogous to the a lm. The basis 

functions inside the spheres are linear combinations of a radial functions lu (r) Ylm (r) and 

their energy derivatives ( lu (r) Ylm  (r) and lu& (r) Ylm  (r) are the augmenting functions). The u l 

are defined as in the APW method (Eq. IV-2) and the energy derivative, lu& (r)  Ylm  (r), 

satisfies the following equation: 
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The LAPWs provide a sufficiently flexible basis to properly describe eigenfunctions with 

eigenenergies near the linearization energy, which can be kept fixed. This scheme allows 

us to obtain all eigenenergies with a single diagonalization in contrast to APW. 

The LAPWs are plane waves in the interstitial zone of the unit cell which match the 

numerical radial functions inside the spheres with the requirement that the basis functions 

and their derivatives are continuous at the boundary. In this method no shape 

approximations are made and consequently such a procedure is often called "full-potential 

LAPW" (FP-LAPW). The much older muffin-tin approximation corresponds to retain only 

the l = 0 and m = 0 component in Eq. IV-5. A spherical average inside the spheres and the 

volume average in the interstitial region is thus taken.  
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Inside atomic sphere a linear combination of radial functions times spherical 

harmonics, Ylm(r), is used. The linear combination of lu (r) and lu& (r) constitute the so-

called "linearization" of the radial function. lu (r) and lu& (r) are obtained by numerical 

integration of the radial Schrödinger equation on a radial mesh inside the sphere. 

The LAPWs have more variational freedom inside the spheres than APWs. This 

greater exibility is due to the presence of two radial functions instead of one; non-spherical 

potentials inside spheres can be now treated with no difficulty. There is however, a price to 

be paid for the additional exibility of the LAPWs: the basis functions must have continuous 

derivatives and consequently higher plane wave cut-offs are required to achieve a given 

level of convergence. Further, the asymptote problem ( lmu (R) appears in the denominator 

of expression (Eq IV-3) and if zero leads to a decoupling between planewaves and radial 

functions. In the vicinity of the asymptote the secular determinant is stronglyvarying) 

found in the APW method is now overcome by the presence of the non-zero lmu (R) value. 

The solution of the KS equations are expanded in this combined basis according to the 

linear variation method: 
 

∑=
n

knnk c ϕψ                                             (IV-6) 

and the coefficients cn are determined by the Rayleigh-Ritz variational principle. The 

convergence of this basis set is controlled by a cut-off parameter Rmt × Kmax, where Rmt is 

the smallest atomic sphere radius in the unit cell and Kmax is the magnitude of the largest 

Kn vector in Eq. (IV-6). 

 

IV. 3. The augmented plane wave plus local orbitals method (APW+lo): 

Recently, an alternative approach was proposed by Sjöstedt et al. [4], namely the 

APW+lo (local orbitals) method. Here the augmentation is similar to the original APW 

scheme but each radial wave function is computed at a fixed linearization energy to avoid 

the non-linear eigenvalue problem that complicated the APW method. Thus only the 

condition of continuity can be required and the basis functions may contain a kink at the 

sphere boundary.  
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The missing variational freedom of the radial wave functions can be recovered by 

adding another type of local orbitals containing a u  and u&  term. 
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The local orbitals are evaluated at the same fixed energy as the corresponding APWs. The 

two coefficients are determined by the normalization and the condition that the local 

orbital has zero value at the sphere boundary. In this version, u&  is independent of the PWs, 

since it is only included for a few local orbitals and not associated with every plane wave. 

Recently it was demonstrated that this new scheme can reach the same accuracy as LAPW 

but converges faster in terms of number of PWs [5]. The highest efficiency was found for a 

mixed basis set in which the “physically important” l-quantum numbers are treated by 

APW+lo but the higher l by LAPW. It was shown in [5] that quantities such as the total 

energy, forces converge significantly faster with respect to the number of basis functions 

than with the pure LAPW procedure but reach the same values. In LAPW the force 

changes sign and thus the atom would move in the wrong direction for a too small basis 

set, whereas in the APW+lo scheme the force converges smoothly and much faster. For 

large systems the matrix size N can be about halved and thus the computational cost can be 

an order of magnitude less, since the diagonalization scales with N3. 

The new scheme combines the best features of all APW-based methods available. 

The LAPW converges somewhat more slowly than the APW method as has already been 

pointed out by Koelling and Arbman [6], since the constraint of having differentiable basis 

functions makes LAPWs less optimally suited to describe the orbitals inside the sphere. 

This justifies going back to APW but the energy-independent basis introduced in LAPW is 

crucial for avoiding the nonlinear eigenvalue problem and thus is kept, too. The local 

orbitals provide the necessary flexibility [7].  
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IV. 4. The full potential calculation : 

The muffin tin approximation was frequently used in the 1970s and works 

reasonable well in highly coordinated (metallic) systems such as face centered cubic (fcc) 

metals. However, for covalently bonded solids, open or layered structures, Muffin tin 

approximation is a poor approximation and leads to serious discrepancies with experiment. 

In all these cases a treatment without any shape approximation is essential. Both, the 

potential and charge density, are expanded into lattice harmonics (inside each atomic 

sphere) and as a Fourier series (in the interstitial region). 

 

( )
( )

( )





=
∑
∑

sphere. utside         exp

sphere, nside        

orKiV

irYV
rV

K

lm
lmlm

rr

r

r                             (IV-8) 

Thus their form is completely general so that such a scheme is termed full-potential 

calculation. The choice of sphere radii is not very critical in full potential calculations in 

contrast to muffin tin approximation, in which one would obtain different radii as optimum 

choice depending on whether one looks at the potential (maximum between two adjacent 

atoms) or the charge density (minimum between two adjacent atoms). Therefore in muffin 

tin approximation one must make a compromise but in full-potential calculations one can 

efficiently handle this problem. 
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Results and Discussions 
 

 

 

 
Abstract : 

 This chapter is devoted to the principle results of FP-L/APW+lo calculations 

performed on AlN and GaN compounds and doped with manganese. In part I, we study the 

structural, elastic and electronic properties of III-N compounds (AlN and GaN) at zero 

pressure and under hydrostatic pressure. In part II, we concentrate to study the effect of 

manganese (Mn) on AlN and GaN compounds and we determine the principal 

characteristics of diluted magnetic semiconductors AlN:Mn and GaN:Mn in their 

ferromagnetic phase.  
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V. I. 1. Numerical details 

Our calculations are performed using the scalar relativistic full-potential linearized / 

augmented plane wave plus local orbitals (FP-L/APW+lo) [1] approach based on the 

density functional theory [2] within the LDA and GGA using the scheme of Perdew, 

Brouke and Ernzerhof [3]. We adopt the Ceperley-Alder [4] forms for exchange-

correlation energy as parametrized by Perdew and Wang [5].   

In the present calculations we apply the most recently version of Vienna package 

WIEN2k_2003 [6,7]. In this new version, the alternative base sets (APW+lo) is used inside 

the atomic spheres for those chemically important l-orbitals (partial waves) that are 

difficultly converge (outermost valence p-,  d-, or f-states), or for atoms where small atomic 

spheres must be used [8-10]. For all the other partial waves the LAPW scheme is used.  

Moreover, we employ the semirelativistic approximation (no spin orbit effects 

included) whereas the core levels are treated fully relativistically [11]. In particular, the Ga 

is considered in such as to include explicitly the semicore d electrons in the valence bands. 

In the following calculations, we distinguish the Al (1s2 2s2 2p6), Ga (1s2 2s2 2p6 3s2 3p6), 

and N (1s2) inner-shell electrons from the valence electrons of Al (3s2 3p1), Ga (3d10 4s2 

4p1) and N (2s2 2p3) shells.  

The remaining core states are self-consistently relaxed in a spherical 

approximation. Inside the non-overlapping spheres of muffin-tin (MT) radius (RMT) around 

each atom, spherical harmonics expansion is used. We choose the plane wave basis set for 

the remaining space of the unit cell. For AlN and GaN we adopt as the MT radius, the 

values of 1.82, 1.8 and 1.6 Bohr for Al, Ga and N respectively. The maximum l value for 

the wave function expansion inside the atomic spheres was confined to lmax= 10. In order to 

achieve energy eigenvalues convergence, the wave functions in the interstitial region is 

expanded in plane waves with a cutoff of RMT ∗ KMAX = 8 (where KMAX is the maximum 

modulus for the reciprocal lattice vector, and RMT is the average radius of the MT spheres). 

The k integration over the Brillouin zone is performed using Monkhorst and Pack [12] 

mesh, yielding to 10 k points in the irreducible wedge of the Brillouin zone for both 

zincblende and wurtzite structures. The iteration process is repeated until the calculated 

total energy of the crystal converges to less than 0.1 mRyd. 
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The ground-state structures of AlN and GaN are wurtzite, but these compounds 

have also been reported to stabilize in the zincblende structure (see Ref. [13]). The 

zincblende and wurtzite structures are schematically depicted in Figure V.I.1. For the 

zincblende structure, determination of the theoretical equilibrium geometry is 

straightforward since there is just one lattice constant a with two atoms per unit cell, one at 

(0, 0, 0) and the other at (
4
1

,
4
1

,
4
1

), with unit vectors aa 




=

2
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,
2
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r

, ab 

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,0,
2
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 and 

ac 
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
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,
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. For wurtzite there are four atoms per hexagonal unit cell. With the unit 

vectors  aa 



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2
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,
2
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 and a
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, the positions of the atoms, 
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rrr

 ,b ,  are (0, 0, 0) and (
3
2

,
3
1

,
2
1

) of the first type and (0, 0, u) and (
3
2

,
3
1

, 

u+
2
1

) for atoms of the second type, where u is the dimensionless internal parameter.  The 

wurtzite phase experimentally observed at low pressure in these and related compounds 

has 
8
3

0 ≈u  and 633.1/ ≈ac , which leads within experimental accuracy tetrahedral 

coordination at the ideal values 
8
3

0 =u  and
3
8

/ =ac , all four nearest-neighbor distances 

are equal and all bond angles are ideal tetrahedral angles (109.5°). 
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Figure V.I. 1(a).  Schematic illustration of the cubic zincblende structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure V.I. 1(b).  Schematic illustration of the hexagonal wurtzite structure. 
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V. I. 2. Structural properties 

      V. I. 2. 1. Zincblende phase 

The structural properties in the strain-free case are obtained by a minimization of 

the total energy depending on the volume for AlN and GaN in the zincblende structure (see 

Figures V.I.2. We compute the lattice constants, bulk modulus and the pressure derivative 

of the bulk modulus by fitting the total energy versus volume according to the 

Murnaghan's equation of state [14]: 
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where E0 and V0 are the energy and volume at equilibrium. B and B/ are the bulk modulus 

and it’s the pressure derivative. 

 In Table V.I.1 and Table V.I.2, our results of structure optimization for zincblende 

AlN and GaN within LDA and GGA calculations are summarized and compared with 

some available experimental data [15,16] and recent published calculations [17-40]. 

With GGA calculation for GaN, the lattice constant is found 1.4% larger than LDA 

calculation, whereas for AlN a difference of 2% is observed. Correspondingly, the values 

of the bulk modulus obtained by GGA are smaller by 8.7% (AlN) and 14% (GaN) than the 

LDA results. We find that LDA yields a slightly smaller lattice constant than experiment 

(by 0.48% and 0.6%), while that of GGA is 1% and 1.33% larger for AlN and GaN, 

respectively. Compared to experiment, the LDA overestimates the bulk modulus, whereas 

GGA underestimating it. The LDA values are therefore in significantly better agreement 

with experiment and it appears that GGA does not bring about significant improvement 

over LDA for AlN and GaN. 

The calculated bulk modulus is the same as those found elsewhere [25], mainly 

with the well-converged pseudopotential calculations. Moreover, it has been shown few 

years ago [29] that anharmonic corrections due to phonon vibrational energy may 

considerably reduce the value of the bulk modulus, even at temperature T = 0 K. This 

confirms the reliability of our obtained value of bulk modulus. One should also notice that 

the experimental values of the bulk modulus are somehow uncertain due to the difficulty of 

growing high-quality single crystals of III-V nitrides. 
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Figures. V.I.2. Total energy as a function of the volume for zincblende AlN and GaN with 

LDA and GGA calculations. 
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Table V.I.1. Lattice constants a, bulk modulus B, and pressure derivations of the bulk 

modulus B’ of zincblende AlN. 

 

 

 This work Calculations Experiment 

 LDA GGA LDA GGA  

a (Å) 4.349 4.409 4.31-4.376a 4.39-4.42b 4.37c 

B (GPa) 211.78 193.3 213-216a 191b - 

B’ 3.90 3.8 3.2-3.86a 3.81b - 
 

 a Refs. [17-40], b Refs. [30,33,37], c From wurtzite structure Ref. [15] 

 

 

 

  

 

Table V.I.2. Lattice constants a, bulk modulus B, and pressure derivations of the bulk 

modulus B’ of zincblende GaN. 

 

 This work Calculations Experiment 

 LDA GGA LDA GGA  

a (Å) 4.461 4.55 4.446-4.537a 4.55-4.59b 4.50c 

B (GPa) 202 172.6 191-202a 156b 185d 

B’ 4.32 4.3 3.9-4.14a 4.25b - 
 

a Refs. [17-40], b Refs. [30,33,37], c Ref. [15],  
d Ref. [16], The Bulk modulus may be derived from the elastic constants as ( ) 3/2 1211 CCB += , 

these values are obtained from the experimental hexagonal elastic constants [15]. 
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V. I. 2. 2. Wurtzite phase 

Under normal conditions the AlN and GaN compounds crystallize in the wurtzite 

structure, although it has proved possible to grow a zincblende modification using epitaxial 

techniques [41,42]. The wurtzite form is a hexagonal structure (with two formula units per 

unit cell), which can be described by three structure parameters: a, c and an internal 

parameter u. To determine the equilibrium geometry of the wurtzite phase, we optimize the 

independent parameters V (volume of the unit cell), c/a ratio and u as follows: In the first 

step, we assume the ideal wurtzite structure and determine the equilibrium volume by 

varying the lattice constant a. Then, keeping the equilibrium volume fixed and u, the c/a 

ratio is varied to find the optimum value. At new c/a ratio we lance again vary the lattice 

constant a, to determine the new equilibrium volume. Then, having found c/a and V, vary 

the internal parameter u to minimize the total energy. 

In Figures V.I.3 and V.I.4, we plot the total energy versus volumes, the c/a ratios 

and the internal structural parameter. The LDA and GGA values of c/a ratios are identical 

and equal to 1.6 for AlN and 1.628 for GaN. This value is in an excellent agreement with 

the experimental data [15] and other theoretical values [17-40,43,44]. The optimal value 

for u, ueq, is of 0.38 for AlN and 0.375 for GaN, which is identical to the experimental 

results of Ref. [15], and it is also V-independent. The calculated structural parameters of 

wurtzite AlN and GaN are listed in Table V.I.3 and Table V.I.4. 

Our lattice constants as obtained using the GGA are about 1.4% and 2% larger than 

the LDA values for AlN and GaN respectively. With respect to experiment, LDA lattice 

constants is smaller by 0.58% and 1%, while that of GGA is 0.83% and 1% larger for AlN 

and GaN, respectively. The bulk modulus are obtained using GGA are smaller about 

10.3% and 19% for AlN and GaN compared with experimental values. The LDA values 

are also in wurtzite structure therefore in significantly better agreement with experiment 

and it appears that GGA does not bring about significant improvement over LDA for AlN 

and GaN. 
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Figure V.I.3(a). Total energy as a function of the volume, c/a ratio and u for wurtzite AlN 

with LDA calculation. 
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Figure V.I.3(b). Total energy as a function of the volume, c/a ratio and u for wurtzite AlN 

with GGA calculation. 
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Figure V.I.4(a). Total energy as a function of the volume, c/a ratio and u for wurtzite GaN 

with LDA calculation. 
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Figure V.I.4(b). Total energy as a function of the volume, c/a ratio and u for 

wurtzite GaN with GGA calculation. 
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Table V.I.3. Lattice constants a and c, c/a, internal parameter u , bulk modulus B, and 

derivative B’ of wurtzite AlN. 

 

 This work Calculations Experiment 

 LDA GGA LDA GGA  

a (Å) 3.093 3.137 3.057-4.114a 3.113-3.135b 3.111c 

c (Å) 4.952 5.023 4.943-5.046a 5.022-5.041b 4.978c 

c/a 1.601 1.601 1.604-1.619a 1.602-1.6193b 1.601c 

u 0.3801 0.3801 0.380-0.383a 0.7898-0.381b 0.385c 

B (GPa) 212.16  192.35 195-215a 192b 185-212d 

B’ 3.878   3.757 3.63-3.82a 3.96b 5.7-6.3d 

 

a Refs. [21-38,44,49], b Refs. [30,33], c Refs. [13,15],  d Refs. [13,46] 

 

 

 

 

Table V.I.4. Lattice constants a and c, c/a, internal parameter u, bulk modulus B, and 

derivative B’ of wurtzite GaN. 

 This work Calculations Experiment 

 LDA GGA LDA GGA  

a (Å) 3.157  3.224 3.095-3.193a 3.245b 3.18-3.192c 

c (Å) 5.14 5.25 5.0-5.228a 5.296 5.166-5.185c 

c/a 1.628 1.628 1.622-1.639a 1.632 1.624-1.627c 

u 0.3756 0.3757 0.375-0.378a 0.3762 0.375-0.377c 

B (GPa)  203.96  171.2 195-213a 172b 188-220d 

B’  4.565  4.5516 4.2-4.5a 5.11b 3.2-4.3d 
 

a Refs. [21-38,43,44,49], b Refs. [30,33], c Refs. [13,15],  d Refs. [13,48,51,52] 
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V. I. 2. 3. Rocksalt phase 

The structure of the tetrahedral compounds is determined by the competition 

between the energy gain obtained by formation of sp3 bonds (as in the zincblende or 

wurtzite, rocksalt structure) and the gain in Madelung energy due to a larger coordination 

number. The zincblende (or wurtzite) structure is four-fold coordinated, and the rocksalt is 

six-fold coordinated. The more ionic compounds will prefer therefore rocksalt to 

zincblende (or wurtzite) structure, and according to the Phillips-Van Vechten theory [45] a 

critical ionicity, fc = 0,785, exists such that compounds with ionicities larger than this 

crystallize in the six-fold coordinated structure, whereas the others are stable in the 

tetrahedrally-bonded structures, zincblende or wurtzite. 

In our total-energy calculations we have examined the high-pressure rocksalt 

structure of AlN and GaN compounds. Figures V.I.5 show the fitted total energy versus 

volume curves of AlN and GaN compounds. In Table V.I.5 and Table V.I.6, the results for 

the calculated structural parameters within LDA and GGA calculations are given and 

compared with available experimental data [46-48] and theoretical works [43,49,50]. We 

find that our lattice constants obtained using GGA are 1.5% and 1.91% larger than those 

obtained using LDA for AlN and GaN, respectively. The bulk modulus obtained using 

GGA is about 8.9% smaller for AlN and 15.33 % smaller for GaN. We notice that the 

structural properties determined with LDA and GGA calculations of rocksalt AlN and GaN 

exhibit a similar conclusion mentioned in the case of zincblende and wurtzite phase.  
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Figures V.I.5. Total energy as a function of the volume for rocksalt AlN and GaN with 

LDA and GGA calculation. 
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Table V.I.5. Lattice constants a, bulk modulus B, and pressure derivations of the bulk 

modulus B’ of rocksalt AlN. 

 

 This work Calculations Experiment 

 LDA GGA LDA GGA  

a (Å) 4.014 4.074 3.978a - 4.045b 

B (GPa) 276.6 252 272a - 221c 

B’ 3.998 3.901 3.8a - 4.8c 

 

a Ref. [49], b Ref. [55]  c Ref. [46]. 

 

 

Table V.I.6. Lattice constants a, bulk modulus B, and pressure derivations of the bulk 

modulus B’ of rocksalt GaN. 

 

 This work Calculations Experiment 

 LDA GGA LDA GGA  

a (Å) 4.183 4.263 4.185-4.24b 4.271b - 

B (GPa) 249.2 211 235-251b 211.6b 248d 

B’ 4.436 5.415 3-4.71b 4.50b - 
 

a Refs. [43,49,52]  b Ref. [43], Ref. [48],. 

 

 

V. I. 2. 4. The relative stability and phase transitions: 

The wurtzite AlN and GaN are known to transform under high-pressure to the 

rocksalt (RS) structure. In spite of several experimental and theoretical investigations, the 

transition pressure, p t, of the wurtzite to rocksalt transition is still a controversial issue (for 

a review see Ref. [3]), and so does the compressibility (or bulk modulus (Beq)) of WZ -AlN 

and -GaN. The first evidence of a transition of GaN under high pressure to an unknown 

crystal structure was provided by the X-ray absorption spectroscopy (XAS) measurements 

of Perlin et al. [51,52], at about 47 GPa. For AlN, the WZ to RS transition has been 

reported to occur at 22.9 GPa by Ueno et al [53]. Munoz and Kunc [54] have predicted the 
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unknown high-pressure structure to be the RS phase, using first-principles pseudopotential 

planewave (PP-PW) calculations. This prediction of GaN has been confirmed by the X-ray 

diffraction investigations of H. Xia et al. [48] and Ueno et al. [53], which gave values for p t 

of 37 and 52.2 GPa, respectively. For AlN, the prediction values are reported by H. 

Vollstädt et al [55] and Q. Xia et al. [46], which gave values for p t of 14-16.6 and 14-20 

GPa, respectively. One should note that the above values for p t were obtained upon 

pressure increase. The discrepancies between the above experimental results for p t have 

been attributed to the sensitivity of the techniques used, as well as to the nature of the 

samples (powder [48,53] versus single crystal [51,52]. On the other hand, full-potential 

LMTO calculations [56] gave a value of 38.2 GPa, for GaN the ZB to RS transition, in 

accord with the experimental result of Refs. [51,52]. 

Figures V.I.6 show the fitted Etot versus V curves of the three phases of AlN and 

GaN considered, calculated by using LDA and GGA calculations. The important features 

to note from those figures are the difference between the equilibrium Etot of the WZ and 

ZB phases is smaller (the LDA and GGA results are of (0.1077 for AlN and 0.03901eV for 

GaN) and (0.09464 for AlN and 0.09354eV for GaN), respectively). This is expected, since 

the ZB and WZ phases have local tetrahedral bonding and they only differ in the second-

nearest neighbors. This also explains the epitaxial growth of GaN in the WZ or ZB forms, 

depending on the substrate [57].  

 The p t of the WZ to RS and ZB to RS transitions of AlN and GaN are determined 

from the constraint of equal static lattice enthalpy. The results for p t obtained are listed in 

Table V.I.7, compared with other available theoretical results and experimental data. The 

present results agree with the theoretical values and experimental data. Our results is 

similarity between the WZ and ZB and show that the gradient corrections to the LDA 

(included via GGA) have very small effects on p t of AlN and GaN 
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Figure V.I.6. Total energy as a function of the volume for zincblende, wurtzite and 

rocksalt AlN and GaN with LDA and GGA calculation. 
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Table V.I.7. Transition pressures (p t ) for AlN and GaN. 

 

 This work Calculations Experiment  

 LDA GGA LDA GGA  

ZB→→ RS 4.0 5.3  7.1a - -   

AlN WZ→→ RS 8.2 9.5 9.1a, 12.9b, 16.6c - 14-16.6f, 22.9g, 

12.9-16h 

ZB→→ RS  33.2 35.5  38.15d, 42.6d, 53.80e, 

38.21e, 42.9a 

40.80d -  

GaN 

WZ→→ RS  34.1 36.2  42.9a, 38.10d, 51.8c, 

50e, 55b, 56e 

42.30d 47-50i, 37j, 52g 

 

a Ref. [49], b Ref. [69], c Ref. [22], d Ref. [43], e Ref. [52], f Ref. [55], g Ref. [53], h Ref. [46],               
i Ref. [51,52], j Ref. [48]  
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V. I. 3. Electronic properties  

      V. I. 3. 1. Band structures    

 V. I. 3. 1. 1. AlN compound  

 The electronic band structures of zincblende and wurtzite AlN along symmetry 

lines are displayed in Figures V.I.7 for LDA and GGA calculations. The calculated band 

energies at high-symmetry points are given in Table V.I.8. The band structures are 

calculated at the appropriate theoretical equilibrium lattice constants for LDA and GGA, 

respectively. Comparing LDA and GGA calculations in the zincblende structure, we see 

that the band structures are very similar, except that the bandgap at Γ point for the GGA 

result is about 0.39 eV (∼9%) smaller than LDA result. The conduction bands in GGA 

calculation are shifted down slightly in energy, but this shift is not constant and depends on 

the k point and energy. Slight differences are also seen in valence bands: in this case GGA 

bands lie higher in energy than those of LDA, leading to slightly reduced bandwidths. The 

difference observed between LDA and GGA for band structure in zincblende phase (see 

Figure V.I.7(a)), is primarily due to the larger lattice constant obtained using GGA 

compared to LDA. If instead, the experimental lattice constant is used, the calculated 

bandgap for AlN in zincblende structure is the same to within 0.02 eV for LDA and GGA. 

The band structure for AlN in the wurtzite phase exhibits a qualitatively similar 

behavior (see Figure V.I. 7(b)): the direct bandgap for GGA result is found to be 0.49eV 

(10%) smaller than LDA result. 

The zero-energy reference is the valence-band maximum. It occurs at the Γ point, 

whereas the conduction-band minimum occurs at the X point. Therefore, the bandgap of 

zincblende AlN is Γ-X indirect and no semicore d bands are involved. Thus, we obtain an 

indirect bandgap of 3.211 eV and 3.304 eV for LDA and GGA, respectively, in good 

agreement with other predictions calculations [23,27,28,33,38,58,59] (see Table V.I.8 for 

comparison). 

In wurtzite AlN, the bandgap is 4.3 eV and 3.30 eV for LDA and GGA, 

respectively, and direct at Γ point; this is in close agreement with the results of Wright and 

Nelson [27], Vogel et al [28], Pugh et al [59] and Rubio et al [23], who used plane-wave 

pseudopotential total-energy calculations in the LDA approximation. The value of 

experimental energy gap of WZ-AlN determine by Berger [60] is found about 6.28 eV. 
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Thus our LDA and GGA underestimate the bandgap by 1.98 eV (~30%). The total valence 

bandwidths are 14.8 eV for ZB-AlN and 15.12 eV for WZ-AlN.  

 

 

 

 

 

  

 

 

Figure V.I.7. LDA and GGA Band structures of AlN along the principle high-

symmetry directions in the brillouin zone in (a) zincblende and  (b) wurtzite phases. The 

energy zero is taken at the valence band maximum. 
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Table V.I.8. Calculated bandgaps, antisymmetric gap (E asy) upper-valence bandwidth 

(UVBW) and total valence bandwidth (TVBW) for wurtzite and zincblende structures of 

AlN compared to other theoretical calculations and experiments. All energies are in eV. 

 

 

 This work Calculations Experiment 

 LDA GGA   

Wurtzite     

Eg(ΓΓ 1
v - ΓΓ 1

c) 4.395 4.027 3.9a, 5.8a, 4.41b, 4.2c, 

4.74d, 4.3e, 5.47g 

6.28h, 6.3i 

Eg(ΓΓ 1
v – K1

c) 4.994 5.072 4.36j, 5.44k - 

Eg(ΓΓ 1
v – M1

c) 5.811 5.761 5.22j, 5.17k - 

Eg(ΓΓ 1
v – A1

c) 6.651 6.278 4.59k - 

Easy 6.75 5.33 7.7a, (6.74, 6.86)g - 

UVBW 6.12 5.866 6.9a, 6.0b (6.28, 5.93)g 6.0h 

TVBW 15.13 15.01  17.40a, (15.64, 15.32)g 16.0h 

Zincblende     

Eg(ΓΓ 15
v - ΓΓ 1

c)  4.325 3.945 4.35b, 4.3e, 4.75c, 4.2f,  - 

Eg(ΓΓ 15
v – X1

c) 3.211 3.304 3.2a, 3.2c, 3.1e, 4.9a, 5.2c - 

Eg(ΓΓ 15 
v – L1

c) 7.383 7.12  - - 

Easy 7.07 7.42 7.6a - 

UVBW 5.98 5.74 5.9d, 6.0a - 

TVBW 14.92 14.824 15.1a - 

  
 a Ref. [23],  b Ref. [25],  c Ref. [28],  d Ref. [33],  e Ref. [59],  f Ref. [58],  g ref  [62], h Ref  [60], 

 i Ref [41], j Ref [70], k Ref [22] 
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            V. I. 3. 1. 2. GaN compound 

The electron energy band structures of zincblende and wurtzite GaN at normal 

pressure along principal symmetry points in the Brillouin zone are shown in Figures V.I.8 

for LDA and GGA calculations. Principle features of the calculated band structure such as 

bandgaps are given in Table V.I.9. As in the case of AlN, the band structures look rather 

similar. The bandgap is about 0.40 eV (∼21%) smaller for GGA as compared to LDA. 

Similar results are obtained for the wurtzite structure: GGA yields a bandgap 

approximately 0.41eV (∼19.3%) smaller than LDA. This, as mentioned earlier, can be 

primarily attributed to the larger GGA lattice constant. However, the upper valence 

bandwidth is improved by the use of GGA (the LDA and GGA values for WZ-GaN are 

7.35 and 6.855 eV, respectively, compared to the experimental result of 7.4 eV [63]). 

The most prominent features of the calculated band structures (bandgaps, 

antisymmetric gap (Easy) and bandwidths) of ZB-GaN and WZ-GaN are listed in Table 

V.I.9 for LDA and GGA as well as other calculations [23,27,28,33,38,58,59] and available 

experimental [15] data. In GaN there is a considerable hybridization of the N p orbitals 

with the Ga 3d orbitals which reduces the gap. The interaction between the N p and the 

occupied Ga d states results in a level repulsion, moving the valence-band maximum 

upwards. This p-d coupling tends to reduce the bandgaps as it is known for nitride 

compounds [18,58,61]. The p-d coupling increases with small p-d energy differences and 

large overlap between the p-d orbitals. In WZ-GaN, the band gap at Γ is 2.1 and 1.691 eV 

for LDA and GGA, respectively. This is in close agreement with the results of Rubio et al. 

[23], Wright et al. [27], Vogel et al. [28], and Pugh et al. [59] who used plane-wave 

pseudopotential total energy calculations in the LDA approximation (see Table V.I.9 for 

comparison). The bandgap of GaN is found to be direct at Γ point and equal to 1.93 eV and 

1.521 eV for LDA and GGA, respectively, which agree well with ab initio calculations 

[23,27,33,59]. Our bandgaps values are underestimated about 41% compared to 

experimental one.  

The results of other approaches beyond LDA and/or GGA, as Hartree-Fock [62], 

GW quasiparticle [23] and self-interaction as well as relaxation correction pseudopotential 

(SIRC-PP) [28] calculations are also listed for comparison. Only GW quasiparticle and 

SIRC-PP calculation of Rubio et al [23] and Vogl et al [28], respectively, yield gap 
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energies in reasonable agreement with experiment. However there is an interesting 

agreement between LDA and/or GGA and GW results for the valence bandwidths. 

Furthermore it is widely accepted that the LDA and/or GGA electronic band structures 

agree qualitatively with experiments work as concerns the ordering of the energy levels 

and the shape of the bands. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures V.I.8. LDA and GGA Band structures of GaN along the principle high-

symmetry directions in the brillouin zone in (a) zincblende and  (b) wurtzite phases, the Ga 

3d treated as valence states. The energy zero is taken at the valence band maximum. 
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Table V.I.9. Calculated bandgaps, antisymmetric gap (Easy ) upper-valence bandwidth 

(UVBW) and total valence bandwidth (TVBW) for wurtzite and zincblende of GaN 

structures compared to other theoretical calculations a nd experiments. All energies are in 

eV. 

 

 This work Calculations Experiment 

 LDA GGA   
 

Wurtzite 
    

Eg(ΓΓ v - ΓΓ c) 2.10 1.691  2.3a, 1.9b, 3.51b, 1.76c, 

1.7d, 4.0d, 2.04e, 2.75f 

 3.474-3.507g 

Eg(ΓΓ 1
v – K1

c) 4.975 4.871 4.57k, 5.44h - 

Eg(ΓΓ 1
v – M1

c) 4.966 5.075 4.63k, 5.09h - 

Eg(ΓΓ 1
v – A1

c) 4.363 3.933 4.28k, 4.59h - 

Easy 5.1 5.01 5.4a  

UVBW 7.35  6.85   7.4a, 7.3b, 7.1b 7.4h 

TVBW 16.11 15.7   16.3a - 
 

Zincblende 
    

Eg(ΓΓ v - ΓΓ c)  1.93 1.521 3.1a, 1.6b,c, 1.28c, 3.8b, 

1.9d, 1.89i 

3.3f, 3.29-3.35g, 

3.2j 

Eg(ΓΓ v – Xc) 3.25 3.411 - - 

Eg(ΓΓ v – Lc) 4.73 4.416 - - 

Easy 5.09 5.6 5.6a - 

UVBW 7.33 7.062  7.4a, 7.3b - 

TVBW 16.77 13.423  16.3a, 16.3b - 

   
    a Ref. [23], b Ref. [28], c Ref. [33], d Ref. [59], e ref  [24], f Ref. [58], g Ref  [38], h Ref [63],  
    i Ref. [25], j Ref [15], kRef. [70], j Ref [22] 
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V. I. 3. 2. Densities of states: 

 An essential ingredient in determining the electronic properties of solids is the 

energy distribution of the valence and conduction bands electrons [64]. For example, 

analysis of dielectric functions, transport properties, photoemission spectra of solids 

requires knowledge of the electronic density of states (DOS). Theoretical quantities such as 

total electronic energy of solid, the position of Fermi level, and tunneling probabilities of 

electrons call for detailed calculations of electronic density of state.  

 

           V. I. 3. 2. 1. AlN compound 

In order to check the accuracy of our band structures results; we applied the 

tetrahedron method [65] to calculate DOS. In this case we present the calculated total and 

partial DOS of AlN in zincblende and wurtzite structures. The DOS is computed using a 

mesh of  91 and 140 k points in the IBZ for ZB and WZ structures, respectively. 

Figures V.I.9 show the total, partial and the projected DOS integrated over the 

atoms for both ZB and WZ –AlN. While not much difference is expected between DOSs 

obtained for the two structures for the occupied states (valence bands), significant 

discrepancies are obvious for the unoccupied levels (conduction bands). In particular, the 

total DOS for ZB-AlN has conduction band DOSs that are shifted toward lower energies as 

compared to that of WZ-AlN. For both ZB-AlN and WZ-AlN, the total DOS presents three 

regions: the lower part of the valence bands is dominated by N 2s states, and the upper part 

by N 2p and Al 3p states. The Al 3s states contribute to the lower valence bands. The first 

conduction band in Γ is predominantly of Al 3s character.  In Figures V.I.10, we show the 

angular-momentum decomposition of the atom-projected DOS of both ZB-AlN and WZ-

AlN, which are used to analyse the orbital character of different states. The strong 

hybridization of Al 3s and Al 3p with N 2p-like states can be readily visualized in Figures 

V.I.10. 

From Figures V.I.9, one can see that the 2s band of nitrogen between –11.98 and     

-14.92 eV for ZB-AlN and between -12.11 and –15.12 eV for WZ-AlN is distinct and has 

very little mixing with other states. In the case of AlN the nitrogen 2s band is wider and 

lower in energy. The large direct bandgap (Γ15v–Γ1c) in ZB and (Γ1v–Γ1c) in WB structures 

of AlN is due to the Al 3s and N 2s orbital interaction, which forms the lower-energy 

bonding state (Γ1v) and the anti-bonding state (Γ1c). The bonding and anti-bonding states 
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are lowered and pushed respectively, relative to the N 2s and Al 3s orbital energies, by the 

same amount of s–s interaction energy in both structures ZB and WZ. The resulting direct 

bandgap must be the same for both ZB-AlN and WZ-AlN (see Table V.I.8 for 

comparison).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure V.I. 9.  Calculated total and partial density of states of AlN in (a) zincblende and 

(b) wurtzite. 
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Figure V.I. 10.  The angular-momentum decomposition of the atom-projected densities of 

states in (a) ZB-AlN and (b) WZ-AlN. 
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           V. I. 3. 2. 1. GaN compound 

In this section, we present the calculated total and partial DOS of GaN in wurtzite 

and zincblende structures. Figures V.I.11 show the total, partial and the projected density 

of states (DOS) integrated over the atoms for both wurtzite and zincblende GaN, 

respectively. While not much difference is expected between DOS obtained for the two 

structures, for the occupied states (valence bands), significant discrepancies are obvious for 

the unoccupied levels (conduction bands). In particular, the total DOS for ZB-GaN, has 

conduction-band DOS that are shifted towards lower energies as compared to that of WZ-

GaN. For both ZB-GaN and WZ-GaN, the total DOS presents three regions, the lower part 

of the valence bands are dominated by N 2s states, and the upper part by N 2p and Ga 4p 

states. The Ga 4s states contribute to the lowest valence bands. The first conduction band 

in Γ is predominantly of Ga 4s character.  

The Figures V.I.12 represent the atom-projected DOS of both ZB-GaN and WZ-

GaN. We see from those figures, that most of the d character resides on the Ga sites, while 

that of the s character still comes from N. Furthermore, the 3d electrons in the Ga atom are 

more resonant with the 2s electrons of N.  

The large direct band gap in both ZB and WZ structure of GaN is due to the Ga 4s 

and N 2s orbitals interaction which forms the lower-energy bonding state (Γ1v) and the 

antibonding state (Γ1c). The bonding and anti-bonding states are lowered and pushed 

respectively, relative to the N 2s and Ga 4s orbital energies by the same amount of s–s 

interaction energy in both structures WZ and ZB. The resulting direct band gap must be the 

same for both ZB-GaN and WZ-GaN (see Table V.I.9 for comparison).  
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Figure V.I.11.  Calculated total and partial density of states in (a) ZB-GaN and (b) WZ-

GaN, when Ga 3d are treated as valence states. 
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Figures V.I.12.  The angular-momentum decomposition of the atom-projected densities of 

states in (a) ZB-GaN and (b) WZ-GaN, when Ga treated as valence states. The d-eg and d-

t2g are degenerated of the d bands with the eg is doubly degenerated and the t2g is triply 

degenerated. 
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V. I. 3. 3. Electronic charge densities: 

The charge density distribution is an important property of solids in the fact that 

provide a good description of the chemical properties. The investigation of chemical trends 

in solid-state properties appears as an extremely useful part of new material research. 

Performing those calculations, we try to gain some information about the III-V Nitrides.  

The ionic character of any material can be related to the charge transfer between the 

cation and anion. For this reason, we have calculated the charge densities for AlN and GaN 

in zincblende and wurtzite structures. The total valence charge densities for AlN and GaN 

both zincblende and wurtzite are illustrated along the Al-N and Ga-N bonds (see Figures 

V.I.13 and V.I.14). In Figures V.I.15 and V.I.16 represent the total valence charge 

densities for AlN and GaN in the both zincblende and wurtzite in the (110) plane 

containing Al (Ga) and N atoms. One can see clearly that the bonding charge is displaced 

strongly from the mid-point between the atoms towards the N atom. Besides, one notices 

that the situation in the ZB structure is analogous to that of the WZ structure. The 

displacement of the bonding charge listed above increases as the difference between the 

electronegativity values of the two atoms increases.  
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Figure V.I.13. Line plot of the calculated total valence charge densities along the Al-N 

bond direction for (a) ZB-AlN and (b) WZ-AlN. 
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Figure V.I.14. Line plot of the calculated total valence charge densities along the Ga-N 

bond direction for (a) ZB-GaN and (b) WZ-GaN 
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Figure V.I.15. Contour plot of the total valence charge density in the (110) plane of AlN 

(a) zincblende and (b) wurtzite. 
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Figure   V.I.16. Contour plot of the total valence charge density in the (110) plane of GaN 

(a) zincblende and (b) wurtzite. 
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   V. I. 3. 4. Ionicity factor : 

The ionicity of the bond is one of the standard concepts in solid-states theory. 

However, the problem in defining ionicity of a bond remains the difficulty of transforming 

a qualitative concept to quantitative formula.  

Several considerations are taken into account when performing calculations for 

determination of the ionic character they are listed as follows: (i) The ionicity factor can be 

related to the difference in electronegativities of two atoms i.e. the Pauling Principle 

definition [66]). (ii) The charge asymmetry of a cation-anion bond is suggested to be a 

measure of the degree of ionic character. This is the basic idea of the Garcia and Cohen 

ionicity model [67]. (iii) The antisymmetric (heteropolar) gap (Easy) has been proposed as a 

direct measure of crystal ionic energy by Phillips [45].  

Two different approaches have been used to calculate the ionicity factor for AlN 

and GaN semiconductors in wurtzite and zincblende structures: the Garcia and Cohen 

approach based on the valence charge density calculation [67], and the Pauling definition 

based on the electronegativity values of the elements. 

 The scaling law introduced by Garcia and Cohen was successful in predicting the f 

behaviour for a wide variety of semiconductors. Garcia and Cohen [67] suggested using 

the asymmetry the charge density of a tetrahedral binary compound to measure their 

ionicity. However, these authors calculated charge densities using the total-energy 

pseudopotential method, and they deduced that ionicity factors exhibit a large discrepancy 

with Phillips ionicity scale for all the group III nitrides.  

The Garcia and Cohen [67] ionicity factor is defined as : 
 

s

a
i S

S
f =                                                       (V-I-2) 

where Ss and Sa are the symmetric and antisymmetric components strength measures of the 

of the charge density, respectively. They are defined by : 
 

( )∫





≡

0

32
,

0
,

1

V

asas rdr
V

S ρ                                         (V-I-3) 

where ρ is the charge density components. 
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The estimation of the ionicity factor is obtained by using the Pauling equation: 
 

( )[ ]4/exp1 2
BAif χχ −−−=                                       (V-I-4) 

where χA and χB are the electronegativities of atoms A and B, respectively. 

The calculated ionicity values for AlN and GaN compared with those of Phillips 

[43], Garcia and Cohen [67], Ferhat et al [68] and Tadjer et al [69] are summarized in 

Table V.I.10. Our values fi for zincblende and wurtzite AlN and GaN are close to those 

given by Phillips for wurtzite structure and Ferhat et al and Tadjer et al for cubic structure, 

but they are different from that found by Garcia and Cohen. The calculated ionicity is 

consistent with Pauling’s [66]. Since both polytypes have the same tetrahedral 

environment, where the local coordination of the first neighbor atomic positions is the 

same in the zincblende and the wurtzite structures. To well show the reliability of our 

calculated ionicity, we have plotted in figure V.I.17 the Phillips ionicity as function of the 

Garcia and Cohen factor ionicity. Our results of the GaN and AlN are found along the 

linear curve, which indicate that these values are corrected when compared with the Garcia 

and Cohen results. 

 

 

Table V.I.10. Calculated ionicity factor f of AlN and GaN in both zincblende and wurtzite 

structures. The differences in electronegativities, χN -χGa ou Al; are also listed for 

comparison. 

 

 fi 
WZ fi 

ZB  Calc. [43] Calc. [67] Calc. [68] Calc. [69] 

AlN 0.47  0.481a 0.56b 0.449 0.794 0.508 0.572 

GaN 0.53  0.519a 0.58b  0.5  0.78 0.519 0.575 
 

a Calculated using the Garcia and Cohen approach [67]. 
b Estimated using the Pauling definition [66]. 

 

 

 

 

 



Part I                                                                                   Properties of AlN and GaN compounds 

 92 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure V.I. 17. The Phillips ionicity as function of the Garcia  and Cohen factor ionicity 
[67]. The open circles represent our calculated values. 

 
 

 
V. I. 3. 5. Observation of semiconducting aspect at rocksalt phase 

The electronic structure of AlN and GaN under high pressure has been a subject of 

great interest in recent years. Those materials convert to the rocksalt structure from the 

lower-pressure wurtzite or zincblende structure phases.  

The band structures of the rocksalt phase of AlN and GaN, calculated by using 

LDA and GGA calculation, are shown in Figures V.I.18. For AlN, we show the indirect-

bandgap semiconductor between Γ and X point. For GaN, we show also the indirect-

bandgap semiconductor but between the valence band maximum at the L-point and the 

conduction band minimum along the X direction. Similar behavior has been observed in 

the case of  band structures of zincblende and wurtzite, the GGA bandgaps are smaller than 

those of the LDA by ∼20% for AlN and GaN in wurtzite and zinblende structures. The 

calculated band energies at high-symmetry points for AlN and GaN are given in Table 

V.I.11 and compared to other theoretical calculations. The RS -GaN is predicted to be an 

indirect-bandgap semiconductor with a bandgap of about 0.942 eV. 
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Figure V.I. 18. LDA and GGA Band structure of rocksalt (a) AlN and (b) GaN along the 

principle high-symmetry directions in the brillouin zone. The energy zero is taken at the 

valence band maximum. 
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Table V.I.11. Calculated bandgaps of AlN and GaN in rocksalt structure to other 

theoretical calculations. All energies are in eV. 

 

 This work Calculations 

 LDA GGA  

AlN    

Eg(ΓΓ v - ΓΓ c) 6.07 5.371 5.56a, 4.99b 

Eg(ΓΓ v – Xc) 4.651 4.40 4.65a, 4.404b 

Eg(ΓΓ  
v – Lc) 6.26 5.998  6.13a, 5.52b 

GaN    

Eg(ΓΓ v - ΓΓ c)  3.10 2.424 2.92a, 3.16b, 2.5c 

Eg(ΓΓ v – Xc) 1.257 0.876 1.0a, 1.01b, 0.5c 

Eg(ΓΓ  
v – Lc) 5.316 5.076  - 

Eg(L 
v – Xc) 0.942 0.56  - 

 

a Ref. [21], b Ref. [70], c Ref. [54], 
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V. I. 4. Elastic properties 

In the following, we study the AlN and the GaN compounds in their metastable 

zincblende phase because there are little experimental data and theoretical works under 

strain and stress effect. Furthermore, the zincblende structure is of technological interest as 

it can be doped more easily than the wurtzite structure. 
 

V. I. 4. 1. Elastic constants  

 The shear modulus requires knowledge of the derivative of the energy as a function 

of a lattice strain [71]. In the case of a cubic lattice, it is possible to choose this strain so 

that the volume of the unit cell is preserved. The strain can be chosen so that the energy is 

an even function of the strain, whence an expansion of the energy in powers of the strain 

contains no odd powers. 

We calculate the elastic properties of AlN and GaN by computing the components 

of the stress tensor ε for small strains, using the method developed recently by Charpin 

[72,73]. It is well known that a cubic crystal has only three independent elastic constant 

C11, C12 and C44. So a set of three equations is needed to determine all the constants, which 

means that three types of strain must be applied to the starting crystal. 

 The first type involves calculating the elastic modulus (C11 + 2C12), which are 

related to the bulk modulus B : 
 

( )1211 2
3
1

CCB +=                                                  (V-I-5)  

The second type involves performing volume-conservative tetragonal strain tensor. We 

vary the ratio c/a=(1+e) for several user-supplied values of e leading to the strain tensor ε : 
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Where ( ) 1−−1/3+= e11ε  
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Where the application of this strain have an effect on the total energy from its unstrained 

value as follow: 

 

)( 0  )( 6)( 3
1

2
112111 εεε +−= VCCE                                     (V-I-7) 

where V is the volume of the unit cell. 

Finally for the last type of deformation, we use the volume-conserving rhombohedral strain 

tensor given by: 

 
















=

111

111

111

3
eε                                                     (V-I-8) 

Which transforms the total energy to 

 

    )( 0  )22( 
3
1

)( 3
1

2
14412111 εεε +++= VCCCE                        (V-I-9) 

For cubic crystal, the shear wave modulus is given by:  

 

( )12112
1

CCCS −=                                                 (V-I-10) 

The calculated elastic constants are summarized in Table V.I.12 and V.I.13. To our 

knowledge, because there are not any available experimental results, we compare our main 

finding of zincblende AlN and GaN with some available ab initio calculations works 

[26,31,32,74]. It is obvious to observe a good agreement between our results and those 

found recently. 

   

V. I. 4. 2. Internal-strain parameters 

 The well-known Kleinman parameter ζ for zincblende describes the relative 

positions of the cation and anion sublattices under volume by conserving strain distortions 

in which the positions are not fixed by symmetry. The internal-strain parameter is 

calculated using the following relation [75,76] : 

 

1211

1211

27

8

CC

CC

+
+

=ς                                                   (V-I-11) 
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The calculated values for this parameter are given in Table V.I.12 and V.I.13 for 

AlN and GaN in zincblende structure, respectively. It can be noted that our values for AlN 

and GaN are in reasonably good agreement with the existing data obtained from ab initio 

calculations [26,31,32]. We recall that a low value of internal-strain parameter implies that 

there is a large resistance against bond-angle distortions while the reverse is true for a high 

value. 

 

 

 

Table V.I.12. Elastic constants and internal-strain parameter of zincblende AlN 

 

 This work Calculations 

C11 (GPa) 313.24 304a, 313b, 294c 

C12 (GPa) 156.47 152a, 160b, 168c 

C44 (GPa) 202 199a, 192b, 198c 

CS (GPa) 78.39 76a, 76.5b, 63c 

ζζ 0.62 0.6a, 0.56b, 0.67c  
    

a Ref. [26], b Ref. [31], c Ref. [32]  

 

 

Table V.I.13. Elastic constants and internal-strain parameter of zincblende GaN 

 

 This work Calculations 

C11 (GPa) 274.2 296a, 285b, 293c, 285d 

C12 (GPa) 166.1 155a, 159b, 161c, 156d 

C44 (GPa) 199 206a, 155b, 149c, 150d 

CS (GPa) 54.05 71a, 67b, 62c, 64.5d 

ζζ 0.71 0.5a, 0.6b, 0.67c  
 

   a Ref. [26], b Ref. [31], c Ref. [32],d Ref. [74] 
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V. I. 5. Piezoelectric properties : 

 Considered as materials with partially ionic bonds character the group-III nitrides 

exhibit the piezoelectric effect. In fact the piezoelectric polarization fields are induced 

from internal displacements of the group-III atoms relative to the nitrogen atoms in an 

elementary cell. In the zincblende structure this happens only for shear strains [34]. 

 In the absence of external fields, the total macroscopic polarization of a solid is the 

sum of the strain-induced or piezoelectric polarization P. In the linear regime, the 

piezoelectric polarization is simply expressed via the piezoelectric coefficient and is 

related to the strain ε by the following expression: 

 

∑=
i

jiji eP ε                                                 (V-I-12) 

This equation defines the components of piezoelectric tensor eij. ε is the strain in-plane 

which is assumed to be isotropic.  

Zincblende is the structure with highest symmetry compatible with the existence of 

piezoelectric polarization under strain [78]. The piezoelectric tensor of zincblende has one 

nonvanishing independent component (e14). Therefore, the polarization in these materials 

system will have a one piezoelectric coefficient. 

 In Harrison [74] approach, the macroscopic piezoelectric tensor coefficients e14 is 

defined by : 

 

2
*

14
a

e
ee pς=                                                (V-I-13) 

where ep
* is the piezoelectric charge given by: 

 

( ) 




 −−−∆−=
ς
ςααα 1

1
3
8

4 2*
pppp Ze                             (V-I-14) 

where ∆Z = 1 for III-V compounds. 

αp is the bond polarity depending on fi (ionicity factor), and is given by : 

 

( ) 3

2

11 ip f−−=α                                           (V-I-15) 
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The transverse effective charges are fundamental quantities, which specify the 

leading coupling between lattice displacements and electrostatic fields in insulators. 

However for semiconductors compounds of the zincblende structure, which are the focus 

here, it is easily shown that the effective charges are scalars, and are equal and opposite for 

cation and anion; it is conventional to use the positive cation effective charge to 

characterize a given compound. The transverse effective charge is defined as follows : 

 

( )2* 1
3
8

4 pppT Ze ααα −+∆−=                                (V-I-16) 

In Table V.I.14 and V.I.15, we report the polarity, piezoelectric charge, 

piezoelectric constant and transverse effective charge for AlN and GaN compounds. Our 

results for these materials agree well with the available experimental [79] value of e14 for 

GaN and others theoretical works [31,32,75,80,81]. To facilitate further comparison with 

other III-V and II-VI systems, we collect the piezoelectric constants and transverse 

effective charge for a number of III-V and II-VI compounds from References [82-87] in 

Table V.I.16. 

 It well know that the nitrides follow qualitatively a well-defined III-V trend: the 

piezoelectric constants increase in magnitude as a function of the anion chemical identity 

as one moves upwards within period V, i.e., from Sb to N, because the ionic contribution 

tends to prevail over the electronic clamped-ion term as the anion becomes lighter 

 From Table V.I.14 and V.I.15, overall the piezoelectric properties of AlN and GaN 

resemble II-VI compounds, and appear to be very different from conventional III-V 

semiconductors. The piezoelectric constants have the same sign as in II-VI compounds, 

and opposite to III-V compounds. While in normal III-V compounds the clamped-ion term 

is larger in absolute value than the internal-strain ionic contribution, in the nitrides the 

latter prevails to a larger transverse effective charge. Compared to normal III-V 

compounds, this sign inversion constitutes a qualitative difference of obvious practical 

relevance [82]. Consequently the nitrides are an extreme case of this trend, and their 

piezoelectric response is by far larger than that of all other III-V compounds and of 

opposite sign.  In the zincblende structure the tensor of the transverse effective charges is 

isotropic. Due to the charge neutrality, the charges of the cation and anion only differ by 

the sign. Our results agree well with the few theoretical works. The transverse effective 

charge follows a clear chemical trend within the nitrides series.  
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Table V.I.14. Polarity, piezoelectric charge, piezoelectric constants (in units of C/m2) and 

transverse effective charge (in units of e) of zincblende AlN. 

 

 This work Calculations 

ααp 0.60 0.57a 

ep
* 0.821 1.03a 

e14 0.434 0.59b, 0.67c 

eT
* 2.457 2.36a, 2.55b, 2.56c  

 

a Ref. [74], b Ref. [31], c Ref. [80] 

 

Table V.I.15. Polarity, piezoelectric charge, piezoelectric constants (in units of C/m2) and 

transverse effective charge (in units of e) of zincblende GaN. 

 

 This work Calculations Experiment 

ααp 0.621 0.61a - 

ep
* 1.06 1.13a - 

e14 0.605 0.50b, 0.68c 0.60e 

eT
* 2.50 2.43a, 2.67b, 2.65f  -  

  

a Ref. [74], b Ref. [31], c Ref. [80], d Ref. [79], e Ref. [78], f Ref. [31] 

 

 

Table V.I.16. Piezoelectric constants (in C/m2) and transverse effective charge (in e) of 

several zincblende compounds reported in Refs. [82-87]. 

 

Compounds e14 eT
* Compounds e14 eT

* 

CdTe 0.084 2.367 AlAs -0.03 2.03 

ZnSe 0.10 2.03 GaAs -0.35 2.16 

ZnS 0.15 2.15 InAs -0.08 2.53 

AlP 0.11 2.28 AlSb -0.13 2.30 

GaP -0.18 2.04 GaSb -0.40 2.15 

InP 0.12 2.55 InSb -0.20 2.42 
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V. I. 6.  Bandgaps pressure coefficients : 

 In order to investigate the pressure effects on zincblende AlN and GaN energy 

gaps, we examine the band energies at the selected symmetry points as a function of the 

pressure. The results of our calculation for the direct and indirect bandgaps (Eg
Γ, Eg

X and 

Eg
L) versus the pressure are shown in Figures V.I.19. Table V.I.17 and V.I.18 summarize 

the results of our calculated linear and sub-linear coefficients of bandgaps and Easy, 

compared to the available theoretical works [22,26,88]. We notice that our results are in 

good agreement with the other prediction calculations. For zincblende GaN, we can see 

that when we treat the Ga 3d as valence states, our results for first pressure derivative 

coefficient (α) of bandgaps agree well with FP-LAPW calculations of Wei and Zunger 

[88] and FP-LMTO calculations of Kim et al [26] which consider the same treatment of the 

Ga 3d states. Our results for second pressure derivative coefficient (β) of bandgaps are also 

in good agreement with the LMTO calculations of Christensen and Gorczyca [22] which 

treat the Ga 3d electrons as core states. We can established then that the treatment of the 

Ga 3d states as valence states have a significant effect on first pressure derivative 

coefficient (α) more than on second pressure derivative coefficient (β) one. Since the linear 

pressure coefficients of Eg
Γ, Eg

X and Eg
L are positive (see Table V.I.17 and V.I.18) these 

main bandgaps are also increased under pressure. However the increase of Eg
X is less 

important than that of Eg
Γ and Eg

L. 

 We also study the behavior of the energy bandgaps versus the relative variation of 

the lattice constant (∆a/a0) for AlN and GaN in zincblende structure (see Figures V.I.20). 

Our results show that the fundamental gap and the other X and L indirect gaps present a 

non-linear behavior. The calculated linear and sub-linear coefficients are listed for each 

band in Table V.I.19 and V.I.20 compared with the other calculations. Interestingly, the 

cubic lattice under hydrostatic pressure shows no change in gap ordering in the studied 

range of pressures. 
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Figure V.I.19.  Direct and indirect bandgap energies versus pressure in zincblende (a) AlN 

and (b) GaN. 
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Figure V.I.20.  Calculated dependence of the direct and indirect bandgaps in zincblende   

(a) AlN and (b) GaN on change lattice constant. 
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Table V.I.17. Pressure coefficients related to E g(P)=E(a0)+α P + β P2 of the calculated 

values of the energy gaps for zincblende AlN and Compared with other calculations. 

 

 α (meV/GPa) ββ (meV/GPa2) 

 This work Calculations This work Calculations 

ΓΓ v - ΓΓ c 42.22 31a, 42b -0.36 -0.34a 

ΓΓ v – Xc 2.02 1.70a, 1.9b, 1.9c -0.037 -0.03a 

ΓΓ v – Lc 42.57 44a, 41.1b -0.456 -0.38a 

Easy -5.41 - -0.018 - 
 

a Ref. [22], b Ref. [88], c Ref. [26] 

 

Table V.I.18. Pressure coefficients related to E g(P)=E(a0)+α P + β P2 of the calculated 

values of the energy gaps for zincblende GaN and Compared with other calculations. 

 

 αα (meV/GPa) ββ (meV/GPa2) 

 This work Calculations This work Calculations 

ΓΓ v - ΓΓ c 33.4 40a, 31b, 32c -0.366 -0.38a 

ΓΓ v – Xc 1.56 0.28a, 1.7b -0.034 -0.03a 

ΓΓ v – Lc 35.5 42a, 32.1b -0.367 -0.38a 

Easy -26.16 - -0.249 - 
 

a Ref. [22], b Ref. [88], c Ref. [26] 

 

Table V.I.19. Coefficients obtained from least-squares fits to Eg(a)=E(a0) + γ (∆a/a0)     

+δ (∆a/a0)2 of zincblende AlN, where a is the lattice constant (a0 is the equilibrium value). 

 

 γγ (eV) δδ (eV) 

 This work Calc. [22] This work Calc. [22] 

ΓΓ v - ΓΓ c -26.99 -27 38.44 37 

ΓΓ v – Xc -1.291 -1.10 -9.356 -7.30 

ΓΓ v – Lc -27.25 -28 40 31 

Easy 3.50 - -22.95 - 
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Table V.I.20. Coefficients obtained from least-squares fits to Eg(a)=E(a0)+γ (∆a/a0)       

+δ (∆a/a0)2 of zincblende GaN, where a is the lattice constant (a0 is the equilibrium value). 

 

 γγ  (eV) δδ (eV) 

 This work Calc. [22] This work Calc. [22] 

ΓΓ v - ΓΓ c -19.81 -22 21.24 22 

ΓΓ v – Xc -0.90 -0.14 -6.13 -8.0 

ΓΓ v – Lc -21.07 -23 30 30 

Easy 15.19 - -17.76 - 

 

 

V. I. 7. Deformation Potential constants 

  The deformation potentials are important parameters to describe the electronic 

effects associated with strains originating, for instance, from the lattice mismatch between 

two layers of different semiconductors in heterostructures. To our knowledge, no 

experimental data for the hydrostatic deformation potential are presently available for AlN 

and GaN. The application of hydrostatic pressure, inducing a shift of the conduction-band 

edge relative to the valence band edge due to a change in the volume, allows a direct 

estimation of the hydrostatic deformation potential for bandgap of zincblende AlN and 

GaN. The deformation potentials are obtained by using the following equation: 
 

dV

dE
Va

g

g =                                                 (V-I-17) 

To determine how much of the band-gap deformation potential comes from 

conduction bands of AlN and GaN, we calculate the deformation potentials for the energy 

gaps at the points of high symmetry. The calculated values are summarized in Table V.I.21 

and compared with other theoretical calculations. The bandgaps deformation potentials in 

zincblende structure AlN and GaN agree well with the cited theoretical calculations. We 

can see from this table that because we are treating of Ga 3d states as valence states, the 

obtained bandgap deformation potentials of GaN in zincblende structure are in good 

agreement with FP-LMTO calculations of Kim et al [26] and FP-LAPW calculations of 
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Wei and Zunger [88] more than with the previous LMTO calculations of Christensen and 

Gorczyca [22]. 

 

Table V.I.21. Bandgap deformation potential constants for zincblende AlN and GaN. 

 

 AlN GaN 

 This work Calculations This work Calculations 

Γ−Γ
ga  -9.26 -9.0a , -9.04b -6.518 -7.4a, -6.4c, -6.4b 

X
ga −Γ  -0.436 -0.37 a, -0.42b -0.2961 -0.05a, -0.35b 

L
ga −Γ  -9.35 -9.40 a, -9.04b -6.9401 -7.7a, -6.72b 

   
 

    a Ref. [22], b Ref. [88], c Ref. [26] 

 

 

V. I. 8. Chemical trends in the pressure coefficient: 

Our analysis for AlN and GaN compouds indicate that s – s, p – p coupling enhance 

the pressure coefficient αp
Γ-Γ, whole the p – d coupling reduces the pressure coefficients. 

The fast reduction of the bulk modulus as bond length increases enhances the pressure 

coefficients of compounds with large atomic size [88]. 

The pressure coefficient αp
Γ-Γ decreases significantly when the cation-atomic 

number increases. For example, the LDA αp
Γ-Γ are 42.22 and 33.4 meV/GPa for AlN and 

GaN, respectively. In this case, the decrease in αp
Γ-Γ is mainly due to the large decrease in 

bulk modulus when cation atomic number increases. We find that αp
Γ-L has similar trends 

as αp
Γ-Γ, but the variation is smaller. The small variation in αp

Γ-L is due to the more 

complete cancellation between the reduced level repulsion and the reduced bulk modulus 

as bond length increases. Finally, we find that αp
Γ-X is usually small and positive. The 

positive pressure coefficients αp
Γ-X is due to lack of the level repulsion between the X6c 

state and unoccupied d state with the same principle quantum number as the valence s and 

p state [89], and also of the large p – d repulsion of occupied states at the valence band 

maximum.  

 

 



Part I                                                                                     Properties of AlN and GaN compounds 

 

 107 

V. I. 9. Ionicity factor under pressure: 

 A correlation between the ionic bonding and electronic properties in these 

compounds exists as predicted by Phillips [45]. An interesting feature linked to the ionicity 

is the antisymmetric gap from valence bands at X. This gap is related to the cation and 

anion potentials. The antisymmetric (heteropolar) gap has been proposed as a measure of 

the crystal ionicity. The decrease of the heteropolar gap is an indication of the increase of 

the ionicity factor of the material under hydrostatic pressure for the following reason.  

We display also in Figures V.I.21, the charge densities of AlN and GaN for small 

compression of the crystal of value V equal to 0.965V0 and 0.977V0 corresponding to a 

pressure of 5.5 and 16 GPa respectively.  

In fact we illustrate in Table V.I.19 and V.I.20, the positive linear coefficient of Easy 

indicating that there is an increase as the lattice constant decreases. This splitting induces 

an increase of the ionicity with the pressure. Using the Garcia and Cohen [67] model, we 

display in Figures V.I.22 for instance this variation versus pressure. Our obtained 

coefficients of this variation are listed in Table V.I.22. Following Figures V.I.20, the 

increase of the ionic character is due to the increase of the charge density around the Al or 

Ga atom with respect to N atom as under pressure as it is shown.  
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Figure V.I.21. Line plot of calculated total valence charge densities along the         

(a) Al-N and (b) Ga-N bond direction at normal and under pressure. 
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Figure V.I.22. Calculated dependence of the ionicity factor as a function of 

pressure for zincblende (a) AlN and (b) GaN.  
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Table V.I.22. Calculated pressure coefficients related to f i (P)= f i (P=0)+  λ P + µ P2 of 

the ionicity factor for zincblende AlN and GaN. 

 

 λλ (10-3 /GPa) µµ  (10-4 /GPa2) 

AlN 0.738 -0.1 

GaN 1.4 -0.162 

 

 

V. I. 10. Effect of pressure on elastic properties 

 The specific role of nitrogen is in the formation of short bonds, which leads to 

smaller lattice constants (by 20%) than for other III-V semiconductors. Under high 

pressure the III-nitride compounds undergo a structural phase transformation to a high 

coordination phase. For AlN the transition from cubic to rocksalt phase occurs in range of 

7.1 GPa and for GaN the transition from cubic to high-pressure phase appears at 42.1 GPa 

[49]. 

 An important motivation for high-pressure investigations stems from the fact that 

group-III-nitride layers are commonly subjected to large built-in strain since they are often 

grown on different substrates having considerable lattice mismatch within a difference in 

the thermal expansion coefficients between epitaxial layer and substrate. In the case of the 

heterostructures and superlattices, this situation become more complex and mutual 

influence between different materials layers may appears [90,91]. 

We are interesting to the study of pressure effect on elastic properties. We show in 

Figures V.I.23, the variation of elastic constants, internal-strain parameter and bulk 

modulus of AlN and GaN with respect to the variation of pressure. In all curves, we 

observe a linear dependence of pressure. 

 In Table V.I.23, we listed our calculated pressure derivatives dC11/dp, dC12/dp, 

dC44/dp, dCS/dp, dζ /dp and dB/dp of the considered compounds. It is easy to observe that 

the elastic constants C11 and C12, internal-strain parameter and bulk modulus increase 

when pressure is enhanced. Moreover the shown shear wave modulus CS and the shear 

mode modulus C44, which represent the extrema of the transverse moduli in cubic crystal 

[92], decrease linearly with the increasing of pressure for AlN and GaN. 
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 Referring to our results and those found in literature [92,93], we have observed that 

there is a difference between the pressure derivatives of shear wave modulus and the elastic 

modulus of zincblende III-V semiconductors and zincblende AlN and GaN is observed. 

We notice that the results in Figures V.I.23 show no evidence that the soft acoustic mode is 

responsible for the phase transition in the considered range of pressure. These results were 

reported by different works [92,93,94], which treated III-V semiconductors. Our results 

may be considered as reliable predictions of the pressure dependence of the elastic 

properties and internal-strain parameter of zincblende AlN and GaN [95]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Part I                                                                                     Properties of AlN and GaN compounds 

 

 112 

 

 

Figure V.I.23. Calculated pressure dependence of Cij, CS, B and ζ for zincblende (a) AlN 

and (b) GaN. 
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Table V.I.23. Calculated pressure derivatives of the elastic modulus and internal-strain 

parameter for zincblende AlN and GaN. 

 

 dC11/dp dC12/dp dC44/dp dCS/dp dB/dp dζζ /dp (10-3 GPa-1) 

AlN 2.701 4.287 -0.511 -0.793 3.89 6.2 

GaN 3.642 4.873 -0.55 -0.615 4.32 4.85 

 

 

V. I. 11. Pressure effect of piezoelectric constants and transverse effective  

                  charges :  

In Figures V.I.24, we present the variation of piezoelectric constants versus 

pressure. We observe a non-linear dependence of these curves and increase when pressure 

is increased. To explain this behavior, we give in Table V.I.24 and V.I.25, our calculated 

coefficients of piezoelectric constants for zincblende AlN and GaN. We observe that e14 

exhibits rapidly changes with the hydrostatic pressure [96]. This largest change comes 

from the ionic contribution through the Kleinman parameter. But it is interesting to observe 

that there is another contribution which influences the piezoelectric constants, the charge 

transfer effect. The increase of the e14 in AlN and GaN was observed also on II-VI 

compounds [86], by contrary to results found for other III-V compounds (e.g. GaAs [97]). 

The resulting values for transverse effective charges are plotted in Figures V.I.25, 

as a function of the pressure. In Table V.I. 24 and V.I. 25, we list our results compared 

with available experimental data [98]. Our results for GaN compared with experimental 

data [98] are satisfactory. From the literature the only known example of a tetrahedrally 

co-ordinated semiconductor exhibiting a larger transverse effective charge at reduced 

volume is SiC. In this case the lack of p electrons in the carbon core allows for a larger 

penetration of the Si wave functions into the carbon core regions, leading to an increase in 

ionicity and hence of eT
* under pressure [99]. This situation is also observed for the nitrides 

since the nitrogen and carbon atomic cores look alike. Thus under pressure the transverse 

effective charges of GaN and AlN exhibit a similar but less marked behavior to that of SiC. 

For other III-V compounds like GaAs decrease with pressure giving rise to a reduction of 

eT
* [100]. 
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Figure V.I.I 24. Variation of the piezoelectric coefficient versus pressure of 

zincblende (a) AlN and (b) GaN. 
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Figure V.I.I 25. Transverse effective charge versus pressure for zincblende (a) AlN 

and (b) GaN. 
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Table V.I.24. Pressure coefficients of the polarity, piezoelectric charge, piezoelectric 

constants (in C/m2) and transverse effective charge (in e) for zincblende AlN. 

 

 λλ (10-3 /GPa) µµ  (10-4 /GPa2) 

ααp  0.514 -0.07 

ep
* 8.75 -1.121 

e14 7.53 -0.478 

eT
* 1.97 -0.276 

 

 

 

Table V.I.25. Pressure coefficients of the polarity, piezoelectric charge, piezoelectric 

constants (in C/m2) and transverse effective charge (in e) for zincblende GaN. 

 
 λλ (10-3 /GPa) µµ  (10-4 /GPa2) 

ααp  0.5261 -0.07 

ep
* 18.81 -2.47 

e14 17.0 -1.51 

eT
* 1.88, 0.5a -0.039 

 

a Reference from experimental [98]. 
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V. I. 12. Calculation of energy loss near edge structure 

Of increasing interest for the electron microscopist working with an energy 

spectrometer or an imaging energy filter is the interpretation of ionization edges, in particular 

energy loss near edge structures (ELNES), and low losses and their relation to electronic, 

optical and mechanical properties of modern materials. Electron energy-loss near-edge 

structure gives information about the distribution of unoccupied electronic states. ELNES is 

specific for every element in a given environment and thus acts like a fingerprint that allows 

identifying a specific environment around a specific atom. Good knowledge of the 

unoccupied states is also very important because it gives information about the optical and 

transport properties of the material. The calculations of the energy loss near edge structures 

have been performed using the FP-L/APW+lo method according to the formalism of M. 

Nelhiebel et al. [101-103]. In this section, we present spectra due to the gallium L-shell 

excitation and aluminum and nitrogen K- shell of AlN and GaN compounds. 

In order to probe our calculational method, AlN and GaN have also been investigated 

in the zincblende structure. Their relative N-, Al-K and Ga-L2,3 ELNES spectra are depicted 

in Figures V.I.26 and V.I.27. A seen from the presented figures (Figures V.I.26 and V.I.27), 

there is a good qualitative agreement between our results and available experimental data 

[103] for only GaN compound. The positions of the most prominent peaks (labelled I to IV) 

are listed in Table V.I.26. A reasonable correspondence between our calculations and the 

experimental results has been found in Table V.I.26. 

 

Table V.I.26. Positions of the peaks I -IV Figures V.I.26 and V.I.27 values are in units of eV. 

The experiment values are compiled in ref. [104]. 

 

 Edge  I II III IV 

N  K This Work 6.5 12.0 15.5 19.0  

AlN 
Al  K This Work 6.25 12.25 15.5 19.3 

N  K This Work 6.2 7.7 10.65 13.5 

 Experiment 6.3 8.1 10.9 12.9 

Ga  L2,3 This Work 5.7 7.7 10.85 15.2 

 

GaN 

 Experiment 6.25 8.0 11.0 16.1 
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Figure V.I.26: Theoretical Al-K and N-K ELNES of zincblende AlN. The spectra for the 

inequivalent atoms positions have been calculated separately and weighted in the present 

Figure. 
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Figure V.I.27: Theoretical Ga-L2,3 and N-K ELNES of zincblende GaN. The spectra for the 

inequivalent atoms positions have been calculated separately and weighted in the present 

Figure. 
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V. II. 1. Computational details 

All calculations of GaN:Mn and AlN:Mn are performed by using the scalar relativistic 

full-potential augmented plane wave plus local orbitals (FP-L/APW+lo) [1,6] method within 

density functional theory (DFT). We employed the local-spin-density approximation (LSDA), 

implemented using the Perdew-Wang exchange-correlation functional [5]. Also, spin 

polarized calculations are achieved with two different spin-up and spin down densities and 

two sets of Kohn-Sham single equations particle equations, for the two spin components, are 

solved self-consistently. We have carried out all the total energy calculations without spin-

orbit coupling. The doping of Mn in GaN and AlN compounds can be modeled by means of a 

structure with the cubic symmetry, in which the atom of Ga or Al is replaced by Mn atom to 

simulate an uniformly doped semiconductor with 25% Mn concentration. 

Moreover, the core levels are treated fully relativistically. In particular, the Ga is 

considered in such away to include explicitly the semicore d electrons in the valence bands. In 

the following calculations, the FP-L/APW+lo basis set consisted of 4s, 4p and 3d orbitals of 

Mn, and 3s and 3p orbitals of Al and 4s, 4p and 3d orbitals of Ga and 2s and 2p orbitals of N. 

In this approach the wave function, charge density and potential are expanded differently in 

two regions of the unit cell. Inside the non-overlapping spheres of muffin-tin (MT) radius RMT  

around each atom, spherical harmonics expansion is used and in the remaining space of the 

unit cell the plane wave basis set is chosen. The muffin-tin radius is taken to be 1.78 bohr for 

the gallium, aluminium, manganese and 1.60 bohr for the nitrogen 

The maximum l value for the wave function expansion inside the atomic spheres was 

confined to lmax= 10. In order to achieve energy eigenvalues convergence, the wave functions 

in the interstitial region is expanded in plane waves with a cutoff of RMT ∗ KMAX = 8 (where 

KMAX is the maximum modulus for the reciprocal lattice vector, and RMT is the average radius 

of the MT spheres). The k integration over the Brillouin zone is performed using Monkhorst 

and Pack [11] mesh, yielding to 11 k points in the irreducible wedge of the Brillouin zone for 

cubic structure. 
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V. II. 2. Structural optimization 

 The total energy of GaN:Mn and AlN:Mn has been calculated as a function of the 

global volume for each of the nonmagnetic (nm) and ferromagnetic (fm) states at 25%. 

Results are shown in Figures V.II.1. The equilibrium lattice parameters, bulk modulus, and 

its pressure derivative follow from a fit of the total energy as a function of the volume to 

the Murnagahan equation of state [14]. The predicted values of the structural parameters 

and the difference energies ∆Efm-nm  between fm and nm states are listed in Table V.II.1. 

They are compared with values of the parents compounds AlN and GaN. We observe that 

those predicted results of AlN and GaN doped with Mn in the same order than the values 

of AlN and GaN compounds [73,77]. As shown in the Figures V.II.1 the ferromagnetic 

state has been found to be most stable energetically between the two states because the 

difference energies ∆Efm-nm  is positive. When we compare the lattice constants and bulk 

modulus in the case of spin polarized and unpolarized states, we observe an enhancement 

by  0.82% and 0.66% for GaN:Mn and AlN:Mn, respectively.   

 

 

 

Table V.II.1. Lattice constants a, bulk modulus B, and its pressure derivative B’ and 

energy difference between fm and nm magnetic states ∆Efm-nm  of GaN:Mn and AlN:Mn at 

25%. 

 

  a (Å) B (GPa) B’ ∆∆Efm-nm 

fm 4.4643 204.7 3.74 0.745 GaN:Mn 

nm  4.4276 217.94 3.632 - 

GaN  4.461 202 4.32  

fm 4.3726 208.5 3.74 0.966 AlN:Mn 

nm  4.343 218.41 3.861 - 

AlN  4.349 211.78 3.90  
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Figure V.II. 1. The variation of total energies with the total volume for nonmagnetic (nm) 

and ferromagnetic (fm) states of GaN:Mn and AlN:Mn systems. 
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V. II. 3. Electronic structures and magnetic properties   

For magnetic systems, spin polarized calculations are performed using the concept 

of spin-up and spin-down electrons separately. The calculated total and partial densities of 

states (DOS) curves at the predicted equilibrium lattice constants for ferromagnetic 

GaN:Mn and AlN:Mn are shown in Figures V.II.2 and V.II.3. In comparison with Al and 

Ga, Mn has extra four valence electrons, which fill spin-up eg and t2g bands. The doubly 

degenerated band is fully occupied, while the triply degenerated band (higher in energy) is 

only two thirds filled so the Fermi level falls just into the latter 100% spin polarized band 

(see Figures V.II.3).  

Furthermore we find the local magnetic moment of the Mn atom is ∼3.0µB, µB is the 

bohr magneton, for both GaN:Mn and AlN:Mn. This value is in good agreement with 

previous theoretical calculations [105-113]. Due to localization of spin-polarized charge 

around the Mn atom, this value is smaller than the total magnetic moment, which is ∼4 µB. 

As a result, the total magnetic moment has an integer value 4µB. Moreover, our results 

show that the main part of this magnetic moment is strongly localized on the Mn site (see 

Table V.II.2). The additional contributions to the total magnetic moment appear to come 

from N and Ga (Al) atoms to Mn. When we observe more carefully the values of the 

different magnetic contributions reported in the table, the total magnetic moment is not the 

summation of magnetic contribution of the interstitial site and those of the individual 

atoms. This may be interpreted by the fact that the interstitial site is modeled by the 

average of the plane waves. This later cannot quantify all the interstitial site. 

 

Table V.II. 2. Total and local magnetic moments in GaN:Mn and AlN:Mn systems with a 

25%. 

 

 GaN:Mn AlN:Mn 

Mtotal (µB/cell) 4.0 4.0 

mMn (µB)  3.066 3.0 

mN 0.026 0.025 

MGaa ou All 0.030 0.035 

mintersitiel 0.75 0.8 

 



Part II                                                                                                  AlN and GaN  doped with Mn 

 124

 

 

Figure V.II.2. Total and local partial densities of states in the ferromagnetic of (a) 

GaN:Mn (b) AlN:Mn at 25% of Mn. 
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Figure V.II.3. Partial densities of states of Mn impurity in the ferromagnetic of (a) 

GaN:Mn (b) AlN:Mn at 25% of Mn. Peaks for majority and minority eg and t2g states are 

labelled. 
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In Figures V.II.4 and V.II.5, we present the corresponding spin-dependent energy 

bands along high-symmetry directions in the Brillouin zone for GaN:Mn and AlN:Mn. 

There are three bands slightly crossing the Fermi energy. One of them is almost fully 

filled, but the other two are approximately half-filled. There is a narrow energy gap (0.326 

eV for GaN:Mn and 1.334 eV for AlN:Mn) of the majority-spin electrons, separating the 

bands derived from the valence and conduction bands of the host. For the minority-spin 

electrons, the band gap is much wider 2.05 eV and 3.24 eV of GaN:Mn and AlN:Mn, 

respectively, and the top of the valence band is reduced to under the Fermi Level. Since the 

exchange splitting (∆Exc ≡ 3.04eV for GaN:Mn and ∆Exc ≡ 1.93eV for AlN:Mn) between 

the majority and minority is larger than the crystal field splitting (∆Ecryst ≡ 1.71eV for 

GaN:Mn and ∆Ecryst ≡ 1.85eV for AlN:Mn) between the d-t2g and deg (see Figures V.II.3).  

Our calculations also show that the total 3d electron population within the Mn 

sphere in GaN:Mn and AlN:Mn is around 4.58 and 4.606, respectively, i.e., the atomic 

configuration of Mn is compatible with both 3d4 and 3d5. This result is in good agreement 

with the results obtained in Refs. [105,109-113]. 

For understating the origin of the spin-polarized feature in the DOS curves, we 

calculated patial DOS curves for the GaN:Mn and AlN:Mn. The N 2p, Ga 4p, Al 3p, and 

Mn 3d contributions to the DOS are found in Figures V.II.2. It is readily apparent that the 

Mn 3d states hybridize strongly with N 2p states, and to a much lesser extent with Ga 4p 

and Al 3p states. However, for the spin-up states the Mn 3d states contribute roughly as 

much the original cation states, even though the Mn concentration is much lower than the 

Ga and Al one.  

The spatial distribution of impurity states is intimately linked with the value of 

magnetic moments on different atoms. Table V.II.2 shows that the main contribution to 

magnetic moments comes from Mn atoms. In GaN:Mn and AlN:Mn, magnetic moments of 

all atoms are parallel. This may be interpreted as a tunneling of spin-up impurity states to 

neighboring atoms. In this way, parallel or antiparallel orientation of magnetic moments on 

the atoms nearest to Mn may be considered as a signal that impurity states are either 

localized or strongly hybridized with the valence band. 
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Figure V.II.4. Spin polarized band structure of GaN:Mn system, (a) majority spin 

and (b) minority spin 
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Figure V.II.5. Spin polarized band structure of AlN:Mn system, (a) majority spin 

and (b) minority spin 
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V. II. 4. The exchange coupling 

We calculate the exchange constant by evaluating the spin-splitting of the 

conduction and valence bands. The main idea is that in the mean field theory based on the 

Hamiltonian model [111], the spin-splitting of the valence band depends linearly on the 

exchange constant N0β [111]. The same argument holds for the spin-splitting of the 

conduction band, which is regulated by a similar Hamiltonian with exchange constant N0α. 

Therefore the exchange constants can be directly computed from the conduction band-edge 

(valence band-edge) spin-splittings as follows: 
 

Sx
E

N
c∆

=α 0 ;  
Sx

E
N

v∆
=β0                                                 (V-II-1) 

Where S  is half of the computed magnetization per Mn ion. 

Using the calculated band structures and S  value for GaN:Mn and AlN:Mn, we 

have calculated the N0α. and N0β. Our predicted values of ∆Ec, ∆Ev, N0α and N0β are listed 

in Table V.II.3 for GaN:Mn and AlN:Mn systems. From Table V.II.3 one can conclude 

that the exchange coupling (s-d coupling) between the conduction band of Ga(Al)N and 

the Mn is ferromagnetic .  

 

Table V.II. 3. Conduction ∆Ec and valence ∆Ev band-edge spin-splitting, and exchange 

constants for GaN:Mn and AlN:Mn with a 25%. 

 

 GaN:Mn AlN:Mn 

∆Ec 0.164 0.245 

∆Ev -2.909 -2.3 

N0α 0.328 0.5 

N0β -5.81 -4.6 
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The aim of this thesis was to determine the structural, elastic and electronic properties 

of III-nitrides, AlN and GaN, with emphasis on their dependence on hydrostatic pressure. 

Furthermore, we have also extended our work to study the effect of doping with Mn on the 

properties of AlN and GaN compounds. We have performed a newest first-principles FP-

L/APW+lo calculations within the DFT method of AlN and GaN crystallizing in both 

wurtzite and zincblende structures. Optimal bulk geometries have been calculated by total-

energy minimization. The Ga 3d semicore electrons have been explicitly increases treated as 

valence electrons.  This d state gives rise to the p – d coupling, which enormously the number 

of plane waves in the basis set. The main results of our work can be summarized as follow: 

  

We have calculated the bulk properties and band structures in wurtzite, zincblende 

rocksalt phases using both LDA and GGA for exchange-correlation functional. We have 

found that using GGA the lattice constants are larger and the bulk modulus are smaller 

compared to LDA results. Therefore the GGA does not appear to bring about any essential 

improvement, when compared with experiment. The band structures are found to be very 

similar in the LDA and GGA, when calculated at the experimental lattice constant. When 

calculated at the appropriate theoretical lattice constants, some differences are found, with 

smaller bandgap in the case of GGA. The total energy calculations suggest that the AlN and 

GaN under pressure transform to the semiconducting rocksalt structure. This result is a 

manifestation of the large ionicity of the nitrides.   

  

We notice that our calculations provide an excellent description of the band structures 

of AlN and GaN compounds. We conclude also that GGA and LDA-eigenvalue spectrum 

differ significantly from experimental observations, and generally agree more closely with 

other ab initio calculations. The curve of the DOS present the same aspect for both zincblende 

Al(Ga)N and wurtzite -Al(Ga)N. Furthermore, A detailed study of several densities of states 

have shown the origin of p – p and p – d coupling with N p state which is due to the non-

negligible dispersions of Al p state and Ga d states inside the upper valence bands, 

respectively. 
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The charge densities have been presented the similarity of the bond in AlN and GaN 

for both ZB and WZ structures. Our results show a highly ionic bonding and a charge transfer 

from Al or Ga to N. One notices that the situation in the ZB structure is analogous to that of 

the WZ structure. Since both polytypes have the same tetrahedral environment, where the 

local coordination of the first neighbor atomic positions is the same in the zincblende and the 

wurtzite  structures. Consequently, their ionicity values are very close.  

 

Because of the importance of AlN and GaN compounds in the zincblende structure, 

we have emphasized our attention to study the stress effects on band structures via the 

bandgaps coefficients. The AlN and GaN bandgaps conserve their characteristics; they are 

still indirect and direct gaps, respectively. Moreover the calculation of the hydrostatic 

deformation potential constants for direct and indirect gaps gives us an approximation about 

the strain effect. This consolidates also the successful implementation of the used numerical 

method when comparing these results to theoretical works given recently for zincblende AlN 

and GaN. 

 

When plotting the charge density for small compression, we found a high ionicity of 

AlN and GaN, which increase with increasing pressure. This is originated from the increase in 

the charge density around the anion site and it decreases around the cation site under pressure. 

  

Our determined elastic constants and strain-internal parameter agree well with the 

recent reported results. It is found that these parameters are varying linearly when the pressure 

is varied. Our results may be considered as reliable predictions of the pressure dependence of 

the elastic properties and internal-strain parameter of zincblende AlN and GaN.  

 

The piezoelectric constants and transverse effective charges of AlN and GaN were 

determined by mean of Harrison approach. The results show that III-V nitrides resemble II-VI 

compounds in terms of the sign of the piezoelectric constants, which are much larger in 

absolute value than those of all III-V and II-VI compounds. Some remnant of normal III-V-

like behavior survives, embodied in the trends of the piezoelectric constants and transverse 

effective charges when the chemical identity of the anion or cation changes. From this 
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investigation, it is found that the piezoelectric properties and transverse effective charge is 

varying in nonlinear behavior when we apply a pressure. 

 

The characteristic ELNES coordination fingerprints have also been reported and 

analysed for the selected AlN and GaN compounds. Theoretical spectras indicate the 

possibility to differentiate the various phases by looking at the changing in the number and 

position of peaks in both Al, N K and Ga L2,3 edges. 

 

We have also presented structural parameters, formation energies, magnetic properties 

and electronic structures of AlN:Mn and GaN:Mn systems. From total energy calculations, we 

have found that AlN:Mn and GaN:Mn have ferromagnetic ground states. The impurity states 

are located deep inside the gap, strongly localized near Mn atoms which is primarily due to 

hybridization of Mn 3d and N 2p orbitals. We predict that Mn-doped AlN and GaN will 

exhibit the half-metallic ferromagnetic. We have also deduced the exchange splitting (∆Exc) 

and crystal field splitting (∆Ecryst) and have found that the effective potential for minority spin 

is more attractive than that for the majority spin as is usually in spin polarized systems. We 

have determined the exchange constants N0α and N0β, which imitate a typical magneto-

optical experiment. The magnetic moments of all atoms are parallel and magnetic interaction 

of Mn atoms is short ranged and that the total magnetic moment is equal to 4µB. This unique 

feature, together with the previously suggested high Curie temperature and inherent 

compatibility with GaN technology, makes GaN:Mn a potentially ideal material for spin-

injection applications. If technological limitations can be overcome, it may emerge as a 

significant material for modern spintronic devices.  

 

Moreover these results constitute a preliminary step to future works dealing with 

superlattice, complex system semiconductors and to study the problem not solved up to now 

related to the DMSs. 

 

 

 

 


