S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, issue.6348, pp.56-58, 1991.
DOI : 10.1038/354056a0

T. W. Ebbessen and P. M. Ajayan, Large-scale synthesis of carbon nanotubes, Nature, vol.358, issue.6383, pp.220-222, 1992.
DOI : 10.1038/358220a0

H. W. Kroto, J. R. Heath, S. C. O-'brien, R. F. Curl, and R. E. Smalley, C60: Buckminsterfullerene, Nature, vol.196, issue.6042, pp.162-163, 1985.
DOI : 10.1038/318162a0

X. Zhao, Y. Liu, S. Inoue, T. Suzuki, R. O. Jones et al., in Diameter, Physical Review Letters, vol.92, issue.12, pp.125502-125503, 2004.
DOI : 10.1103/PhysRevLett.92.125502

M. M. Treacy, T. W. Ebbesen, and J. M. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature, vol.381, issue.6584, pp.678-680, 1996.
DOI : 10.1038/381678a0

. Ph and . Collins, Les nanotubes en électronique, Pour la science, vol.280, pp.68-76, 2001.

R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Electronic structure of chiral graphene tubules, Applied Physics Letters, vol.60, issue.18, pp.2204-2206, 1992.
DOI : 10.1063/1.107080

J. W. Mintmire, B. I. Dunlap, and C. T. White, Are fullerene tubules metallic?, Physical Review Letters, vol.68, issue.5, pp.631-634, 1992.
DOI : 10.1103/PhysRevLett.68.631

N. Hamada, S. Sawada, and A. Oshiyama, New one-dimensional conductors: Graphitic microtubules, Physical Review Letters, vol.68, issue.10, pp.1579-1582, 1992.
DOI : 10.1103/PhysRevLett.68.1579

J. Hone, A. Zettl, and M. Whitney, Thermal conductivity of single-walled carbon nanotubes, Synthetic Metals, vol.103, issue.1-3, pp.2498-2499, 1999.
DOI : 10.1016/S0379-6779(98)01070-4

S. Berber, Y. Kwon, and D. Tománek, Unusually High Thermal Conductivity of Carbon Nanotubes, Physical Review Letters, vol.84, issue.20, pp.4613-4616, 2000.
DOI : 10.1103/PhysRevLett.84.4613

P. Kim, L. Shi, A. Majumdar, and P. L. Mceuen, Thermal Transport Measurements of Individual Multiwalled Nanotubes, Physical Review Letters, vol.87, issue.21, pp.215502-215503, 2001.
DOI : 10.1103/PhysRevLett.87.215502

P. Kim, L. Shi, A. Majumdar, and P. L. Mceuen, Mesoscopic thermal transport and energy dissipation in carbon nanotubes, Physica B: Condensed Matter, vol.323, issue.1-4, pp.67-70, 2002.
DOI : 10.1016/S0921-4526(02)00969-9

A. Y. Kasumov, R. Deblock, M. Kociak, B. Reulet, H. Bouchiat et al., Supercurrents Through Single-Walled Carbon Nanotubes, Science, vol.284, issue.5419, pp.1508-1511, 1999.
DOI : 10.1126/science.284.5419.1508

C. Zhou, J. Kong, E. Yenilmez, and H. Dai, Modulated Chemical Doping of Individual Carbon Nanotubes, Science, vol.290, issue.5496, pp.1552-1555, 2000.
DOI : 10.1126/science.290.5496.1552

P. M. Ajayan and O. Zhou, Applications of Carbon Nanotubes. in « Carbon nanotubes, Synthesis, Structure, Properties and Applications, Topics in Appl. Phys, p.80, 2001.

B. I. Yakobson and R. E. Smalley, Des matériaux pour le troisième millénaire, La Recherche, vol.307, pp.50-56, 1998.

E. T. Thostenson, Z. Ren, and T. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review, Composites Science and Technology, vol.61, issue.13, pp.1899-1912, 2001.
DOI : 10.1016/S0266-3538(01)00094-X

R. H. Baughman, A. A. Zakhidov, and W. A. De-heer, Carbon Nanotubes--the Route Toward Applications, Science, vol.297, issue.5582, pp.787-792, 2002.
DOI : 10.1126/science.1060928

L. Chico, V. H. Crespi, L. X. Benedict, S. G. Louie, and M. L. Cohen, Pure Carbon Nanoscale Devices: Nanotube Heterojunctions, Pure carbon Nanoscale Devices : Nanotube Heterojunctions, pp.971-974, 1996.
DOI : 10.1103/PhysRevLett.76.971

S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley et al., Individual single-wall carbon nanotubes as quantum wires, Nature, vol.386, issue.6624, p.474, 1997.
DOI : 10.1038/386474a0

URL : http://repository.tudelft.nl/islandora/object/uuid%3A4e58e2bc-5f69-4dbe-9942-aabcc9eaad35/datastream/OBJ/view

S. J. Tans, A. R. Verschueren, and C. Dekker, Room-temperature transistor based on a single carbon nanotube, Nature, vol.393, pp.49-52, 1998.

R. Martel, T. Schmidt, H. R. Shea, T. Hertel, . Ph et al., Single- and multi-wall carbon nanotube field-effect transistors, Applied Physics Letters, vol.73, issue.17, pp.2447-2449, 1998.
DOI : 10.1063/1.122477

URL : http://infoscience.epfl.ch/record/144112

Z. Yao, H. W. Ch, L. Postma, C. Balents, and . Dekker, Carbon nanotube intramolecular junctions, Nature, vol.402, pp.273-276, 1999.

Y. Kwon, D. Tománek, and S. Iijima, ???Bucky Shuttle??? Memory Device: Synthetic Approach and Molecular Dynamics Simulations, Physical Review Letters, vol.82, issue.7, pp.1470-1473, 1999.
DOI : 10.1103/PhysRevLett.82.1470

T. Ruekes, K. Kim, E. Joselevitch, G. Y. Tseng, C. Cheung et al., Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing, Science, vol.289, issue.5476, pp.94-97, 2000.
DOI : 10.1126/science.289.5476.94

A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, Logic Circuits with Carbon Nanotube Transistors, Science, vol.294, issue.5545, pp.1317-1320, 2001.
DOI : 10.1126/science.1065824

H. W. Ch, T. Postma, Z. Teepen, M. Yao, C. Grifoni et al., Carbon Nanotube Single-Electron Transistors at Room Temperature, Science, vol.293, pp.76-79, 2001.

W. A. De-heer, W. Bacsa, A. Châtelain, T. Gerfin, R. Humphrey-baker et al., Aligned Carbon Nanotube Films: Production and Optical and Electronic Properties, Science, vol.268, issue.5212, pp.845-847, 1995.
DOI : 10.1126/science.268.5212.845

W. A. De-heer, A. Châtelain, and D. Ugarte, A Carbon Nanotube Field-Emission Electron Source, Science, vol.270, issue.5239, pp.1179-1180, 1995.
DOI : 10.1126/science.270.5239.1179

J. Bonard, H. Kind, T. Stöckli, and L. Nilsson, Field emission from carbon nanotubes: the first five years, Solid-State Electronics, vol.45, issue.6, pp.893-914, 2001.
DOI : 10.1016/S0038-1101(00)00213-6

L. A. Chernozatonskii, Y. V. Gulyaev, Z. Y. Kosakovskaya, N. I. Sinitsyn, G. V. Torgashov et al., Electron field emission from nanofilament carbon films, Chemical Physics Letters, vol.233, issue.1-2, pp.63-68, 1995.
DOI : 10.1016/0009-2614(94)01418-U

H. Wang, A. A. Setlur, J. M. Lauerhaas, J. W. Dai, E. W. Seelig et al., A nanotube-based field-emission flat panel display, Applied Physics Letters, vol.72, issue.22, pp.2912-2913, 1998.
DOI : 10.1063/1.121493

W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. Jin et al., Fully sealed, high-brightness carbon-nanotube field-emission display, Applied Physics Letters, vol.75, issue.20, pp.3129-3131, 1999.
DOI : 10.1063/1.125253

Y. Saito, K. Hamaguchi, R. Mizushima, S. Uemura, T. Nagasako et al., Field emission from carbon nanotubes and its application to cathode ray tube lighting elements, Applied Surface Science, vol.146, issue.1-4, pp.305-311, 1999.
DOI : 10.1016/S0169-4332(99)00059-8

J. Bonard, T. Stöckli, O. Noury, and A. Châtelain, Field emission from cylindrical carbon nanotube cathodes: Possibilities for luminescent tubes, Applied Physics Letters, vol.78, issue.18, pp.2775-2777, 2001.
DOI : 10.1063/1.1367903

Y. Saito and S. Uemura, Field emission from carbon nanotubes and its application to electron sources, Carbon, vol.38, issue.2, pp.169-182, 2000.
DOI : 10.1016/S0008-6223(99)00139-6

H. Murakami, M. Harikawa, C. Tanaka, and H. Yamakawa, Field emission from well-aligned, patterned, carbon nanotube emitters, Applied Physics Letters, vol.76, issue.13, pp.1776-1778, 2000.
DOI : 10.1063/1.126164

R. Rosen, W. Simendinge, C. Debbault, H. Shimoda, L. Fleming et al., Application of carbon nanotubes as electrodes in gas discharge tubes, Applied Physics Letters, vol.76, issue.13, pp.1668-1670, 2000.
DOI : 10.1063/1.126130

M. L. Yu, N. D. Lang, B. W. Hussey, T. H. Chang, and W. A. Mackie, New Evidence for Localized Electronic States on Atomically Sharp Field Emitters, Physical Review Letters, vol.77, issue.8, pp.1636-1639, 1996.
DOI : 10.1103/PhysRevLett.77.1636

T. Matsumoto and H. Mimura, Point x-ray source using graphite nanofibers and its application to x-ray radiography, Applied Physics Letters, vol.82, issue.10, pp.1637-1639, 2003.
DOI : 10.1063/1.1558969

A. Haga, S. Senda, Y. Sakai, Y. Mizuta, S. Kita et al., A miniature x-ray tube, Applied Physics Letters, vol.84, issue.12, pp.2208-2210, 2004.
DOI : 10.1063/1.1689757

Y. De-jonge, K. Lamy, . Schoots, . Th, and . Oosterkamp, High brightness electron beam from a multi-walled carbon nanotube, Nature, vol.266, issue.95, pp.393-395, 2002.
DOI : 10.1016/0304-3991(89)90278-7

K. Lau and D. Hui, Effectiveness of using carbon nanotubes as nano-reinforcements for advanced composite structures, Carbon, vol.40, issue.9, pp.1605-1606, 2002.
DOI : 10.1016/S0008-6223(02)00157-4

J. Kong, N. R. Franklin, and C. W. Zhou, Nanotube Molecular Wires as Chemical Sensors, Science, vol.287, issue.5453, pp.622-625, 2000.
DOI : 10.1126/science.287.5453.622

P. G. Collins, K. Bradley, M. Ishigami, and A. , Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes, Science, vol.287, issue.5459, pp.1801-1804, 2000.
DOI : 10.1126/science.287.5459.1801

M. Bienfait, B. Asmussen, M. Johnson, and P. Zeppenfeld, Methane mobility in carbon nanotubes, Surface Science, vol.460, issue.1-3, pp.243-248, 2000.
DOI : 10.1016/S0039-6028(00)00563-X

K. G. Ong and C. A. Grimes, A Carbon Nanotube-based Sensor for CO2 Monitoring, Sensors, vol.1, issue.6, pp.193-205, 2001.
DOI : 10.3390/s10600193

J. Fraysse, A. I. Minett, O. Jaschinski, G. S. Duesberg, and S. Roth, Carbon nanotubes acting like actuators, Carbon, vol.40, issue.10, pp.1735-1739, 2002.
DOI : 10.1016/S0008-6223(02)00041-6

S. Akita, Y. Nakayama, S. Mizooka, Y. Takano, T. Okawa et al., Nanotweezers consisting of carbon nanotubes operating in an atomic force microscope, Applied Physics Letters, vol.79, issue.11, pp.1691-1693, 2001.
DOI : 10.1063/1.1403275

A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune et al., Storage of hydrogen in single-walled carbon nanotubes, Nature, vol.386, issue.6623, pp.377-379, 1997.
DOI : 10.1038/386377a0

C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng et al., Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature, Science, vol.286, issue.5442, pp.1127-1129, 1999.
DOI : 10.1126/science.286.5442.1127

E. Frackowiak and F. Béguin, Electrochemical storage of energy in carbon nanotubes and nanostructured carbons, Carbon, vol.40, issue.10, pp.1775-1787, 2002.
DOI : 10.1016/S0008-6223(02)00045-3

P. M. Ajayan, O. Stephan, . Ph, C. Redlich, and . Colliex, Carbon nanotubes as removable templates for metal oxyde nanocomposites and nanostructures, Nature, vol.375, pp.135-138, 1995.

S. Curran, P. M. Ajayan, W. Blau, D. L. Carroll, J. Coleman et al., A Composite from Poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and Carbon Nanotubes: A Novel Material for Molecular Optoelectronics, Advanced Materials, vol.10, issue.14, pp.1091-1093, 1998.
DOI : 10.1002/(SICI)1521-4095(199810)10:14<1091::AID-ADMA1091>3.0.CO;2-L

J. Kim, M. Kim, H. Kim, J. Joo, and J. Choi, Electrical and optical studies of organic light emitting devices using SWCNTs-polymer nanocomposites, Optical Materials, vol.21, issue.1-3, pp.147-151, 2003.
DOI : 10.1016/S0925-3467(02)00127-1

N. Izard, Système à base de nanotubes pour la limitation optique. thèse, Groupe de Dynamique des Phases condensées, 2004.

L. Vivien, P. Lançon, D. Riehl, F. Hache, and E. Anglaret, Carbon nanotubes for optical limiting, Carbon, vol.40, issue.10, pp.1789-1797, 2002.
DOI : 10.1016/S0008-6223(02)00046-5

URL : https://hal.archives-ouvertes.fr/hal-00845087

K. C. Chin, ;. I. Gohel-;-h, . Elim-;-w, . L. Ji-;-g, . Y. Chong-;-k et al., Optical limiting properties of amorphous SixNy and SiC coated carbon nanotubes, Chemical Physics Letters, vol.383, issue.1-2, pp.72-75, 2004.
DOI : 10.1016/j.cplett.2003.11.007

S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, and C. M. Lieber, Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology, Nature, vol.394, issue.6688, pp.52-57, 1998.

D. Ugarte, A. Châtelain, and W. A. De-heer, Nanocapillarity and Chemistry in Carbon Nanotubes, Science, vol.274, issue.5294, pp.1897-1899, 1996.
DOI : 10.1126/science.274.5294.1897

J. Cumings and A. , Low-Friction Nanoscale Linear Bearing Realized from Multiwall Carbon Nanotubes, Science, vol.289, issue.5479, pp.602-604, 2000.
DOI : 10.1126/science.289.5479.602

S. Iijima, C. Brabec, A. Maiti, and J. Bernholc, Structural flexibility of carbon nanotubes, The Journal of Chemical Physics, vol.104, issue.5, pp.2089-2092, 1996.
DOI : 10.1063/1.470966

T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi et al., Electrical conductivity of individual carbon nanotubes, Nature, vol.382, issue.6586, pp.54-56, 1996.
DOI : 10.1038/382054a0

J. Hu, M. Ouyang, P. Yang, and C. M. Lieber, Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires, Nature, vol.399, pp.48-51, 1999.

Z. Yao, C. Zhu, M. Cheng, and J. Liu, Mechanical properties of carbon nanotube by molecular dynamics simulation, Computational Materials Science, vol.22, issue.3-4, pp.180-184, 2001.
DOI : 10.1016/S0927-0256(01)00187-2

M. Hirscher, M. Becher, M. Haluska, F. Von-zeppelin, X. Chen et al., Are carbon nanostructures an efficient hydrogen storage medium, J. Alloys and Compounds, pp.356-357, 2003.

S. Muramatsu and H. Yorikawa, Electronic properties of semiconducting graphitic microtubules, Phys. Rev. B, vol.52, issue.16, pp.12203-12206, 1994.

L. X. Benedict, S. G. Louie, and M. L. Cohen, Static polarizabilities of single-wall carbon nanotubes, Physical Review B, vol.52, issue.11, pp.8541-8549, 1995.
DOI : 10.1103/PhysRevB.52.8541

E. N. Zhidkin, . A. Vl, E. A. Margulis, and . Gaiduc, Electric-field-induced optical second harmonic generation and nonlinear optical rectification in semiconducting carbon nanotube, Opt. Commun, vol.183, pp.317-326, 2000.

S. Chopra, K. Mcguire, N. Gothard, and A. M. Rao, Selective gas detection using a carbon nanotube sensor, Applied Physics Letters, vol.83, issue.11, pp.2280-2282, 2003.
DOI : 10.1063/1.1610251

S. Chopra, A. Pham, J. Gaillard, A. Parker, and A. M. Rao, Carbon-nanotube-based resonant-circuit sensor for ammonia, Applied Physics Letters, vol.80, issue.24, pp.4632-4634, 2002.
DOI : 10.1063/1.1486481

A. Ballard, J. Louderback, and K. Bonin, Absolute measurement of the optical polarizability of C60, The Journal of Chemical Physics, vol.113, issue.14, pp.5732-5735, 2000.
DOI : 10.1063/1.1290472

I. Compagnon, R. Antoine, M. Broyer, . Ph, J. Dugourd et al., molecules, Physical Review A, vol.64, issue.2, pp.25201-25202, 2001.
DOI : 10.1103/PhysRevA.64.025201

URL : https://hal.archives-ouvertes.fr/hal-00152771

F. Torrens, Molecular polarizability of ScN, CN and endohedral ScN @CM clusters, Microelectron. Eng, pp.51-52, 2000.

H. Kataura, Y. Endo, Y. Achiba, K. Kikuchi, T. Hanyu et al., Dielectric constants of C60 and C70 thin films, Journal of Physics and Chemistry of Solids, vol.58, issue.11, pp.1913-1917, 1997.
DOI : 10.1016/S0022-3697(97)00080-2

P. C. Eklund, A. M. Rao, Y. Wang, P. Zhou, K. Wang et al., Optical properties of C60- and C70-based solid films, Thin Solid Films, vol.257, issue.2, pp.211-232, 1995.
DOI : 10.1016/0040-6090(94)05706-0

S. Ren, Y. Wang, A. M. Rao, M. S. Meier, J. P. Selegue et al., films, Applied Physics Letters, vol.61, issue.2, pp.124-126, 1992.
DOI : 10.1063/1.108248

URL : https://hal.archives-ouvertes.fr/jpa-00251392

M. R. Pederson and A. A. Quong, Polarizabilities, charge states, and vibrational modes of isolated fullerene molecules, Physical Review B, vol.46, issue.20, pp.13584-13591, 1992.
DOI : 10.1103/PhysRevB.46.13584

J. P. Read, Classical electrostatic theory and the molecular anisotropy of C70, Journal of the Chemical Society, Faraday Transactions, vol.92, issue.17, pp.3009-3014, 1996.
DOI : 10.1039/ft9969203009

L. Jensen, Optical response properties of large molecules modelled by an interaction model, 2000.

L. Jensen, P. Åstrand, A. Osted, J. Kongsted, and K. V. Mikkelsen, Polarizability of molecular clusters as calculated by a dipole interaction model, The Journal of Chemical Physics, vol.116, issue.10, p.4001, 2002.
DOI : 10.1063/1.1433747

L. Jensen, O. H. Schmidt, K. V. Mikkelsen, and P. Åstrand, Static and Frequency-Dependent Polarizability Tensors for Carbon Nanotubes, The Journal of Physical Chemistry B, vol.104, issue.45, pp.10462-10466, 2000.
DOI : 10.1021/jp994073k

E. Joselevich and C. M. Lieber, Vectorial Growth of Metallic and Semiconducting Single-Wall Carbon Nanotubes, Nano Letters, vol.2, issue.10, pp.1137-1141, 2002.
DOI : 10.1021/nl025642u

O. N. Srivastava and A. K. Srivastava, Curious aligned growth of carbon nanotubes under applied electric field, Carbon, vol.39, issue.2, pp.201-206, 2001.
DOI : 10.1016/S0008-6223(00)00105-6

P. Senet, L. Henrard, . Ph, A. A. Lambin, and . Lucas, A one parameter model of the UV spectra of carbon., Progress in fullerene research, International Winterschool on electronic properties of novel materials, World Scientific, 1994.

P. A. Gravil, . Ph, G. Lambin, L. Gensterblum, P. Henrard et al., Polarization of C60 by the surface electric field of GeS(001), Surface Science, vol.329, issue.3, pp.199-205, 1995.
DOI : 10.1016/0039-6028(95)00248-0

M. Devel, . Ch, and . Girard, Computation of electrostatic fields in low-symmetry systems: Application to STM configurations, Physical Review B, vol.53, issue.19, pp.13159-13168, 1996.
DOI : 10.1103/PhysRevB.53.13159

J. Applequist, J. R. Carl, and K. Fung, Atom dipole interaction model for molecular polarizability. Application to polyatomic molecules and determination of atom polarizabilities, Journal of the American Chemical Society, vol.94, issue.9, pp.2952-2960, 1972.
DOI : 10.1021/ja00764a010

L. Jensen, P. Åstrand, K. O. Sylvester-hvid, and K. V. Mikkelsen, Frequency-Dependent Molecular Polarizability Calculated within an Interaction Model, The Journal of Physical Chemistry A, vol.104, issue.7, pp.1563-1569, 2000.
DOI : 10.1021/jp993077m

F. Torrens, Effect of type, size and deformation on the polarizability of carbon nanotubes from atomic increments, Nanotechnology, vol.15, issue.4, pp.259-264, 2004.
DOI : 10.1088/0957-4484/15/4/027

B. W. Ninham and J. Mahanty, Dispersion forces, 1976.
URL : https://hal.archives-ouvertes.fr/hal-00164742

B. T. Thole, Molecular polarizabilities calculated with a modified dipole interaction, Chemical Physics, vol.59, issue.3, pp.341-350, 1981.
DOI : 10.1016/0301-0104(81)85176-2

L. D. Landau, E. M. Lifshitz, and L. P. Pitaesvkii, Electrodynamics of continuous media, 1981.

R. Antoine, . Ph, D. Dugourd, E. Rayane, M. Benichou et al., Direct measurement of the electric polarizability of isolated C60 molecules, The Journal of Chemical Physics, vol.110, issue.19, pp.9771-9772, 1999.
DOI : 10.1063/1.478944

K. Karapetian and K. D. Jordan, Properties of Water Clusters on a Graphite Sheet " in "Water in Confined Environments, pp.139-150, 2003.

J. C. Phillips, Covalent bonding in crystals, molecules and polymers, 1969.

E. Sohmen, J. Fink, and W. Krätschmer, Electron energy-loss spectroscopy studies on C60 and C70 fullerite, Zeitschrift f???r Physik B Condensed Matter, vol.8, issue.1, pp.87-92, 1992.
DOI : 10.1007/BF01323552

K. Bonin and V. Kresin, Electric-dipole polarizabilities of atoms, molecules and clusters, World Scientific, 1997.
DOI : 10.1142/2962

A. F. Hebard, R. C. Haddon, R. M. Fleming, and A. R. Kortan, Deposition and characterization of fullerene films, Applied Physics Letters, vol.59, issue.17, pp.2109-2111, 1991.
DOI : 10.1063/1.106095

D. J. Wales and J. P. Doye, The structure of (C60)N clusters, Chem. Phys. Lett, vol.262, pp.167-174, 1996.

J. B. Barrio, N. P. Tretiakov, and V. I. Zubov, Calculation of thermodynamic properties for the high-temperature phase of C70 fullerene, Physics Letters A, vol.234, issue.1, pp.69-74, 1997.
DOI : 10.1016/S0375-9601(97)00462-3

W. Sekkal, H. Aourag, and M. Certier, Molecular Dynamics simulations of uniaxial and hydrostatic compression of C70 in the disordered phase, Computational Materials Science, vol.9, issue.3-4, pp.295-302, 1998.
DOI : 10.1016/S0927-0256(97)00151-1

T. J. Dennis, K. Prassides, E. Roduner, L. Cristofolini, and R. Derenzi, Rotational dynamics of solid fullerene C70 monitored by positive muon spin labels, The Journal of Physical Chemistry, vol.97, issue.33, pp.13159-13168, 1996.
DOI : 10.1021/j100135a002

A. R. Mcghie, J. E. Fischer, P. A. Heiney, P. W. Stephens, R. L. Cappelletti et al., : Supercooling, metastable phases, and impurity effect, Phase transitions in solid C70: Supercooling, metastable phases, and impurity effect, pp.12614-12618, 1994.
DOI : 10.1103/PhysRevB.49.12614

C. Rey, J. Garcia-rodeja, L. J. Gallego, and J. A. Alonso, molecules supported on a graphite substrate, Physical Review B, vol.55, issue.11, pp.7190-7197, 1997.
DOI : 10.1103/PhysRevB.55.7190

P. Norman, Y. Luo, D. Jonsson, and H. A. Agren, calculations of the polarizability and the hyperpolarizability of C60, The Journal of Chemical Physics, vol.106, issue.21, pp.8788-8791, 1997.
DOI : 10.1063/1.473961

. Ph, A. A. Lambin, J. Lucas, and . Vigneron, Polarization waves and van der Waals cohesion of C60 fullrite, Phys. Rev. B, vol.46, pp.1794-1803, 1992.

M. Bianchetti, P. F. Buonsante, F. Ginelli, H. E. Roman, R. A. Broglia et al., Ab-initio study of the electromagnetic response and polarizability properties of carbon chains, Physics Reports, vol.357, issue.6, pp.459-513, 2002.
DOI : 10.1016/S0370-1573(01)00059-X

Y. Luo, H. Ågren, H. Koch, P. Jörgensen, and T. Helgaker, Random-phase calculations of frequency-dependent polarizabilities and hyperpolarizabilities of long polyene chains, Physical Review B, vol.51, issue.21, pp.14949-14957, 1995.
DOI : 10.1103/PhysRevB.51.14949

K. D. Bonin and V. V. Kresin, Electric-dipole polarizabilitities of atoms, molecules and clusters, Ed. World Scientific, 1997.

Y. Zhang, A. Chang, J. Cao, Q. Wang, W. Kim et al., Electric-field-directed growth of aligned single-walled carbon nanotubes, Applied Physics Letters, vol.79, issue.19, pp.79-3155, 2001.
DOI : 10.1063/1.1415412

G. Y. Guo and K. C. Chu, Static polarizability of carbon nanotubes: ab initio independent-particle calculations, Computational Materials Science, vol.30, issue.3-4, pp.269-273, 2004.
DOI : 10.1016/j.commatsci.2004.02.021

Y. Saito, T. Yoshikawa, S. Bandow, M. Tomita, and T. Hayashi, Interlayer spacings in carbon nanotubes, Physical Review B, vol.48, issue.3, pp.1907-1910, 1993.
DOI : 10.1103/PhysRevB.48.1907

A. Ural, Y. Li, and H. Dai, Electric-field-aligned growth of single-walled carbon nanotubes on surfaces, Applied Physics Letters, vol.81, issue.18, pp.3464-3466, 2002.
DOI : 10.1063/1.1518773

E. W. Wong, P. E. Sheehan, and C. M. Lieber, Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes, Science, vol.277, issue.5334, pp.1971-1975, 1997.
DOI : 10.1126/science.277.5334.1971

A. Krishnan, E. Dujardin, T. W. Ebbessen, P. N. Yianilos, and M. M. Treacy, Young???s modulus of single-walled nanotubes, Physical Review B, vol.58, issue.20, pp.14013-14019, 1998.
DOI : 10.1103/PhysRevB.58.14013

O. K. Varghese, P. D. Kichambare, D. Gong, K. G. Ong, E. C. Dickey et al., Gas sensing characteristics of multi-wall carbon nanotubes, Sensors and Actuators B: Chemical, vol.81, issue.1, pp.32-41, 2001.
DOI : 10.1016/S0925-4005(01)00923-6

I. Armentano, J. M. Kenny, L. Lozzi, S. Santucci, C. Cantalini et al., Carbon nanotubes as new materials for gas sensing applications, Journal of the European Ceramic Society, vol.24, pp.1405-1408, 2004.

M. D. Halls and H. B. Schlegel, 2 Reaction, The Journal of Physical Chemistry B, vol.106, issue.8, 1921.
DOI : 10.1021/jp0137165

A. D. Modestov, J. Gun, and O. Lev, Graphite photoelectrochemistry study of glassy carbon, carbon-fiber and carbon-black electrodes in aqueous electrolytes by photocurrent response, Surface Science, vol.417, issue.2-3, pp.311-322, 1998.
DOI : 10.1016/S0039-6028(98)00681-5

S. Ergun and J. T. Mccartney, Gmelins hanbuch der anorganischen chemie, achte vollig neu bearbeitete auflage, kohlenstoff; teil b-liefcrung 2, das element: graphit, systemnummer 14, Verlag chemie, p.698, 1968.

P. Bernier and S. Lefrant, Le carbone dans tous ses états, p.364

R. Langlet, M. Arab, F. Picaud, M. Devel, and C. Girardet, Influence of molecular adsorption on the dielectric properties of a single wall nanotube: A model sensor, The Journal of Chemical Physics, vol.121, issue.19, pp.9655-9665, 2004.
DOI : 10.1063/1.1808120

M. Arab, F. Picaud, M. Devel, C. Ramseyer, and C. Girardet, Molecular selectivity due to adsorption properties in nanotubes, Physical Review B, vol.69, issue.16, pp.165401-165402, 2004.
DOI : 10.1103/PhysRevB.69.165401

D. Bethune, Carbon and metals: a path to single-wall carbon nanotubes, Physica B: Condensed Matter, vol.323, issue.1-4, pp.90-96, 2002.
DOI : 10.1016/S0921-4526(02)00990-0

H. Koizumi, M. Larson, F. Muntean, and P. B. Armentrout, Sequential bond energies of Ag+(H2O)n and Ag+(dimethyl ether)n, n = 1???4, determined by threshold collision-induced dissociation, International Journal of Mass Spectrometry, vol.228, issue.2-3, pp.221-235, 2003.
DOI : 10.1016/S1387-3806(03)00211-2

B. F. Minaev, Ab initio Study of the Ground and Excited States of Oxygen Dimer, Zh. Fiz. Khim, vol.68, p.1432, 1994.

O. Christiansen, J. Gauss, and J. F. Stanton, The effect of triple excitations in coupled cluster calculations of frequency-dependent polarizabilities, Chemical Physics Letters, vol.292, issue.4-6, pp.437-446, 1998.
DOI : 10.1016/S0009-2614(98)00701-5

]. A. Hu, D. M. York, and T. K. Woo, Time-dependent density functional theory calculations of molecular static and dynamic polarizabilities, cauchy coefficients and their anisotropies with atomic numerical basis functions, Journal of Molecular Structure: THEOCHEM, vol.591, issue.1-3, pp.255-266, 2002.
DOI : 10.1016/S0166-1280(02)00246-4

R. Liyanage, M. L. Styles, R. A. O-'hair, and P. B. Armentrout, Sequential bond energies of Pt+(NH3)x (x=1???4) determined by collision-induced dissociation and theory, International Journal of Mass Spectrometry, vol.227, issue.1, pp.47-62, 2003.
DOI : 10.1016/S1387-3806(03)00050-2

P. E. Maslen, R. Parson, J. Faeder, and N. Delaney, Modeling structure and dynamics of solvated molecular ions: Photodissociation and recombination in I -(CO2)N, Chem. Phys, vol.239, pp.525-547, 1998.

P. Senet, L. Henrard, . Ph, A. A. Lambin, and . Lucas, A one parameter model of the UV spectra of carbon. Progress in fullerene research, International Winterschool on electronic properties of novel materials, World Scientific, 1994.

Y. Li, S. V. Rotkin, and U. Ravaioli, Electronic Response and Bandstructure Modulation of Carbon Nanotubes in a Transverse Electrical Field, Nano Letters, vol.3, issue.2, pp.183-187, 2003.
DOI : 10.1021/nl0259030

D. A. Bruggeman, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen, Ann. Phys. (Leipzig), vol.24, pp.636-679, 1935.
DOI : 10.1002/andp.19374210205

J. C. Garnett, Colours in Metal Glasses and in Metallic Films, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.203, issue.359-371, p.385, 1904.
DOI : 10.1098/rsta.1904.0024

M. Grujicic, G. Gao, and W. N. Roy, A computational analysis of the carbon-nanotube-based resonant-circuit sensors, Applied Surface Science, vol.229, issue.1-4, pp.316-323, 2004.
DOI : 10.1016/j.apsusc.2004.02.017

N. Chakrapani, Y. M. Zhang, S. K. Nayak, J. A. Moore, D. L. Carroll et al., Chemisorption of Acetone on Carbon Nanotubes, The Journal of Physical Chemistry B, vol.107, issue.35, pp.9308-9311, 2003.
DOI : 10.1021/jp034970v

I. Langmuir, The constitution and fundamental properties of solids and liquids, Journal of the Franklin Institute, vol.183, issue.1, pp.2221-2295, 1916.
DOI : 10.1016/S0016-0032(17)90938-X

J. P. Lu, Elastic Properties of Carbon Nanotubes and Nanoropes, Physical Review Letters, vol.79, issue.7, pp.1297-1300, 1997.
DOI : 10.1103/PhysRevLett.79.1297

E. Hernández, C. Goze, P. Bernier, and A. Rubio, Composite Nanotubes, Physical Review Letters, vol.80, issue.20, pp.4502-4505, 1998.
DOI : 10.1103/PhysRevLett.80.4502

D. H. Robertson, D. W. Brenner, and J. W. Mintmire, Energetics of nanoscale graphitic tubules, Physical Review B, vol.45, issue.21, pp.12592-12595, 1992.
DOI : 10.1103/PhysRevB.45.12592

B. I. Yakobson, C. J. Brabec, and J. Bernholc, Nanomechanics of Carbon Tubes: Instabilities beyond Linear Response, Physical Review Letters, vol.76, issue.14, pp.2511-2514, 1996.
DOI : 10.1103/PhysRevLett.76.2511

C. F. Cornwell and L. T. Wille, Elastic properties of single-walled carbon nanotubes in compression, Solid State Communications, vol.101, issue.8, pp.555-558, 1997.
DOI : 10.1016/S0038-1098(96)00742-9

G. Gao, T. Çagin, and W. A. Goddard, Energetics, structure, thermodynamic and mechanical properties of nanotubes, Nanotech, vol.9, issue.3, pp.183-191, 1998.

V. N. Popov and V. E. Van-doren, Elastic properties of single-walled carbon nanotubes, Physical Review B, vol.61, issue.4, pp.3078-3084, 2000.
DOI : 10.1103/PhysRevB.61.3078

P. M. Ajayan and T. W. Ebbesen, Nanometre-size tubes of carbon, Reports on Progress in Physics, vol.60, issue.10, pp.1025-1062, 1997.
DOI : 10.1088/0034-4885/60/10/001

Z. L. Wang, P. Poncharal, and W. A. De-heer, Nanomesurements of individual carbon nanotubes by in situ TEM, Pure Appl. Chem, vol.72, issue.12, pp.209-219, 2000.

J. Salvetat, G. A. Briggs, J. Bonard, R. R. Bacsa, A. J. Kulik et al., Elastic and Shear Moduli of Single-Walled Carbon Nanotube Ropes, Physical Review Letters, vol.82, issue.5, pp.944-947, 1999.
DOI : 10.1103/PhysRevLett.82.944

Y. Guo and W. Guo, Mechanical and electrostatic properties of carbon nanotubes under tensile loading and electric field, Journal of Physics D: Applied Physics, vol.36, issue.7, pp.805-811, 2003.
DOI : 10.1088/0022-3727/36/7/306

Y. Wei, C. Xie, K. A. Dean, and B. F. , Stability of carbon nanotubes under electric field studied by scanning electron microscopy, Applied Physics Letters, vol.79, issue.27, pp.4527-4529, 2001.
DOI : 10.1063/1.1429300

A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim et al., Unraveling Nanotubes: Field Emission from an Atomic Wire, Science, vol.269, issue.5230, pp.1550-1553, 1995.
DOI : 10.1126/science.269.5230.1550

D. W. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Physical Review B, vol.42, issue.15, pp.9458-9471, 1990.
DOI : 10.1103/PhysRevB.42.9458

A. V. Petukhov and A. Fasolino, Reconstructions of Diamond (100) and (111) Surfaces: Accuracy of the Brenner Potential, physica status solidi (a), vol.61, issue.1, pp.109-114, 2000.
DOI : 10.1002/1521-396X(200009)181:1<109::AID-PSSA109>3.0.CO;2-W

A. V. Krasheninnikov, K. Nordlund, J. Keinonen, and F. Banhart, Ion-irradiation-induced welding of carbon nanotubes, Physical Review B, vol.66, issue.24, pp.245403-245404, 2002.
DOI : 10.1103/PhysRevB.66.245403

M. Huhtala, A. Kuronen, and K. Kaski, Computational studies of carbon nanotube structures, Computer Physics Communications, vol.147, issue.1-2, pp.91-96, 2002.
DOI : 10.1016/S0010-4655(02)00223-0

P. Reinbold, Propriétés élastiques des nanotubes. Mémoire de Licence -FUNDP Namur, pp.14-17, 1998.

J. Che, T. Ça?yn, and W. A. Goddard, Studies of fullerenes and carbon nanotubes by an extended bond order potential, Nanotechnology, vol.10, issue.3, pp.263-268, 1999.
DOI : 10.1088/0957-4484/10/3/307

M. J. Powell, An efficient method for finding the minimum of a function of several variables without calculating derivatives, The Computer Journal, vol.7, issue.2, pp.155-162, 1964.
DOI : 10.1093/comjnl/7.2.155

G. Zhou, W. Duan, and B. Gu, First-principles study on morphology and mechanical properties of single-walled carbon nanotube, Chemical Physics Letters, vol.333, issue.5, pp.344-349, 2001.
DOI : 10.1016/S0009-2614(00)01404-4

Z. Xin, Z. Jianjun, and O. , Strain energy and Young???s modulus of single-wall carbon nanotubes calculated from electronic energy-band theory, Physical Review B, vol.62, issue.20, pp.13692-13696, 2000.
DOI : 10.1103/PhysRevB.62.13692

A. Haar, Zur Theorie der orthogonalen Funktionensysteme, Mathematische Annalen, vol.6, issue.3, pp.331-371, 1910.
DOI : 10.1007/BF01456326

URL : https://hal.archives-ouvertes.fr/hal-01333722

D. Gabor, Theory of communication, Journal of the Institution of Electrical Engineers - Part I: General, vol.94, issue.73, pp.429-457, 1946.
DOI : 10.1049/ji-1.1947.0015

A. P. Calderón and A. Zygmund, Local properties of solutions of elliptic partial differential equations, Studia Math, vol.20, pp.171-227, 1961.
DOI : 10.1007/978-94-009-1045-4_17

P. J. Burt and E. H. Adelson, The Laplacian Pyramid as a Compact Image Code, IEEE Transactions on Communications, vol.31, issue.4, pp.532-540, 1983.
DOI : 10.1109/TCOM.1983.1095851

A. Grossmann and J. Morlet, Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape, SIAM Journal on Mathematical Analysis, vol.15, issue.4, pp.723-736, 1984.
DOI : 10.1137/0515056

A. Grossmann, J. Morlet, and T. Paul, Transforms associated to square integrable group representations. I. General results, Journal of Mathematical Physics, vol.26, issue.10, pp.2473-2479, 1985.
DOI : 10.1063/1.526761

Y. Meyer, Ondelettes et fonctions splines, 1986.

Y. Meyer, Principe d'incertitude, base hilbertiennes et algèbres d'opérateurs, Séminaire Bourbaki, vol.662, 1985.

S. Mallat, Multiresolution representation and wavelets, 1988.

S. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.11, issue.7, pp.674-693, 1989.
DOI : 10.1109/34.192463

S. Mallat, Multiresolution approximation and wavelets, Trans. Am. Math. Soc, vol.315, pp.69-88, 1989.

I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math, vol.41, pp.906-996, 1988.

I. Daubechies, Ten lectures on wavelets CBMS-NSF Regional Conf. Series in Appl, Math. Society for Industrial & Mathematics, vol.61, pp.0-89871, 1992.

A. Cohen, I. Daubechies, and J. C. Feauveau, Biorthogonal bases of compactly supported wavelets, Communications on Pure and Applied Mathematics, vol.10, issue.5, pp.485-560, 1992.
DOI : 10.1002/cpa.3160450502

A. Cohen, Ondelettes, analyses multirésolution et traitement numérique du signal, Thèse de Doctorat, 1992.

A. Cohen, I. Daubechies, and P. Vial, Wavelets on the Interval and Fast Wavelet Transforms, Applied and Computational Harmonic Analysis, vol.1, issue.1, pp.54-81, 1993.
DOI : 10.1006/acha.1993.1005

URL : https://hal.archives-ouvertes.fr/hal-01311753

A. Cohen, I. Daubechies, B. Jawerth, and P. Vial, Multiresolution analysis, wavelets and fast wavelet transformson a interval, CRAS Paris, A, vol.316, pp.417-421, 1993.

W. Sweldens, The Lifting Scheme: A Construction of Second Generation Wavelets, SIAM Journal on Mathematical Analysis, vol.29, issue.2, pp.511-546, 1998.
DOI : 10.1137/S0036141095289051

G. Beylkin, R. R. Coifman, and V. Rohklin, Fast wavelet transforms and numerical algorithms I, Comm. Pure and Appl. Math, vol.43, pp.141-183, 1991.
DOI : 10.1002/cpa.3160440202

Y. Yan and T. Sakurai, New Boundary Integral Equation Representation for Finite Energy Force-Free Magnetic Fields in Open Space above the Sun, Solar Physics, vol.195, pp.89-109, 2000.
DOI : 10.1007/978-94-010-0860-0_19

S. Goedecker and O. V. Ivanov, Frequency localization properties of the density matrix and its resulting hypersparsity in a wavelet representation, Physical Review B, vol.59, issue.11, pp.7270-7273, 1999.
DOI : 10.1103/PhysRevB.59.7270

S. Goedecker, Linear scaling electronic structure methods, Reviews of Modern Physics, vol.71, issue.4, pp.1085-1123, 1999.
DOI : 10.1103/RevModPhys.71.1085

E. Hernández and G. Weiss, A first course on wavelets, 1996.

T. A. Arias, Multiresolution analysis of electronic structure: semicardinal and wavelet bases, Reviews of Modern Physics, vol.71, issue.1, pp.267-310, 1999.
DOI : 10.1103/RevModPhys.71.267

S. Goedecker, Wavelets and their application ? for the solution of partial differential equations in physics, Presse Polytechnique et Universitaire Romande, 1998.

C. J. Tymczak and X. , Orthonormal Wavelet Bases for Quantum Molecular Dynamics, Physical Review Letters, vol.78, issue.19, pp.3654-3657, 1997.
DOI : 10.1103/PhysRevLett.78.3654

S. Goedecker, F. Lançon, and T. Deutsch, Linear scaling relaxation of the atomic positions in nanostructures, Physical Review B, vol.64, issue.16, p.161102, 2001.
DOI : 10.1103/PhysRevB.64.161102

L. Pastor, A. Rodrígez, J. M. Espadero, and L. Rincón, 3D wavelet-based multiresolution object representation, Pattern Recognition, vol.34, issue.12, pp.2497-2513, 2001.
DOI : 10.1016/S0031-3203(00)00170-9

P. Schröder and W. Sweldens, Spherical wavelets, Proceedings of the 22nd annual conference on Computer graphics and interactive techniques , SIGGRAPH '95, pp.161-172, 1995.
DOI : 10.1145/218380.218439