D. Williams, A page 1 Solide Astrochemistry Edited by, Manico Nato Science Series

A. G. Tielens and L. J. Et-allamandola, Interstellar Processes p397-469 Hollenbach D

L. J. Allamandola, A. G. Tielens, and J. R. Barker, Polycyclic aromatic hydrocarbons and the unidentified infrared emission bands - Auto exhaust along the Milky Way, The Astrophysical Journal, vol.290, p.25, 1985.
DOI : 10.1086/184435

L. J. Allamandola, A. G. Tielens, and J. R. Barker, Interstellar polycyclic aromatic hydrocarbons - The infrared emission bands, the excitation/emission mechanism, and the astrophysical implications, The Astrophysical Journal Supplement Series, vol.71, p.733, 1989.
DOI : 10.1086/191396

J. S. Mathis, Interstellar Dust and Extinction, Annual Review of Astronomy and Astrophysics, vol.28, issue.1, pp.37-70, 1990.
DOI : 10.1146/annurev.aa.28.090190.000345

R. J. Gould, T. Gold, and E. E. Salpeter, The Interstellar Abundance of the Hydrogen Molecule. II. Galactic Abundance and Distribution., The Astrophysical Journal, vol.138, p.408, 1963.
DOI : 10.1086/147655

D. J. Hollenbach, W. M. Salpeter, and E. E. , Molecular Hydrogen in H i Regions, The Astrophysical Journal, vol.163, p.165, 1971.
DOI : 10.1086/150755

R. G. Carruthers, Rocket Observation of Interstellar Molecular Hydrogen, The Astrophysical Journal, vol.161, p.81, 1970.
DOI : 10.1086/180575

L. Spitzer and E. B. Jenkins, Ultraviolet Studies of the Interstellar Gas, Annual Review of Astronomy and Astrophysics, vol.13, issue.1, p.133, 1975.
DOI : 10.1146/annurev.aa.13.090175.001025

L. Spitzer, Rotational Excitation of Interstellar H_{2}, The Astrophysical Journal, vol.186, p.23, 1973.
DOI : 10.1086/181349

E. B. Jenkins and A. Peimbert, Molecular Hydrogen in the Direction of ?? Orionis A, The Astrophysical Journal, vol.477, issue.1, p.265, 1997.
DOI : 10.1086/303694

S. Petri and E. Herbst, Some Interstellar Reactions Involving Electrons and Neutral Species: Attachment and Isomerization, The Astrophysical Journal, vol.491, issue.1, p.210, 1997.
DOI : 10.1086/304941

F. O. Goodman, Formation of hydrogen molecules on interstellar grain surfaces, The Astrophysical Journal, vol.226, p.87, 1978.
DOI : 10.1086/156588

T. I. Hasegawa, E. Herbst, and C. M. Leung, Models of gas-grain chemistry in dense interstellar clouds with complex organic molecules, The Astrophysical Journal Supplement Series, vol.82, p.167, 1992.
DOI : 10.1086/191713

T. R. Govers, L. Mattera, and G. Scoles, Molecular beam experiments on the sticking and accommodation of molecular hydrogen on a low???temperature substrate, The Journal of Chemical Physics, vol.72, issue.10, p.5446, 1980.
DOI : 10.1063/1.439013

T. J. Lee, Formation of Interstellar Molecular Hydrogen, Nature Physical Science, vol.237, issue.76, p.99, 1972.
DOI : 10.1038/physci237099a0

N. Katz, I. Furman, I. Biham, V. Pirronello, and G. Vidali, Molecular Hydrogen Formation on Astrophysically Relevant Surfaces, The Astrophysical Journal, vol.522, issue.1, p.305, 1999.
DOI : 10.1086/307642

V. Pirronello, O. Biham, C. Liu, L. Shen, and G. Vidali, Efficiency of Molecular Hydrogen Formation on Silicates, The Astrophysical Journal, vol.483, issue.2, p.131, 1997.
DOI : 10.1086/310746

V. Pirronello, C. Liu, L. Shen, and G. Vidali, Laboratory Synthesis of Molecular Hydrogen on Surfaces of Astrophysical Interest, The Astrophysical Journal, vol.475, issue.1, p.69, 1997.
DOI : 10.1086/310464

O. Biham, I. Furman, N. Katz, V. Pirronello, and G. Vidali, H2 formation on interstellar grains in different physical regimes, Monthly Notices of the Royal Astronomical Society, vol.296, issue.4, p.869, 1998.
DOI : 10.1046/j.1365-8711.1998.01427.x

L. Bourlot, J. Pineau-des-forêts, G. Roueff, E. Dalgarno, A. Gredel et al., Infrared Diagnostics of the Formation of H 2 on Interstellar Dust, The Astrophysical Journal, vol.449, p.178, 1995.
DOI : 10.1086/176043

D. J. Hollenbach and A. G. Tielens, Photodissociation regions in the interstellar medium of galaxies, Reviews of Modern Physics, vol.71, issue.1, p.173, 1999.
DOI : 10.1103/RevModPhys.71.173

M. Spaans and P. Ehrenfreund, Laboratory Astrophysics and Space Research, pp.1-36, 1999.

X. Sha and B. Jackson, First-principles study of the structural and energetic properties of H atoms on a graphite () surface, Surface Science, vol.496, issue.3, p.318, 2002.
DOI : 10.1016/S0039-6028(01)01602-8

X. Sha, B. Jackson, and D. Lemoine, Quantum studies of Eley???Rideal reactions between H atoms on a graphite surface, The Journal of Chemical Physics, vol.116, issue.16, p.7158, 2002.
DOI : 10.1063/1.1463399

B. Jackson and D. Lemoine, Eley???Rideal reactions between H atoms on metal and graphite surfaces: The variation of reactivity with substrate, The Journal of Chemical Physics, vol.114, issue.1, p.474, 2001.
DOI : 10.1063/1.1328041

T. Zecho, A. Güttler, X. Sha, D. Lemoine, and B. Jackson, Abstraction of D chemisorbed on graphite (0001) with gaseous H atoms, Chemical Physics Letters, vol.366, issue.1-2, p.188, 2002.
DOI : 10.1016/S0009-2614(02)01573-7

A. J. Farebrother, A. J. Meijer, D. C. Clary, A. Fisher, A. J. Meijer et al., Formation of molecular hydrogen on a graphite surface via an Eley???Rideal mechanism, Chemical Physics Letters, vol.319, issue.3-4, pp.303-2173, 2000.
DOI : 10.1016/S0009-2614(00)00128-7

A. J. Meijer, A. J. Fisher, and D. C. Clary, Surface Coverage Effects on the Formation of Molecular Hydrogen on a Graphite Surface via an Eley???Rideal Mechanism, The Journal of Physical Chemistry A, vol.107, issue.50, p.10862, 2003.
DOI : 10.1021/jp035809n

J. E. Dyson and D. A. Williams, The physics of the interstellar medium. The graduate series in astronomy, Series Editors Tayler R, J., Elvis M

B. T. Draine and F. Bertoldi, dans The Universe as seen by ISO, p.553, 1999.

S. Cazaux and A. G. Tielens, Formation on Grain Surfaces, The Astrophysical Journal, vol.604, issue.1, p.222, 2004.
DOI : 10.1086/381775

L. Jeloaica and V. Sidis, DFT investigation of the adsorption of atomic hydrogen on a cluster-model graphite surface, Chemical Physics Letters, vol.300, issue.1-2, p.157, 1999.
DOI : 10.1016/S0009-2614(98)01337-2

V. Sidis, L. Jeloaica, A. G. Borisov, S. A. Deutscher, and . Dans, Molecular hydrogen in spaceCombes and G.Pineau des Forêts, Cambridge Contemporary Astrophysics series, pp.89-97, 2000.

M. Rutigliano, M. Cacciatore, and G. D. Billing, Hydrogen atom recombination on graphite at 10 K via the Eley???Rideal mechanism, Chemical Physics Letters, vol.340, issue.1-2, p.13, 2001.
DOI : 10.1016/S0009-2614(01)00366-9

A. G. Borisov, Solution of the radial Schr??dinger equation in cylindrical and spherical coordinates by mapped Fourier transform algorithms, The Journal of Chemical Physics, vol.114, issue.18, p.7770, 2001.
DOI : 10.1063/1.1358867

T. J. Park and J. Light, Unitary quantum time evolution by iterative Lanczos reduction, The Journal of Chemical Physics, vol.85, issue.10, p.5870, 1986.
DOI : 10.1063/1.451548

C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Freisner et al., A comparison of different propagation schemes for the time dependent Schr??dinger equation, Journal of Computational Physics, vol.94, issue.1, p.59, 1991.
DOI : 10.1016/0021-9991(91)90137-A

C. Leforestier and R. E. Wyatt, Optical potential for laser induced dissociation, The Journal of Chemical Physics, vol.78, issue.5, p.2334, 1983.
DOI : 10.1063/1.445033

D. Neuhauser and M. Baer, The time???dependent Schr??dinger equation: Application of absorbing boundary conditions, The Journal of Chemical Physics, vol.90, issue.8, p.4351, 1989.
DOI : 10.1063/1.456646

J. V. Lill, A. Parker, and J. C. Light, Discrete variable representations and sudden models in quantum scattering theory, Chemical Physics Letters, vol.89, issue.6, p.483, 1982.
DOI : 10.1016/0009-2614(82)83051-0

Z. Bacic and J. C. Light, Highly excited vibrational levels of ??????floppy?????? triatomic molecules: A discrete variable representation???Distributed Gaussian basis approach, The Journal of Chemical Physics, vol.85, issue.8, p.4594, 1986.
DOI : 10.1063/1.451824

R. Kosloff, Dynamics of Molecules and Chemical reactions, Dynamics of Molecules and Chemical Reactions, pp.185-230, 1996.

V. Kokoouline, O. Dulieu, R. Kosloff, and F. , Mapped Fourier methods for long-range molecules: Application to perturbations in the Rb2(0u+) photoassociation spectrum, The Journal of Chemical Physics, vol.110, issue.20, p.9865, 1999.
DOI : 10.1063/1.478860

G. C. Corey and D. Lemoine, Pseudospectral method for solving the time???dependent Schr??dinger equation in spherical coordinates, The Journal of Chemical Physics, vol.97, issue.6, p.4115, 1992.
DOI : 10.1063/1.463916

G. C. Balint-kurti, R. N. Dixon, and C. Marston, Time-dependent quantum dynamics of molecular photofragmentation processes, Journal of the Chemical Society, Faraday Transactions, vol.86, issue.10, p.1741, 1990.
DOI : 10.1039/ft9908601741

C. Cohen-tannoudji, B. Diu, and F. Laloë, Mécanique quantique I, Hermann éditeurs des scienceset des arts, p.238

D. Lemoine, Optimized grid representations in curvilinear coordinates: the mapped sine Fourier method, Chemical Physics Letters, vol.320, issue.5-6, p.492, 2000.
DOI : 10.1016/S0009-2614(00)00269-4

X. Sha and B. Jackson, First-principles study of the structural and energetic properties of H atoms on a graphite () surface, Surface Science, vol.496, issue.3, p.318, 2002.
DOI : 10.1016/S0039-6028(01)01602-8

X. Sha, B. Jackson, and D. Lemoine, Quantum studies of Eley???Rideal reactions between H atoms on a graphite surface, The Journal of Chemical Physics, vol.116, issue.16, p.7158, 2002.
DOI : 10.1063/1.1463399

K. Fukui, The path of chemical reactions - the IRC approach, Accounts of Chemical Research, vol.14, issue.12, p.363, 1981.
DOI : 10.1021/ar00072a001

M. Page and J. W. Mciver, On evaluating the reaction path Hamiltonian, The Journal of Chemical Physics, vol.88, issue.2, p.922, 1988.
DOI : 10.1063/1.454172

L. Jeloaica and V. Sidis, DFT investigation of the adsorption of atomic hydrogen on a cluster-model graphite surface, Chemical Physics Letters, vol.300, issue.1-2, p.157, 1999.
DOI : 10.1016/S0009-2614(98)01337-2

V. Sidis, L. Jeloaica, A. G. Borisov, S. A. Deutscher, and . Dans, Molecular hydrogen in spaceCombes and G.Pineau des Forêts, Cambridge Contemporary Astrophysics series, pp.89-97, 2000.

E. A. Mccullough and R. E. Wyatt, Reaction. I. Probability Density and Flux, The Journal of Chemical Physics, vol.54, issue.8, p.3578, 1970.
DOI : 10.1063/1.1675384

R. C. Mowrey, Reactive scattering using efficient time???dependent quantum mechanical wave packet methods on an L???shaped grid, The Journal of Chemical Physics, vol.94, issue.11, p.7098, 1991.
DOI : 10.1063/1.460243

E. J. Baerends, E. D. Ellis, and R. P. , Self-consistent molecular Hartree???Fock???Slater calculations I. The computational procedure, Chemical Physics, vol.2, issue.1, p.41, 1973.
DOI : 10.1016/0301-0104(73)80059-X

T. Velde, G. Baerends, and E. J. , Numerical integration for polyatomic systems, Journal of Computational Physics, vol.99, issue.1, p.84, 1992.
DOI : 10.1016/0021-9991(92)90277-6

S. H. Vosko, L. H. Wilks, and M. Nussair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Canadian Journal of Physics, vol.58, issue.8, p.1200, 1980.
DOI : 10.1139/p80-159

Y. Wang and J. P. Perdew, Spin scaling of the electron-gas correlation energy in the high-density limit, Physical Review B, vol.43, issue.11, p.8911, 1991.
DOI : 10.1103/PhysRevB.43.8911

J. P. Perdew, A. Zunger, and A. D. Becke, Self-interaction correction to density-functional approximations for many-electron systems, Physical Review B, vol.23, issue.10, pp.5048-2155, 1981.
DOI : 10.1103/PhysRevB.23.5048

T. A. Wesolowski, O. Parisel, Y. Elliger, and J. Weber, , CO) Complexes Using Density Functional Theory:?? The Importance of an Accurate Exchange???Correlation Energy Density at High Reduced Density Gradients, The Journal of Physical Chemistry A, vol.101, issue.42, p.7818, 1997.
DOI : 10.1021/jp970586k

E. Ghio, L. Mattera, C. Salvo, F. Tommasini, and U. Valbusa, Vibrational spectrum of H and D on the (0001) graphite surface from scattering experiments, The Journal of Chemical Physics, vol.73, issue.1, p.556, 1980.
DOI : 10.1063/1.439855

V. Barth, U. Hedin, and L. , A local exchange-correlation potential for the spin polarized case. i, Journal of Physics C: Solid State Physics, vol.5, issue.13, p.1629, 1972.
DOI : 10.1088/0022-3719/5/13/012

J. C. Polanyi and W. H. Wong, Location of Energy Barriers. I. Effect on the Dynamics of Reactions A???+???BC, The Journal of Chemical Physics, vol.51, issue.4, p.1439, 1969.
DOI : 10.1063/1.1672194

N. F. Mott and H. S. Massey, The theory of atomic collisions, Third Edition, Oxford at the clarendon press, pp.379-382

M. Rutigliano, M. Cacciatore, and G. D. Billing, Hydrogen atom recombination on graphite at 10 K via the Eley???Rideal mechanism, Chemical Physics Letters, vol.340, issue.1-2, p.13, 2001.
DOI : 10.1016/S0009-2614(01)00366-9

A. J. Meijer, A. J. Fisher, and D. C. Clary, Surface Coverage Effects on the Formation of Molecular Hydrogen on a Graphite Surface via an Eley???Rideal Mechanism, The Journal of Physical Chemistry A, vol.107, issue.50, p.10862, 2003.
DOI : 10.1021/jp035809n

F. Aguillon, A. K. Belyaev, V. Sidis, and M. Sizun, Time-dependent study of collinear H-+H2(v) collisions, Physical Chemistry Chemical Physics, vol.2, issue.16, p.3577, 2000.
DOI : 10.1039/b003275l

L. J. Allamandola, A. G. Tielens, and J. R. Barker, Polycyclic aromatic hydrocarbons and the unidentified infrared emission bands - Auto exhaust along the Milky Way, ApJS 71, pp.25-733, 1985.
DOI : 10.1086/184435

B. Jackson and D. Lemoine, Eley???Rideal reactions between H atoms on metal and graphite surfaces: The variation of reactivity with substrate, The Journal of Chemical Physics, vol.114, issue.1, p.474, 2001.
DOI : 10.1063/1.1328041

T. Zecho, A. Güttler, X. Sha, D. Lemoine, and B. Jackson, Abstraction of D chemisorbed on graphite (0001) with gaseous H atoms, Chemical Physics Letters, vol.366, issue.1-2, p.188, 2002.
DOI : 10.1016/S0009-2614(02)01573-7

S. Sato, Recombination of Hydrogen Atoms on the Metal Surfaces. V. Theoretical Treatment by the Potential Energy Surfaces., Nippon kagaku zassi, vol.77, issue.8, p.1202, 1956.
DOI : 10.1246/nikkashi1948.77.1202

M. Dans-ce-chapitre, nous allons exposer les résultats que nous avons obtenus lors de l'étude de la formation de la molécule H 2 sur un grain de poussière interstellaire en considérant le mécanisme Langmuir-Hinshelwood (LH)

. Dans-le-chapitre-précèdent, nous avons postulé que les atomes d'hydrogène ne peuvent être que chimisorbés sur le grain, ce qui ne conduit qu'au mécanisme Eley-Rideal. Que se passe-t-il, si on envisage de physisorber des atomes d'hydrogène sur le grain ? Lorsqu'un atome H est physisorbé, il peut migrer quasi librement sur la surface. Dans ce cas trois mécanismes peuvent être envisagés : 1. le premier type de mécanisme Langmuir-Hinschelwood

. Un-autre-type-de-mécanisme-eley-rideal, où la réaction a lieu entre un atome d'hydrogène physisorbé sur la surface et un atome d'hydrogène provenant de la phase gaz, ER2)

. Dans-ce-chapitre, nous nous intéressons au premier type de mécanisme LH Ce choix est motivé par les raisons suivantes : 1. ce mécanisme LH est sans doute plus efficace que le mécanisme ER2, puisque dans le mécanisme LH les atomes d'hydrogène évoluent dans un monde à deux dimensions

E. Ghio, L. Mattera, C. Salvo, F. Tommasini, and U. Valbusa, Vibrational spectrum of H and D on the (0001) graphite surface from scattering experiments, The Journal of Chemical Physics, vol.73, issue.1, p.556, 1980.
DOI : 10.1063/1.439855

D. W. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Physical Review B, vol.42, issue.15, p.9458, 1990.
DOI : 10.1103/PhysRevB.42.9458

L. Jeloaica and V. Sidis, DFT investigation of the adsorption of atomic hydrogen on a cluster-model graphite surface, Chemical Physics Letters, vol.300, issue.1-2, p.157, 1999.
DOI : 10.1016/S0009-2614(98)01337-2

V. Sidis, L. Jeloaica, A. G. Borisov, S. A. Deutscher, and . Dans, Molecular hydrogen in spaceCombes and G.Pineau des Forêts, Cambridge Contemporary Astrophysics series, pp.89-97, 2000.

X. Sha, B. Jackson, X. Sha, B. Jackson, and D. Lemoine, First-principles study of the structural and energetic properties of H atoms on a graphite () surface, Surface Science, vol.496, issue.3, pp.318-7158, 2002.
DOI : 10.1016/S0039-6028(01)01602-8

J. C. Polanyi and W. H. Wong, Location of Energy Barriers. I. Effect on the Dynamics of Reactions A???+???BC, The Journal of Chemical Physics, vol.51, issue.4, p.1439, 1969.
DOI : 10.1063/1.1672194

E. Habart, F. Boulanger, L. Verstraete, C. M. Walmsley, and G. Pineau-des-forêts, Some empirical estimates of the H$\mathsf{_2}$ formation rate in photon-dominated regions, Astronomy & Astrophysics, vol.414, issue.2, p.531, 2004.
DOI : 10.1051/0004-6361:20031659

S. Cazaux and A. G. Tielens, Formation on Grain Surfaces, The Astrophysical Journal, vol.604, issue.1, p.222, 2004.
DOI : 10.1086/381775

J. S. Perry, J. M. Gingell, K. A. Newson, J. To, N. Watanabe et al., An apparatus to determine the rovibrational distribution of molecular hydrogen formed by the heterogeneous recombination of H atoms on cosmic dust analogues, Measurement Science and Technology, vol.13, issue.9, p.1414, 2002.
DOI : 10.1088/0957-0233/13/9/306

M. G. Burton, M. Bulmer, A. Moorhouse, T. R. Geballe, and P. W. Brand, Fluorescent molecular hydrogen line emission in the far-red, Monthly Notices of the Royal Astronomical Society, vol.257, issue.1, p.1, 1992.
DOI : 10.1093/mnras/257.1.1P

Y. Ferro, F. Marinelli, and A. Allouche, Density functional theory investigation of the diffusion and recombination of H on a graphite surface, Chemical Physics Letters, vol.368, issue.5-6, p.609, 2003.
DOI : 10.1016/S0009-2614(02)01908-5

A. G. Borisov, Solution of the radial Schr??dinger equation in cylindrical and spherical coordinates by mapped Fourier transform algorithms, The Journal of Chemical Physics, vol.114, issue.18, p.7770, 2001.
DOI : 10.1063/1.1358867

L. Hornekaer, A. Baurichter, V. V. Petrunin, D. Field, and A. C. Luntz, Importance of Surface Morphology in Interstellar H2 Formation, Science, vol.302, issue.5652, p.1943, 2003.
DOI : 10.1126/science.1090820

. Nous-avons-Étudié-le-mécanisme-langmuir, Hinshelwood lorsque les deux atomes d'hydrogène sont physisorbés sur la surface. Or il existe un autre type de mécanisme Langmuir- Hinshelwood où un atome est chimisorbé et un autre est physisorbé sur la surface

. Nous-avons-Étudié-le-mécanisme and . Eley, Rideal lorsque qu'un atome est chimisorbé sur la surface. Toutefois, il est probablement difficile de chimisorber un atome d'hydrogène puisqu'il existe une barrière à la chimisorption considérable par rapport aux conditions énergétiques régnant dans le milieu interstellaire. Notre question est : comment l'atome d'hydrogène se chimisorbe-t-il sur la surface ?