A. Abbas, J. M. Delaye, D. Ghaleb, and G. Calas, Molecular dynamics study of the structure and dynamic behavior at the surface of a silicate glass, Journal of Non-Crystalline Solids, vol.315, issue.1-2, p.187, 2003.
DOI : 10.1016/S0022-3093(02)01432-1

URL : https://hal.archives-ouvertes.fr/hal-00085112

M. Aertsens and P. Van-iseghem, Scientific Basis for Nuclear Waste Management XIX, 1995.

V. A. Bakaev, W. A. Steele, and C. G. Pantano, On the computer simulation of silicate glass surfaces, The Journal of Chemical Physics, vol.114, issue.21, p.9599, 2001.
DOI : 10.1063/1.1368658

V. A. Bakaev, W. A. Steele, T. I. Bakaeve, and C. G. Pantano, Adsorption of CO2 and Ar on glass surfaces. Computer simulation and experimental study, The Journal of Chemical Physics, vol.111, issue.21, p.9813, 1999.
DOI : 10.1063/1.480329

B. W. Van-beest, G. J. Kramer, and R. A. Van-santen, calculations, Physical Review Letters, vol.64, issue.16, p.1955, 1990.
DOI : 10.1103/PhysRevLett.64.1955

M. Benoit, M. Bernasconi, P. Focher, and I. Parsons, New High-Pressure Phase of Ice, Physical Review Letters, vol.76, issue.16, p.2934, 1996.
DOI : 10.1103/PhysRevLett.76.2934

G. E. Brown, F. Farges, and G. Calas, Structure, dynamics et properties of silicate melts, 1995.

G. Calas, G. E. Brown, and G. A. , X-ray absorption spectroscopic studies of silicate glasses and minerals, Physics and Chemistry of Minerals, vol.75, issue.01, p.19, 1987.
DOI : 10.1007/BF00307604

R. Car and M. Parrinello, Unified Approach for Molecular Dynamics and Density-Functional Theory, Physical Review Letters, vol.55, issue.22, p.2471, 1985.
DOI : 10.1103/PhysRevLett.55.2471

F. Celarié, S. Prades, D. Bonamy, L. Ferrero, E. Bouchaud et al., Glass Breaks like Metal, but at the Nanometer Scale, Physical Review Letters, vol.90, issue.7, p.75504, 2003.
DOI : 10.1103/PhysRevLett.90.075504

L. Cormier, P. H. Gaskell, G. Calas, J. Zhao, and A. K. Soper, ionic conductor glass: A neutron-scattering and reverse Monte Carlo study, Physical Review B, vol.57, issue.14, p.8067, 1998.
DOI : 10.1103/PhysRevB.57.R8067

L. Cormier, D. Ghaleb, D. Neuville, J. Delaye, and G. Calas, Structure and properties of low-silica calcium aluminosilicate glasses, Journal of Non-Crystalline Solids, vol.274, issue.1-3, p.110, 2000.
DOI : 10.1016/S0022-3093(00)00209-X

URL : https://hal.archives-ouvertes.fr/hal-00085702

L. Cormier, D. Ghaleb, D. Neuville, J. Delaye, and G. Calas, Chemical dependence of network topology of calcium aluminosilicate glasses: a computer simulation study, Journal of Non-Crystalline Solids, vol.332, issue.1-3, p.255, 2003.
DOI : 10.1016/j.jnoncrysol.2003.09.012

URL : https://hal.archives-ouvertes.fr/hal-00085070

J. M. Delaye, V. Louis-achille, and D. Ghaleb, Modeling oxide glasses with Born???Mayer???Huggins potentials: Effect of composition on structural changes, Journal of Non-Crystalline Solids, vol.210, issue.2-3, p.232, 1997.
DOI : 10.1016/S0022-3093(96)00604-7

J. M. Delaye and D. Ghaleb, Molecular dynamics simulation of SiO2 + B2O3 + Na2O + ZrO2 glass, Journal of Non-Crystalline Solids, vol.195, issue.3, p.239, 1996.
DOI : 10.1016/0022-3093(95)00527-7

J. M. Delaye and D. Ghaleb, Utilisation de la dynamique moléculaire pour la représentation de la structure des verres nucléaires simplifiés, 1997.

R. G. Della-valle and H. C. Andersen, Molecular dynamics simulation of silica liquid and glass, The Journal of Chemical Physics, vol.97, issue.4, p.2682, 1992.
DOI : 10.1063/1.463056

B. Doliwa, A. Heuer, and J. Phys, Finite-size effects in a supercooled liquid, Journal of Physics: Condensed Matter, vol.15, issue.11, p.849, 2003.
DOI : 10.1088/0953-8984/15/11/309

J. C. Dran, J. Petit, and C. Brousse, Mechanism of aqueous dissolution of silicate glasses yielded by fission tracks, Nature, vol.209, issue.210, p.485, 1986.
DOI : 10.1038/319485a0

URL : https://hal.archives-ouvertes.fr/in2p3-00001617

M. Dreizler and E. K. Gross, Density functionnal theory, An approch to the Quantum many-body problem, 1990.

M. Du, A. Kolchin, and H. Cheng, Hydrolysis of a two-membered silica ring on the amorphous silica surface, The Journal of Chemical Physics, vol.120, issue.2, p.1044, 2004.
DOI : 10.1063/1.1630026

F. J. Feher, K. J. Weller, and J. W. Ziller, Synthesis and characterization of an aluminosilsesquioxane framework that violates Loewenstein's rule, Journal of the American Chemical Society, vol.114, issue.24, p.9686, 1992.
DOI : 10.1021/ja00050a074

B. P. Feuston and S. H. Garofalini, Empirical three???body potential for vitreous silica, The Journal of Chemical Physics, vol.89, issue.9, p.5818, 1988.
DOI : 10.1063/1.455531

B. P. Feuston and S. H. Garofalini, Water???induced relaxation of the vitreous silica surface, Journal of Applied Physics, vol.68, issue.9, p.4830, 1990.
DOI : 10.1063/1.346142

B. P. Feuston and S. H. Garofalini, Oligomerization in silica sols, The Journal of Physical Chemistry, vol.94, issue.13, p.5351, 1990.
DOI : 10.1021/j100376a035

A. Fouzri, R. Dorbez-sridi, and M. Oumezzine, Water confined in silica gel and in vycor glass at low and room temperature, x-ray diffraction study, The Journal of Chemical Physics, vol.116, issue.2, p.791, 2002.
DOI : 10.1063/1.1426380

P. Ganster, M. Benoit, J. M. Delaye, and W. Kob, Structural properties of a calcium aluminosilicate glass from molecular-dynamics simulations: A finite size effects study, The Journal of Chemical Physics, vol.120, issue.21, p.10172, 2004.
DOI : 10.1063/1.1724815

S. H. Garofalini and C. Martin, Molecular Simulations of the Polymerization of Silicic Acid Molecules and Network Formation, The Journal of Physical Chemistry, vol.98, issue.4, p.1311, 1994.
DOI : 10.1021/j100055a044

T. Gerber, B. Himmel, and C. Huebert, WAXS and SAXS investigation of structure formation of gels from sodium water glass, Journal of Non-Crystalline Solids, vol.175, issue.2-3, p.160, 1994.
DOI : 10.1016/0022-3093(94)90008-6

D. Ghaleb, Dynamique moléculaire appliquéè a l'´ etude des verres nucléaires, Visite du professeur J. KIEFER de l'Université de l'Illinois, pp.95-99

D. Ghaleb, J. Dussossoy, C. Fillet, and F. Pacaud, Jacquet-Francillon, Scientific Basis for Nuclear Waste management XVIII 353, 1994.

N. Godon, Dossier de référence sur l'´ etude du comportementàcomportementà long terme des verres nucléaires, Rapport Technique DIEC, 2003.

S. Goedecker, M. Teter, and E. J. Hutter, Separable dual-space Gaussian pseudopotentials, Physical Review B, vol.54, issue.3, p.1703, 1996.
DOI : 10.1103/PhysRevB.54.1703

URL : http://arxiv.org/abs/mtrl-th/9512004

B. Grambow, In Scientific Basis for Nuclear Waste Management VII 44, 1985.

D. L. Griscom, superhyperfine structure, Physical Review B, vol.22, issue.9, p.4192, 1980.
DOI : 10.1103/PhysRevB.22.4192

D. L. Griscom, Defect structure of glasses, Journal of Non-Crystalline Solids, vol.73, issue.1-3, p.51, 1985.
DOI : 10.1016/0022-3093(85)90337-0

G. Gruener, D. De-sousa-meneses, P. Odier, and J. P. Loup, Influence of the network on conductivity in ternary CaO???Al2O3???SiO2 glasses and melts, Journal of Non-Crystalline Solids, vol.281, issue.1-3, p.117, 2001.
DOI : 10.1016/S0022-3093(00)00423-3

B. Guillot, A reappraisal of what we have learnt during three decades of computer simulations on water, Journal of Molecular Liquids, vol.101, issue.1-3, p.219, 2002.
DOI : 10.1016/S0167-7322(02)00094-6

B. Guillot and Y. Guissani, How to build a better pair potential for water, The Journal of Chemical Physics, vol.114, issue.15, p.6720, 2001.
DOI : 10.1063/1.1356002

A. Hansen and J. Schmittbuhl, Origin of the Universal Roughness Exponent of Brittle Fracture Surfaces:Stress-Weighted Percolation in the Damage Zone, Physical Review Letters, vol.90, issue.4, p.45504, 2003.
DOI : 10.1103/PhysRevLett.90.045504

L. G. Hwa, C. L. Lu, and L. C. Liu, Elastic moduli of calcium alumino-silicate glasses studied by Brillouin scattering, Materials Research Bulletin, vol.35, issue.8, p.1285, 2000.
DOI : 10.1016/S0025-5408(00)00317-2

C. R. Helms and E. H. Poindexter, The silicon-silicon dioxide system: Its microstructure and imperfections, Reports on Progress in Physics, vol.57, issue.8, p.791, 1994.
DOI : 10.1088/0034-4885/57/8/002

R. K. Her, The chemistry of silica, 1979.

B. Himmel, J. Weigelt, T. Gerber, and M. Nofz, Structure of calcium aluminosilicate glasses: wide-angle X-ray scattering and computer simulation, Journal of Non-Crystalline Solids, vol.136, issue.1-2, p.27, 1991.
DOI : 10.1016/0022-3093(91)90115-M

J. Horbach, W. Kob, K. Binder, and C. A. Angell, Finite size effects in simulations of glass dynamics, Physical Review E, vol.54, issue.6, p.5897, 1996.
DOI : 10.1103/PhysRevE.54.R5897

J. Horbach and W. Kob, Relaxation dynamics of a viscous silica melt: The intermediate scattering functions, Physical Review E, vol.64, issue.4, p.41503, 2001.
DOI : 10.1103/PhysRevE.64.041503

M. L. Huggins and J. E. Mayer, Interatomic Distances in Crystals of the Alkali Halides, The Journal of Chemical Physics, vol.1, issue.9, p.643, 1933.
DOI : 10.1063/1.1749344

S. Ispas, M. Benoit, P. Jund, and R. Jullien, molecular dynamics simulations, Physical Review B, vol.64, issue.21, p.214206, 2001.
DOI : 10.1103/PhysRevB.64.214206

URL : https://hal.archives-ouvertes.fr/hal-00364973

P. Jund, W. Kob, and R. Jullien, Channel diffusion of sodium in a silicate glass, Physical Review B, vol.64, issue.13, p.134303, 2001.
DOI : 10.1103/PhysRevB.64.134303

W. Kob, Supercooled liquids, the glass transition, and computer simulations, Lecture Notes for " Slow relaxations and nonequilibrium dynamics in condensed matter Les Houches Session LXXVII, J. Kurchan et J. Dalibard, pp.199-270, 2002.

S. C. Kohn, The dissolution mechanisms of water in silicate melts; a synthesis of recent data, Mineralogical Magazine, vol.64, issue.3, p.389, 2000.
DOI : 10.1180/002646100549463

]. W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review, vol.140, issue.4A, p.1133, 1965.
DOI : 10.1103/PhysRev.140.A1133

M. Kimoshita, M. Harada, Y. Sato, and Y. Hariguchi, Percolation Phenomenon for Dissolution of Sodium Borosilicate Glasses in Aqueous Solutions, Journal of the American Ceramic Society, vol.13, issue.3, p.783, 1991.
DOI : 10.1111/j.1151-2916.1991.tb06925.x

J. D. Kubicki and M. J. Toplis, Molecular orbital calculations on aluminosilicate tricluster molecules: Implications for the structure of aluminosilicate glasses, American Mineralogist, vol.87, issue.5-6, p.668, 2002.
DOI : 10.2138/am-2002-5-609

C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B, vol.37, issue.2, p.785, 1988.
DOI : 10.1103/PhysRevB.37.785

S. K. Lee and J. F. Stebbins, The degree of aluminum avoidance in aluminosilicate glasses, American Mineralogist, vol.84, issue.5-6, p.937, 1999.
DOI : 10.2138/am-1999-5-630

E. A. Leed and C. G. Pantano, Computer modeling of water adsorption on silica and silicate glass fracture surfaces, Journal of Non-Crystalline Solids, vol.325, issue.1-3, p.48, 2003.
DOI : 10.1016/S0022-3093(03)00361-2

C. Landon, B. Cote, D. Massiot, J. Coutures, and A. Flank, Aluminium XAS and NMR Spectroscopic Studies of Calcium Aluminosilicate Glasses, physica status solidi (b), vol.33, issue.01, p.9, 1992.
DOI : 10.1002/pssb.2221710102

W. A. Lanford, K. Davis, P. Lamarche, T. Laursen, and R. Groleau, Hydration of soda-lime glass, Journal of Non-Crystalline Solids, vol.33, issue.2, p.249, 1979.
DOI : 10.1016/0022-3093(79)90053-X

G. E. Martin and S. H. Garofalini, Sol-gel polymerization: analysis of molecular mechanisms and the effect of hydrogen, Journal of Non-Crystalline Solids, vol.171, issue.1, p.68, 1994.
DOI : 10.1016/0022-3093(94)90033-7

P. Mcmillan, B. Pirriou, and A. Navrotsky, A Raman spectroscopic study of glasses along the joins silica-calcium aluminate, silica-sodium aluminate, and silica-potassium aluminate, Geochimica et Cosmochimica Acta, vol.46, issue.11, p.2021, 1982.
DOI : 10.1016/0016-7037(82)90182-X

E. R. Meyers, V. Heine, and M. T. Dove, Thermodynamics of Al/Al avoidance in the ordering of Al/Si tetrahedral framework structures, Physics and Chemistry of Minerals, vol.25, issue.6, p.457, 1998.
DOI : 10.1007/s002690050136

K. Miura, T. Ino, M. Tada, and H. Ohsaki, film, Philosophical Magazine Part B, vol.66, issue.1, p.25, 1992.
DOI : 10.1107/S0021889869006868

B. O. Mysen, The Structure of Silicate Melts, Annual Review of Earth and Planetary Sciences, vol.11, issue.1, 1988.
DOI : 10.1146/annurev.ea.11.050183.000451

A. Nakano, R. K. Kalia, and P. Vashishta, Growth of Pore Interfaces and Roughness of Fracture Surfaces in Porous Silica: Million Particle Molecular-Dynamics Simulations, Physical Review Letters, vol.73, issue.17, p.2336, 1994.
DOI : 10.1103/PhysRevLett.73.2336

A. Nakano, R. K. Kalia, P. Vashishta, T. J. Campbell, S. Ogata et al., Scalable Atomistic Simulation Algorithms for Materials Research, Scientific Programming, vol.10, issue.4, p.263, 2002.
DOI : 10.1155/2002/203525

T. Nakasawa, K. Yokoyama, V. Grismanovs, and Y. Katano, An ab initio study on formation and desorption reactions of H2O molecules from surface hydroxyl groups in silicates, Journal of Nuclear Materials, vol.297, issue.1, p.69, 2001.
DOI : 10.1016/S0022-3115(01)00584-0

D. Nevins and F. J. Spera, ; dependence of structure and properties on pressure, American Mineralogist, vol.83, issue.11-12 Part 1, p.1220, 1998.
DOI : 10.2138/am-1998-11-1210

R. G. Parr and W. Yang, Density-functionnal Theory of atoms and molecules, 1994.

R. F. Pettifer, R. Dupree, I. Farman, and U. Sternberg, NMR determinations of Si???O???Si bond angle distributions in silica, Journal of Non-Crystalline Solids, vol.106, issue.1-3, p.408, 1988.
DOI : 10.1016/0022-3093(88)90299-2

V. Petkov, T. Gerber, and B. Himmel, =0,0.34,0.5,0.68) by energy-dispersive x-ray diffraction, Physical Review B, vol.58, issue.18, p.11982, 1998.
DOI : 10.1103/PhysRevB.58.11982

URL : https://hal.archives-ouvertes.fr/in2p3-00491725

V. Petkov, S. J. Billinge, S. D. Shastri, and B. Himmel, Polyhedral Units and Network Connectivity in Calcium Aluminosilicate Glasses from High-Energy X-Ray Diffraction, Physical Review Letters, vol.85, issue.16, p.3436, 2000.
DOI : 10.1103/PhysRevLett.85.3436

M. Rarivomanantsoa, P. Jund, and R. Jullien, Sodium diffusion through amorphous silica surfaces: A molecular dynamics study, The Journal of Chemical Physics, vol.120, issue.10, p.4915, 2004.
DOI : 10.1063/1.1645511

URL : https://hal.archives-ouvertes.fr/hal-00122365

]. S. Ribet, S. Gin, and J. , Role of neoformed phases on the mechanisms controlling the resumption of SON68 glass alteration in alkaline media, Journal of Nuclear Materials, vol.324, issue.2-3, p.152, 2004.
DOI : 10.1016/j.jnucmat.2003.09.010

]. E. Robert, E. Whittington, F. Fayon, and M. , Structural characterization of water-bearing silicate and aluminosilicate glasses by high-resolution solid-state NMR, Chemical Geology, vol.174, issue.1-3, p.291, 2001.
DOI : 10.1016/S0009-2541(00)00321-1

URL : https://hal.archives-ouvertes.fr/hal-00089816

A. Roder, W. Kob, and K. Binder, Structure and dynamics of amorphous silica surfaces, The Journal of Chemical Physics, vol.114, issue.17, p.7602, 2001.
DOI : 10.1063/1.1360257

C. Romano, B. Poe, V. Mincione, K. U. Hess, and D. B. , The viscosities of dry and hydrous XAlSi3O8 (X=Li, Na, K, Ca0.5, Mg0.5) melts, Chemical Geology, vol.174, issue.1-3, p.115, 2001.
DOI : 10.1016/S0009-2541(00)00311-9

B. M. Smets, M. G. Tholen, and T. P. Lammen, The effect of divalent cations on the leaching kinetics of glass, Journal of Non-Crystalline Solids, vol.65, issue.2-3, p.319, 1984.
DOI : 10.1016/0022-3093(84)90056-5

B. C. Schmidt, T. Riener, S. C. Kohn, F. Holtz, and R. Dupree, Structural implications of water dissolution in haplogranitic glasses from NMR spectroscopy: influence of total water content and mixed alkali effect, Geochimica et Cosmochimica Acta, vol.65, issue.17, p.2949, 2001.
DOI : 10.1016/S0016-7037(01)00623-8

J. F. Stebbins, J. V. Oglesby, and S. K. Lee, Oxygen sites in silicate glasses: a new view from oxygen-17 NMR, Chemical Geology, vol.174, issue.1-3, p.63, 2001.
DOI : 10.1016/S0009-2541(00)00307-7

J. Stebbins, S. K. Lee, and J. V. Oglesby, Al-O-Al oxygen sites in crystalline aluminates and aluminosilicate glasses; high-resolution oxygen-17 NMR results, American Mineralogist, vol.84, issue.5-6, p.983, 1999.
DOI : 10.2138/am-1999-5-635

F. Stillinger and T. A. Weber, Computer simulation of local order in condensed phases of silicon, Physical Review B, vol.31, issue.8, p.5262, 1985.
DOI : 10.1103/PhysRevB.31.5262

W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters, The Journal of Chemical Physics, vol.76, issue.1, p.637, 1982.
DOI : 10.1063/1.442716

A. Szabo and N. S. Ostlund, Modern Quantum Chemistry : Introduction to Advanced Electronic Structure Theory, 1996.

S. N. Taraskin and S. R. Elliott, Connection between the true vibrational density of states and that derived from inelastic neutron scattering, Physical Review B, vol.55, issue.1, p.117, 1997.
DOI : 10.1103/PhysRevB.55.117

S. N. Taraskin and S. R. Elliott, Nature of vibrational excitations in vitreous silica, Physical Review B, vol.56, issue.14, p.8605, 1997.
DOI : 10.1103/PhysRevB.56.8605

M. Taylor and G. E. Brown, Structure of mineral glasses???I. The feldspar glasses NaAlSi3O8, KAlSi3O8, CaAl2Si2O8, Geochimica et Cosmochimica Acta, vol.43, issue.1, p.61, 1979.
DOI : 10.1016/0016-7037(79)90047-4

L. Tian, R. Dieckmann, C. Y. Hui, and J. G. Couillard, Effect of water incorporation on the diffusion of sodium in an alkaline-earth boroaluminosilicate glass, Journal of Non-Crystalline Solids, vol.296, issue.1-2, p.123, 2001.
DOI : 10.1016/S0022-3093(01)00868-7

M. Tomazawa, D. L. Kim, A. Agarwal, and K. M. Davis, Water diffusion and surface structural relaxation of silica glasses, Journal of Non-Crystalline Solids, vol.288, issue.1-3, p.73, 2001.
DOI : 10.1016/S0022-3093(01)00648-2

J. A. Tossel and G. Saghi-szabo, Aluminosilicate and borosilicate single 4-rings: Effects of counterions and water on structure, stability, and spectra, Geochimica et Cosmochimica Acta, vol.61, issue.6, p.1171, 1997.
DOI : 10.1016/S0016-7037(96)00397-3

M. I. Trioni, A. Bongiorno, and L. Colombo, Structural properties of silica surface: a classical molecular dynamics study, Journal of Non-Crystalline Solids, vol.220, issue.2-3, p.164, 1997.
DOI : 10.1016/S0022-3093(97)00302-5

M. E. Tuckerman, K. Laasonen, M. Sprik, and M. Parrinello, molecular dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water, The Journal of Chemical Physics, vol.103, issue.1, p.150, 1995.
DOI : 10.1063/1.469654

M. E. Tuckerman, K. Laasonen, M. Sprik, and M. Parrinello, Ab Initio Molecular Dynamics Simulation of the Solvation and Transport of H3O+ and OH- Ions in Water, The Journal of Physical Chemistry, vol.99, issue.16, p.5749, 1995.
DOI : 10.1021/j100016a003

G. Urbain, Y. Bottinga, and P. Richet, Viscosity of liquid silica, silicates and alumino-silicates, Geochimica et Cosmochimica Acta, vol.46, issue.6, p.1061, 1982.
DOI : 10.1016/0016-7037(82)90059-X

N. Valle and C. , ´ etude de la pellicule d'altération du verre R7T7àR7T7à l'aide des traceurs isotopiques 18 O et 29 Si, interne, pp.99-133, 1999.

K. Vollmayr, W. Kob, and E. K. Binder, Cooling-rate effects in amorphous silica: A computer-simulation study, Physical Review B, vol.54, issue.22, p.15808, 1996.
DOI : 10.1103/PhysRevB.54.15808

T. R. Walsh, M. Wilson, and A. P. Sutton, Hydrolysis of the amorphous silica surface. II. Calculation of activation barriers and mechanisms, The Journal of Chemical Physics, vol.113, issue.20, p.9191, 2000.
DOI : 10.1063/1.1320057

C. Wang, N. Kuzuu, and Y. Tamai, Molecular dynamics study on surface structure of a-SiO2 by charge equilibration method, Journal of Non-Crystalline Solids, vol.318, issue.1-2, p.131, 2003.
DOI : 10.1016/S0022-3093(02)01887-2

M. Wilson and T. R. Walsh, Hydrolysis of the amorphous silica surface. I. Structure and dynamics of the dry surface, The Journal of Chemical Physics, vol.113, issue.20, p.9180, 2000.
DOI : 10.1063/1.1320056

A. Winkler, J. Horbach, W. Kob, and K. Binder, Structure and diffusion in amorphous aluminum silicate: A molecular dynamics computer simulation, The Journal of Chemical Physics, vol.120, issue.1, p.384, 2004.
DOI : 10.1063/1.1630562

Z. Wu, C. Romano, A. Marcelli, A. Mottana, G. Gibin et al., -edge x-ray-absorption spectroscopy, Physical Review B, vol.60, issue.13, p.9216, 1999.
DOI : 10.1103/PhysRevB.60.9216

URL : https://hal.archives-ouvertes.fr/in2p3-00408916

Y. Xiao and A. C. Lasaga, Ab initio quantum mechanical studies of the kinetics and mechanisms of quartz dissolution: OH??? catalysis, Geochimica et Cosmochimica Acta, vol.60, issue.13, p.2283, 1996.
DOI : 10.1016/0016-7037(96)00101-9

Y. Xiao and A. C. Lasaga, Ab initio quantum mechanical studies of the kinetics and mechanisms of silicate dissolution: H+(H3O+) catalysis, Geochimica et Cosmochimica Acta, vol.58, issue.24, p.5379, 1994.
DOI : 10.1016/0016-7037(94)90237-2

N. Yanagisawa, K. Fujimoto, S. Nakashima, Y. Kurata, and N. Sanada, Micro FT-IR study of the hydration-layer during dissolution of silica glass, Geochimica et Cosmochimica Acta, vol.61, issue.6, p.1165, 1997.
DOI : 10.1016/S0016-7037(96)00406-1

W. H. Zacheriasen, THE ATOMIC ARRANGEMENT IN GLASS, Journal of the American Chemical Society, vol.54, issue.10, p.3841, 1932.
DOI : 10.1021/ja01349a006

]. N. Zotov, H. Keppler, A. C. Hannon, and A. K. Soper, The effect of water on the structure of silicate glasses ??? A neutron diffraction study, Journal of Non-Crystalline Solids, vol.202, issue.1-2, p.153, 1996.
DOI : 10.1016/0022-3093(96)00149-4

L. '´-etude-des-effets-de-taille, montre que les systèmes de 100 atomes présentent un caractère plus ordonné par rapportàrapportà des systèmes de plus grande taille. L'effet observé est principalement liéliéà l'utilisation de termes de potentiels 3-corps. Non observable sur les facteurs de structure neutronique, le facteur calculécalculéà partir d'une structure modélisée est en bonne adéquation avec une mesure expérimentale et valide le modèle classique. Les structures modélisées présentent un excès d'atomes d'oxygènes non pontants qui peuvent ? etre compensés