A. Abrieu, M. Doree, and D. Fisher, The interplay between cyclin-B-Cdc2 kinase (MPF) and MAP kinase during maturation of oocytes, J. Cell Sci, vol.114, pp.257-267, 2001.

R. R. Bhatt, J. E. Ferrell, and J. , The Protein Kinase p90 Rsk as an Essential Mediator of Cytostatic Factor Activity, Science, vol.286, issue.5443, pp.1362-1365, 1999.
DOI : 10.1126/science.286.5443.1362

T. S. Choi, K. Fukasawa, R. P. Zhou, L. Tessarollo, K. Borror et al., The Mos/mitogen-activated protein kinase (MAPK) pathway regulates the size and degradation of the first polar body in maturing mouse oocytes., Proc. Natl. Acad. Sci. USA, pp.7032-7035, 1996.
DOI : 10.1073/pnas.93.14.7032

W. H. Colledge, M. B. Carlton, G. B. Udy, and M. J. Evans, Disruption of c-mos causes parthenogenetic development of unfertilized mouse eggs, Nature, vol.370, issue.6484, pp.65-68, 1994.
DOI : 10.1038/370065a0

J. G. Cook, L. Bardwell, S. J. Kron, and J. Thorner, Two novel targets of the MAP kinase Kss1 are negative regulators of invasive growth in the yeast Saccharomyces cerevisiae., Genes & Development, vol.10, issue.22, pp.2831-2848, 1996.
DOI : 10.1101/gad.10.22.2831

A. C. Gavin, A. Ni-ainle, E. Chierici, M. Jones, and A. R. Nebreda, A p90rsk Mutant Constitutively Interacting with MAP Kinase Uncouples MAP Kinase from p34cdc2/Cyclin B Activation in Xenopus Oocytes, Molecular Biology of the Cell, vol.10, issue.9, pp.2971-2986, 1999.
DOI : 10.1091/mbc.10.9.2971

S. D. Gross, M. S. Schwab, A. L. Lewellyn, and J. L. Maller, Induction of Metaphase Arrest in Cleaving Xenopus Embryos by the Protein Kinase p90Rsk, Science, vol.286, issue.5443, pp.1365-1367, 1999.
DOI : 10.1126/science.286.5443.1365

S. D. Gross, M. S. Schwab, F. E. Taieb, A. L. Lewellyn, Y. Qian et al., The critical role of the MAP kinase pathway in meiosis II in Xenopus oocytes is mediated by p90Rsk, Current Biology, vol.10, issue.8, pp.430-438, 2000.
DOI : 10.1016/S0960-9822(00)00425-5

O. Haccard, B. Sarcevic, A. Lewellyn, R. Hartley, L. Roy et al., Induction of metaphase arrest in cleaving Xenopus embryos by MAP kinase, Science, vol.262, issue.5137, pp.1262-1265, 1993.
DOI : 10.1126/science.8235656

N. Hashimoto, N. Watanabe, Y. Furuta, H. Tamemoto, N. Sagata et al., Parthenogenetic activation of oocytes in c-mos-deficient mice, Nature, vol.370, issue.6484, pp.68-71, 1994.
DOI : 10.1038/370068a0

J. Kawai, A. Shinagawa, K. Shibata, M. Yoshino, M. Itoh et al., Functional annotation of a fulllength mouse cDNA collection, Nature, vol.409, issue.6821, pp.685-690, 2001.
DOI : 10.1038/35055500

J. Z. Kubiak, Mouse oocytes gradually develop the capacity for activation during the metaphase II arrest, Developmental Biology, vol.136, issue.2, pp.537-545, 1989.
DOI : 10.1016/0012-1606(89)90279-0

J. Z. Kubiak, M. Weber, H. De-pennart, N. Winston, and B. Maro, The metaphase II arrest in mouse oocytes is controlled through microtubule-dependent destruction of cyclin B in the presence of CSF, EMBO J, vol.12, pp.3773-3778, 1993.

U. K. Laemmli, Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4, Nature, vol.244, issue.5259, pp.680-685, 1970.
DOI : 10.1038/227680a0

E. Ledan, Z. Polanski, M. Terret, and B. Maro, Meiotic Maturation of the Mouse Oocyte Requires an Equilibrium between Cyclin B Synthesis and Degradation, Developmental Biology, vol.232, issue.2, pp.400-413, 2001.
DOI : 10.1006/dbio.2001.0188

S. Louvet-vallee, N. Dard, A. Santa-maria, J. Aghion, and B. Maro, A Major Posttranslational Modification of Ezrin Takes Place during Epithelial Differentiation in the Early Mouse Embryo, Developmental Biology, vol.231, issue.1, pp.190-200, 2001.
DOI : 10.1006/dbio.2000.0147

B. Maro, S. K. Howlett, and M. Webb, Non-spindle microtubule organizing centers in metaphase II-arrested mouse oocytes, The Journal of Cell Biology, vol.101, issue.5, pp.1665-1672, 1985.
DOI : 10.1083/jcb.101.5.1665

Y. Masui and C. L. Markert, Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes, Journal of Experimental Zoology, vol.2, issue.2, pp.129-145, 1971.
DOI : 10.1002/jez.1401770202

Z. Polanski, E. Ledan, S. Brunet, S. Louvet, J. Z. Kubiak et al., Cyclin synthesis controls the progression of meiotic maturation in mouse oocytes, Development, vol.125, pp.4989-4997, 1998.

J. Summerton and D. Weller, Morpholino Antisense Oligomers: Design, Preparation, and Properties, Antisense and Nucleic Acid Drug Development, vol.7, issue.3, pp.187-195, 1997.
DOI : 10.1089/oli.1.1997.7.187

T. Tanoue, M. Adachi, T. Moriguchi, and E. Nishida, A conserved docking motif in MAP kinases common to substrates, activators and regulators, Nature Cell Biology, vol.15, issue.2, pp.110-116, 2000.
DOI : 10.1074/JBC.271.6.2886

M. Verlhac, J. Z. Kubiak, H. J. Clarke, and B. Maro, Microtubule and chromatin behavior follow MAP kinase activity but not MPF activity during meiosis in mouse oocytes, Development, vol.120, pp.1017-1025, 1994.

M. H. Verlhac, J. Z. Kubiak, M. Weber, G. Geraud, W. H. Colledge et al., Mos is required for MAP kinase activation and is involved in microtubule organization during meiotic maturation in the mouse, Development, vol.122, pp.815-822, 1996.

M. Verlhac, C. Lefebvre, P. Guillaud, P. Rassinier, and B. Maro, Asymmetric division in mouse oocytes: with or without Mos, Current Biology, vol.10, issue.20, pp.1303-1306, 2000.
DOI : 10.1016/S0960-9822(00)00753-3

M. H. Verlhac, C. Lefebvre, J. Z. Kubiak, M. Umbhauer, P. Rassinier et al., Mos activates MAP kinase in mouse oocytes through two opposite pathways, The EMBO Journal, vol.19, issue.22, pp.6065-6074, 2000.
DOI : 10.1093/emboj/19.22.6065

A. J. Waskiewicz, A. Flynn, C. G. Proud, and J. A. Cooper, Mitogen-activated protein kinases activate the serine, 1997.

R. Bibliographiques-berdnik, D. Knoblich, and J. , Drosophila Aurora-A Is Required for Centrosome Maturation and Actin-Dependent Asymmetric Protein Localization during Mitosis, Current Biology, vol.12, issue.8, pp.640-647, 2002.
DOI : 10.1016/S0960-9822(02)00766-2

M. Bergere, R. Lombroso, M. Gombault, R. Wainer, and J. Selva, An idiopathic infertility with oocytes metaphase I maturation block: Case report, Human Reproduction, vol.16, issue.10, pp.2136-2144, 2001.
DOI : 10.1093/humrep/16.10.2136

R. R. Bhatt, J. E. Ferrell, and . Jr, The Protein Kinase p90 Rsk as an Essential Mediator of Cytostatic Factor Activity, Science, vol.286, issue.5443, pp.1362-1367, 1999.
DOI : 10.1126/science.286.5443.1362

R. R. Bhatt, J. E. Ferrell, and . Jr, Cloning and Characterization of Xenopus Rsk2, the Predominant p90 Rsk Isozyme in Oocytes and Eggs, Journal of Biological Chemistry, vol.275, issue.42, pp.32983-90, 2000.
DOI : 10.1074/jbc.M006386200

S. Biggins and A. Murray, The budding yeast protein kinase Ipl1/Aurora allows the absence of tension to activate the spindle checkpoint, Genes & Development, vol.15, issue.23, pp.3118-3147, 2001.
DOI : 10.1101/gad.934801

S. Biggins, F. Severin, N. Bhalla, I. Sassoon, A. Hyman et al., The conserved protein kinase Ipl1 regulates microtubule binding to kinetochores in budding yeast, Genes & Development, vol.13, issue.5, pp.532-576, 1999.
DOI : 10.1101/gad.13.5.532

S. Biggins and C. Walczak, Captivating Capture: How Microtubules Attach to Kinetochores, Current Biology, vol.13, issue.11, pp.449-60, 2003.
DOI : 10.1016/S0960-9822(03)00369-5

D. Bilbao-cortes, M. Hetzer, G. Langst, P. Becker, and I. Mattaj, Ran Binds to Chromatin by Two Distinct Mechanisms, Current Biology, vol.12, issue.13, pp.1151-1157, 2002.
DOI : 10.1016/S0960-9822(02)00927-2

F. Bischoff, H. Krebber, T. Kempf, I. Hermes, and H. Ponstingl, Human RanGTPase-activating protein RanGAP1 is a homologue of yeast Rna1p involved in mRNA processing and transport., Proceedings of the National Academy of Sciences, vol.92, issue.5, pp.1749-53, 1995.
DOI : 10.1073/pnas.92.5.1749

F. Bischoff and H. Ponstingl, Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1, Nature, vol.354, issue.6348, pp.80-82, 1991.
DOI : 10.1038/354080a0

A. Blangy, L. Arnaud, and E. A. Nigg, Phosphorylation by p34cdc2 Protein Kinase Regulates Binding of the Kinesin-related Motor HsEg5 to the Dynactin Subunit p150Glued, Journal of Biological Chemistry, vol.272, issue.31, pp.19418-19442, 1997.
DOI : 10.1074/jbc.272.31.19418

J. Bodart, D. Bechard, M. Bertout, J. Gannon, A. Rousseau et al., Activation of Xenopus Eggs by the Kinase Inhibitor 6-DMAP Suggests a Differential Regulation of Cyclin B and p39mos Proteolysis, Experimental Cell Research, vol.253, issue.2, pp.413-434, 1999.
DOI : 10.1006/excr.1999.4662

R. Booher, P. Holman, and A. Fattaey, Human Myt1 Is a Cell Cycle-regulated Kinase That Inhibits Cdc2 but Not Cdk2 Activity, Journal of Biological Chemistry, vol.272, issue.35, pp.22300-22306, 1997.
DOI : 10.1074/jbc.272.35.22300

T. G. Boulton, S. H. Nye, D. J. Robbins, N. Y. Ip, E. Radziejewska et al., ERKs: A family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF, Cell, vol.65, issue.4, pp.663-675, 1991.
DOI : 10.1016/0092-8674(91)90098-J

T. Brassac, A. Castro, T. Lorca, L. Peuch, C. Doree et al., The polo-like kinase Plx1 prevents premature inactivation of the APCFizzy-dependent pathway in the early Xenopus cell cycle, Oncogene, vol.19, issue.33, pp.3782-90, 2000.
DOI : 10.1038/sj.onc.1203724

S. Brunet, G. Pahlavan, S. Taylor, and B. Maro, Functionality of the spindle checkpoint during the first meiotic division of mammalian oocytes, Reproduction, vol.126, issue.4, pp.443-50, 2003.
DOI : 10.1530/rep.0.1260443

S. Brunet, Z. Polanski, M. Verlhac, J. Z. Kubiak, and B. Maro, Bipolar meiotic spindle formation without chromatin, Current Biology, vol.8, issue.22, pp.1231-1234, 1998.
DOI : 10.1016/S0960-9822(07)00516-7

S. Brunet, S. Maria, A. Guillaud, P. Dujardin, D. Kubiak et al., Kinetochore Fibers Are Not Involved in the Formation of the First Meiotic Spindle in Mouse Oocytes, but Control the Exit from the First Meiotic M Phase, The Journal of Cell Biology, vol.14, issue.1, pp.1-11, 1999.
DOI : 10.1083/jcb.129.5.1287

R. G. Burns, ?-, ?-, and ?-tubulins: Sequence comparisons and structural constraints, Cell Motility and the Cytoskeleton, vol.8, issue.3, pp.181-189, 1991.
DOI : 10.1002/cm.970200302

D. P. Cahill, C. Lengauer, J. Yu, G. J. Riggins, J. K. Willson et al., Mutations of mitotic checkpoint genes in human cancers [see comments], Nature, vol.392, pp.300-303, 1998.

R. Carazo-salas and E. Karsenti, Long-Range Communication between Chromatin and Microtubules in Xenopus Egg Extracts, Current Biology, vol.13, issue.19, pp.1728-1761, 2003.
DOI : 10.1016/j.cub.2003.09.006

R. E. Carazo-salas, O. J. Gruss, I. W. Mattaj, and E. Karsenti, Ran-GTP coordinates regulation of microtubule nucleation and dynamics during mitotic-spindle assembly, Nature Cell Biology, vol.3, issue.3, pp.228-262, 2001.
DOI : 10.1038/35060009

L. Cassimeris, Accessory protein regulation of microtubule dynamics throughout the cell cycle, Current Opinion in Cell Biology, vol.11, issue.1, pp.134-175, 1999.
DOI : 10.1016/S0955-0674(99)80017-9

A. Castro, M. Peter, T. Lorca, and E. Mandart, c-Mos and cyclin B/cdc2 connections during Xenopus oocyte maturation, Biology of the Cell, vol.93, issue.1-2, pp.15-25, 2001.
DOI : 10.1016/S0248-4900(01)01128-5

A. Castro, S. Vigneron, T. Lorca, and J. Labbe, Mitosis under control, Med Sci, vol.19, pp.309-326, 2003.

G. Chan, S. Jablonski, D. Starr, M. Goldberg, and T. Yen, Human Zw10 and ROD are mitotic checkpoint proteins that bind to kinetochores, Nat Cell Biol, vol.2, pp.944-951, 2000.

G. Chan, S. Jablonski, V. Sudakin, J. Hittle, and T. Yen, Human Bubr1 Is a Mitotic Checkpoint Kinase That Monitors Cenp-E Functions at Kinetochores and Binds the Cyclosome/APC, The Journal of Cell Biology, vol.14, issue.5, pp.941-54, 1999.
DOI : 10.1083/jcb.142.6.1547

L. Chen, R. Puri, E. Lefkowitz, and S. Kakar, Identification of the human pituitary tumor transforming gene (hPTTG) family: molecular structure, expression, and chromosomal localization, Gene, vol.248, issue.1-2, pp.41-50, 2000.
DOI : 10.1016/S0378-1119(00)00096-2

R. H. Chen, J. C. Waters, E. D. Salmon, and A. W. Murray, Association of Spindle Assembly Checkpoint Component XMAD2 with Unattached Kinetochores, Science, vol.274, issue.5285, pp.242-246, 1996.
DOI : 10.1126/science.274.5285.242

F. Chesnel and J. Eppig, Synthesis and accumulation of p34cdc2 and cyclin B in mouse oocytes during acquisition of competence to resume meiosis, Molecular Reproduction and Development, vol.89, issue.4, pp.503-511, 1995.
DOI : 10.1002/mrd.1080400414

T. S. Choi, K. Fukasawa, R. P. Zhou, L. Tessarollo, K. Borror et al., The Mos/mitogen-activated protein kinase (MAPK) pathway regulates the size and degradation of the first polar body in maturing mouse oocytes., Proceedings of the National Academy of Sciences of the United States of America 93, pp.7032-7035, 1996.
DOI : 10.1073/pnas.93.14.7032

E. An, PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast, Cell, vol.93, pp.1067-76

D. Cleveland, Y. Mao, and K. Sullivan, Centromeres and Kinetochores, Cell, vol.112, issue.4, pp.407-428, 2003.
DOI : 10.1016/S0092-8674(03)00115-6

P. Clute and J. Pines, Temporal and spatial control of cyclin B1 destruction in metaphase, Nat Cell Biol, vol.1, pp.82-89, 1999.

W. H. Colledge, M. B. Carlton, G. B. Udy, and M. J. Evans, Disruption of c-mos causes parthenogenetic development of unfertilized mouse eggs, Nature, vol.370, issue.6484, pp.65-68, 1994.
DOI : 10.1038/370065a0

D. Compton, Spindle Assembly in Animal Cells, Annual Review of Biochemistry, vol.69, issue.1, pp.95-114, 2000.
DOI : 10.1146/annurev.biochem.69.1.95

D. Compton, C. , and D. , NuMA, a nuclear protein involved in mitosis and nuclear reformation, Current Opinion in Cell Biology, vol.6, issue.3, pp.343-349, 1994.
DOI : 10.1016/0955-0674(94)90024-8

S. Gross, A. Lewellyn, and J. Maller, A Constitutively Active Form of the Protein Kinase p90Rsk1 Is Sufficient to Trigger the G2/M Transition in Xenopus Oocytes, Journal of Biological Chemistry, vol.276, issue.49, pp.46099-103, 2001.
DOI : 10.1074/jbc.C100496200

S. D. Gross, M. S. Schwab, A. L. Lewellyn, and J. L. Maller, Induction of Metaphase Arrest in Cleaving Xenopus Embryos by the Protein Kinase p90Rsk, Science, vol.286, issue.5443, pp.1365-1372, 1999.
DOI : 10.1126/science.286.5443.1365

S. D. Gross, M. S. Schwab, F. E. Taieb, A. L. Lewellyn, Y. Qian et al., The critical role of the MAP kinase pathway in meiosis II in Xenopus oocytes is mediated by p90Rsk, Current Biology, vol.10, issue.8, pp.430-438, 2000.
DOI : 10.1016/S0960-9822(00)00425-5

O. J. Gruss, R. E. Carazo-salas, C. A. Schatz, G. Guarguaglini, J. Kast et al., Ran Induces Spindle Assembly by Reversing the Inhibitory Effect of Importin ?? on TPX2 Activity, Cell, vol.104, issue.1, pp.83-93, 2001.
DOI : 10.1016/S0092-8674(01)00193-3

C. Gueth-hallonet, C. Antony, J. Aghion, A. Santa-maria, I. Lajoie-mazenc et al., ?-tubulin is present in acentriolar MTOCs during mouse early development, Journal of Cell Science, vol.105, pp.157-166, 1993.

O. Haccard, A. Lewellyn, R. S. Hartley, E. Erikson, and J. L. Maller, Induction of Xenopus Oocyte Meiotic Maturation by MAP Kinase, Developmental Biology, vol.168, issue.2, pp.677-682, 1995.
DOI : 10.1006/dbio.1995.1112

O. Haccard, B. Sarcevic, A. Lewellyn, R. Hartley, L. Roy et al., Induction of metaphase arrest in cleaving Xenopus embryos by MAP kinase, Science, vol.262, issue.5137, pp.1262-1265, 1993.
DOI : 10.1126/science.8235656

A. Hagting, N. Den-elzen, H. Vodermaier, I. Waizenegger, J. Peters et al., Human securin proteolysis is controlled by the spindle checkpoint and reveals when the APC/C switches from activation by Cdc20 to Cdh1, The Journal of Cell Biology, vol.15, issue.7, pp.1125-1162, 2002.
DOI : 10.1093/emboj/20.4.792

A. Hagting, M. Jackman, K. Simpson, and J. Pines, Translocation of cyclin B1 to the nucleus at prophase requires a phosphorylation-dependent nuclear import signal, Current Biology, vol.9, issue.13, pp.680-689, 1999.
DOI : 10.1016/S0960-9822(99)80308-X

A. Hampl and J. J. Eppig, Translational regulation of the gradual increase in histone H1 kinase activity in maturing mouse oocytes, Molecular Reproduction and Development, vol.355, issue.1, pp.9-15, 1995.
DOI : 10.1002/mrd.1080400103

N. Hashimoto, N. Watanabe, Y. Furuta, H. Tamemoto, N. Sagata et al., Parthenogenetic activation of oocytes in c-mos-deficient mice, Nature, vol.370, issue.6484, pp.68-71, 1994.
DOI : 10.1038/370068a0

I. Hauf, I. C. Waizenegger, and J. Peters, Cohesin Cleavage by Separase Required for Anaphase and Cytokinesis in Human Cells, Science, vol.293, issue.5533, pp.1320-1323, 2001.
DOI : 10.1126/science.1061376

R. Heald, R. Tournebize, T. Blank, R. Sandaltzopoulos, P. Becker et al., Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts, Nature, vol.382, issue.6590, pp.420-425, 1996.
DOI : 10.1038/382420a0

M. Heck, A. Pereira, P. Pesavento, Y. Yannoni, A. Spradling et al., The kinesin-like protein KLP61F is essential for mitosis in Drosophila, The Journal of Cell Biology, vol.123, issue.3, pp.665-679, 1993.
DOI : 10.1083/jcb.123.3.665

A. Hershko, D. Ganoth, V. Sudakin, A. Dahan, L. Cohen et al., Components of a system that ligates cyclin to ubiquitin and their regulation by the protein kinase cdc2, Journal of Biological Chemistry, vol.269, pp.4940-4946, 1994.

B. Hinkle, B. Slepchenko, S. M. Roll, T. Walther, P. Stein et al., Chromosomal association of Ran during meiotic and mitotic divisions, Journal of Cell Science, vol.115, issue.23, pp.4685-93, 2002.
DOI : 10.1242/jcs.00136

T. Hirano, Chromosome Cohesion, Condensation, and Separation, Annual Review of Biochemistry, vol.69, issue.1, pp.115-159, 2000.
DOI : 10.1146/annurev.biochem.69.1.115

H. Hochegger, A. Klotzbucher, J. Kirk, M. Howell, K. Le-guellec et al., New B-type cyclin synthesis is required between meiosis I and II during Xenopus oocyte maturation, Development, vol.128, pp.3795-807, 2001.

D. Hoffman, C. Pearson, T. Yen, B. Howell, and E. Salmon, Microtubuledependent changes in assembly of microtubule motor proteins and mitotic spindle checkpoint proteins at PtK1 kinetochores, Molecular Biology of the Cell, vol.12, 1995.

M. Horne and T. Guadagno, A requirement for MAP kinase in the assembly and maintenance of the mitotic spindle, The Journal of Cell Biology, vol.122, issue.6, pp.1021-1029, 2003.
DOI : 10.1083/jcb.142.6.1547

B. Howell, D. Hoffman, G. Fang, A. Murray, and E. Salmon, Visualization of Mad2 Dynamics at Kinetochores, along Spindle Fibers, and at Spindle Poles in Living Cells, The Journal of Cell Biology, vol.14, issue.6, 2000.
DOI : 10.1038/382466a0

M. Hoyt, A new view of the spindle checkpoint, The Journal of Cell Biology, vol.154, issue.5, pp.909-920, 2001.
DOI : 10.1101/gad.13.16.2039

M. A. Hoyt, L. Totis, and B. T. Roberts, S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function, Cell, vol.66, issue.3, pp.507-517, 1991.
DOI : 10.1016/0092-8674(81)90014-3

J. Hsu, J. Reimann, C. Sorensen, J. Lukas, and P. Jackson, E2F-dependent accumulation of hEmi1 regulates S phase entry by inhibiting APCCdh1, Nature Cell Biology, vol.4, issue.5, pp.358-66, 2002.
DOI : 10.1038/ncb785

J. Hsu, Z. Sun, X. Li, M. Reuben, K. Tatchell et al., Mitotic Phosphorylation of Histone H3 Is Governed by Ipl1/aurora Kinase and Glc7/PP1 Phosphatase in Budding Yeast and Nematodes, PP1 phosphatase in budding yeast and nematodes, pp.279-91, 2000.
DOI : 10.1016/S0092-8674(00)00034-9

C. K. Huang, H. , C. Stevens, T. Liang, and L. , Rapid modification of ribosomal S6 kinase II (S6KII). in rabbit peritoneal neutrophils stimulated with chemotactic factor fMet-Leu-Phe, Journal of Leukocyte Biology, vol.55, pp.430-436, 1994.

W. Huang, D. S. Kessler, and R. L. Erikson, Biochemical and biological analysis of Mek1 phosphorylation site mutants., Molecular Biology of the Cell, vol.6, issue.3, pp.237-282, 1995.
DOI : 10.1091/mbc.6.3.237

D. Huchon, H. Rime, C. Jessus, and R. Ozon, Control of metaphase I formation in Xenopus oocyte: Effects of an indestructible cyclin B and of protein synthesis, Biology of the Cell, vol.77, issue.2, pp.133-141, 1993.
DOI : 10.1016/S0248-4900(05)80181-9

P. A. Hunt and R. Lemaire-adkins, 11 Genetic Control of Mammalian Female Meiosis, Current Topics in Developmental Biology, vol.37, pp.359-81, 1998.
DOI : 10.1016/S0070-2153(08)60180-5

S. Inoue and E. Salmon, Force Generation by Microtubule Assembly/Disassembly in Mitosis and Related Movements, Molecular Biology of the Cell, vol.6, issue.12, pp.1619-1659, 1995.
DOI : 10.1091/mbc.6.12.1619

I. Ivanovska, E. Lee, K. Kwan, D. Fenger, and T. Orr-weaver, The Drosophila MOS Ortholog Is Not Essential for Meiosis, Current Biology, vol.14, issue.1, pp.75-80, 2004.
DOI : 10.1016/j.cub.2003.12.031

T. Izumi, D. H. Walker, and J. L. Maller, Periodic changes in phosphorylation of the Xenopus cdc25 phosphatase regulate its activity., Molecular Biology of the Cell, vol.3, issue.8, pp.927-939, 1992.
DOI : 10.1091/mbc.3.8.927

S. Jablonski, G. Chan, C. Cooke, W. Earnshaw, and T. Yen, The hBUB1 and hBUBR1 kinases sequentially assemble onto kinetochores during prophase with hBUBR1 concentrating at the kinetochore plates in mitosis, Chromosoma, vol.107, issue.6-7, pp.386-96, 1998.
DOI : 10.1007/s004120050322

H. Jager, A. Herzig, C. Lehner, and S. Heidmann, Drosophila Separase is required for sister chromatid separation and binds to PIM and THR, Genes & Development, vol.15, issue.19, pp.2572-84, 2001.
DOI : 10.1101/gad.207301

P. Jallepalli, I. Waizenegger, F. Bunz, S. Langer, M. Speicher et al., Securin Is Required for Chromosomal Stability in Human Cells, Cell, vol.105, issue.4, pp.445-57, 2001.
DOI : 10.1016/S0092-8674(01)00340-3

A. Lincoln, D. Wickramasinghe, P. Stein, R. Schultz, M. Palko et al., Cdc25b phosphatase is required for resumption of meiosis during oocyte maturation, Nature Genetics, vol.30, issue.4, pp.446-449, 2002.
DOI : 10.1038/ng856

L. Littlepage and J. Ruderman, Identification of a new APC/C recognition domain, the A box, which is required for the Cdh1-dependent destruction of the kinase Aurora-A during mitotic exit, Genes & Development, vol.16, issue.17, pp.2274-85, 2002.
DOI : 10.1101/gad.1007302

F. J. Longo and D. Y. Chen, Development of cortical polarity in mouse eggs: Involvement of the meiotic apparatus, Developmental Biology, vol.107, issue.2, pp.382-394, 1985.
DOI : 10.1016/0012-1606(85)90320-3

T. Lorca, A. Castro, A. M. Martinez, S. Vigneron, N. Morin et al., Fizzy is required for activation of the APC/cyclosome in Xenopus egg extracts, The EMBO Journal, vol.17, issue.13, pp.3565-75, 1998.
DOI : 10.1093/emboj/17.13.3565

T. Lorca, F. H. Cruzalequi, D. Fesquet, J. Cavadore, J. Méry et al., Calmodulin-dependent protein kinase II mediates inactivation of MPF and CSF upon fertilization of Xenopus eggs, Nature, vol.366, issue.6452, pp.270-273, 1993.
DOI : 10.1038/366270a0

A. Losada and T. Hirano, Shaping the metaphase chromosome: coordination of cohesion and condensation, BioEssays, vol.112, issue.10, pp.924-959, 2001.
DOI : 10.1002/bies.1133

X. Luo, Z. Tang, J. Rizo, and H. Yu, The Mad2 Spindle Checkpoint Protein Undergoes Similar Major Conformational Changes Upon Binding to Either Mad1 or Cdc20, Molecular Cell, vol.9, issue.1, pp.59-71, 2002.
DOI : 10.1016/S1097-2765(01)00435-X

T. Maney, A. W. Hunter, M. Wagenbach, and L. Wordeman, Mitotic Centromere???associated Kinesin Is Important for Anaphase Chromosome Segregation, The Journal of Cell Biology, vol.246, issue.3, pp.787-801, 1998.
DOI : 10.1083/jcb.131.3.721

A. Maniotis and M. Schliwa, Microsurgical removal of centrosomes blocks cell reproduction and centriole generation in BSC-1 cells, Cell, vol.67, issue.3, pp.495-504, 1991.
DOI : 10.1016/0092-8674(91)90524-3

B. Maro, S. K. Howlett, and M. Webb, Non-spindle microtubule organizing centers in metaphase II-arrested mouse oocytes, The Journal of Cell Biology, vol.101, issue.5, pp.1665-1672, 1985.
DOI : 10.1083/jcb.101.5.1665

B. Maro, M. H. Johnson, M. Webb, and G. Flach, Mechanism of polar body formation in the mouse oocyte: an interaction between the chromosomes, the cytoskeleton and the plasma membrane, Journal of Embryology and experimental Morphology, vol.92, pp.11-32, 1986.

D. Mastronarde, K. Mcdonald, R. Ding, and J. Mcintosh, Interpolar spindle microtubules in PTK cells, The Journal of Cell Biology, vol.123, issue.6, pp.1475-89, 1993.
DOI : 10.1083/jcb.123.6.1475

Y. Masui and C. L. Markert, Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes, Journal of Experimental Zoology, vol.2, issue.2, pp.129-146, 1971.
DOI : 10.1002/jez.1401770202

M. S. Murakami, V. Woude, and G. F. , Analysis of the early embryonic cell cycles of Xenopus; regulation of cell cycle length by Xe-wee1 and Mos, Development, vol.125, pp.237-285, 1998.

A. Murray, Recycling the Cell Cycle, Cell, vol.116, issue.2, pp.221-255, 2004.
DOI : 10.1016/S0092-8674(03)01080-8

A. W. Murray, M. J. Solomon, and M. W. Kirschner, The role of cyclin synthesis and degradation in the control of maturation promoting factor activity, Nature, vol.339, issue.6222, pp.280-286, 1989.
DOI : 10.1038/339280a0

A. Musacchio and K. Hardwick, The spindle checkpoint: structural insights into dynamic signalling, Nature Reviews Molecular Cell Biology, vol.10, issue.10, pp.731-772, 2002.
DOI : 10.1038/nrm929

M. V. Nachury, T. J. Maresca, W. C. Salmon, C. M. Waterman-storer, R. Heald et al., Importin ?? Is a Mitotic Target of the Small GTPase Ran in Spindle Assembly, Cell, vol.104, issue.1, pp.95-106, 2001.
DOI : 10.1016/S0092-8674(01)00194-5

N. Nakajo, S. Yoshitome, J. Iwashita, M. Iida, K. Uto et al., Absence of Wee1 ensures the meiotic cell cycle in Xenopus oocytes, Genes and Development, vol.14, pp.328-366, 2000.

K. Nasmyth, Disseminating the Genome: Joining, Resolving, and Separating Sister Chromatids During Mitosis and Meiosis, Annual Review of Genetics, vol.35, issue.1, pp.673-745, 2001.
DOI : 10.1146/annurev.genet.35.102401.091334

A. Nebreda, J. Gannon, and T. Hunt, Newly synthesized protein(s) must associate with p34cdc2 to activate MAP kinase and MPF during progesterone-induced maturation of Xenopus oocytes, EMBO Journal, vol.14, pp.5597-607, 1995.

A. R. Nebreda and T. Hunt, The c-mos proto-oncogene protein kinase turns on and maintains the activity of MAP kinase, but not MPF, in cell-free extract of Xenopus oocytes and eggs, EMBO Journal, vol.12, pp.1979-1986, 1993.

M. Nemergut, C. Mizzen, T. Stukenberg, C. Allis, and I. Macara, Chromatin Docking and Exchange Activity Enhancement of RCC1 by Histones H2A and H2B, Science, vol.292, issue.5521, pp.1540-1543, 2001.
DOI : 10.1126/science.292.5521.1540

R. B. Nicklas, The motor for poleward chromosome movement in anaphase is in or near the kinetochore, The Journal of Cell Biology, vol.109, issue.5, pp.2245-2255, 1989.
DOI : 10.1083/jcb.109.5.2245

R. B. Nicklas and G. W. Gordon, The total length of spindle microtubules depends on the number of chromosomes present, The Journal of Cell Biology, vol.100, issue.1, pp.1-7, 1985.
DOI : 10.1083/jcb.100.1.1

E. A. Nigg, Cyclin-dependent protein kinases: Key regulators of the eukaryotic cell cycle, BioEssays, vol.220, issue.6, pp.471-480, 1995.
DOI : 10.1002/bies.950170603

M. Nishizawa, K. Okazaki, N. Furuno, N. Watanabe, and N. Sagata, The 'second-codon rule' and autophosphorylation govern the stability and activity of Mos during the meiotic cell cycle in Xenopus oocytes, EMBO Journal, vol.11, pp.2433-2446, 1992.

C. M. Pfarr, M. Coue, P. M. Grissom, T. S. Hays, M. E. Porter et al., Cytoplasmic dynein is localized to kinetochores during mitosis, Nature, vol.345, issue.6272, pp.263-265, 1990.
DOI : 10.1038/345263a0

C. Pfleger and M. Kirschner, The KEN box: an APC recognition signal distinct from the D box targeted by Cdh1, Genes and Development, vol.14, pp.655-65, 2000.

A. Pidoux, M. Ledizet, and W. Cande, Fission yeast pkl1 is a kinesin-related protein involved in mitotic spindle function., Molecular Biology of the Cell, vol.7, issue.10, pp.1639-55, 1996.
DOI : 10.1091/mbc.7.10.1639

J. Pines and T. Hunter, Human cyclins A and B1 are differentially located in the cell and undergo cell cycle-dependent nuclear transport, The Journal of Cell Biology, vol.115, issue.1, pp.1-17, 1991.
DOI : 10.1083/jcb.115.1.1

J. Pines and T. Hunter, The differential localization of human cyclins A and B is due to a cytoplasmic retention signal in cyclin B, EMBO Journal, vol.13, pp.3772-81, 1994.

Y. Pommier and K. Kohn, Cell cycle and checkpoints in oncology: new therapeutic targets, Med Sci, vol.19, pp.173-86, 2003.

R. Poon, K. Yamashita, J. Adamczewski, T. Hunt, and J. Shuttleworth, The cdc2-related protein p40MO15 is the catalytic subunit of a protein kinase that can activate p33cdk2 and p34cdc2, Trends in Genetics, vol.9, issue.10, pp.3123-3155, 1993.
DOI : 10.1016/0168-9525(93)90031-C

J. Posada and J. A. Cooper, Requirements for phosphorylation of MAP kinase during meiosis in Xenopus oocytes, Science, vol.255, issue.5041, pp.212-215, 1992.
DOI : 10.1126/science.1313186

J. Posada, N. Yew, N. G. Ahn, G. F. Vande-woude, and J. Cooper, Mos stimulates MAP kinase in Xenopus oocytes and activates a MAP kinase kinase in vitro., Molecular and Cellular Biology, vol.13, issue.4, pp.2546-2553, 1993.
DOI : 10.1128/MCB.13.4.2546

F. Putkey, T. Cramer, M. Morphew, A. Silk, R. Johnson et al., Unstable Kinetochore-Microtubule Capture and Chromosomal Instability Following Deletion of CENP-E, Developmental Cell, vol.3, issue.3, pp.351-65, 2002.
DOI : 10.1016/S1534-5807(02)00255-1

Y. Qian, E. Erikson, and J. Maller, Polo-Like Kinase Plx1, Molecular and Cellular Biology, vol.19, issue.12, pp.8625-8657, 1999.
DOI : 10.1128/MCB.19.12.8625

Y. Qian, E. Erikson, F. Taieb, and J. Maller, The Polo-like Kinase Plx1 Is Required for Activation of the Phosphatase Cdc25C and Cyclin B-Cdc2 in Xenopus Oocytes, Molecular Biology of the Cell, vol.12, issue.6, pp.1791-1800, 2001.
DOI : 10.1091/mbc.12.6.1791

J. Schumacher, A. Golden, and P. Donovan, Embryos, The Journal of Cell Biology, vol.111, issue.6, pp.1635-1681, 1998.
DOI : 10.1083/jcb.129.5.1287

M. Schwab, A. S. Lutum, and W. Seufert, Yeast Hct1 Is a Regulator of Clb2 Cyclin Proteolysis, Cell, vol.90, issue.4, pp.683-93, 1997.
DOI : 10.1016/S0092-8674(00)80529-2

M. Schwab, B. Roberts, S. Gross, B. Tunquist, F. Taieb et al., Bub1 is activated by the protein kinase p90Rsk during Xenopus oocyte maturation, Current Biology, vol.11, issue.3, pp.141-50, 2001.
DOI : 10.1016/S0960-9822(01)00045-8

R. Ahn and N. G. , Activation of the MKK/ERK pathway during somatic cell mitosis: direct interactions of active ERK with kinetochores and regulation of the mitotic 3F3/2 phosphoantigen, Journal of Cell Biology, vol.142, pp.1533-1578, 1998.

D. Sharp, K. Mcdonald, H. Brown, H. Matthies, C. Walczak et al., Embryonic Mitotic Spindles, The Journal of Cell Biology, vol.44, issue.1, pp.125-163, 1999.
DOI : 10.1083/jcb.123.3.681

D. Sharp, G. Rogers, and J. Scholey, Microtubule motors in mitosis, Nature, vol.407, pp.41-48, 2000.

D. Sharp, K. Yu, J. Sisson, W. Sullivan, and J. Scholey, Antagonistic microtubule-sliding motors position mitotic centrosomes in Drosophila early embryos, Nat Cell Biol, vol.1, pp.51-55, 1999.

M. D. Sheets, M. Wu, and M. Wickens, Polyadenylation of c-mos mRNA as a control point in Xenopus meiotic maturation, Nature, vol.374, issue.6522, pp.511-516, 1995.
DOI : 10.1038/374511a0

X. Sheng, L. Jiang, W. Zhou, T. Wang, and X. Zhang, [Cloning of the mouse Doc-1R gene by genomic walking, Zhonghua Yi Xue Yi Chuan Xue Za Zhi, pp.314-320, 2001.

M. F. Siomos, A. Badrinath, P. Pasierbek, D. Livingstone, J. White et al., Separase is required for chromosome segregation during meiosis I in Caenorhabditis elegans, Current Biology, vol.11, issue.23, pp.1825-1835, 2001.
DOI : 10.1016/S0960-9822(01)00588-7

L. Sironi, M. Melixetian, M. Faretta, E. Prosperini, K. Helin et al., Mad2 binding to Mad1 and Cdc20, rather than oligomerization, is required for the spindle checkpoint, The EMBO Journal, vol.20, issue.22, pp.6371-82, 2001.
DOI : 10.1093/emboj/20.22.6371

G. Sluder, C. L. Rieder, and F. Miller, Experimental separation of pronuclei in fertilized sea urchin eggs: chromosomes do not organize a spindle in the absence of centrosomes, The Journal of Cell Biology, vol.100, issue.3, pp.897-903, 1985.
DOI : 10.1083/jcb.100.3.897

E. A. Smirnova and A. S. Bajer, Spindle poles in higher plant mitosis, Cell Motility and the Cytoskeleton, vol.106, issue.1, pp.1-7, 1992.
DOI : 10.1002/cm.970230102

V. Smits, R. Klompmaker, T. Vallenius, G. Rijksen, T. Makela et al., p21 Inhibits Thr161 Phosphorylation of Cdc2 to Enforce the G2 DNA Damage Checkpoint, Journal of Biological Chemistry, vol.275, issue.39, pp.30638-30681, 2000.
DOI : 10.1074/jbc.M005437200

M. Solomon, J. Harper, and J. Shuttleworth, CAK, the p34cdc2 activating kinase, contains a protein identical or closely related to p40MO15, Trends in Genetics, vol.9, issue.10, pp.3133-3175, 1993.
DOI : 10.1016/0168-9525(93)90032-D

O. Stemmann, H. Zou, S. Gerber, S. Gygi, and M. Kirschner, Dual Inhibition of Sister Chromatid Separation at Metaphase, Cell, vol.107, issue.6, pp.715-741, 2001.
DOI : 10.1016/S0092-8674(01)00603-1

B. Stern and A. Murray, Lack of tension at kinetochores activates the spindle checkpoint in budding yeast, Current Biology, vol.11, issue.18, pp.1462-1469, 2001.
DOI : 10.1016/S0960-9822(01)00451-1

E. R. Steuer, L. Wordeman, T. A. Schroer, and M. P. Sheetz, Localization of cytoplasmic dynein to mitotic spindles and kinetochores, Nature, vol.345, issue.6272, pp.266-268, 1990.
DOI : 10.1038/345266a0

R. Stratmann and C. F. Lehner, Separation of Sister Chromatids in Mitosis Requires the Drosophila pimples Product, a Protein Degraded after the Metaphase/Anaphase Transition, Cell, vol.84, issue.1, pp.25-35, 1996.
DOI : 10.1016/S0092-8674(00)80990-3

V. Sudakin, G. Chan, and T. Yen, Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2, The Journal of Cell Biology, vol.10, issue.5, pp.925-961, 2001.
DOI : 10.1101/gad.13.16.2039

V. Hershko and A. , The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis, Molecular Biology of the Cell, vol.6, pp.185-97, 1995.

I. Sumara, E. Vorlaufer, P. Stukenberg, O. Kelm, N. Redemann et al., The Dissociation of Cohesin from Chromosomes in Prophase Is Regulated by Polo-like Kinase, Molecular Cell, vol.9, issue.3, pp.515-540, 2002.
DOI : 10.1016/S1097-2765(02)00473-2

J. Summerton, Morpholino antisense oligomers: the case for an RNase H-independent structural type, Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, vol.1489, issue.1, pp.141-58, 1999.
DOI : 10.1016/S0167-4781(99)00150-5

J. Summerton and D. Weller, Morpholino Antisense Oligomers: Design, Preparation, and Properties, Antisense and Nucleic Acid Drug Development, pp.187-95, 1997.
DOI : 10.1089/oli.1.1997.7.187

K. Tachibana, D. Tanaka, T. Isobe, and T. Kishimoto, c-Mos forces the mitotic cell cycle to undergo meiosis II to produce haploid gametes, Proceedings of the National Academy of Sciences, vol.86, issue.18, pp.14301-14307, 2000.
DOI : 10.1073/pnas.86.18.7038

F. Taieb, I. Chartrain, S. Chevalier, O. Haccard, and C. Jessus, Cyclin D2 ArrestsXenopusEarly Embryonic Cell Cycles, Experimental Cell Research, vol.237, issue.2, pp.338-384, 1997.
DOI : 10.1006/excr.1997.3800

F. E. Taieb, S. D. Gross, A. L. Lewellyn, and J. L. Maller, Activation of the anaphase-promoting complex and degradation of cyclin B is not required for progression from Meiosis I to II in Xenopus oocytes, Current Biology, vol.11, issue.7, pp.508-513, 2001.
DOI : 10.1016/S0960-9822(01)00145-2

C. Takizawa and D. Morgan, Control of mitosis by changes in the subcellular location of cyclin-B1???Cdk1 and Cdc25C, Current Opinion in Cell Biology, vol.12, issue.6, pp.658-65, 2000.
DOI : 10.1016/S0955-0674(00)00149-6

T. Tanoue, M. Adachi, T. Moriguchi, and E. Nishida, A conserved docking motif in MAP kinases common to substrates, activators and regulators, Nature Cell Biology, vol.15, issue.2, pp.110-116, 2000.
DOI : 10.1074/JBC.271.6.2886

P. Tavormina and D. Burke, Cell cycle arrest in cdc20 mutants of Saccharomyces cerevisiae is independent of Ndc10p and kinetochore function but requires a subset of spindle checkpoint genes, Genetics, vol.148, pp.1701-1714, 1998.

S. S. Taylor, E. Ha, and F. Mckeon, The Human Homologue of Bub3 Is Required for Kinetochore Localization of Bub1 and a Mad3/Bub1-related Protein Kinase, The Journal of Cell Biology, vol.41, issue.1, pp.1-11, 1998.
DOI : 10.1083/jcb.47.1.235

S. S. Taylor and F. Mckeon, Kinetochore Localization of Murine Bub1 Is Required for Normal Mitotic Timing and Checkpoint Response to Spindle Damage, Cell, vol.89, issue.5, pp.727-735, 1997.
DOI : 10.1016/S0092-8674(00)80255-X

M. Terret, I. Ferby, A. Nebreda, and M. Verlhac, RINGO efficiently triggers meiosis resumption in mouse oocytes and induces cell cycle arrest in embryos, Biology of the Cell, vol.93, issue.1-2, pp.89-97, 2001.
DOI : 10.1016/S0248-4900(01)01122-4

M. E. Terret, C. Lefebvre, A. Djiane, P. Rassinier, J. Moreau et al., DOC1R: a MAP kinase substrate that control microtubule organization of metaphase II mouse oocytes, Development, vol.130, issue.21, pp.5169-5177, 2003.
DOI : 10.1242/dev.00731

M. E. Terret, K. Wassmann, I. C. Waizenegger, B. Maro, J. Peters et al., The Meiosis I-to-Meiosis II Transition in Mouse Oocytes Requires Separase Activity, Current Biology, vol.13, issue.20, pp.1797-1802, 2003.
DOI : 10.1016/j.cub.2003.09.032

K. Wassmann, T. Niault, and B. Maro, Metaphase I Arrest upon Activation of the Mad2-Dependent Spindle Checkpoint in Mouse Oocytes, Current Biology, vol.13, issue.18, pp.1596-608, 2003.
DOI : 10.1016/j.cub.2003.08.052

N. Watanabe, G. F. Van-de-woude, Y. Ikawa, and N. Sagata, Specific proteolysis of the c-mos proto-oncogene product by calpain on fertilization of Xenopus eggs, Nature, vol.342, issue.6249, pp.505-511, 1989.
DOI : 10.1038/342505a0

J. C. Waters, R. H. Chen, A. W. Murray, and E. D. Salmon, Localization of Mad2 to Kinetochores Depends on Microtubule Attachment, Not Tension, The Journal of Cell Biology, vol.109, issue.5, pp.1181-91, 1998.
DOI : 10.1083/jcb.131.3.721

E. Weiss and M. Winey, The Saccharomyces cerevisiae spindle pole body duplication gene MPS1 is part of a mitotic checkpoint, The Journal of Cell Biology, vol.132, issue.1, pp.111-134, 1996.
DOI : 10.1083/jcb.132.1.111

E. Whitmire, B. Khan, and M. Coue, Cdc6 synthesis regulates replication competence in Xenopus oocytes, Nature, vol.375, issue.6908, pp.722-727, 2002.
DOI : 10.1016/S0248-4900(99)80008-2

C. Wiese, A. Wilde, M. Moore, S. Adam, A. Merdes et al., Role of Importin-beta in Coupling Ran to Downstream Targets in Microtubule Assembly, Science, vol.291, issue.5504, pp.653-659, 2001.
DOI : 10.1126/science.1057661

URL : https://hal.archives-ouvertes.fr/hal-00091100

P. Wilson, M. Fuller, and G. Borisy, Monastral bipolar spindles: implications for dynamic centrosome organization, Journal of Cell Science, vol.110, pp.451-64, 1997.

N. Winston, Stability of cyclin B protein during meiotic maturation and the first mitotic cell division in mouse oocytes, Biology of the Cell, vol.89, issue.3, pp.211-219, 1997.
DOI : 10.1111/j.1768-322X.1997.tb01009.x

K. Wirth, R. Ricci, J. Gimenez-abian, S. Taghybeeglu, N. Kudo et al., Loss of the anaphase-promoting complex in quiescent cells causes unscheduled hepatocyte proliferation, Genes & Development, vol.18, issue.1, pp.88-98, 2004.
DOI : 10.1101/gad.285404

T. Wittmann, H. Boleti, C. Antony, E. Karsenti, and I. Vernos, Localization of the Kinesin-like Protein Xklp2 to Spindle Poles Requires a Leucine Zipper, a Microtubule-associated Protein, and Dynein, The Journal of Cell Biology, vol.268, issue.3, pp.673-85, 1998.
DOI : 10.1073/pnas.89.10.4462

T. Wittmann, A. Hyman, and A. Desai, The spindle: a dynamic assembly of microtubules and motors, Nature Cell Biology, vol.3, issue.1, pp.28-34, 2001.
DOI : 10.1038/35050669

T. Wittmann, M. Wilm, E. Karsenti, and I. Vernos, Map Involved in Spindle Pole Organization, The Journal of Cell Biology, vol.61, issue.7, pp.1405-1423, 2000.
DOI : 10.1083/jcb.142.6.1547

J. Wolstenholme and R. Angell, Maternal age and trisomy ??? a unifying mechanism of formation, Chromosoma, vol.109, issue.7, pp.435-443, 2000.
DOI : 10.1007/s004120000088

D. H. Zhang and R. B. Nicklas, The impact of chromosomes and centrosomes on spindle assembly as observed in living cells, The Journal of Cell Biology, vol.129, issue.5, pp.1287-1300, 1995.
DOI : 10.1083/jcb.129.5.1287

Y. Zheng, M. L. Wong, B. Alberts, and T. Mitchison, Nucleation of microtubule assembly by a ??-tubulin-containing ring complex, Nature, vol.378, issue.6557, pp.578-83, 1995.
DOI : 10.1038/378578a0

H. Zou, T. J. Mcgarry, T. Bernal, M. W. Kirschner, D. Fisher et al., Identification of a Vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis MAPK inactivation is required for the G2 to M-phase transition of the first mitotic cell cycle, Science REFERENCES Abrieu, The EMBO Journal, vol.285, issue.16, pp.418-422, 1997.

E. A. Bornslaeger, P. Mattei, and R. M. Schultz, Involvement of cAMP-dependent protein kinase and protein phosphorylation in regulation of mouse oocyte maturation, Developmental Biology, vol.114, issue.2, pp.453-462, 1986.
DOI : 10.1016/0012-1606(86)90209-5

T. G. Boulton, G. D. Yancopoulos, J. S. Gregory, C. Slaughter, C. Moomaw et al., An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control, Science, vol.249, issue.4964, pp.64-67, 1990.
DOI : 10.1126/science.2164259

S. Brunet, Z. Polanski, M. H. Verlhac, J. Z. Kubiak, and B. Maro, Bipolar meiotic spindle formation without chromatin, Current Biology, vol.8, issue.22, pp.1231-1234, 1998.
DOI : 10.1016/S0960-9822(07)00516-7

URL : http://doi.org/10.1016/s0960-9822(07)00516-7

S. Brunet, S. Maria, A. Guillaud, P. Dujardin, D. Kubiak et al., Kinetochore Fibers Are Not Involved in the Formation of the First Meiotic Spindle in Mouse Oocytes, but Control the Exit from the First Meiotic M Phase, The Journal of Cell Biology, vol.14, issue.1, pp.1-11, 1999.
DOI : 10.1083/jcb.129.5.1287

T. Choi, F. Aoki, M. Mori, M. Yamashita, Y. Nagahama et al., Activation of p34cdc2 protein kinase activity in meiotic and mitotic cell cycles in mouse oocytes and embryos, Development, vol.113, pp.789-795, 1991.

W. H. Colledge, M. B. Carlton, G. B. Udy, and M. J. Evans, Disruption of c-mos causes parthenogenetic development of unfertilized mouse eggs, Nature, vol.370, issue.6484, pp.65-68, 1994.
DOI : 10.1038/370065a0

J. R. Fabian, D. K. Morrison, and I. O. Daar, Requirement for Raf and MAP kinase function during the meiotic maturation of Xenopus oocytes, The Journal of Cell Biology, vol.122, issue.3, pp.645-652, 1993.
DOI : 10.1083/jcb.122.3.645

I. Ferby, M. Blazquez, A. Palmer, R. Eritja, and A. R. Nebreda, A novel p34cdc2-binding and activating protein that is necessary and sufficient to trigger G2/M progression in Xenopus oocytes, Genes & Development, vol.13, issue.16, pp.2177-2189, 1999.
DOI : 10.1101/gad.13.16.2177

O. Haccard, B. Sarcevic, A. Lewellyn, R. Hartley, L. Roy et al., Induction of metaphase arrest in cleaving Xenopus embryos by MAP kinase, Science, vol.262, issue.5137, pp.1262-1265, 1993.
DOI : 10.1126/science.8235656

N. Hashimoto, N. Watanabe, Y. Furuta, H. Tamemoto, N. Sagata et al., Parthenogenetic activation of oocytes in c-mos-deficient mice, Nature, vol.370, issue.6484, pp.68-71, 1994.
DOI : 10.1038/370068a0

E. Ledan, Z. Polanski, M. E. Terret, and B. Maro, Meiotic Maturation of the Mouse Oocyte Requires an Equilibrium between Cyclin B Synthesis and Degradation, Developmental Biology, vol.232, issue.2, 2001.
DOI : 10.1006/dbio.2001.0188

J. L. Lenormand, R. W. Dellinger, K. E. Knudsen, S. Subramani, and D. J. Donoghue, Speedy: a novel cell cycle regulator of the G2/M transition, The EMBO Journal, vol.18, issue.7, pp.1869-1877, 1999.
DOI : 10.1093/emboj/18.7.1869

S. Louvet-vallee, N. Dard, A. Santa-maria, J. Aghion, and B. Maro, A Major Posttranslational Modification of Ezrin Takes Place during Epithelial Differentiation in the Early Mouse Embryo, Developmental Biology, vol.231, issue.1, pp.190-200, 2001.
DOI : 10.1006/dbio.2000.0147

Y. Masui and C. L. Markert, Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes, Journal of Experimental Zoology, vol.2, issue.2, pp.129-146, 1971.
DOI : 10.1002/jez.1401770202

A. R. Nebreda and T. Hunt, The c-mos proto-oncogene protein kinase turns on and maintains the activity of MAP kinase, but not MPF, in cell-free extract of Xenopus oocytes and eggs, EMBO J, vol.12, pp.1979-1986, 1993.

Z. Polanski, E. Ledan, S. Brunet, S. Louvet, J. Z. Kubiak et al., Cyclin synthesis controls the progression of meiotic maturation in mouse oocytes, Development, vol.125, pp.4989-4997, 1998.

J. Posada, N. Yew, N. G. Ahn, G. F. Vande-woude, and J. Cooper, Mos stimulates MAP kinase in Xenopus oocytes and activates a MAP kinase kinase in vitro., Molecular and Cellular Biology, vol.13, issue.4, pp.2546-2553, 1993.
DOI : 10.1128/MCB.13.4.2546

N. Sagata, I. Daar, M. Oskarsson, S. D. Showalter, and G. F. Van-de-woude, The product of the mos proto-oncogene as a candidate "initiator" for oocyte maturation, Science, vol.245, issue.4918, pp.643-646, 1989.
DOI : 10.1126/science.2474853

N. Sagata, N. Watanabe, G. F. Van-de-woude, and Y. Ikawa, The c-mos proto-oncogene product is a cytostatic factor responsible for meiotic arrest in vertebrate eggs, Nature, vol.342, issue.6249, pp.512-518, 1989.
DOI : 10.1038/342512a0

K. Tachibana, T. Machida, Y. Nomura, and T. Kishimoto, MAP kinase links the fertilization signal transduction pathway to the G1/S-phase transition in starfish eggs, The EMBO Journal, vol.16, issue.14, pp.4333-4339, 1997.
DOI : 10.1093/emboj/16.14.4333

K. Tachibana, D. Tanaka, T. Isobe, and T. Kishimoto, c-Mos forces the mitotic cell cycle to undergo meiosis II to produce haploid gametes, Proceedings of the National Academy of Sciences, vol.86, issue.18, pp.14301-14306, 2000.
DOI : 10.1073/pnas.86.18.7038

M. H. Verlhac, C. Lefebvre, P. Guillaud, P. Rassinier, and B. Maro, Asymmetric division in mouse oocytes: with or without Mos, Current Biology, vol.10, issue.20, 2000.
DOI : 10.1016/S0960-9822(00)00753-3

M. H. Verlhac, J. Z. Kubiak, M. Weber, G. Geraud, W. H. Colledge et al., Mos is required for MAP kinase activation and is involved in microtubule organization during meiotic maturation in the mouse, Development, vol.122, pp.815-822, 1996.

M. H. Verlhac, C. Lefebvre, J. Z. Kubiak, M. Umbhauer, P. Rassinier et al., Mos activates MAP kinase in mouse oocytes through two opposite pathways, Process Citation], pp.6065-6074, 2000.
DOI : 10.1093/emboj/19.22.6065

. Lemaitre, Both CDC6 antibodies directed against Human and Xenopus CDC6 protein recognized Drosophila CDC6 protein (supplementary datas) Antibody against MCM2 Drosophila protein was kindly provided by TT Sue, Xenopus CDC6 antibody was prepared as previously described, 1996.

. Lindner, Basically, a cdc18-CFP pat1ts strain (p1279) was arrested in G1 by nitrogen starvation for 16 h at 25°C, after which cells were refed at 34°C to induce meiosis. Samples were taken every 30 minutes and analyzed by flow cytometry, fluorescence microscopy and Western blotting, as described previously Lindner et al. 2002), using anti-GFP monoclonal antibody 3E1 to detect Cdc18-CFP and a-tubulin was detected with Sigma T5168 used at a dilution of 1/10000, Expression of Cdc18 expression during fission yeast meiosis was analyzed using G1 block and release as described in DNA was stained with sytox green for flow cytometry and DAPI-Diamidino-2-phenylindole) for fluorescence microscopy, 2000.

J. Bahler, P. Schuchert, C. Grimm, and J. Kohli, Synchronized meiosis and recombination in fission yeast: observations with pat1-114 diploid cells, Current Genetics, vol.10, issue.6, pp.445-451, 1991.
DOI : 10.1007/BF00312735

S. Bell and A. Dutta, DNA Replication in Eukaryotic Cells, Annual Review of Biochemistry, vol.71, issue.1, pp.333-374, 2002.
DOI : 10.1146/annurev.biochem.71.110601.135425

B. Qazi, M. Heifetz, Y. Wolfner, and M. , The developments between gametogenesis and fertilization: ovulation and female sperm storage in drosophila melanogaster, Developmental Biology, vol.256, issue.2, pp.195-211, 2003.
DOI : 10.1016/S0012-1606(02)00125-2

W. Colledge, M. Carlton, G. Udy, and M. Evans, Disruption of c-mos causes parthenogenetic development of unfertilized mouse eggs, Nature, vol.370, issue.6484, pp.65-68, 1994.
DOI : 10.1038/370065a0

J. Cook, C. Park, T. Burke, G. Leone, J. Degregori et al., Analysis of Cdc6 function in the assembly of mammalian prereplication complexes, Proceedings of the National Academy of Sciences, vol.20, issue.9, pp.1347-1352, 2002.
DOI : 10.1128/MCB.20.9.3086-3096.2000

A. Dupre, C. Jessus, R. Ozon, and O. Haccard, Mos is not required for the initiation of meiotic maturation in Xenopus oocytes, The EMBO Journal, vol.21, issue.15, pp.4026-4036, 2002.
DOI : 10.1093/emboj/cdf400

N. Furuno, M. Nishizawa, K. Okazaki, H. Tanaka, J. Iwashita et al., Suppression of DNA replication via Mos function during meiotic divisions in Xenopus oocytes, Embo J, vol.13, issue.10, pp.2399-2410, 1994.

B. Grallert, S. Kearsey, M. Lenhard, C. Carlson, P. Nurse et al., A fission yeast general translation factor reveals links between protein synthesis and cell cycle controls, J Cell Sci, vol.113, pp.1447-1458, 2000.

J. Gregan, K. Lindner, L. Brimage, R. Franklin, M. Namdar et al., Fission Yeast Cdc23/Mcm10 Functions after Pre-replicative Complex Formation To Promote Cdc45 Chromatin Binding, Molecular Biology of the Cell, vol.14, issue.9, pp.3876-3887, 2003.
DOI : 10.1091/mbc.E03-02-0090

N. Hashimoto, N. Watanabe, Y. Furuta, H. Tamemoto, N. Sagata et al., Parthenogenetic activation of oocytes in c-mos-deficient mice, Nature, vol.370, issue.6484, pp.68-71, 1994.
DOI : 10.1038/370068a0

Y. Heifetz, J. Yu, and M. Wolfner, Ovulation Triggers Activation of Drosophila Oocytes, Developmental Biology, vol.234, issue.2, pp.416-424, 2001.
DOI : 10.1006/dbio.2001.0246

D. Jans, T. Moll, K. Nasmyth, and P. Jans, Cyclin-dependent Kinase Site-regulated Signal-dependent Nuclear Localization of the SWI5 Yeast Transcription Factor in Mammalian Cells, Journal of Biological Chemistry, vol.270, issue.29, pp.17064-17067, 1995.
DOI : 10.1074/jbc.270.29.17064

S. Jinno, M. Yageta, A. Nagata, and H. Okayama, Cdc6 requires anchorage for its expression, Oncogene, vol.21, issue.11, pp.1777-1784, 2002.
DOI : 10.1038/sj.onc.1205249

T. Kelly, G. Martin, S. Forsburg, R. Stephen, A. Russo et al., The fission yeast cdc18+ gene product couples S phase to START and mitosis, Cell, vol.74, issue.2, pp.371-382, 1993.
DOI : 10.1016/0092-8674(93)90427-R

J. Kubiak, M. Weber, G. Geraud, and B. Maro, Cell cycle modification during the transitions between meiotic M-phases in mouse oocytes, J Cell Sci, vol.102, pp.457-467, 1992.

Y. Kubota and H. Takisawa, Block to DNA replication in meiotic maturation: a unified view for a robust arrest of cell cycle in oocytes and somatic cells, BioEssays, vol.21, issue.4, pp.313-316, 2003.
DOI : 10.1002/bies.10264

U. Laemmli, Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4, Nature, vol.244, issue.5259, pp.680-685, 1970.
DOI : 10.1038/227680a0

J. Lemaitre, S. Bocquet, and M. Mechali, Competence to replicate in the unfertilized egg is conferred by Cdc6 during meiotic maturation, Nature, vol.5, issue.6908, pp.718-722, 2002.
DOI : 10.1038/nature01032

K. Lindner, J. Gregan, S. Montgomery, and S. Kearsey, Essential Role of MCM Proteins in Premeiotic DNA Replication, Molecular Biology of the Cell, vol.13, issue.2, pp.435-444, 2002.
DOI : 10.1091/mbc.01-11-0537

Y. Masui, The elusive cytostatic factor in the animal egg, Nature Reviews Molecular Cell Biology, vol.1, issue.3, pp.228-232, 2000.
DOI : 10.1038/35043096

S. Menut, J. Lemaitre, A. Hair, and M. Méchali, DNA replication and chromatin assembly using Xenopus egg extracts, Advances in Molecular Biology: A comparative Methods Approach to the Study of Ooocytes and Embryos, 1999.

H. Nishitani, Z. Lygerou, T. Nishimoto, and P. Nurse, The Cdt1 protein is required to license DNA for replication in fission yeast, Nature, vol.404, issue.6778, pp.625-628, 2000.

H. Nishitani and P. Nurse, The cdc18 protein initiates DNA replication in fission yeast, Prog Cell Cycle Res, vol.3, pp.135-142, 1997.
DOI : 10.1007/978-1-4615-5371-7_11

C. Pelizon, M. Madine, P. Romanowski, and R. Laskey, Unphosphorylatable mutants of Cdc6 disrupt its nuclear export but still support DNA replication once per cell cycle, Genes & Development, vol.14, issue.19, pp.2526-2533, 2000.
DOI : 10.1101/gad.176300

N. Sagata, N. Watanabe, V. Woude, G. Ikawa, and Y. , The c-mos proto-oncogene product is a cytostatic factor responsible for meiotic arrest in vertebrate eggs, Nature, vol.342, issue.6249, pp.512-518, 1989.
DOI : 10.1038/342512a0

K. Stoeber, A. Mills, Y. Kubota, T. Krude, P. Romanowski et al., Cdc6 protein causes premature entry into S phase in a mammalian cell-free system, The EMBO Journal, vol.17, issue.24, pp.7219-7229, 1998.
DOI : 10.1093/emboj/17.24.7219

T. Su, G. Feger, O. Farrell, and P. , Drosophila MCM protein complexes., Molecular Biology of the Cell, vol.7, issue.2, pp.319-329, 1996.
DOI : 10.1091/mbc.7.2.319

K. Tachibana, D. Tanaka, T. Isobe, and T. Kishimoto, c-Mos forces the mitotic cell cycle to undergo meiosis II to produce haploid gametes, Proceedings of the National Academy of Sciences, vol.86, issue.18, pp.14301-14306, 2000.
DOI : 10.1073/pnas.86.18.7038

N. Takahashi, S. Tsutsumi, T. Tsuchiya, B. Stillman, and T. Mizushima, Functions of Sensor 1 and Sensor 2 Regions of Saccharomyces cerevisiae Cdc6p in Vivo and in Vitro, Journal of Biological Chemistry, vol.277, issue.18, pp.16033-16040, 2002.
DOI : 10.1074/jbc.M108615200

D. Tautz and C. Pfeifle, A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback, Chromosoma, vol.37, issue.2, pp.81-85, 1989.
DOI : 10.1007/BF00291041

J. Tian, G. Thomsen, H. Gong, and W. Lennarz, Xenopus Cdc6 confers sperm binding competence to oocytes without inducing their maturation, Proceedings of the National Academy of Sciences, vol.85, issue.9, pp.10729-10734, 1997.
DOI : 10.1073/pnas.85.9.3009

M. Verlhac, J. Kubiak, M. Weber, G. Geraud, W. Colledge et al., Mos is required for MAP kinase activation and is involved in microtubule organization during meiotic maturation in the mouse, Development, vol.122, issue.3, pp.815-822, 1996.

M. Weinreich, C. Liang, H. Chen, and B. Stillman, Binding of cyclin-dependent kinases to ORC and Cdc6p regulates the chromosome replication cycle, Proceedings of the National Academy of Sciences, vol.412, issue.6844, pp.11211-11217, 2001.
DOI : 10.1038/35085610

E. Whitmire, B. Khan, and M. Coue, Cdc6 synthesis regulates replication competence in Xenopus oocytes, Nature, vol.375, issue.6908, pp.722-725, 2002.
DOI : 10.1016/S0248-4900(99)80008-2

D. Whittingham, Culture of mouse ova, J Reprod Fertil, vol.14, pp.7-21, 1971.

G. Williams, P. Romanowski, L. Morris, M. Madine, A. Mills et al., Improved cervical smear assessment using antibodies against proteins that regulate DNA replication, Proceedings of the National Academy of Sciences, vol.241, issue.1, pp.9514932-14937, 1998.
DOI : 10.1006/excr.1998.4041

R. Williams, R. Shohet, and B. Stillman, A human protein related to yeast Cdc6p, Proceedings of the National Academy of Sciences, vol.269, issue.50, pp.142-147, 1997.
DOI : 10.1074/jbc.270.50.30162