Charge injection and detection in semiconducting nanostructures studied by Atomic Force Microscopy
Electrostatic Force Microscopy in dry atmosphere

- Principles of charge injection and detection
- Minimum detectable force gradient in a Brownian motion
- Electrostatic tip-sample interaction: the plane-plane approximation
- Method of charge estimation
- Limits of this model: numerical evidence of a repulsive force

Non-linear dynamic force curves

- Coupling with the higher oscillating modes of the cantilever
- Analytical treatment of the cantilever motion
- Adding of the electrostatic interaction

Charging experiments on semiconducting nanostructures

- Charging the oxide layer
- Si nanocrystals embedded in SiO$_2$
- Si nanostructures made by e-beam lithography
What is Electrostatic Force Microscopy?

The idea: use the AFM probe to:

- Inject charges locally AND Detect charges

Conditions:
- the tip must be metal-coated: W₂C, PtIr
 - Radius of curvature of the tip: ~35 nm
- the system must be electrically connected
- the tip must not touch the surface after injection
 - oscillating mode
Charge injection with the tip

1. Application of a voltage (-12 to 12 V) for 1ms to 10s

2. Decrease of the amplitude setpoint to near 0: contact with the surface

3. AFM in dynamic oscillating mode

4. The setpoint is returned to its original value

5. Resumes scanning

> Permanent N$_2$ flux

EFM

- Injection and detection
- Min. force gradient
- Modelling
- Charge estimation
- Limits

Dynamic force curves

- Coupling to higher modes
- Analytical treatment
- Electrostatic interaction

Charging experiments

- SiO$_2$ layer
- Si-nanocrystals in SiO$_2$
- Lithography Si-nanostruc.
Detection of the injected charges

The double-pass method

1st pass: topography

1&2: Topography scan. Feedback on the amplitude of oscillation.

2nd pass: EFM signal

3: Raising of the AFM probe at a lift height z_0 of 30 to 100 nm. The feedback is cut off.

4&5: EFM scan: recording of the phase of oscillation. The tip is brought to potential V_{EFM}

The EFM signal is sensitive to electrostatic force gradients.
Injection and detection of charges

Example of charge injection on 7 nm of SiO$_2$ on Si

Topography

EFM signal

Conditions: -10V/ 10s

$V_{\text{EFM}} = +2 \text{ V}$

$V_{\text{EFM}} = -2 \text{ V}$

EFM can distinguish the sign of the deposited charges

BUT the tip-sample force is always attractive!

EFM signal $\propto - \text{(potential difference)}^2$
Mechanics of the cantilever

Single clamped beam

Euler-Bernouilly equation of movement:

\[
EI \frac{\partial^4 z(x,t)}{\partial x^4} + \rho A \frac{\partial^2 z(x,t)}{\partial t^2} = 0
\]

E : Young modulus
I : moment of inertia
\(\rho \) : density
A : section

Fundamental mode

- **EFM**
 - Injection and detection
 - Min. force gradient
 - Modelling
 - Charge estimation
 - Limits

- **Dynamic force curves**
 - Coupling to higher modes
 - Analytical treatment
 - + Electrostatic interaction

- **Charging experiments**
 - SiO\(_2\) layer
 - Si-nanocrystals in SiO\(_2\)
 - Lithography Si-nanostruc.
Detection of a force gradient

Point-mass model:

\[\ddot{z}(t) + 2\beta_0 \dot{z}(t) + \omega_0^2 z(t) = \frac{F_{\text{exc}}}{m} \cos(\omega t) + \frac{f(z_0 + z)}{m} \]

where:
- \(\omega_0 \): angular resonance frequency
- \(k \): spring constant of the cantilever
- \(m \): effective mass
- \(\beta_0 \): friction coefficient /m

- Static deflection
- Shift of the resonance frequency

Attractive force = phase lag

\[\Delta \omega = \omega_0 - \omega_1 \approx \omega_0 \left(\frac{1}{2k} \frac{\partial f}{\partial z}(z_0) \right) \]
Functioning point in amplitude feedback:

\[\frac{d^2 A}{d\omega^2} = 0 \quad \Rightarrow \quad \omega_{s\pm} = \omega_0 \left(1 \pm \frac{1}{\sqrt{8Q}} \right) \]

Q: quality factor of the oscillator = 100-300 \quad \omega_{s\pm} \approx \omega_0 !

\[\frac{dA}{d\omega}(\omega_{s\pm}) = \pm A_m \frac{4Q}{3\sqrt{3}\omega_0} \]

\(A_m \): maximum amplitude of oscillation

\[\Delta A = \frac{dA}{d\omega}(\omega_s) \cdot \Delta \omega = A_m \frac{2Q}{3\sqrt{3}k} \frac{\partial f}{\partial z}(z_0) \]
Minimum detectable force gradient in a brownian motion

Thermal noise = white-spectrum noise $\hat{R}(\omega)$

Langevin equation in Fourier space:

$$\left(-\omega^2 - i\beta_0 \omega + \omega_0^2\right)\hat{Z} = \frac{\hat{R}}{m}$$

The generalized susceptibility is defined as (Landau-Lifschitz):

$$\alpha(\omega) = \frac{\hat{Z}}{\hat{R}} = \alpha'(\omega) + i\alpha''(\omega)$$

The dissipation-fluctuation theorem provides:

Spectral density of the fluctuations:

$$\left\langle |\hat{Z}(\omega)|^2 \right\rangle = \frac{k_B T}{\pi \omega} \alpha''(\omega) = \frac{k_B T Q}{\pi k \omega_0} \cdot \frac{1}{Q^2 \left(1 - \frac{\omega^2}{\omega_0^2}\right)^2 + \frac{\omega^2}{\omega_0^2}}$$
Minimum detectable force gradient in a brownian motion

The standard deviation of movement N is:

\[N = \sqrt{4\pi B \langle \hat{Z}(\omega)^2 \rangle} \]

where B is the bandwidth of the system (in Hz)

Simplifications:

- Near the resonance
 \[N \approx \sqrt{\frac{4k_B T Q B}{k \omega_0}} \]
- Away from resonance
 \[N \approx \sqrt{\frac{4k_B T B}{k \omega_0 Q}} \]

The minimum detectable force gradient is given when:

amplitude variation = standard deviation of movement

\[\Delta A = N \]
Minimum detectable force gradient in a Brownian motion

One-dimensional, simple harmonic oscillator

Dissipation-fluctuation theorem:
Finite $Q^{-1} =$ dissipative system = source of noise

White spectral density of the noise force f:

$$S_f(\omega) = \frac{4k_B T \kappa}{Q \omega_0}$$

Units: N²/Hz

Standard deviation of the force:

$$N \propto \sqrt{BS_f(\omega)}$$

B = bandwidth of system

where:

$$N = \sqrt{\left\langle (k_{\text{eff}} z)^2 \right\rangle} \propto \left. \frac{\partial f}{\partial z} \right|_{\text{thermal}} \cdot A_m$$

$$\left. \frac{\partial f}{\partial z} \right|_{\text{thermal}} \propto \frac{1}{A_m} \sqrt{\frac{4k_B T \kappa B}{Q \omega_0}}$$
Minimum detectable force gradient in a Brownian motion

At the resonance:

$$ \frac{\partial f}{\partial z}_{\text{min}} = \frac{1}{A_m} \sqrt{\frac{27 k_B T k \omega}{\omega_0 Q}} $$

In our conditions:

- \(A_m = 10\text{-}20 \text{ nm} \)
- \(k_B T = 26 \text{ meV ambient temperature} \)
- \(Q = 100\text{-}300 \text{ ambient pressure} \)
- \(k = 0.1\text{-}1 \text{ N/m} \)
- \(\omega_0 = 20\text{-}100 \text{ kHz} \)
- \(B = 500 \text{ Hz} \)

Relation to min. detectable charge?

Plane-plane approximation
Modelling of the electrostatic tip-sample interaction

The electrostatic force is **capacitive**:

\[
f(z) = \frac{1}{2} \frac{\partial C}{\partial z}(z)V^2
\]

\[
\frac{\partial f}{\partial z}(z) = \frac{1}{2} \frac{\partial^2 C}{\partial z^2}(z)V^2
\]

Capacitance C, C”=??

Different capacitor geometries:

- Plane-plane
- Sphere-plane
- Cone-plane
- Truncated cone-plane
Modelling of the electrostatic tip-sample interaction

Plot of the 2nd derivative of capacitance vs. tip-sample distance

- Contribution of cantilever is negligible.
- Area of plane capacitor is adapted to fit $C''(z)$ of truncated cone-plane at a lift height of 100 nm.

The simplest geometry is chosen: plane-plane capacitor

$$C''(z) = 2\varepsilon_0\varepsilon_r \frac{A}{z^3}$$
Modelling of the electrostatic tip-sample interaction

The system is modelled as 2 plane capacitors in series

\[f'(z) = \frac{\varepsilon_0 A}{\left(z + \frac{d}{\varepsilon_{SiO2}} \right)^3} \left(V_{EFM} - \frac{qd}{\varepsilon_0 \varepsilon_{SiO2} A} \right)^2 \]
Minimum detectable charge at $V_{EFM} = 0$

$$q_{\text{min}} = \sqrt{f'_{\text{min}} \left(z + \frac{d}{\varepsilon_{SiO_2}} \right)^3 \varepsilon_0 \varepsilon_{SiO_2}^2 A}$$

q_{min} dependent on:
- z : lift height
- d : oxide thickness
- A : effective plane area

$f'_{\text{min}} = 3 \times 10^{-5} \text{ N.m}^{-1}$

$z = 100 \text{ nm}, A = 14700 \text{ nm}^2$ (disc of 140 nm in diameter)

<table>
<thead>
<tr>
<th>d (nm)</th>
<th>7</th>
<th>10</th>
<th>25</th>
<th>100</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_{min} (e-)</td>
<td>185</td>
<td>162</td>
<td>69</td>
<td>22</td>
<td>11</td>
</tr>
</tbody>
</table>

$z = 50 \text{ nm}, A = 6260 \text{ nm}^2$ (disc of 90 nm in diameter)

<table>
<thead>
<tr>
<th>d (nm)</th>
<th>7</th>
<th>10</th>
<th>25</th>
<th>100</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_{min} (e-)</td>
<td>54</td>
<td>39</td>
<td>18</td>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>
Method of charge estimation

Imaging and relating the recorded phase to a charge

We established:

\[\Delta \omega = \frac{\omega_0}{2k} \frac{\partial f}{\partial z}(z_0) \]

Moreover:

\[q = \sqrt{\delta \phi \cdot k(z + \cdots)} \]

Charging experiments on 7 nm SiO\(_2\) (injection time: 10 s)

Charging experiments (injection time: 10 s)
Method of charge estimation

Relate the minimum of EFM signal vs. voltage to a charge

Before and after injection, voltage V_{EFM} applied on tip is scanned

Minimum corresponds to $V_{EFM} = V_{surface}$

Conditions:
Injection -10V/10s
$d = 25$ nm
Lift height: 300 nm
$A = 13 \times 10^{-14} \text{ m}^2$
(disc 400 nm in diam.)

Here $q = 1500$ charges
Limits of the capacitor model

Capacitive force: always attractive

- Numerical evidence of a repulsive interaction (J.P. Julien, CNRS)

- Distribution of equivalent charge q on the tip in rings
- Trapped charge q_0 is modelled above the symmetry plane
- Charges are adjusted to have a constant potential on the tip’s surface
- Screening charges are taken into account

Domain of repulsive force!

16 electrons!
= barely measurable
Non-linear dynamic force curves

What is a force curve:

- Scanning is stopped
- Feedback on amplitude is cut off
- Cantilever is mechanically excited near resonance frequency
- Tip is approached then retracted from the surface (height ~ 200 nm)
- Amplitude and phase of oscillation are recorded

Coupling to higher oscillating modes of the cantilever

Is the movement of the cantilever still that of a harmonic oscillator?

NO! Strong excitation

YES! Normal excitation
Non-linear tip-sample interaction

Deformation of the resonance curve with increasing tip-sample interaction

Amplitude and phase of oscillation undergo hysteresis
Non-linear tip-sample interaction

Deformation of the resonance curve with increasing tip-surface interaction

Amplitude and phase of oscillation undergo hysteresis
Analytical treatment of the movement of cantilever

Non-perturbative treatment (J.P. Aimé, CPMOH Bordeaux)

- Interaction is van der Waals: \(\frac{HR}{d^2} \) (attractive force)
- Amplitude and distance are normalized to free amplitude at resonance: \(a = A/A_0 \), \(d = z/A_0 \)

\[d_{A\pm} = \sqrt{a^2 + \frac{k_{vdW}}{(u^2-1)^{\frac{1}{2}} \frac{1}{Q} \sqrt{a^2 - u^2}}}^{\frac{2}{3}} \]

- \(u = \frac{\omega}{\omega_0} \)
- \(k_{vdW} \): dimensionless parameter related with strength of van der Waals forces

\[\phi_{A\pm} = \arctan \left(\frac{u^2}{Q(u^2-1) + Q \frac{k_{vdW}}{\left(d_{A\pm}^2 - a^2\right)^{\frac{3}{2}}}} \right) \]
Analytical treatment of the movement of cantilever

These analytical curves explain the hysteresis observed experimentally.

Analytical curves

Experimental curves

Experimental parameters used in the analytical curves:

\[Q = 80 \]
\[k = 2.3 \text{ N/m} \]
\[\omega_0 = 57.85 \text{ kHz} \]
\[u = 0.9939 \]
\[A_0 = 13.5 \text{ nm} \]
Adding the electrostatic interaction

Capacitive tip-sample coupling taken into account

\[
d_{A^\pm} = \sqrt{a^2 + \left(\frac{k_{vdW} + k_{elect}V^2}{(u^2 - 1) + \frac{1}{Q} \sqrt{\frac{1}{a^2 - u^2}}} \right)^{2/3}}
\]

where

\[
k_{elect}V^2 = \frac{\varepsilon_0 A}{kA_0^3} V^2
\]

\[
\phi_{A^\pm} = \arctan \left(\frac{u^2}{Q(u^2 - 1) + Q \frac{k_{vdW} + k_{elect}V^2}{(d_{A^\pm}^2 - a^2)^2}} \right)
\]

We take advantage of the fact that the capacitive force for a plane capacitor has the same distance-dependence \(d^{-2}\) as the van der Waals force
Adding the electrostatic interaction

Analytical curves

Normalized distance

$A_0 = 14 \text{ nm}$

Experimental curves

Dynamic force curves

Charging experiments

SiO$_2$ layer

Si-nanocrystals in SiO$_2$

Lithography Si-nanostruc.
Quantitative charge measurement with force curves

Application to carbon nanotubes (M. Paillet, Uni Montpellier)

- Fitting the data before injection provides all parameters \((A_0, u, U_{vdW})\)
- After injection, the fit provides \(q=10\) electrons
Charging experiments on semiconducting nanostructures

Objective: not quantify charges but investigate charging behaviors
- charging of individual structures
- charging of collection of nanostructures

Dynamic force curves
- Coupling to higher modes
- Analytical treatment
- Electrostatic interaction

Charging experiments
- SiO$_2$ layer
- Si-nanocrystals in SiO$_2$
- Lithography Si-nanostr.

Si-nc non-volatile memory
Charging experiments on semiconducting nanostructures

3 types of samples:

- Reference SiO$_2$ layer on Si
 - charging behavior of an insulator
- Si-nanocrystals embedded in SiO$_2$
 - very small ~5 nm in diameter
 - collective behavior
- Si-nanostructures made by e-beam lithography
 - well-defined, ~100 nm in dimension
 - individual behavior
Charging insulators: the case of SiO$_2$

Large electric field (~10^8 V.m$^{-1}$) necessary to deposit only a few 100 charges

Charging of 25 nm of thermal oxide, conditions: -10 V/ 10s
Recording of the EFM signal

Characteristic retention time: 94 seconds = Low retention time
Charging insulators: the case of SiO$_2$

Charging of 25 nm of thermal oxide, conditions: -10 V/ 10s
Recording of the EFM signal

Absence of lateral spreading of the charges
Silicon nanocrystals embedded in SiO₂

Elaboration: (CEA Grenoble/LETI)
- deposition of a SiOₓ layer (x < 2) by LP-CVD
- annealing at 1000°C, 10 minutes
 = precipitation of Si nanocrystals in SiO₂ matrix

![TEM pictures](image)

Typical dimension: 3 nm

Density depends on x, varies from 3 \(\times 10^{11} \) to \(10^{12} \) cm\(^{-2} \)
Silicon nanocrystals embedded in SiO$_2$

First behavior: very low Si-nc density

Circular shape of injected charges that does not evolve in time

Time retention: several hours

Estimation of one electron per nanocrystal

Any difference from reference SiO$_2$ sample?
Low-density Si-nanocrystals embedded in SiO$_2$

Same charging conditions: -10 V / 3 s

Si-nanocrystals

SiO$_2$ reference sample

Si-nanocrystals:
D \sim 200 \text{ nm}
\Delta \phi_{\text{max}} \sim 6.5 ^\circ

SiO$_2$ reference:
D \sim 350 \text{ nm}
\Delta \phi_{\text{max}} \sim 3 ^\circ

Smaller electron cloud
Higher surface density of electrons

\sim e \text{- density}
Evolution of the disc with the injection time

Si-nanocrystals
Reproducible experiment with homogeneous distribution of slopes

The disc’s diameter evolves as log (injection time)

Infinitely slow saturation

Reference SiO$_2$

Larger disc’s diameters = easier spreading of the charges

Inhomogeneous distribution of slopes: due to flawed tip-sample contact?
Low-density Si-nanocrystals vs. SiO\textsubscript{2} reference sample

- Same circular shape of the electron cloud for both samples
 - BUT
 - in the same charging conditions:
 - the electron cloud is **smaller** and **denser** for the Si-nanocrystal sample
 - and it remains much **longer** (hours vs. minutes)

- Same logarithmic injection-time dependence
 - BUT
 - Si-nanocrystals shows **homogeneous** distribution of slopes
 - whereas SiO\textsubscript{2} shows an **inhomogeneous** one

- Tip-sample contact resistance is dominant in SiO\textsubscript{2} sample
- Intercrystal-resistance is dominant in Si-nanocrystal sample
Tentative illustration of charge localization

Energetic diagrams

SiO₂ layer

Conduction band

Valence band

Traps

SiO₂ gap ~8 eV

Position

Si nanocrystals in SiO₂ layer

Conduction band

Valence band

Si gap ~1 eV

Position

EFM

Injection and detection
Min. force gradient
Modelling
Charge estimation
Limits

Dynamic force curves
Coupling to higher modes
Analytical treatment
+ Electrostatic interaction

Charging experiments
SiO₂ layer
Si-nanocrystals in SiO₂
Lithography Si-nanostruc.
Silicon nanocrystals embedded in SiO₂

- Typical dimension: 3 nm
- Density depends on x, varies from 3×10^{11} to 10^{12} cm$^{-2}$
- 3 kinds of sample prepared, with varying densities

Fitting of the ellipsometric measurements provides:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Si(%)</th>
<th>SiO₂(%)</th>
<th>Fraction x</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>40</td>
<td>60</td>
<td>0.81</td>
</tr>
<tr>
<td>E2</td>
<td>8</td>
<td>92</td>
<td>1.67</td>
</tr>
<tr>
<td>E3</td>
<td>6</td>
<td>94</td>
<td>1.77</td>
</tr>
</tbody>
</table>

- **High Si-nc density**
- **Low Si-nc density**
- **Very low Si-nc density**
Silicon nanocrystals embedded in SiO$_2$

Sample E1: metallic behavior

EFM signal

- Charges spread away on a time scale of seconds

Si = 40 %
SiO$_2$ = 60 %

Si-nc touch one another, no confinement possible
Silicon nanocrystals embedded in SiO$_2$

Sample E3: strongly confining behavior

Si = 6 % \hspace{1cm} \text{Very low Si-nc density} \hspace{1cm} \text{SiO}_2 = 94 %

Circular shape of injected charges that does not evolve in time

Estimation of \textbf{one electron per nanocrystal}
Silicon nanocrystals embedded in SiO$_2$

Sample E2: partially confining behavior

Si = 8 %
SiO$_2$ = 92 %

Charging conditions -10 V / 10 s

- Rough borderline
- Inhomogeneous distribution of charges inside the electron cloud

Reflects disorder in the distribution of Si-nc at nanoscale
Sample E2: time evolution of the electron cloud

EFM images

Profiles of EFM signal

Normalized profiles

Irregular spreading of the charges, on a time scale of hours = “kinetic roughening”
Sample E2: mechanism of charge spreading

Quenched disorder

Zone of charged Si-nc $V \approx 0.1 \, \text{V}$

Si-nc section: S

Intercrystal spacing: d

Electron transport is explained with the orthodox model of the Single Electron Transistor (SET) with $V_{\text{gate}} = 0$

Passage from one Si-nc to another occurs through **tunneling**

Percolation threshold related to intercrystal distances (=density)
Sample E2: mechanism of charge spreading

\[S = \pi r^2 \text{ with } r \approx 3 \text{ nm} \]
\[\rho_{\text{SiO}_2} = 10^{14} \text{ to } 10^{16} \Omega \text{ cm} \]
\[d \approx 1 \text{ nm} \]

\[C = \varepsilon_0 \varepsilon_{\text{SiO}_2} \frac{S}{d} \sim 1 \text{ aF} \]
\[R_T = \rho_{\text{SiO}_2} d / S \sim 10^{19} \Omega \]

Tunneling of the electrons in the frame of orthodox model

Transition rate \(\Gamma = \tau^{-1} \) is:

\[\Gamma = \frac{1}{R_T e^2} \frac{-\Delta F}{1 - \exp\left(\frac{\Delta F}{k_B T}\right)} \]

where:

- \(\Delta F = f(\Delta V, C) \) energy associated with the passage
 of one \(e^- \) from one Si-nc to its neighbor \(\sim -80 \text{ meV} \)

\[\Gamma = 5 \times 10^{-2} \text{ s}^{-1} \text{ or } \tau = 20 \text{ s} \]

Progression of the borderline: 1 \(\mu \text{m/hour} \)

1 electron tunnels through \(\sim 200 \text{ Si-nc/hour} = 1 \text{Si-nc / 20s!} \)

Silicon nanostructures made by e-beam lithography

- Dots are polycrystalline Si deposited by LP-CVD
- 2 nm of SiO$_2$ is grown on top to protect the dots

- Dots are monocrystalline Si made from SOI
- 2 nm of SiO$_2$ is grown on top to protect the dots
AFM characterization

Most Si nanostructures are well-defined...

100 nm in diameter dots

... but some are more extravagant.

50 nm in diameter dots

EFM

Injection and detection
Min. force gradient
Modelling
Charge estimation
Limits

Dynamic force curves
Coupling to higher modes
Analytical treatment
+ Electrostatic interaction

Charging experiments
SiO₂ layer
Si-nanocrystals in SiO₂
Lithography Si- nanostruc.
Influence of the oxide thickness

Charging conditions: -8V / 5s

For the same recorded phase shift, there are 7x less charges on thick oxide.
Existence of a voltage threshold for injection of charges

On thin-oxide sample:

Minimum electric field of $\sim 3 \times 10^8$ V.m$^{-1}$ is required
Propagation of the charges inside a ramified structure

Thin-oxide sample

Charging conditions: -10 V / 10 s

Amplitude EFM signal

Injection is point-like
Charges extend immediately over several microns
Trapping of charges in the top oxide

Charging conditions: -7 V/ 10 S

Good quality oxide ("Rapid Thermal Oxide")
traps charges for more than 30 minutes
De-charging of the ramified structures

Thin oxide (7 nm)

Charging conditions: -10 V/ 10 s

Homogeneous de-charging of the structure, although 7 nm of oxide prevent direct tunneling

Strong repulsion between the electrons
(electronic density is high: $\sim 10^{17}$ cm$^{-3}$)

Existence of a Wigner crystal
(ordering of the electrons on a regular lattice?)
Silicon nanocrystals embedded in SiO$_2$

Sample E3: strongly confining behavior

Si = 6 %
SiO$_2$ = 94 %

![AFM image](image1)

EFM images

t=0 t=4 hours

-6 V +6 V

Very long retention time

Circular shape of injected charges that does not evolve in time

Estimation of one electron per nanocrystal
Electrostatic Force Microscopy in dry atmosphere:

- Powerful method to characterize electrical properties at the nanoscale
- Charge resolution: a few tens elementary charges
- Analysis of the non-linear tip-sample interaction

Semiconducting nanostructures:

- Reference SiO$_2$ sample shows low charge retention and low charge density
- Collective behavior of Si-nanocrystals show 3 regimes:
 - metallic
 - intermediate: observable spreading
 - confining

- Individual behavior of Si-nanostructures

Perspectives:

- Need for better resolution (charge, drift)
 - future experiments under vacuum, low temperatures
 - single electron detection
Acknowledgements

For the experiments

Henk-Jan Smilde CEA Grenoble/LETI
Martin Stark LEPES / LSP
Julien Pascal ESRF
Frederio Martin ESRF
Charlène Alandi ESRF
Emilie Dubard ESRF
Florence Marchi UJF / LEPES-CNRS
Fabio Comin ESRF
André Barski CEA Grenoble / DRFMC
Joël Chevrier ESRF / UJF / LEPES CNRS

For the samples

Denis Mariolle CEA Grenoble/LETI
Nicolas Buffet CEA Grenoble/LETI
Pierre Mur CEA Grenoble/LETI