C. Allard and R. Froese, A Mourre estimate for a Schrödinger operator on a binary tree, Théorie du potentiel sur les graphes et les variétés, pp.1655-1667, 2000.

N. Bourbaki, Eléments de mathématiques, Algèbre, chapitres 1 ` a

C. C. Diffusion, M. Paris-coornaert, T. Delzant, and A. Papadopoulos, Géométrie et théorie des groupes: les groupes hyperboliques de Gromov, Lecture Notes in Mathematics, vol.1441, 1970.

K. R. Davidson, £ -algebra by examples, 1996.

V. Georgescu and A. Iftimovici, Crossed Products of C * -Algebras and Spectral Analysis of Quantum Hamiltonians, Communications in Mathematical Physics, vol.228, issue.3, pp.519-560, 2002.
DOI : 10.1007/s002200200669

URL : https://hal.archives-ouvertes.fr/hal-00096134

E. Ghys, P. De-la-harpe, and S. Golénia, Sur les groupes hyperboliques d'après Mikhael Gromov, Mourre estimates for anisotropic operators on trees, 1990.
DOI : 10.1007/978-1-4684-9167-8

A. Nica, £ -algebras generated by isometries and Wiener-Hopf operators, J. Operator Theory, vol.27, issue.1, pp.17-52, 1992.

A. Nica, ON A GROUPOID CONSTRUCTION FOR ACTIONS OF CERTAIN INVERSE SEMIGROUPS, International Journal of Mathematics, vol.05, issue.03, pp.349-372, 1994.
DOI : 10.1142/S0129167X94000206

A. M. Robert, A Course in p-adic Analysis, Graduate Texts in Mathematics, vol.198, 2000.
DOI : 10.1007/978-1-4757-3254-2

. References and C. Allard, Asymptotic completeness via Mourre theory for a Schrödinger operator on a binary tree, UBC, 1997.

W. Abg-]-amrein, A. Boutet-de-monvel, and V. Georgescu, ¼ -Groups, commutator methods and spectral theory of AE -body Hamiltonians, 1996.

C. Allard and R. Froese, A Mourre estimate for a Schrödinger operator on a binary tree, Reviews in Mathematical Physics, vol.12, issue.12, pp.1655-1667, 2000.

. Bea and B. Beauzamy, Introduction to operator theory and invariant subspaces, 1988.

V. Georgescu, C. Gérard, and J. Møller, Commutators, ¼ semigroups and resolvent estimates, to appear in J. Func. Analysis
DOI : 10.1016/j.jfa.2004.03.004

URL : http://doi.org/10.1016/j.jfa.2004.03.004

. Gei, V. Georgescu, and A. Iftimovici, Crossed products of £ -algebras and spectral analysis of quantum Hamiltonians, Comm. Math. Phys, vol.228, issue.3, pp.519-560, 2002.

. Gem, V. Georgescu, and M. , On the spectral theory of Dirac type Hamiltonians, J. Operator Theory, vol.46, pp.289-321, 2001.

S. Golénia, £ -algebra of anisotropic Schrödinger operators on trees, (to appear) see preprint at http

M. Man, £ -algebras, dynamical systems at infinity and the essential spectrum of generalized Schrdinger operators, J. Reine Angew. Math, vol.550, pp.211-229, 2002.

E. Mourre, Absence of singular continuous spectrum for certain selfadjoint operators, Comm. Math. Phys, vol.91, pp.391-408, 1981.

G. Murphy, £ -algebras and operator theory, 1990.

. Tak and M. Takesaki, Theory of operator algebras, 2002.

R. Amrein, A. Boutet-de-monvel, and V. Georgescu, ¼ -Groups, commutator methods and spectral theory of AE-body Hamiltonians, 1996.

M. Arai, On essential selfadjointness, distinguished selfadjoint extension and essential spectrum of Dirac operators with matrix valued potentials, Publications of the Research Institute for Mathematical Sciences, vol.19, issue.1, pp.33-57, 1983.
DOI : 10.2977/prims/1195182974

. M. Ay, O. Arai, and . Yamada, Essential self-adjointness and invariance of the essential spectrum for Dirac operators, Publ. RIMS Kyoto University, vol.18, pp.973-985, 1982.

G. [. De-cecco and . Palmieri, Ô-Energy of a curve on ÄÁÈ-manifolds and on general metric spaces

]. J. Di and . Dixmier, Les algèbres d'opérateurs dans l'espace Hilbertien, 1969.

. J. Djt, H. Diestel, A. Jarchow, and . Tonge, Absolutely summing operators, Cambridge studies in advanced mathematics, 1995.

R. [. Fell and . Doran, Representations of £-algebras, locally compact groups, and Banach £-algebraic bundles, 1988.

. V. Gm and M. Georgescu, On the spectral theory of singular Dirac type hamiltonians, J. Operator Theory, vol.46, pp.289-321, 2001.

. K. Gw, J. Gustafson, and . Weidmann, On the essential spectrum, J. Math. Anal. Appl, vol.25, pp.121-127, 1969.

]. M. Hi and . Hilsum, Structures riemmanniennes Ä Ô et Ã-homologie, Annals of Math, vol.149, pp.1007-1022

]. L. Ho and . Hörmander, The analysis of linear partial differential operators vol. I-IV, pp.1983-1987

]. M. Kl and . Klaus, Dirac Operators with Several Coulomb Singularities, Helv. Phys. Acta, vol.53, pp.463-482, 1980.

H. [. Liskevich and . Vogt, On Ä Ô -spectra and essential spectra of second-order elliptic operators, Proc. London Math. Soc. (3), pp.590-610, 2000.

]. L. Lo and . Loomis, An introduction to abstract harmonic analysis, 1953.

]. B. Ma and . Maurey, Théoremes de factorisation pour les opérateurs linéaireslinéaires`linéairesà valeurs dans les espaces Ä Ô , Astérisque 11

G. Nenciu, Self-adjointness and invariance of the essential spectrum for Dirac operators defined as quadratic forms, Communications in Mathematical Physics, vol.81, issue.3, pp.235-247, 1976.
DOI : 10.1007/BF01617872

G. Nenciu, Distinguished self-adjoint extensions for Dirac operators with potentials dominated by multicenter Coulomb potentials, Helv. Phys. Acta, vol.50, pp.1-3, 1977.

. M. Os-]-e, P. Ouhabaz, and . Stollmann, Stability of the ensential spectrum of secondorder complex elliptic operators, J. Reine Angew. Math, vol.500, pp.113-126, 1998.

]. G. Pi and . Pisier, Factorization of operators and geometry of Banach spaces, Amer, Math. Soc., Providence R.I., CBMS, vol.60, 1985.

]. L. Sa and . Saloff-coste, Opérateurs pseudo-différentiels sur un corps local, thèse detroisì eme cycle, 1983.

]. M. Ta and . Taibleson, Fourier analysis on local fields, 1975.

]. N. Te and . Teleman, The index of signature operators on Lipschitz manifolds, Publ. Math. I.H.E.S, pp.58-97, 1983.

]. N. Wa and . Weaver, Lipschitz algebras and derivations II: exterior differentiation, preprint, 1998.

]. J. We and . Weidmann, Linear operators in Hilbert space, 1980.