Skip to Main content Skip to Navigation
Theses

Lois fonctionnelles limites uniformes pour les accroissements généralisésdu procesus empirique. Lois fonctionnelle limites de type Chung-Mogulskii pour le processus empirique uniforme local

Abstract : Consider the usual centered kernel density estimator on R^d, with the kernel varying into a class of function G. These random trajectories are called increments of the empirical process indexed by functions. We study the a.s. limit behavior of theses objects along a sequence of bandwidth h_n converging to 0, and we give results when the sequence h_n satisfies the Csörgö-Révész-Stute, and when h_n satisfies the Erdös-Renyi conditions. We give some second-order results in functional laws of the iterated logarithm for the local uniform empirial process.
Document type :
Theses
Complete list of metadatas

https://tel.archives-ouvertes.fr/tel-00008438
Contributor : Davit Varron <>
Submitted on : Thursday, February 10, 2005 - 3:15:54 PM
Last modification on : Friday, May 29, 2020 - 4:02:22 PM
Long-term archiving on: : Friday, April 2, 2010 - 9:52:24 PM

Identifiers

  • HAL Id : tel-00008438, version 1

Citation

Davit Varron. Lois fonctionnelles limites uniformes pour les accroissements généralisésdu procesus empirique. Lois fonctionnelle limites de type Chung-Mogulskii pour le processus empirique uniforme local. Mathématiques [math]. Université Pierre et Marie Curie - Paris VI, 2004. Français. ⟨tel-00008438⟩

Share

Metrics

Record views

290

Files downloads

631