. Raman-est-perpendiculaire-À-cette-surface, On focalise ainsi sur les « protubérances », qui, comme nous l'avons vu, dépassent de 2µm de la surface verre. Le faisceau laser ainsi focalisé interagit avec qu'une petite

«. Le-verre and . Sain, On voit apparaître des pics étroits, caractéristiques d'une structure cristalline. De plus, au voisinage du nombre d'ondes de 2900 cm -1 nous voyons apparaître une série de pics qui sont inexistants dans la partie verre « sain » (sans « protubérances ») de notre échantillon

. De and . Liang, les molécules de stéarate de sodium peuvent s'organiser sous forme de cristallites lamellaires. Ces molécules s'auto-alignent dans le sens de leur chaîne carbonée. Ce type d'organisation ressemble à celui que nous avons observé figure 5.12 et figure 5, p.14

. De-nouveau, si nous soustrayons le spectre Raman du stéarate de sodium au spectre des pics caractéristiques de nos « protubérances » on obtient un spectre assimilable à la famille des feldspath

. Horbach, Dynamics of Sodium in Sodium Disilicate: Channel Relaxation and Sodium Diffusion, Physical Review Letters, vol.88, issue.12, p.125502, 2002.
DOI : 10.1103/PhysRevLett.88.125502

R. Mozzi, The structure of vitreous silica, Journal of Applied Crystallography, vol.2, issue.4, p.164, 1969.
DOI : 10.1107/S0021889869006868

Y. Waseda, The structure of Non-Crystalline Materials, McGraw-Hill, 1980.

D. L. Griscom, Defects in amorphous insulators, Journal of Non-Crystalline Solids, vol.31, issue.1-2, p.241, 1978.
DOI : 10.1016/0022-3093(78)90107-2

G. N. Greaves, Structural studies of the mixed alkali effect in disilicate glasses, Solid State Ionics, vol.105, issue.1-4, p.243, 1998.
DOI : 10.1016/S0167-2738(97)00471-2

C. R. Kurkjian, M??ssbauer spectroscopy in inorganic glasses, Journal of Non-Crystalline Solids, vol.3, issue.2, p.157, 1970.
DOI : 10.1016/0022-3093(70)90174-2

S. M. Wiedherhorn and J. , Influence of Water Vapor on Crack Propagation in Soda-Lime Glass, Journal of the American Ceramic Society, vol.42, issue.1, p.407, 1967.
DOI : 10.1021/ja01168a005

R. J. Charles, and al, symposium on Mecanichal Strengh of Glass and Ways of improving it, 1962.

J. A. Michalsket, A Molecular Mechanism for Stress Corrosion in Vitreous Silica, Journal of the American Ceramic Society, vol.28, issue.3, p.284, 1983.
DOI : 10.1007/BF00754886

J. A. Michalsket, A Molecular Mechanism for Stress Corrosion in Vitreous Silica, Journal of the American Ceramic Society, vol.28, issue.3, p.284, 1983.
DOI : 10.1007/BF00754886

S. M. Wiedherhorn, Stress Corrosion and Static Fatigue of Glass, Journal of the American Ceramic Society, vol.11, issue.1, p.543, 1970.
DOI : 10.1063/1.1656397

J. F. Poggemann, Direct view of the structure of a silica glass fracture surface, Journal of Non-Crystalline Solids, vol.281, issue.1-3, p.221, 2001.
DOI : 10.1016/S0022-3093(00)00421-X

G. Binnig, Surface Studies by Scanning Tunneling Microscopy, Physical Review Letters, vol.49, issue.1, pp.57-61, 1982.
DOI : 10.1103/PhysRevLett.49.57

G. Binnig, Atomic Force Microscope, Physical Review Letters, vol.56, issue.9, p.930, 1986.
DOI : 10.1103/PhysRevLett.56.930

H. Bodiguel, Depth sensing and dissipation in tapping mode atomic force microscopy, Review of Scientific Instruments, vol.75, issue.8, pp.2529-2535, 2004.
DOI : 10.1063/1.1771495

E. Ducourthial, Influence of microcracks on a propagation of macrocracks, Computational Materials Science, vol.19, issue.1-4, p.229, 2000.
DOI : 10.1016/S0927-0256(00)00159-2

F. A. Mcclintock, and al, « mechanical behaviour of materials, 1966.

D. S. Dugdale, Yielding of steel sheets containing slits, Journal of the Mechanics and Physics of Solids, vol.8, issue.2, pp.100-104, 1960.
DOI : 10.1016/0022-5096(60)90013-2

E. Guilloteau, The direct observation of the core region of a propagating fracture crack in glass, Europhysics Letters (EPL), vol.34, issue.7, pp.549-553, 1996.
DOI : 10.1209/epl/i1996-00493-3

S. Roux, Correlation image velocimetry: a spectral approach, Applied Optics, vol.41, issue.1, pp.108-115, 2002.
DOI : 10.1364/AO.41.000108

URL : https://hal.archives-ouvertes.fr/hal-00002900

F. Hild, Multiscale displacement field measurements of compressed mineral-wool samples by digital image correlation, Applied Optics, vol.41, issue.32, pp.6815-6828, 2002.
DOI : 10.1364/AO.41.006815

URL : https://hal.archives-ouvertes.fr/hal-00002901

R. Narasimhan, Three dimensional effect near a crack tip in a ductil three point bend specimen ? part I: a numerical investigation, 1988.

S. Hénaux and J. , Crack Tip Morphology of Slowly Growing Cracks in Glass, Journal of the American Ceramic Society, vol.11, issue.1, p.415, 2000.
DOI : 10.1111/j.1151-2916.2000.tb01207.x

E. Bouchaud, Fracture and damage at a microstructural scale, Computing in Science & Engineering, vol.1, issue.5, pp.32-38, 1999.
DOI : 10.1109/5992.790585

T. Kobayashi, A fractographic investigation of thermal embrittlement in cast duplex stainless steel, Metallurgical Transactions A, vol.A, issue.11, p.1941, 1987.
DOI : 10.1007/BF02647024

H. Miyamoto, A study on the ductile fracture of Al-alloys 7075 and 2017, International Journal of Fracture, vol.18, issue.4, p.389, 1990.
DOI : 10.1007/BF01185959

L. Rountre, Atomistic Aspects of Crack Propagation in Brittle Materials: Multimillion Atom Molecular Dynamics Simulations, Annual Review of Materials Research, vol.32, issue.1, p.377, 2002.
DOI : 10.1146/annurev.matsci.32.111201.142017

T. P. Swiler, Molecular dynamics study of brittle fracture in silica glass and cristobalite, Journal of Non-Crystalline Solids, vol.182, issue.1-2, p.68, 1995.
DOI : 10.1016/0022-3093(94)00546-X

E. Bouchaud, Scaling properties of cracks, Journal of Physics: Condensed Matter, vol.9, issue.21, p.4319, 1997.
DOI : 10.1088/0953-8984/9/21/002

P. Daguier, Pinning and Depinning of Crack Fronts in Heterogeneous Materials, Physical Review Letters, vol.78, issue.6, p.1062, 1997.
DOI : 10.1103/PhysRevLett.78.1062

M. L. Falk, Molecular-dynamics study of ductile and brittle fracture in model noncrystalline solids, Physical Review B, vol.60, issue.10, p.7062, 1999.
DOI : 10.1103/PhysRevB.60.7062

J. C. Baret, Extremal Model for Amorphous Media Plasticity, Physical Review Letters, vol.89, issue.19, p.195506, 2002.
DOI : 10.1103/PhysRevLett.89.195506

URL : http://arxiv.org/abs/cond-mat/0206523

N. Weber, Stress???Induced Migration and Partial Molar Volume of Sodium Ions in Glass, The Journal of Chemical Physics, vol.41, issue.9, pp.2898-2901, 1964.
DOI : 10.1063/1.1726372

V. S. Nikolayev, . Phys, and . Rew, New Hydrodynamic Mechanism for Drop Coarsening, Physical Review Letters, vol.76, issue.17, pp.3144-3147, 1996.
DOI : 10.1103/PhysRevLett.76.3144

URL : https://hal.archives-ouvertes.fr/hal-01261245