J. Mikkonen, C. Corrado, C. Evci, and E. M. Prögler, Emerging wireless broadband networks, IEEE Communications Magazine, vol.36, issue.2, pp.112-117, 1998.
DOI : 10.1109/35.648777

T. M. Siep, I. C. Gifford, R. C. Bradley, and R. F. Heile, Paving the way for personal area network standards: an overview of the IEEE P802.15 Working Group for Wireless Personal Area Networks, IEEE Personal Communications, vol.7, issue.1, pp.37-43, 2000.
DOI : 10.1109/98.824574

J. C. Haartsen, The Bluetooth radio system, IEEE Personal Communications, vol.7, issue.1, pp.28-36, 2000.
DOI : 10.1109/98.824570

M. Pezzin, J. Keignart, N. Daniele, S. De-rivaz, B. Denis et al., Ultra Wideband : the radio link of the future ?, Annals of Telecommunications, vol.58, pp.3-4, 2003.

D. Falconer, A system architecture for broadband millimeter-wave access to an ATM LAN, IEEE Personal Communications, vol.3, issue.4, pp.36-41, 1996.
DOI : 10.1109/98.536477

B. H. Fleury and P. E. Leuthold, Radiowave propagation in mobile communications: an overview of European research, IEEE Communications Magazine, vol.34, issue.2, pp.70-81, 1996.
DOI : 10.1109/35.481300

S. Ohmori, Y. Yamao, and E. N. Nakajima, The Future Generations of Mobile Communications Based on Broadband Access Technologies, IEEE Communications Magazine, vol.38, issue.12, pp.134-142, 2000.

P. F. Smulders, Exploiting the 60 GHz band for local wireless multimedia access: prospects and future directions, IEEE Communications Magazine, vol.40, issue.1, pp.140-147, 2002.
DOI : 10.1109/35.978061

Y. Takimoto, Recent activities on millimeter wave indoor LAN system development in Japan, IEEE MTT-S International Microwave Symposium Digest, pp.405-408, 1995.

M. Projet, Multimedia Mobile Access Communications Systems

J. Kunisch, E. Zollinger, J. Pamp, and E. A. Winkelmann, MEDIAN 60 GHz wideband indoor radio channel measurements and model, Gateway to 21st Century Communications Village. VTC 1999-Fall. IEEE VTS 50th Vehicular Technology Conference (Cat. No.99CH36324), pp.2393-2397, 1999.
DOI : 10.1109/VETECF.1999.797367

G. Lovnes, J. J. Reis, and R. H. Roekken, Channel sounding measurements at 59 GHz in City Streets The Hague, The Netherlands, IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp.496-500, 1994.

D. M. Matic, H. Harada, and E. R. Prasad, Indoor and outdoor frequency measurements for MM-waves in the range of 60 GHz, VTC '98. 48th IEEE Vehicular Technology Conference. Pathway to Global Wireless Revolution (Cat. No.98CH36151), pp.567-571, 1998.
DOI : 10.1109/VETEC.1998.686638

A. M. Hammoudeh, M. G. Sanchez, and E. E. Grindrod, Experimental analysis of propagation at 62 GHz in suburban mobile radio microcells, IEEE Transactions on Vehicular Technology, vol.48, issue.2, pp.576-588, 1999.
DOI : 10.1109/25.752583

T. Ihara, T. Manabe, M. Fujita, T. Matsui, and Y. Sugimoto, Research activities on millimeter-wave indoor wireless communication systems at CRL, Proceedings of ICUPC '95, 4th IEEE International Conference on Universal Personal Communications, pp.197-200, 1995.
DOI : 10.1109/ICUPC.1995.496887

T. Manabe, K. Taira, K. Sato, T. Ihara, Y. Kasashima et al., Multipath measurement at 60 GHz for indoor wireless communication systems, Proceedings of IEEE Vehicular Technology Conference (VTC), pp.905-909, 1994.
DOI : 10.1109/VETEC.1994.345222

T. Manabe, K. Sato, H. Masuzawa, K. Taira, T. Ihara et al., Polarization dependence of multipath propagation and high-speed transmission characteristics of indoor millimeter-wave channel at 60 GHz, IEEE Transactions on Vehicular Technology, vol.44, issue.2, pp.268-274, 1995.
DOI : 10.1109/25.385918

T. Manabe, T. Ihara, A. Kato, K. Sato, and E. H. Saito, Wideband millimeter wave channel sounder and indoor propagation experiment at 60 GHz, International Symposium on Antennas and Propagation, pp.201-204, 1996.

A. Kato, T. Manabe, Y. Miura, K. Sato, and E. T. Ihara, Measurements of millimeter wave indoor propagation and high-speed digital transmission characteristics at 60 GHz, Proceedings of 8th International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC '97, pp.149-154, 1997.
DOI : 10.1109/PIMRC.1997.624381

K. Sato, H. Kozima, H. Masuzawa, T. Manabe, T. Ihara et al., Measurements of reflection characteristics and refractive indices of interior construction materials in millimeter-wave bands, 1995 IEEE 45th Vehicular Technology Conference. Countdown to the Wireless Twenty-First Century, pp.449-453, 1995.
DOI : 10.1109/VETEC.1995.504907

T. Manabe, Y. Miura, and E. T. Ihara, Effects of antenna directivity and polarization on indoor multipath propagation characteristics at 60 GHz, IEEE Journal on Selected Areas in Communications, vol.14, issue.3, pp.441-447, 1996.
DOI : 10.1109/49.490229

Y. Takimoto and A. Inoue, <title>Minimum delay-spread millimeter wave indoor local area network (LAN) system</title>, Millimeter and Submillimeter Waves, pp.278-281, 1994.
DOI : 10.1117/12.183002

Y. Takimoto, Y. Yatsuka, A. Inoue, T. Yokoyama, T. Aoyagi et al., 60 GHz short range transceivers and applications for minimum delay spread LAN, 1996 IEEE MTT-S International Microwave Symposium Digest, pp.509-512, 1996.
DOI : 10.1109/MWSYM.1996.510984

Y. Takimoto, Development of 60 GHz minimum delay spread indoor local area network, Annals of Telecommunications, vol.52, pp.112-122, 1997.

T. Ihara, T. Manabe, K. Iigusa, T. Kijima, Y. Murakami et al., Switched four-sector beam antenna for indoor wireless LAN systems in the 60 GHz band, 1997 Topical Symposium on Millimeter Waves. Proceedings (Cat. No.97TH8274), pp.115-118, 1997.
DOI : 10.1109/TSMW.1997.702485

Y. Miura, A. Kato, T. Manabe, and E. T. Ihara, Experimental results on 100 Mbits/s digital transmission over a millimeter-wave indoor wireless channel at 60 GHz, International Symposium on Antennas and Propagation, pp.181-184, 1996.

G. Wu, Y. Hase, M. Inoue-]-g, Y. Wu, K. Hase et al., An ATM-based Indoor Millimeter-Wave Wireless LAN for Multimedia Transmissions A wireless ATM oriented MAC protocol for high-speed wireless LAN, IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp.1740-1751, 1997.

M. Inoue, G. Wu, Y. Hase, A. Sugitani, E. Kawakami et al., An IP- Over-Ethernet-Based Ultrahigh-Speed Wireless LAN Prototype Operating in the 60 GHz Band, IEICE Transactions on Communications, pp.1720-1729, 2000.

G. Wu, M. Inoue, H. Murakami, and Y. Hase, 156 Mbps Ultrahigh-Speed Wireless LAN Prototype in the 38 GHz Band, IEEE Global Telecommunications Conference, vol.6, pp.3573-3578, 2001.

M. Projet, Mobile Broadband System, RACE European programme

S. Projet, System for Advanced Mobile Broadband Applications, ACTS European programme

M. Dinis, V. Lagarto, M. Prögler, and E. J. Zubrzycki, SAMBA : a step to bring MBS to the people, ACTS Mobile Communications Summit, 1997.

S. Collonge, Étude de la propagation des ondes électromagnétiques à 60 GHz à l'intérieur des bâtiments, Mémoire de DEA, Institut National des Sciences Appliquées de Rennes (INSA), 21 juin, 2000.

H. Xu, V. Kukshya, and T. S. Rappaport, Spatial and temporal characteristics of 60-GHz indoor channels, IEEE Journal on Selected Areas in Communications, vol.20, issue.3, pp.620-630, 2002.
DOI : 10.1109/49.995521

S. Guérin, C. Pradal, E. P. Khalfa, and E. Cost, Indoor Propagation narrow band and wide band measurements around 60 GHz using a network analyser, 1995.

J. Park, Y. Kim, Y. Hur, K. Lim, and K. Kim, Analysis of 60 GHz band indoor wireless channels with channel configurations, IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp.617-620, 1998.

P. Nobles and F. Halsall, Indoor propagation at 17 GHz and 60 GHz -Measurements and modeling, IEE National Conference on Antennas and Propagation, pp.93-96, 1999.

P. F. Smulders and A. G. Wagemans, Wideband indoor radio propagation measurements at 58 GHz, Electronics Letters, vol.28, issue.13, pp.1270-1272, 1992.
DOI : 10.1049/el:19920804

J. Purwaha, A. Mank, D. M. Matic, K. Witrisal, and E. R. Prasad, Wide-Band Channel Measurements at 60 GHz in Indoor Environments, IEEE Benelux Symposium on Vehicular Technology and Communications, 1998.

L. Clavier, M. Rachdi, M. Fryziel, Y. Delignon, V. Le-thuc et al., Wide band 60 GHz indoor channel: characterization and statistical modeling, IEEE 54th Vehicular Technology Conference. VTC Fall 2001. Proceedings (Cat. No.01CH37211), 2001.
DOI : 10.1109/VTC.2001.957114

URL : https://hal.archives-ouvertes.fr/hal-00152028

J. P. Kermoal and A. M. Hammoudeh, Measurements of correlation degree using frequency diversity at 62.4 GHz in indoor environment for mobile radio communication systems Journées d'études de la propagation électromagnétique du décamétrique à l'angström, pp.194-199, 1997.

H. Radi, M. Fiacco, M. A. Parks, and S. R. Saunders, Simultaneous indoor propagation measurements at 17 and 60 GHz for wireless local area networks, VTC '98. 48th IEEE Vehicular Technology Conference. Pathway to Global Wireless Revolution (Cat. No.98CH36151), pp.510-514, 1998.
DOI : 10.1109/VETEC.1998.686626

A. M. Hammoudeh and G. Allen, Millimetric wavelengths radiowave propagation for line-of-sight indoor microcellular mobile communications, IEEE Transactions on Vehicular Technology, vol.44, issue.3, pp.449-460, 1995.
DOI : 10.1109/25.406611

M. Bensebti, J. P. Mcgeehan, and M. A. Beach, Indoor multipath radio propagation measurements and characteristics at 60 GHz, European Microwave Conference, Japan, pp.1217-1222, 1991.

L. Talbi and G. Y. Delisle, Experimental characterization of EHF multipath indoor radio channels, IEEE Journal on Selected Areas in Communications, vol.14, issue.3, pp.431-440, 1996.
DOI : 10.1109/49.490228

N. Moraitis and P. Constantinou, Propagation Modeling at 60 GHz for Indoor Wireless LAN Applications, 2002.

M. R. Williamson, G. E. Athanasiadou, and A. R. Nix, Investigating the effects of antenna directivity on wireless indoor communication at 60 GHz, IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp.635-639, 1997.

D. Dardari, L. Minelli, V. Tralli, and E. O. Andrisano, Wideband indoor, communication channels at 60 GHz, Proceedings of PIMRC '96, 7th International Symposium on Personal, Indoor, and Mobile Communications, pp.791-794, 1996.
DOI : 10.1109/PIMRC.1996.568389

A. M. Hammoudeh, N. Lappas, M. G. Sanchez, A. G. Siamarou, and E. E. Grindrod, Millimeterwave channel measurements at 62.4 GHz with space diversity for indoor mobile radio picocells, Millennium Conference on Antennas and Propagation, 2000.

V. Degli-esposti, G. Falciasecca, M. Frullone, G. Riva, and G. E. Corazza, Performance evaluation of space and frequency diversity for 60 GHz wireless LANs using a ray model, 1997 IEEE 47th Vehicular Technology Conference. Technology in Motion, pp.984-988, 1997.
DOI : 10.1109/VETEC.1997.600477

S. Guérin, Indoor wideband and narrowband propagation measurements around 60.5 GHz in an empty and furnished room, Proceedings of Vehicular Technology Conference, VTC, pp.160-164, 1996.
DOI : 10.1109/VETEC.1996.503428

S. Guérin, C. Pradal, E. P. Khalfa, and E. Cost, Propagation measurements and simulations using ray launching program at 60.5 GHz, 1995.

R. Davies, M. Bensebti, M. A. Beach, and J. P. Mcgeehan, Wireless propagation measurements in indoor multipath environments at 1.7 GHz and 60 GHz for small cell systems, [1991 Proceedings] 41st IEEE Vehicular Technology Conference, pp.589-593, 1991.
DOI : 10.1109/VETEC.1991.140560

A. G. Siamarou and M. O. , Coherence Bandwidth Characterisation at mm-waves, 2002.

H. Droste, G. Kadel, and E. Cost, Indoor measurements using a network analyzer in combination with a precision positioning system at 17 GHz and 60 GHz, 1995.

C. Loyer, N. Haese, O. Lafond, P. Lefèvre, G. Lewandowski et al., Indoor Propagation Channel Considerations in 60 GHz High Data Rate Communications, European Microwave Week, 2000.

A. M. Hammoudeh, J. P. Kermoal, and M. G. Sanchez, Coherence bandwidth measurements in an indoor microcell at 62.4 GHz, Electronics Letters, vol.34, issue.5, pp.429-431, 1998.
DOI : 10.1049/el:19980318

A. Kato, K. Sato, T. Manabe, and E. T. Ihara, Measurement of bi-static scattering characteristics of human body at 60 GHz, IEEE AP-S International Symposium and URSI Radio Science Meeting, pp.290-293, 1996.

L. Talbi, Spatial and Temporal Variations of the Indoor Wireless EHF Channel, Wireless Personal Communications, vol.23, issue.1, pp.161-170, 2002.
DOI : 10.1023/A:1020961625979

P. Marinier, G. Y. Delisle, and C. L. Despins, Temporal variations of the indoor wireless millimeter-wave channel, IEEE Transactions on Antennas and Propagation, vol.46, issue.6, pp.928-934, 1998.
DOI : 10.1109/8.686782

S. Obayashi and J. Zander, A body-shadowing model for indoor radio communication environments, IEEE Transactions on Antennas and Propagation, vol.46, issue.6, pp.920-927, 1998.
DOI : 10.1109/8.686781

K. Sato and T. Manabe, Estimation of propagation-path visibility for indoor wireless LAN systems under shadowing condition by human bodies, VTC '98. 48th IEEE Vehicular Technology Conference. Pathway to Global Wireless Revolution (Cat. No.98CH36151), pp.2109-2113, 1998.
DOI : 10.1109/VETEC.1998.686130

M. Flament and M. Unbehaum, Impact of shadowing fading in a mm-wave band wireless network, International Symposium on Wireless Personal Multimedia Communications (WPMC), 2000.

K. Sato, H. Masuzawa, T. Manabe, and E. T. Ihara, Measurements of shadowing due to human body at 60 GHz, Instr. Electron. Inform., Commun. Eng. Spring Conference, p.15, 1994.

P. A. Bello, Characterization of Randomly Time-Variant Linear Channels, IEEE Transactions on Communications, vol.11, issue.4, pp.360-393, 1963.
DOI : 10.1109/TCOM.1963.1088793

T. S. Rappaport, Wireless Communications : Principles and Practice, 1996.

L. Boithias, Radio wave propagation, 1987.

M. Schwartz, Principles of Electrodynamics, American Journal of Physics, vol.41, issue.7, 1972.
DOI : 10.1119/1.1987433

G. D. Durgin, Theory of Stochastic Local Area Channel Modeling for Wireless Communications, Thèse de doctorat, 2000.

D. J. Greenwood and L. Hanzo, Characterization of mobile radio channels, 1992.

P. Guguen, Techniques multi-antennes émission-réception -Applications aux réseaux domestiques sans fil, Thèse de doctorat, 2003.

.. Aperçu-des-campagnes-de-mesures, 45 4.3.1 Campagne de mesures n o 1 : laboratoire (statique) 45 4.3.2 Campagne de mesures n o 2 : centre de loisirs éducatifs, p.46

.. Configurations-de-mesure, 55 4.6.1 Campagne de mesures n o 1, p.58

H. Hashemi, The indoor radio propagation channel, Proceedings of the IEEE, vol.81, issue.7, pp.943-967, 1993.
DOI : 10.1109/5.231342

D. Parsons, Propagation over irregular terrain" in The Mobile Radio Propagation Channel, p.39, 1992.

T. S. Rappaport, Mobile Radio Propagation : Large-Scale Path Loss, Wireless Communications : Principles and Practice, p.91, 1996.

S. Collonge, Caractérisation du canal de propagation radio à 60 GHz en environnement de type laboratoire, 2001.

S. Collonge, Caractérisation du canal de propagation radio à 60 GHz en environnement de type résidentiel, 2002.

S. Collonge, G. Zaharia, and G. Zein, Wideband and Dynamic Characterization of the 60 GHz Indoor Radio Propagation -Future Home WLAN Architectures, Annals of Telecommunications, vol.58, pp.417-447, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00521959

S. Collonge, G. Zaharia, and G. Zein, Influence of the Furniture on 60 GHz Radio Propagation in a residential environment, Microwave and Optical Technology Letters, pp.230-233, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00917609

S. Ammoun, Caractérisation de la propagation des ondes électromagnétiques en environnement résidentiel à 60 GHz, 2002.

S. Collonge, G. Zaharia, and G. Zein, Influence of the Human Activity on Wideband Characteristics of the 60 GHz Indoor Radio Channel, IEEE Transactions on Wireless Communications, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00515704

D. C. Cox, Delay Doppler characteristics of multipath propagation at 910 MHz in a suburban mobile radio environment, IEEE Transactions on Antennas and Propagation, vol.20, issue.5, pp.625-635, 1972.
DOI : 10.1109/TAP.1972.1140277

S. Guillouard, G. Zein, and E. J. Citerne, High Time Domain Resolution Indoor Channel Sounder for the 60 GHz Band, 28th European Microwave Conference, 1998, pp.341-344, 1998.
DOI : 10.1109/EUMA.1998.338175

S. Guillouard, Conception et réalisation d'un sondeur de canal très large bande à 60 GHz -Mesures de propagation à l'intérieur des bâtiments, Thèse de doctorat, 1999.

C. E. Cabado, Printed antennas for 60 GHz channel sounder, ETSET de Vigo (Espagne), juil, 1999.

H. Xu, V. Kukshya, and T. S. Rappaport, Spatial and temporal characteristics of 60-GHz indoor channels, IEEE Journal on Selected Areas in Communications, vol.20, issue.3, pp.620-630, 2002.
DOI : 10.1109/49.995521

H. Droste, G. Kadel, and E. Cost, Indoor measurements using a network analyzer in combination with a precision positioning system at 17 GHz and 60 GHz, 1995.

M. R. Spiegel and L. J. Stephens, Analyses des séries chronologiques", Statistiques. McGraw- Hill, sect, pp.434-469, 2000.

A. Urie, Errors in estimating local average power of multipath signals, Electronics Letters, vol.27, issue.4, pp.315-317, 1991.
DOI : 10.1049/el:19910199

R. A. Valenzuela, O. Landron, and D. L. Jacobs, Estimating local mean signal strength of indoor multipath propagation, IEEE Transactions on Vehicular Technology, vol.46, issue.1, pp.203-212, 1997.
DOI : 10.1109/25.554753

V. Guillet, Narrowband and wideband characteristics of 60 GHz radio propagation in residential environment, Electronics Letters, vol.37, issue.21, pp.1310-1311, 2001.
DOI : 10.1049/el:20010888

V. H. Allen, L. E. Taylor, L. W. Barclay, B. Honary, and M. J. Lazarus, Practical propagation measurements for indoor LAN's operating at 60 GHz, IEEE Global Communications Conference, pp.898-903, 1998.

K. Sato, H. Kozima, H. Masuzawa, T. Manabe, T. Ihara et al., Measurements of reflection characteristics and refractive indices of interior construction materials in millimeter-wave bands, 1995 IEEE 45th Vehicular Technology Conference. Countdown to the Wireless Twenty-First Century, pp.449-453, 1995.
DOI : 10.1109/VETEC.1995.504907

L. M. Correia and P. O. Frances, Estimation of materials characteristics from power measurements at 60 GHz The Hague, The Netherlands, IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp.510-513, 1994.

Y. Lostanlen, Y. Corre, Y. Louët, Y. L. Helloco, S. Collonge et al., Modélisation de la propagation indoor en milieu résidentiel à 60 GHz, Journées d'Études de la Propagation dans l'Atmosphère du Décamétrique à l'Angström, p.12, 2002.

Y. Lostanlen, Y. Corre, Y. Louët, Y. L. Helloco, and S. Collonge, Comparison of measurements and simulations in indoor environments for wireless local networks at 60 GHz, Vehicular Technology Conference. IEEE 55th Vehicular Technology Conference. VTC Spring 2002 (Cat. No.02CH37367)
DOI : 10.1109/VTC.2002.1002734

URL : https://hal.archives-ouvertes.fr/hal-00936800

S. Guérin, Indoor wideband and narrowband propagation measurements around 60.5 GHz in an empty and furnished room, Proceedings of Vehicular Technology Conference, VTC, pp.160-164, 1996.
DOI : 10.1109/VETEC.1996.503428

A. Kato, K. Sato, T. Manabe, and E. T. Ihara, Measurement of bi-static scattering characteristics of human body at 60 GHz, IEEE AP-S International Symposium and URSI Radio Science Meeting, pp.290-293, 1996.

K. Sato, H. Masuzawa, T. Manabe, and E. T. Ihara, Measurements of shadowing due to human body at 60 GHz, Instr. Electron. Inform., Commun. Eng. Spring Conference, p.15, 1994.

S. Obayashi and J. Zander, A body-shadowing model for indoor radio communication environments, IEEE Transactions on Antennas and Propagation, vol.46, issue.6, pp.920-927, 1998.
DOI : 10.1109/8.686781

K. Sato and T. Manabe, Estimation of propagation-path visibility for indoor wireless LAN systems under shadowing condition by human bodies, VTC '98. 48th IEEE Vehicular Technology Conference. Pathway to Global Wireless Revolution (Cat. No.98CH36151), pp.2109-2113, 1998.
DOI : 10.1109/VETEC.1998.686130

M. Flament and M. Unbehaum, Impact of shadowing fading in a mm-wave band wireless network, International Symposium on Wireless Personal Multimedia Communications (WPMC), 2000.

P. Marinier, G. Y. Delisle, and C. L. Despins, Influence of human motion on indoor wireless millimeter-wave channel characteristics, 1997 IEEE 47th Vehicular Technology Conference. Technology in Motion, pp.979-983, 1997.
DOI : 10.1109/VETEC.1997.600476

P. Marinier, G. Y. Delisle, and C. L. Despins, Temporal variations of the indoor wireless millimeter-wave channel, IEEE Transactions on Antennas and Propagation, vol.46, issue.6, pp.928-934, 1998.
DOI : 10.1109/8.686782

L. Talbi, Spatial and Temporal Variations of the Indoor Wireless EHF Channel, Wireless Personal Communications, vol.23, issue.1, pp.161-170, 2002.
DOI : 10.1023/A:1020961625979

N. Naz and D. D. Falconer, Temporal Variations Characterization for Fixed Wireless at 29.5GHz, IEEE Vehicular Technology Conference (VTC), p.15, 2000.
DOI : 10.1109/vetecs.2000.851658

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.23.1027

T. S. Rappaport, Mobile Radio Propagation : Small-Scale Fading and Multipath" in Wireless Communications : Principles and Practice, p.185, 1996.

R. J. Bultitude, R. F. Hahn, and R. J. Davies, Propagation considerations for the design of an indoor broad-band communications system at EHF, IEEE Transactions on Vehicular Technology, vol.47, issue.1
DOI : 10.1109/25.661050

J. Guillet, Les modèles spatio-temporels des canaux de propagation radio-mobiles, 2001.

H. Hashemi, D. Tholl, and E. G. Morrison, Statistical modeling of the indoor radio propagation channel. (Part I), IEEE Vehicular Technology Conference (VTC), vol.1, pp.338-342, 1992.

H. Hashemi, D. Lee, and E. D. Ehman, Statistical modeling of the indoor radio propagation channel. (Part II), IEEE Vehicular Technology Conference (VTC), vol.1, pp.839-843, 1992.

H. Hashemi, Impulse response modeling of indoor radio propagation channels, IEEE Journal on Selected Areas in Communications, vol.11, issue.7, pp.967-978, 1993.
DOI : 10.1109/49.233210

H. Hashemi and D. Tholl, Statistical modeling and simulation of the RMS delay spread of indoor radio propagation channels, IEEE Transactions on Vehicular Technology, vol.43, issue.1, pp.110-120, 1994.
DOI : 10.1109/25.282271

H. Hashemi, M. Mcguire, T. Vlasschaert, and E. D. Tholl, Measurements and modeling of temporal variations of the indoor radio propagation channel, IEEE Transactions on Vehicular Technology, vol.43, issue.3, pp.733-737, 1994.
DOI : 10.1109/25.312774

T. Wada, M. Maeda, M. Okada, K. Tsukamoto, and E. S. Komaki, Theoretical analysis of propagation and network characteristics in millimeter waves inter-vehicle communication system, IEEE GLOBECOM 1998 (Cat. NO. 98CH36250), pp.910-915, 1998.
DOI : 10.1109/GLOCOM.1998.776863

S. Horikoshi, M. Fuji, M. Itami, and E. K. Itoh, A study on multipath propagation modeling in millimeter wave IVC, The 5th International Symposium on Wireless Personal Multimedia Communications, pp.286-290, 2002.
DOI : 10.1109/WPMC.2002.1088178

P. F. Driessen, Development of a propagation model in the 20-60 GHz band for wireless indoor communications, [1991] IEEE Pacific Rim Conference on Communications, Computers and Signal Processing Conference Proceedings, pp.59-62, 1991.
DOI : 10.1109/PACRIM.1991.160681

J. Hübner, S. Zeisberg, K. Koora, J. Borowski, and E. A. Finger, Simple channel model for 60 GHz indoor wireless LAN design based on complex wideband measurements, 1997 IEEE 47th Vehicular Technology Conference. Technology in Motion, pp.1004-1008, 1997.
DOI : 10.1109/VETEC.1997.600481

Y. Delignon, L. Clavier, V. Le-thuc, C. Garnier, and E. M. Rachdi, Compound statistical model for 60 GHz channel, IEEE 54th Vehicular Technology Conference. VTC Fall 2001. Proceedings (Cat. No.01CH37211), 2001.
DOI : 10.1109/VTC.2001.956506

URL : https://hal.archives-ouvertes.fr/hal-00152036

A. A. Saleh and R. A. Valenzuela, A Statistical Model for Indoor Multipath Propagation, IEEE Journal on Selected Areas in Communications, vol.5, issue.2, pp.128-137, 1987.
DOI : 10.1109/JSAC.1987.1146527

N. Moraitis and P. Constantinou, Indoor channel modeling at 60 GHz for wireless LAN applications, The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, pp.1203-1207, 2002.
DOI : 10.1109/PIMRC.2002.1045219

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.3556

M. R. Williamson, G. E. Athanasiadou, and A. R. Nix, Investigating the effects of antenna directivity on wireless indoor communication at 60 GHz, IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp.635-639, 1997.

V. Degli-esposti, G. Falciasecca, M. Frullone, G. Riva, and G. E. Corazza, Performance evaluation of space and frequency diversity for 60 GHz wireless LANs using a ray model, 1997 IEEE 47th Vehicular Technology Conference. Technology in Motion, pp.984-988, 1997.
DOI : 10.1109/VETEC.1997.600477

Y. Lostanlen, Y. Corre, Y. Louët, Y. L. Helloco, and S. Collonge, Comparison of measurements and simulations in indoor environments for wireless, El Zein IEEE Vehicular Technology Conference, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00936800

S. Obayashi and J. Zander, A body-shadowing model for indoor radio communication environments, IEEE Transactions on Antennas and Propagation, vol.46, issue.6, pp.920-927, 1998.
DOI : 10.1109/8.686781

M. Flament and M. Unbehaum, Impact of shadowing fading in a mm-wave band wireless network, International Symposium on Wireless Personal Multimedia Communications (WPMC), 2000.

Q. H. Spencer, B. D. Jeffs, M. A. Jensen, and A. L. Swindlehusrt, Modeling the statistical time and angle of arrival characteristics of an indoor multipath channel, IEEE Journal on Selected Areas in Communications, vol.18, issue.3, pp.347-360, 2000.
DOI : 10.1109/49.840194

Q. H. Spencer, Modeling the statistical time and angle of arrival characteristics of an indoor multipath channel, Thèse de doctorat, p.22, 1996.
DOI : 10.1109/49.840194

T. Zwick, C. Fischer, D. Didascalou, and E. W. Wiesbeck, A stochastic spatial channel model based on wave-propagation modeling, IEEE Journal on Selected Areas in Communications, vol.18, issue.1, pp.6-15, 2000.
DOI : 10.1109/49.821698

G. Saporta, Méthodes de classification, Probabilités, analyse des données et statistiques . Éditions Technip, pp.241-260, 1990.

G. Saporta, Les tests statistiques, Probabilité, analyse de données et statistique. Éditions Technip, sect. 15, pp.317-358, 1990.

«. Étant-fixé, ¬ sera déterminé comme résultat d'un calcul (ceci n'est possible que si l'on connaît les lois de probabilité sous À ½ )

½. ¬-est-la-probabilité-d-'opter-pour-À-½-en-ayant-raison, ½ ¬ s'appelle « puissance du test ». « étant fixé, il importe de choisir une variable de décision : variable qui doit apporter le maximum d'informations sur le problème posé et dont la loi sera différente selon que À ¼ ou À ½ est vraie (sinon elle ne servirait à rien), Il faut que sa loi soit entièrement connue au moins si À ¼ est vraie

£. Soit, fonction de répartition empirique d'un échantillon de Ò valeurs, il s'agit donc de tester : À ¼ £ Ò ´Üµ µ

S. L. Ainsi, on fixe «, risque de première espèce, la région critique du test est telle que

. Si, Ò est inférieure alors le test est validé (c'est-à-dire que l'on retient l'hypothèse À ¼ )

. Si-le-test-est-validé, il est possible de définir un indice de qualité du résultat, en calculant la probabilité Ô définie ainsi

. Par, est-à-dire, À ¼ retenue, donc que la statistique Ò n'est pas dans la région critique) et que Ô vaut 0.8, cela signifie que l'on aurait pu faire le même test avec le même résultat (décider À ¼ ) avec « ¼ , c'est-à-dire en étant extrêmement strict sur la condition d

Ô. Nous-utilisons-la-valeur and . Pour-comparer-le, résultat de deux tests dont À ¼ est différent, effectués à partir du même échantillon, et quand À ¼ est validée dans les deux cas. L'hypothèse donnant la plus grande valeur de Ô est retenue comme étant la « meilleure » des deux. La valeur Ô n'est utilisée qu'en termes relatifs, jamais en termes absolus

S. Collonge, G. Zaharia, and G. Zein, Influence of the Human Activity on Wideband Characteristics of the 60 GHz Indoor Radio Channel, Liste des publications Revues internationales à comité de lecture, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00515704

S. Collonge, G. Zaharia, and G. Zein, Influence of the Furniture on 60 GHz Radio Propagation in a residential environment, Microwave and Optical Technology Letters, pp.230-233, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00917609

S. Collonge, G. Zaharia, and G. Zein, Wideband and Dynamic Characterization of the 60 GHz Indoor Radio Propagation -Future Home WLAN Architectures, Annals of Telecommunications, vol.58, pp.417-447, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00521959

C. S. Collonge, G. Zaharia, and G. Zein, Influence of the human activity on the propagation characteristics of 60 GHz indoor channels, The 57th IEEE Semiannual Vehicular Technology Conference, 2003. VTC 2003-Spring., 2003.
DOI : 10.1109/VETECS.2003.1207541

URL : https://hal.archives-ouvertes.fr/hal-00875590

S. Collonge, G. Zaharia, and G. Zein, Experimental investigation of the spatial and temporal characteristics of the 60 GHz radio propagation within residential environments, International Symposium on Signals, Circuits and Systems (SCS'03), pp.417-420, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00875578

S. Collonge, G. Zaharia, and G. Zein, Influence of the furniture on 60 GHz radio propagation in a residential environment, International Symposium on Signals, Circuits and Systems (SCS'03), pp.413-416, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00917609

Y. Lostanlen, Y. Corre, Y. Louët, Y. L. Helloco, S. Collonge et al., Comparison of measurements and simulations in indoor environments for wireless local networks at 60 GHz, Vehicular Technology Conference. IEEE 55th Vehicular Technology Conference. VTC Spring 2002 (Cat. No.02CH37367), 2002.
DOI : 10.1109/VTC.2002.1002734

URL : https://hal.archives-ouvertes.fr/hal-00936800

S. Collonge, El Zein, ´´Caractérisation´´Caractérisation de la propagation des ondes électromagnétiques à 60 GHz en environnement résidentiel µ µ, 4 Journée d'études de la propagation électromagnétique dans l'atmosphère du décamétrique à l'angström, 2002.

S. Collonge and G. Zaharia, El Zein, ´ ´ Activité humaine et matériaux de construction : deux aspects critiques de la propagation à 60 GHz à l'intérieur des bâtiments µ µ, Journées Nationales des Micro-Ondes (JNM'2003), 2003.

Y. Lostanlen, Y. Corre, Y. Louet, Y. L. Helloco, and S. Collonge, El Zein, ´ ´ Modélisation de la Propagation Indoor en Milieu Domestique à 60 GHz µ µ, 4 Journée d'études de la propagation électromagnétique dans l'atmosphère du décamétrique à l'angström, 2002.

S. Collonge, G. Zaharia, and G. , El Zein, « Proposition d'architectures pour les futurs réseaux locaux sans fil à 60 GHz basée sur l'étude de la propagation radioélectrique, Colloque Les Nouvelles Technologies dans la Cité, p.11, 2003.

C. Thématiques, Journée du CCT : Simulation et Modélisation du Segment HF des Systèmes de Télécommunication, Sous l'égide du CLUB CCT et du CNES, Rapports techniques : S. Collonge, ´´Caractérisation´´Caractérisation du canal de propagation radio à 60 GHz en environnement de type laboratoire µµ, 2001.

S. Collonge, ´´Caractérisation´´Caractérisation du canal de propagation radio à 60 GHz en environnement de type résidentiel µµ, Rapport COMMINDOR, vol.49, 2002.

.. De-mesure, 49 4.3 Configurations de mesure de la campagne n o 1, Caractéristiques des antennes utilisées pour les campagnes . 56 4.4 Configurations de mesure des campagnes n o 2, 3, et 4 : positions TX . . . . . . . 57 4.5 Configurations de mesure de la campagne n o 5 . . . . . . . . . . . . . . . . . . . 60

. Paramètres-de-la-loi-lognormale-«-par-morceaux........, modélisant la distribution de ××Ö pour un seuil de détection de 10 dB (position TX 1), p.134

«. Paramètres-de-la-loi-lognormale and . Morceaux, modélisant la distribution de ××Ö pour un seuil de détection de 10 dB (positions TX 2 et TX 3, p.135

L. Paramètres-de, lognormale générales pour chaque position TX pour la modélisation de ××Ö , en fonction de l'activité humaine, p.136

. Paramètres-de-la-loi-lognormale-«-par-morceaux........., modélisant la distribution de Á ××Ö pour un seuil de détection de 10 dB (position TX 1), p.137

«. Paramètres-de-la-loi-lognormale and . Morceaux, modélisant la distribution de Á ××Ö pour un seuil de détection de 10 dB (positions TX 2 et TX 3, p.138

L. Paramètres-de, normale modélisant la distribution de ××Ö pour un seuil de détection de 10 dB et pour l'activité humaine globale, p.140

L. Couverture-angulaire-en-situation, Comparaison Patch/Cornet (Maison meublée , TX 1, RX 2, polarisation verticale), p.74

N. Couverture-angulaire-en-situation, Comparaison Patch/Cornet (Maison, TX 1, RX 4, polarisation verticale), p.77

È. Ö. Comparaison-de-la-puissance-reçue, V. , and L. , entre les configurations meublée et vide (RX 1, cornet, polarisation, p.90

. Comparaison-du-nombre-de-trajets, V. Øö´«µøö´«µ, and L. , entre les configurations meublée et vide (RX 1, cornet, polarisation, p.92

.. Au-plafond, Limitation du problème d'obstruction par l'utilisation d'un réseau centralisé avec une station de base, p.161