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Chapter 1

Introduction

1.1 Origines de ’étude topologique des variétés algébriques réelles

L’étude systématique de la topologie de variétés algébriques réelles commence en 1876 avec les
travaux d’A. Harnack lorsqu’il pose et résout la question suivante dans [Har76)].

Probleme 1 Quel est le nombre mazimal de composantes connezes de la partie réelle d’une courbe
algébrique réelle non singuliére de degré d dans le plan projectif ?

On rappelle qu'une courbe algébrique réelle dans RP? est un polynéme réel homogene a trois vari-
ables considéré a multiplication par une constante réelle non nulle prés. Par abus de langage, on
emploiera aussi la dénomination “courbe algébrique réelle” pour désigner I’ensemble des zéros dans
CP? d’un polynéme réel homogeéne a trois variables. L’ensemble des zéros réels sera lui appelé
la partie réelle de la courbe. Par exemple, la partie réelle de la courbe définie par le polynoéme
X? +Y? — Z? est dans le plan affine {Z = 1} le cercle de centre (0,0) et de rayon 1.

Pour une courbe algébrique réelle C, on notera RC' sa partie réelle. Une courbe algébrique réelle C
est dite non singuliére si il n’existe aucun point de CP? ou les polynomes g—)(’;, g—g, g—g s’annulent
simultanément.

En d’autres termes, Harnack soulevait et résolvait le probléme de la classification topologique de la
partie réelle des courbes algébriques réelles non singuliéres dans RP? pour un degré fixé. La réponse
est plutét simple : il n’y a qu’une seule obstruction.

Théoréeme (Harnack, [Har76]) Une courbe algébrique réelle non singuli¢re de degré d dans RP?
a au plus c(d) = W + 1 composantes connezes.
De plus, pour tout nombre | entre 0 et c(d) si d est pair, ou entre 1 et c(d) si d est impair, il existe

une courbe algébrique réelle non singuliére de degré d dans RP? avec | composantes connezes.

Une courbe qui possede le nombre maximal de composantes connexes autorisé par le Théoreme de
Harnack est appelée une M-courbe, ou une courbe maximale.

F. Klein et D. Hilbert prolongérent le travail de Harnack en étudiant le probleme 1 reposé pour des
surfaces, ou en étudiant non seulement le nombre de composantes connexes d’une courbe algébrique
réelle mais aussi leur position dans le plan projectif. Ces deux généralisations ménent aux deux
problémes fondamentaux suivants de la topologie des variétés algébriques réelles.
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Probléme 2 Quels sont, & homéomorphisme prés, les ensembles réalisés par les hypersurfaces
algébriques réelles non singuliéres de degré d dans RP™?

Probleme 3 Quelles sont, a isotopie prés, les ensembles réalisés par les hypersurfaces algébriques
réelles non singuliéres de degré d dans RP™?

Une reformulation naive du probléme 3 est la suivante : comment peuvent étre positionnées les com-
posantes connexes d’une hypersurface algébrique réelle dans RP™?7 Assez rapidement, le probléme
3 est résolu pour les courbes jusqu’en degré 5 et pour les surfaces jusqu’en degré 3.

En 1900, Hilbert énonce sa célebre liste des 23 problémes mathématiques pour le X X°®™¢ siecle (voir
[Hil01]). 11 reformule le probleme 3 dans la premiére partie de son 16°™€ probléme, en mettant
Paccent sur les courbes de degré 6 et les surfaces de degré 4.

La premiére moitié du X X®™€ siécle est marquée par les travaux en ce sens de L. Brusotti, A.
Wiman et I. G. Petrovsky (voir [Vir89]), mais ce n’est qu’'en 1969 que D. A. Gudkov parvient a
obtenir une classification & isotopie de RP? prés des courbes non singuliéres projectives de degré 6
(voir [Gud69]). Les années 70 verront se réaliser d’importants progreés avec les apports conséquents
de V. I. Arnold, V. A. Rokhlin, V. M. Kharlamov et O. Ya. Viro (voir par exemple [Wil78], [Vir89]
ou [DKO00]). En particulier Kharlamov termine les classifications correspondantes aux problemes 2
et 3 pour les surfaces de degré 4 (voir [Kha78]). A la fin des années 70, Viro invente une méthode
puissante pour construire des hypersurfaces algébriques dans RP™ (et plus généralement dans toutes
les variétés toriques) et obtient ainsi dans [Vir84a] la classification 3 isotopie de RP? preés des courbes
non singulieres projectives de degré 7.

Le probleme 3 est toujours ouvert pour les courbes de degré 8. Quant aux dimensions supérieures,
peu de réponses on été apportées au probléeme 2. La méthode des tresses inventée par S. Yu.
Orevkov a la fin des années 90 a fourni un moyen tres efficace pour étudier la position d’une courbe
par rapport & un pinceau de droites. Cette méthode & été un des outils essentiels dans la réduction
du nombre de classes d’isotopie dont la réalisation par une courbe algébrique réelle maximale de
degré 8 reste inconnue.

On peut bien sur étudier d’autres classifications plus ou moins fines. Par exemple, si 'on note
RV} I'ensemble des hypersurfaces algébriques réelles de degré d dans RP™ et RAY le sous-ensemble
de RV* constitué des hypersurfaces singulieres, le probleme de classification a isotopie rigide pres
s’énonce comme suit.

Probleme 4 Classifier les composantes connezes de RV* \ RAY.

Autrement dit, on cherche 4 savoir si deux hypersurfaces non singuliéres de méme degré et dimension
peuvent étre reliées par une isotopie de RP™ pour laquelle toutes les hypersurfaces intermédiaires
durant I'isotopie sont algébriques et non singuliéres. Cette question & été rapidement résolue pour
les courbes jusqu’en degré 4 et pour les surfaces jusqu’en degré 3. Le cas des courbes de degré 5
(Kharlamov, [Kha81]) et 6 (V. V. Nikulin, [Nik79]) et des surfaces de degré 4 (Kharlamov, [Kha84])
ne sont résolus qu’aprés les années 70.

1.2 Courbes algébriques réelles

Nous présentons ici quelques problémes relatifs aux courbes qui ont motivé notre travail. Cette liste
ne saurait en aucun cas étre exhaustive. D’autres problématiques intéressantes sont mentionnées
dans les articles [Wil78], [Vir89] et [DKO0O], ainsi que les généralisations aux dimensions supérieures
des notions exposées ici pour les courbes.

Nous commencerons par rappeler quelques définitions et résultats de classification pour les courbes
algébriques réelles dans RP?, puis nous introduirons les deux problémes centraux de cette these.
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0<a<15 0<a<13,1<p<13,
a+pB<14

Figure 1.1:

1.2.1 Généralités

Comme H,(RP?,7/27) = 7./27, un cercle topologique peut étre plongé de deux facons dans RP? :
soit il réalise la classe nulle, soit il réalise la classe non triviale. Dans le deuxiéme cas, ce cercle
est non contractile dans RP? et est appelé une pseudo-droite. On remarque que le complémentaire
d’une pseudo-droite dans le plan projectif est connexe. Si le cercle réalise la classe triviale, il est
appelé ovale. Un ovale divise RP? en deux composantes connexes, dont I'une est homéomorphe &
un disque (I'intérieur de 'ovale) et Pautre & un ruban de Mobius (Ueztérieur de Povale).

Une collection de cercles disjoints dans RP? est appelée un schéma, réel. On dira qu’un schéma, réel
est réalisable par une courbe algébrique réelle non singuliére de degré d si il est isotope & la partie
réelle d’une telle courbe.

Les classifications des schémas réels réalisés par les courbes algébriques réelles non singuliéres dans
RP? jusqu’en degré 5 sont connues des le XIX®™¢ sigcle. Celles des courbes de degré 6 et 7 sont
obtenues respectivement par Gudkov (voir [Gud69]) en 1969 et Viro (voir [Vir84a]) & la fin des
années 70. On rappelle ici la classification des courbes algébriques réelles planes de degré 7.

Théoréme (Viro, [Vir84a]) Les schémas réels réalisables par les courbes algébriques réelles non
singuliéres de degré 7 sont exactement ceuz représentés sur la Figure 1.1 (les nombres représentent
autant d’ovales, tous les uns en dehors des autres).

La classification des M-courbes de degré 8 n’est toujours pas achevée. Cependant, il ne reste qu’un
petit nombre de schémas réels dont la réalisation est inconnue. Le théoréme suivant rassemble les
connaissances actuelles sur ce sujet. Il est le résultat des travaux de B. Chevallier (voir [Che02]),
T. Fiedler (voir [Fie83]), A. B. Korchagin (voir [Kor89]), S. Yu. Orevkov (voir [Ore02a]), E. Shustin
(voir [Shu87], [Shu88] et [Shu91]) et O. Ya. Viro (voir [Vir80], [Vir89], [Vir84b] et [Vira]).

Théoreme Les schémas réels réalisés par les courbes algébriques réelles mazimales non singuliéres
de degré 8 sont contenus dans ceux représentés sur les Figures 1.2 et1.3. De plus, tous les schémas
réels représentés sur la figure 1.2 sont réalisables par les courbes algébriques réelles non singuliéres
de degré 8.

On ignore toujours actuellement si les schémas réels représentés sur la Figure 1.3 sont réalisables
par les courbes algébriques réelles non singuliere de degré 8 dans RP?.
1.2.2 Probleme d’isotopie symplectique réelle

Dans les années 80, Viro constate que la majorité des restrictions connues sur la topologie des
courbes algébriques réelles sont obtenues par des moyens purement topologiques, et s’appliquent
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“ 0
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1< <y<§et B, 7y, §d impairs

sia=0et f=1,v+#3,5,9 sif=2 a#4,14
sia=0,8+#3
sia=4det =3,7#3

Figure 1.2:

donc & une classe plus vaste d’objets. Il nomme ces objets les courbes flexibles (voir [Vir84c| pour
une définition précise) et pose la question suivante.

Probleme 5 Eziste-t-il une courbe flexible dans RP? réalisant un schéma réel réalisable par aucune
courbe algébrique réelle non singuliére de méme degré?

Autrement dit, est ce que des méthodes purement topologiques permettent de résoudre le 16°™¢
probleme de Hilbert, ou est-il nécessaire de trouver des obstructions algébriques?

Il apparait dans les années 90 avec les travaux d’Orevkov qu’il est opportun de recentrer le probléme 5
sur une sous-classe des courbes flexibles : les courbes pseudoholomorphes réelles. En effet, ces objets
vérifient le Théoréme de Bézout, fondamental pour les courbes algébriques, ce qui n’est & priori
pas le cas des courbes flexibles. Les courbes pseudoholomorphes, introduites par M. Gromov dans
[Gro85] pour étudier les 4-variétés symplectiques, sont ’analogue des courbes algébriques mais pour
une structure presque complexe de CP? au lieu de la structure complexe standard (on demande de
plus que la structure presque complexe soit calibrée par une forme symplectique, voir la section 2.4
pour des définitions précises). Le probléme 5 se reformule alors de la maniére suivante.

Probleme 6 Eziste-t-il une courbe pseudoholomorphe réelle non singuliére dans CP? réalisant un
schéma réel réalisable par aucune courbe algébrique réelle non singuliére de méme degré?

On peut en fait voir cette question comme une version réelle du probléme d’isotopie symplectique
dans CP?. Ce probléme est directement issu de ’étude des 4-variétés symplectiques et peut s’énoncer
comme suit (voir par exemple [She]).
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Figure 1.3:

Probleme 7 Toute courbe symplectique non singuliére de CP? est-elle isotope d une courbe algébrique
non singuliére de méme degré?

A priori, on peut considérer tout type d’isotopie (continue, lisse ou symplectique) car la réponse est
inconnue dans tous les cas. Cette question a cependant été résolue de fagon affirmative pour des
degrés inférieurs ou égaux & 6 par V. Shevchischin dans [She].

On sait que toute surface symplectique non singuliere de CP? est une courbe J-holomorphe pour
une certaine structure presque complexe J calibrée par la forme symplectique, et que cette structure
peut étre choisie réelle si la surface est réelle. Ainsi, le probléeme 6 peut se reformuler de la maniére
suivante, qui est bien ’analogue réel du probléme 7.

Probléme 8 Exziste-t-il une courbe symplectique réelle non singuliére dans CP? réalisant un schéma
réel réalisable par aucune courbe algébrique réelle non singuliére de méme degré?

Pour l'instant, cette question est toujours un probléme ouvert et semble plutot difficile. Toutes
les classifications connues coincident pour les deux classes d’objets. On notera que mémes les
démonstrations sont les identiques... En revanche, en généralisant un peu ce probleme, des contre-
exemples non triviaux ont été exhibés par S. Fiedler-Le Touzé, Orevkov et Shustin. Ainsi, on connait
maintenant des courbes pseudoholomorphes réelles réductibles dans RP? (resp. non singuli¢res dans
les surfaces rationnelles géométriquement réglées) dont la partie réelle réalise une classe d’isotopie
(resp. isotopie par rapport au pinceau de droites) qui n’est réalisée par aucune courbe algébrique
réelle ayant la méme classe d’homologie. On peut voir & ce sujet [FLTO02], [Ore], [0S02] et [OS].
La méthode des tresses est un outil trés puissant pour interdire ou construire des courbes pseu-
doholomorphes réelles. Ainsi, il est plus facile de travailler avec ces derniéres qu’avec les courbes
algébriques réelles. Par exemple, la classification des M-courbes pseudoholomorphes réelles non
singuli¢res de degré 8 dans RP? & été achevée par Orevkov, alors que I’analogue algébrique n’est
toujours pas connu.

Théoréme (Orevkov,[Ore02a]) Les schémas réels réalisés par les courbes pseudoholomorphes
réelles mazimales non singuliéres de degré 8 sont eractement ceuz représentés sur les Figures 1.2
et 1.3.

Dans cette theése, nous ne considérons que des structures presque complexes dans les surfaces ra-
tionnelles géométriquement réglées pour lesquelles ’éventuel diviseur exceptionnel de la surface est
pseudoholomorphe (voir section 2.4). En ne tenant pas compte de cette condition, J. Y. Welschinger
a construit dans [Wel02] une famille infinie de courbes symplectiques dans ¥, avec n > 2 qui
réalisent des classes d’isotopies qu’aucune courbe algébrique réelle non singuliére ayant la méme
classe d’homologie ne réalise.
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1.2.3 Ovales pairs et conjecture de Ragsdale

Un ovale d'une courbe algébrique réelle non singuli¢re de degré pair dans RP? est dit pair (resp.
impair) si il est contenu dans un nombre pair (resp. impair) d’ovales. Le nombre maximal d’ovales
pairs que peut contenir une courbe de degré 2k est important, car il est relié aux nombres de Betti
maximaux des certaines surfaces algébriques réelles (voir la section 4.5). On note p le nombre
d’ovales pairs d’une courbe, et n son nombre d’ovales impairs.

Probléme 9 Quel est la valeur maximale de p et n pour une courbe de degré 2k ?

En 1906, V. Ragsdale proposa dans [Rag06] une série de conjectures sur la topologie des courbes
algébriques réelles dont la plus célebre est la suivante.

Conjecture (Ragsdale, [Rag06]) Pour toute courbe de degré 2k, on a

3k(k — 1 3k(k — 1
Sk(k—1) ) < SRE-D)

<
P> 2

On notera R(k) = w + 1. Dans les années 30, Petrovsky démontra dans [Pet33] des inégalités
moins fortes, et proposa quelques conjectures similaires & celles de Ragsdale. Il parait cependant
assez clair que Petrovsky n’était pas familier avec le travail de Ragsdale.

Théoréme (Petrovsky, [Pet33]) Pour toute courbe de degré 2k, on a

k(k—1
+1 etn—pgu.

_ 3k(k—1)
= 2

2

En combinant ces inégalités avec le Théoréme de Harnack, on obtient immédiatement une borne
supérieure pour p et n.

Proposition Pour toute courbe de degré 2k, on a

Il est alors tout & fait naturel de se demander si ces bornes sont atteintes, au moins asymptotique-
ment. Le terme asymptotiquement est expliqué dans I’énoncé du probléme suivant.

Probléme 10 FEuziste-t-il une famille de courbes algébriques réelles non singuliéres de degré 2k dans
RP? quvec Tk? + o(k?) ovales pairs?

Eziste-t-il une famille de courbes algébriques réelles non singulicres de degré 2k dans RP? avec
Tk? + o(k?) ovales impairs?

Au début des années 80, Viro réfuta la conjecture de Ragsdale en construisant des courbes avec
n = R(k) (ce n’étaient en revanche pas des contre-exemples a la conjecture de Petrovsky). En
1993, 1. Itenberg construisit en utilisant la T-construction des contre-exemples de degré 2k ayant
R(k) + %ﬁ + O(k). Ce résultat fur amélioré par B. Haas dans [Haa95] puis par Itenberg dans [Ite01]
et avant les résultats de cette thése, les meilleurs résultats était les suivants.

Théoréme (Itenberg, [Ite01]) I existe une famille de courbes algébriques réelles non singuliéres
de degré 2k dans RP? avec %k2 + O(k) ovales pairs.

Il eziste une famille de courbes algébriques réelles non singuliéres de degré 2k dans RP? avec
%kQ + O(k) ovales impairs.
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A priori les problemes 9 et 10 se posent aussi pour des courbes pseudoholomorphes. En cherchant a
améliorer les résultats d’Itenberg, F. Santos construit dans [San] des T-courbes ayant un grand nom-
bre d’ovales pairs. Malheureusement, les triangulations utilisées ne sont pas convexes. Mais d’apres
[IS02], si les courbes de Santos ne sont pas algébriques, elles sont au moins pseudoholomorphes.

Théoréme (Santos, [San]) Il ezxiste une famille de courbes pseudoholomorphes réelles non sin-
guliéres de degré 2k dans RP? telle que

5 17
im & = —.
koo k2 10
Il eziste une famille de courbes pseudoholomorphes réelles non singuliéres de degré 2k dans RP?

telle que
17

lim — = —.
k—o0 k2 10
11 est intéressant de constater qu’aucun contre-exemple & la conjecture de Ragsdale n’est connu

parmi les M-courbes. De plus, Haas a démontré dans [Haa] que tout contre-exemple maximal
hypothétique T-construit est un “petit” contre-exemple.

Théoréme (Haas, [Haa]) Soit C une M-courbe pseudoholomorphe réelle non singuliére de degré
2k obtenue par T-construction. Alors

p < R(k)+1 et n < R(k) + 4.

1.3 Résultats

Nous énoncons ici les principaux résultats obtenus dans cette these.

1.3.1 Graphes rationnels sur CP!

S’inspirant de travaux antérieurs de A. Zvonkin, Orevkov a proposé dans [Ore03] une nouvelle
méthode de construction de courbes algébriques réelles trigonales dans les surfaces réglées ¥.,,. L’idée
est de reformuler la question de I’existence d’une telle courbe réalisant un certain £L-schéma par celle
de I'existence d’un certain graphe (appelé graphe trigonal réel dans cette thése) dans CP!. L’intérét
de ces graphes est que leur partie réelle peut se lire sur le £-schéma.

En fait, cette méthode se généralise immédiatement pour étudier I’existence de deux polynémes & une
variable P(X) et Q(X) de degré n tels que les racines réelles de P(X), Q(X) et P(X)+ Q(X) aient
une certaine disposition sur R. Nous formulons donc d’abord cette généralisation et introduisons
ainsi les graphes rationnels réels.

Nous nous concentrons ensuite sur 1’étude des graphes trigonaux réels. Nous donnons un algorithme
efficace pour décider si, étant donner le graphe réel d’un L-schéma, ce graphe est la partie réelle
d’un graphe trigonal réel ou non. Nous introduisons pour ce faire le semi groupe des peignes.

Les résultats de ce chapitre sont utilisés au chapitre 4 pour démontrer la prochaine proposition et
au chapitre 5 pour démontrer entre autre les deux suivantes.

Proposition Pour tout entier n € N*, il existe 3 polynomes a1(X), az(X) et b(X) de degré n tels
que

e toutes les racines de aq, a9, b et a1b + ao soient réelles,

e toutes les racines de ay et a1b+ ao soient plus petites que les racines de b.
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Proposition Il n’existe pas de courbe algébrique réelle trigonale dans X3 réalisant le L-schéma
représenté sur la Figure 1.4a).

Proposition Il n’existe pas de courbe algébrique réelle trigonale dans X5 réalisant le L-schéma
représenté sur la Figure 1.4b).

o0oo0O 0
(0]
(0] (0]
) ° o o '
a) b)
Figure 1.4:

1.3.2 Construction d’une famille de courbes avec le nombre asymptotiquement
maximal d’ovales pairs

Nous construisons dans cette thése une famille de courbes qui donnent une réponse affirmative au
probléme 10.

Théoréme I existe une famille de courbes algébriques réelles non singuliéres de degré 2k dans
RP? avec Ekz + o(k?) ovales pairs.

Il exziste une famille de courbes algébriques réelles non singuliéres de degré 2k dans RP? avec
Tk% + o(k?) ovales impairs.

Toutes les familles de courbes, algébriques ou pseudoholomorphes, avec un grand nombre d’ovales
pairs construites avant cette thése étaient des familles de T-courbes. Il nous a semblé que la
T-construction est plutot “rigide” et que la méthode de Viro dans toute sa généralité offrait de
bien meilleures possibilités pour construire des courbes algébriques réelles. Nous avons ainsi repris
les constructions d’Itenberg et de Santos en essayant d’optimiser la densité d’ovales pairs des courbes
construites. Pour cela, nous recollons des courbes dont le polygone de Newton n’est plus un triangle
mais un hexagone. Pour construire ces courbes auxiliaires, nous utilisons la méthode des graphes
rationnels réels sur CP!.

1.3.3 Courbes réelles symétriques de degré 7 dans RP?

Le probléme d’isotopie symplectique réelle dans RP? semble vraiment difficile. Afin de trouver des
différences entre les courbes algébriques et les courbes pseudoholomorphes, une idée est d’étudier des
courbes “plus simples”. Une premiere voie est de regarder les courbes singuliéres, et des différences
ont été trouvées par Fiedler-Le Touzé, Orevkov et Shustin. Une autre approche est de considérer
des courbes qui admettent d’autres symétries que la seule invariance par la conjugaison complexe.
C’est la voie que nous empruntons dans ce chapitre ol nous étudions les courbes symétriques de
degré 7. Une courbe dans RP? est dite symétrique si elle admet une symétrie par rapport & une
droite dans une certaine carte affine de RP?.
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La classification des courbes symétriques dans RP? était connue jusqu’en degré 6, le degré 6 ayant été
traité de maniére simple par I. Itenberg et V. Itenberg dans [II01]. Encore une fois, les classifications
algébriques et pseudoholomorphes coincident pour ces degrés. D’un autre coté, Orevkov et Shustin
ont obtenu dans [OS02] une classification schémas réels réalisés par les M-courbes symétriques réelles
de degré 8, et il est apparu alors que les deux classifications n’étaient pas les mémes.

Ainsi il semblait naturel de traiter le cas du degré 7.

Le premier travail & été d’obtenir les classifications & isotopie prés, ce qui ne fait apparaitre aucune
différence.

Théoréme Les schémas réels suivants ne sont pas réalisables par une courbe pseudoholomorphe
réelle non singuliére symétrique de degré 7 dans RP? :

e (JII (14 — ) I 1{e)) avec  =6,7,8,9,
e (JII(13 — ) II 1{c)) avec a =6,7,9.

De plus, tout schéma réel réalisable par les courbes algébriques réelles non singuliéres de degré 7
dans RP? non mentionné dans la liste ci-dessus est réalisable par une telle courbe symétrique.

Remarque. Nous utilisons ici les notations standards, introduites dans [Vir84c] pour les schémas
réels!.

I1 nous a semblé alors opportun de raffiner ce résultat en étudiant, parmi ces schémas réels, lesquels
sont réalisés par des courbes séparantes et lesquels sont réalisés par des courbes non séparantes.
Nous avons ainsi exhibé deux schémas réels qui sont réalisables par des courbes pseudoholomorphes
séparantes symétriques de degré 7 mais pas par de telles courbes algébriques.

Théoréme (Classification pseudoholomorphe) Les schémas réels
(JUaIl1{B)) avec a =2,6 et a+ LB =12, a = =4,

ne sont pas réalisables par une courbe pseudoholomorphe réelle non singuliére séparante symétrique
de degré 7 dans RP?.

De plus, tout schéma réel réalisable par les courbes pseudoholomorphes réelles non singuliéres
séparantes de degré 7 dans RP? non mentionné dans la liste ci-dessus et le théoréme précédent
est réalisable par une telle courbe symétrique.

Tout schéma réel réalisable par les courbes pseudoholomorphes réelles non singuliéres non séparantes
de degré 7 dans RP? non mentionné dans le théoréme précédent est réalisable par une telle courbe
symétrique.

Théoréme (Classification algébrique) Les schémas réels
(JII8II 1(4)) et (J IIATI1(8))

ne sont pas réalisables par une courbe algébrique réelle non singuliére séparante symétrique de degré
7 dans RP?.

Tout autre schéma réel réalisable par une courbe pseudoholomorphe réelle non singuliére séparante
symétrique de degré 7 dans RP? est réalisable par une telle courbe algébrique.

Tout schéma réel réalisable par une courbe pseudoholomorphe réelle non singuliére non séparante
symétrique de degré 7 dans RP? est réalisable par une telle courbe algébrique.

!par exemple, (JITa I11{3)) signifie une pseudo-droite, un ovale avec 8 ovales & 'intérieur et o ovales & ’extérieur.
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Les résultats sur les courbes pseudoholomorphes sont obtenus essentiellement griace a la méthode
des tresses. Pour les obstructions algébriques, nous utilisons la méthode des peignes et la résolvante
cubique d’une courbe trigonale introduite par Orevkov. Pour les constructions algébriques, nous util-
isons essentiellement des transformations birationnelles de CP?, la méthode de Viro et le théoréme
de perturbation de courbes singuliéres de Shustin.



Chapter 2

Preliminaries

2.1 Viro’s method

The Viro method turned out to be one of the most powerful method to construct real algebraic
hypersurfaces with prescribed topology in toric varieties. O. Ya. Viro invented it in the late 70’s and
since then, this method has been used to obtain many important results in topology of real algebraic
varieties. Here are some examples : classification of the real schemes realized by nonsingular curves
of degree 7 in RP? (Viro [Vir84a]), smoothing of curves with complicated singularities (Viro, [Vir89],
E. Shustin, [Shu99]), curvature of plane algebraic curves (L. Lopez de Medrano, [LdM]), existence
of projective M-hypersurfaces of any degree in any dimension (I. Itenberg and O. Ya. Viro, [IV]),
existence of asymptotically maximal families of hypersurfaces in any toric variety (B. Bertrand,
[Ber]), and construction of projective hypersurfaces with big Betti numbers (F. Bihan, [Bih]).

We follow here the presentation of the Viro method exposed in [IS03]. The interested reader can
also refer to [Vir84a], [Vir89], [Virb] and [Ris92].

2.1.1 Integer convex polyhedron, moment map and their complexification

Here we recall some definitions we need to state the Viro Theorem.

Definition 2.1 Let _ '
F= > ., X{...X}r
(31,...yn )ENP

be a polynomial in C[X1,...,X,].
The Newton polyhedron of F, denoted by A(F), is the convex hull in R" of the set

{(7:17 s a@n) Q4,0 7& 0}
If § is a face of A(F), the é-truncation of F, denoted by F°, is the polynomial defined by
S X X
(41 500nyin )EQ

The polynomial F is said to be non-degenerate if F and FO have a nonsingular zero set in (C)™ for

all proper faces 6 of A(F).



12 Preliminaries

Definition 2.2 An integer convex polyhedron in R™ is the convex hull of a finite subset A of Z"

Asusual, put Ry ={z € R: z>0}, RY ={z€R:z>0},and C" = {2 € C: z #0}.
Given an integer convex polyhedron A in R" with interior I(A) and vertices V(A), one can define
the well known moment map as follows :

pa i (RO o 1(a)

X, in)eV(A)zll-"w:ﬁ'("lv'"ﬂn) .

(3}'1,...,$n) =

2261 senin)EV(A) b i
If dim(A) = n, then pa is a diffeomorphism. From now on, let us suppose that A C (R, )".
Let us consider the diffeomorphism
¢ : (G (RE)™ x (Sh)"
(1ezm) = (Uil lznl), (Zpoees 1))

The inverse of ¢ naturally extends to a surjection § : (Ry)™ x (§*)" — C*. Given any subset E of
(R;)", we denote by CE the subset 8(E x (S*)") of C".

Definition 2.3 The set CA is called the complezification of A.
The map
Cua :(C)" — (R x (S — I(A) x (SYH)" — CI(A)
¢ (ua,Id) 0

1s called the complexification of the moment map pa.

Proposition 2.4 The real part RA of CA is the union of A with all its symmetric copies with
respect to the coordinates hyperplanes.

Proposition 2.5 The map Cua is surjective and commutes with the complex conjugation. It is a
diffeomorphism when the dimension of A is equal to n. The real part of CI(A) is the image of (R*)"
by Cun.

2.1.2 Toric varieties

We recall now briefly some facts about toric varieties. More details can be found, for example, in
[Ful93].
Let A C (Ry)™ be an integer convex polyhedron and put N = Card(A NZ").
Definition 2.6 The toric variety associated to A and denoted by Torc(A) is the Zariski closure of
the set . .

{[Zil P Z;Ln](’h,...,in)EAﬂZ" : (2'1, “ee ,Zn) € ((C* )n} C CPN_I .
This is a complex algebraic variety which has the same dimension as A.

Define a map va : C(A) — Torc(A) in the following way : given ¢ a face of A or A itself and
z€ I(CH) such that z= Cus(w1,...,wy), then

VA(2) = (iy,...in) (i1, in)eANZ Where
Qiy,.oiyy = W1 owpr 0f (41,...,4,) € 6 and a;, .3, = 0 otherwise.
Proposition 2.7 The map va is equivariant, continuous and surjective. Moreover, if the dimension

of A is equal to n, then va|rca) is a diffeomorphism on its image.

Definition 2.8 An isotopy in Torc(A) is said to be tame if for any face 6 of A, the restriction of
this isotopy to Torc(d) is an isotopy in Torc(d).
Such an isotopy is said to be equivariant if it commutes with the complex conjugation.
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2.1.3 Real and complex charts of a polynomial

These notions are among the fundamental ingredients of the Viro method.
Let F = Z(h,...,in) @iy,...in X1 . X be a polynomial in C[X1,...,X,] and A C R be an integer
convex polyhedron.

Definition 2.9 The complez chart of the polynomial F in A, denoted by CCha (F), is the closure
of the set Cua ({F =0} N (C*)™) € CA.

If F is a real polynomial, then its real chart in A, denoted by RCha (F'), is defined as CCha (F)NRA.
If A = A(F), we simply denote the complex (resp., real) chart of F in A(F) by CCh(F) (resp.,
RCh(F)).

Proposition 2.10 For any face § of A, one has CCh(F) N Cs = CCh(F?).
If F is real, then CCh(F) is invariant with respect to the action of complezx conjugation.

2.1.4 Viro’s Theorem

Let us fix k& polynomials Fy,..., Fy in C[Xy,...,X,], and let A C (R;)™ be an integer convex
polyhedron of dimension n such that

° AZA(Fl)U...UA(Fk),

e for all 7 and s, the intersection A(F,) N A(Fj) is either empty or a face § of A(F,) and A(Fy).
Moreover, in the latter case, we have F? = F?.

Definition 2.11 The set

k
TCCh(Fy,...,F,) =va (U (CC’h(FT)> € Torg(A)

r=1

is called a C-hypersurface in Torc(A).

Proposition 2.12 If all the polynomials F, are real, then TCCh(Fy,...,F,) is invariant with re-
spect to the action of complex conjugation.

Definition 2.13 A subdivision A = A1 U...U Ay of an integer convex polyhedron A is said to be
convez if there exists a piecewise-linear convex function from A to R whose domains of linearity are
the polyhedrons Aq, ..., Ag.

Let us write F, = Z(z’,j)eA(F,) a;i ;XY for allr € {1,...,k}.

Theorem 2.14 (Viro, [Vir84a]) Suppose that all the polynomials F, are non-degenerate and that
the subdivision A = A(Fy)U...UA(F}) is convez. Let us consider a piecewise-linear convez function
u certifying the convezity of the subdivision of A and define

Fu= Y ag"eIXxiyi.
(i.5)eA
Then, the hypersurface defined by Fy, is tame isotopic to the C-hypersurface TCCh(Fy, ..., Fy,) in

Torc(A) for t > 0 small enough.
Moreover, if all the F, are real, this tame isotopy can be made equivariant.
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One usually says that the hypersurface given by F; ,, in Torc(A) is obtained by gluing the charts of
the F,.. The polynomial F}, for ¢ small enough is called a Viro polynomial of the gluing.

For example, Viro constructed in [Vir84a], non-degenerate polynomials whose real charts are de-
picted on Figures 2.1a) and b) with arbitrary truncation on the segment [(0,3); (6,0)]. Gluing two
of them by the Viro Theorem as depicted on Figure 2.1c), one obtains the so called Gudkov curve
in RP?.

Figure 2.1:

A very famous particular case of the Viro Theorem is when all the A(F;) are simplices and the only
non-zero coefficients of the F; are the vertices of A(F;). This is the so called T'-construction (see
[Ite01], [KI96], [LdM], [IV], [Ber] for examples of applications of the T-construction).

2.1.5 Remarks on the development of the Viro method

Since the 70’s, the Viro Theorem has been improved in order to show that it is still valid under
weaker hypothesis. As we won’t use these improvements in this text, we just mention some of them.

2.1.5.1 Gluing of singular varieties

One of the conditions to apply the Viro Theorem is to glue polynomials which are nonsingular in
(C*)™ as well as their truncation on the faces of their Newton polyhedron. In [Shu98] and [Shu],
Shustin showed that, under some conditions on singularities, Theorem 2.14 remains true even if the
F; or their truncations have singularities in (C*)™. One can construct singular hypersurfaces in this
way, and Shustin’s conditions can easily be checked in the case of curves. In particular, using these
improvements, Shustin constructed in [Shu98] real algebraic curves in RP? with many cusps and
proved in [Shu] the tropical correspondence theorem in a way different from that of G. Mikhalkin
(see [Mik]).

2.1.5.2 TUsing nonconvexe subdivisions

What can one say about the C-hypersurface TCCh(F1, ..., F,) in Torc(A) if the subdivision of A
is nonconvexe? In the case of curves in CP? or the rational geometrically rules surfaces, Itenberg
and Shustin proved in [IS02] that one obtains pseudoholomorphic curves. Their gluing Theorem also
works with singular varieties, without the conditions given in [Shu98] for algebraic curves. In this
way, they constructed real pseudoholomorphic curves in CP? with a collection of singular points
that no known algebraic curve has.
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2.2 Perturbing singular curves

For the definition of the type of a singular point, one can refer to [AGZV85] or [Vir89].

Almost all known isotopy types realized by nonsingular real algebraic curves in toric surfaces have
been constructed in the following way : start with a curve having isolated singularities and perturb
them. The word “perturb” means here “move a little this curve inside a given linear system”. Since
L. Brusotti’s work (see [Bru2l)), it is known that if a curve has only nondegenerate double points,
one can perturb any of them independently from the others. All the isotopy types realized by curves
of degree less or equal than 6 in RP? can be obtained using Brusotti’s Theorem. However, this kind
of constructions starts to be very complicated with the degree 6, and no one managed to achieved
the classification for the degree 7 perturbing curves with only nondegenerate double points.

The Viro method has provided a way to perturb more complicated singularities, called Newton
nondegenerate. Perturbing curves of degree 7 with two singular points of type Jip (i.e. three
branches with second order tangency), Viro achieved the classification of real schemes realizable by
nonsingular real algebraic curves of degree 7 in [Vir84a]. Several nonsingular real algebraic curves of
degree 8 were constructed by perturbing other singularities (see [Vir89] for more details). However,
the realizability of some real schemes by curves of degree 8 remained unknown and it appeared quite
clear that one should deal with more complicated singularities than the Newton nondegenerate ones.
Indeed, new curves of degree 8 were constructed by perturbing generalized Newton nondegenerate
singular points (see [Shu87] and [Che(2]).

Modifying the original Viro method, Shustin in [Shu99] gave a method to perturb curves in toric
surfaces with arbitrary many generalized Newton nondegenerate singular points arbitrary placed in
the surface. Using Shustin’s results, S. Yu. Orevkov constructed several reducible curves of degree
7 (see [Ore98al, [Ore98b] and [Ore| for examples).

2.2.1 Perturbing one Newton nondegenerate singular point

Here, we follow [Vir89] and [Virb].
Let C be a nondegenerate polynomial in C[X,Y]. For a face § of A(C), we denote by K(d) the
convex hull of 6 U {0}.

Definition 2.15 The Newton diagram T'(C) of C at the origin is the union of the faces 6 of A(C)
such that K(6) has dimension 2 and A(C) N K(J) = 4.

We will denote by K (I'(C)) the union of the closures of K(§) taken over all faces ¢ of I'(C).
Let us suppose that the curve C' in C? has an isolated singularity at (0,0).

Definition 2.16 We say that the origin is a Newton nondegenerate singular point of C' if
o the Newton diagram I'(C) of C touches the azes {X = 0} and {Y = 0},
e for every face § of T'(C), the polynomial C° is nondegenerate.

The Viro method can be seen as a way to perturb such a singular point of a curve. Consider a
nondegenerate algebraic curve C' in C? with an isolated Newton nondegenerate singular point at
the origin, and assume that the curve is smooth everywhere else. That means in particular that
the point (0,0) does not belong to A(C). Now, using the Viro Theorem, glue to C some curves
whose Newton polygons are contained in K (I'(C)). We choose the function g mentioned in the Viro
Theorem to be null on A(C) (it is always possible) and we denote by 5’,5,“ the Viro polynomials
of the gluing. Then, as pjac) = 0, 6}’“ tends to C as t tends to 0. Thus, the curves CN’W can be
viewed as perturbations of C.
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For example, in the gluing depicted on Figure 2.1, let us choose the piecewise-linear convex function
satisfying
H(an) = 15“(013) = /1'(650) = H(Oaﬁ) =0.

Then the curves Cﬁju for £ > 0 can be seen as smoothings of the singular point of type Jig of the
curve Cy,, as depicted on Figure 2.2.

Qoooo &

Figure 2.2:

Remark. One can use the Viro method as explained above to perturb any singular algebraic curve
in CP? whose singularities lie among the points [0 : 0: 1], [0: 1: 0] and [1: 0 : 0] and are Newton
nondegenerate.

2.2.2 Perturbing many generalized Newton nondegenerate singular points

Here, we follow [Shu98] and [Shu99].

Definition 2.17 Let C be a curve in a nonsingular algebraic surface S. A point z of C is said to
be a generalized Newton nondegenerate (briefly, GNND) singular point if there exists a neighborhood
U of z in S, a neighborhood V of (0,0) in C? and a biholomorphism ¢ : U — V such that $(2) is a
Newton nondegenerate singular point of ¢(C NU).

An equation of ¢(C NU) is called a representative of the GNND singular point z of C.

If all the objects are real, ¢ can be made equivariant.

In [Shu99], Shustin gave conditions to perturb algebraic hypersurfaces (not only curves) with many
GNND singular points. The idea is to perturb one of the representative of each singular point using
the Viro method as explained in the previous section, and to check if all the perturbations can be
done independently on C'. Shustin’s conditions are quite technical, so we restrict ourselves here to
give all the corresponding results in the case of curves, when the singular points are either smoothed
or kept. All the criterions given in [Shu99] are formulated for curves in CP2. However, results from
[Shu98] allow one to formulate those criterions for singular curves on other toric surfaces and to
obtain perturbations preserving Newton polygon.

Given a curve C in an algebraic surface nonsingular S, we denote by Sing(C) the set of its singular
points.

2.2.2.1 Deformations of singular points

Definition 2.18 Let C; (resp., C2) be an algebraic curve in a nonsingular algebraic surface S and
z1 (resp., z2) a point of Cy (resp., Cy). The points z1 and zo are said to be topologically equivalent
if there exists a neighborhood Uy (resp., Us) of z1 (resp., z2) in S and an homeomorphism of Uy to
U2 that takes Cl N U1 to 02 N UQ.
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Let C be an algebraic curve in S and z a singular point of C. Following J. Milnor (see [Mil68]),
consider a sufficiently small neighborhood B of z in § diffeomorphic to the 4-ball B* such that

e () = C N B is a compact variety with an isolated singular point z and boundary 0Cy C 0B,
e () is transversal to 0B along dCy and homeomorphic to a cone over 9C).
Put D.={t € C:|t| <€} and 7 : B x D, — D, the projection.

Definition 2.19 A (one parametric) deformation of a singular point z of C is an analytic hyper-
surface W C B x D, such that

o (mw)~'(0) = Co,

e fortin D, Cy = (7T|W)_1(t) is a compact variety with isolated singularities in Int(B), whose
boundary 0C; is contained in OB, and Cy is transversal to OB along 0C%.

Moreover, we say that the deformation is topologically compatible if for any t1 and to in D, there
ezxists a bijection between Sing(Cy,) and Sing(Cy,) such that the corresponding points in Sing(Cy,)
and Sing(Cy,) are topologically equivalent.

If z, C and W are real, then we take only real nonnegative values of the parameter t and consider
W N (B x [0;¢€]).

If all the Wy are nonsingular for t # 0, we speak about a (one parametric) smoothing of z.

Now define models for smoothing a GNND singular point. Let z be a GNND singular point of C,
and F one of its representatives. Suppose we are given k polynomials Fi,..., F; in C[X,Y] such
that

o A(Fy),...,A(F) form a subdivision of K(I'(F)),
e the polynomials F, F1, ..., Fy verify the hypothesis of the Viro Theorem.
Put ® = (J¥_, CCh(F,) C CK(T(F).

Definition 2.20 The pair (CK(I'(F)), ®) is called a model for a topologically compatible smoothing
W of z € C if for any t # 0 there exists a homeomorphism (B,C;) — (CK(T'(F)), ®).
If all the objects are real, the homeomorphism must be taken equivariant.

Remark. One can also define models for a topologically compatible deformation of a GNND
singular point (see [Shu99)).

2.2.2.2 A topological invariant of curve singularities

Let C be an algebraic curve in an algebraic smooth surface S, z an isolated singular point of C, T’
its embedded resolution tree, Cj the strict transform of C' corresponding to an infinitely near point
q € T, and E, the reduced exceptional divisor (see [Sha77]).

We will say that a point g of T' is terminal if it is nonsingular both for C; and E,;. We remove from
T all the points following terminal points.

Definition 2.21 (see [Shu99]) Define b(C, z) and b(C, Q) as follows, where Q is a local branch of
Catz:

e if z is of type Aox_1, k > 1, then C has two nonsingular branches Q1, Q2 at z and put
b(C,Q1) =b(C,Q2) =k —1,
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e if z is of type Aoy, k > 1, then C has one branch Q at z and put b(C,Q) =2k — 1,

e if z is not of type Ay, let Q be a local branch of C at z. Let V'(C,Q) be the sum of the
multiplicities of the strict transform Qg of Q at nonterminal points ¢ € T, and b"(C,Q) be
Qq o E; — 1, where q is the terminal point of Q; finally, put b(C, Q) =b'(C, Q) + " (C,Q),

e b(C,z) is the sum of b(C, Q) over all branches of C centered at z.

2.2.2.3 Perturbing curves with GNND singular points

Let C be an algebraic curve in a projective algebraic nonsingular toric surface S.

Theorem 2.22 (Shustin,[Shu98], [Shu99]) Suppose that the set Sing(C) splits into two disjoint
subsets S and S’ such that the singular points z € S’ are GNND. Suppose also that for any point of
S’, we are given a smoothing model (CK(T'(F,)),®,) and that

o if C is irreducible,
> b(C,2) < Card(0A(C) N Z2),
z€8ing(C)

o if C splits into irreducible components C1,...,Cy,

Y D HC,QY) < Card(DA(Cy) NZ?) for all i € {1,...,1}
2€8ing(C) Qgi)

where Qg) is a local branch of C; at z.

Then there ezists a family of curves C; with Newton polygon A(C) with |t| < € such that Cy = C
and that the family Cy realizes

e for any z € S, a topological equisingular deformation of z € C,
e for any z € S', a topological smoothing of z € C with the model (CK(T'(F,)),®,).

If all the data are real, then there exists an equivariant family of curves C; with Newton polygon
A(C) with t € [0; €[ with the above properties.

An example of application of Shustin’s Theorem is another proof of a result of B. Chevallier in
[Che02] on the smoothing of four conics that have a single point in common at which they intersect
with multiplicity 4. Using this method, Chevallier has constructed four M-curves of degree 8 whose
realizability was previously unknown. One of these smoothing is depicted on Figure 2.3.

2.3 Rational geometrically ruled surfaces

A rational geometrically ruled surface is a CP'-bundle over CP' that is to say a complex surface S
equipped with a fibration 7 : § — CP! with fiber CP'. The two simplest examples are CP! x CP!
and CP? blown up in a point. In the latter case, the fibration is given by the extension to the blowing
up of the projection from p to a line which does not pass through p. If S is isomorphic to CP' x CP*,
let us denote by E any line CP! x {r}. Otherwise, there exists a unique nonsingular algebraic
section E on S, called the exceptional section, with a negative auto-intersection. The classification
of rational geometrically ruled surfaces up to biholomorphism is well known (see [Bea83]).
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Figure 2.3:

Theorem 2.23 Two rational geometrically ruled surfaces are biholomorphic if and only if their
exceptional sections have the same auto-intersection.

Definition 2.24 If the auto-intersection of E is equal to —n, then the surface S is called the n'
rational geometrically ruled surface and is denoted by 3,,.

One can note that from a smooth point of view, the situation is completely different, and there are
only two rational geometrically ruled surfaces, namely ¥y and ¥; (see [MS98]).

Proposition 2.25 The surfaces ¥,, and ¥, are diffeomorphic if and only if ny and no have the
same parity.

The surface 3, can be obtained by taking four copies of C2 with coordinates (X1,Y1), (X, Y5),
(X3,Y3) and (Xy4,Ys), and by gluing them along (C*)? with the identifications

(X2,Y2) = (1/X1,Y1/XT), (X3,Y3) = (X1,1/Y1) and (X4, Ys) = (1/ X1, X7/ Y1).

The coordinate system (X7,Y7) is said to be standard.

For ¥, the fibration is given by 7 : (X,Y) — X.

If n > 1, the exceptional section is given by the equation {Y3 = 0}. Let us denote by B (resp., F)
the curve given by the equation {Y; = 0} (resp., {X1 = 0}). We have Bo B =n, Eoc E = —n,
FoB=1and FoF =0.

The surface ¥, is also a projective toric surface defined by the trapeze with the vertices (0,0), (0,1),
(1,1) and (1 4+ n,0). Hence, one can use the Viro Theorem to construct (real) algebraic curves in
¥,. The surface X, has a natural real structure induced by the complex conjugation in C2.

Proposition 2.26 The real part of ¥, is a torus if n is even and a Klein bottle if n is odd.

We will depict the real part of ¥, as a quadrangle whose opposite sides are identified in a suitable
way. Moreover, the two horizontal sides will represent the exceptional divisor.

The group H1 (%, Z) is isomorphic to Z x Z and is generated by the classes of B and F'. Moreover, one
has F = B —nF. An algebraic curve on %, is said to be of bidegree (k,!) if it realizes the homology
class kB +[F in H{(%,,,7Z). The Newton polygon of such a curve in a standard coordinate system
lies inside the trapeze defined by the vertices (0,0), (0,k), (I,k), and (nk +1,0).

Definition 2.27 A curve of bidegree (1,0) is called a base.
A curve of bidegree (3,0) is called a trigonal curve.
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One can construct the surface ¥, starting with ¥, : blow up a point of the exceptional section
and blow down the strict transform of the fiber.

In the rational geometrically ruled surfaces, we have a natural pencil of lines (i.e. a smooth CP!-
bundle over RP!), which will be denoted by L, given by the real lines of the fibration. So, it is
natural to study not only isotopy types of real algebraic curves in X, but also isotopy types with
respect to L. Two curves will be said to be isotopic with respect to L if there exists an isotopy of
3., which brings the first curve to the second one, and which transforms each line of £ in another
line of L.

Definition 2.28 An arrangement of circles A, which may be nodal, in ¥, up to isotopy of ¥, \ E
which respects the pencil of lines L is called an L-scheme.

An L-scheme is realizable by a real algebraic (or pseudoholomorphic, see section2.4) curve of bidegree
(k,1) in %, if there exists such a curve whose real part is isotopic with respect to L to A in R, .
A trigonal L-scheme is an L-scheme which intersects each fiber in 1 or 3 points and which does not
intersect the exceptional section.

Proposition 2.29 There exists a unique base of ¥, which passes through n+1 given generic points
mn 2.

Proof. The equation for such a base in a standard coordinate system is Y + 37" ;a; X ¢ where a; are
some complex numbers. The condition to pass through n 4+ 1 points imposes n + 1 linear equations
on the a;. If the points are generic, then the obtained system of linear equations has a unique
solution. n

2.4 Pseudoholomorphic curves

Analyzing restrictions on the topology of real algebraic curves in RP?, Viro noticed that almost
all of them have a topological origin. He introduced in [Vir84c| flezible curves which are smooth
surfaces embedded in CP?, invariant by the complex conjugation and which satisfy all the topological
restrictions on plane real algebraic curves.

Let C; and C5 two smooth oriented 2-submanifold of an oriented smooth 4-manifold X, let = be
a isolated common point of C; and Cs, and let (v1,v2) (resp., (vs,v4)) be a positive basis of T,Cy
(vesp., TyCs).

Definition 2.30 The intersection index of C1 and Cs at x is defined as follows

e if C1 and Cy intersect transversally at x, the intersection index is 1 (resp., —1) if (v1,v2,v3,v4)
is a positive (resp., negative) basis of Tp X,

e if C1 and Cy do not intersect transversally at x, let U be a small ball in X centered on = such
that x is the only intersection point of Cv and Co in U. Perform a smooth isotopy of C1 in
U such that all the intersection points in U of the obtained curve and Cs are transverse. The
sum of the index of all these intersection points is the intersection index of C1 and Cy at x.

If the intersection index at x is positive (resp., negative), the point x is said to be a positive (resp.,
negative) intersection point of Cy and Cs.

An intersection point of two flexible curves is not necessarily positive. In particular, the Bézout
theorem is not true for those curves. Later, Orevkov considered in [Ore99] a subclass of flexible
curves, pseudoholomorphic curves. These objects, introduced by M. Gromov in [Gro85] to study
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symplectic 4-manifolds, verify the Bézout theorem (if they are J-holomorphic with respect to the
same almost complex structure J). Moreover, they are much easier to handle. Indeed, there are
methods to construct pseudoholomorphic curves which are not necessarily algebraic (braid theoreti-
cal method of Orevkov, see section 2.7, T-construction using nonconvexe triangulations, see [IS02]).
For example, the classification up to isotopy of real pseudoholomorphic M-curves of degree 8 in
RP? was achieved by Orevkov [Ore02a]. However, it remains 6 real schemes for which it is unknown
whether they are realizable by algebraic M-curves of degree 8 in RP? or not.

More references and material about pseudoholomorphic curves can be found in [MS98].

Definition 2.31 Let X be a differential manifold. A symplectic form on X is 2-form on X such
that

e w is closed,
e for all z in X, w is nondegenerate on T, X (i.e. Vv € T, X, w(u,v) =0=u=0).
A pair (X,w), where w is a symplectic form on X, is called a symplectic manifold.

A straightforward consequence of this definition is that a symplectic manifold must have an even
dimension.

Definition 2.32 An almost complex structure J on X is a smooth family (Jp)pex of linear maps
Jp : Ty X — TpX such that J2 = —Id.
We say that J is tame with respect to w if

Vp € X,Vv € T,X,v # 0,w(v, Jp(v)) > 0.

An example of almost complex structure on a symplectic manifold is CP™ with its usual complex
structure and the Fubini-Study form (see [MS98]).

From now on, let (X,w) be a symplectic 4-manifold, and J a tame almost complex structure on
(X, w)-

Definition 2.33 A Riemann surface A immersed in X is called a J-holomorphic curve if
Vp € A,Vv € T, A, Jp(v) € TLA.
The following proposition ensures that the Bézout theorem is true for J-holomorphic curves.

Proposition 2.34 (McDuff, [McD94]) All the intersection points of two J-holomorphic curves
are positive.

Now, we suppose that X = CP? or %,. Then we have the standard complex conjugation on X,
denoted by conj.

Definition 2.35 The almost complex structure J is real if conj, o Jp = —J, o conj,.

Definition 2.36 A Riemann surface A is called a real pseudo-holomorphic curve in X if
o A is J-holomorphic for some real almost complex structure J on X,
o If X =3, with n > 1, the exceptional divisor of X is J-holomorphic,

e conj(A) = A.
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As an example, a real algebraic curve in CP? is a real pseudo-holomorphic curve for the standard
complex structure and the Fubini-Study form. If the curve C is immersed in CP? (resp., ¥,) and
realizes the homology class d[CP'] in Hy(CP?,Z) (resp., kB + IF in Hy(%,,7Z)), then C is said to
be of degree d (resp., of bidegree (k,[)). All intersections of two J-holomorphic curves are positive,
so the Bézout theorem is still true for two J-holomorphic curves.

Proposition 2.37 (Gromov, [Gro85]) There ezxists a unique J-line passing through 2 given points
in CP2.

There exists a unique J-conic passing through 5 given generic points in CP?.

Moreover, if J and the configurations of points are real, then so are the J-line and the J-conic.

Remark. Assoon as the degree is greater than 3, the uniqueness is no more true. This is a direction
to find some differences between algebraic and pseudo-holomorphic curves (see [FLTO02], where the
authors use pencils of cubics).

Corollary 2.38 Suppose that n = 1,2 or 3. Then, there exists a unique J-holomorphic base of %,
which passes through n + 1 given generic points in Xy,.

2.5 Real Curves

A real algebraic curve is a compact algebraic curve C' defined over C equipped with an antiholomor-
phic involution ¢. The set of fixed points of ¢ is denoted by RC' and is called the real part of the curve
C. In this section, the expression real curve means real algebraic curve or real pseudoholomorphic
curve. The latter case implies that the curve is supposed to be embedded in a tame almost complex
symplectic variety of dimension 4.

A more detailed exposition can be found in the surveys [Wil78], [Vir84c|, and [DKO0O].

2.5.1 General facts

The following proposition was first proved by A. Harnack in the case of plane projective real algebraic
curves. F. Klein has reformulated and proved it in a more general setting.

Proposition 2.39 (Klein,[Kle22]) Let S be a smooth compact connected surface of genus g,
equipped with a smooth involution ¢ which has no isolated fized points. Then, the set of fized points
of ¢ has at most g + 1 connected components.

Hence, if we know the genus of a nonsingular real curve, we also know the maximal number of con-
nected components of its real part. For curves in toric surfaces, this is given by the next proposition.

Proposition 2.40 (see, for example, [Ful93]) Let C be a nonsingular algebraic curve with New-
ton polygon A in a toric surface. Then the genus of C is equal to the number of integer points in
the interior of A.

Remark. If the toric surface is CP? or ¥, then Proposition 2.40 is also valid for pseudoholomorphic
curves.

Definition 2.41 A nonsingular real curve C of genus g such that RC has g + 1 — i connected
components is called an (M — i)-curve.
If i = 0, the curve is simply called an M -curve or a mazimal curve.
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A nonsingular real curve C is a 2-dimensional object and C \ RC is either connected or it has two
connected components. In the former case, we say that RC' is a non dividing curve, or of type 11,
and in the latter case, we say that RC' is a dividing curve, or of type 1.

Lemma 2.42 (Klein,[Kle22]) An M-curve is of type I.

Proposition 2.43 (Klein,[Kle22]) If an (M — i)-curve is of type I, then i is even.

2.5.2 Real curves in the projective plane

Historically, the first result in topology of real algebraic curves in the projective plane was obtained
by Harnack. One can see it as a consequence of Propositions 2.39 and 2.40.

Theorem 2.44 (Harnack, [Har76]) A nonsingular real algebraic curve in CP? of degree d has

at most W + 1 connected components.

As H,(RP?,7,/27) = 7./27., a connected component of a nonsingular curve in RP? can be situated in
two topologically distinct ways : either it realizes the 0 homology class, or it realizes the 1 homology
class. In the former case, the component does not disconnect RP? and is called a pseudo-line of the
curve, and in the former case, it is called an oval.

All the connected components of a curve of even degree are ovals, and a curve of odd degree has
exactly one pseudo-line. The complement of an oval is formed by two connected components, one
of which is homeomorphic to a disk (called the interior of the oval) and the other to a Mdbius strip
(called the ezterior of the oval).

Definition 2.45 An owval of a nonsingular real plane curve is said to be empty (resp., non-empty)
if it contains no other (resp., some other) oval of the curve.

Two ovals in RP? are said to constitute an injective pair if one of them is enclosed by the other. A
set of ovals, each pair of which is injective is called a nest. The number of ovals in a nest is called
the depth of the nest. The following lemma is a direct consequence of the Bézout theorem.

Lemma 2.46 A nest of a nonsingular real pseudoholomorphic curve of degree m in RP? has a
depth less or equal to [3]. A nest of depth [F] is called a mazimal nest.

Let C be a nonsingular dividing pseudoholomorphic curve in RP?. Then the two halves of C \ RC
induce two opposite orientations on RC which are called complex orientations of the curve. An
injective pair of ovals of RC is said to be positive if the orientations of the two ovals are induced
by one of the orientations of the annulus in RP? bounded by the two ovals (see figure 2.4a)), and
negative otherwise (see figure 2.4b)). Let us denote by I, (resp., II_) the number of positive
(resp., negative) injective pairs of ovals of the curve. If the degree of C is odd, one can also speak
about positive and negative ovals. Let us consider one oval of a dividing curve of odd degree. If the
integral homology classes realized by the pseudo-line of the curve and the ovals in the M&bius strip
defined by the exterior of this oval have the same sign, we say that the oval is negative (see figure
2.4d)), and positive (see figure 2.4c)) otherwise. Let us denote by A, (resp., A_) the number of
positive (resp., negative) of ovals of the curve.

Complex orientations were introduced by V. A. Rokhlin in [Rok74] and turned out to be an efficient
tool in the study of plane curves. The first application was the following proposition.
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©) Lot
a) b) c) d)

Figure 2.4:

Proposition 2.47 (Rokhlin-Mischachev’s orientation formula, [Rok74], [Mis75]) IfC isa
dividing nonsingular pseudoholomorphic curve of degree d in RP? with I ovals, then

2y —I_)=1—k? ifd =2k
Ay —A +2I0, —T1 ) =1—k(k+1) ifd=2k+1

In [Rok74], Rokhlin proved the orientation formula for curves of even degree. Later, N. M. Mis-
chachev proved in [Mis75] the part relative to curves of odd degree.

2.5.3 Real curves in ¥,

Taking into account the arrangement of a curve in ¥,, with respect to the pencil of lines can be
useful to extract some information about this curve. For example, the following theorem, due to
T. Fiedler, permits to determine the complex orientations of a dividing curve in some cases (see
[Fie83], [Vir84c|, and [Tri01]). One can define complex orientations of a real dividing curve in %,
as for real dividing curve in RP?2.

Theorem 2.48 (Fiedler’s orientations alternating rule, [Fie83]) Let C be a real curve of type
I'in 3y and (Lt)ie[s,;1,) @ portion of the pencil L such that (see figure 2.5):

o the line Ly, is tangent to RC in p;, i = 1,2,

e there exists a connected component of (Ute[tl;tZ] L) N C, invariant by complex conjugation
whose real part is made of p1 and po.

e the lines of (RLt)scfy;1,) are compatibly oriented.

Then, if the orientations of RC and RL;, are compatible in p1, so are those of RC' and RLy, in po.

Figure 2.5:

Remark. Blowing down the exceptional divisor on 31, we can apply Theorem 2.48 for a dividing
curve and a pencil of lines in CP?.

The following lemma deals with real curves of bidegree (3,1) in 39, and will be useful in Chapter 5.
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Lemma 2.49 Let C be a curve of bidegree (3,1) on 3o, whose real part is depicted in Figure 2.5b).
We orient L, the pencil of lines of Yo, from the left to the right. Then, either the lines of L meet
first all the ovals B and then all the ovals a or the converse.

Moreover, if o+ 8 > 3, then, the lines of L meet first all the ovals 8 and then all the ovals a.

Proof. Suppose there exist 3 ovals contradicting the lemma. Choose a point inside each of these
ovals. Then the base passing through the chosen points intersects the curve in 9 points, and we get
a contradiction with the Bézout theorem. O

2.5.4 Real curves of degree 7 in RP?

We recall here some known classification results about curves of degree 7. The rigid isotopic classi-
fication for this degree seems far to be achieved. We also give some results we will use in Chapter
5.

First, Lemma 2.46 implies that a pseudoholomorphic curve of degree 7 in RP? has at most one nest
of depth greater or equal than 2. Moreover, this nest has depth 2 if the curve has at least 2 empty
ovals.

Definition 2.50 For a nonsingular real pseudoholomorphic curve of degree 7 in RP? with a nest
and with at least 2 empty ovals, the ovals lying inside the non-empty oval are called the inner ovals
while those lying outside are called the outer ovals.

Given a curve of odd degree, one can define a notion of convexity in RP? : the segment defined by
two points a and b is the connected component of the line (a,b) \ {a,b} which has an even number
of intersection points with the pseudo-line of the curve.

Lemma 2.51 If a real pseudoholomorphic curve of degree 7 with at least 6 ovals has a nest, then
one can choose a point in each inner oval such that these points are the vertices of a convex polygon
in RP2. Moreover, if a line L passes through two outer ovals O1 and O of the curve and separates
the inner ovals in two non-empty groups, then O and Oy does not intersect the same connected
component of L'\ (Int(O) U J), where O is the non-empty oval.

Proof. Suppose that there exist four empty ovals contradicting the lemma as depicted in Figure
2.6a) and b). Then a conic passing through these ovals and another one intersects the curve in at
least 16 points, and we get a contradiction with the Bézout theorem. O

Figure 2.6:

Definition 2.52 An arrangement of disjoint circles in RP? up to isotopy is called a real scheme.
A real scheme A is realizable by a real algebraic (or pseudoholomorphic) curve of degree d in CP?
if there exists such a curve whose real part is isotopic A in RP2.
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The classification of real schemes realizable by nonsingular plane curves of degree 7 has been obtained
by Viro in the late 70’s (see [Vir84al]). The notations used to encode real schemes are the usual ones
proposed in [Vir84c]!.

Theorem 2.53 (Viro, [Vir84a]) Any nonsingular real pseudoholomorphic curve of degree 7 in
RP? has one of the following real schemes :

e (JIIall1{B)) witha+<14,0<a<13,1< <13,

e (JII ) with 0 < a <15,

o (JIT1(1(1))).
Moreove;, any of these 121 real schemes is realizable by nonsingular real algebraic curves of degree
7 in RP=.

The second natural question is to determine real schemes that are realizable by dividing and non
dividing curves. The case of (M — 2)-curves was done by S. Fiedler-Le Touzé (see [FLT97]). Surpris-
ingly, we did not succeed to find the complete statements in the literature, despite they are quite easy
to obtain. The proof of these prohibitions is a straightforward application of the Bézout theorem,
the Fiedler orientation alternating rule (see section 2.3) and the Rokhlin-Mischachev orientation
formula. All the constructions are performed in [Sou01] and [FLT97].

Proposition 2.54 Any nonsingular dividing real pseudoholomorphic curve of degree 7 in RP? has
one of the following real schemes :

e (JIIall1(B)) with a4+ <14, a+B=0mod 2,0 < a<13,1 < <13, if a =0 then
B #2,6,8 and if « =1 then > 5,

e (JIT ) with6 < a <15, a =1 mod 2,
o (JIT1II1{(1(1))).

Moreover, any of these real schemes is realizable by nonsingular dividing real algebraic curves of
degree T in RP2.

Proposition 2.55 Any nonsingular non-dividing real pseudoholomorphic curve of degree 7 in RP?
has one of the following real schemes :

o (JIaTl1(B)) witha+B<13,0<a<12, 1<8<13,
e (JIl ) with 0 < a < 14.

Moreover, any of these real schemes is realizable by nonsingular non-dividing real algebraic curves
of degree 7 in RP?.

Definition 2.56 An arrangement of disjoint oriented circles in RP? up to isotopy and up to re-
versing all the orientations is called a complex scheme.

A complex scheme A is realizable by a real algebraic (or pseudoholomorphic) dividing curve of degree
d in CP? if there exists such a curve whose real part equipped with one of its complex orientations
is isotopic A in RP?.

for example, (J 1T a IT 1{8)) means a pseudo, an oval with 3 empty ovals in its interior and a empty ovals in its
exterior.
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The next theorem we state is the classification of complex schemes realized by M-curves of degree
7 in RP?2. We will not use it in this thesis. However, as we will give the classification of complex
schemes realized by plane symmetric M-curves of degree 7 in section 5, we give here the classification
of complex schemes of M-curves of degree 7 in RP? in order to compare the two classifications. The-
orem 2.57 has been finally proved by V. Florens in [Flo], concluding the previous works of T. Fiedler
(see [Fie83]), S. Fiedler-Le Touzé (see [FLT]) and S. Yu. Orevkov (see [Ore00],[Ore0la],[Ore03] and
[Ore01b]).

The notations used to encode complex schemes are the usual ones proposed in [Vir84c].

Theorem 2.57 (Fiedler, Fiedler-Le Touzé, Florens, Orevkov) Any nonsingular pseudoholo-
morphic M-curve of degree 7 in RP? has one of the following complex schemes :

(

(JIL(7T—Kk)LI1(6 —k)_IT1 {(k+1); 1Tk )); with0 <k <4 ork=6,
o (JII(7T—k)yI1(6—k)_T11,(k, IT(k+1)_)); with0 <k <6,
o (JIO(5—k) II(7T—k) 1 {(k+2) Ik )); with0 <k <5.

Moreover, any of these complex schemes is realizable by nonsingular real algebraic M -curves of
degree 7 in RP?.

One can note that in these three classifications, there are no differences between the algebraic and
the pseudoholomorphic classifications. Historically, the first differences appeared studying reducible
curves. Pseudoholomorphic arrangements of a line and a sextic which cannot be algebraic were
exhibited by Fiedler-Le Touzé, Orevkov and Shustin in [FLT002], [0S02], and [OS]; Orevkov found
in [Ore] a pseudoholomorphic algebraically unrealizable arrangement of a cubic and a quartic.

2.6 Cubic resolvent of a real algebraic curve of bidegree (4,0) in ¥,

These objects have been introduced by Orevkov and are inspired by the well known cubic resolvent
of a polynomial of degree 4. The reader who would like to have more details about this material
can refer to [OS].

Suppose we are given a real algebraic curve C of bidegree (4,0) in X, realizing an £-scheme A. The
cubic resolvent gives a way to associate to C a real trigonal curve C’ on Xy,. Moreover the £-scheme
realized by C' can be extracted from A. As there exist powerful tools to study real algebraic trigonal
curves in rational geometrically ruled surfaces (see Chapter 3), this method can be used to prohibit
algebraically some L-schemes of bidegree (4,0) in 3,,.

In what follows, n is a positive integer and

P(X,Y) =Y* 4 by(X)Y2 4 b3(X)Y + by(X)

is a real polynomial, where b;(X) is a real polynomial of degree jn in X. By a suitable change of
coordinates in %, each curve of bidegree (4,0) in ¥,, can be put into this form. Let us denote by
Y1(X), Y2(X), Y3(X) and Ya(X) the roots of P(X,Y’) when one specializes the variable X, and put

Z1(X) = (M(X) + Y2(X))(YV3(X) + Ya(X)) = —(V1(X) 4 Y2(X))?,

(X)
Z5(X) = (Y1(X) + Y3(X)) (Ya(X) + V(X)) = —(V1(X) + Y3(X))?,
Z3(X) = (V1(X) + Ya(X)) (Ya(X) 4 Y3(X)) = —(Y1(X) + Ya(X))>.
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One can check that
Z1(X) — Zp(X) = (1(X) = Ya(X))(Y3(X) — Ya(X)),
Z1(X) = Z3(X) = (Ya(X) — Y2(X))(Y1(X) - Y3(X)),
Z5(X) = Z3(X) = (Ya(X) — Y3(X))(Y1(X) — Y2(X)).

Definition 2.58 The cubic resolvent of P is the trigonal curve in Yo, defined in a standard coor-
dinate system by the polynomial

R=(Z - Z\(X))(Z — Zo(X))(Z — Z3(X)) = Z° — 202(X) Z° + (b3(X) — 4ba(X)) Z + 5(X).

The following lemma allows one to find the topology of the cubic resolvent of a curve. The lemma
is a direct corollary of the above identity.

Lemma 2.59 (Orevkov, [OS]) One has

X) and Z3(X) are non-real,
X) then Z9(X) = Z3(X) > 0.

o If Yi(X), Yo(X) = Yi(X), Y3(X) and Y4(X) = Y3(X) are all distinct and non-real. Let
Im(Y1(X) > 0 and Im(Yg(X > 0. Then Z1(X) < 0 < Z3(X) < Zp(X). Moreover,
Z3(X) = 0 if and only if either Im(Y1(X)) = Im(Y3(X)) or Re(Y1(X)) = Re(Y3(X)).

For example, let us consider a curve of bidegree (4,0) in 3, realizing the £-scheme shown on Figure
2.7a). Then, according to Lemma 2.59, the cubic resolvent of this curve realizes in ¥y the £-scheme
shown on Figure 2.7b).

)OQOC/O_gi_?/

a) b)

Figure 2.7:

Lemma 2.60 If P(xo,Y) has a triple root, then so has R(xy, Z).

Proof. Straightforward. O
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2.7 Braid theoretical method

This method, invented by Orevkov in the 90’s, provides a powerful tool to study real pseudo-
holomorphic curves in rational geometrically ruled surfaces. The idea is to replace the study of
pseudoholomorphic realizability of an £-scheme by the study of some braids. The corresponding
problem in the braid group is called the gquasipositivity problem. Using this method, Orevkov has
achieved the classification of real pseudoholomorphic affine sextics (see [Ore99]) and pseudoholo-
morphic M-curves of degree 8 (see [Ore02a]).

2.7.1 Basic knot and braid theory

We just define here notions we will use later. For detailed proofs or more material about knots and
braids, one can refer to [Lic97], [PS97] or [Ore99].
In this section, we fix an orientation of S3.

2.7.1.1 Links and Alexander polynomial

Definition 2.61 An oriented link with | components in the 3-sphere S® is a smooth embedding of
a disjoint union of | oriented circles in S®. A link with 1 component is called a knot.
Two links L1 and Lo are said to be isotopic if there exists an isotopy of S® which brings Ly to Lo.

Let L be a link in $2 and p a point of S3\ L. Denote by 7 the projection R® = R? x R — R2.
Let us choose an orientation preserving diffeomorphism ¢ : S\ {p} — R3 such that 7 o ¢|L is an
embedding, the set X = {z € R? | Card((r o ¢;) *(z)) > 1} is finite and each element of X has
exactly 2 preimages by mo ¢ ;. The point of X are called the crossings of L with respect to ¢ or,
when ¢ is not specified, the crossings of X. Thanks to the natural order of R, one can speak about
the over and the under branch at each crossing of X. The image of ¢/, in R? together with the
over and under information is called a link diagram of X.

For example, (a link diagram of) the well known trefoil knot is depicted on Figure 2.8a).

@//\\

+1 -1
a) b) c)
Figure 2.8:

One of the goals of knot theory is to associate isotopy invariants to links, that is to associate “quan-
tities” to links in such a way that these “quantities” are equal for two isotopic links. The Alezander
polynomial constitutes such a link invariant, and we will use it intensively. This polynomial is an
isotopy invariant, up to multiplication by £¢t*!. In order to define it, we first have to introduce
Seifert surfaces.

Definition 2.62 A Seifert surface of a link L in S® is a connected compact oriented surface in S3
having L as its oriented boundary.

Let us fix a link L and a Seifert surface F' for L. For an element x of H;(F,Z), we will denote by
zt the result of a small shift of a cycle representing = in S® along a positive normal vector field to
F.
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Definition 2.63 Let L; and Ly be two oriented links in S®. Label each crossing of Ly and Lo as
depicted on Figure 2.8a) and b). The linking number of Ly and Lo, denoted by lk(L1, Ls), is defined
as the half sum of the signs of all the crossings of L1 and Ls.

Proposition 2.64 The linking number of K1 and Ky is an isotopy invariant of the link K1 U Ks.

Definition 2.65 The bilinear form H,(F,Z)x H{(F,Z) — Z is called a Seifert form
(z,) — lk(z7,y)

of L.

A Seifert matriz is the Gramm matriz of a Seifert form in some basis of Hy(F,Z).

The following proposition can be proved using the infinite cyclic covering of L (see [Lic97]). We
denote the transposed of a matrix G by G”.

Proposition 2.66 (Alexander) Let G be a Seifert matriz of the link L. Then, the polynomial
det(G — tG™), considered up to multiplication by £tT', depends only on the isotopy class of L.

Definition 2.67 The polynomial det(G — tG™), considered up to multiplication by +t*', is called
the Alezander polynomial of L.

Definition 2.68 The value of the Alexander polynomial of L at -1 is called the determinant of L
and denoted by det(L).

It is clear from Proposition 2.66 that | det(L)| is an isotopy invariant of L.

2.7.1.2 Braids

Now we introduce braids. One of the interests of braids is that they form a natural group which has
a nice presentation. This means in particular that most of the computations in the braid group can
be performed by a computer. Alexander showed that each link can be put into the form of a closed
braid, hence studying a link (for example, computing its Alexander polynomial) is sometimes easier
using its closed braid form.

Definition 2.69 A braid of m strings is the graph of a smooth m-valued function f : [0;1] — C
such that

e for each t € [0;1], the m values of f(t) are pairwise distinct,

e the real parts of the m wvalues of f(0) and f(1) are pairwise distinct.

Two braids by and by are said to be isotopic if there exists an isotopy of [0;1] x C which brings by to
by and such that the image of by during the isotopy remains a braid.
The set of all isotopy classes of braids of m strings is denoted by Byy,.

We still denote by b the isotopy class of the braid b and we still call braids the elements of B,.
The projection we use to depict braids is (¢,z) — (¢, Re(z)). An example of a braid is depicted on
Figure 2.9a). We will denote this braid by o;.

There is a natural way to multiply two braids b; and by. choose a smooth m-valued function f
(resp., g) : [0;1] — C whose graph represents b; (resp., by) in By, and such that f(1) = ¢g(0). Define
h:[0;1] — C by h(t) = f(2t) if t € [0; %] and h(t) = g(2t — 1) if t € [£;1]. The braid b1by in By, is
defined as the graph of h. One can see easily that the result does not depend on the choice of the
representatives. For example, 02-2 is depicted on Figure 2.9b).

The set B,, equipped with this multiplication is a group.
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Theorem 2.70 (Artin) The group By, is isomorphic to the finitely generated group
<O’1, ---;O'm—1|0'i0'i—|—10'i = 04410404+1, and 0,05 = 0504 ’Lf |7, - ]| > 1).
Definition 2.71 The braids o; are called the standard generators.

9 of a braid b in B,,, the

]

integer Z?Zl e; does only depend on b (that is, does not depend on the presentation).

A corollary of Theorem 2.70 is the fact that for any presentation H;-L:l o

Definition 2.72 The latter integer, denoted by e(b), is called the exponent sum of the braid b.

A natural way to associate a link to a braid is to join its two ends. The result is called a closed
braid.

Definition 2.73 Consider the standard embedding of the solid torus ¢ : ([0;1] x C)/(0,2)~(1,2) into
S3. For any braid b in B,,, there exists a representative of b, whose image by ¢ is a link in S®. This
link is called the closure of b.

So one can define the Alexander polynomial and the determinant of a braid : it is those of its closure.
In [Ore99], Orevkov gives an efficient algorithm to compute a Seifert matrix of a closed braid. Thus,
one can also easily compute the Alexander polynomial of a braid. We do not give here this algorithm,
but all the computations of Alexander polynomials of braids we made in the following chapters are
done using this algorithm.

Some braids in B, are of special interest. We have already seen the standard generators. Here is
another one.

Definition 2.74 The Garside element of By, is defined by

Am = (0’1 .. .am_l)(al ...O'm_20'1) . (0'10'2)0'1.

Yo " - S
i+1 i+1 ST
— — é S ~—
) L . - Q/
a) b) c)
Figure 2.9:

For example, Aj is depicted on Figure 2.9¢).

The braid group being finitely generated, a natural problem, the so called word problem arises: given
two elements of the free group generated by o1,...,0,,_1, does they represent the same element in
B,.?

F. Garside solved in [Gar69] the word problem in the braid group. He found a way to associate to
any braid a normal form. He gave an algorithm to rewrite any braid in such a way that two braids
represent the same element in By, if and only if this rewriting algorithm gives the same result for
both. The result of the rewriting algorithm is called the Garside normal form.

We do not define here the Garside normal form, the interested reader can refer to [Gar69] or [Jac90].
We will only use it in sections 5.4.4 and 5.5 to decide whether a braid is trivial or not. Hence we
just give the Garside normal form of the trivial braid.
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Lemma 2.75 A braid is trivial if and only if its Garside normal form is equal to 1.

The complexity of the initial algorithm proposed by Garside is exponential with respect to n, so we
will use the algorithm given by A. Jacquemard in [Jac90] which is polynomial in n.

Lastly, we define a fundamental notion for the Orevkov method, the notion of quasipositivity for
a braid. This notion was introduced by L. Rudolph in [Rud83] in the study of complex algebraic
curves.

Definition 2.76 A braid is said to be quasipositive if it can be represented in By, as

-1
ijazjwj .
J

2.7.2 Orevkov’s method

From now on, we fix a base B of X, a fiber [, of £, and an £ — scheme A in X,, which may be
nodal. Suppose moreover that all the intersections of A and F are real and that A intersects each
fiber in m or m — 2 real points (counted with multiplicities) and [, in m distinct real points. Choose
a standard coordinate system on ¥, such that [, has equation {zo = 0} (see section 2.3) and a
trivialization of the CP'-bundle over B\ (B Nly). Then, examine the real part of the fibration
from 1 = —o00 to 1 = 400, and encode the £ — scheme A in the following way :

e if the pencil of real lines has a tangency point with A, write D if A intersects a fiber in m
real points before the tangency point, and Cj otherwise,

e if the pencil of real lines meets a double point of A, write xj, if the tangents are real and e
otherwise,

o if A intersects the infinite section, write /i if the branch of A passing through the infinity lies
in the region {y > 0} just before the infinite point, and \j; otherwise,

where k is the number of real intersection points of the fiber and A below the ramification point
(which includes the ramification point itself). Replace all the occurrences of the pattern Cy Dy and
of e; by o,. We have a coding s1 ... s, of the £L — scheme A. In order to obtain a braid from this
coding, perform the following substitutions :

e replace each x; which appears between C, et D; by O'j_l,
e replace each \; which appears between C; et Dy by 0102...0m—1,
e replace each /,, which appears between Cs et D¢ by opm—10m—2...01,

e replace each sub-word D X, , ... Xi’rl,l?l Xiggon- Xirzﬂ?g RN T ximp?l Ct

. _ -1
with 7; = \1,\3,/m OF /m—2 by 0y w11 ... Up 101812 .. Upy 2V - . . VpULp - - Up, pTs 1

where
-1 e _ 01092 ...0m—1 if?l 2\1,
ik ifije<s—1, S0 o
g op . 09 0102...0m—1 lf.l—\g
R 1 f 1 _ 2 1 m )
Ujk = N T4, p+2 g >s—1, u= e
Jsk Om—-10m—2---01 if 7, = /m,

-1 s o m
Ts,s+10,_1Ts+1,s  if Lk =8—1, Uml—QUTZn—lom—Z oy i = /m_2’
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(08_4}105)(0;}2034_1) (o7 to) ift > s,
Top = 4 (0,2105)(0525051) - (07 ovgn) ift <,
1 ift=s.

Then we obtain a braid bk.

Definition 2.77 The braid associated to the L — scheme A, denoted by, is the braid brAY, (A, is
the Garside element of By,).

For example, the coding and the braid corresponding to the real £ — scheme in 3o depicted in
Figure 2.10a) are, respectively,

2 2 o4 2 -3 -1 _-1 -2 _—1 -4 _—1_2 —2 _—1A2
D3 03 X1 09 X7 /2 C3 x5 D3C3 and 05 °0] 0y 0305 03 0907 05 0502010, 05 Af.

)o°/\ C )u//\\ C ’
Aol AW [

Figure 2.10:

The meaning of the braid b4 is the following. First, denote by r the number of (real) intersection
points of A with the exceptional section, by 7 the projection Y, — B, and by 7’ the restriction of 7
to ¥ \ E. Suppose that there exists a real pseudoholomorphic curve C of bidegree (m, ) realizing
the £ — scheme A. The set Sy = (m4)~'(RB) is a singular 1-dimensional subvariety of 7~!(RB).
The set S4 corresponding to the £ — scheme A of Figure 2.10a) is depicted on Figure 2.10b), where
the non-real points of S4 are drawn in dashed lines. For € > 0, denote by 7 . and 7, . the followings
paths

Te o [-L1] = C and 72€ [0;1] — C
t o Llttie t o leimpie

Choose a parametrization 7 by the segment [0;1] of the union of the images of 7,  and ;¢ (see
Figure 2.10c)). Then, the set 7'~ (v([0;1]) for € small enough is a smooth 1-dimensional subvariety
of [0;1] x C. It can be viewed as a smoothing of S4 and is actually the closure of the braid b4. That
means that the algorithm given in the beginning of this section to obtain b4 from A describes how
the singular points of S4 are smoothed.

In [Ore99], Orevkov proved the two following results.

Theorem 2.78 (Orevkov) The L — scheme A is realizable by a pseudoholomorphic curve of bide-
gree (m,r) if and only if the braid by is quasipositive.

Proposition 2.79 (Orevkov) Let A an L — scheme, and A’ the L — scheme obtained from A by
one of the following elementary operations :

Xj Djk1—> Xjt1 Jj , Cjx1 X5 =C5 X1 XU —> UpXj
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o Cp k-1 > Cg Xg—1 Ik —> Cp—120r 0 ,
CjDj+1—0 ,  CiDk—DkC ., 0 —0
where |k — j| > 1 and u stands for x, C, or D.
Then if A is realizable by a pseudoholomorphic curve of bidegree (m,r), so is A'.

Moreover, if A is realizable by a dividing pseudoholomorphic curve of bidegree (m,r) and if A’ is
obtained from A by one of the previous elementary operations except the last one, so is A’.

According to Proposition 2.79, if an L-scheme A is realizable by a pseudoholomorphic curve, so is
any L-scheme obtained from A by some C;D;+1— () operations. Orevkov showed ([Ore02b]) that
unfortunately this is not the case for algebraic curves.

Remark. To define the braid b4, we have supposed that A intersects each fiber of ¥, in m or
m — 2 real points (counted with multiplicities). If this condition is not fulfilled, one cannot associate
anymore a unique braid to A. However, one can associate to it a family of braids (see [Ore99],
[Ore02a]). We will never consider this case in this thesis, so we just mention it.

2.7.3 The quasipositivity problem

The quasipositivity problem in the braid group is solved only for 3-strings braids (Orevkov, [Ore04)).
However, following Rudolph’s work (see [Rud83]), Orevkov (see [Ore99]) observed that the quasi-
positivity of a braid implies that its closure bounds a smoothly and properly embedded surface in
the ball B, with given Betti numbers. As necessary conditions for this property, Orevkov used ele-
mentary arguments on the linking numbers of the components, and the so-called Murasugi-Tristram
inequality (see [Tri69], [Mur65], [Ore99]). The Tristram signatures of a link L are constructed
from a Seifert form, and the inequality states that the existence of a smooth surface in B*, with
given Betty numbers and boundary L, implies restrictions on the possible values of these signatures.
Propositions 2.80 and 2.81 are corollaries of this inequality (see [Ore99]) that we will use in this
thesis.

Proposition 2.80 (Orevkov) If a braid b in By, is quasipositive and e(b) < m — 1, then the
Alezander polynomial of b is identically zero.

Proposition 2.81 (Orevkov) If a braid b in B, is quasipositive and e(b) = m — 1, then all the
roots of the Alexander polynomial of b situated on the unit circle are of order at least two.

One may note that, according to Viro’s work (see [Vir73]), the Tristram signatures of a link can be
interpreted as signatures of intersection forms related to some finite cyclic coverings of B, branched
along a smooth surface whose boundary is the link. In [Gil81], P. Gilmer gave a proof of the
Murasugi-Tristram inequality using this point of view. This illustrates in particular that the work
of Orevkov extends the spirit of the work of Arnold (see [Arn71]), which uses arithmetic of the
intersection form of the 2-fold covering of CP?, branched along a curve.

Using the intersection form point of view, Florens [Flo] constructed generalized signatures as an
extension of Tristram’s signatures to the case of colored links, and showed that they verify also the
Murasugi-Tristram inequality. This has allowed him to achieve the classification of the complex
schemes realized by real algebraic M-curves of degree 7 in RP2. More recently, he has showed with
D. Cimasoni in [CF] that these generalized signatures can be constructed in terms of generalized
Seifert forms for colored links. This gives in particular a very practical way to compute these
invariants in terms of a word in the braid group.

Orevkov has also used the generalized Fox-Milnor theorem in [Ore02a] to prove non-quasipositivity
of some braids. The following proposition is a corollary of this latter theorem (see [Ore02al).
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Proposition 2.82 (Orevkov) If a braid b in By, is quasipositive and e(b) = m — 1, then |det(b)|
is a square of integer number.

Orevkov also used unitary representations of the braid group in [Ore01b]. One can mention that in

[KT02], the authors propose an efficient probabilistic method to study a particular case of quasi-
positive braids.
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Chapter 3

Real rational graphs on CP!

3.1 Motivation

This section deals with the following problem : given a real arrangement of roots of three real
polynomials (called a root scheme below), does there exist two real polynomials P and @ such that
the real roots of P,Q and P + @) realize the given arrangement?

This question can be reformulated in terms of existence of a certain graph on CP! (called a real
rational graph below), usually called a dessin d’enfant.

We start with the following fact : to any rational map f : CP! — CP!, one can associate a natural
graph on CP!, namely f !(RP!). This correspondence is used for example by S. Natanzon, B.
Shapiro and A. Vainshtein to classify topologically generic real rational maps (see [NSV02] and
[SV03]). An other application of these graphs has been exploited by A. Zvonkin ([Zvo]). He used
these graphs to study the minimal degree of P3 — Q?, where P and @ are complex polynomials
of degrees 2k and 3k, respectively. Following Zvonkin, Orevkov proposed in [Ore03] a new way to
construct real algebraic trigonal curves in rational geometrically ruled surfaces.

Zvonkin and Orevkov actually used a particular case of rational graphs : trigonal graphs. However,
arguments used in [Ore03] are valid in a more general context. In the first section, we state definitions
in the general setting. In the second section, we focus our attention on real trigonal graphs. As
Orevkov as showed, these graphs play an important role in the study of trigonal curves. He has
exhibited a correspondence between both set of objects. Here we give an efficient algorithm which
deals with real rational graphs.

The results of section 3.2 will be used in section 4 to construct curves in X, with a prescribed
position with respect to two basis. We will use in Chapter 5 the algorithm given in section 3.3 to
prove the non-realizability of some L-schemes by real algebraic trigonal curves.

3.2 General situation

Definition 3.1 A root scheme is a k-uplet ((I1,m1), ..., (Ik,mi)) € ({p,q,7} x N)* with k a natural
number (here, p,q and r are symbols and do not stand for natural numbers).

A root scheme ((l1,m1),...,(lg,my)) is realizable by polynomials of degree n if there exist two
real polynomials in one wvariable of degree m, with no common roots, P(X) and Q(X) such that
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if 11 < 9 < ... < xk are the real roots of P,Q and P+ Q, then l; = p (resp., q,7) if z; is a root of
P (resp., Q,P + Q) and m; is the multiplicity of x;.
The polynomials P, @ and P + Q are said to realize the root scheme ((l1,m1),-..,(lk, mg)).

In a root scheme, we will abbreviate a sequence S repeated u times by S™.
From now on, let RS be a root scheme and suppose that RS is realized by P, Q( z%nd P(—i—)Q of
R(X) _ P(X

degree n. Put R(X) = P(X) + Q(X) and consider the rational function f(X) = X = ox) + 1.

Color and orient RP! as depicted in Figure 3.1a). Let T be f~!(RP!) with the coloring and the
orientation induced by those chosen on RP!. Then, I is a colored and oriented graph on CP?,
invariant under the action of the complex conjugation. The colored and oriented graph on RP!
obtained as the intersection of T' and RP! can clearly be extracted from RS.

S B <

p
> S 1 v gv<

p
,,>,

Figure 3.1:

Definition 3.2 The colored and oriented graph on RP' constructed above is called the real graph
associated to RS.

Definition 3.3 LetT be a graph on CP' invariant under the action of the complex conjugation and
7 : T — RP! a continuous map. Then the coloring and orientation of RP' shown in Figure 3.1a)
defines a coloring and an orientation of I' via .

The graph T' equipped with this coloring and this orientation is called a real rational graph if

e any vertex of I' has an even valence,
e any connected component D of CP' \ T is homeomorphic to an open disk,
e for any connected component D of CP* \ T, one has Tgp 8 a covering of RP' of degree dp.

The sum of the degrees dp for all connected component D of {Im(z) > 0} \T' of is called the degree
of T

The importance of real rational graphs is given by the following proposition. The proof is the same
as in [Ore03]. However, as we work in a more general setting, we reproduce the proof here.

Theorem 3.4 (Orevkov, [Ore03]) Let RS be a root scheme and G its real graph. Then RS is
realizable by polynomials of degree n if and only if there exists a real rational graph T’ of degree n
such that T NRP! = G.

Proof. If the root scheme RS is realizable by polynomials of degree n, then consider I' = f~!(RP!)
(f is the rational function constructed at the beginning of this section). If the graph I is connected,
then it is a real rational graph on CP! satisfying the conditions of the proposition. If T' is not
connected, we will perform some operations on I' N {Im(z) > 0} C CP!. The final graph on CP!
will be obtained by gluing the obtained graph with its image under the complex conjugation.
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Figure 3.2:

Choose p in f~1(1) N{Im(z) > 0} and ¢ in f~*(c0) N {Im(z) > 0} belonging to different connected
components of T', and lying on the boundary of one connected components of CP* \T. Then, perform
the operation depicted in Figure 3.2a). Perform this operation until the graph obtained is connected.
Then, this graph is a real rational graph on CP! satisfying the conditions of the proposition.

Now suppose there exists a real rational graph T of degree n such that TNRP! = G. Let 7 : T' — RP!
be a continuous map compatible with the orientation and the coloring of both spaces. Denote by
Dy, ..., DDy, the connected components of CP* NT'N{Im(z) < 0} and choose a sign for each connected
component of CP! \ RP!. To each D;, assign

e a sign s; to each D; such that if D; N D; # , then D; and D; have opposite signs,
e an natural integer d; which is the degree of the covering m5p, : (D;) — RP?.

Now extend on D; each mp.(p,) on a (branched if d; > 1) covering of degree d; of the half of
CP! \ RP! with the sign s;. Finally, extend 7 on a real topological branched covering $? — CP!.
The pull-back structure by f on S? makes f to be a real rational function % with R and @ of degree
n. The polynomials R — ), @ and R realize the root scheme RS. O

For example, the root scheme ((p,1), (r,1), (g,2), (r,3), (p,1), (¢,1)?, (p, 1)*) is realizable by polyno-
mials of degree 6 as it is depicted in Figure 3.1b).

Lemma 3.5 Let RS = ((I1,m1),-.., (lg,mk)) a root scheme such that there exist i and s such that
Vj € {i,...,i+s},lj =1;. Define the root scheme RS' = ((I{,m}),...,(I,_,,m}_,)) by

o (Ij,m}) = (I, my) fort <1,
o (If,ml) = (Liymi+ ...+ miys),
o (I}, m}) = (lgsy mpys) fort >,

Then RS is realizable by polynomials of degree n if and only if RS’ is realizable by polynomials of
degree n.

Proof. Straightforward. O

3.3 An important special case : real trigonal graphs on CP!

In [Ore03], Orevkov reformulates the existence of real algebraic trigonal curves realizing a given
L-scheme in ¥, in terms of the existence of a special case of real rational graphs on CP'. Using
these trigonal graphs, he obtained a classification of algebraic trigonal curves in ¥, up to isotopy
which respects the fibration, in terms of gluing of cubics ([Ore02b]).

Guided by this article, we give in this section an efficient algorithm to check whether an £-scheme
is realizable by a real algebraic trigonal curve in 3,,.
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3.3.1 Root scheme associated to a trigonal curve

In what follows, n is a positive integer and C(X,Y) = Y3 + bo(X)Y + b3(X) is a real polynomial,
where b;(X) is a real polynomial of degree in in X. By a suitable change of coordinates in ¥, any
trigonal curve in ¥, can be put into this form. The aim of this section is to explain how to use real
rational graphs to construct the polynomials b and bs.

Denote by D = —4bj — 27b3 the discriminant of P with respect to the variable Y. The knowledge
of the root scheme realized by D, 27b3 and —4b3 allows one to recover the L-scheme realized by C,
up to the transformation Y +— —Y. Indeed, the position of C' with respect to the pencil of lines is
given by the sign of the double root of C(z,Y) at each root z of D, which is the sign of bs(x).
Consider a trigonal £-scheme A in ¥, such that A intersects some fiber [, in 3 distinct real points.
Consider also the coding s1...s, of A defined in section 2.7.2, using the symbols C, D, o and X.
In this coding, replace all the occurrences xj (resp., ox) by Dx Cy (resp., Cx Dk). This coding is
denoted by r; ...rq. Define root scheme RS4 = (S1,...,S5,) as follows :

(p,1) if n is even and r; =Dy and ry =Cy,
e S = or n is odd and 1 =Dj, and ry =Cgx1,
(¢,2),(p,1) otherwise ,

o fori > 1,
(p, 1) if r; =Cy and r;—1 =Dy,
g — or r; =Dy and r;_1 =Cy,
' (¢,2),(p,1) if r; =D¢ and r; 1 =Cgz1,

(r,3),(q,2),(r,3), (p,1) ifr; =Cx and r5_1 =Dg41 -

Definition 3.6 The root scheme RS 4 is called the root scheme associated to A.
The real graph associated to RS 4 s called the real graph associated to A.

The real graph associated to A is obtained from A as depicted in Figure 3.3.

o 7<>

a) b) C) d)

Figure 3.3:

As we want to construct polynomials with double or triple roots, we need to consider a subclass of
real rational graphs.

SN . ..<...E>.....
a) b)

Figure 3.4:

Definition 3.7 Let T be a real rational graph of degree n, and = : T — RP! a continuous map
which induces the orientation and coloring of I'. The graph T" is a real trigonal graph if
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e T has exactly 6n vertices of the kind depicted in Figure 3.4a), 3n vertices of the kind depicted
depicted on 3.4b) and 2n vertices of the kind depicted depicted on 3.4c), and no other non-real
multiple points,

o The set 71 ([o0;0]) is connected.

Figure 3.5:

Theorem 3.8 Let A be a trigonal L-scheme in %, and G its real graph. Then A is realizable by
real algebraic trigonal curves in X, if and only if there exists a real trigonal graph I' of degree n
such that TNRP! = G.

Proof. If there exists such a trigonal graph of degree n, according to proposition 3.4, there exists a
polynomial by of degree 2n and a polynomial b3 of degree 3n such that the polynomials —4b3 — 2753,
27b% and —4b3 realize the root scheme RS4. Clearly, the curve define by the equation Y3 +b9(X)Y +
b3(X) or Y3 + bo(X)Y — b3(X) realizes the expected L-scheme.

Suppose that there exists a real algebraic curve C realizing A. As in the previous section, let us put
f= %71?2 and T' = f~}(RP!). We will perform some operations on one of the halves of CP! \ RP!.
The ﬁnaf picture will be obtained by gluing the obtained graph with its image under the complex
conjugation.

If T has non-real double points, smooth them as depicted in Figure 3.5a).

Performing operations depicted in Figures 3.2b), c)and d), minimize the number of real double
points of I.

If f1([oo;0]) is not connected, choose p in f1(0) and g in f~*(oco0) belonging to different connected
components of f~([oo;0]). If p and g belong to the same connected components of T', choose p and g
such that they are connected in I' by an arc of f~!(]0; co[) and perform on I' the operation depicted
in Figure 3.5b). Otherwise, choose p and ¢ lying on the boundary of one connected components of
CP!' \ T and perform on T the operation depicted in Figure 3.5c). Perform these operations until

7 ([00;0]) is connected. O

Remark. The connexity of 7—!([oo; 0]) is not necessary to the existence of the algebraic curve. We
use this condition only in the next section.

3.3.2 Comb theoretical method

FE Y E VT F TR

g1 g2 g3 g4 95 9e 9194

Figure 3.6:
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Denote by CB the semigroup generated by the elements g1, ... gs in R? depicted in Figure 3.6. The
multiplication of two elements ¢; and ¢z in C'B is the attachment of the right endpoint of ¢; to the
left endpoint of co.

Definition 3.9 The elements of CB are called combs.
For example, the comb g1g4 is depicted in figure 3.6. The unit element of C'B is denoted by 1.
Definition 3.10 A weighted comb is a quadruplet (c, o, 8,7) in CB x Z3.

Consider a trigonal £-scheme A in ¥, satisfying the hypothesis of section 2.7.2, i.e. all the inter-
sections of A and F are real, and A intersects some fiber o in 3 distinct real points. Consider
also the coding s1...s, of A defined in section 2.7.2, using the symbols C, D, o and x. In this
coding, replace all the occurrences Xy (resp., ox) by Dy Ck (resp., Cx Dg). This coding is denoted
by r1...74. Define the weighted combs (¢;, o, 8;,i) as follows :

b (co7a07/80a70) = (1,6n,3n,2n)

(93,6n — 1,3n,2n) if n is even and 1 =D, and ry =Cy,
o (c1,01,81,m) = or n is odd and r; =D}, and rqy =Cg41,
(95,6n —1,3n — 1,2n) otherwise ,

o fori>1,
(ci-192, 01— 1,Bi1,7%1) if r; =Cy and r;—1 =Dy,
(ci, v, By i) = (ci—193, -1 — 1, Bi—1,7%i-1) %f r; =D and 1;_1 =Cg,
(ci195, i1 — 1, B8i-1 — 1,77i-1) if r; =Dp and 131 =Cpg1,
(

Ci—19691949196, %i—1 — 1, Bi—1 — 1,7i-1 —2) if r; =Cy and 151 =Dp1 -

Definition 3.11 One says that the weighted comb (cq, %, %, %‘1) is associated to the L-scheme A.

A ANV

> 29 ¢
VAVAV AV AV A
a)

Figure 3.7:

Definition 3.12 Let c be a comb. A closure of ¢ is a subset of R? obtained by joining each generator
g1 (resp., g3, gs) in c to a generator gy (resp., ga, ge) in ¢ by a path in R% in such a way that these
paths do not intersect.

If there exists a closure of ¢, one says that ¢ is closed.

For example, the weighted comb associated to the £-scheme in ¥; depicted in Figure 3.7a) is
(95969191919695929392, 0,0,0). A closure of this comb is shown in Figure 3.7b). The comb depicted
in Figure 3.7¢) is not closed.

Definition 3.13 A chain of weighted combs is a sequence (wz’)1§i§k of weighted combs, with w; =
(Cia ai;ﬂia’}’i)a such that :
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wg = (¢,0,0,0), where ¢ is a closed comb,
Vi € {1...k — 1}, the weighted comb w;1 is obtained from w; by one of the following

operations :
(1) ifv>0: 92 — (9691)%96, Cit1 = a4, Bit1 = Bi, Vi1 =vi — 1
or g5 — (9396)%93, ®iy1 =i — 3, Bit1 = Bi , Yit1 =i — 1
(2) ifa; >0: g1 =93, ait1 =0 — 1, Biy1 =P, vig1 =0
(3) else : g5 = 949594, i1 =0, Biy1 =Fi — 1, 741 = 0.

One says that the chain (w;)i1<i<k starts at wi.

Definition 3.14 Let w be a weighted comb. The multiplicity of w, denoted by p(w), is defined as
the number of chains of weighted combs which start at w.

Theorem 3.15 Let A be a trigonal L-scheme in X, and w its associated weighted comb. Then A
is realizable by real algebraic trigonal curves in Xy, if and only if p(w) > 0 or w = (1, 6n,3n,2n).

Proof. Let w = (¢, @, 8,7), and G be the real graph associated to the £L-scheme A. If ¢ = 1, it is well
known that A is realizable by a real algebraic trigonal curve in ¥,. Otherwise, a chain of weighted
combs starting at w is a reformulation of the statement :

”choose a half D of CP' \ RP?; then there exists a finite sequence (G;)o<i<j of subsets of CP' such
that:

L4 GOZGa

e for i in {1,...,a}, the subset G; is obtained from G;_1 by one of the gluings in D depicted in
Figures 3.8a) and b); denote by ¢ the number of times that G; is obtained from G;_1 by the
gluing depicted in Figure 3.8b) for 7 in {1,...,a},

e foriin {a+1,...,a+3—3c}, the subset G; is obtained from G;_1 by the gluing in D depicted
in Figure 3.8c),

o foriin {a+ f —3c+1,...,k — 2}, the subset G; is obtained from G;_; by the gluing in D
depicted in Figure 3.8d),

e (711 has no boundary and contains Gi_o,

e k=a+p+7—-3c+2,

o G is the gluing of G_1 and its image under the complex conjugation,
e G}, is a trigonal graph such that Gy NRP! = G”.

So, according to Theorem 3.8, there exists a chain of weighted combs starting at w if and only if A
is realizable by a real algebraic trigonal curve in X,,. O

Figure 3.8:

Theorem 3.15 provides an algorithm to check whether an £-scheme is realizable by a real algebraic
trigonal curve in 3,. In order to reduce computations, one can use the following observations.
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Lemma 3.16 Let c be a closed comb, and Cl one of its closures. Suppose that ¢ = c1g;,c2gi,¢3, and
that g;, and g;, are joined in Cl. Then the combs cic3 and ca contain the same number of generators

g1 (resp., g3, gs) and ga (resp., ga, gs)-
Proof. Straightforward. O
Lemma 3.17 Let (c,0,3,0) be an element of a chain of weighted combs. Then it is possible to join

each g1 in c to a ga in ¢ by pairwise non-intersecting paths in R2 such that if ¢ = c1gi,cagi,c3 with
gi, and g;, joined, then the combs cic3 and co contain the same number of generators g1 and go.

Proof. Straightforward. O
Lemma 3.18 Let (c,«,3,0) be an element of a chain of weighted combs, where ¢ = H?:l gi; -
Define the equivalence relation ~ on {j | i; = 1 or 2} as follows :

T ~ s if the number of g1, g2, 93, and ga in {g;; | j =7...s} is odd.

Denote by EY and ES the two equivalence classes of ~. Then
|Card(EY) — Card(ES)| < a.

Proof. Choose a chain of weighted combs (w;)1<i<x Which contains (c, @, 8,0). Let (¢,0,5,0) be an
element of this chain. Then there exists [ € {1... a} such that

Card(E{) = Card(Ef) — | and Card(ES) = Card(ES) — a + 1.

It is obvious that in a closure of ¢, an element of EIE has to be joined to an element of EQE, hence the
cardinal of these two sets are equal. O

The algorithm given by Theorem 3.15 improved by Lemmas 3.16, 3.17, and 3.18, is quite efficient. It
will allow us in section 5.5 to prohibit algebraically two £-schemes pseudoholomorphically realizable.



Chapter 4

Real plane algebraic curves with
asymptotically maximal number of
even ovals

4.1 Motivation

An oval of a real algebraic curve of even degree is called even (resp., odd) if it is contained in an
even (resp., odd) number of ovals. The number of even (resp., odd) ovals of a real plane algebraic
curve of degree 2k is denoted by p (resp., n). This separation of ovals in two groups is important for
many reasons. One of them is the fact that curves with many even ovals can be used to construct
real algebraic surfaces with big Betti numbers (see section 4.5).

What are the maximal possible values for p and n with respect to k7 The first step in the study
of this problem is due to Ragsdale. In 1906, she conjectured in [Rag06] that p < 3k(k U 41 and
n < w About 30 years later, Petrovsky proved in [Pet33] that p — n < 3k(k D 4+ 1 and
n—p< w (these inequalities were also conjectured by Ragsdale), and formulated a conjecture
similar to Ragsdale’s one (it seems clear that Petrovsky was not familiar with Ragsdale’s work).
Combining the Petrovsky inequalities with the Harnack theorem one can obtain the following upper
bounds for p and n :

The first counterexamples to Ragsdale’s conjecture for n (but not to Petrovsky’s one) were con-
structed by Viro in the late 70’s (see [Vir89]). In 1993, Itenberg gave in [Ite93] counterexamples
to Ragsdale’s and Petrovsky’s conjectures. He has constructed for every positive integer k curves
of degree 2k with % + O(k) even and curves of degree 2k with % + O(k) odd ovals. These
lower bounds for maximal values of p and n with respect to the degree were successively improved
by Haas (see [Haa95]) and Itenberg (see [Ite01]). The best lower bound known before this thesis
was 8”“ + O(k) for both p and n. We point out the fact that no counterexample of Ragsdale’s
conJectures is known among M-curves.

All these constructions are based on a particular case of the Viro method, the combinatorial patch-
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working. One can note that dealing with non-convex triangulations (and so with pseudo-holomorphic

curves, see [IS02]), Santos ([San]) has constructed curves with 1?52 + O(k%) even ovals.

It seemed to us that the T-construction is more or less “rigid” and that the general Viro method
gives one more flexibility and possibilities to construct real algebraic curves. Then, we resumed the
work of Itenberg and Santos in this way, trying to increase the density of even ovals. It turned out
that gluing curves whose Newton polygon is not anymore a triangle but an hexagon, it was possible
to prove that the upper bounds given by the Harnack theorem and the Petrovsky inequalities are
asymptotically sharp.

4.2 Main result

Theor;em 4. 1 For any integer k, there exists a real algebraic curve of degree 2k in RP? with
p=" 1 0k?).
7k2

For any integer k, there exists a real algebraic curve of degree 2k in RP? with n = T+ O(k%

).

Proof. The assertion relative to p is a direct consequence of corollary 4.6. The assertion relative
to n can be proved, as in [Ite93] and [Ite01], by a small modification of the construction given in
section 4.3 (see Figure 4.6). O

This chapter is organized as follows: in section 4.3, we prove the first part of Theorem 4.1. The
constructions in this section are based on the Viro method. We assume in this section the existence
of some special curves in rational geometrically ruled surfaces. The construction of the latter curves
are based on the real rational graphs theoretical method and is performed in section 4.4. In section
4.5, we give some applications of Theorem 4.1 to real algebraic surfaces.

4.3 Construction of real algebraic curves with many even ovals

In this section, we use the following proposition which will be proved in section 4.4.

2n-1 ovals 2n-1 ovals

* 2 N A / Sy A

=}

N4 A4 \/ \/ \/ N4 \v4
n intersection points 0 mtersectlon Coints and one n intersection points n intersection points and one
oval between two intersection oval between two intersection
{X=0} points {X=0} points
a) b)

Figure 4.1:

Proposition 4.2 For any n > 1, there exists a mazimal real algebraic trigonal curve C, in 3,
realizing the L — scheme and whose position with respect to the azis {Y = 0} and {X = 0} is
depicted in Figure 4.1a) if n is even and 4.1b) if n is odd, where p is a tangency point of order n of
Cy, and the azis {Y = 0}.

For example, the curve for Cy is depicted in figure 4.2.

Let us fix an even integer n.
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Figure 4.2:

The Newton polygon of the curve C,, is the quadrangle with vertices (0,0), (2n,0), (2n,1) and
(0,3) and the chart of C,, is depicted in Figure 4.2b) (we have disjointed the 4 symmetric copies of
the Newton polygon of C,, for convenience). Moreover, performing the transformation Y = \Y if
necessary, we can assume that the truncation of C,, on [(0,3); (2n,1)] is aY? + BY2X™ + oY X"
with « and S two real numbers. Let us denote by H,, the hexagon obtained by gluing the charts of
the polynomials (see Figure 4.3a))

X7Y3C,(X,Y), X2Y3C,(%,Y), X2Y3C, (%, %), and X2"Y3Cp (X, +) .

Let us fix an integer k and denote by T the triangle with vertices (0,0), (2k,0) and (0,2k). We
start a subdivision of Ty, in the following way : for each integers [ and h, we put the hexagon H,
centered in the point (1+ 2n+ 41,3+ 8h) or (14 4n + 41,7+ 8h) if this hexagon is contained in Toy.
In this way, we obtain the beginning of a patchwork of a real plane curve of degree 2k as depicted
in Figure 4.4 (here were chose n=4 for convenience).

2n-1 2n-1

2n-1
PN RPN (0 --(o\ | (0)-- (o)
OO "5 /AR T AT
n/2 n/ % = ‘
a) b)

Figure 4.3:

Lemma 4.3 The union of all the hexagons is a part of a convex subdivision of Toy.

Proof. The union of the hexagons can be decomposed into vertical strips as depicted in Figure 4.3b).
Given any convex function on the left edge of the strip, one can extend it to a convex function on
the whole strip which induces this subdivision. O

Let us denote by O the set composed of all the ovals obtained in our beginning of patchwork. Note
that the decomposition of O in 2 disjoint subsets (ovals in one of the subset will be even in the final
patchwork, and the other ovals will be odd) is already given, whatever the final patchwork is. The
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proof is obvious dealing with T-constructions (the signs of the vertices of the triangulation contained
in the interior of an empty oval are the same) and extends immediately to the general case.
Suppose we are given an extension of our beginning of patchwork to the whole T5y, satisfying the
hypothesis of the Viro Theorem. Then, by Viro Theorem, we obtain a real algebraic curve of degree
2k in RP?, which we will denote by C?. Let us choose such an extension that (see Figure 4.5):

e each oval of C}} lying in the half plane {2 < 0} and coming from an hexagon is even and not
contained in another oval of the curve,

e each oval of C}! lying in the quadrant {z > 0} and coming from an empty oval of an hexagon
is even and contained in two other ovals of the curve,
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00000000000 0OO
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Figure 4.4:

It is clear that such an extension exists. One can construct curves we need to complete our patchwork
by the classical small perturbation method (see, for example, [Vir89]). The convexity condition can
be ensured, for example, by keeping on decomposing Ty in strips.
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Lemma 4.4 Each hezagon contributes of at least 14n — 5 even ovals to the curve C}.

Proof. Straightforward. O

4

2 2 2
Lemma 4.5 The curve C}} has at least % — % — % + 45k 4 561" - %

even ovals.

Proof. According to Lemma 4.4, each hexagon H,, in the patchwork of the curve C}' gives at least
14n — 5 even ovals. Then, if the patchwork contains N hexagons H,, the curve C}} will have at least
N(14n — 5) even ovals. The triangle T, with vertices (6n,6n), (2k —12n,6n) and (6n,2k — 12n) is
contained in the union of the hexagons, so

N> Area(Ty,,) _ (k— 9n)2'
~ Area(Hp,) 8n
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Figure 4.6:
Hence the number of even ovals of C}! is at least W(Mn — 5). Developing this quantity, we
obtain the lower bound stated in the lemma. O

The same construction can be done with an odd integer n. The curve obtained is also denoted by
C} and the lower bound of lemma, 4.5 for its number of even oval is still valid.
Now we are able to prove the main theorem of this chapter. We denote the integer part of a real r

by [r].

Corollary 4.6 The curve C,[C\/E has WZ—2 + O(k%) even ovals. O

4.4 Construction of reducible curves with a deep tangency point

Let us define the root schemes R.S,, by
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o (@), [0, (12, D), [0, 1), (1%, (0, D] (0,)7)

if n = 2k,
o (@), [, (@ V2 (D], (1), (0,1, (0, 1), (1), [ 1), (0, D2 (r, D] (0, )"
ifn=2k+1.

Proposition 4.7 For any n in N, the root scheme RS, is realizable by polynomials of degree 2n.

Proof. According to lemma 3.5, one can replace (p,n) by (p,1)" in RS,,, and according to proposition
3.4, one has just to construct a rational graph on CP! with a real part corresponding to the real graph
of RSy. We will prove it by induction on n. All the pictures will represent the half {Im(z) < 0} of
CP!.

The rational graph corresponding to RS; is depicted in Figure 4.7a).

r r
b rarp A

Figure 4.8:

Suppose that a rational graph I',, corresponding to RS, is constructed. Let us examine I';, N RP!
from the left to the right.

Consider, first, the case n = 2k + 1.

Let M be a point on I';, NRP! between the n** point corresponding to p in RS, and the first point
corresponding to 7 in RS,,. Then cut I';, at M and glue the piece of graph depicted in Figure 4.8a).
Let M’ be a point on T';, N RP! between the last point corresponding to r in RS,, and the n'" + 1
point corresponding to ¢ in RS,,. Then cut T';, at M’ and glue the piece of graph depicted in Figure
4.8a).

Consider now the case n = 2k.

Let M be a point on I', NRP! between the n* point corresponding to p in RS, and the first point
corresponding to g in RSy,. Then cut '), at M and glue the piece of graph depicted in Figure 4.8b).
Let M’ be a point on I';, N RP! between the last point corresponding to p in RS, and the nt* 4 1
point corresponding to g in RS,,. Then cut I';, at M’ and glue the piece of graph depicted in Figure
4.8b).
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For example, I'3 is depicted in Figure 4.7b). According to proposition 3.4, the rational graphs I,
ensure the realizability of the root schemes RS, by polynomials of degree 2n. O

Corollary 4.8 For any n in N, there exist three real polynomials a1(X), a2(X) and b(X) of degree
n such that
e all the roots of a1, as, b, and a1b+ az are real,

e any root of ag and a1b+ ag is smaller than any root of b.

Proof. Let P(X), Q(X), and R(X) = P(X)+ Q(X) be three polynomials of degree 2n realizing the
root scheme RS,,. Then

o Q(X) =TI (X —yi) with y1 <yp < ... < yan,
e PX)=(X—a)"[[l (X —z;) witha < z1 <22 <...<ZTp < Ynt1,
e R(X)= HZQZI(X —zj) with a < 21 < 29 < ...< 22pn < Ypt1-
Let us put
e ar(X) = (X)™"P (—% + a),
o Ai(X) =TTim (X — wa),
ar = (X)"Ay (—% + a),
o B(X) = ITiZ0 1 (X — ),
o b=(X)"B(-% +a).

As a1b+ay = (X)*"R (—% + a), the corollary follows from the definition of P, ), and R. O

Now we are able to prove proposition 4.2.

Proof of proposition 4.2. We construct here explicitly only curves in ¥95. The construction of curves
in Y11 is done in the same way. Let us fix an even n > 1 and consider the polynomials a;(X),
az(X), and b(X) of degree n constructed in corollary 4.8. Multiplying these three polynomials by
—1 and performing a linear change of coordinates if necessary, we can assume that the leading
coefficient of b is positive, all the roots of b are positive, and all the roots of as and a1b + as are
negative. Then, the curve Y (Y — b(X)) in ¥, is depicted in Figure 4.9a).

00 T
AWEAR / ) - N B[ /

{Y=0} \/ \/ \/ — O W \?/

T n intersection points TN
n intersection points n intersection points and one
oval between two intersection

{X=0} {X=0} points
a) b)

Figure 4.9:
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Put D,(X,Y) = Y(Y — b(X)) + t(a1(X)Y + a9(X)). For t small enough and of suitable sign,
the relative positions of the curves D,(X,Y), {Y = 0} and {Y — b(X) = 0} are as depicted in
Figure 4.9b), where p is a tangency point of order n of D, and the axis {Y = 0}. Indeed, the
definition of a1 (X), a2(X), and b(X) exactly means that the intersection points of a1(X)Y + a2(X)
and Y (Y — b(X)) have negative abscissa. Perturbing all the double points of D, (X,Y)(Y — b(X))
in order to have the maximal number of ovals and keeping the tangency point of order n with the
axis {Y = 0}, we obtain a curve C,, with n even, satisfying the conditions of proposition 4.2. [

4.5 Applications to real algebraic surfaces

Here we recall and follow the notations proposed in [Bih]. We consider only Z/2Z-homology.

Let d,i,k and n be integers, §;(RX]) the ith Betti number of the real part of a nonsingular real
hypersurface of degree d in CP", and f3;(RY,}) the it" Betti number of the real part (for some real
structure) of a double covering of CP™ branched along a nonsingular real hypersurface of degree 2k.
An interesting question concerns the asymptotic behavior of maz 8;(RX7) and maz §;(RY,)}) when
d and k go to infinity. In [Bih], Bihan has showed that there exist two sequences of real numbers

(Cim)i,nel\l2 and (5i,n)i,neN2 such that

maz (;(RX}) ~ Gind™ and maz B;(RY,y ) ~ 0ink™.

d— 00 k—o00

The exact value of the numbers (;, and J;, are known only for small n. The following equalities
are well known (see [Bih], [Ite01]).

1
00,0 =2, Co,1 =01 =011 =1, (o2 ="Ci 2= 3’

do2 < Z, 01,2 ;, Co3 < 15—2 and (13 < %
The upper bounds are classical and are obtained using the Harnack and Comessati-Petrovsky-Oleinik
inequalities. Lower bounds for dp2 and 12 are directly related to the asymptotically maximal
number of even ovals of a curve of even degree in RP?, and before the results of the present paper,
the best known lower bounds for these two numbers were, respectively, 2L and 2L (see [Ite01]). In
[Bih], Bihan has constructed nonsingular real algebraic surfaces in RP? w1th Bettl numbers related

to (50’2 and (51,2.
Theorem 4.9 (Bihan) One has 6‘17’2 + 4 < (o3 and 61—2 + 2 < (i

Theorem 4.1 gives as immediate corollaries the exact values of dg 2 and 0,2 and improves the known
lower bounds for (p3 and (7 3.

Proposition 4.10 One has dp2 = % and 619 = %

Corollary 4.11 One has 2 51 < Co3 < 12 and 5 < (13 < 2.
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Chapter 5

Symmetric curves of degree 7 in RP?

5.1 Motivation

The real symplectic isotopy problem in RP? turns out to be a very difficult problem for nonsingular
curves. Until now, for each known algebraic classification of nonsingular curves, the pseudoholo-
morphic classification is the same (and even the proofs for both classifications are alike!). So, one
can tackle a simpler question, looking for example at complex curves which admit more symmetries
than the action of Z/2Z given by the complex conjugation. The first natural action is an additional
holomorphic action of Z/2Z, which can be given by a symmetry of the projective plane. Such a real
plane curve, invariant under a symmetry (see the definition below), is called a symmetric curve. The
systematic study of symmetric curves was initiated by Fiedler ([Fie]) and continued by Trille (see
[Tri01]). The rigid isotopy classes of nonsingular sextic in RP? which contain a symmetric curve
can be obtain from [Ite95]. Recently (see [II01]), using auxiliary conics, I. Itenberg and V. Itenberg
have found an elementary proof of this classification. Once again, algebraic and pseudoholomorphic
classifications coincide. On the other hand, in [OS], Orevkov and Shustin have showed that there
exists a real scheme which is realizable by nonsingular symmetric pseudoholomorphic M-curves of
degree 8, but which is not realizable by real symmetric algebraic curves of degree 8.

Hence, it is natural to wonder about the degree 7 and this is the subject of this chapter. It turns
out that the classification of real schemes which are realizable by nonsingular symmetric curves
of degree 7 in RP? are again the same in both algebraic and pseudoholomorphic cases, as well as
the classification of complex schemes which are realizable by nonsingular symmetric M-curves of
degree 7 in RP? (Theorems 5.2 and 5.3). However, if we look at real schemes which are realizable by
nonsingular dividing symmetric curves of degree 7 in RP?, the answers are different. In Theorems 5.4
and 5.5, we exhibit two real schemes which are realizable by symmetric dividing pseudoholomorphic
curves of degree 7 in RP? but not by algebraic ones.

We begin by stating our classification results. Then the following sections are devoted to the proofs
of these statements. First we prove in section 5.4 results related to the pseudoholomorphic category,
using mostly the braid theoretical approach and the Rokhlin-Mischachev orientation formula. Then
in section 5.5, we deal with algebraic statements, using various methods.
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5.2 Definitions and statement of results

Denote by s the holomorphic involution of CP? given by [z :y: 2] = [z : —y : 2].
Definition 5.1 A real pseudoholomorphic curve C in RP? is said to be symmetric if s(C) = C.

Theorem 5.2 The following real schemes are not realizable by symmetric real pseudoholomorphic
curves of degree 7 in RP? :

o (JII (14 — o) II 1{«)) with a =6,7,8,9,
e (JII (13 — o) I 1{a)) with o =6,7,9.

Moreover, any real scheme realizable by real algebraic curves of degree 7 in RP? and not mentioned
in the list above is realizable by symmetric real algebraic curves of degree 7 in RP2.

Proof. The pseudoholomorphic prohibitions are proved in Propositions 5.11 and 5.16. All the other
curves are constructed algebraically in Propositions 5.36, 5.41, 5.42, 5.42, and Corollary 5.40. O

Theorem 5.3 A complex scheme is realizable by symmetric real algebraic (or pseudoholomorphic)
M-curves of degree 7 in RP? if and only if it is contained in the following list :

o (JIT9,I16_);
(JIL(7— k)4 (6 — k)_ TT1_((k + 1); T k_)); with k = 0,2,6,
o (JII(T—k) T (6—k)_ IT 1, (ky IT (k — 1)_)); with k = 1,4,
o (JIT(5—k) I (7T—k)_TT1_((k+2)4 I k_)); with k=0,1,4,5.

Proof. This is a direct consequence of Theorem 5.2, Corollary 5.13 and 5.15, and of the Rokhlin-
Mischachev orientation formula. O

Theorem 5.4 (Pseudoholomorphic classification) The following real schemes are not realiz-
able by dividing symmetric real pseudoholomorphic curves of degree 7 in RP? :

(JOall1(B)) with «=2,6 and a+ =12, a = =4,

Moreover, any real scheme mentioned in Proposition 2.54 and not forbidden by Theorem 5.2 and
the above list is realizable by dividing symmetric real pseudoholomorphic curves of degree 7 in RP?;
any real scheme mentioned in Proposition 2.55 which is not forbidden by Theorem 5.2 is realizable
by non-dividing symmetric real pseudoholomorphic curves of degree 7 in RP?.

Proof. All the pseudoholomorphic prohibitions are proved in Propositions 5.22 and 5.24. All the
constructions are done in Propositions 5.37, 5.46, 5.47, 5.48, and Corollaries 5.39 and 5.28. O

Theorem 5.5 (Algebraic classification) The real schemes
(JIT8IT1(4)) and (JIT4111(8))

are not realizable by a dividing symmetric real algebraic curve of degree 7 in RP?. Any other real
scheme which is realizable by dividing symmetric real pseudoholomorphic curves of degree 7 in RP?
is realizable by dividing symmetric real algebraic curves of degree 7 in RP?.

Any real scheme which is realizable by non-dividing symmetric real pseudoholomorphic curves of
degree T in RP? is realizable by non-dividing symmetric real algebraic curves of degree 7 in RP2.
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Proof. The two algebraic prohibitions are proved in Propositions 5.23, 5.31, and 5.35. All the
constructions are done in Propositions 5.37, 5.46, 5.47, 5.48, and Corollary 5.39. O

5.3 General facts about symmetric curves in the real plane

We denote by By the line {Y = 0}. The involutions s and conj commute, so s o conj is an anti-
holomorphic involution of CP?. The real part of this real structure is a real projective plane

RP? = {[zo : iz1 : zo] € CP? | (zq, w1, 12) € R® \ {0}}.

It is clear that RP2 N RP? = RBy U {[0: 1: 0]}. A symmetric pseudoholomorphic curve C is real
for the structures defined by conj and s o conj. Denote by RC the real part of C' with respect to
soconj, and call this real part the mirror curve of RC.

For a maximal symmetric pseudoholomorphic curve, the real scheme realized by the mirror curve is
uniquely determined.

Theorem 5.6 (Fiedler, [Fie], [Tri0l]) The mirror curve of a mazimal symmetric pseudoholo-
morphic curve of degree 2k + 1 is a nest of depth k with a pseudo-line.

Denote by £, the pencil of lines through the point [0 : 1 : 0] in CP?. If C is a real symmetric
pseudoholomorphic curve of degree 7 in RP2, the curve X = C/s is a pseudoholomorphic curve of
bidegree (3, 1) in X5 and is called the quotient curve of C. The L-scheme realized by RX is obtained
by gluing the £,-schemes realized by RC' and RC along By.

Conversely, a symmetric pseudoholomorphic curve is naturally associated to an arrangement of a
curve X of bidegree (3,1) and a base in Xs.

Proposition 5.7 (Fiedler, [Fie], [Tri01]) If C is a dividing symmetric pseudoholomorphic curve
of degree d in RP?, then

Card(RC N By) =d or Card(RC N By) =0

Thus, in the case of a dividing symmetric curve of odd degree, all the common points of the curve
and By are real.

Proposition 5.8 Let C be a nonsingular real pseudoholomorphic symmetric curve in RP?2. Then
C is smoothly isotopic to a nonsingular real pseudoholomorphic symmetric curve C' in RP? such
that all tangency points between the lines of L, and the invariant components of RC' lie on By.

Proof. Suppose that some tangency points of the invariant components of RC’ with a line of L,
do not lie on By. Then push all the corresponding tangent points of the quotient curve above By
applying the first elementary operation of Proposition 2.79. The resulting symmetric curve satisfies
the conditions of the proposition. O

For example, the symmetric pseudoholomorphic curves of degree 4 depicted in Figures 5.1a) and d)
are isotopic in CP?. The dashed curve represents their mirror curves. The corresponding quotient
curves are depicted in Figures 5.1b) and c).

The curves RC' and RC’ have the same complex orientations. Using the invariant components of
RC', one can apply the Fiedler orientations alternating rule to RC".
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Proposition 5.9 If C is a dividing symmetric pseudoholomorphic curve in RP?, then an oval of
RC' and an oval of RC' cannot intersect in more than 1 point.

Proof. Suppose that there exists a symmetric dividing curve C' such that some oval of RC' intersects
some oval of RC in 2 points. Then, according to Proposition 5.8, the curve C is isotopic to a dividing
pseudoholomorphic symmetric curve C’ with an invariant oval O of RC’, and an oval of RC' is as
shown in Figure 5.2, which is impossible according to the Fiedler alternating rule. O

Figure 5.2:

In general, there is no link between the type of the symmetric curve and the type of its quotient
curve. However, if both the symmetric curve and its mirror curve are of type I, there is no ambiguity.

Proposition 5.10 (Trille, [Tri01]) If a symmetric pseudoholomorphic curve in RP? and its mir-
ror curve are of type I, so is the quotient curve.

5.4 Pseudoholomorphic statements

5.4.1 Prohibitions for curves of bidegree (3,1) in X,
Proposition 5.11 The real schemes (J I S 11 1{a)) with

e 0a=6,7,8,9 and 8 =14 — o,
e a="79and =13 — q,
cannot be realized by symmetric pseudoholomorphic curves of degree 7 in RP2.

Proof. According to Theorem 5.6, Proposition 5.7, the Bézout theorem, Lemmas 2.49 and 2.51, the
only possibilities for the L-schemes of the quotient curves are depicted in Figure 5.3 for the four
M-curves, and in Figures 5.4a), b) and c), for the two (M — 1)-curves.

The curves in Figures 5.4a) (resp., ¢)) and 5.3c) (resp., d)) have the same position with respect to
L, so they give the same braid. Moreover, the braid corresponding to the curves in Figures 5.3d)
and b) are the same. Thus, according to Lemma 2.49, the corresponding braids are :
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i b

(,f)=3,3) or (4,2) (a,B) =(3,3) or (2,4) (a,8)=(3,3) or (4,2) (&) =(3, (4,2)
a) b) c) d)

Figure 5.3:

or (4,2),y+4d=6
Figure 5.4:
bl 5 = 020105 o Lot %oy Loy A2 with (a, 8) = (3,3), (4,2),

3,3
b2 5 = 0105 o1 oo A with (a, 8) = (3,3),(2,4), (4,2),
. 3), (4,2),

bl

b2 =02 0] Tlodoyo, '301 Logo A2 with (o, 8) = (3,

b4 = 0o, 70102A .

The Alexander polynomials of these braids are

Phs=pis=pi,=(-1+1) Pip =DPia =Plp =Pis = (=148 —t+1),

pr= (=1 + )t  — 3+ 12 —t+1).
In each case, e(b) = 1 and the Alexander polynomial is not identically zero. So, according to
Proposition 2.80, none of these braids is quasipositive. O

Proposition 5.12 The topology of the quotient curve of a mazimal nonsingular symmetric pseu-
doholomorphic curve in RP? of degree 7 with a nest containing at least 2 ovals, with respect to the
base {y = 0} of 3o is uniquely determined by the real scheme of the symmetric curve.

Proof. Let C be a symmetric M-curve of degree 7 with a nest containing at least 2 ovals. Then
the possible L-schemes for the quotient curves of C are depicted in Figures 5.3a) and b) with
a=1,2,3,4,5,6 if the number of inner ovals is even and are depicted in Figures 5.3c) and d)
with « =0,1,2,3,4,5,6 if the number of inner ovals is odd. So, according to Lemma 2.49, the
corresponding braids are :

bl = 020105 TP 6T 0007 % o1 A2 with a + B = 6 and & = 1,2, 3,4, 5, 6,
B2 5 = 0105 07 o207 A3 with a + 8 =6 and @ = 0,1,2,3,4,5,6,
bg,g = 0'2_10'1_10'%()'10'2_ﬂ0'1_10'20'1_aA§ with o+ =6 and a =0,1,2,3,4,5,6.

The braids bzl,,’3, b411,2’ b§’4, b§’3, b?l,Q’ bg73, and bi’Q were already shown to be not quasipositive in the
proof of Proposition 5.11. The Alexander polynomials of the remaining braids are :



60 Symmetric curves of degree 7 in RP?

phy = (1 —t+1?), Poo=Pag=pio=pls=(-1+t)(t* — 2 +2 -t +1),
Po= (2 +t+ 1) —t+1)(~1+1)% pi, = (-1+0)(> —t+1),
p = 0 for the other braids.

In each case, e(b) = 1, so if the Alexander polynomial of the braid is not identically null, according
to Proposition 2.80, the braid is not quasipositive. Thus, b}x, 3 is not quasipositive for o = 2, 3,4, 6,
b% 5 is not quasipositive for @ = 0,2,3,4,6, and b} 4 is not quasipositive for @ = 0,1,3,4,5. The
other braids are quasipositive, as the constructions performed in section 5.5 showed (however, it is
not difficult to check this directly on the braids). Hence, the topology of the quotient curve with
respect to the base {y = 0} of Xz is uniquely determined by the topology of the symmetric curve. [J

Corollary 5.13 A complex scheme is realizable by symmetric real algebraic (or pseudoholomorphic)
M-curves of degree T in RP? with a nest containing at least 2 ovals if and only if it is contained in
the following list :

o (JU(T—Fk) 11 (6—k)_I1_((k+1); Ik_)); with k =2,6,

o (JIU(7T—Fk)y (6 —k)_IM1,(ky LI (k+1)_)); with k= 1,4,

o (JU(5B—Fk)yI(7T—k)-TT1_((k+2)4 I k_)); with k=0,1,4,5.
Proof. If C is a maximal nonsingular symmetric curve in RP? of degree 7 with a nest containing at
least 2 ovals, all the possibilities for the £-scheme of the arrangement of its quotient curve and the
section {y = 0} of ¥y are described in Proposition 5.12. Such an arrangement determines uniquely

the complex orientations of the maximal symmetric curve of degree 7. Now, it is not difficult to
check that the complex orientations are exactly those stated in the corollary. O

Proposition 5.14 If C is a mazimal nonsingular symmetric pseudoholomorphic curve in RP? of
degree 7 with a nest containing only one oval, then the only possibilities for the arrangement of its
quotient curve and the base {y = 0} of Lo are depicted in Figure 5.4d) with (v,6) = (4,2) or (0,6).

Proof. 1If C has exactly one inner oval, the £-schemes of the arrangement of its quotient curve and
the base {y = 0} of £y can only be as depicted in 5.4d). The braids corresponding to these curves
are

b;r’y 5= 02_(1+5)01_1030102_701_102A§ withy+d =6 and vy =0,1,2,3,4,5,6.

The corresponding Alexander polynomials are :

Pis=ps=(-1+0E —t+1),  p3,=(-1+1)°
Pli= (14 t) (=B 412 —t+1), plo= (2 —t+ 1)+t +1)(—1+1)3,
2 —pp = ’
Py = P42 .
In each case, e(b) = 1, so according to Proposition 2.80, only the braids bg,ﬁ and bZ’Q can be
quasipositive. O

Corollary 5.15 If C is a mazimal nonsingular symmetric pseudoholomorphic curve in RP? of
degree T with a nest containing only one oval, then its complex scheme is

(JI7,. 106111 (1,1I0));
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Proof. If C is a maximal nonsingular symmetric curve in RP? of degree 7 with a nest containing
only 1 oval, the only two possibilities for the £-scheme of the arrangement of its quotient curve and
the section {y = 0} of ¥y are described in Proposition 5.14. The symmetric curves corresponding
to these arrangements have the complex orientations stated in the corollary. O

5.4.2 Prohibitions for reducible curves of bidegree (4,1) in X,

Proposition 5.16 The real scheme (J 11 711 1(6)) is not realizable by a nonsingular symmetric
pseudoholomorphic curves of degree 7 in RP?.

Proof. Here, as it is not sufficient to look only at the L-schemes of the quotient curves in Yo, we
consider the mutual arrangement of the quotient curves and a base of ¥5. The possible £-schemes
of the quotient curves for the symmetric curve announced above with respect to the base {y = 0}
are depicted in Figure 5.5.

Figure 5.5:

The L-scheme in Figures 5.5b) cannot be realized pseudoholomorphically : the braid corresponding
to this £-scheme and its Alexander polynomial are respectively :

o7Y0d0 30, o1 A2 and (—1 4+ t)3.

The Alexander polynomial is not null although e(b) = 1, so according to Proposition 2.80, the braid
is not quasipositive.

Consider the base H passing through the points a, b and ¢ in Figures 5.5a) and c), where c is a point
of the fiber L. If the point ¢ ranges on L from 0 to oo, then, because of the choice of L, for some
¢, the base H passes through an oval. Now, we want H to pass through the first oval we meet as ¢
ranges from 0 to co. The only possible mutual arrangements for H and the quotient curves which
do not contradict the Bézout theorem are shown in Figure 5.6. The corresponding braids are :

o Lo oo ool oS N0 e [€ P2 e [
YV \/

T/ Y, Y,
\\/ ™ ) // =

a) b) c) d)

Figure 5.6:

-2 1 2 _—4

2o i oo oy oy o oncy Ak
b8203_201_‘720_1 0y 030, 0 O3 _‘720_11 §4, )
bgzaz_?)a?,_ 01 0y 0305 03 020 02_20352%1A4, ,
b’ = 0501 0, 030, 0] “05 05 0907 "0, 050201A%.
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The computation of the corresponding Alexander polynomials gives :

pd = (2 —t+1)(t0 — 3> +6t* — 53+ 612 -3t + 1) (-1 +1)3, p®=(-1+1)7,
p’ = (2t* — 23 + 312 — 2t + 2)(¢t? —t + 1)?(=1 + t)3, p? = (2 —t+1)(-1+1)3

In each case, e(b) = 2, so according to Proposition 2.80, none of these braids is quasipositive. O

5.4.3 Utilization of the Rokhlin-Mischachev orientation formula

) D™

Figure 5.7:

Lemma 5.17 There does not exist a symmetric dividing pseudoholomorphic curve of degree 7 in
RP? with a quotient curve realizing the L-scheme depicted in Figures 5.7a) and d) with o+ 8 odd.

Proof. Such a quotient curve is of type I1, because it is an (M — 1)-curve. The mirror curve of the
initial symmetric curve is a nest of depth 3 with a pseudo-line, and so is of type I. Thus, according
to Proposition 5.10, the initial symmetric curve cannot be of type I. O

Lemma 5.18 There does not exist a symmetric dividing pseudoholomorphic curve of degree 7 in
RP? with a quotient curve realizing the L-scheme depicted in Figure 5.7b) with o + B odd.

Proof. According to the Fiedler orientation alternating rule on symmetric curves corresponding to
these quotient curves, the symmetric curves cannot be of type I if a+ 3 is odd, as the two invariant
empty ovals have opposite orientations. O

Lemma 5.19 There does not exist a symmetric dividing pseudoholomorphic curve of degree 7 in
RP? with a quotient curve realizing the L-scheme depicted in Figure 5.7c) with (o, B) = (4,1), (3,2),
(2,3), and (1,2).

Proof. According to the Fiedler orientation alternating rule on symmetric curves corresponding
to these quotient curves, the three invariant ovals are positive, and hence we have Ay — A_ =1,
Iy —II_ =0if e is odd, and II; —II_ = —2 if v is even. Thus, the Rokhlin-Mischachev orientation
formula is fulfilled only for (@, 8) = (3,2). Choose L as the starting line for the pencil £, and the
corresponding braid and its Alexander polynomial are respectively :

o7ty o105 %01A3  and (—1 4+ t)3.
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Since e(b) = 1, according to Proposition 2.80, the braid is not quasipositive. O

Lemma 5.20 There does not exist a symmetric dividing pseudoholomorphic curve of degree 7 in
RP? with a quotient curve realizing the L-scheme depicted in Figure 5.7e) with (o, ) = (5,0), (4,1),
(3,2), (2,3), and (2,1).

Proof. According to the Fiedler orientation alternating rule on symmetric curves corresponding to
these quotient curves, the two invariant empty ovals have opposite orientations, the non-empty oval
is negative, and we have Ay —A_ =1, II; —II_ =0 if ais even, and II; —II. = -2 if o is
odd. Hence, the Rokhlin-Mischachev orientation formula is fulfilled only for (o, 8) = (4,1) or (2, 3).
Choose L as the starting line for the pencil £, and the corresponding braids are :

b}loﬁ =030y o7 oy ;0 +ﬂ)02 0305 %03 togoy 03000105 1 AT

The computation of the corresponding Alexander polynomials gives
pih =+ —t+1)(=1+1)%, poly = (#* — 263 + 4> — 26 + 1) (=1 +1)°.

In each case we have e(b) = 2, so according to Proposition 2.80, both braids are not quasipositive. (]

Lemma 5.21 There does not exist a symmetric dividing pseudoholomorphic curve of degree 7 in
RP? with a quotient curve realizing the L-scheme depicted in Figure 5.7f) with (o, 8) = (5,0), (3,2),
and (2,3).

Proof. Choose L as the starting line for the pencil £, and the corresponding braids are :

bnﬁ = 0, Y0y Lo90; 501 301050, Yo, oz A2,
The computation of the determinant gives 976 for b%,lo and 592 for bé}Q which are not squares in Z
although e(b) = 3. So according to Proposition 2.81, these two braids are not quasipositive.
The computation of the Alexander polynomial of bl! 3 gives

(t2 +1)(t5 — 5¢° + 12¢* — 143 + 1262 — 5t + 1) (=1 + ).

The number i is a simple root of this polynomial and e(b) = 3. Thus, according to Proposition 2.82,
this braid is not quasipositive. O

Proposition 5.22 The real schemes (J 11211 1(10)) and (J 116 11 1(6)) are not realizable by non-
singular symmetric dividing pseudoholomorphic curves of degree T in RP2.

Proof. According to the Bézout theorem, Proposition 5.9, Lemma 2.49 and Lemma, 2.51, the only
possibilities for the L£-scheme of the quotient curve of such a dividing symmetric curve of degree 7
in RP? are depicted in Figures 5.7a), g) and h) with (o, 8 + ) = (4,1) and (2,3) and in Figures
5.7d), e) and f) with (o, 8) = (5,0), and (3,2). If a trigonal curve realizes one of the two £-schemes
depicted in Figures 5.7g) and h) then v = 0. Otherwise, the base passing through the points a
and b and through an oval v intersects the quotient curve in more than 7 points, and we get a
contradiction with the Bézout theorem.

The remaining quotient curves have been prohibited in Lemmas 5.17, 5.18, 5.19, 5.20, and 5.21 O
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Proposition 5.23 If a nonsingular symmetric dividing pseudoholomorphic curve of degree 7 in
RP? realizes the real scheme (J 11811 1(4)), then the L-scheme of its quotient curve is depicted in
Figure 5.7¢c) with (o, 8) = (1,4).

If a nonsingular symmetric dividing pseudoholomorphic curve of degree 7 in RP? realizes the real
scheme (JI1 28 + 211 1(2a)) with (a, ) = (4,1) or (2,1), then the L-scheme of its quotient curve
is as depicted in Figure 5.7f).

Proof. The proof is the same as for the previous proposition. O

Proposition 5.24 The real scheme (JI14111(4)) is not realizable by nonsingular symmetric dividing
pseudoholomorphic curves of degree T in RP?.

Proof. Suppose the contrary. Then, according to Proposition 5.23, the quotient curve X of such a
symmetric curve would be depicted in Figure 5.7f) with (o, 8) = (2,1). Using the Fiedler orientation
alternating rule, and denoting by e the sign of the two non-invariant outer ovals of the symmetric
curve, we would have Ay — A_ = —1 + 2¢ and II; — II_ = 0. Thus, the Rokhlin-Mischachev
orientation formula would be fulfilled only if ¢ = —1. Hence, one of the two complex orientations of
the curve would be depicted in Figure 5.8a). Using once again the Fiedler orientation alternating
rule, we see that the pencil of lines through the point p would induce an order on the 6 non-invariant
ovals of the symmetric curve as depicted in Figure 5.8a). So the ovals 4 and 1 would not be on the
same connected component of RP? \ (L; U Lg). The mutual arrangement of the curve X and the
quotient curve of (L; U Lo) (in bold line) would be depicted in Figure 5.8b). Now, consider the base
of 39 which passes through the three ovals of X. It would have 9 intersection points with X which
contradicts the Bézout theorem. O

b)

Figure 5.8:

5.4.4 Constructions

Proposition 5.25 There exist nonsingular real pseudoholomorphic curves of bidegree (3,1) in X
such that the L-scheme realized by the union of this curve and a base is as shown in Figures 5.8c)
and d). In particular, all the real tangency points of the curve with the pencil L are above the base

{y =0}

Proof. The braids associated to these L£-schemes are

12 _ —1_—1 -1 -1 _—-3 —1 -1 _-2 -1 2 . —1 -2 —1 _—1A2
b'° = 05 °05 0y 0305 03 090] 05 0] 03 010507 0y 07 0y 03Aj.

The Garside normal forms of both these braids are the trivial one, so Lemma, 2.75 tells us that they
are are trivial, so quasipositive. O
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Figure 5.9:
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Figure 5.10:

Denote by C (resp., C') the symmetric nonsingular pseudoholomorphic curve of degree 7 in RP?
corresponding to the quotient curve depicted in Figure 5.8c) (resp., d)). Let us still denote by
C (resp., C") their strict transform by the blow up of CP? at [0 : 1 : 0]. Also denote by p the
intersection point of C' with the exceptional section E and F), the fiber of 3; through p. Then, the
curve C' has a tangency point of order 2 with F), at p.

In order to prove Proposition 5.26, we recall some of notations of section 2.7 and introduce some
others. For € > 0, denote by 71 ¢ and 72 ¢ the followings paths

Te : 11 — C and %€ [0;1] — C
t o lttie t o Lelltyie
Choose 7y, a parametrization of the union of the image of ;. and 72 (see Figure 5.10a)). Denote
also by :

e 7 the projection ¥; — CP! on the base {Y = 0},
e 7' the restriction of 7 to X; \ E,

o Sa=(ma)H(RP),

D, the compact region of C bounded by -,
bre = 7' (m,e([-1;1]) N 4,

boo,e = ™' (12,6([0;1]) N 4,

be = bR, eboo,e;

o N.=7'""1(D) N A.
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Thus , br ¢ and by are braids, and by = Ag.

As C is a real curve, the real part of S¢ is RC' and the non-real part of S¢ has several connected
components which are globally invariant by the complex conjugation. One can deduce S¢ (resp.,
Sc¢r) from the quotient curve of C. The curve S¢ (resp., S¢r) is depicted in Figure 5.9a) (resp., b)),
where the bold lines represent RC ant the dash lines represent S \ RC. The braid bg ¢ for e small
enough can be viewed as a smoothing of S¢.

Proposition 5.26 The real pseudoholomorphic curve C' constructed above is a dividing curve.

Proof. Except for the point p, all singular points of S are smoothed as explained in Section 2.7.
There exist local coordinates (z,w) in a neighborhood of p in ¥; such that in this neighborhood,
a line of £ has equation z = const and C has equation z = % Then, for e small enough, the

smoothing of S¢ at p is given by the parametrization

[0;1] — [0;1] x C
t = (eetTO-D) :l:%eim(;t)

)

So the smoothing of the connected component of C' which contains p is depicted in Figure 5.10b).
The closure of the braid b, corresponding to C has 6 components denoted by L1, ..., Lg as depicted
in Figure 5.11. By the Riemann-Hurwitz formula, we have

H(Z;E) +6— e(be)

/"(Ne) :g(Ne)+ ) ’

where p(N,) is the number of connected components of N, and g(N¢) is the sum of the genus of
the connected components of N,. We have u(b) = 6, e(b)) = 0 and u(N,) < 6, so N, is made
out of 6 disks. Denote these disks by D1,...,Dg in such a way that 0D; = L;.. Define also
D; . = conj(D;.). When € tends to 0, these 12 disks glue together along S¢, and C' is the result of
this gluing. Moreover, C \ RC is the result of the gluing of these 12 disks along S \ RC. Hence, to
find the type of C, we just have to study how the 12 disks glue along S¢ \ RC.

Figure 5.11:

Denote by D; || Dj . the relation “D; . and D; . are glued along a connected component of S¢ \ RC
as € tends to 0”. Using the fact that each connected component of S¢ \ RC is globally invariant
under the complex conjugation, we have (see Figure 5.11a)) :

Di,el|Dae,  Diel|De,e, Dje||Ds,e _
D3 e||Dee;  Dsel|[Dae; Duael|Dse, Dsel|Dee, Digl|Dje = Djel[Dipe-
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The curve C is a dividing curve if and only if there exist two equivalence classes for ||. Here the
equivalence classes are {D1 ¢, D3 ¢, D5 ¢, D2 ¢, Da ¢, Do ¢ } and { Dy ¢, Dy.¢, D¢ ¢, D1 ¢, D3¢, D5  }, Hence,
C is a dividing curve and the proposition is proved. O

Proposition 5.27 The real pseudoholomorphic curve C' constructed above is a dividing curve.

Proof. We keep the same notations as in Proposition 5.26. As in this proposition, the closure of
the braid b, has 6 components, the surface N, is composed by 6 disks, and the two equivalence
classes for the relation || are {D1 ¢, Do, D¢, D3¢, D5, Dg .} and {D3 ¢, D5 ¢, Dg ¢, D1,e, Do, Dac}
(see Figure 5.11b)). Hence, C' is a dividing curve and the proposition is proved. O

Corollary 5.28 The complezx schemes (J114,114_T111, (2, 112_)); and (JI12,112_111, (4, 114_));
are realizable by nonsingular symmetric real pseudoholomorphic curves of degree 7 in RP?.

5.5 Algebraic statements

5.5.1 Prohibitions

We use here the comb theoretical method exposed in section 3.3.2. In particular, we use the algorithm
to compute the multiplicity of a weighted comb, that is to say to check whether a trigonal £-scheme
is algebraically realizable or not. This algorithm turned out to be very efficient for our purpose and
all the needed calculations have been done on a computer in a short time.

0000 0000 000° C \_SLOOSL
N_Se 20 RSy NS s |
a) b) c) d)

Figure 5.12:

Lemma 5.29 The L-schemes depicted in Figures 5.12b), c¢) and d) are not realizable by nonsingular
real trigonal pseudoholomorphic curves in Xs.

Proof. Compute the braids associated to these £-schemes :

4 _ —1 -1 _—2 —1_ 4 —1,3 15 _ —1_—1
b* =0y 05 0] 0, 0105 07 A3, b° =0 0,

16 _ —1 =1 -1 "1~ “4 -1 _"1x3
b° =0, "0, 0, 0y 0105 0y 05 Aj.

—1 -5 —1A3
o) 0y°0; Ag,

These braids verify e(b) = 0, so they are quasipositive if and only if they are trivial. Computing
their Garside normal form, we find

14 _ 3.2 2 2A-3 15 _ 2.2 2 2A—3 16 _ 32 2 -3
b'* =o0507050{A3°, b° =01050{050{A5", b° =o01050{0501A5".
Thus, according to Lemma 2.75, no one of these braids is quasipositive. O

Lemma 5.30 The L-scheme depicted in Figure 5.12a) is not realizable by nonsingular real algebraic
trigonal curves in %3.
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Proof. The weighted comb associated to this £-scheme is

w1 = (9396919491969592939691949196 (9392) > 9396919491 969592, 1, 2, 0).
We have p(wi) = 0 so, according to Proposition 3.15 the lemma is proved.

Proposition 5.31 The real scheme (JII8I11(4)) is not realizable by nonsingular symmetric dividing
real algebraic curves of degree 7 in RP?.

Proof. Suppose that there exists a dividing symmetric curve which contradicts the lemma. Let us
denote by X its quotient curve. Blow up X5 at the intersection point of X and the exceptional
section and blow down of the strict transform of the fiber. Then the strict transform of X has a
double point with non-real tangents. Smooth this double point in order to obtain an oval. Then,
according to Propositions 5.23 and 3.15, the only possible £-schemes which can be obtained are
depicted in Figures 5.12a), b), c), and d). However, according to Lemmas 5.29 and 5.30, these
L-schemes are not algebraically realizable, so there is a contradiction. O

Lemma 5.32 None of the L-schemes depicted in Figures 5.13a), ..., f) is realizable by nonsingular
real pseudoholomorphic trigonal curves in Y.

Proof. Compute the braids associated to these £-schemes :

b7 = 02_301_102_101_10201_10, bé = 02_201_202_201_10201_10,

19 _ -2 -1 ~Z2 1 -1 _-1 20 _ 4 _—2 -1
b21 b 101 102 101 102021 012 © 1 b22 I 201 202({1 © 2 -1 1
b =0, 0] 0, 0] 0,°0] 090 ¢, b =0,%0 0, 010, 0] 090] ¢,

4

where ¢ = 01_302_10102_ aflagAg.

The braids b'7 and b*! verify e(b) = 2, and the computation of their determinant gives 301 and 805,
respectively, and these numbers are not squares in Z. So according to Proposition 2.81, the two
braids are not quasipositive.

The braids b'8, b*?, 5?°, and b?? verify e(b) = 1, and the computation of their Alexander polynomials
gives respectively

p=(-1+t)#+ 1) -t +1),

Pl = (=14+# —t+ 1)+ 1) — > +2t* — 383 + 212 — ¢t + 1),

pP = (—1+8)(t* =3 +2t2 — 2t + 1) (#* — 263 + 2¢2 — ¢t + 1)(#% + 1)2,

PR =(-1+t)t* - B+ 2 —t+ 1) — 200 + 4t — 53 + 42 — 2t + 1)(2 -t + 1) (¢2 + 1).

According to Proposition 2.80, these four braids are not quasipositive. O

Lemma 5.33 The L-schemes depicted in Figures 5.13g), ..., 1) are not realizable by nonsingular
real algebraic trigonal curves in Xs.

Proof. The weighted combs associated to these L£-schemes are

wy = (agsbgsgzagsbagsbgsgaagsba®gsb,1,4,0), ws = (g3bgsgaa®gsb(a®gsb)?,2,5,1),
w3 = (agsbgsgaagzba®gsbgsbagsh, 1,4,0), we = (agsbgsgaagsb(adgsb)?,2,5,1),
wy = (g93bgsg2a®gsbgsbgsgaa’gsbatysh, 1,4,0), wr = ((a®gsb)?,3,6,2) ,

where a = g3g2 and b = g69194919s-
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Figure 5.13:

The multiplicity of all these weighted combs is 0. Thus, according to Proposition 3.15, none of these
L-schemes is realizable by nonsingular real algebraic trigonal curves in 5. O

Definition 5.34 An L-scheme is minimal if no operation C;D;+1— 0 is possible on it.

Proposition 5.35 The real scheme (JU4I11(8)) is not realizable by nonsingular symmetric dividing
real algebraic curves of degree 7 in RP?.

Proof. Suppose that there exists a dividing symmetric curve which contradicts the lemma. Let us
denote by X its quotient curve. Then, according to Proposition 5.23, the only possible minimal
L-scheme for X with respect to a base is depicted in Figure 5.7f). Blow up X, at the intersection
point of X and the exceptional section and blow down the strict transform of the fiber. Then the
strict transform of X, denoted by X’ is a trigonal curve in X3 with a double point with non-real
tangents at p. Moreover, X' is arranged with respect to a base of 33 as depicted in Figure 5.14a).
Then the cubic resolvent of the union of the base and X’ is a real algebraic trigonal curve on g
depicted in Figure 5.14b). The point p is a triple point and the other singular points are double
points with non-real tangents. Smoothing all the double points in order to obtain ovals, blowing up
3¢ at p and blowing down the strict transform of the fiber, we obtain a nonsingular algebraic trigonal
curve C in ¥y realizing the minimal £-scheme depicted in Figure 5.14c). According to Proposition
2.79 and Lemma, 5.32, the only possibilities for the £-scheme realized by C which do not contradict
obviously Proposition 3.15 are depicted in Figures 5.13g), ..., 1). It has been proved in Lemma 5.33
that all these £-schemes are not algebraically realizable, so there is a contradiction. O

5.5.2 Perturbation of a reducible symmetric curve

The standard method to construct a lot of different isotopy types of nonsingular algebraic curves is
to perturb a singular curve in many ways. So the first idea to construct symmetric algebraic curves
is to perturb in many symmetric ways a singular symmetric algebraic curve.

Proposition 5.36 All the real schemes listed in the following table are realizable by nonsingular
symmetric real algebraic curves of degree T in RP?. Moreover, those marked with the symbol *
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are realized by a dividing symmetric curve and those marked with the symbol ° are realized by a
non-dividing curve.

(J)° (JILIOII1(1))°  (JIISIIL(3))°  (JIIL(6))° (J 11 1(9))°

(JI1)° (JILILII1(1))>* (JIIQII1(3))>* (JII1II1(6))°  (JII11II1(9))>*

(JII2)° (JIL12I11(1))°  (JIII0II1(3))° (JII2IT1(6))° (JII2II1(9))°

(JI13)° (JILI3TI (1)) (JIII1II1(3))* (JII3II1(6))°  (JII3II1(9))>*

(JI14)° (J I 411 1(6))>*

(J I 5)° (JI11(2))° (J T14(1))°

(JIL6)° (JII1II1(2))°  (JII1II1(4))°  (JII6II1(6))°

(JI1 7)o (JII2I11(2))>*  (JII21II 1(4))>* (J I1 1{10))°*

(JI18)° (JII3II1(2))°  (JII3II1(4))° (J 11111 1{10))°

(J I1 9)° (JIAII1(2))>*  (JII4111(4))° (JI12 11 1{10))°

(J 11 10)° (JII5II1(2))°  (JISI1{A)°  (JILL(7))° (J 113 11 1{10))°

(JII11)°* (JI6II1(2))°  (JIUGII1(4)>* (JIILII1(7))>* (JII4II1{10))*

(JI112)° (JII7TII1(2))° (JII 211 1(7))°

(JTT13)°* (JTIISTI1(2))e*  (JIISTI1(4))°  (JIISTIL(7))o*  (JIT1(11))°

(JI114)° (JII9II1(2))° (JII1TI1(11))°*

(J 115y (JI10TI1(2))°  (JIT10TI1(4))* (JIISTTL(7))*  (JIT21T1({11))°
(JII11111(2))° (J 11311 1{11))*

(JIL1(1))° (JIL12I11(2))*  (JILL({5))°

(JII 11 1(1))° (JII 111 1{5))° (JI11(12))°

(JI2II1(1))°  (JIL1(3))° (JTI2T11(5))°  (JIT1(8))°

(JII3TI1())e* (JITTTTI(3))°  (JIISTIL(5))e* (JITTIT1(8))°  (JIT 211 1{12))*

(JIATI1(1))°  (JII2I01(3))°  (JII4II1(5))°  (JII2II1(8))>*

(JUSIT1(1))°  (JIBI1(3))>*  (JISIII(E))* (JI3T1(8))°  (JIT1(13))°

(JII6II1(1))°  (JITAII1(3))°  (JIIGII1(5))° (JIT4II1(8))°  (JII1II1(13))*

(JITII1())>*  (JISITL(3))°*  (JIIT7II1(5))°*

(JIISII1(1))° (JIIGII1(3))°  (JII8II1(5))° (J I 11 1{1(1)))*

(JIOTI1(1))>* (JIITIIL(3))>*  (JIIQII1(5))*

Proof. In order to apply the Viro method without any change of coordinates, we consider here the
symmetry with respect to the line {Y — Z = 0}. Consider the union of the line {X = 0} and
three symmetric conics in RP? tangent to each other into the two symmetric points [0 : 0 : 1] and
[0:1:0]. Using the Viro method as explained in section 2.2.1 and the classification, up to isotopy, of
the curves of degree 7 in RP? with only one singular point Z;5 established by Korchagin in [Kor88],
we perturb these reducible symmetric curves. In order to obtain nonsingular symmetric curves, we
have to perturb symmetrically the two singular points. That is to say, if we perturb the singular
point at [0 : 0 : 1] gluing the chart of a polynomial P(X,Y’), we have to perturb the singular point
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at [0 : 1: 0] gluing the chart of the polynomial Y7 P(5%, 5-). O

Remark. Using this method, we have constructed nonsingular symmetric algebraic curves of degree
7 in RP? realizing the complex schemes (J 114, IT5_ IT1,.(14)); and (JIT3; T16_ IT 1_(14));.
Consequently, unlike in the M-curves case, the real scheme of a nonsingular symmetric curves of
degree 7 in RP? does not determine its complex scheme.

Proposition 5.37 The complex schemes
(JUO1 (1,13 ), (JUO2, T3_1T1 (1)) and (JIOT1_ 1011 (2, 113_));

are realizable by nonsingular symmetric real algebraic dividing curves of degree 7 in RP?.

Proof. In [I101], symmetric sextics realizing the complex schemes (1_(1; IT3_));, (5IT1_(1_));
and (1IT1_(24 I13_)); are constructed. Consider the union of each of these curves and a real line
oriented and disposed in RP? such that the (symmetric) perturbations according to the orientations
satisfies the Rokhlin-Mischachev orientation formula. So, according to Theorem 4.8 in [Vir84c|, the
obtained real algebraic symmetric curves of degree 7 in RP? are of type I and realize the announced
complex schemes. O

5.5.3 Parametrization of a rational curve

Here we apply the method used in [Ore98a] and [Ore98b]. Namely, we construct a singular rational
curve and perturb it using Shustin’s results on the independent perturbations of generalized Newton
nondegenerate singular points of a curve keeping the same Newton polygon.

Proposition 5.38 There exists a rational algebraic curve of degree 4 in RP? situated with respect
to the lines {X = 0}, {Y = 0}, {Z = 0}, and {Y = —Z} as depicted in Figure 5.15a), with a
singular point of type A4 at [0: 0 : 1], a singular point of type A1 at p and a tangency point of order
2 with the line {X =0} at [0:1:0].
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Figure 5.15:
Proof. Consider the map from C to CP? given by ¢ ~ [z(t) : y(t) : 2(t)], where
z(t) = t?

y(t) = at?(t — v)(t +7) withazﬁ,’yzéz%andez%.
2(t) = —((t — 1)(et —1)(6t — 1))
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The curve defined by this map has a singular point of type A4 at [0: 0 : 1], as we can see using the
following identity :

81 g 281 o 289
1000 11000 1100

Moreover, it is clear from the equations that the curve has a tangency point of order 2 with the line

{z =0} at [0 : 1 :0]. This map defines an algebraic curve of degree 4 in CP?, C = Res;(z(t)Y —

y(t)X,z(t)Z — 2(t)X)/X3. Considering C in the affine plane {Z = 1}, we obtain

y(t)2(t) + ay’z(t)2(t) — az(t)? =

1o, 13468021579 4y 1666467523 3y 275261 o, 65485017 X2y
11 1331000000000000 1210000000000 3025000 1100000000

2781 9 81 793881 3 26346141 _ 4 6561 9
— XY - —— XY+ —— XY+ ————— X — ————
+5500 6050 + 1000000 + 6655000000 13310000
In order to show that C is the expected curve, we study its position with respect to the pencil of
lines from the point [1 : 0 : 0]. First, we compute the discriminant of C' with respect to the variable

X and we obtain
_ 361 5 5 4
D = 3755571574393700000000000000000000000000000000 ¥ (10356281643411Y " + 76398776993798820Y

C =

—17692852212979722900Y 3 — 35412592529600440000Y 2 — 17689562158356000000Y

—68874753600000000) (368625411Y + 54936010)2.

The root of order 5 at 0 corresponds to the singular point A4 at the origin, and the root of order 2
corresponds to a double point of C'. We have

C(X 54936010 ) _ _41257520691820587X2—1527134497-5")233127000X—|—50334951883300000000)(714609X7289000)2
’ 3686254117 2082161160567862626483000000000000

so the curve C has a double point of at (232909 — 5936010 ) ~ (0.4044169609, —0.1490293625). By
the genus formula, C' has no other singular point in CP2. The simple roots of D correspond to the
horizontal lines which are tangent to C. So, when y ranges from —oco to co and passes a simple root
of D, the number of real roots of D(X,y) is changed by £2. Using the Budan-Fourier Theorem (see

[BPRO3]), we see that all simple roots of D are real and lie in the following intervals :

—7784171 —3892085

* [ s ) = [F7601.729492; ~7601.728516],
. [_5‘%7; _11)2?] ~ [-1.029296875; —1.028320312],

. [%274?; %] ~ [—0.9560546875; —0.9550781250],

. [%; %] ~ [—0.004882812500; —0.003906250000],

116055 232111
* 5512 7 Tom
We denote these roots by a > b > ¢ > d > e. Using again the Budan-Fourier Theorem, we see that
for y = 230 the polynomial C'(X,y) has 4 real roots and that each of the following intervals contains
exactly one of these roots :

1 l [7555467‘ 1888867
710247 " 1024 T 256

| ~ [226.6699219; 226.6708984].

8093529 4046765

L 8403971 16807943
1024 7 512

L1 512 7 1024

[0 J:
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As the number of real roots of the polynomial C(X,y) is constant on each connected component of
the complement of the roots of D, C(X,y) has exactly

e 4 real roots for y > a,
e 2 real roots for a >y > 0,

e 4 real roots for 0 >y > b,

54936010

e 2 real roots for b > y > ¢ except for y = —gpeo0tT,

e 4 real roots for ¢ > y > d,
e 2 real roots for d > y > e,
e 4 real roots for e > y.

Using the last time the Budan-Fourier Theorem, we see that the real polynomial C(X,y) with

_ _ 54936010 . . .
= —apeeonriy has exactly one simple real root in each of the following intervals

3405 1703
* lio2d’ 512
46953 375625
* a8 1o
As we know that C(X,Y) has a double root at (29900 34936010.) we deduce that the double point
of C has non-real tangents and is situated on the line {Y = —;”é?g‘%} as shown in figure 5.15b)
with respect to the two other roots and 0.
Now it remains to determine which branches of C' “glue” at each tangency point with an horizontal
line. This can be done using Proposition 12.38 in [BPR03]. The topology of the curve C is depicted
in Figure 5.15b) and it is clear that this is the desired curve. O

] ~ [3.325195312; 3.326171875],

| ~ [366.8203125; 366.8212891].

Corollary 5.39 The complex scheme (J 11 5 11 1({7));; is realizable by nonsingular non-dividing
symmetric real algebraic curves of degree T in RP?.

Proof. The strict transform of the curve constructed in Proposition 5.38 under the blow up of CP?
at the point [0 : 1 : 0] is the rational algebraic curve of bidegree (3,1) in ¥; depicted in Figure
5.15c). Blowing up the point ¢ and blowing down the strict transform of the fiber, we obtain the
rational trigonal curve in X9 depicted in Figure 5.16a), with a singular point of type Ag at the point
r. Then according to Theorem 2.22, it is possible to smooth this curve as depicted in Figure 5.16b).
Perturbing the union of this curve and the fiber G, we obtain the nonsingular curve of bidegree (3, 1)
in 39 arranged with the base {Y = 0} as shown in Figure 5.16c). The corresponding symmetric
curve realizes the real scheme (J II15111(7)) and according to Proposition 5.9 this is a non-dividing
symmetric curve. O

Corollary 5.40 The real schemes (JI15111(8)) and (J IL411 1(7)) are realizable by nonsingular
symmetric real algebraic curves of degree T in RP?.

Proof. One obtains these two curves modifying slightly the previous construction. To obtain the
real scheme (JII 511 1(8)), one can keep all the ovals above the base depicted in Figure 5.16b). To
obtain the real scheme (JIT4111(7)), one can consider the line L (dashed in Figure 5.15a)) instead
of the line {Y + Z = 0} in Figure 5.15a). O
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5.5.4 Change of coordinates in X,
Proposition 5.41 The real schemes (JUTI11(4)) and (JU5I11(6)) are realizable by nonsingular

symmetric real algebraic curves of degree 7 in RP2.

Proof. In section 5.5.2, we have constructed the symmetric curves in RP? shown in Figure 5.17a).
According to Lemma 2.49, their quotient curve X is depicted in Figure 5.17b).

(o, B) = (2,4) or (3,3)
Figure 5.17:

B2 p-1 p-1
L

Ve N i
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a) b) c)
(, B) = (2,4) or (3,3)
Figure 5.18:

Let H be the base which passes through the points a, b and c¢. All possible mutual arrangements
for H and the quotient curves which do not contradict the Bézout theorem and Lemma 2.51 are
depicted in Figures 5.17c) and 5.18.

First, we prohibit pseudoholomorphically the £-schemes realized by the union of X and H in Figure
5.18a) and by X in Figure 5.18b). Choose L as the starting line for the pencil £, and the braid
corresponding to these L£-schemes are :

(8-1)

- -1 _— —a_—1 4 _—1 —2 1 .
bz?,’,g:% 0y 102 10302 Yoy 0907 "0, 03020102 o Aﬁ with (a, 8) = (3,3),(2,4),

b24 7

_ - 2
= 0] '09201As.

The braid b§?3 was already shown to be not quasipositive in section 5.4.2. The computation of the
Alexander polynomials of the remaining braids gives

P = (1) - B+ -+ 1), pih= (" —t+1)(-1+1)%
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Since e(b?**) = 1 and e(bgfﬁ) = 2, according to Proposition 2.80, none of these braids is quasipositive.
Thus, the two remaining possibilities for the mutual arrangement of X and H are depicted in Figures
5.17c) and 5.18c).

In the first case, let H' = H.

In the second case, consider the base G passing through the points d, e, and f, where f is some
point on the fiber L. For some f, the base G passes through an oval of X. Since G cannot have
more than 7 common points with X, there exists f for which the mutual arrangement of G and X
is as shown in Figure 5.17¢). Let H' be the base corresponding to such an f.

The symmetric curves of degree 7 in RP? corresponding to the mutual arrangement of H' and X
realizes the real schemes (J II 711 1(4)) and (J II 5 IT 1(6)). O

Proposition 5.42 The real schemes (JII1111(12)) and (JU9I11(4)) are realizable by nonsingular
symmetric real algebraic curves of degree T in RP2.

Proof. In the section 5.5.2, we have constructed the symmetric curves of degree 7 in RP? depicted
in Figure 5.19a). These are M-curves, so according to Theorem 5.6, the £-scheme realized by their
quotient curve X is one of these depicted in Figures 5.19b) and c). The braids associated to the

)
2=

d)

(o, B) = (6,0) or (2,4)

Figure 5.19:

L-schemes shown in Figure 5.19¢) are
b2 = 201 0y 'o105 P A3 with (o, 8) = (6,0) or (2,4).
The computation of the corresponding Alexander polynomials gives
PPy = (Fl+t)(t =B+ 2 —t+1), pd=(-1+8)t>—t+1).

Since e(bi ﬂ) =1, according to Proposition 2.80, these two braids are not quasipositive.

Hence, X realizes the L£-scheme shown in Figure 5.19b). Let H be the base which passes through
the points a, b, and ¢ in Figure 5.19b). The only possible mutual arrangement for H and X which
does not contradict the Bézout theorem, Theorem 5.6 and Lemma 2.51 is depicted in Figure 5.19d).
The corresponding symmetric curves realize the real schemes (JITI1111(12)) and (JII91I1(4)). O

5.5.5 Construction of auxiliary curves

Lemma 5.43 For any real positive numbers o, 3,7, there exist real curves of degree 3 in RP? having
the charts and the arrangement with respect to the azis {Y = 0} shown in Figures 5.20a) and b)
with truncation on the segment [(0,3);(3,0)] equal to (X — aY)(X — BY)(X —~Y).

Proof. Consider the points A =[a:1:0],B=[:1:0],C =[y:1:0] and four lines Ly, Ly, L3, L4
as shown in Figure 5.20c). For ¢ small enough and of suitable sign, the curve YZL; + tLoL3Ly is
arranged with respect to the coordinate axis and the lines L, Lo, L3, Ly as shown in Figure 5.20c).
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x=0

Figure 5.20:

To construct the curve with the chart depicted in Figure 5.20b), we perturb the third degree curve
Y Z L, as shown in Figure 5.20d). O

Corollary 5.44 For any real positive numbers «, 3,7, there exist real symmetric dividing curves of
degree 6 in RP? with a singular point of type Jig at [1 : 0 : 0] having the charts, the arrangement
with respect to the axis {Y = 0} and the complez orientations shown in Figures 5.21a), b), and c)
with truncation on the segment [(0,3);(6,0)] equal to (X — aY?)(X — BY2)(X — 4Y?2).

2
0
A VA a) ) A
Y . \ N, \
0
2
a) b) c) d) e)

Figure 5.21:

Proof. The Newton polygon of the third degree curves constructed in Lemma 5.43 lies inside the
triangle with vertices (0, 3), (0,0) and (6,0), so these curves can be seen as a (singular) trigonal curve
in ¥9. The corresponding symmetric curves are of degree 6 and has the chart and the arrangement
with respect to the axis {Y = 0} shown in Figures 5.21a) and c). Moreover, it is well known that
such curves are of type I, and we deduce their complex orientations from their quotient curve.

If we perform the coordinate change (X,Y) +— (=X + 6Y?2,Y) with § € R to the curves with chart
depicted in Figure 5.21a), we obtain curves with the chart depicted in Figure 5.21b). O

The following lemma can be proved using the same technique.

Lemma 5.45 For any real positive numbers a and 3, there exist real symmetric dividing curves of
degree 4 in RP? with a singular point of type Az at[1 : 0 : 0] having the charts, the arrangement with
respect to the azris {Y = 0} and the complez orientations shown in Figure 5.21d) with truncation on
the segment [(0,2); (4,0)] equal to (X — aY?)(X — BY?). O
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5.5.6 Perturbation of irreducible singular symmetric curves

Proposition 5.46 The complex schemes (JI12_111,(4, 112_)); and (JI12,114_111,(2;))s are
realizable by nonsingular symmetric real algebraic curves of degree 7 in RP2.

Proof. First, we construct the symmetric singular dividing curve of degree 7 with two singular points
Jio depicted in Figure 5.22d). In order to do this, we use the Hilbert method (as in [Vir84al) : we
symmetrically perturb the union of a symmetric conic and symmetric line disjoint from the conic,
(Figure 5.22a)) keeping the tangency points with the conic. Then, we symmetrically perturb the
union of the third degree curve obtained and the same conic (Figure 5.22b)) keeping the tangency
points with the conic of order 4. Finally, we symmetrically perturb the union of the curve of degree
5 obtained and the same conic (Figure 5.22c)) keeping the tangency points with the conic of order
6, and we obtained the expected curve.

P AN D=, .
N "’ 5= 3

Figure 5.22:

Now we symmetrically perturb the singular points using the chart shown in Figure 5.21b) (resp.,
d)) in P; and 5.21c) (resp., a)) in P» and obtain the desired curves. O

Proposition 5.47 The complex scheme (JI11,(64 116_)); is realizable by nonsingular symmetric
real algebraic curves of degree T in RP2.

Proof. Consider the curve of degree 4 with a C-shaped oval constructed in [Kor88] and the coordinate
system depicted in Figure 5.23a). In this coordinate system, the Newton polygon of the curve is the
trapeze with vertices (0,0), (0, 3), (1,3), and (4,0), and its chart is depicted in Figure 5.23b). Thus,
we can see this curve as a singular curve of bidegree (3,1) in the surface ¥o. The corresponding
symmetric curve of degree 7 has a singular point Jig at [1: 0 : 0] and is depicted in Figure 5.23c).
According to Proposition 2.40, this curve is of type I. Looking at its quotient curve, we see that
the complex orientations of the symmetric curve are those represented in Figure 5.23c). Finally, we
symmetrically smooth the singular point using the chart depicted in Figure 5.21a) and obtain the
expected curve. O

Denote by fp the real birational transformation of CP? given by (X,Y) — (X,Y — P(X)) in the
affine chart {Z = 1}, where P is a polynomial of degree 2. Some details about such a birational
transformation are given in appendix.

Proposition 5.48 The complex scheme (J11 6y T4_111,(1, I11_)); is realizable by nonsingular
symmetric real algebraic curves of degree T in RP2.

Proof. Consider the nodal curve of degree 3 depicted in Figure 5.24a) with a contact of order 3 at
the point [0 : 1 : 0] with the line {Z = 0}. Then, there exists a unique polynomial P of degree
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2 such that the image of the cubic under fp is the curve of degree 4 depicted in Figure 5.24b),
with a singular point of type A4 at [0 : 1 : 0] and a contact of order 4 at this point with the line
{Z = 0}. Moreover, the line {Y = 0} intersects the quartic in two points. One of them is the node,
and this line is tangent at one of the local branches at the node. At the second intersection point,
a line {Y = aZ} is tangent at the curve of degree 4. Perform the change of coordinates of CP?
[X:Y:Z]—»[Y:Y :Y —aZ]. For this new coordinate system, there exists a polynomial @ of
degree 2 such that the image of the quartic under fg is the curve of degree 5 depicted in Figure
5.24c), with a singular point of type Aip at [0: 1 : 0] and a contact of order 4 at this point with the
line {Z = 0}. Applying the change of coordinates [X : Y : Z] — [Y : Z : X] and using Theorem
2.22, we can smooth the singular point Ao in order to obtain a curve with the chart depicted in
Figure 5.25a).

Hence, we can see this curve as a singular curve of bidegree (3,1) in the surface ¥5. The corre-
sponding symmetric curve of degree 7 has a singular point Az at [1: 0 : 0] and is depicted in Figure
5.25b). This curve is maximal according to Proposition 2.40, so of type I, and we can deduce its
complex orientations from its quotient curve. Finally, we symmetrically smooth the singular point
using the chart depicted in Figure 5.21e) and obtain the desired curve. O

contact of order & A, contact of order ¢ Ao, contact of order £

a) b) c)
Figure 5.24:
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Appendix : A birational
transformation of CP?

Here we detail the action of the birational transformation we use in the proof of proposition 5.48.
We also illustrate this explanation by giving all the steps in the first use of the transformation
in the proof. We recall that fp is the real birational transformation of CP? which is given by
(X,Y) — (X,Y — P(X)) in the affine chart {Z = 1}, where P is a polynomial of degree 2.

The action of fp on CP? can be seen as explained below.

Blow up the projective plane at [0 : 1 : 0]. The surface obtained is ¥;. Denote by r the
intersection point of the exceptional divisor and the strict transform of the line {Z = 0} (see
figure 5.26¢)).

Blow up ¥; at r and blow down the strict transform of the fiber. The surface obtained is .
Denote by F the fiber that appeared during the blowing up (see figure 5.26c¢)).

Perform the change of coordinate X’ = X and Y/ = Y — P(X) in X5. Denote by s the
intersection point of F' and {Y' = 0} (see figure 5.26d)).

Blow up s at s and blow down the strict transform of the fiber. The surface obtained is 3¢
(see figure 5.26€)).

Blow down the exceptional divisor (see figure 5.26f)).

Let us follow each step of this action on the curve C' of degree 3 used in the proof of proposition

5.48.

Let us denote by p; the point of C which has a vertical tangent, by po the double points of

C, and by @ and @2 the two local branches of C at py as depicted in Figure 5.26a). Then, there
exists a unique polynomial P of degree 2 such that the curve Y — P(X) passes through p; and ps
and is tangent to Q.

All the steps described above and concerning the action of fp on CP? and C are depicted in Figure

5.26.
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Index of symbols

A(F) Newton polyhedron of the polynomial F

Fo truncation of the polynomial F' along the face § of A(F)
BA moment map associated to the polyhedron A

Cun complexification of ya

CA complexification of A

RA real part of CA

Torc(A)  toric variety associated to the convex polyhedron A
CCha(F) complex chart of the polynomial F' in A

CCh(F)  complex chart of the polynomial F' in A(F)

RCha (F') real chart of the polynomial F in A

RCh(F)  real chart of the polynomial F' in A(F)

r(C) Newton diagram at the origin of the polynomial C
Sing(C)  set of singular points of the curve C

Yin the n'? rational geometrically ruled surfaces

E the exceptional section of ¥,

L pencil of lines in ¥,

(X,w) a symplectic manifold

I, number of positive injective pairs of ovals of a curve
I number of negative injective pairs of ovals of a curve
Ay number of positive ovals of a curve of odd degree
A number of negative ovals of a curve of odd degree
lk(L1,Ly) linking number of the oriented links L; and Lo
det(L) determinant of the link L

By, braid of m strings group

o; ith standard generator of B,,

e(b) exponent sum of the braid b

A, Garside element in By,

P number of even ovals of a curve of even degree

n number of odd ovals of a curve of even degree
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Index

J-holomorphic curve, 21
T-construction, 14
L-scheme, 20

almost complex structure, 21

base, 19
bidegree

of a pseudoholomorphic curve, 22

of an algebraic curve, 19
braid, 30

braid associated to an £ — scheme, 33

chain of weighted combs, 40
chart of a polynomial
complex, 13
real, 13
closed braid, 31
closed comb, 40
comb, 40
complex orientations, 23
complex scheme, 26
convex sudbivision, 13
convexity in RP?, 25
cubic resolvent, 28

depth of a nest, 23
determinant of a link, 30
dividing curve, 23

empty oval, 23

even oval, 43

exceptional section, 18
exponent sum of a braid, 31
exterior of an oval, 23

Garside
element, 31
normal form, 31
gluing of charts, 14

injective pair of ovals, 23
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inner oval, 25
interior of an oval, 23
intersection index, 20
isotopy
equivariant, 12
invariant of a link, 29
of braids, 30
tame, 12

linking number, 29

mirror curve, 55
model
for deforming of a GNND singular point,
17
for smoothing a GNND singular point, 17
moment map, 12
complexification, 12
multiplicity of a comb, 41

negative
injective pair, 23
oval, 23

nest, 23

Newton diagram, 15

odd oval, 43
oriented link, 29
outer oval, 25
oval, 23

polyhedron
complexification, 12
integer convex, 12
Newton, 11

polynomial
Alexander, 30
nondegenerate, 11
truncation, 11
Viro, 14

positive
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injective pair, 23
oval, 23
pseudo-line, 23

quasipositive braid, 32
quotient curve, 55

rational geometrically ruled surface, 18
real curve, 22

real graph associated to a root scheme, 36
real graph associated to an L-scheme, 38
real pseudo-holomorphic curve, 21

real rational graph, 36

real scheme, 25

root scheme, 35

root scheme associated to an L£L-scheme, 38

Seifert surface, 29
singular point
deformation, 17
generalized Newton nondegenerate (GNND),
16
Newton nondegenerate, 15
representative of a GNND point, 16
smoothing, 17
standard coordinate system, 19
standard generator, 31
symmetric curve, 54
symplectic
form, 21
manifold, 21

toric varieties, 12
trigonal

curve, 19

real graph, 38
type of a curve, 23

weighted comb, 40
weighted comb associated to an L-scheme, 40






Résumé

Cette these est motivée par I’étude des courbes algébriques réelles dans RP? et dans les surfaces rationnelles
géométriquement réglées, munis de leur structure réelle standard. Deux problemes ont particulierement
retenus notre attention.

Les ovales d’une courbe non singuliere dans RP? de degré pair sont naturellement divisés en deux ensembles
disjoints : les owvales pairs, contenus dans un nombre pair d’ovales, et les ovales impairs. La combinaison des
inégalités de Harnack et de Petrovsky permet d’obtenir une borne supérieure pour le nombre d’ovales pairs
et le nombre d’ovales impairs en fonction du degré de la courbe. Généralisant une construction antérieure
d’I. Itenberg, nous montrons que cette borne est asymptotiquement optimale.

La majorité des restrictions connues sur la topologie des courbes algébriques réelles sont aussi valables pour une
classe plus vaste d’objets, les courbes pseudoholomorphes réelles. Un probleme ouvert est celui de I’existence
d’un schéma réel réalisable par une courbe pseudoholomorphe réelle non singuliére, mais pas par une courbe
algébrique réelle non singuliere de méme degré. Nous étudions dans cette these les courbes réelles non
singuliéres symétriques de degré 7 dans RP?, algébriques et pseudoholomorphes. Nous obtenons en particulier
plusieurs classifications, et exhibons deux schémas réels réalisables par des courbes pseudoholomorphes réelles
séparantes symétriques non singulieres de degré 7 mais pas par de telles courbes algébriques.

Certains des résultats de cette these sont basés sur ’utilisation des dessins d’enfants. En géométrie algébrique
réelle, ces objets ont été utilisés la premiere fois par S. Yu. Orevkov. Ils permettent en particulier de répondre
a la question suivante : Existe-t-il deux polynomes réels P et @ de degré n tels que les racines réelles de P, @
et P + @ réalisent un arrangement donné dans R? Suivant Orevkov, nous donnons une condition nécessaire
et suffisante a ’existence de deux tels polynomes, formulée en terme de dessins d’enfants. Nous donnons
aussi un algorithme permettant d’établir si un £-schéma donné est réalisable par une courbe algébrique réelle
trigonale.

Abstract

This thesis is motivated by the study of real algebraic curves in RP? and in rational geometrically ruled
surfaces equipped with their standard real structure. We were especially interested in two particular problems.
The ovals of a nonsingular curves in RP? of even degree are naturally divided in two disjoint sets : even ovals,
contained in an even number of ovals, and odd ovals. Combining the Harnack and Petrovsky inequalities,
one obtains an upper bound on the number of even ovals, and on the number of odd ovals with respect to
the degree of the curve. We generalize here a previous construction of I. Itenberg, and show that this upper
bound is asymptotically sharp.

Almost all known prohibitions on the topology of real algebraic curves are still valid for a wider class of
objects, real pseudoholomorphic curves. An open problem is the existence of a real scheme realizable by a
nonsingular real pseudoholomorphic curve but not realizable by a nonsingular real algebraic curve of the same
degree. In this thesis, we study real nonsingular algebraic and pseudoholomorphic symmetric curves of degree
7 in RP2. In particular, we give several classifications and exhibit two real schemes realizable by dividing
nonsingular real symmetric pseudoholomorphic curves of degree 7, but not realizable by such algebraic curves.
Some results of this thesis are based on the techniques of dessins d’enfants. In real algebraic geometry these
objects were first used by S. Yu. Orevkov. In particular, they allow one to answer the following question :
does there exist two real polynomials P and ) of degree n such that the real roots of P, @, and P + () realize
a given arrangement in R? Following Orevkov, we give a necessary and sufficient condition for the existence
of two such polynomials, formulated in terms of dessins d’enfants. We also give an algorithm which gives a
possibility to check whether a given L-scheme is realizable by a real trigonal algebraic curve.



