. Fig, 1.33: Surface d'unéchantillonunéchantillon après révélation des parois d'inversion par décoration chimique (MEB)

. Sur-la-figure, 33 (a), on peut voir une image obtenue par microscopié electroniquèelectroniquè a balayage (MEB) de la surface d

. De-gaas-sur-si, pour les cellules solairesàsolairesà haut rendements et bas coût. Le LPN ne ma??trisantma??trisant pas la technologie des cellules solaires, ces pseudo-substrats désorientés serviront

]. J. Bibliographie1, F. I. Goodman, S. Leonberger, and R. A. Kung, Athale Optical interconnections for VLSI systems Proc, p.850, 1984.

K. C. Saraswat and F. , Effect of scaling of interconnections on the time delay of VLSI circuits, IEEE Transactions on Electron Devices, vol.29, issue.4, p.645, 1982.
DOI : 10.1109/T-ED.1982.20757

J. D. Meindl, J. A. Davis, P. Zarkesh-ha, C. S. Patel, K. P. Martin et al., Kohl Interconnect opportunities for gigascale integration IBM, J. Res. and Dev, vol.46, pp.2-3, 2002.

S. F. Fang, K. Adomi, S. Iyer, H. Morkoç, H. Zabel et al., Gallium arsenide and other compound semiconductors on silicon, Journal of Applied Physics, vol.68, issue.7, p.31, 1990.
DOI : 10.1063/1.346284

R. Fischer, W. T. Masselink, J. Klem, T. Henderson, T. C. Mcglinn et al., Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy, Journal of Applied Physics, vol.58, issue.1, p.374, 1985.
DOI : 10.1063/1.335687

N. Otsuka, C. Choi, L. A. Kolodziejski, R. L. Gunshor, R. Fischer et al., Study of heteroepitaxial interfaces by atomic resolution electron microscopy, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.4, issue.4, p.896, 1986.
DOI : 10.1116/1.583534

M. Tachikawa and M. , Film thickness dependence of dislocation density reduction in GaAs???on???Si substrates, Applied Physics Letters, vol.56, issue.5, p.484, 1990.
DOI : 10.1063/1.102773

T. Soga, S. Hattori, S. Sakai, M. Takeyasu, and M. , Characterization of epitaxially grown GaAs on Si substrates with III???V compounds intermediate layers by metalorganic chemical vapor deposition, Journal of Applied Physics, vol.57, issue.10, p.4578, 1985.
DOI : 10.1063/1.335363

N. El-masry, J. C. Tarn, T. P. Humphreys, N. Hamaguchi, N. H. Karam et al., Bedair Effectiveness of strained-layer superlattices in reducing defects in GaAs epilayers grown on silicon substrates, Appl. Phys. Lett, issue.20, pp.51-1608, 1987.

G. Brémond, H. Said, T. Benyattou, G. Guillot, J. Meddeb et al., Azoulay Characterization of the GaAs/Si material grown by MOCVD for light emitting diodes, Mat. Sci. Eng. B, vol.9, pp.1-3, 1991.

D. Pribat, V. Provendier, M. Dupuy, P. Legagneux, and C. , Defect Filtering in GaAs on Si by Conformal Growth, Japanese Journal of Applied Physics, vol.30, issue.Part 2, No. 3B, p.431, 1991.
DOI : 10.1143/JJAP.30.L431

D. Pribat, B. Gérard, M. Dupuy, and P. , Legagneux High quality GaAs on Si by conformal growth Appl, Phys. Lett, vol.60, issue.17, p.2144, 1992.

V. K. Yang, M. Groenert, C. W. Leitz, A. J. Pitera, M. T. Currie et al., Fitzgerald Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates, J. Appl. Phys, issue.7, pp.93-3859, 2003.

R. T. Murray, C. J. Kiely, and M. , General characteristics of crack arrays in epilayers grown under tensile strain, Semiconductor Science and Technology, vol.15, issue.4, p.325, 2000.
DOI : 10.1088/0268-1242/15/4/304

R. T. Murray, C. J. Kiely, and M. , Crack formation in III-V epilayers grown under tensile strain on InP(001) substrates, Philosophical Magazine A, vol.212, issue.2, p.383, 1996.
DOI : 10.1143/JJAP.33.230

C. Messmer and J. C. , Bilello The surface energy of Si [21] D.B. Holt Antiphase boundaries in semiconducting compounds, 22] D. Vanderbilt, C. Lee Energetics of antiphase boundaries in GaAs Phys23] P.M. Petroff Nucleation and growth of GaAs on Ge and the structure of antiphase boundaries J. Vac. Sci, pp.4623-1297, 1969.

Y. Li and L. J. , A closer study on the self-annihilation of antiphase boundaries in GaAs epilayers, Journal of Crystal Growth, vol.163, issue.3, pp.203-193, 1987.
DOI : 10.1016/0022-0248(95)00975-2

S. L. Wright, M. Inada, and H. , Polar???on???nonpolar epitaxy: Sublattice ordering in the nucleation and growth of GaP on Si(211) surfaces, Journal of Vacuum Science and Technology, vol.21, issue.2, p.534, 1982.
DOI : 10.1116/1.571755

P. N. Uppal and H. , Molecular beam epitaxial growth of GaAs on Si(211), Journal of Applied Physics, vol.58, issue.6, pp.2195-80, 1985.
DOI : 10.1063/1.335987

E. M. Davis, W. E. Harding, R. S. Schwartz, and J. J. , Corning Solid Logic Technology : versatile, high performance microelectronics IBM, J. Res. and Dev, vol.8, issue.2, p.102, 1964.

P. A. Totta and R. P. , Sopher SLT device metallurgy and its monolithic extension IBM, J. Res. and Dev, vol.13, issue.3, p.226, 1969.

J. M. London, A. H. Loomis, J. F. Ahadian, and C. G. , Preparation of silicon-on-gallium arsenide wafers for monolithic optoelectronic integration, IEEE Photonics Technology Letters, vol.11, issue.8, p.958, 1999.
DOI : 10.1109/68.775312

J. D. Boeck and G. , III???V on Si: heteroepitaxy versus lift-off techniques, Journal of Crystal Growth, vol.127, issue.1-4, p.85, 1993.
DOI : 10.1016/0022-0248(93)90583-I

A. Georgakilas, G. Deligeorgis, E. Aperathitis, D. Cengher, Z. Hatzopoulos et al., Halkias Wafer-scale integration of GaAs optoelectronic devices with standard Si integrated circuits using low-temperature bonding procedure, Appl. Phys. Lett, issue.27, pp.81-5099, 2002.

R. H. Horng and D. S. , Wuu Wafer bonded 850 nm vertical cavity surface emitting lasers on Si substrate with metal mirror Jap, J. Appl. Phys. 41 Part, vol.1, issue.9, p.5849, 2002.

D. Cengher, Z. Hatzpoulos, S. Gallis, G. Deligeorgis, E. Aperathitis et al., Georgakilas Favrication of GaAs laser diodes on Si using low-temperature bonding of MBE-grown GaAs wafers with Si wafers, J. Cryst. Growth, vol.251, pp.1-4, 2003.

Y. Shinoda, T. Nishioka, and Y. , /Si Wafers, Japanese Journal of Applied Physics, vol.22, issue.Part 2, No. 7, p.450, 1983.
DOI : 10.1143/JJAP.22.L450

R. M. Fletcher, D. K. Wagner, and J. M. , GaAs light???emitting diodes fabricated on Ge???coated Si substrates, Applied Physics Letters, vol.44, issue.10, p.967, 1984.
DOI : 10.1063/1.94613

T. H. Windhorn, G. M. Metze, B. Tsaur, and J. C. , AlGaAs double???heterostructure diode lasers fabricated on a monolithic GaAs/Si substrate, Applied Physics Letters, vol.45, issue.4, p.309, 1984.
DOI : 10.1063/1.95273

D. G. Deppe, N. Holonyak, D. W. Nam, K. C. Hsieh, G. S. Jackson et al., Chung Room-temperature continuous operation of p-n Al x Ga 1?x As-GaAs quantum well heterostucture laser grown on Si Appl, Phys. Lett, vol.51, issue.9, p.637, 1987.

H. K. Choi, C. A. Wang, and N. H. , Karam GaAs-based diode lasers on Si with increased lifetime obtained by using strained InGaAs active layer, Appl. Phys. Lett, issue.21, pp.59-2634, 1991.

R. G. Waters, D. P. Bour, S. L. Yellen, and N. , Inhibited dark-line defect formation in strained InGaAs/AlGaAs quantum well lasers, IEEE Photonics Technology Letters, vol.2, issue.8, p.531, 1990.
DOI : 10.1109/68.58039

Y. Hasegawa, T. Egawa, T. Jimbo, and M. , AlGaAs/GaAs light???emitting diode on a Si substrate with a self???formed GaAs islands active region grown by droplet epitaxy, Applied Physics Letters, vol.68, issue.4, p.523, 1996.
DOI : 10.1063/1.116387

K. K. Linder, J. Phillips, O. Qasaimeh, X. F. Liu, S. Krishna et al., Bhattacharya Self-organized In 0.4 Ga 0.6 As quantum-dot lasers grown on Si substrates, Appl. Phys. Lett, issue.10, pp.74-1355, 1999.

R. Lohonka, G. Vanderschaeve, and J. , Modelling of plastic behaviour of compound semiconductors; from simple glide to multiglide, Journal of Physics: Condensed Matter, vol.14, issue.48, p.12975, 2002.
DOI : 10.1088/0953-8984/14/48/340

I. Yonenaga and K. , Dislocation velocity in GeSi alloy, Applied Physics Letters, vol.69, issue.9, p.1264, 1996.
DOI : 10.1063/1.117386

A. Georgakilas, J. Stoemenos, K. Tsagaraki, . Ph, N. Komninou et al., Generation and annihilation of antiphase domain boundaries in GaAs on Si grown by molecular beam epitaxy, Journal of Materials Research, vol.51, issue.08, p.1908, 1993.
DOI : 10.1080/14786437208230106

D. R. Ramussen, S. Mckernan, and C. B. , A quantitative analysis of strong-beam ?? fringes from {110} antiphase boundaries in GaAs, Philosophical Magazine A, vol.63, issue.6, p.1299, 1991.
DOI : 10.1107/S0021889882011352

S. N. Chu, S. Nakahara, S. J. Pearton, T. Boone, and S. M. , Antiphase domains in GaAs grown by metalorganic chemical vapor deposition on silicon???on???insulator, Journal of Applied Physics, vol.64, issue.6, p.2981, 1988.
DOI : 10.1063/1.341561

D. P. Malta, J. B. Posthill, R. J. Markunas, and T. P. , Low???defect???density germanium on silicon obtained by a novel growth phenomenon, Applied Physics Letters, vol.60, issue.7, p.844, 1992.
DOI : 10.1063/1.106532

Y. Horikoshi, Advanced epitaxial growth techniques: atomic layer epitaxy and migration-enhanced epitaxy, Journal of Crystal Growth, vol.201, issue.202, pp.201-202, 1999.
DOI : 10.1016/S0022-0248(98)01314-1

J. Nishizawa and T. , Growth kinetic study in GaAs molecular layer epitaxy in TMG/AsH3 system, Journal of Crystal Growth, vol.93, issue.1-4, p.98, 1988.
DOI : 10.1016/0022-0248(88)90513-1

Y. Yamauchi, N. Kobayashi, and Y. , Optical Observation of Surface Kinetics during GaAs Metalorganic Chemical Vapor Deposition, Japanese Journal of Applied Physics, vol.30, issue.Part 2, No. 5B, p.918, 1991.
DOI : 10.1143/JJAP.30.L918

A. Georgakilas, J. Stoemenos, K. Tsagaraki, . Ph, N. Komninou et al., Generation and annihilation of antiphase domain boundaries in GaAs on Si grown by molecular beam epitaxy, Journal of Materials Research, vol.51, issue.08, p.1908, 1993.
DOI : 10.1080/14786437208230106

N. Kobayashi, Y. Yamauchi, and Y. , In-situ optical monitoring of pyrolysis process on substrate surface in GaAs MOCVD, Journal of Crystal Growth, vol.115, issue.1-4, p.353, 1991.
DOI : 10.1016/0022-0248(91)90767-Y

N. Kobayashi and Y. , Pyrolysis of Trimethylgallium on (001) GaAs Surface Investigated by Surface Photo-Absorption, Japanese Journal of Applied Physics, vol.30, issue.Part 2, No. 3A, p.319, 1991.
DOI : 10.1143/JJAP.30.L319

J. Wisser, P. Czuprin, D. Grundmann, P. Balk, M. Waschbüsch et al., GaAs epitaxy using alternate pulses in a standard LP-MOVPE reactor, Journal of Crystal Growth, vol.107, issue.1-4, p.111, 1989.
DOI : 10.1016/0022-0248(91)90442-8

Y. Li and L. J. , A closer study on the self-annihilation of antiphase boundaries in GaAs epilayers, Journal of Crystal Growth, vol.163, issue.3, p.203, 1996.
DOI : 10.1016/0022-0248(95)00975-2

L. L. Chang, L. Esaki, and R. , Resonant tunneling in semiconductor double barriers, Applied Physics Letters, vol.24, issue.12, p.593, 1974.
DOI : 10.1063/1.1655067

R. Dingle, W. Wiegmann, and C. H. , Heterostructures, Physical Review Letters, vol.33, issue.14, p.827, 1974.
DOI : 10.1103/PhysRevLett.33.827

F. Tinjod, Mécanismes de formation des bo??tesbo??tes quantiques semiconductrices, application aux nanostructures II-VI etétudeetétude de leurs propriétés optiques Thèse de doctorat, 2003.

M. K. Hudait and S. B. , Self-annihilation of antiphase boundaries in GaAs epilayers on Ge substrates grown by metal-organic vapor-phase epitaxy, Journal of Applied Physics, vol.89, issue.11, p.5972, 2001.
DOI : 10.1063/1.1368870

J. M. Gérard, O. Cabrol, and B. , Sermage InAs quantum boxes : highly efficient radiative traps for light emiiting devices on Si Appl, Phys. Lett, vol.68, issue.22, p.3123, 1996.

M. V. Maximov, N. N. Ledentsov, V. M. Ustinov, Z. I. Alferov, and D. , GaAs-based 1.3 ??m InGaAs quantum dot lasers: A status report, Journal of Electronic Materials, vol.69, issue.176, p.476, 2000.
DOI : 10.1007/s11664-000-0032-5

V. Tasco, M. T. Todaro, M. D. Vittorio, M. De-giorgio, R. Cingolani et al., Electrically injected InGaAs/GaAs quantum-dot microcavity light-emitting diode operating at 1.3 ??m and grown by metalorganic chemical vapor deposition, Applied Physics Letters, vol.84, issue.21, p.4155, 2004.
DOI : 10.1063/1.1755411

G. Saint-girons, G. Patriarche, A. Mereuta, and I. , Sagnes Origin of the bimodal distribution of low-pressure metal-organic vapor phase epitaxy grown InGaAs/GaAs quantum dots, J. Appl. Phys, issue.6, pp.91-3859, 2002.

J. A. Carlin, S. A. Ringel, E. A. Fitzgerald, M. Bulsara, and B. M. , Keyes Impact of GaAs buffer thickness on electronic quality of GaAs grown on graded Ge, Appl. Phys/ Lett, issue.14, pp.76-1884, 2000.

M. Grundmann and D. , Bimberg Theory of random population for quantum dots Phys, Rev. B, vol.55, issue.15, p.9741, 1997.

J. Tersoff, C. Teichert, and M. G. , Self-Organization in Growth of Quantum Dot Superlattices, Physical Review Letters, vol.76, issue.10, p.1675, 1996.
DOI : 10.1103/PhysRevLett.76.1675

G. Saint-girons and I. , Photoluminescence quenching of a low-pressure metal-organic vapor-phase-epitaxy grown quantum dots array with bimodal inhomogeneous broadening, Journal of Applied Physics, vol.91, issue.12, p.10115, 2002.
DOI : 10.1063/1.1481968

Q. Xu and J. W. , Direct Measurement of Surface Defect Level Distribution Associated with GaAs Antiphase Boundaries, Physical Review Letters, vol.82, issue.3, p.612, 1999.
DOI : 10.1103/PhysRevLett.82.612

Q. Xu and J. W. , Electrostatic force microscopy studies of surface defects on GaAs/Ge films, Journal of Applied Physics, vol.85, issue.5, p.2465, 1999.
DOI : 10.1063/1.369622

. Le-graphe-de-la-figure-4, montre la réflectance de l'empilement utilisé dans notre diode en fonction de la longueur d'onde. Il s'agit de 10 paires d'Al 0,86 Ga 0,14 As/GaAs. Le plateau de réflectivité du miroir est centré autour de ? 0 = 1,18 µm. Les couches sont du type quart d'onde, lesépaisseurslesépaisseurs sont donc e GaAs = 86 nm et e, pp.14-90

/. Gaas and . Gaas, a température ambiante et en pulsé, ` a la longueur d'onde de 1 µm a ´ eté observée sur des pseudo-substrats graduel de Ge/SiGe/Si désorienté. Les performances des diodes ontétéontété améliorées en supprimant les fissures de la cavité optique en incorporant 1 % d'indium dans le GaAs, 1998.

A. Vapaille and R. , Castagné Dispositifs et circuits intégrés semiconducteurs, 1987.

T. C. Shen, G. B. Gao, and H. , Recent developments in ohmic contacts for III???V compound semiconductors, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.10, issue.5, p.2113, 1992.
DOI : 10.1116/1.586179

Y. Shih, M. Murakami, E. L. Wilkie, and A. C. , ???type GaAs, Journal of Applied Physics, vol.62, issue.2, p.582, 1987.
DOI : 10.1063/1.339860

A. Georgakilas, G. Deligeorgis, E. Aperathitis, D. Cengher, Z. Hatzopoulos et al., Halkias Wafer-scale integration of GaAs optoelectroni devices with standard Si circuits using a low-temperature bonding procedure, Appl. Phys. Lett, issue.27, p.815099, 2002.

M. E. Groenert, A. J. Pitura, R. J. Ram, and E. A. , Improved room-temperature continuous wave GaAs/AlGaAs and InGaAs/GaAs/AlGaAs lasers fabricated on Si substrates via relaxed graded Ge[sub x]Si[sub 1???x] buffer layers, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.21, issue.3, p.1064, 2003.
DOI : 10.1116/1.1576397

M. E. Groenert, C. W. Leitz, A. J. Pitura, V. Yang, H. Lee et al., Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers, Journal of Applied Physics, vol.93, issue.1, p.362, 2003.
DOI : 10.1063/1.1525865

H. Wang, A. A. Hopgood, and G. , Analysis of dark-line defect growth suppression in InxGa1???xAs/GaAs strained heterostructures, Journal of Applied Physics, vol.81, issue.7, p.3117, 1997.
DOI : 10.1063/1.364353

R. T. Murray, C. J. Kiely, and M. , General characteristics of crack arrays in epilayers grown under tensile strain, Semiconductor Science and Technology, vol.15, issue.4, p.325, 2000.
DOI : 10.1088/0268-1242/15/4/304

R. T. Murray, C. J. Kiely, and M. , Crack formation in III-V epilayers grown under tensile strain on InP(001) substrates, Philosophical Magazine A, vol.212, issue.2, p.383, 1996.
DOI : 10.1143/JJAP.33.230

V. K. Yang, M. Groenert, C. W. Leitz, A. J. Pitera, M. T. Currie et al., Fitzgerald Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates, J. Appl. Phys, issue.7, pp.93-3859, 2003.

Y. Takano, T. Kururi, K. Kuwahara, and S. , Residual strain and threading dislocation density in InGaAs layers grown on Si substrates by metalorganic vapor-phase epitaxy, Applied Physics Letters, vol.78, issue.1, p.93, 2001.
DOI : 10.1063/1.1338502

J. W. Goodman, F. I. Leonberger, S. Kung, and R. A. , Optical interconnections for VLSI systems, Proceedings of the IEEE, vol.72, issue.7, p.850, 1984.
DOI : 10.1109/PROC.1984.12943

E. F. Schubert, Y. Wang, L. Tu, and G. J. , Resonant cavity light???emitting diode, Applied Physics Letters, vol.60, issue.8, p.921, 1992.
DOI : 10.1063/1.106489

E. F. Schubert, N. E. Hunt, R. J. Malik, M. Micovic, and D. L. , Miller Temperature and modulation characteristics of resonant-cavity light-emitting diodes J. Lightwave Techno, pp.14-1721, 1996.

N. E. Hunt, E. F. Shcubert, R. A. Logan, and G. J. , Enhanced spectral power density and reduced linewidth at 1.3 ??m in an InGaAsP quantum well resonant???cavity light???emitting diode, 20] B. Depreter, I. Moerman, R. Baets, P. Van Daele, P. Demeester InP-based 1300 nm microcavity LEDs with 9 % quantum efficiency Electron, pp.2287-2323, 1992.
DOI : 10.1063/1.108489

J. F. Carlin, P. Royo, M. Ilegems, B. Gérard, X. Marcadet et al., Nagle High-efficieny top-emitting microcavity LEDs on GaAs and GaAs/Si substrates, J. Cryst. Growth, pp.201-202, 1999.
DOI : 10.1016/s0022-0248(98)01512-7

M. V. Maximov, I. L. Krestnikov, Y. M. Shernyakov, A. E. Zhukov, N. A. Maleev et al., Sotomayor Torres InGaAs-GaAs quantum dots for application in long wavelength (1,3 µm), Mat, vol.29, issue.5, p.487, 2000.

V. Tasco, M. T. Todaro, M. D. Vittorio, M. De-giorgio, R. Cingolani et al., Katcki Electrically injected InGaAs/GaAs quantum-dot microcavity light-emitting diode operating at 1,3 µm and grown by metalorganic chemical vapor deposition Appl, Phys/ Lett, vol.84, issue.21, p.4155, 2004.

J. Blondelle, H. De-neve, P. Demester, P. Van-daele, G. Borghs et al., Baets 6 % external quantum efficiency from InGaAs/(Al)GaAs single quantum well planar microcavity LEDs Electron, Lett, issue.21, pp.30-1787, 1994.

S. Du, Trois difficultés s'opposaient, depuis ces vingtdernì eres années, ` a la réalisation de composants sur silicium : le fort désaccord paramétrique, la différence de coefficients de dilatation thermique Au cours de ce manuscrit, nous avons proposé des solutions pour chacun de ces points. L'utilisation d'une nouvelle génération de substrat, le pseudo-substrat de Ge/Si (001), constitué d'une couche de 1 ` a 2 µm de Ge monocristallinépitaxiémonocristallinépitaxié sur un substrat de Si (001), a permis d'accommoder la différence de paramètres de maille entre GaAs et Si, et ainsi d'´ eviter les fortes densités de dislocations (? 10 8 cm ?2 ) du GaAs directementépitaxié directementépitaxié sur Si. Les conditions standard de croissancè a haute température par EPVOM n'aboutissaient pasàpasà un matériau de bonne qualité (présence de trous en surface et de parois d'inversion) La formation des trous a ´ eté supprimée en faisant un départ de croissancècroissancè a basse température, mais la plus faible longueur de diffusion des atomes en surfacè a conduitàconduità une très forte augmentation de la densité de parois d'inversion. L'introduction d'un super-réseau en début de croissance etàetà basse température grâcè a une nouvelle technique de croissance, l'´ epitaxie par couche atomique (ALE) ? dans laquelle les gaz précurseurs sont envoyés non pas simultanément, mais alternativement vers le substrat ?, nous a permis d'avoir une surface de faible rugosité, Le but de ce travail de thèsé etait de réaliser desémetteursdesémetteurs delumì erè a base de GaAs intégrés monolithiquement sur silicium, pour une application aux interconnexions optiques

T. La-température and . Aleàaleà-laquelle-le-super, Une plage de température entre 470 et H.Q. Li, D. Thomas Atomic force microscopy http Quate Microfabrication of cantilever styli for the atomic force microscope, J. Vac. Sci. Technol. A, vol.8, issue.4, p.3386, 1990.

B. La-figure, 3 (b) est une vue d'unéchantillonunéchantillon pour la réalisation de diode résonnante

V. Bibliographie, Berger Caractérisation par diffraction X de semiconducteurs III-V ´ epitaxiés sur substrat de sili- cium Rapport de stage, 2003.

D. Annexe and . Réflectométrie, situ La réflectométrie est une méthode de suivi de croissance basée sur le phénomène d'interférence par division d'amplitude. Pour comprendre l'allure du spectre de réflectométrie

. Dans-la-pratique, on envoie un rayon lumineux sur l'´ echantillon, et on détecte lalumì ere qui est réfléchie

. Au-niveau-de-l-'´-echantillon, on se retrouve dans le cas décrit figure D.2. Si l'on suppose que Fig

K. Bibliographie, I. Takada, K. Yokohama, and J. Chida, Noda New measurement system for fault location in optical waveguide devices based on an interferometric technique, Appl. Optics, vol.26, issue.9, p.1603, 1987.

H. Gilgen, R. P. Novàk, R. P. Salathé, W. Hodel, and P. , Submillimeter optical reflectometry, Journal of Lightwave Technology, vol.7, issue.8, p.1225, 1989.
DOI : 10.1109/50.32387

Y. Chriqui, L. Largeau, G. Patriarche, G. Saint-girons, S. Bouchoule et al., Direct growth of GaAs-based structures on exactly (001)-oriented Ge/Si virtual substrates: reduction of the structural defect density and observation of electroluminescence at room temperature under CW electrical injection, Journal of Crystal Growth, vol.265, issue.1-2, pp.53-59, 2004.
DOI : 10.1016/j.jcrysgro.2004.01.038

G. Chriqui, S. Saint-girons, G. Bouchoule, H. Isella, and I. Von-kaenel, Sagnes Electronics Letters Publications dans des actes de colloques avec comité de lecture 1. Long wavelength room temperature laser operation of a strained InGaAs/GaAs quantum well structure monolithically grown by MOCVD on LE-PECVD graded misoriented Ge/Si virtual substrate, Room Temperature laser operation of strained InGaAs/GaAs QW structure monolithically grown by MOVCD on Ge Chriqui, G. Saint-Girons, G. Isella, H. von Kaenel, S. Bouchoule, I. Sagnes. European Material Research Society Spring Meeting Mai 2004 A para??trepara??tre dans Optical Materials, pp.1658-1660, 2003.

O. Photonics, Y. Kermarrec, D. Campidelli, S. Bensahel, M. David et al., Saint-Girons, I. Sagnes Meeting of the, pp.3-8, 2004.

G. Chriqui, G. Saint-girons, J. Patriarche, S. Moison, I. Bouchoule et al., As/GaAs par EPVOM sur pseudo-substrat de Ge/Si (100) pour la réalisation de composantsémettantàcomposantsémettantcomposantsémettant`composantsémettantà 1,3 µm, Croissance de bo??tesbo??tes quantiques d'In(Ga) Bensahel Journées Nationales de Micro et Optoélectronique (JNMO), Saint-Aygulf (France), 2002.

S. Bensahel, Y. Bouchoule, Y. Campidelli, O. Chriqui, J. Kermarrec et al., As/GaAs par EPVOM sur pseudo-substrat de Ge/Si (100) pour la réalisation de composantsémettantàcomposantsémettantcomposantsémettant`composantsémettantà 1,3 µm. I. Sagnes, D, Croissance de bo??tesbo??tes quantiques d'In(Ga) Saint-Girons 4` emes Journées " HétérostructuresHétérostructuresà semiconducteurs IV-IV " , 1` eres Journées " Composants Micro et Nano-´ electroniques, 2003.

G. Chriqui, G. Saint-girons, J. Patriarche, S. Moison, I. Bouchoule et al., Si (100) non désorienté, Etude de la croissance par EPVOM et des propriétés optiques de bo??tesbo??tes quantiques d'In(Ga)As/GaAs sur pseudo-substrat de Ge Bensahel Journées Nationales du Réseau Doctoral de Microélectronique (JNRDM), pp.13-18, 2003.