R. Abgrall, On Essentially Non-oscillatory Schemes on Unstructured Meshes: Analysis and Implementation, Journal of Computational Physics, vol.114, issue.1, pp.45-58, 1994.
DOI : 10.1006/jcph.1994.1148

J. J. Adimurthi, G. D. Gowda, and . Veerappa, Godunov-Type Methods for Conservation Laws with a Flux Function Discontinuous in Space, SIAM Journal on Numerical Analysis, vol.42, issue.1, pp.179-208, 2004.
DOI : 10.1137/S003614290139562X

F. Alcrudo and P. Garcia-navarro, A high-resolution Godunov-type scheme in finite volumes for the 2D shallow-water equations, International Journal for Numerical Methods in Fluids, vol.XIII, issue.6, pp.16-489, 1993.
DOI : 10.1002/fld.1650160604

J. D. Anderson, A History of Aerodynamics, 1997.
DOI : 10.1017/CBO9780511607158

F. Angrand, A. Dervieux, V. Boulard, J. Periaux, and G. Vijayasundaram, Transonic Euler simulation by means of finite element explicit schemes, p.83, 1984.

E. Audusse, A multilayer Saint-Venant model, to appear in, 2004.

E. Audusse, F. Bouchut, M. O. Bristeau, R. Klein, and B. Perthame, A Fast and Stable Well-Balanced Scheme with Hydrostatic Reconstruction for Shallow Water Flows, SIAM Journal on Scientific Computing, vol.25, issue.6, pp.2050-2065, 2004.
DOI : 10.1137/S1064827503431090

E. Audusse and M. O. Bristeau, Transport of Pollutant in Shallow Water A Two Time Steps Kinetic Method, ESAIM: Mathematical Modelling and Numerical Analysis, vol.37, issue.2, pp.389-416, 2003.
DOI : 10.1051/m2an:2003034

URL : https://hal.archives-ouvertes.fr/inria-00072059

E. Audusse, M. O. Bristeau, and B. Perthame, Kinetic schemes for solving Saint-Venant equations with source terms, Inria report, p.3989, 2000.

E. Audusse and M. O. Bristeau, A well-balanced positivity preserving second order scheme for shallow water flows on unstructured grids

D. S. Bale, R. J. Leveque, S. Mitran, and J. A. Rossmanith, A Wave Propagation Method for Conservation Laws and Balance Laws with Spatially Varying Flux Functions, SIAM Journal on Scientific Computing, vol.24, issue.3, pp.955-978, 2002.
DOI : 10.1137/S106482750139738X

A. Bermudez, A. Dervieux, J. A. Desideri, and M. E. Vazquez, Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes, Computer Methods in Applied Mechanics and Engineering, vol.155, issue.1-2, pp.49-72, 1998.
DOI : 10.1016/S0045-7825(97)85625-3

URL : https://hal.archives-ouvertes.fr/inria-00073955

A. Bermudez and M. E. Vazquez, Upwind methods for hyperbolic conservation laws with source terms, Computers & Fluids, vol.23, issue.8, pp.1049-1071, 1994.
DOI : 10.1016/0045-7930(94)90004-3

O. Besson and M. R. Laydi, Some estimates for the anisotropic Navier-Stokes equations and for the hydrostatic approximation, ESAIM: Mathematical Modelling and Numerical Analysis, vol.26, issue.7, pp.855-865, 1992.
DOI : 10.1051/m2an/1992260708551

R. Botchorishvili, B. Perthame, and A. Vasseur, Equilibrium schemes for scalar conservation laws with stiff sources, Mathematics of Computation, vol.72, issue.241, pp.131-157, 2003.
DOI : 10.1090/S0025-5718-01-01371-0

N. Botta, R. Klein, S. Langenberg, and S. Lützenkirchen, Well balanced finite volume methods for nearly hydrostatic flows, Journal of Computational Physics, vol.196, issue.2, pp.539-565, 2004.
DOI : 10.1016/j.jcp.2003.11.008

N. Botta, R. Klein, and A. Owinoh, Distinguished Limits, Multiple Scales Asymptotics , and Numerics for Atmospheric Flows, Amer. Meteorological Society, 13th Intl. Conf. on Atmosphere-Ocean Fluid Dynamics, 2001.

F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws, and well-balanced schemes for sources, Frontiers in Mathematics, 2004.

F. Bouchut, Construction of BGK models with a family of kinetic entropy equations for a given system of conservation laws, Journal of Statistical Physics, vol.95, issue.1/2, pp.113-170, 1999.
DOI : 10.1023/A:1004525427365

F. Bouchut and F. James, One dimensional transport equation with discontinuous coefficient, Nonlinear Anal, pp.891-933, 1998.

F. Bouchut, J. Lesommer, and V. Zeitlin, Frontal geostrophic adjustment and nonlinear wave phenomena in one-dimensional rotating shallow water. Part 2. High-resolution numerical simulations, Journal of Fluid Mechanics, vol.514, pp.514-549, 2004.
DOI : 10.1017/S0022112004009991

F. Bouchut, A. Mangeney-castelnau, B. Perthame, and J. P. Vilotte, A new model of Saint Venant and Savage???Hutter type for gravity driven shallow water flows, Comptes Rendus Mathematique, vol.336, issue.6, pp.336-531, 2003.
DOI : 10.1016/S1631-073X(03)00117-1

M. O. Bristeau and B. Coussin, Boundary Conditions for the Shallow Water Equations solved by Kinetic Schemes, INRIA Report, p.4282, 2001.
URL : https://hal.archives-ouvertes.fr/inria-00072305

M. O. Bristeau and B. Perthame, Transport of pollutant in shallow water using kinetic schemes, ESAIM Proceedingsemath.fr/Maths/Proc, pp.9-21
DOI : 10.1051/proc:2001002

R. Burger, K. H. Karlsen, C. Klingenberg, and N. H. Risebro, A front tracking approach to a model of continuous sedimentation in ideal clarifier???thickener units, Nonlinear Analysis: Real World Applications, vol.4, issue.3, pp.457-481, 2003.
DOI : 10.1016/S1468-1218(02)00071-8

P. Cargo and A. Y. Leroux, Un schémá equilibre adapté au modèle d'atmosphère avec termes de gravité [A well-balanced scheme for a model of an atmosphere with gravity], C. R. Acad. Sci. Paris Sr. I Math, issue.1, pp.318-73, 1994.

M. J. Castro, J. Macias, and C. Pares, -scheme for a class of systems of coupled conservation laws with source term. Application to a two-layer 1-D shallow water system, ESAIM: Mathematical Modelling and Numerical Analysis, vol.35, issue.1, pp.35-107, 2001.
DOI : 10.1051/m2an:2001108

URL : https://hal.archives-ouvertes.fr/hal-00908624

M. J. Castro, J. A. Garcia-rodriguez, J. M. Gonzanlez-vida, J. Macias, C. Pares et al., Numerical simulation of two-layer shallow water flows through channels with irregular geometry, Journal of Computational Physics, vol.195, issue.1, pp.195-202, 2004.
DOI : 10.1016/j.jcp.2003.08.035

M. J. Castro and C. Pares, On the well balanced property of Roe's method for nonconservative hyperbolic systems. Applications to shallow water systems

P. Causin, E. Miglio, and F. Saleri, Algebraic factorizations for 3D non-hydrostatic free surface flows, Computing and Visualization in Science, vol.5, issue.2, pp.85-94, 2002.
DOI : 10.1007/s00791-002-0090-8

C. Cercignani, The Boltzmann equation and its applications, 1994.
DOI : 10.1007/978-1-4612-1039-9

C. Rebollo, T. Guillen-gonzalez, and F. , An intrinsic analysis of existence of solutions for the hydrostatic approximation of Navier-Stokes equations, C. R. Acad

C. Rebollo, T. Delgado, A. D. Nieto, and E. D. , An entropy-correction free solver for non-homogeneous shallow water equations, ESAIM: Mathematical Modelling and Numerical Analysis, vol.37, issue.5, pp.37-363, 2003.
DOI : 10.1051/m2an:2003043

C. Rebollo, T. Delgado, A. D. Nieto, and E. D. , A family of stable numerical solvers for the shallow water equations with source terms, Comp. Meth. Appl. Math. Engin, pp.192-203, 2003.

A. Chertock and A. Kurganov, On a hybrid final-volume-particle method, 2003.

A. Chertock, A. Kurganov, and G. Petrova, Finite-volume-particle methods for models of transport of pollutant in shallow water, to appear in, J. Sci. Comput, 2003.

C. M. Dafermos, Hyperbolic conservation laws in continuum physics, GM, vol.325, 1999.

D. Maso, G. Lefloch, P. Murat, and F. , Definition and weak stability of nonconservative products, J. Math. Pures Appl, vol.74, issue.9 6, pp.483-548, 1995.

C. N. Dawson and J. Proft, Coupling of continuous and discontinuous Galerkin methods for transport problems, Computer Methods in Applied Mechanics and Engineering, vol.191, issue.29-30, pp.29-30, 2002.
DOI : 10.1016/S0045-7825(02)00257-8

C. N. Dawson and J. Proft, Discontinuous and coupled continuous/discontinuous Galerkin methods for the shallow water equations, Computer Methods in Applied Mechanics and Engineering, vol.191, issue.41-42, pp.41-42, 2002.
DOI : 10.1016/S0045-7825(02)00402-4

A. I. Delis and T. Katsaounis, Relaxation schemes for the shallow water equations, International Journal for Numerical Methods in Fluids, vol.19, issue.7, pp.695-719, 2003.
DOI : 10.1002/fld.462

S. Diehl, On Scalar Conservation Laws with Point Source and Discontinuous Flux Function, SIAM Journal on Mathematical Analysis, vol.26, issue.6, pp.1425-1451, 1995.
DOI : 10.1137/S0036141093242533

R. Eymard, T. Gallouët, and R. Herbin, Finite volume methods, Handbook of numerical analysis, Lions editors, 2000.

S. Ferrari and F. Saleri, A new two dimmensionnal shallow water model, pp.38-211, 2004.

L. Fontana, E. Miglio, A. Quarteroni, and F. Saleri, A finite element method for 3D hydrostatic water flows, Computing and Visualization in Science, vol.2, issue.2-3, pp.85-93, 1999.
DOI : 10.1007/s007910050031

L. Formaggia, D. Lamponi, and A. Quarteroni, One-dimensional models for blood flow in arteries, Journal of Engineering Mathematics, vol.47, issue.3/4, 2002.
DOI : 10.1023/B:ENGI.0000007980.01347.29

L. Formaggia, F. Nobile, and A. Quarteroni, A one dimensional model for blood flow : application to vascular prosthesis, Mathematical modeling and numerical simulation in continuum mechanics, Lect. Notes Comput. Sci. Eng, pp.19-137, 2002.

T. Gallouët, J. M. Hérard, and N. Seguin, Some approximate Godunov schemes to compute shallow-water equations with topography, Computers & Fluids, vol.32, issue.4, pp.479-513, 2003.
DOI : 10.1016/S0045-7930(02)00011-7

J. Gerbeau and B. Perthame, Derivation of Viscous Saint-Venant System for Laminar Shallow Water ; Numerical Validation, Discrete Cont, Dyn. Syst. Ser. B, vol.1, issue.1, pp.89-102, 2001.

A. E. Gill, Atmosphere Ocean Dynamics, International Geophysics Series, vol.30, 1982.

T. Gimse and N. H. Risebro, Riemann problems with a discontinuous flux function, Third International Conference on Hyperbolic Problems, pp.488-502, 1990.

T. Gimse and N. H. Risebro, Solution of the Cauchy Problem for a Conservation Law with a Discontinuous Flux Function, SIAM Journal on Mathematical Analysis, vol.23, issue.3, pp.635-648, 1992.
DOI : 10.1137/0523032

E. Godlewski and P. Raviart, Numerical approximations of hyperbolic systems of conservation laws, Applied Mathematical Sciences, vol.118, 1996.
DOI : 10.1007/978-1-4612-0713-9

S. K. Godunov, A difference method for numerical calculation of dicontinuous equations of hydrodynamics, Mat. Sb, pp.271-300, 1959.

L. Gosse, A priori error estimate for a well-balanced scheme designed for inhomogeneous scalar conservation laws, Comptes Rendus de l'Acad??mie des Sciences - Series I - Mathematics, vol.327, issue.5, pp.327-467, 1998.
DOI : 10.1016/S0764-4442(99)80024-X

L. Gosse, A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms, Computers & Mathematics with Applications, vol.39, issue.9-10, pp.135-159, 2000.
DOI : 10.1016/S0898-1221(00)00093-6

L. Gosse, A WELL-BALANCED SCHEME USING NON-CONSERVATIVE PRODUCTS DESIGNED FOR HYPERBOLIC SYSTEMS OF CONSERVATION LAWS WITH SOURCE TERMS, Mathematical Models and Methods in Applied Sciences, vol.11, issue.02, pp.339-365, 2001.
DOI : 10.1142/S021820250100088X

L. Gosse and A. Leroux, A well-balanced scheme designed for inhomogeneous scalar conservation laws, C. R. Acad. Sc, pp.323-543, 1996.

N. Goutal and F. Maurel, Proceedings of the 2nd workshop on dam-break simulation, Note technique EDF, HE-43, 1997.

J. M. Gray, Y. C. Tai, and S. Noelle, Shock waves, dead zones and particle-free regions in rapid granular free-surface flows, Journal of Fluid Mechanics, vol.491, pp.491-161, 2003.
DOI : 10.1017/S0022112003005317

J. M. Greenberg and A. Leroux, A Well-Balanced Scheme for the Numerical Processing of Source Terms in Hyperbolic Equations, SIAM Journal on Numerical Analysis, vol.33, issue.1, pp.1-16, 1996.
DOI : 10.1137/0733001

J. M. Greenberg, A. Leroux, R. Baraille, and A. Noussair, Analysis and Approximation of Conservation Laws with Source Terms, SIAM Journal on Numerical Analysis, vol.34, issue.5, 1980.
DOI : 10.1137/S0036142995286751

H. Guillard and R. Abgrall, Modélisation numérique des fluides compressibles, Series in Applied Mathematics, 2001.

G. Gonzalez, F. Masmoudi, N. Bellido, and R. , Anisotropic estimates and strong solutions of the primitive equations, Diff. Int. Equ, vol.14, issue.11, pp.1381-1408, 2001.

J. M. Hervouet, Hydrodynamique desécoulementsàdesécoulementsdesécoulementsà surface libre, modélisation numérique avec la méthode desélémentsdeséléments finis, Presses des Ponts et Chaussées, 2003.

J. M. Hervouet, A high resolution 2D dam break model using parallelization, Hydrological Processes, pp.2221-2230, 2000.

J. M. Hervouet, J. M. Janin, F. Lepeintre, and P. Pechon, TELEMAC 3D : a finite element software to solve the 3D free surface flow problems, International Conference on Hydroscience and Engineering, 1993.

E. Isaacson and B. Temple, Nonlinear Resonance in Systems of Conservation Laws, SIAM Journal on Applied Mathematics, vol.52, issue.5, pp.1260-1278, 1992.
DOI : 10.1137/0152073

E. Isaacson and B. Temple, Convergence of the $2 \times 2$ Godunov Method for a General Resonant Nonlinear Balance Law, SIAM Journal on Applied Mathematics, vol.55, issue.3, pp.625-640, 1995.
DOI : 10.1137/S0036139992240711

S. Jin, A steady-state capturing method for hyperbolic systems with geometrical source terms, ESAIM: Mathematical Modelling and Numerical Analysis, vol.35, issue.4, pp.35-631, 2001.
DOI : 10.1051/m2an:2001130

K. H. Karlsen, C. Klingenberg, and N. H. Risebro, A relaxation scheme for conservation laws with a discontinuous coefficient, Mathematics of Computation, vol.73, issue.247, pp.1235-1259, 2004.
DOI : 10.1090/S0025-5718-03-01625-9

K. H. Karlsen, N. H. Risebro, and J. D. Towers, Upwind difference approximations for degenerate parabolic convection-diffusion equations with a discontinuous coefficient, IMA Journal of Numerical Analysis, vol.22, issue.4, pp.623-664, 2002.
DOI : 10.1093/imanum/22.4.623

K. H. Karlsen, N. H. Risebro, and J. D. Towers, On a nonlinear degenerate parabolic transport-diffusion equation with a discontinuous coefficient, Electron. J. Differential Equations, issue.93, pp.1-23, 2002.

K. H. Karlsen, N. H. Risebro, and J. Towers, L 1 Stability for entropy solutions of non linear degenerate parabolic convection diffusion equations with discontinuous coefficient, Skr. K. Nor. Vid. Selsk, vol.49, p.pp, 2003.

T. Katsaounis and C. Simeoni, First and second order error estimates for the Upwind Source at Interface method, Mathematics of Computation, vol.74, issue.249, pp.103-122, 2005.
DOI : 10.1090/S0025-5718-04-01655-2

T. Katsaounis, B. Perthame, and C. Simeoni, Upwinding Sources at Interfaces in conservation laws, to appear in Appl, Math. Lett, 2004.

T. Katsaounis and C. Makridakis, Relaxation Models and Finite Element Schemes for the Shallow Water Equations, Hyperbolic Problems : Theory, pp.621-631, 2003.

B. Khobalatte, Résolution numérique deséquationsdeséquations de la mécanique des fluides par des méthides cinétiques, 1993.

R. A. Klausen and N. H. Risebro, Stability of Conservation Laws with Discontinuous Coefficients, Journal of Differential Equations, vol.157, issue.1, pp.41-60, 1999.
DOI : 10.1006/jdeq.1998.3624

C. Klingenberg and N. H. Risebro, Convex conservation laws with discontinuous coefficients. existence, uniqueness and asymptotic behavior, Communications in Partial Differential Equations, vol.22, issue.11-12, pp.11-12, 1959.
DOI : 10.1080/03605309508821159

C. Klingenberg and N. H. Risebro, Stability of a Resonant System of Conservation Laws Modeling Polymer Flow with Gravitation, Journal of Differential Equations, vol.170, issue.2, pp.344-380, 2002.
DOI : 10.1006/jdeq.2000.3826

S. N. Kruzkov, FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES, Mathematics of the USSR-Sbornik, vol.10, issue.2, pp.217-243, 1970.
DOI : 10.1070/SM1970v010n02ABEH002156

A. Kurganov and D. Levy, Central-Upwind Schemes for the Saint-Venant System, ESAIM: Mathematical Modelling and Numerical Analysis, vol.36, issue.3, pp.36-397, 2002.
DOI : 10.1051/m2an:2002019

A. Kurganov and G. Petrova, Central schemes and contact discontinuities, ESAIM: Mathematical Modelling and Numerical Analysis, vol.34, issue.6, pp.34-1259, 2000.
DOI : 10.1051/m2an:2000126

URL : http://archive.numdam.org/article/M2AN_2000__34_6_1259_0.pdf

E. Lazzaroni, Approssimazione numerica di modelli multistrato per fluidi a superficia libera, 2002.

A. Y. Leroux, Riemann Solvers for some Hyperbolic Problems with a Source Term, ESAIM: Proceedings, vol.6, pp.75-90, 1999.
DOI : 10.1051/proc:1999047

A. Y. Leroux, Discrétisation des termes sources raides dans lesprobì emes hyperboliques In : Systèmes hyperboliques : Nouveaux schémas et nouvelles applications . Ecoles CEA-EDF-INRIA probì emes non linéaires appliqués', INRIA Rocquencourt (France), 1998.

R. J. Leveque, Numerical Methods for Conservation Laws, Lectures in Mathematics ETH Zurich, 1992.

R. J. Leveque, Finite Volume Methods for Hyperbolic Problems, 2002.
DOI : 10.1017/CBO9780511791253

R. J. Leveque, Balancing Source Terms and Flux Gradients in High-Resolution Godunov Methods: The Quasi-Steady Wave-Propagation Algorithm, Journal of Computational Physics, vol.146, issue.1, pp.346-365, 1998.
DOI : 10.1006/jcph.1998.6058

R. J. Leveque and H. C. Yee, A study of numerical methods for hyperbolic conservation laws with stiff source terms, Journal of Computational Physics, vol.86, issue.1, pp.86-187, 1990.
DOI : 10.1016/0021-9991(90)90097-K

R. J. Leveque, Wave Propagation Algorithms for Multidimensional Hyperbolic Systems, Journal of Computational Physics, vol.131, issue.2, pp.327-353, 1997.
DOI : 10.1006/jcph.1996.5603

P. L. Lions, B. Perthame, and P. E. Souganidis, Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates, Communications on Pure and Applied Mathematics, vol.4, issue.6, pp.599-638, 1996.
DOI : 10.1002/(SICI)1097-0312(199606)49:6<599::AID-CPA2>3.0.CO;2-5

P. L. Lions, B. Perthame, and E. Tadmor, Kinetic formulation of the isentropic gas dynamics andp-systems, Communications in Mathematical Physics, vol.13, issue.3???4, pp.415-431, 1994.
DOI : 10.1007/BF02102014

T. P. Liu, Nonlinear resonance for quasilinear hyperbolic equation, Journal of Mathematical Physics, vol.28, issue.11, pp.2593-2602, 1987.
DOI : 10.1063/1.527751

A. Mangeney, J. P. Vilotte, M. O. Bristeau, B. Perthame, C. Simeoni et al., Numerical modeling of avalanches based on Saint-Venant equations using a kinetic scheme, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00922781

L. Martin, FonctionnementécologiqueFonctionnementécologique de la Seinè a l'aval de la station d'´ epuration d'Achères : données expérimentales et modélisation bidimensionnelle, 2001.

E. Miglio, A. Quarteroni, and F. Saleri, Finite element approximation of Quasi-3D shallow water equations, Computer Methods in Applied Mechanics and Engineering, vol.174, issue.3-4, pp.3-4, 1999.
DOI : 10.1016/S0045-7825(98)00304-1

L. A. Monthe, F. Benkhaldoun, and I. Elmahi, Positivity preserving finite volume Roe, Computer Methods in Applied Mechanics and Engineering, vol.178, issue.3-4, pp.215-232, 1999.
DOI : 10.1016/S0045-7825(99)00015-8

C. Navier, Mémoire sur les lois du mouvement des fluides, C. R. Acad. Sc, issue.6, pp.389-416, 1823.

D. N. Ostrov, Solutions of Hamilton???Jacobi Equations and Scalar Conservation Laws with Discontinuous Space???Time Dependence, Journal of Differential Equations, vol.182, issue.1, pp.51-77, 2002.
DOI : 10.1006/jdeq.2001.4088

B. Perthame, Boltzmann Type Schemes for Gas Dynamics and the Entropy Property, SIAM Journal on Numerical Analysis, vol.27, issue.6, pp.1405-1421, 1990.
DOI : 10.1137/0727081

B. Perthame, Kinetic formulations of conservation laws, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01146188

B. Perthame, An Introduction to Kinetic Schemes for Gas Dynamics, Lect. Notes Comput. Sci. Eng, vol.5, pp.1-27, 1997.
DOI : 10.1007/978-3-642-58535-7_1

B. Perthame and Y. Qiu, A Variant of Van Leer's Method for Multidimensional Systems of Conservation Laws, Journal of Computational Physics, vol.112, issue.2, pp.370-381, 1994.
DOI : 10.1006/jcph.1994.1107

B. Perthame and C. Simeoni, A kinetic scheme for the Saint-Venant system with a source term, Calcolo, pp.38-201, 2001.

B. Perthame and C. Simeoni, Convergence of the Upwind Interface Source Method for Hyperbolic Conservation Laws, Proceedings of Hyp2002, T. Hou and E. Tadmor editors, 2003.
DOI : 10.1007/978-3-642-55711-8_5

URL : https://hal.archives-ouvertes.fr/hal-00922680

J. Proft, Multi-Algorithmic Numerical Strategies for the Solution of Shallow Water Models, pp.2-41, 2002.

Y. Qiu, Etude deséquationsdeséquations d'Euler et de Boltzman et de leur couplage Applicationàcationà la simulation numérique d'´ ecoulements hypersoniques de gaz raréfiés, 1993.

P. L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, Journal of Computational Physics, vol.43, issue.2, pp.357-372, 1981.
DOI : 10.1016/0021-9991(81)90128-5

P. L. Roe, Upwind differencing schemes for hyperbolic conservation laws with source terms, Lecture Notes in Math, vol.241, pp.41-51, 1987.
DOI : 10.1007/BFb0008660

G. Russo, Central schemes for balance laws Hyperbolic problems : theory, numerics , applications, Internat. Ser. Numer. Math, vol.I, pp.140-141, 2000.

. De-saint and A. J. Venant, Théorie du mouvement non-permanent des eaux, avec application aux crues desrivì eres etàetà l'introduction des marées dans leur lit, C. R

R. Sanders and K. H. Prendergast, The possible relations of the three kiloparsec arm to explosions in the galactic nucleus, Astrophysical Journal, p.188, 1974.

N. Seguin and J. Vovelle, ANALYSIS AND APPROXIMATION OF A SCALAR CONSERVATION LAW WITH A FLUX FUNCTION WITH DISCONTINUOUS COEFFICIENTS, Mathematical Models and Methods in Applied Sciences, vol.13, issue.02, pp.221-257, 2003.
DOI : 10.1142/S0218202503002477

URL : https://hal.archives-ouvertes.fr/hal-01376535

D. Serre, Systèmes hyperboliques de lois de conservation, Parties I et II, 1996.

J. Steger and R. F. Warming, Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods, Journal of Computational Physics, vol.40, issue.2, pp.263-293, 1981.
DOI : 10.1016/0021-9991(81)90210-2

J. J. Stoker, The formation of breakers and bores the theory of nonlinear wave propagation in shallow water and open channels, Communications on Pure and Applied Mathematics, vol.18, issue.1, pp.1-87, 1948.
DOI : 10.1002/cpa.3160010101

J. J. Stoker, Water waves, the mathematical theory with applications, 1958.

G. Stokes, On the theories of the internal friction of fluids motion and of the equilibrium and motion of elastic solids, Trans, pp.287-305, 1845.

B. Temple, Global solution of the cauchy problem for a class of 2 ?? 2 nonstrictly hyperbolic conservation laws, Advances in Applied Mathematics, vol.3, issue.3, pp.335-375, 1982.
DOI : 10.1016/S0196-8858(82)80010-9

E. F. Toro, Riemann solvers and numerical methods for fluid dynamics. A practical introduction, 1999.

J. Towers, Convergence of a Difference Scheme for Conservation Laws with a Discontinuous Flux, SIAM Journal on Numerical Analysis, vol.38, issue.2, pp.681-698, 2000.
DOI : 10.1137/S0036142999363668

J. Towers, A Difference Scheme for Conservation Laws with a Discontinuous Flux: The Nonconvex Case, SIAM Journal on Numerical Analysis, vol.39, issue.4, pp.1197-1218, 2001.
DOI : 10.1137/S0036142900374974

B. Van-leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method, Journal of Computational Physics, vol.32, issue.1, pp.101-136, 1979.
DOI : 10.1016/0021-9991(79)90145-1

B. Van-leer, Flux Vector Splitting for the Euler equations, Proc. 8th International Conference on numerical methods in fluids dynamics, pp.507-512, 1982.

M. E. Vazquez-cendon, Improved Treatment of Source Terms in Upwind Schemes for the Shallow Water Equations in Channels with Irregular Geometry, Journal of Computational Physics, vol.148, issue.2, pp.497-526, 1999.
DOI : 10.1006/jcph.1998.6127

G. B. Whitham, Linear and non linear waves, 1999.

K. Xu, A Well-Balanced Gas-Kinetic Scheme for the Shallow-Water Equations with Source Terms, Journal of Computational Physics, vol.178, issue.2, pp.533-562, 2002.
DOI : 10.1006/jcph.2002.7040

V. Zeitlin, S. B. Medvedev, and R. Plougonven, Frontal geostrophic adjustment, slow manifold and nonlinear wave phenomena in 1d rotating shallow water, Journal of Fluid Mechanics, pp.481-269, 2003.