
HAL Id: tel-00007243
https://theses.hal.science/tel-00007243v3

Submitted on 22 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extraction d’informations tridimensionnelles à partir
d’images – Application à l’informatique graphique

Sylvain Paris

To cite this version:
Sylvain Paris. Extraction d’informations tridimensionnelles à partir d’images – Application à
l’informatique graphique. Interface homme-machine [cs.HC]. Université Joseph-Fourier - Grenoble
I, 2004. Français. �NNT : �. �tel-00007243v3�

https://theses.hal.science/tel-00007243v3
https://hal.archives-ouvertes.fr

Université Joseph Fourier de Grenoble (UJF)

Extraction of Three-dimensional Information from Images
Application to Computer Graphics

Extraction d’informations tridimensionnelles à partir d’images
Application à l’informatique graphique

Sylvain PARIS

Thèse présentée pour l’obtention du titre de
Docteur de l’Université Joseph Fourier

Spécialité Informatique
Arrêté Ministériel du 5 juillet 1984 et du 30 mars 1992

Préparée au sein du laboratoire
ARTIS-GRAVIR/IMAG-INRIA. UMR CNRS C5527.

Composition du jury :

François SILLION Directeur de thèse
Georges-Pierre BONNEAU Président du Jury
Wolfgang HEIDRICH Rapporteur
Bernard PÉROCHE Rapporteur
Long QUAN Examinateur

2

Contents

1 Introduction 1

2 Surface reconstruction 5
2.1 Introduction . 5
2.2 Previous work . 8
2.3 Problem statement and design of the functional . 37
2.4 General presentation of graph cuts . 40
2.5 Global discrete solution . 44
2.6 Practical algorithm . 51
2.7 Results . 63
2.8 Conclusions . 68

3 Patchwork reconstruction 75
3.1 Introduction . 75
3.2 Motivation and concept definition . 76
3.3 Implementation using graph cut and distance field 80
3.4 Two practical algorithms . 83
3.5 Conclusions . 89

4 Face relighting 91
4.1 Introduction . 91
4.2 Previous work . 93
4.3 Overview of the technique . 105
4.4 Detail texture . 108
4.5 Parameters of the skin model . 114
4.6 Implementation of the rendering engine . 121
4.7 Results . 124
4.8 Conclusions and future work . 129

5 Capture of hair geometry 131
5.1 Introduction . 131
5.2 Previous work . 133
5.3 Overview . 136
5.4 Orientation of the segments . 140
5.5 Practical implementation . 151
5.6 Captured hair results . 154
5.7 Discussion . 159
5.8 Conclusions . 162

i

Contents Contents

6 Conclusions 163
6.1 Future work . 164

Appendices 167

A Technical details and perspective on surface reconstruction 167
A.1 First-order and second-order regularization terms 167
A.2 Some ideas to extend the functional . 170

B Technical details on hair capture 175
B.1 Influence of the Projection Profile on Canny’s Filter 175
B.2 More figures on the orientation measure . 177
B.3 Geometric registration of the viewpoints . 179

C Résumé français 181
C.1 Introduction . 181
C.2 Reconstruction de surface . 184
C.3 Reconstruction de patchwork . 190
C.4 Ré-éclairage de visage . 192
C.5 Capture de la géométrie d’une chevelure . 196
C.6 Conclusion générale . 200

List of Figures 205

List of Tables 209

Bibliography 211

ii

Que soient ici remerciées toutes les personnes qui ont contribué à cette thèse.

Je n’en serais pas là sans l’éducation que ma famille m’a offerte depuis le début. Bien évidemment,
il n’y aurait pas eu de thèse non plus sans François dont les qualités font largement oublier le fait qu’il
n’ait pas de stylo. C’est une vraie chance d’avoir pour directeur de thèse quelqu’un qui m’a encadré
sans m’enfermer, qui m’a laissé libre de mes choix sans m’abandonner. Merci à tous mes collègues
du labo pour la richesse de leur environnement et pour leurs innombrables coups de main. Je tiens
à remercier plus particulièrement Samuel, Stéphane et Sylvain: ce fut un réel plaisir de traverser ces
trois ans de thèse en même temps qu’eux; et aussi Gilles, Joëlle et Xavier qui m’ont vu plus que
régulièrement débouler dans leur bureau et qui ont toujours pris le temps de me dépanner et surtout
de m’apprendre les us et coutumes du “milieu”. Une pensée aussi à tous ceux qui m’ont accueilli
chaleureusement à Hong Kong et plus particulièrement Long. Merci évidemment à la DGA pour
avoir financé mes travaux, et spécialement aux membres de la commission de suivi pour leurs conseils
avisés. Je suis très fier d’avoir eu Wolfgang, Long, Bernard, Georges-Pierre et François dans mon jury
pour conclure cette thèse. Je suis tout particulièrement reconnaissant envers Wolfgang et Bernard pour
leur travail sur mon manuscrit, et envers Wolfgang et Long pour s’être déplacés depuis Vancouver et
Hong Kong pour ma soutenance. Enfin, merci à mes amis, ceux qui m’ont rendu la vie à Grenoble
agréable et ceux qui ont gardé le contact même si j’étais loin.

J’ai choisi de ne pas faire une liste de noms interminable car j’en aurais forcément oubliés. Mais si
vous m’avez aidé à être là, si nous avons partagé une discussion, un problème, un bug, une deadline, un
thé, une bière, une rando, une soirée, une galère, un fou-rire... ces remerciements vous sont destinés.

iii

Contents Contents

iv

1
Introduction

Ce manuscrit est en anglais, un résumé français
est proposé en annexe C, page 181.

This dissertation is in English, a French sum-
mary can be found in Appendix C on page 181

This dissertation focuses on the creation of the information used in Computer Graphics. We
especially concentrate on the data needed to render images. These data can be roughly categorized
into three types: the shape of the objects, their appearance and their lighting environment. We are
mainly interested in the creation of the first two data types (the object shape and appearance), even
if we regularly deal with the light. This thesis proposes several methods to generate these data using
real images: We do not ask the user to work directly on the object modeling but we rely on her to
provide one or several images of the targeted object. These pictures are then automatically analyzed
by the computer that extracts the sought data.

We expect from this approach data more faithful to the original object and a shorter creation time.
Let’s go in deeper details with a practical example.

Consider a simple Computer Graphics task, let’s say producing the data needed to render an image
of a teapot, the basic approach is to rely on human skills: The teapot shape is designed in a software
dedicated to 3D modeling and a porcelain appearance is defined through dialog boxes that let the user
choose the characteristics of the porcelain (color, shininess, patterns, etc). This modeling process is
especially time-consuming since the user is in charge of creating everything. The “quality” of the
result also depends on the user proficiency. A faster approach is to select these data from a library of
previously created shapes and materials. It eases the current task but it does not address the issue of
the creation the original data within the library.

Once these data have been created, there are several well-known methods to render the teapot
image. This rendering step is out of the scope of this dissertation.

Modeling an existing object

But now, consider a trickier case. One does not want a teapot anymore but the teapot she uses every
day. A direct approach is to first create a standard teapot and then to work from it to match the

Chapter 1. Introduction

original teapot. Producing an approximate match is feasible. But imagine that the teapot is decorated
with some carved patterns and that there are some golden paintings over the base material. In that case,
an accurate match is almost intractable for the user. One has to use techniques more sophisticated than
user-driven modeling.

To capture the shape of an object, one can use a 3D scanner: It is an apparatus with a laser or a
beam of modulated light that measures the 3D shape of an object. The acquisition of the material can
also be done using a gonioreflectometer [221]: The behavior of the material with the light is measured
for all possible light positions and view directions. Both techniques are accurate but require specific
equipments and configuration. This often hinders the use of these techniques. In addition, several
cases foil down these measures. For instance, 3D scanners suffer from translucent and dispersive
materials (e.g. glass, fur, hair).

Our proposal

In this dissertation, we present an alternative approach based on images. For the teapot problem,
we propose to use one or several photographs of the original teapot to extract the data needed to
reproduce it. Then, an analysis is performed to produce the useful data from these images. Compared
to a user-driven approach, we expect several improvements:

Shorter user time: Obviously, an image-based algorithm requires less user time. It may last longer
because of numerical computation. However, during this step, the user can work on other tasks.

Objective characterization of the data: If one asks several persons to determine the shininess of the
same teapot, the answers are likely to be different. The different “values” result from different
subjective evaluations and it would be hard to choose the right one. On the other side, an
algorithm has a deterministic criterion whose accuracy can be studied. In addition, the measure
is reproducible.

More details: When it comes to reproduce an existing object, the user may miss some details and
features whereas an automatic reconstruction performs an exhaustive scan of the images.

However, it does not mean that we aim at replacing the user-driven creation. We propose a com-
plementary way to produce 3D data. Our approach is compliant with the user-driven and library-based
creation process: The shape stemming from the images can be further edited by the user and/or stored
in a shape library for later reuse.

Robustness

Unfortunately, we believe that perturbation is inherent in the capture process. The images are in-
evitably corrupted by some noise, blur, distortion, etc. The question is how we handle that fact. There
are two extreme solutions: On the one hand, we can allow the user to shoot images without any con-
straints. This implies that the effort must be done during the analysis step. The underlying algorithm
must be robust to be able to extract satisfying data. The counterpart is an easy acquisition process
accessible to a non-specialist user. On the other hand, the capture setup can be totally constrained
(e.g. dark room, quality and calibrated optical lens, professional camera, robotic gantry, etc). This
requires a specialist to drive the process. But the input data can be considered “perfect”. It allows the
algorithm to almost ignore the robustness issue and to focus on the precision. Some researchers have

2

Chapter 1. Introduction

described intermediate solutions that impose a limited set of constraints to the user in order to extract
more accurate data. This defines a continuous trade-off between the ease of acquisition and accuracy.

In this dissertation, we have deliberately chosen an approach that is more oriented toward the ease
of acquisition. This does not mean that accuracy is neglected. It simply implies that we strive to design
robust algorithms: We expect them to cope with potentially perturbed input in order to alleviate the
requirements on the user side. This also implies that the accuracy may not be always comparable to
what can be extracted from a highly controlled environment. Nonetheless, we expect the following
advantages:

A less cumbersome acquisition process: The input data come from a classical digital camera or from
a movie camera. Nowadays, quality cameras of small size are commonly available. In addition,
if we need a dark room, we strive to be robust enough to work with a common room with only
the lights turned off. We will not require a room with black matte walls and a blue screen.

A more flexible acquisition system: From the same images, we can use different analyses depending
on the observed content whereas dedicated apparatuses have to be entirely changed when they
do not fit with the targeted object.

A better correspondence with input images: In some cases, we may be able to work with an arbitrary
background. This makes possible to work with images of an object within its context. If the task
is to modify the original pictures (e.g. modify the appearance of an object, insert an additional
object), the data obtained directly from such images are likely to be more consistent than the
ones stemming from a technique that separates the object and its environment (e.g. they may
suffer from misalignment).

A better balance of the extracted details: Acquisition from images is more likely to capture the visu-
ally important features whereas other techniques (e.g. laser scanners) may recover unnoticeable
details and miss some others that may have a small size but a large visual impact.

Our approach: case study

Then comes a crucial question: What do we aim for? What kind of information do we extract? We
have a personal conviction that the general case is not tractable: Robustly acquiring the geometry and
the appearance of an object without any a priori knowledge cannot be done. We believe that a reason-
able approach is to focus on a typical scenario for which we can rely on some known characteristics.
One can then imagine to develop various scenarii and let the user select the appropriate algorithm. The
caveat would be to multiply the number of scenarii but as long as we study scenarii of broad interest,
we are convinced that this approach is valid and efficient.

Therefore, we have chosen this approach in this dissertation. We identify a few useful cases
leading to interesting applications and concentrate on them. We address three main issues. We first
present in Chapter 2 a method to recover the surface of a matte object from a short image sequence
whose viewpoint is moving. This approach is extended to a more general set of images in Chapter 3.
This technique is designed to be generic i.e. we avoid specific assumptions to handle as general objects
as possible.

We then show in Chapter 4 how the appearance of a human face can be recovered from a single
image and how the extracted data can be used to render the original face under a new lighting envi-
ronment. We end this document with Chapter 5 that exposes a technique to capture the hair geometry

3

Chapter 1. Introduction

using multiple images from a fixed viewpoint and a moving light. These last two cases (face and
hair) target specific entities that are really important characteristic features of a person. High accuracy
is mandatory to provide a visual match that makes the original person recognizable. We therefore
develop dedicated tools to reach a precision higher than user-based and generic techniques. General
conclusions are given in the last chapter.

4

2
Surface reconstruction

The work presented in this chapter has been done in collaboration with Long Quan from
Hong Kong University of Science and Technology. He mainly participates in stating the
problem and in positioning it relatively to existing approaches. In addition, his numerous
comments and pieces of advice have been a great contribution to the work presented in
the following sections.

2.1 Introduction

In this chapter, we focus on perhaps the most intuitive use of several images: geometry reconstruction.
The starting remark is that, with our two eyes, we have a sharp and efficient perception of the 3D
world. This is an intuitive and practical proof that two points of view on the same scene are enough to
“reconstruct” its geometry since our brain does it permanently. This leads to our task: Reproducing
the geometry-from-images reconstruction on a computer would provide a useful tool to create virtual
3D objects.

Our initial motivation to this study was to get an efficient system to populate virtual environments.
Currently, state-of-the-art systems (such as MMR [5], iWalk [43] or GigaWalk [97]) are able to display
very large 3D model such as a whole city. Then comes the issue of generating this huge data set
within a reasonable amount of time. A pitfall would be to use the standard modeling tools to generate
everything, from the building to the public benches. Clearly the modeling power of the user cannot
scale up similarly to the display power over these last years. “Legions of modelers” would be required
to generate a geometric data set such as a city with all the details (buildings, trees, post-boxes,...) in
an acceptable period. One needs dedicated automated tools to leverage such a task. For instance,
Wonka et al. [230] have designed an algorithm to procedurally create city buildings. From a coarse
description of the building style, this method is able to create several models that respect this style.
So, from a limited user input, it is possible to generate a large number of houses, towers, etc to “fill” a
city. Our study follows the same idea of producing 3D models from a limited user interaction but the
technique and actual targets are totally different.

2.1. Introduction Chapter 2. Surface reconstruction

We target a smaller scale; we aim at benches, post-boxes, passers-by, etc that populate the avenues.
Modeling every single object would last days, if not months, even with a simplified geometry. Using
a library of standard shapes makes numerous objects available. But if one to integrate a given real
object in the scene, such a library does not help. Our idea to overcome those caveats is to exploit a
sequence of images to capture the geometry of an object. Ideally, we want a system that captures the
geometry of an object that is seen in a short video sequence. So the user would just have to “point”
objects in the sequence and the computer is then in charge of providing suitable 3D models.

If we formalize a little bit more our goal, we would like to enjoy the following aspects:

• We want to be able to deal with real images of ordinary quality. We may not have access to
a professional high-quality camera. Or we may want to exploit a set of images that we do not
have taken by ourself. This implies that we are able to cope with non-perfect images i.e. that
does not perfectly meet our theoretical assumptions.

• The object geometry has to convey convincing visual effects (parallax, occlusions, etc). This
requires a high level of precision but we can tolerate a limited lack of accuracy as long as it
does not impair the visual cues.

• We may not have control over the object environment so the process must be able to deal with
unknown background (e.g. we cannot bring a blue screen behind the object) and with partially
hidden objects (e.g. a street light may be in front of the object in some images).

In this chapter, we limit our study to matte surfaces and still scenes. Handling moving objects (e.g.
a walking passer-by) and reconstructing arbitrary materials (e.g. reflective surfaces) would be inter-
esting but we will consider these tasks in future work. There is however a “trick” for the movements:
With a system that shoots several pictures simultaneously, we get a sequence of “frozen” images in
which the moving objects are static.

Considering again the brain example, these goals may appear fairly easy. Before examining the
details, we give two arguments to show it is not.

Fig. 2.1: This picture is
not 3D.

A priori knowledge: First, the brain does more than just analyzing two im-
ages to build the 3D representation of the scene. Consider for instance Fig-
ure 2.1 (on the right): Everyone sees a 3D cube although there is nothing in 3D
in that picture. It is only three quadrilaterals side by side, there is not even a
skew that would indicate some perspective distortion. Nonetheless, everyone
does see a 3D entity. There is some part in the reconstruction process that is
related to “recognition”, “learning”, “interpretation”, etc. This explains why
we recognize a 3D cube in a single 2D picture. But this psycho-cognitive part
of reconstruction is far beyond the scope of our work. In this document, we
will only consider a geometric approach to the reconstruction process which is
based physical properties of the object or on approximations of them. This already opens a very broad
range of research possibilities and leads to efficient computational solutions.

�

�

	

Definition [Consistency]: A reconstructed
scene is said consistent if, using the same
setup (cameras, lighting, etc), it produces the
same pictures as the input images.

Consistency is not enough: The second point to observe
is purely geometric. The reconstruction problem is not well
defined: Several different scenes can generate the same set of
images. Let’s give an extreme example to demonstrate this.

6

Chapter 2. Surface reconstruction 2.1. Introduction

Original scene Trivial (and yet consistent) reconstruction

Fig. 2.2: Trivial reconstruction
For any scene, it is always possible to propose a reconstruction composed of a set of billboards facing each
camera with the corresponding picture on it.

We here define an algorithm that always reconstructs a perfectly consistent geometry for any scene
without any assumption. To achieve this miracle, it is sufficient to return a geometry composed of a set
of billboards facing each camera. For each camera, its original image is placed on the corresponding
billboard (see Figure 2.2). Now it is straightforward to show that this reconstruction made of the
original pictures hanging in front of the cameras is exactly consistent. But obviously, this trivial
algorithm does not fulfill our goal although its result is “perfect”. We expect a result as close as
possible from the original geometry, we expect a result “more than consistent”. This point makes our
study especially difficult because we have to formulate this a priori knowledge that characterizes the
satisfactory reconstructions from the others.

This discussion shows that reaching our objectives might not be as easy as one may first think.
In this chapter we present a method that brings several contributions to this research topic, mainly
robustness and precision. Before describing our approach, we review the most relevant papers related
to our work. And, since our technique involves the graph-cut tool, we expose its main properties in a
general context. The end of the chapter is dedicated to the explanation of our method.

7

2.2. Previous work Chapter 2. Surface reconstruction

2.2 Previous work

With our two eyes, we are able to “see the 3D”. This remark has originally inspired the research in
stereoscopic vision: How can we recover some 3D shape from a pair of images? In this thesis, we
focus on the natural extension to several images. Therefore, we do not review here all the methods
stemming from the two-image problem. We only sketch the main linked ideas. This give an insight
on some interesting issues before focusing on the methods dealing with more images.

The two-image case

From two images with different viewpoints, it is possible to compute the 3D position of a given point
if its projections in each image are known. As seen in Figure 2.3-left, each projection defines a ray in
space; the intersection of both rays is the 3D point. This is a constructive approach since two image
points are matched and then, the 3D point is built from these two points. This raises the non-trivial
question of the matching between two image points. This issue is discussed later in details.

�

�

	

More about [Calibration]: By de-
fault, everyone uses a classical per-
spective camera. In this case, the
calibration consists in a 3 × 4 matrix
that describes the perspective projec-
tion onto the image plane.

This also requires that the cameras are calibrated i.e. that,
for both images, sufficient information is known to determine the
ray that contains all the 3D points which project onto a given 2D
point. How to calibrate a camera is a research topic on its own.
Our work assume this information to be given as input. We refer
the reader to general books [61, 63, 86] for details about this point.

Constructive approach Inverse approach

??

Fig. 2.3: How to recover a 3D point from two images
Left: Constructive approach. A pair of points is matched in the images, the corresponding rays intersect and
define a 3D position. Right: Inverse approach. A 3D point is projected in both images. The 3D point is valid if
the image points match. This approach is more robust because the considered image points are guaranteed to
be geometrically consistent with the 3D point.

Contrary to the 2D case, two non-parallel 3D lines do not cross in most cases. And, because the
projections are likely not to be perfectly located, the two 3D rays do not intersect in general. One
may try to overcome this with the point that minimizes the distance to both rays or some equivalent
criterion. But this approach is not robust: A small error on the 2D locations can produce a large error
in the location of the 3D points. Therefore, the inverse approach is commonly preferred: A 3D point
is first picked and the image points are built as its projections. If these image points match, the 3D
point is kept; else it is discarded. This guarantees that the 2D points are perfectly consistent with the
3D one (see Figure 2.3).

8

Chapter 2. Surface reconstruction 2.2. Previous work

Fig. 2.4: An ill-posed case.

Ill-posed problem: A major point to remark is that different
scenes can produce the same images (Figure on the right). The
problem is under-constrained: Several solutions exist and the only
image consistency is not enough to differentiate them. Therefore
finding a consistent surface is an ill-posed problem. In the intro-
duction of this chapter, we have described a trivial reconstruction
algorithm (see Figure 2.2 on page 7) that exploits this caveat.

Conclusions of the two-image case: This overview outlines the following questions:

• How do we solve this ill-posed problem?

• How do we define and check that two points in different images “match”?

• What happens when some parts of the scene are occluded i.e. when an object hides another?
Especially what do we do with the back parts of the objects which are not visible in the images?

With only two cameras, the last point cannot be solved: No information is available for the hidden
parts. With several cameras, we expect some improvements depending on the camera positions. For
instance, a region may be occluded for some viewpoints but not all. In that case, it seems possible
to use the remaining viewpoints to recover the surface. And if the points of view are all around the
object, it should be possible to build the whole surface (not only the front part).

Regularization: As previously shown, the problem is under-constrained, the solution is to set ad-
ditional constraints. First of all, with multiple cameras, each additional viewpoint brings its own
constraint: The result has to be consistent with one more image. But this may not be enough; consider
a red wall for instance, all the images are red and none of them adds a significant constraint.

Then, the classical choice is to add some a priori knowledge on the scene. Several such constraints
have been proposed [61]. But it seems that all the recent methods converge and agree on the same
constraint: Common objects are composed of continuous surfaces. There may be some discontinuities
but most of the surface has to be smooth. This is evaluated with different tools depending on the
methods: curvature, depth variation, slope, area, etc. Nonetheless, they all rely on the following
formalism: A mathematical expression – named functional or energy – is defined to represent both
the consistency and the regularity of the surface. This functional assigns a value to every potential
surface; the lower this value is, the better the constraints are satisfied. The aim is then to design a
functional that represents our goal and to find a surface that minimizes this functional i.e. that satisfies
as good as possible the trade-off between consistency and regularity. We give more details about
functionals in Section 2.2.1.

Point matching: The question of matching two image points needs attention. The goal is to rec-
ognize in different images the projections of the same 3D point. Intuitively, we want to pair 2D
points that “show” the same 3D point. We here describe the two main approaches used in surface
reconstruction.

First, if the surface appearance is assumed to be view-independent (the aspect of a point does not
dependent of the view point e.g. matte material), we can straightforwardly compare the colors. This
is the photo-consistency criterion defined by Seitz and Dyer [190]. Since real images are unlikely
to perfectly fulfill this criterion (the pictures may be noisy, the objects not exactly Lambertian,

9

2.2. Previous work Chapter 2. Surface reconstruction

�

�

	

More about [View-independent]: Several
authors use the word Lambertian as a syn-
onym of view-independent. Rigorously
speaking, Lambertian also implies that the
intensity of the light reflected by the surface
varies as the cosine of the angle between the
incoming light and the surface normal.

etc), a quantitative evaluation is defined to measure this crite-
rion. The projections of a 3D point p produce a set of colors
{Ci}. The photo-consistency P(p) is evaluated by the vari-
ance of this set (with Vp the indices of the cameras in which
p is visible):

P(p) =
1

|Vp| ∑
i∈Vp

C2
i −C̄2 with C̄ =

1
|Vp| ∑

i∈Vp

Ci (2.1)

Ideally, if p is photo-consistent, P(p) is null but, as discussed previously this is never the case for real
images. In practice, we are looking for low values.

This criterion is necessary but not sufficient e.g. two images of a red wall are entirely red but
very few pairs of red points correspond to points on the wall. This makes this criterion weak to
reconstructing surfaces of uniform color. On the other side, it intrinsically takes into account and
exploits the information coming from all the available images.

photo-consistency ZNCC

co
ns

is
te

nt
in

co
ns

is
te

nt

Fig. 2.5: The two main matching criteria: photo-consistency and ZNCC
Photo-consistency compares several points (four in the figure) by considering the color of the pixel under each
point. ZNCC compares two points by analyzing the intensity levels in their neighborhoods (5× 5 windows in
this example). Photo-consistency easily handles several points whereas ZNCC is limited to two. It also exploits
a richer information by using the color instead of the intensity. On the other side, ZNCC is robust against
intensity scale and shift because it is normalized considering the neighborhood of the points. (The red dots
indicate the points to be compared; the bold squares show the analyzed areas.)

10

Chapter 2. Surface reconstruction 2.2. Previous work

Second, for surfaces with view-dependent variations, texture matching is often chosen. The mo-
tivation is that local patterns are likely to be robustly matched in presence of lighting changes. This
approach compares the local variations of the images to find points with similar patterns e.g. strips or
dots. This similarity is generally evaluated with the zero-mean normalized cross-correlation criterion
(ZNCC in short). It is normalized both relatively to the mean intensity and to the standard deviation
which makes it insensitive to an affine transformation of the intensities.

To define ZNCC for p1 and p2 in the first and second images, we need to introduce intensity
function i, the neighborhood Np of p. Since this computation considers is a small region (most often a
square), the change of viewpoint introduces a perspective distortion depending on the local orientation
of the surface. For instance, a square appears as square if it is seen from an orthogonal view but looks
like a trapeze from a side view. Therefore, we use an homography π to account for this distortion:
π is the geometric function that maps the projection of the plane tangent to the surface in one image
plane onto its projection in the other image (see Figure 2.6). It induces the following correspondence
π(p1) = p2 and π(Np1) = Np2 .

Using 1 and 2 indices, we note ī and σ the mean and standard deviation of the intensity in Np and
|Np| the number of pixels in Np, we define:

ZNCC(p1,p2) =
1

|Np1 |2σ1σ2
∑

q∈Np1

(i(q)− ī1)(i(π(q))− ī2) (2.2)

Thanks to the normalization, it is more robust to view-dependent effects with low frequency. This
includes a broad range of effects. High frequency effects are similar to patterns and therefore perturbs
the ZNCC matching evaluation. The counterpart to deal with local texture is that it requires the surface
orientation to handle the perspective distortion i.e. to determine the homography π and it may be less
accurate if a depth discontinuity crosses the point neighborhood.

Figure 2.5 illustrates both ZNCC and photo-consistency criteria.

Stevens et al. [204] and Szeliski and Scharstein [206] describe more sophisticated matching cri-
teria. The former bases the comparison on the color histogram of the region covered by the image

image plane 1

image plane 2

surface

tangent plane

π

Fig. 2.6: The homography used in the ZNCC computation
To correctly compares the local texture of the surface, ZNCC involves an homography π that accounts for the
perspective distortion. π transforms the projection of the tangent plane in the image plane of the first camera
into its projection in the image plane of the second camera.

11

2.2. Previous work Chapter 2. Surface reconstruction

projection of a voxel. This makes possible to cope with a coarser discretization. The latter studies in
depth the sampling issue i.e. how to deal with a discrete image representation. Both approaches seem
interesting and would deserve further studies to examine their influence on existing reconstruction
techniques.

Summary: The reconstruction problem relies on the ability to decide whether multiple
image points are the projections of the same 3D point. The main techniques are color and
texture comparison i.e. all the projections of a 3D point must have the same color or the
same texture. A 3D point that projects onto matching image points is said consistent.

Unfortunately, this problem is ill-posed because different 3D scenes can produce the same
images. Therefore additional constraints are set to overcome this point. Usually, the recon-
structed objects are assumed to be composed of smooth surfaces.

Expected improvements from multiple points of view

As previously discussed multiple viewpoints should first make possible to better handle occlusions.
Furthermore, since several cameras provide information on a given point, the redundancy should make
the reconstruction process more robust against noise and more precise.

We now examine the most relevant approaches to our work. Note that techniques exist to extend
the stereoscopic approach to three (see the work of Hartley [85] for instance); these methods do not
really handle multiple views and should be more considered as “stereo from three images”. We will
therefore not examine them. The other kinds of papers that we do not review are those relying on
a parametric model of the scene content. One can read for instance the work of Debevec et al. [53]
or Wilczkowiak [228] dedicated to buildings or the technique of Shan et al. [193] for faces. These
papers, though interesting, are too specialized relatively to our goal.

Before reviewing the papers, we give more details about a few concepts needed to understand the
existing work.

2.2.1 Fundamental concepts

Functional

As we have discussed previously, our goal cannot restrict to only seeking a high consistency recon-
struction i.e. to creating a surface able to reproduce the input images. Such a problem is under-
constrained and accepts several solutions. Therefore, additional constraints are imposed. The aim is
then to find the “best” trade-off between the consistency and these constraints.

The computational solution to handle this trade-off is a numerical evaluation. A candidate surface
is “rated”: A high score indicates a poor trade-off and a low score a satisfying one. The problem is
then reduced to finding a surface minimizing this score and is therefore related to the mathematical
field of numerical optimization.

12

Chapter 2. Surface reconstruction 2.2. Previous work

Definition: The formula that gives a numerical evaluation of a surface relatively to a given goal is
named functional (or energy).

The aim is then to find a surface that minimizes this functional. The problem is then twofolds:

• How to design a functional?

• How to minimize it?

These two issues will be discussed in the review of the previous work. We give in the following
paragraph a brief description of a few mathematical tools useful to define a functional on surfaces.

Measuring a surface

Assigning a score to a surface is tightly related to measuring it. Intuitively, a functional is a “ruler”
that “measures” the surface relatively to some dedicated distance. In the following explanation, we
provide some formal definitions useful in the remaining parts of this document.

Formally speaking, measuring a surface S means computing the following integral:
ZZ

S

dµ (2.3)

dµ indicates how the surface is measured. This integral sums all the areas of the infinitesimal ele-
ments of S . For instance, considering the classical Euclidean metric ds gives the classical area of S .
Therefore, several functionals are defined relatively to this measure, using the following formulation:

ZZ

p∈S

w(p)ds (2.4)

This modulates the surface measure with a weighting function w(·) depending of the consistency of p.
For instance, a surface piece that measures 1 cm2 with the Euclidean metric can be counted as 0.1 cm2

or 10 cm2 for this functional, depending on the “quality” of this piece of surface relatively to the input
images. The evaluation of this “quality” through the w function is a major point to be defined by a
reconstruction method. Then, the problem is to find a surface of minimal area except that the metric
is no more the Euclidean one.

In some approaches, the surface is parameterized as (u,v) ∈ D 7→ x(u,v) ∈ S . In this case, the
measure can also be defined by:

ZZ

D

w′(u,v,x) du dv (2.5)

Contrary to formula (2.4), this area is measured in the parameter space i.e. u and v are not geometric
entities. Even if the link with the previous formulation exists with the relation:

ds =

∣
∣
∣
∣

∣
∣
∣
∣

∂x
∂u

× ∂x
∂v

∣
∣
∣
∣

∣
∣
∣
∣

du dv

13

2.2. Previous work Chapter 2. Surface reconstruction

some authors prefer to avoid manipulating non-geometric measures to solve a geometric problem. To
overcome this, the surface is classically parameterized as a depth field using a function f :

(u,v) 7→ x(u,v) =





u
v

f (u,v)



 or equivalently: zx = f (xx,yx) (2.6)

x

y

z

ds

dxdy

∂x
∂x

∂x
∂y

Fig. 2.7: Comparison of the elements ds and dx dy.

This straightforwardly associates u
and v to the geometric lengths x and
y. It leads to the special form of the
functional (2.5):

ZZ

D

w′′(x,y, f) dx dy (2.7)

The value of the integral (2.7) may
depend on the coordinate system xyz
e.g. turning the axes may change the
result. In that case the functional is
not intrinsic to the surface i.e. the
functional value depends on the sur-
face parameterization. It is important
to remark that the functionals based on
ds (eq. (2.4)) are intrinsic since their

value is independent of the surface representation (i.e. it has the same value for all representations).
Figure 2.7 relates both infinitesimal elements ds and dx dy on a parameterized surface.

Summary: A functional is a 2D integral over a surface. It sums the weighted contribu-
tions of all the surface points. The weight function is to be defined by the reconstruction
method. The objective is then to find a surface that minimizes the functional value. The
minimization process is also to be specified by the method.

Surface properties

Convexity Since we aim at minimizing the functional, its analytic properties are a major point to
our analysis. One may dream of a strictly convex functional Fconvex that fulfills the following property
for two surfaces S1 and S2:

Fconvex

(
1
2
(S1 +S2)

)

<
1
2
(
Fconvex(S1)+Fconvex(S2)

)

The definition of S1 + S2 is dependent on the surface representation. Such a strictly convex function
would make the problem easier to solve because it guarantees that there is no local minimum. It would
allow to use the vast literature on convex optimization [24]. Unfortunately, the problem is complex
and in practice, the proposed functionals are not proven to be convex.

14

Chapter 2. Surface reconstruction 2.2. Previous work

�

�

	

More about [Discontinuity]: It is possible to allow
discontinuities even if the functional contains deriva-
tives: It is sufficient to multiply the derivative terms
by another term whose value is 0 where a discontinuity
may appear, and 1 otherwise. Hence, on these 0 points,
the derivative is canceled disregarding its value and the
Cn continuity is not enforced. One has to take spe-
cial care before applying this technique with the Euler-
Lagrange formula described below because of the addi-
tional derivation that may make the 0 term “disappear”.

Continuity Since the functional is not convex,
we have to rely on other techniques to minimize
the functional. These methods lead to hypotheses
on the continuity of the surface. But, let’s first ex-
press a trivial remark about the surface continuity:
If the formula of the functional contains a deriva-
tive of order n, then the surface is implicitly as-
sumed to be at least n-times differentiable.

In addition to this remark, more constraints
on the continuity may come from the optimization
technique. A common solution is to use the Euler-Lagrange formula to derive an evolution scheme,
in spirit similar to a gradient descent. Consider a parameterization z(x,y) that evolves according
a pseudo-time variable t. For this paragraph only, we use the following notations: z(x) = ∂z

∂x and
z(y) = ∂z

∂y . We define a functional:

F =
ZZ

F
(

x,y,z,z(x),z(y)
)

dx dy

where F is a scalar function of x,y,z and of the first derivatives of z. F has to be designed according
to a given objective – this point is addressed later. The Euler-Lagrange formula is in this case:

∂z
∂t

=
∂F
∂z

− d
dx

(
∂F

∂z(x)

)

− d
dy

(
∂F

∂z(y)

)

This equation provides a rule for evolving the z function in order to minimize the F functional. There
are two limitations:

• As a gradient descent, this evolution is not guaranteed to reach a global minimum. It may be
stuck in a local minimum.

• It involves derivatives of z one order higher than the order used to define F since it contains
derivatives of F which is based on derivatives of z.

Summary: In the ideal case, the functional would be convex to make the use of the convex
optimization theory possible. Unfortunately, this is never the case in practice.

Therefore one has to rely on other properties of the surface, especially its continuity. If one
wants to apply a descent technique (that classically involves the Euler-Lagrange formula),
the surface must be differentiable one order higher than the highest derivatives that is used
to define it.

15

2.2. Previous work Chapter 2. Surface reconstruction

Disparity map

b

zf

zp

p′
2D p′′

2D

Fig. 2.8: Depth and disparity.

To introduce the concept of disparity, let’s first consider only two
images of the same object from two different viewpoints. A point
p3D is projected in both images to form p′

2D and p′′
2D. Using the same

coordinate system for both images, we define the 2D disparity vector
d = p′

2D−p′′
2D. It can be shown that d is parallel to the line joining the

two camera centers. Therefore only the norm d = ||d|| is important.
And, with the focal length zf, the depth zp of p and the baseline b (the
distance between the camera centers, see the figure on the right), we
get the following relation (from Thales theorem, by using the same
image coordinate system i.e. by superposing both images):

b zf = d zp (2.8)

Stereographic pair of images

Superposition of both images Disparity map associated with the above image

Fig. 2.9: Disparity map definition
Top row: Two images of the same objects from two different cameras. Bottom row, left: The two images are
superposed. The projections of the 3D points have moved between both images. Because of the perspective
projection, the amplitude of this displacement varies with the depth of the considered point. Bottom row, right:
The disparity map associates this amplitude to each pixel of an image (here, the top-right image). It is usually
presented as a gray-scale image.

�

�

	

More about [Disparity]: Since dis-
parity is an image quantity, it is mea-
sured in pixels.

In practice, a d value is computed for each pixel of one of the
image: For each pixel, the corresponding pixel in the other image
is searched (using the matching tools described in Section 2.2 on
page 9), then the length of the corresponding translation is com-
puted. This builds a disparity map for the image i.e. a function

16

Chapter 2. Surface reconstruction 2.2. Previous work

Fig. 2.10: Sample disparity map on a reference case
Left: Two of the original images. Right: Ground truth disparity map (the gray levels represent the distance
in pixels of the translation induced by the camera move; see Fig. 2.9 for details). Remark how the map is
quantized because it considers only integer values for the disparity since it is measured in pixels. [Data from
www.middlebury.edu/stereo]

that associates a disparity value to each pixel. Figure 2.10 shows a sample disparity map and Fig-
ure 2.9 on the preceding page illustrates the construction of such a disparity map.

Since disparity is linked to the depth of a 3D point, many papers use it to define a 3D position
instead of the classical (x3D,y3D,z3D) system: They rely on x2D, y2D and d. (x2D,y2D) indicates a
pixel in one image of a pair and d is a disparity value. From these values and the knowledge of the
image pair, using equation (2.8), the location of the 3D point is known. This parameterization of the
3D space is sometimes named the disparity space. From this, we can extend the notion of disparity
to more than two images by choosing two reference images. Then a 3D point is characterized by its
projection in one of these two images and the corresponding disparity (i.e. the translation of the points
between the two reference images).

Voxel space

Fig. 2.11: Voxel ring.

Numerous methods work on a discretized 3D space. They rely on a 3D grid to
represent the 3D space. This grid is comparable to the pixel array of an image.
That is why, the basic 3D element is named a voxel in reference to the pixel.
This entity has similar properties to the pixel: Various values can be assigned
to it such as color, transparency, etc. This gives to this tool a great flexibility.
Furthermore, as illustrated by the figure on the left, arbitrary topology can be
represented. Shape precision directly depends on the discretization step, finer
voxels give better approximations.

Review of the existing techniques

In the following sections, we present the surface reconstruction approaches the most relevant to our
work. To organize the discussion, we group the papers according to their methods to define and
solve the functional that corresponds to the problem. Additionally to the traditional description and
discussion of the methods, we also examine the usability i.e. the tasks that can be efficiently performed
by a technique according to our experience.

2.2.2 No functional: Visual hull

This approach has been made popular by Laurentini [130] after some previous work such as the de-
scription of Baumgart [13] or the technique of Brik et al. [29]. This is purely geometric: assuming the

17

www.middlebury.edu/stereo

2.2. Previous work Chapter 2. Surface reconstruction

camera and visual cone

visual hull

object

Fig. 2.12: Visual hull in 2D.

object silhouettes are known in each view, a camera defines a visual
cone from its center through the corresponding silhouette. The object
is guaranteed to lie inside this cone and the intersection of all these
cones results in a bounding volume of the object (see Fig. 2.12).

This has the advantage of being independent of the surface as-
pect; only the silhouettes are important. It does not suffer from high-
lights, translucency or any other effects. The counterpart is that it
requires a known background to extract the object contours. Zeng
and Quan [237] propose a first step to alleviate this issue but it may
lack accuracy compared to a chroma-key process. Furthermore, the

quality of the result depends on the available views: tight results are obtained if the cameras are all
around the objects but the precision significantly deteriorates with less viewpoints.

However, the computation are limited and the visual hull can be computed in real time, either
as a discretized volume as used by Hasenfratz et al. [87] or as an exact geometric model (Ma-
tusik et al. [149, 150] and Franco and Boyer [25, 70]). Therefore, it is a natural choice for real-time
application. It can be also used as a first estimate of the object shape as in the method of Isidoro and
Sclaroff [102].

Some approaches (such as Vaillant and Faugeras [218] and Szeliski and Weiss [207]) refine the
model by computing local curvatures of the observed object. Unfortunately these techniques induce
unstable numerical computations and therefore have a limited robustness.

Fig. 2.13: Visual hull from 4 silhouettes
Left: A sample input image. Middle: The four extracted silhouettes. Right: Views of the reconstructed hull.
The overall shape is well captured (note that the topology is correct) but the surface suffers from too sharp
edges. [By courtesy of Jean-Sébastien Franco [70]]

Usability
�

�

	

Another view on [Visual hull]: It can be seen as a recon-
struction from binary images (foreground/background) whereas
the other techniques handle 256 gray levels or the whole color
space. One can think to a reconstruction from “quantized” in-
formation. This explains both the speed of the method (simpler
data) and the lack of details (poorer information).

These techniques are either useful “as is”
when fast computation is mandatory, or as
a first estimate of the object shape before
applying some more precise refinements.
But it should be avoided if geometric ac-
curacy and details are targeted.

18

Chapter 2. Surface reconstruction 2.2. Previous work

Summary: The visual-hull methods work only from the object contours. They rely there-
fore on a side technique to extract these contours. From this information, they robustly
compute the largest shape consistent with these silhouettes.

Relatively to our goal, the main drawback of this approach is its limited precision because
it ignores the color information of the images. However, we may use it at a first estimate of
the final shape.

2.2.3 No functional: Carving

This approach has been made popular by Seitz and Dyer [190] (Fig. 2.15) and Kutulakos and Seitz [127].
The base idea is to carve a large volume to shape a surface consistent with the input images. The core
of this process is the consistency criterion that decide whether a 3D point should be carved away or
not. Originally, under the Lambertian assumption (i.e. the objects are matte), Seitz and Dyer introduce
the photo-consistency that we have previously described: A 3D point is consistent if all its projections
in the visible cameras have the same color. This similarity is evaluated with the function P defined by
formula (2.1 on page 10).

The original techniques use a threshold P0 and carve out the points with P > P0. The difference
between the original Voxel Coloring algorithm [190] and the Space Carving process [127] is the
visibility computation and the order in which the points are considered. The former approach restricts
the camera positions (for instance, a plane must exist between the viewpoints and the scene) whereas
the latter extends the method to any configuration. Figure 2.14 illustrates the first steps of the Space
Carving algorithm. Figure 2.15 on page 21 shows a sample voxel reconstruction achieved with this
algorithm.

The carving approach is proven to produce the largest shape photo-consistent with the input im-
ages i.e. that produces the same color images as the input data. There is no guarantee that it can
produce new acceptable view because the process is constrained only by the input images without any
additional a priori. That is why there is no need of a functional because there is no trade-off to satisfy.
The counterpart is that the reconstructed surface may have noticeable artifacts such as bumps where
information is poor (few visible cameras for instance). Therefore, these techniques are mostly applied
with a high number of viewpoints.

�

�

	

Link with [Visual hull]: The result
of Space Carving is sometimes call the
photo-hull to emphasize the similarity
between both approaches: The visual
hull is the largest shape consistent with
the contours and the photo-hull is the
largest shape consistent with the col-
ors. One can also remark that tun-
ning a carving process from black and
white images representing the fore-
ground/background (see Fig. 2.13 on
the facing page) produces the visual
hull.

Previously to this color approach, Collins [41] has proposed a
related method based on the 2D features of the images: A voxel is
kept if it projects on features (lines, corners, etc) in each images.
This method is less precise because it uses sparse features instead
of the dense information brought by the color of the pixels.

Culbertson et al. [45] refine the carving criterion with sev-
eral technical improvements e.g. an exact visibility computation.
Then Slabaugh et al. [196] add a simulated-annealing process
which allow consistent points (P ≤ P0) to be carved although they
should be kept according to the original algorithm. This allows to
uncover points with better consistency. They also expose a tech-
nique [195] to warp the voxel grid to cope with the background.

19

2.2. Previous work Chapter 2. Surface reconstruction

The voxel space is deformed in order to produce voxels of size increasing with the distance; the outer
voxels are warped to infinity to represent the background. Kutulakos [126] also improves the carving
criterion to make it more robust to image noise by analyzing the point projection and its neighbor-
hood to find a correspondence. All these improvements make the carving approach more usable but
do not significantly improve the accuracy of the final results nor extend the class of the reconstructible
surfaces.

Szeliski and Golland [205] and de Bonnet and Viola [49] propose methods that allow partial
carving of a point to handle transparency and antialiasing. They introduce several useful ideas but
their results are limited in size and complexity. Following the same goal, Broadhurst et al. [30]
applies a statistical framework. Their technique is more robust and more usable since it handles
large real scenes and favorably compares with the classical carving techniques. It removes numerous
artifacts and significantly enhances the visual quality of the results. When a surface is needed for
further processing, the partial carving can be cast into the classical binary framework (a point is
carved or not). Unfortunately the resulting surface is quite poor. Therefore, this method should be
mainly thought to render new images from existing pictures.

All these methods are based on a discrete representation of the 3D space, the voxel space (cf. the
description in Section 2.2.1 on page 17). These allow a simple and efficient exploration of the space.
As the pixels, this representation suffers from the aliasing problem but this can be overcome with
techniques such as Marching Cubes [140] or Radial Basis Functions as proposed by Dinh et al. [56].

original volume

front-to-back sweep

up-to-down sweep

Fig. 2.14: Sample Space Carving process
The process is split into sweeps. Each sweep analyzes all the voxels one by one. The voxels are ordered by
planes in a given direction e.g. front to back as in the middle row. A voxel is kept if its projections in all the
visible cameras have the same color, else it is carved away. The process loops over the 6 possible sweeps (x, y,
z; both ways) and stops when no more voxel can be removed. The above illustration shows the initial volume
with the first front-to-back sweep and the beginning of the following one in the up-to-down direction.

20

Chapter 2. Surface reconstruction 2.2. Previous work

Original image Reconstructed shape

Fig. 2.15: Sample reconstruction from the Voxel Coloring technique
On textured objects, the Voxel Coloring algorithm performs well. Note that the reconstructed shape is correct
although the arm hides the chest from some viewpoints. [By courtesy of Steve Seitz [190]]

However, carving seems very often linked with voxel whereas there is no fundamental reason to do
so. The theoretical framework does not assume any special representation of the 3D space; voxels are
only an implementation choice. For instance, Boyer and Franco [25] and Ziegler et al. [240] describe
a carving process based on geometric polyhedra.

Discussion
�

�

	

Definition [Topology]: In the recon-
struction context, topology is used for
genus. It is related to the ability to re-
cover objects with holes.

The carving approach has several advantages. It is quite easy to
implement, it handles any camera setup and produce surfaces with
complex topology without any special adaptation. But it has also
severe limitations described below.

No regularization: As previously discussed, the problem is ill-posed and the carving methods do
not propose any solution to that point. Thus, these techniques solve an under-constrained problem and
only construct one of the many possible solutions. Snow et al. [201] propose to improve the resulting
voxel volume but their method is a post-process totally separated from the reconstruction step. This
actually does not regularize the problem but only smooth the result.

Space Carving is proven [127] to reconstruct the largest photo-consistent volume. It is also shown
that the more textured the object is, the better this volume approximates the real surface. This approx-
imation deteriorates if few viewpoints are available and if the object is textureless. In these conditions,
most the carving techniques fail to recover an acceptable shape.

Low robustness: The photo-consistency handles only Lambertian surfaces. In practice, setting a
higher threshold P0 makes it tolerate low specularities but the precision loss is important with such a
higher threshold.

Moreover, if a single voxel is erroneously carved e.g. because of an highlight, the error is likely to
spread and the whole model may be carved out. This is predictable from the theory because the result
of Space Carving is the largest photo-consistent volume; and if a region (even small) does not satisfy
the Lambertian assumptions, then there is no photo-consistent volume and the result must be empty.
However, this behavior is not satisfactory because a local error impairs the global result.

21

2.2. Previous work Chapter 2. Surface reconstruction

Usability

Considering these pros and cons, carving methods are useful if one needs a simple system, easy to set
up and to use and if the fact that numerous failures may occur is acceptable. But it should be avoided
if one targets robustness and high precision. However, this may be a good base to build upon a more
sophisticated algorithm.

Summary: Carving techniques consider the 3D points individually. For each of them,
they judge their consistency only regarding about the input images without accounting for
the rest of the surface. This characteristic leads to an easy implement but strongly impairs
its robustness because the decision is based on limited information. This last point does not
suit our goal.

2.2.4 Functionals on lines: Dynamic programming

Most of these approaches aim at creating a disparity map as described in Section 2.2.1 on page 16.
The map is built line by line resulting in a shape representation illustrated by Figure 2.16. This
representation is only motivated by the technical solution proposed by these techniques.

Fig. 2.16: Shape represented
line by line.

In this framework, they propose to impose some constraints on neigh-
boring points on the same y line of the image. A point (x,y) must both
minimize its consistency with the input images and a smoothing criterion
based on its position relatively to its neighbors (x± 1,y). This defines a
functional that associates a value to each y line. Low values correspond
to smooth and consistent profiles. The advantage of such a formulation
is that the problem is purely 1D (it only handles a line) and involves only
first-order quantities. Therefore, a exact solution can be reached in poly-
nomial time by a classical dynamic-programming technique [14].

The problem of this approach is that different y lines even adjacent are
independent. This only enforces continuity along the x axis, the resulting

surface can still be discontinuous in the y direction. Some methods try to be as precise as possible and
simply stack the lines together (Okutomi and Kanade [167], Cox et al. [44], Pollefeys et al. [173],
etc). However several techniques exist to enforce the continuity between adjacent lines: dynamic pro-
gramming between y lines as Ohta and Kanade [166] and Bobick and Intille [21], statistical coherence
as Ulvklo et al. [217], etc. Unfortunately, none of them propose a satisfactory approach since the x
and y axes do not have the same regularization properties. Moreover in practice, it seems that a good
trade-off between the y continuity and the precision is hardly reached: most of the results have either
significant spurious discontinuities or poor details.

�

�

	

More about [Dynamic programming]: It
can be interpreted as an exhaustive search
of the solution performed recursively while
storing intermediate results to avoid redun-
dant computation.

Since recent techniques such as Space Carving, level-
sets and graph cuts have been exposed, these dynamic-
programming approaches have appeared less interesting
since they hardly compare with these new methods. The lat-
est results of Pollefeys et al. [173] show convincing results
thanks to a robust depth estimator based on a Kalman filter to

22

Chapter 2. Surface reconstruction 2.2. Previous work

aggregate the information from the multiple views. However it is not clear how this technique would
perform on general objects since all the presented objects are densely textured.

Summary: These techniques introduce the notion of line regularization: The surface is
built line by line and each line is imposed to be smooth. The smoothness in the orthogonal
direction remains problematic and no solution seems to be acceptable compared to the latest
graph-cut and level-set approaches.

2.2.5 Intrinsic functionals: Level sets

This approach has been first introduced by Faugeras and Keriven [62]. They characterize the recon-
struction goal by a surface with minimal area. To ensure consistency with the input images, the area
of a surface element is weighted by a term accounting for all the visible cameras. This formulation
has the advantage of being intrinsic to the surface i.e. it does not depend on any parameterization.
This permits to chose among all the possible representations. Especially, this allows the use of the
level sets introduced by Osher and Sethian [169].

The level-set technique is based on an implicit representation of the surface: it is described by a
3D function F(x) such that x is part of the surface if and only if F(x) = 0. Osher and Sethian show
that it is possible to translate an evolution rule defined on the surface to an evolution rule defined
on F . Thanks to this property, implicit surfaces are efficiently manipulated. This first removes the
parametrization issue and makes the description easier for complex shapes. Furthermore, topology is
naturally handled whereas it is a difficult point to cope with for parametrized surfaces.

Faugeras and Keriven formulate their goal as a minimal surface according to a weight w based on
the ZNCC scores of all the pairs of visible cameras:

ZZ

w(x)ds (2.9)

Fig. 2.17: Sample reconstruction using
level sets. [By courtesy of Renaud
Keriven [62]]

For each small surface piece, it is projected in the input images
and the covered textures are compared: If their correlation is
high, the surface piece has a low weight w (i.e. it is assigned
a small area) whereas if the correlation is low, the piece has a
high weight (i.e. it is assigned a large area). The problem is
then to compute the surface with a minimum weighted area.
Section 2.2.1 on page 13 gives more details about weighted
areas and Section 2.2 on page 9 about texture correlation.

They cast this problem into the variational calculus frame-
work with the Euler-Lagrange formula which gives an elemen-
tary evolution of the surface that leads toward a minimum of
the functional (2.9). Then, thanks to the level-set technique,
this surface evolution is transposed into a volumetric evolu-
tion for the function F that implicitly describes the surface.
So, starting from an initial shape (a sphere for instance), the
surface evolves step by step and warps until it matches the ob-
ject surface. This process is illustrated in Figure 2.19 on the

23

2.2. Previous work Chapter 2. Surface reconstruction

next page. At each step, the visibility and the orientation at every surface point is evaluated according
to the current state. From these data, a new elementary change is computed and applied until a mini-
mum is reached. This transformation may potentially include topology changes without requiring any
special treatment: For instance, a sphere can naturally warp into two tori (Fig. 2.18).

Yezzi et al. [234] use the technique in a statistical framework that seems to produce similar results.
Slabaugh et al. [197] propose a simplified evolution scheme based on photo-consistency. The surface
can only shrink at each step. They use a multi-resolution strategy to speed up the process by first
considering a coarse discretization of the space. But the convergence of this process seems uncertain
in the general case since the authors mention difficulties when refining the resolution. Lhuillier and
Quan [138] extend the method to account for various data types: ZNCC, 3D points reconstructed
from feature points and silhouettes. Jin et al. adapt this framework to objects with a smoothly varying
radiance [107] and with a piecewise constant radiance [106].

Discussion

These level-set approaches have the advantage to be purely geometric. Contrary to the disparity maps
that characterize a 3D problem in term of image values (the disparity), the proposed formulation is
based on 3D measures (surface orientation, curvature, etc). We believe that this is more coherent since
we aim at reconstructing a geometric entity (a surface). A direct 3D formulation is more suitable than
manipulating 2D data, even if they refer to the 3D world. For instance, Okutomi and Kanade [167]
show that this may lead to an ill-posed optimization scheme.

Furthermore, the formulation is independent of the discretization needed for the resolution. In
practice, the function F is sampled on a 3D grid but the functional ignores this technical issue and
states a general problem. This allows multi-resolution approach like the method of Slabaugh et al. [197].
If the functional depends on the discretization (as all the disparity-map techniques are since they have
a pixel-based functional), such an approach is hardly possible: How to guarantee that the same prob-
lem is solved at different resolution if the functional changes?

However, the level-set approach also suffers from some drawbacks discussed below.

Differentiability The weighting function w in the functional (2.9) differentiates twice values com-
puted from the images. This computation may be hardly valid on real images that are affected by
noise. Therefore, to guarantee that the images are regular enough, the derivatives are computed after

Fig. 2.18: Level sets: Sample evolution
The level-set technique is able to make a surface evolve to match two tori. The process seamlessly handles the
topology change needed to represent the final shape. [By courtesy of Renaud Keriven[62]]

24

Chapter 2. Surface reconstruction 2.2. Previous work

input curve

curve evolution scheme

signed distance field

field evolution scheme

new field

new curve

Fig. 2.19: Level sets: Overview of the process in 2D
Given a curve and an associated evolution scheme that tells how it has to be deformed, the level-set technique
embeds the curve into its signed distance field and converts the curve scheme into a field scheme. Then the
distance evolves according to this field. At the end, the result curve is extracted as the zero level set of the
field. The interest of this method is that the field evolution is guaranteed to match the initial curve scheme while
seamlessly handling topology changes and avoiding parameterization caveats.

a Gaussian convolution. It is unclear how this impacts the matching criterion (ZNCC from Faugeras’
method [62]) according to the Gaussian width. To our knowledge, this crucial point is undocumented
and would require further studies.

Convergence The evolution of the surface toward a steady state is a steepest descent process. The
Euler-Lagrange formula gives an information that is comparable to the gradient: It “points” toward
the low values of the functional. This is a purely local computation over the functional therefore the
final result is only a local minimum. As for the gradient descent, the process may be stuck by a local
minimum. Unfortunately there is no characterization of the distance between the value reached and
an actual global minimum. Even worst, there is also no property about the shape. The consequence is
twofolds:

• The produced shape may be arbitrary inconsistent and bad-looking.

• The result depends on the starting point: two runs of the algorithm on the same data may give
two different results.

These points lack studies. In practice, according to the results shown in the papers, it seems that the
convergence is correct if the starting surface is roughly in the neighborhood of the real object. The
final shape is always acceptable. But we believe that the process would not converge toward the real
shape if the initial surface is significantly distant from the object: The consistency function would
be too irregular to drive any coherent evolution and the volume is unlikely to move closer to the real
object where the function profile is “good enough” to make the process converge.

25

2.2. Previous work Chapter 2. Surface reconstruction

Therefore, level-set techniques should be associated with an initialization step using a first reliable
estimate such as a visual hull or a carved volume. This may be a practical (but not theoretical)
answer to this convergence issue. Lhuillier and Quan [138] point toward this way by incorporating
the silhouettes into the functional.

Over-smoothed aspect All the results obtained from a level-set optimization look too smooth. A
first reason to that is the convergence issue discussed above. The process requires a strong regu-
larization term to ensure a satisfying convergence. And, since the regularization term involves some
curvature flow, this yields results with no sharp curve. Furthermore, if we observe the functional (2.9),
the c function contains second derivatives of the surface. Hence, the surface is sought among the sur-
faces twice differentiable everywhere. Therefore, the set of the potential results do not contain any
shape with edges, peaks or corners. This limitation clearly impairs the produced surface because
common objects have such features which are not captured by these methods.

Usability

From this discussion, we believe that the level-set methods introduce a great theoretical advantage (a
geometric formulation independent of the technical issues: surface representation and discretization
scheme). But the practical use needs special care: It requires a rather precise a priori knowledge of
the object shape. Moreover, it is more appropriate to smooth shapes.

Summary: The methods based on level sets use a powerful framework that manipulate
the surface using an implicit representation. This seamlessly handles topology and pa-
rameterization. Moreover, the optimized functional is formulated in the geometric world
independently of the image resolution and of the optimization technique.

The counterpart is that these techniques are inherently limited to smooth surfaces without
sharp feature. And, from a theoretical point of view, the convergence of the process is
unknown.

However, we believe that a geometric formulation is an appropriate approach to describe
a surface reconstruction because of its 3D nature. The independence relatively to the im-
ages and optimization engine is also a useful characteristic since, for instance, it allows to
choose an arbitrary result resolution. Nonetheless, we will focus on providing a method that
accounts for edges and corners and strive for a guaranteed convergence.

2.2.6 Parametrized functionals: Graph cuts

Graph cut is a classical problem in algorithmics [4]. It is traditionally presented as the graph flow
problem. We here give a brief summary needed to discuss the following research papers.

26

Chapter 2. Surface reconstruction 2.2. Previous work

�

�

	

More about [Graph flow]: Since graph flow is
major topic of this document, Section 2.4 is dedi-
cated to an extended presentation of this tool. This
paragraph provides only a quick explanation to
better understand the previous work.

Overview of the graph flow problem Given a pipe
network with a water source and a sink, the aim is to
compute the maximum water flow that can go through.
The problem is formalized with a graph: the pipe are the
edges, the pipe junctions are the nodes, the source and
the sink are special nodes of the graph. Then standard
values and rules are defined such as “the flow through a pipe must be less or equal to its capacity”,
“no water appears or disappears except in the source and the sink”, etc.

The graph-flow problem is: For a given graph with given edge capacities, determine a flow func-
tion on the edges that respects the rules and maximizes the total flow from the source to the sink. The
two important results for the following discussion are:

• The maximum flow that can go through the pipe network can be exactly computed in polynomial
time from the graph.

• A minimal cut (i.e. a set of pipes/edges that form a bottleneck limiting the flow) can be exactly
computed in linear time from the graph and the maximum flow.

These two points are crucial since finding a bottleneck is intrinsically a minimization problem:
Among all the sets of pipes separating the source from the sink, which one has the lowest capacity?
Therefore the minimal cut problem is a minimization problem that can be exactly solved in polynomial
time. All the following techniques establish a correspondence between their own minimization and a
graph-cut problem. We will focus on this correspondence and the deriving properties.

Summary: The graph-flow problem is a traditional algorithmic problem which intuitively
corresponds to finding how much water can go through a given pipe network. This network
is represented by a graph whose edges have a fixed capacity (i.e. the maximum water that
can go through them). A flow function is also defined on the edges to represent the actual
water flow through the pipes. The problem is then to find a flow function that maximizes
the total flow through the network.

If an optimization problem can be represented by a graph flow, then algorithms exist to find
a global minimum of this functional.

Roy and Cox [180] first introduce the graph-cut technique to compute a disparity map d(x,y) (cf.
Section 2.2.1 on page 16 for details on disparity map). They do not clearly state a functional but their
goal can be seen as a trade-off between the consistency of the surface points and a penalty depending
on the disparity difference of adjacent points. Their graph associates a 3D point expressed in the
disparity space (x,y,d) with a node. This makes the correspondence between a surface (a point set)
and a cut which is an edge set difficult. However, they show that this approach extends to 2D surfaces
the dynamic-programming technique (see Sec. 2.2.4 on page 22) which is intrinsically limited to 1D
lines. The direct consequence is that the x and y axes are equivalent: The line-to-line coherence is no
more a problem. This yields significantly better results, continuous in both directions. One year later,

27

2.2. Previous work Chapter 2. Surface reconstruction

Roy[179] corrects the node/edge issue by associating 3D points to edges. The proposed functional
involves the disparity map d(·), the image I , a consistency function c and a penalty function p which
is applied to the neighbor points whose set is denoted N :

∑
p∈I

c(p,d(p))

︸ ︷︷ ︸

consistency term

+ ∑
(p,q)∈N

p(d(p),d(q))

︸ ︷︷ ︸

smoothing term

(2.10)

This functional is twofolds: The first term accounts for the consistency of the produced map relatively
to the input images whereas the second term imposes a smoothing constraint over the result through
the function p that penalizes the disparity variation. In Roy’s formulation, p(d(p),d(q)) is propor-
tional to |d(p)−d(q)|. Hence, the penalty grows linearly with the disparity difference between two
neighbors. It can be arbitrary large because of a depth discontinuity e.g. between an object and the
background. This restricts this technique to a scene with limited depth variations.

Ishikawa and Geiger [99, 100] refine this approach. They explicitly formulate the functional cor-
responding to the minimization and cast it into the statistical framework by showing that it solves
a Markov random field problem. They design a graph that handles any convex functions (e.g. a
square function (d(p)−d(q))2) for the penalty between neighbor points. This broadens the possi-
bilities of the graph-cut method but does not overcome the limitations due to the depth variations.
Buehler et al. [32] also propose an interpretation based on the minimal surface concept. Their objec-
tive is a minimal surface for a metric that takes the consistency into account. This leads to a geometric
functional. But their graph layout is limited to two and three views and also over-penalizes large
discontinuities.

The methods previously presented establish a direct correspondence between their functional and a
graph-cut problem. Hence, they exactly solve the problem they have stated through their functional.

To solve issue of the large discontinuity, Zabih with Veksler [219], Boykov [28] and Kolmogorov [112,
119, 120, 121, 123] introduce another type of functionals that threshold the penalty linked to the depth
difference: The penalty cannot exceed a given value. This makes arbitrary large discontinuities re-
coverable since their influence is bounded. The counterpart is that Boykov et al. [28] show that the
corresponding problem is NP hard. This is a strong hint that this functional cannot be solved directly
by a graph-flow problem which has a polynomial complexity.

�

�

	

Another view on [Thresholded penalty]: The
penalty can be seen as a regularizing potential that
generates a force pulling the surface toward a steady
state. If this penalty is thresholded, points over the
threshold have a constant penalty i.e. a constant po-
tential, hence no force is applied to them. Therefore
they are controlled only by the consistency term
which is ill-posed as we know. From a variational
point of view, the Euler-Lagrange formula applied
to the penalty term results in a constant null value
over the threshold since it implies derivatives. The
evolution is then equivalent to the ill-posed problem
without regularization.

Because of this difficulty, the functional is mini-
mized with an evolution scheme that is not guaranteed
to reach a global minimum. It nevertheless relies on
graph cuts. Veksler [219] defines several spaces (sets)
of moves that can be applied in sequence to a dispar-
ity map in order to reach a lower functional value. A
move space defines a set of basic evolutions of the dis-
parity map. Each move is simple enough to be opti-
mally determined by a graph cut. In practice the moves
that yield the best results are the expansion moves or
α-expansions: A set of pixels {pi} changes its dispar-
ity values to a given disparity α. Veksler [219] shows

28

Chapter 2. Surface reconstruction 2.2. Previous work

that a graph cut can determine an α-expansion that reaches the minimum functional value among all
the α-expansions. In other words, a graph cut can determine which pixels to change to α in order
to minimize the functional under the constraint that the only allowed change is “assigning α to some
pixels”. Then by considering several values for α, the map evolves until no expansion can further
minimize the functional. It is important to note that the solution may not be a global minimum since
only the moves are optimal by the graph-cut property. There is no straightforward property about the
sequence of moves e.g. it is not proven that a sequence of optimal expansions stops on a global min-
imum. Move spaces restrict the available transformations. Therefore, the allowed moves may not be
able to describe a change that leads to a global minimum. Nonetheless, Boykov et al. [28] bound the
final error of this process: The functional value reached cannot be arbitrary large compared to exact
minimal value.

Using this framework, the best algorithm currently available is described by Kolmogorov and
Zabih [121, 123]. They compute disparity maps for all the images of the sequence at the same time
and introduce an additional visibility term that ensures that the maps are coherent between them i.e.
that the map of an image does not occlude the map of another one. So, the process accounts for the
occlusions from all the points of view during the minimization and is more precise. It is also possible
to assign a disparity to pixel that represents an object occluded in another view i.e. to recover partially
hidden objects.

Discussion
�

�

	

More about [Binary functionals]:
The set of functionals that can be min-
imized under the move-space frame-
work is known as long as it involves
only binary choices (e.g. an α-
expansion decides whether the pixel
disparity is set to α or not). We re-
fer to the work of Kolmogorov and
Zabih [122] for the details.

On the convergence issue, graph cuts have a clear advantage over
the other existing approaches with their controlled result: Some
methods guarantee to compute a global minimum and the others
can evaluate the committed error. But in the latter case (the move-
space techniques), the property is weak: It characterizes the con-
vergence but, since it concerns the error on the functional, not on
the surface, the result may be arbitrarily distant from the real one.
On the other hand, these expansion techniques handle discontinu-
ities through their thresholded penalty. This is clear improvement
over other technique that suffer from large depth variations. However, this is not fully satisfying be-
cause the discontinuities appear as a result of the optimization engine. They are not directly linked
to the input images. In practice, it produces undesirable discontinuities. Veksler [219] gives a first
insight to overcome this point by modulating the penalty by the intensity difference in the reference
image (the one supporting the disparity map).

Parameterized surfaces The first limitation of these graph-cut approaches is their parameterization
as a disparity map depending on x and y. It makes difficult to recover objects that are occluded in
some images but visible the others. It implies that a given pixel (x,y) has two disparity values for two
3D points project onto the same pixel. The method of Kolmogorov and Boykov [121, 123] indirectly
overcome this problem with their multiple maps. This double-value situation is solved from another
view in which the two 3D points project onto two different pixels. But it then requires further work to
merge the multiple maps into a single description of the scene.

29

2.2. Previous work Chapter 2. Surface reconstruction

Fig. 2.20: Parametrized penalty is
rotation-dependent. A 45◦ disconti-
nuity is more penalized (14 arrows:
7 on each axis) than an axis-aligned
one (10 arrows).

The xy parameterization also makes the functional depend on
rotation. Turning the images (or the coordinate system) changes the
stated problem because most of them rely on a 4-connected neigh-
borhood system. For instance, consider a unit-length discontinuity
in these two configurations:

• Parallel to the y axis: The penalty for the x axis counts for the
full length and the y penalty is null.

• 45◦: Both x and y penalties count for a length of
√

2/2 (i.e.
the length of the projections on the axes).

A 45◦ angle is more penalized by a factor
√

2 than an equivalent axis-aligned discontinuity (Fig. 2.20).
This behavior is not desirable. An ideal system should be rotation-invariant as the level sets are.

Disparity maps The main drawback of these graph-cut techniques is their non-geometric formula-
tion based on disparity. Even if disparity is linked to depth, it introduces a bias in the formulation.
It implicitly defines the images as the working space whereas we seek 3D entities: Characterizing a
surface by image displacements is not suitable for a geometric problem. Okutomi and Kanade [167]
show that it can introduce ambiguities (several global minima) whereas directly dealing with depth
yields unambiguous results. Furthermore, disparity binds the functional to the image resolution. As
a consequence, the same problem can hardly be solved at two different resolutions because changing
the resolution also changes the problem. Therefore, a multi-resolution approach would need at least a
reformulation of the functional i.e. change almost everything.

Usability

If the shape precision is important, these graph-cut techniques would not be appropriate because of
their limited depth precision (the results are piecewise depth-constant and therefore look blocky, see
Figure 2.10 on page 17). Moreover, they only describes the front side of the objects.

But the strength of these methods lies in their precise image segmentation and robust convergence.
They are therefore a good choice to decompose an image into depth layers e.g. for image editing or
flat impostor creation.

Summary: These methods rely on functionals that can be solved with the graph flow
algorithm. There are two main classes of methods. On the one hand, some techniques are
directly equivalent to a single graph cut. They minimize exactly their functional but have
difficulties to properly handle depth discontinuities. On the other hand, the other methods
overcome this problem but their convergence is weak in theory and they yield blocky results
in practice.

Considering our goal, the main drawback of all these methods is their formulation as a
disparity map problem. We believe that an image-based representation does not fit an 3D
geometric problem. However, the controlled convergence of some of these techniques is a
positive point that we would like to enjoy whereas correctly dealing with depth variations
without producing blocky surfaces is an appealing challenge.

30

Chapter 2. Surface reconstruction 2.2. Previous work

2.2.7 Intrinsic functionals: Graph cuts

Boykov and Kolmogorov [26] describe a method that produces a surface to segment data into two sets
e.g. foreground/background for images or organ/body for volumetric medical data. The functional
is similar to the one used in the level-set approach (eq. (2.9)). They are seeking for a surface with
a minimal area using a measure that accounts for the data. For instance, to segment an image along
its edges, the measure varies with the gradient: Large gradients induce a smaller area measure. They
rely on a Cauchy-Crofton formula to convert this minimal surface formulation into a line-crossing

Fig. 2.21: Intuition on the Cauchy-Crofton formula
in 2D. Big objects cross more lines than small ones.

problem. They show that the area of a given surface
can be estimated from a set of lines crossed by this
surface. Intuitively, considering a set of parallel lines,
a large surface would cross more lines than a small
one. Therefore using several such sets of parallel lines
and counting the number of lines intersected by the
surface is related to measuring its area. From this
relation, the problem is cast as a graph-cut problem
which can be seen as an edge-counting problem.

Since level sets and this approach share the same functional, they are interesting to compare. Both
have a geometric formulation independent on the space discretization used. However they differ on
the topology management and on the convergence. On the one hand, level sets reach only a local
minimum but handle any topology. On the other hand, this method reaches a global minimum for the
whole problem is formulate as a single graph cut. But topology is user-assisted. The user is required
to indicate some points (named seeds) in both regions, at least one for each connected component.
Conversely, every seed generates a region. That is why this step is especially sensitive: A wrongly
placed seed would generate an entire region or a missing seed can remove a whole region. Therefore,
topology management is more awkward for this technique.

Furthermore, this graph-cut technique for data segmentation is not straightforward to adapt to
surface-from-images purpose. First, the seed placement needs to be robustly automated. But, over
all, visibility has to be incorporated into the process. It may be possible but clearly requires further
study. The main obstacle is that the process is based on a single graph cut: Before the algorithm is run,
visibility is unknown since the geometry is yet to discover and after, the result is already computed,
it is too late to account for visibility. Contrary to the level sets, it is not a step-by-step process that
allows an update of the visibility in parallel with the shape estimation. With a single graph cut,
visibility cannot be handled separately. It has to be included inside the optimization engine and thus
raises non-trivial issues. However, adapting this data segmentation to surface reconstruction would be
an interesting challenge.

2.2.8 Hybrid methods

None of the previously presented methods is perfect and, naturally, some researchers propose hybrid
techniques combining several approaches. Ideally, the overall hybrid algorithm would overcome the
limitations of each involved technique while preserving their advantages. By nature, these methods
are hard to classify. So we consider them in a subjective order of “hybridity”.

Poulin et al. [174] propose a reconstruction made of a dense cloud of points. The originality
of their approach is to let the user drive a classical point algorithm. The user indicates the regions

31

2.2. Previous work Chapter 2. Surface reconstruction

where the algorithm has to focus on, which part should be refined, etc. Since the user “helps” the
algorithm, this makes possible to recover fine details on the objects that another technique would have
ignored. The counterpart is a time-consuming process. Moreover, the final result would require some
post-treatment to yield a data structure more usable than a point cloud.

Snow et al. [201] improve the result of a carving process with a graph cut. The effect is quite
similar to the morphological treatments proposed by Museth et al. [161]. The drawback is that the
graph-cut step totally ignores the input data and may yields inconsistent results.

Isidoro and Sclaroff [102] present a surface optimization scheme that is guaranteed to respect the
visual hull i.e. the visual hull of the result is exactly the same as the original object. The evolution
scheme involves free-form deformation tools that are controlled by probabilistic techniques in order
to maximize the visual match between the original images and the surface estimate. This approach
performs well on objects that are almost similar to their visual hull but strongly relies on texture to
refine concave regions. And as level sets, it produces over-smoothed results.

Lhuillier and Quan [138] extend the level-set technique to handle multiple sources of informa-
tion. The surface evolution can be driven from the standard texture correlation and also from some
3D points reconstructed from some stereoscopic triangulation and from silhouettes extracted using
chroma-key methods e.g. with a blue background. In practice this technique improves the quality of
the results but they still lack sharp details on concave regions (observe the “hair” in Figure 2.22).

Fig. 2.22: Sample reconstruction using various information sources
Left: Three of the 26 input images. Right: Results using feature points to control the surface creation. The
produced can have sharper edge than those produced by the classical level-set technique (Fig. 2.17) but still
lacks details in concave areas (observe the hair). [By courtesy of Maxime Lhuillier [138]]

Some methods also mix multi-view geometrical methods as presented in this section with shape-
from-shading techniques [95] (i.e. the 3D is recovered by analyzing the object appearance under
known lighting conditions). These methods seem promising since they exploit more information.
But, in many cases, the lighting conditions are unknown, at least partly; making more difficult such
an approach. In this configuration (unknown light position), for instance, Zhang et al. [238] only
show results with a single point light source on relatively simple objects. In addition, many of these
methods rely on a model of specular materials (e.g. Yang et al. [233] assume that the highlight color
is dependent only on the light) or an example (e.g. Treuille et al. [214] use objects of known geometry
with similar materials as references). The major drawback to these methods is that it is difficult to a
priori predict if a model or example of material will be appropriate to describe a given scene.

32

Chapter 2. Surface reconstruction 2.2. Previous work

Summary: Hybrid methods are promising since a careful design should benefit from the
best properties of the mixed methods while mutually compensating their shortcomings.
However none of them still fulfills all our goals in a single method.

2.2.9 Discussion

From this review, we believe that some points are important to consider before designing a new algo-
rithm. Since our goal is to capture the geometry of 3D objects appearing in multiple images with a
limited user input, a method should ideally combine the following aspects:

• A geometric formulation that considers the object surface directly as a 3D entity and not through
its image projections.

• An intrinsic functional that is independent of the parameterization which describes the surface.

• An optimization process that is guaranteed to converge to a global minimum of the functional
– or, at least, whose convergence is known and characterized.

Geometric formulation

The first point is our major concern. We do not believe that disparity maps are suitable to our task.
These maps are formulated as an image problem whereas we target a 3D problem. Adding a “transla-
tion step” to go from the disparity to the depth is likely to make the problem more complex.

Nonetheless, disparity maps are useful for some tasks such as image layering or impostor creation
since they segment the input images into large regions with almost constant depth. Agarwala et al. [3]
describe several applications which use this kind of image data. Moreover, since ground-truth data are
available [188] and precise comparison can be made [187], this “challenge” has been highly successful
and great progress has been done. But, now, the best methods yield almost perfect results: Error is at
most a few percents and comparison is no more significant when the accuracy differences are in the
order of 0.1% (from the website www.middlebury.edu/stereo). This means that the produced
maps differ by at most a few pixels. Moreover, even if we observe the ground-truth data (Fig. 2.10 on
page 17), a disparity map is a poor approximation of the real objects for it is a collection of flat regions.
We target a more challenging result: Accurately approximating the real surface of the objects.

To build a geometric surface, we believe it is important to work directly in the 3D space. There-
fore we will follow an approach similar to Faugeras and Keriven [62] and describe our goal using a
geometric coordinate system (x,y,z) and geometric entities such as slopes, Euclidean distances, etc.
Furthermore, this separates the functional from the input data and makes it independent of the space
discretization chosen to optimize the functional.

Intrinsic functional and exact optimization

Formulating a functional independent of the surface parameterization and reaching a global minimum
are two important issues because they may be the origin of a failure to reconstruct an object. In such
case, the user would be required to change the setup of the algorithm and to run it again. This would

33

www.middlebury.edu/stereo

2.2. Previous work Chapter 2. Surface reconstruction

clearly impair the usability of the method because it would require more user and computation time.
Moreover this change of setup is likely to be unintuitive.

However, these two points seem to be less crucial issues. These are clearly important theoretical
problems but they can be, at least partly, overcome in practice. The impact of coordinate system
is hardly distinguishable on the graph-cut results (see [123] for instance). Level sets [62] or Space
Carving [127] also yield satisfactory results on numerous practical scenarii although their convergence
is weak in theory. We will nevertheless consider carefully these issues and criticize our techniques
against these criteria.

2.2.10 Validation

After reading all the papers mentioned in this review, we have the feeling that the validation is a crucial
but complex issue.

As we have seen, the reconstruction problem leads to theoretical studies. And it may be tempting
to consider this theory as a proof of correctness. We believe that this is not sufficient, a method have
to be tested on real cases. A theoretical study relies on theoretical hypotheses and we are convinced
that no such hypothesis perfectly holds in practice. For instance, noise is never perfectly Gaussian or
a small surface piece is not exactly matched by its tangent plane. Theoretical studies are important
to design an algorithm, to characterize its fundamental properties and limitations, etc. But a practical
proof is however mandatory to confirm the validity of the overall process, to evaluate how robust it is
to the minor but multiple deviations from the theoretical model.

We can now wonder how to validate a reconstruction work. But, let’s first ask another question:
“What do we want to validate?” It may seem trivial but we have to know what we are interested in
before validating it. To us, there are two main answers to this question:

Accuracy: In this case, we want to evaluate how close is the reconstructed geometry from the original
one.

Property: This task is not as straightforward as accuracy. We aim at characterizing some behaviors
such as topology or occlusion management.

Accuracy

This validation is the most intuitive one: Do we have reconstructed a precise shape? But it is also
the most difficult to perform. A straightforward validation requires to know the exact geometry of the
observed scene. And, in most of the real cases, it is unavailable. Range scanner can provide reference
data for small objects and are cumbersome to use in numerous situations. Some ground-truth data
exist for disparity maps (Fig. 2.10 on page 17) but these data are not the exact geometry since they
include the hypotheses of the disparity maps and are piecewise flat, which is obviously not the actual
scene geometry.

Another option is to use synthetic images whose geometry is known. But they would be of limited
utility as practical validation since they perfectly fit all the assumptions made to design the algorithm.
Therefore, we believe that such a test is almost useless to validate the accuracy because it provides
no guarantee about the efficiency on real data. Among other phenomena, the noise inherent in real
capture and in calibrating real images degrades the performance of any algorithm. A synthetic test
does not evaluate this crucial aspect.

34

Chapter 2. Surface reconstruction 2.2. Previous work

It seems that the solution lies in using real images with a geometry complex enough to make
possible a subjective evaluation by the reader. For instance, one can show the resulting shape without
texture and flat-shaded. This conveys intuitive visual cues about the geometry. Another approach
is to show the reconstructed surface under the same pose as an image of the real object. A side-
by-side comparison lets the user judge the fidelity of the result. We nonetheless believe that it is
less compelling than the previous flat-shaded image since it mainly compares the contour accuracy
because the texture “hides” most of the in-between geometry. An improvement is to use an image that
is not part of the input data. So the texture mapping may be distorted, revealing underlying errors. The
last option is to compare the result with existing methods on the same input data. This is interesting as
long as both experiments are given the same care. To be fair, one has to ideally work with the author
of the compared method to guarantee that the process is correctly run.

Summary: To evaluate the accuracy of a method, we are convinced that one has to prefer
real images over synthetic pictures for computer-generated data are too perfect.

But using real data, the actual geometry is almost never available for objective compari-
son. Hence, only subjective evaluation is possible. To ease this task, several possibilities
exist: flat-shaded rendering without texture, rendering from the same view as a real image,
comparison with other existing methods.

Property

In addition to the accuracy, another important experiment is the validation of the properties such as
topology handling, robustness to occlusion, sensitivity to the number of images, etc. Figure 2.18 on
page 24 illustrates such a validation for the topology with level sets.

We believe that the difference between real images and synthetic ones is less crucial in many
cases. For instance, topology and occlusions can be demonstrated on synthetic images that still con-
veys convincing demonstration. These images also provide “toy” examples i.e. exaggerated scenarii
such as Figure 2.18 on page 24 that outlines specific capacities even on artificially complex situations.
However, we still believe that real images should be preferred when it is possible since all the consid-
ered algorithms target real data. For some properties such as the influence of the number of images,
real pictures are even mandatory because that kind of validation is linked to the accuracy previously
discussed: It aims at characterizing the accuracy as a function of the number of images. In general the
quantitative properties (most of the time accuracy as a function of the image resolution, of the number
of images, etc) should follow the same logic (using only real data) whereas the qualitative properties
(ability to handle topology, occlusions, etc) can be also tested with computer-generated data.

Summary: It is also preferable to validate the properties of a technique on real data. But
it may also interesting to design dedicated artificial tests for the purely qualitative properties
(topology, occlusion, etc). However, when it comes to test the impact of a parameters (noise,
resolution, etc) on the final precision, we still believe that real pictures are mandatory.

35

2.2. Previous work Chapter 2. Surface reconstruction

Closure

We believe that validation is a hard part because objective evaluation is often unavailable. It there-
fore mostly relies on the subjective opinion of the reader. Furthermore, the aspects to validate are
numerous; among the possible ones, we may cite:

Precision: How accurate is the recovered shape compared to the original one?

Occlusions: Is the technique able to recover a partially occluded objects?

Texture: How much is the method dependent on the object texture to capture its geometry?

Number of images: How many images are needed to achieve satisfactory results? How does the
quality degrade with less images?

Resolution: How does the results vary with the image resolution? With the space resolution?

Regularity: How does the regularization of the functional alter the results?

Information source: For hybrid technique, how the different methods interact to produce the final
result?

It is almost impossible to validate extensively everything. One has to focus on the main aspects on a
technique.

Nonetheless, we have been several times disappointed by the validation provided is some papers.
It might be incomplete (e.g. only one example shown) or not very relevant (e.g. too simple objects).
We think that it impacts the work achieved by the authors. We are convinced that all these papers
deserve attention and expose methods that are interesting to better understand the problem, even if
only very few are effectively production-ready. But, from our experience, these papers make non-
specialists think that “Computer Vision is theory without validation” and it is hard to argue against.
We actually think that too many papers assume the reader to be a specialist and hence, do not details
the real performance of their technique and discuss too shortly both the limitations and strong points
of the exposed algorithm. This situation is regrettable since many valuable techniques exist and could
widely spread outside the Computer Vision field. We believe that the lack of validation is mostly
responsible for that although there are high quality methods.

36

Chapter 2. Surface reconstruction 2.3. Problem statement and design of the functional

2.3 Problem statement and design of the functional

Our goal is to create an object surface in 3D space. We first consider a general formulation that
outlines the relations between our work and existing geometric methods.

Let (u,v) 7→ x(u,v) ≡ (xx(u,v),yx(u,v),zx(u,v)) be a regular parameterized surface representing
the underlying object. Three-dimensional reconstruction can be cast as an optimization problem of
finding a suitable function or surface x that minimizes the functional:

ZZ

c(x) dudv

where c(·) is a positive function measuring the consistency of the surface relatively to the input images.
The methods to evaluate this consistency are detailed in Section 2.2 on page 9. Since reconstruction
is ill-posed, this simple functional needs to be regularized to achieve reliable results.

Traditionally, the regularization terms are directly introduced for the parametric surface patch.
Then, the regularized problem is formulated by Terzopoulos et al. [210] as a deformable surface
model minimizing an energy involving terms of the form:

ZZ

(

a
∣
∣
∣
∣

∣
∣
∣
∣

∂x
∂u

∣
∣
∣
∣

∣
∣
∣
∣

2

+b
∣
∣
∣
∣

∣
∣
∣
∣

∂x
∂v

∣
∣
∣
∣

∣
∣
∣
∣

2

+ c
∣
∣
∣
∣

∣
∣
∣
∣

∂2x
∂u2

∣
∣
∣
∣

∣
∣
∣
∣

2

+d
∣
∣
∣
∣

∣
∣
∣
∣

∂2x
∂v2

∣
∣
∣
∣

∣
∣
∣
∣

2

+ e
∣
∣
∣
∣

∣
∣
∣
∣

∂2x
∂u∂v

∣
∣
∣
∣

∣
∣
∣
∣

2
)

dudv (2.11)

Where (a,b,c,d,e) are real weights to control the relative influence of each term. Several similar
terms are then combined to define the surface evolution toward the solution. This allows a fine control
over the evolution behavior since numerous control are available. The counterpart is that it jeopar-
dizes the stability of the process because the resolution involves first and second derivatives of these
terms (eq. (2.11)) that already contains second order derivatives. The consequences are twofolds;
such a process is highly sensitive to noise and the produced surface is restricted to be at least twice
differentiable.

The minimization is solved by local methods, a set of PDEs provided by the Euler-Lagrange
equation. One common way is to use an iterative and steepest-descent method by considering a one-
parameter family of smooth surfaces x(t) : (u,v, t) 7→ (x(u,v, t),y(u,v, t),z(u,v, t)) as a time-evolving
surface x parameterized by the time t. The surface moves in the direction of the gradient of the
functional F at point p according to the flow ∂x(u,v,t)

∂t = −∇F(p). This describes how each point on
the dynamic surface moves in order to decrease the weighted surface. The final surface is then given
by the steady state solution ∂x(u,v,t)

∂t = 0. The problem with this approach is well-known [191] in that
it does not handle the changes in the topology because it would break the parameterization of the
surface. Therefore, the optimization process requires an initial guess with the correct topology. It may
also be sensitive to the coordinate system and to the parameterization of the surface (see Figure 2.20 on
page 30) i.e. the functional is not intrinsic to the surface.

In the approach developed in [62], the regularization is introduced by considering a weighted
minimal surface similarly to the approach exposed by Caselles et al. [36]. The weighted minimal
surface is defined to be a minimizer of the functional (more details in Section 2.2.1 on page 13):

ZZ

w(x)ds =
ZZ

w(x)

∣
∣
∣
∣

∣
∣
∣
∣

∂x
∂u

× ∂x
∂v

∣
∣
∣
∣

∣
∣
∣
∣
dudv

Again the minimization is solved by an iterative steepest-descent method. However, further devel-
opment shows that the formulation is intrinsic, i.e., independent of any chosen parameterization. It

37

2.3. Problem statement and design of the functional Chapter 2. Surface reconstruction

makes the use of level-set formulation possible. The level-set method [169, 191] regards the surface
as the zero-level set of a higher dimensional function. The flow velocity is intrinsic (dependent only
on the surface curvature). Topology, accuracy and stability of the evolution are handled by using
the proper numerical schemes developed by Osher and Sethian [169, 191]. The main limitations of
this optimization scheme is that it is not guaranteed to reach a global minimum (it may be stuck in a
local trough) and it only deals with smooth surfaces i.e. it requires the surfaces to be at least twice
differentiable.

Recently Boykov and Kolmogorov [26] shows that
RR

w(x)ds can also be minimized by a graph
cut when w(·)ds is a Riemannian metric. Compared to the level-set method, thanks to its one-step
design, this technique can cope with local minima. But on the other hand it is impossible to adapt the
functional according to the current estimate, which is a common way to handle occlusions.

The connection between these two different formulations, one with a multiplicative regularization
term and another with an additive one, has been studied by many researchers [36]. In the case of
2D curves, these two formulations correspond respectively to geodesic active contours and classical
snakes. These two formulations are equivalent [36]. It seems that their application to 3D surfaces is
still an open question. Nonetheless we show in Appendix A.1 on page 167 that they are equivalent for
discrete scalar fields.

To define our functional, we consider a surface that is described by a depth field f such that
(u,v) 7→ x(u,v, f (u,v)). In other words, the surface is defined by zx = f (xx,yx). If needed, several
functions f1, f2, . . . can be used to parameterize the whole surface (this will be discussed later).

ZZ

(

c(x)+αu(u,v)
∣
∣
∣
∣

∂zx

∂u

∣
∣
∣
∣
+αv(u,v)

∣
∣
∣
∣

∂zx

∂v

∣
∣
∣
∣

)

dudv (2.12)

Only first derivative terms are used for smoothing. Dropping the second derivative smoothing
terms is primarily due to the optimization method we introduce in the next section to solve the min-
imization problem. The second derivative terms also lead to a complicated solution (for instance,
the Euler-Lagrange solution of deformable models would contain fourth derivative terms) and might
produce over-smoothed surfaces. Therefore, we use only the first derivatives in our regularizing term.
The issue is further discussed in the conclusions.

The L1 norm is used to fulfill the smoothing objective and leads to an efficient computation.
However, our work can be extended to the L2 norm using the work of Ishikawa [99] with higher com-
putation time. Our formulation is also not intrinsic, and is therefore dependent on parameterization.
Note that αu and αv are not restricted to constants and thus make discontinuities recoverable because
they allow local control of the smoothing term. Formally, it is possible to rigorously recover surfaces
that are only piecewise differentiable i.e. piecewise C1. To make a discontinuity possible at a given
point p, it is sufficient to set αu(p) = αv(p) = 0. So the influence of the derivatives is null at p and a
discontinuity can appear.

Our approach lies between the geometric methods based on level sets [62, 138] or on deformable
surface [210] that only reach a local minimum of the functional, and the graph-cut techniques [28, 32,
99, 101, 112, 120, 121, 179, 180, 219] whose convergence is controlled but whose goal is expressed
with image-based quantities. We keep a continuous geometric formulation as [62, 210] but guarantee
to result in a global minimum as [26, 32, 99, 101]. This allows to refine the precision while still
solving the same problem.

38

Chapter 2. Surface reconstruction 2.3. Problem statement and design of the functional

Summary: We propose to solve the functional (C.2.3) based on the parameterization of
the surface as a depth field. It regularizes the consistency goal by adding a regularizing
term that involves only first derivatives. This functional is not intrinsic (i.e. depends on
the chosen parameterization) but makes less assumptions about the reconstructed surface.
Therefore it can recover surfaces with discontinuities. Furthermore, the proposed functional
is purely geometric and does rely on any information about the image or space resolution.
This last point offers the possibility to produce a surface solving the same problem at dif-
ferent resolutions which paves the way toward multi-resolution techniques.

39

2.4. General presentation of graph cuts Chapter 2. Surface reconstruction

2.4 General presentation of graph cuts

The core of the algorithm presented in this document is based on a graph cut. We give here a general
presentation of this tool. This section ends with an explanation of the basic mechanism that we use to
power our optimization process.

2.4.1 The graph-flow problem

�

�

	

History of [Graph flow]: Schrijver [189] gives
an interesting explanation of the history of this
problem. It has been first motivated to study the
railway transportation in the Soviet Union. In the
1930’s, the Soviet side wanted to maximize its
transportation plan. And in the 1950’s, the US
side wanted to optimize a potential attack of the
Air Force to minimize the railway capacity. Both
sides went to a similar graph problem. These two
analyzes are an original interpretation to the max-
flow/min-cut theorem that appears later in this sec-
tion.

It is a classical algorithmic problem [4, 69]. It states the
following general problem: A water source is linked to
a sink through a network of pipes that do not let more
water go through than their capacity. What is the maxi-
mum water flow that can reach the sink or, equivalently,
where is the network bottleneck that limits the flow?
This correspondence between the maximum flow and
the bottleneck is important to understand because it is
the base property of our method: Finding the maximum
flow is exactly equivalent to finding the set of the limit-
ing pipes. With other words, the water flowing through
the network can at most equal the bottleneck capacity
and cannot exceed it.

Formally speaking, we model the problem with an oriented graph G (the pipe network) composed
of a set V of vertices and a set E ⊂ V ×V of oriented edges. V contains two special vertices: the
source s and the sink t. For each vertex v ∈ V , we define the sets of entering and exiting edges:

Ein(v) =
{
(u,v)/u ∈ V

}\

E

Eout(v) =
{
(v,w)/w ∈ V

}\

E

Two non-negative values are associated to each edge e: the capacity Cap(e) (the maximum possi-
ble flow through a pipe) and the flow Flow(e) (the actual flow in a pipe). From this, we impose two
constraints:

∀e ∈ E , Flow(e) 6 Cap(e) (2.13a)

∀v ∈ V \{s, t} , ∑
ein∈ Ein(v)

Flow(ein) = ∑
eout∈ Eout(v)

Flow(eout) (2.13b)

These rules express that the flow cannot exceed the pipe capacity (eq. (2.13a)) and that no water
appears or disappears except in the source and in the sink (eq. (2.13b)). A flow satisfying these two
rules is said valid. For now on, we only consider valid flows. To clarify the following explanations,
we also assume that the source and the sink satisfy Ein(s) = Eout(t) = ∅.

Graph-flow problem: We define a graph flow as: Flow(G) = ∑
e ∈ Eout(s)

Flow(e)

Given a graph G and a capacity function Cap(·), the graph-flow problem consists in finding a flow
function Flow(·) that maximizes Flow(G) while respecting the rules 2.13.

40

Chapter 2. Surface reconstruction 2.4. General presentation of graph cuts

�

�

	

More about [Oriented edges]: Only source-to-
sink edges are counted in the capacity of a cut.
Therefore the orientation of an edge is crucial
since it decides whether this edge belongs to a cut
or not. It is possible to create an “unoriented” edge
by associating two edges oriented both ways. So
as long as the cut goes in between the two nodes
of this “double edge”, its capacity is added to the
cut.

A cut C is a partition into two non-overlapping sub-
sets: Vs that contains s and Vt that contains t. This
defines the set of the cut edges that go from Vs to Vt :

Ecut =
(

Vs ×Vt

)
\

E

A value Cap(C) is then associated to C :

Cap(C) = ∑
(u,v)∈Ecut

Cap(u,v)

s t

cut
Fig. 2.23: Example of a cut on a graph

The dotted line shows a cut of the graph. The nodes in the Vs set are in blue and the ones in Vt in green. The
cut edges are indicated in red (note that only the source-to-sink edges are cut).

Intuitively, a cut is a potential bottleneck that separates the pipe network into two parts and its capacity
is the maximum flow that can go through. An actual bottleneck is a cut that has a minimal capacity
among all the cuts. This leads to the main theorem.

Max-flow/min-cut theorem: For given graph as previously described, the maximum flow equals
the minimum cut.

max Flow(G) = min
C

Cap(C)

Using the water analogy, max Flow(G) is the flow through the network pipe and minC Cap(C) is the
capacity of the bottleneck. Then one can get convinced that these two quantities are equal.

A complete formal proof is not very complex but out of the scope of our study. We give only the
main steps to reach the theorem. First, it can be shown that the flow through all the cuts is the same
(use rule (2.13b)). From this, using the rule (2.13a) gives that the max flow is less or equal to the
min cut. The converse relation is trickier and introduces additional entities (the residual graph and the
augmenting paths). One can read [4, 69] for details. �

41

2.4. General presentation of graph cuts Chapter 2. Surface reconstruction

Source

Source

Sink

Sink
+∞

+∞

Fig. 2.24: Two simple examples of graph-cut optimization
Left: A graph to find the minimum value among three. Right: A graph to find the minimum values of five sets
of three.

From a minimum cut and a maximum flow, it can also be shown that:

∀ecut ∈ Ecut, Flow(ecut) = Cap(ecut) (2.14)

In terms of pipes, it means that the bottleneck pipes are full i.e. no extra water can flow trough them.
Thus, if a maximal flow is known, Vs is computed as the set of vertices that can be reached from s
with only the edges such that Flow(e) < Cap(e). Then, Vt = V \Vs. Property (2.14) guarantees that
this defines a minimal cut. This may not be the only minimum cut, in that case, this corresponds to
the closest one to s according to the graph distance.

The practical and main point of this graph problem is that polynomial algorithms exist [27, 39] to
exactly compute a maximal flow. Then, from the theorem, we know that this flow corresponds to a
minimal cut and finding such a cut is a standard graph search whose complexity is linear in the number
of edges.

Hence, an exact minimal cut can be computed in polynomial time from a graph.

This provides an optimization engine that reaches an exact and global minimum of any problem that
can be formulated as a graph flow.

2.4.2 Link with surfaces

At first sight, the link between this “water flow problem” and a functional defined over a surface may
not be obvious. To help the reader to be familiar with this concept, two simple examples are described.
None of these examples has a practical use, there are only provided for illustration purpose.

Consider a set of n non-negative values. Let’s use a graph cut to find the minimum of this set.
Take n edges with capacities corresponding to the n values. Link these edges to form a string. The
source and sink are the extreme vertices. The configuration is shown on Figure 2.24-left for n = 3. It

42

Chapter 2. Surface reconstruction 2.4. General presentation of graph cuts

is straightforward to see that the minimal cut (the bottleneck) is the edge with the smallest associated
value.

Consider now m sets of n non-negative values. Let’s use a graph cut to find the minimum of each
set in a single run i.e. without using m times the previous algorithm. For each set, build a string as
previously described. Then create two additional vertices: the source and the sink. For each string,
use an edge with infinite capacity to link the source to one extremity and another infinite edge to link

�

�

	

More about [Infinite edges]: Any cut containing
an infinite edge cannot be minimal. Therefore, in-
finite edges can be used as constraints to ensure
that a minimal cut does lie in a given place. For
instance, they can be used to create several sources
and sinks as in Fig. 2.24-right.

the other extremity to the sink. Figure 2.24-right shows
the graph for n = 3 and m = 5. The minimal cut can-
not cross an infinite edge, it therefore crosses an edge
of each string. Then it is straightforward again to see
that the minimal cut crosses the edge with the minimum
value of each string. Notice that this cut “looks like” a
line.

Our strategy in the following section is to generalize this idea. Instead of considering a one-
dimensional set of values that leads to a line, we use a two-dimensional set that results in a surface.
Adding edges between adjacent strings will add constraints between neighbor points.

43

2.5. Global discrete solution Chapter 2. Surface reconstruction

2.5 Global discrete solution

We expose in this section a technique to minimize the functional (C.2.3) defined in Section 2.3. The
functional is first discretized in a classical way. We then describe a first graph that is sufficient to reach
a first solution. From this graph, we lay down the main property and show the main limitation of the
technique. We end with a second graph design that overcome this limitation.

2.5.1 Discretization

Without loss of generality, let’s assume that the 3D object space is described by (x,y,z) and the object
surface is locally parameterized by : (u,v) 7→ x(u,v, f (u,v)), where f is a function that can be seen
as a depth field z = f (x,y). Also let the domain on which f is defined be D . This parameterization
restricts the object being constructed to a single-valued depth field. If multiple depth values are
needed, multiple functions f1, f2, . . . could be used. Since x and y often play equivalent roles, the x|y
notation is used when a statement is applied to both x and y.

Our proposed functional consists of a consistency term C and a smoothing term S:

C(f) =
ZZ

D

c(x,y, f (x,y))dxdy (2.15a)

S(f) =
ZZ

D

(

αx(x,y)
∣
∣
∣
∣

∂ f
∂x

(x,y)
∣
∣
∣
∣
+αy(x,y)

∣
∣
∣
∣

∂ f
∂y

(x,y)
∣
∣
∣
∣

)

dxdy (2.15b)

Our solution strategy relies on an approximation of equations (2.15) by a discrete formulation.
Let’s consider that the surface domain D is discretized as a regular rectangular grid. Then, x, y, z
have values {x1, ...,xnx}, {y1, ...,yny}, {z1, ...,znz} separated by ∆x, ∆y, ∆z. The extension to a general
domain D with varying discretization steps is however straightforward.

Discrete terms C
d and S

d are obtained as:

C
d(f) =

nx

∑
i=1

ny

∑
j=1

c(xi,y j, f (xi,y j))∆x∆y (2.16a)

S
d(f) =

nx−1

∑
i=1

ny

∑
j=1

αx(xi,y j)
∣
∣ f (xi+1,y j)− f (xi,y j)

∣
∣∆y

+
nx

∑
i=1

ny−1

∑
j=1

αy(xi,y j)
∣
∣ f (xi,y j+1)− f (xi,y j)

∣
∣∆x (2.16b)

2.5.2 Building a first embedded graph

Our approach is based on a topologically embedded graph in the 3D geometric space; that is to say,
it can be seen as a 3D geometric entity. Nodes and edges correspond to 3D points and 3D segments.
Therefore, a cut is a real surface that crosses these segments. Moreover, edge capacities are fully
expressed with geometric measurements. The main idea is to build the graph such that the cut capacity
is equal to the surface functional. Then, a minimal cut will be a solution to the discrete problem. The
graph is a 3D grid superimposed on the voxels with correspondence shown in Figure 2.25. All edges
are bidirectional (i.e. made of two directional edges): for x-edges, the capacity is αx(xi,y j)∆y∆z; for
y-edges, αy(xi,y j)∆x∆z; and for z-edges, c(xi,y j,zk)∆x∆y. We add source and sink nodes out of this

44

Chapter 2. Surface reconstruction 2.5. Global discrete solution

grid and for each (xi,y j) voxel column, the voxel with the minimum depth is linked to the source
and the one with the maximum depth is linked to the sink. All source and sink edges have an infinite
capacity. From a complexity point of view, there are three edges and one 6-connected node per regular
voxel (i.e. not on a border). Thus, the graph complexity is proportional to the number of voxels.

source side

sink side

x

x

y

y
z

z

∆x

∆y

∆z

αx(xi,y j)∆y∆z

αy(xi,y j)∆x∆z

c(xi,y j,zk)∆x∆y

Fig. 2.25: Graph with a linear smoothing term

Left: voxel grid with a surface inside. Right: Correspondence between the voxel (xi,y j,zk) and the graph.

Note that Roy [179] and Ishikawa [99, 100] have also described embedded graphs with a design
rather similar to this first graph. Roy embeds his graph in the disparity space which almost equivalent
to the geometric space. However disparity is inherently linked to images. This makes the relation
between the produced shape and the functional unclear. Ishikawa embeds the graph in a generic
Euclidean space but the links with the geometric space are unclear. In contrast to these approaches,
our embedding is stronger: Our graph is a 3D entity characterized by a 3D quantities (e.g. geometric
lengths) similarly to the method of Boykov and Kolmogorov [26].

2.5.3 Establishing a correspondence between a minimal cut and a surface

We here demonstrate the following property which proves that the previously built graph exactly
computes a global minimum of the functional.

45

2.5. Global discrete solution Chapter 2. Surface reconstruction

Correspondence property: There is an one-to-one correspondence between a subset of cuts called
the potential minimal cuts and the surfaces defined by a function f . Moreover, the cut capacity is
equal to the functional value of the corresponding surface.

The proof is based on necessary criteria for a cut to be minimal and a careful count of cut edges.

There are three necessary conditions for a cut to be minimal:

1. A minimal cut cannot cross an infinite edge;

2. It has to cross each (xi,y j) column at least once to separate the source from the sink;

3. It cannot cross a column more than once for the capacity would be higher than the one-crossing
case.

A cut satisfying these three conditions is called a potential minimal cut. A direct one-to-one corre-
spondence between such a cut and a surface exists: The cut is limited to the consistent voxel space
(condition 1) and the single crossing point on the (xi,y j) voxel column (conditions 2 and 3) unam-
biguously determines f (xi,y j).

The capacity of a potential minimal cut represented by fcut can be computed as follows. The
capacity of the crossed z-edges is exactly the consistency term Cd(fcut) because each (xi,y j) voxel
column contributes with αx(xi,y j)∆y∆z. Then, if we consider the two adjacent columns (xi,y j) and
(xi+1,y j), the cut depths are fcut(xi,y j) and fcut(xi+1,y j). This implies that the number of crossed
x-edges is:

1
∆z

∣
∣ fcut(xi+1,y j)− fcut(xi,y j)

∣
∣

Thus, the total capacity of crossed x-edges is:

αx(xi,y j)
∣
∣ fcut(xi+1,y j)− fcut(xi,y j)

∣
∣∆y

There is a similar result for the y-edges. The total capacity of all the x-edges and y-edges crossed by
the whole cut is exactly Sd(fcut).

By adding these results together, we draw the expected conclusion: there is an exact correspon-
dence between a surface with the discrete functional C d + S d and a potential minimal cut with its
capacity. �

Therefore, any graph-flow algorithm is able to reach in polynomial time a global minimum of this
functional by using this graph.

2.5.4 Analyzing the smoothing term

Graph-cut techniques [28, 32, 99, 101, 112, 121, 219] often yield flat and blocky results. This may
not be fatal if we are only building a disparity map with limited precision (e.g., 16 or 32 disparity
values), but it becomes crucial if we target 3D shape reconstruction including small details and smooth
slopes. We first elucidate the origin of this artifact, and then propose a solution by introducing a new
smoothing term.

46

Chapter 2. Surface reconstruction 2.5. Global discrete solution

x

z

Fig. 2.26: Equivalence between a discontinuous variation and a continuous one
A discontinuous variation and a continuous one are equivalent in a region with uniform consistency term. They
cross the same number of x-edges (2 circles) and z-edges (3 squares). For clarity purpose, we present a 2D xz
plane of the 3D grid.

This artifact appears in regions with depth variation and rather uniform smoothing and consistency
terms. Consider the following simple example (restricted to 2D for clarity) where f is monotonic
between xA and xB and α(x) is constant and equal to ᾱ:

S2D(f) =

xB
Z

xA

α(x)
∣
∣
∣
∣

∂ f
∂x

(x)
∣
∣
∣
∣
dx = ᾱ | f (xB)− f (xA)|

If α(x) is uniform then the smoothing term only depends on the extreme values of f ignoring its actual
shape (Fig. 2.26). Therefore, if the consistency term is also uniform in that region, a continuous depth
change and a discontinuous one yield the same functional value. This directly stems from the linear
dependency of the smoothing term on the derivative. A convex term makes a continuous variation
have a lower functional and a concave one makes it have a higher functional. Now the situation boils
down to three cases:

1. A convex smoothing term: It favors continuous variations but it may impede real surface dis-
continuities.

2. A concave smoothing term: It creates spurious discontinuities. Smoothing the surface would
not be a solution because it would also remove the real discontinuities.

3. A linear smoothing term: It causes ambiguities because several surfaces have the same func-
tional value. Unfortunately, it can be shown that, between several equivalent cuts, a graph-cut
algorithm always “chooses” the most discontinuous one because it is the closest to the source
or to sink. This leads to same artifacts than the concave case. (See Figure 2.27.)

This is summarized by the following property.

Smoothing term property: Concave and linear smoothing terms introduce spurious discontinuities
on the surface. To avoid this artifact, the smoothing term must be strictly convex.

From this analysis, we do not use a concave smoothing term like [18, 121] neither a linear one
like [32] because both introduce spurious discontinuities. We use a convex smoothing term. But as
discussed in the Section 2.2 this may limit our approach to small depth variations because large ones
would be heavily penalized. To overcome this point, we make use of the αx and αy functions to control
the smoothing term and allow real discontinuities to occur (this point is discussed later).

47

2.5. Global discrete solution Chapter 2. Surface reconstruction

With a linear term One of original images With a convex term

Fig. 2.27: Comparison between a linear and a convex smoothing term (influence on 3D results)

A linear smoothing term (left) yields blocky results whereas a convex one (right) produces smooth shapes.

2.5.5 Building a second graph with a convex smoothing term

Applying the previous analysis to our first graph design (Fig. 2.25), the ambiguity inherent to the linear
smoothing term is shown in Figure 2.26. This graph therefore needs to be adapted to incorporate
a strictly convex component. We could have chosen the graph proposed in [99] but it introduces
some constant in the smoothing term that can be difficult to handle in a multi-resolution context.
We therefore propose a new graph based on the correspondence shown in Figure 2.28. We conserve
the global 3D grid layout of the graph but there are now two kinds of x|y-edges: the αx|y-edges and
the βx|y-edges and the z-edge is split into 8 sub-edges. Nonetheless, the graph complexity is still
proportional to the number of voxels since there are twelve edges, four 3-connected nodes and one
12-connected node per voxel. It adds an additional term Ad in the functional:

A
d(f) =

nx−1

∑
i=1

ny

∑
j=1

βx(xi,y j)
[∣
∣ f (xi+1,y j)− f (xi,y j)

∣
∣−∆z

]+∆y

+
nx

∑
i=1

ny−1

∑
j=1

βy(xi,y j)
[∣
∣ f (xi,y j+1)− f (xi,y j)

∣
∣−∆z

]+∆x (2.17)

with [λ]+ = max(0,λ).
Let’s check that the correspondence property is still satisfied. The z-sub-edges are always cut by a

group of four and therefore their total capacity is always equal to the consistency term Cd(fcut). Then,
the x|y-axis, as the αx|y-edges correspond to the previous x|y-edges, always form Sd(fcut). Only the
βx|y-edges remain. Consider again two adjacent columns (xi,y j) and (xi+1,y j). As previously shown,
the number of crossed αx-edges is:

1
∆z

∣
∣ fcut(xi+1,y j)− fcut(xi,y j)

∣
∣

48

Chapter 2. Surface reconstruction 2.5. Global discrete solution

x

y

z

∆x

∆y

∆z

αx(xi,y j)∆y∆z

βx(xi,y j)∆y∆z

αy(xi,y j)∆x∆z

βy(xi,y j)∆x∆z

1
4 c(xi,y j,zk)∆x∆y

Fig. 2.28: Graph with a convex smoothing term

Correspondence between the voxel (xi,y j,zk) and the graph with a convex smoothing term. The 8 z-sub-edges
have the same capacity.

If this number is non-zero, because the cut can “go in the middle” of the z-sub-edges as seen in
Figure 2.29, there is one less βx-edge crossed. The capacity of the crossed βx-edges between the
columns is:

βx(xi,y j)
[∣
∣ f (xi+1,y j)− f (xi,y j)

∣
∣−∆z

]+ ∆y

Hence, βx|y-edges form Ad which is convex because of the [·]+ function. �

As expected, with this convex term, the functional is lower for a continuous variation than for a
discontinuous one as illustrated in Figure 2.29. This achieves our goal but the discrete Ad term (2.17)
has no continuous counterpart like Cd with C and Sd with S because of the ∆z term, which is directly
linked to the discretization step. However, βx|y can be made very small because we only need to
penalize the step variations, no matter how important this penalty is. Therefore, Ad ≈ 0. Then, we
can compute a very close approximation of the discrete solution to the continuous functional while
avoiding spurious discontinuities.

The last point to be observed is that crossing two z-sub-edges may lead to a lower capacity than
crossing one β-edge. To avoid this situation, we can either add a constant on the z-sub-edge capacity
(but it can be incompatible with a multi-resolution approach) or use constraint edges [99, 100] (i.e.
keep the same capacity for the oriented z-edges from the source to the sink and assign an infinite
capacity to their reverse oriented edges) and then have no additional constant.

49

2.5. Global discrete solution Chapter 2. Surface reconstruction

x

z

Fig. 2.29: Discontinuous variation and a continuous one are no more equivalent

The discontinuous variation crosses one more βx-edge (the triangle) than the continuous variation. Thus, it has
a higher functional value.

Summary: We have exposed a method to minimize a discretized version of the func-
tional (2.15). The underlying algorithm runs in polynomial time and the discretization step
can be arbitrarily chosen. The advantage of this technique is that it reaches a global mini-
mum. It also avoids spurious discontinuities when several such minima exist. The counter-
part is that it requires two functions αx and αy to be set in order to properly deal with depth
discontinuities. This point is addressed in the following section.

50

Chapter 2. Surface reconstruction 2.6. Practical algorithm

2.6 Practical algorithm

scene side

camera side

separating plane

Fig. 2.30: Configuration of our scenario.

In the previous sections, we have described a general op-
timization tool. It has now to be adapted in a surface re-
construction framework. To demonstrate the capacity of
this method, we have chosen a classical scenario which
is well-known to raise precision difficulties and therefore
challenges our technique. In the chosen configuration, we
assume that there exists a separating plane: all the cam-
eras are in the same half space and look toward the other
half. This is a classical setup which is similar to many oth-
ers [26, 32, 120, 121, 190]. This corresponds for instance
to a short video sequence or to the situation in which it is
impossible to go all around the scene. These two practical
cases motivate this setup. We also assume that there is no moving object in the scene and since we are
focusing on the reconstruction issue, the cameras are considered fully calibrated.

The proposed algorithm mixes voxels and graph cut in a consistent way since both rely on the
same space discretization. The advantage of this design is to deal efficiently with the visibility. Self-
occlusions and object-by-object occlusions are handled: They are detected and if an object is partially
hidden but still visible from a subset of cameras, it is reconstructed.

Before examining the details, we first give an overview of the algorithm illustrated by the bloc
diagram in Figure 2.31.

Input The algorithm uses a sequence of images, each image is given with its corresponding pro-
jection matrix which relates a 3D point to its projection in the image plane. The user also defines a
bounding volume e.g. a 3D bounding box, containing the object of interest.

scaled planes

x-axis

y-axis

z-axis

plane z = z0
scaling center

Fig. 2.32: Configuration of our study case.

Initialization Before entering the core of the process,
the voxel space is built. The specific layout of the voxels
(Fig. 2.32) ensure several properties including a new one
which is proved. This allows a rigorous characterization of
the surface boundaries.

Main loop The algorithm is based on a multi-pass pro-
cess. Each object is reconstructed one by one while vis-
ibility is progressively updated. Each pass first collects
consistency information and localizes the potential discon-
tinuities. Then the graph-cut optimization is run: it will be
shown how to use it while accounting for self-occlusions.
Before a new pass starts, visibility is updated (occluded
regions are marked in images) so the next passes handle
object-by-object occlusions.

Post-process The resulting mesh is aliased because of the discrete representation of space. This
artifact is removed with a specific PDE filter.

51

2.6. Practical algorithm Chapter 2. Surface reconstruction

Relighted
face

 Input data Initialization

Bounding
volume

Images

Discretization

Voxel space

Photo
consistency

Consistency
function

Threshold
Morphology

Optimization
domain

Graph-cut
optimization

Color
changes

Discontinuity
maps

Visibility
update

Voxel surface

Aliasing
removal

Core

Result

Final surface

Fig. 2.31: Overview of the whole process
The core of the algorithm may be iterated as long as there are objects to reconstruct in the scene. In this case,
the previously reconstructed surface is taken into account to update the visibility.

2.6.1 Initialization

The input bounding volume is discretized. This discrete space is seen in turn as a voxel space and a
graph (see Figures 2.25 on page 45 and 2.28 on page 49). The space axes are determined as follows.
The x-axis is defined by any two arbitrary cameras not orthogonal to the separating plane, the z-axis
is orthogonal to x and going through the plane and y = z× x. We then use a voxel configuration
illustrated in Figure 2.32 on the page before. The voxels are organized by planes z = cst: each plane is
a scaled version of the z = z0 plane. It fulfills the constant footprint property [195]: Each voxel has the
same projected area. There are other ways to achieve this property such as Saito and Kanade [185] and
Szeliski and Golland [205] but this configuration also induces the vertex coordinate property which
characterizes the surface boundary D . We first demonstrate this property in a simple case and then
extend it to a more general configuration.

52

Chapter 2. Surface reconstruction 2.6. Practical algorithm

Vertex coordinate property It characterizes the voxels near a surface of uniform color. As illus-
trated in Figure 2.33, a voxel near such a surface but not part of it can be consistent because all the
lines of sight hit the surface and give the same color. Therefore, as shown in [127], surfaces uniform
relatively to the consistency criterion used to define the c function (e.g. uniform color for photo-
consistency) generate consistent regions which are bigger than the real surface. These regions go
larger with smaller baselines. Therefore in our case, these regions are poor approximations of the real
surface (Fig. 2.34-a). Nonetheless, these regions lead to useful properties.

In the following discussions, we assume that the surface color changes with its orientation rela-
tively to the light and that the lighting is non-uniform. Conversely this implies that an uniform color
surface is smooth and, for instance, cannot be peaked since it would appear of different colors because

surface of
uniform
color

Fig. 2.33: Consistent voxel not part
of the surface.

of the shading variations. We believe this hypothesis is always met
by real scenes and therefore does not restrict our results.

Basic vertex coordinate property: For aligned cameras, if the scal-
ing center used to build the voxels lies between the two extreme
cameras, in an epipolar plane (i.e. a plane containing the optical
centers) a surface of uniform color forms a region with consistent
voxels. This region is a quadrilateral which vertices have one and
only one extremal coordinate relatively to the voxel-grid coordinate
system. Moreover, the left-most and right-most vertices belong to the
surface.

Sketch of proof We here give a short explanation of this result.
The details would be tedious and result straightforwardly from the
following main ideas. The proof relies on the relationship between
the camera positions, the angles between the lines of sight and the

voxel boundaries, and the slopes of these lines of sight in the voxel coordinate system. This is illus-
trated in Figure 2.34-a. The leading idea is that the C1 camera generates lines of sight that have a
positive slope in the voxel coordinate system. This slope is linked to the angle between the lines of
sight and the borders of the voxel space; for C1, they are always negative since C1 lies on the left of
the scaling center. Since C2 lies on the other side, the same arguments lead to a negative slope of its
lines of sight. Then examining the four vertices of the quadrilateral formed by the extremal lines of
sight demonstrate the property. �

Remark Rigorously speaking, this property assumes that the surface is smooth enough so that the
end points of the surface are the left and right vertices of the quadrilateral (see Figure 2.34 on the
next page). One can imagine an extremely peaked surface for which this would not be true. But as
previously mentioned, such a surface is unlikely to have a uniform color because of the strong shading
variations induced by the peak. Practically, in such a case, the surface is made of several subregions
of uniform color. The property is then valid for each subregion.

This first property can be generalized to the case of non-aligned cameras as long as a separating
plane exists. This results in the following property.

53

2.6. Practical algorithm Chapter 2. Surface reconstruction

(a) (b)

voxel space surface of
uniform color

positive angle

negative angle

C1

C1

C2

C2
C3

Fig. 2.34: Vertex coordinate property
(a) An epipolar plane of C1 and C2. The intersection of the two visual cones defines the consistent region. Note
that the left-most and right-most vertices belong to the surface. (b) The consistent region in the epipolar plane
due to a third camera C3. Figure 2.37 on page 56 shows such regions on a real example.

Extended vertex coordinate property: If the scaling center used to build the voxel grid lies on a
segment linking any two cameras Ci and C j, in the epipolar planes of Ci and C j, the consistent voxels
form 2D regions which left-most and right-most points belong to the surface.

Proof Without loss of generality, consider two cameras C1 and C2 and name the C1C2 axis the x-axis,
and then, as described previously, the z-axis is an orthogonal axis going through the separating plane
and y = z× x. The scaling center lies between C1 and C2. The configuration of an epipolar plane is
illustrated in Figure 2.34-a.

We first restrict to the C1 and C2 cameras. Using the basic vertex coordinate property, we know
that the left-most and right-most vertices of the corresponding consistent region belong to the surface.

Consider now one more camera C3 lying in a general 3D position. It makes a visual 3D cone
with the surface of uniform color and then forms a 2D region in the epipolar plane as depicted in
Figure 2.34-b. C3 brings an additional constraint for the consistency, therefore the region consistent
with C1, C2 and C3 is the intersection between the initial quadrilateral and the new C3 region. The
resulting region may not be a quadrilateral or even a polygon anymore because C3 may create a
non-polygonal shape (Fig. 2.34-b). Nevertheless, since the previously characterized left-most and
right-most points are part of the generating surface, they are consistent for any camera which sees
them. Hence they are part of the region consistent with C1, C2 and C3 and because this region is only
a restriction of the region for C1 and C2, they are still the left-most and right-most points. C3 does
not affect the property: the left-most and right-most points have not changed. This will therefore not
change for any number of additional cameras. This demonstrates the extended property. �

54

Chapter 2. Surface reconstruction 2.6. Practical algorithm

Thanks to this property, the optimization domain D is now defined. It is sufficient to chose two
cameras Ci and C j. The voxel space is then build as previously described: The scaling origin is set
between Ci and C j, the x axis is along CiC j, z goes through the separating plane (it is necessary to
ensure the configuration of the angles in Figure 2.34-a) and y = z× x. With this setup (Fig. 2.32), D
is characterized by its left-most and right-most points in each epipolar planes (defined by CiC j).

2.6.2 Main loop

The algorithm has a multi-pass layout to reconstruct objects one by one, from the closest one to the
most distant. The separating plane defines unambiguously this “distance”. It is a classical front-to-
back approach [217] or it can also be seen as a plane sweep [127] in the z direction.

The iteration stops when no object remains unreconstructed in the scene.

Loop step 1: Consistency computation
�

�

	

How to set [Threshold]: The consistency threshold
drives the detection of the objects. It is hard to give a
value for this threshold since it depends both on the con-
sistency criterion used and on image quality e.g. noisy
images require a more tolerant (higher) threshold. How-
ever, if the produced objects are too big (including some
spurious extensions from the background) or too small
(missing some parts), this threshold is likely to be at the
origin of the problem. Once a correct segmentation is
achieved, this value has not to be changed anymore.

For each voxel, a consistency value is computed
(e.g. from ZNCC or photo-consistency). Then the
voxels are thresholded to discard all the inconsis-
tent voxels. Since we deal with real images, the
resulting voxel set may contain some holes or iso-
lated voxels. To overcome this point, we use math-
ematical morphology (Figure 2.35 defines the ba-
sic operators we use). The set of the consistent
voxels is robustified with morphological operators

Closure

Opening

growth

growth

erosion

erosion

Fig. 2.35: Basic morphological operators
The operators are shown in the 2D case for clarity. For a closure (top row), the voxel set first grows (a layer
of voxel is added at the boundary of the set) and then is eroded (the boundary layer is removed). This “fills”
the holes of the set. For an opening, the set is first eroded and then grown. This removes the isolated voxels.
More important effects can be achieved with thicker layers (adding or removing groups of voxels thicker than
one voxel). (The original set is represented in blue.)

55

2.6. Practical algorithm Chapter 2. Surface reconstruction

closure opening

Fig. 2.36: Morphological treatment applied to the consistent voxels

The closure fills the holes. The opening removes the isolated voxels. (In blue, the changed regions.)

as described in [161]: A closure is first applied to fill in the holes and then an opening to remove
isolated voxels (see Figure 2.36).

In the rest of the pass, only the set of consistent voxels that is the closest to the cameras is considered.

As illustrated by Figure 2.33 on page 53, this set of voxels is too large: There are consistent voxels
that do not belong to the object surface. The problem is now to retrieve the object within this set of
voxels.

�

�

	

How to set [Morphological operators]: If some
spurious small objects appear “floating” around
the main objects, it comes from the morphologi-
cal treatment which is not strong enough.

This step does not only reduce the search space. It also
characterizes the boundary of the surface to be built. It
is important to remark that this boundary can be com-
plex e.g. it can contain holes. This step drives therefore
the topology of the final result.

x

z

threshold

morphology

slice

Fig. 2.37: An horizontal slice through the voxel space
Left: Position of the slice. Middle: The consistency values (high consistency is brighter) Right: The set of the
consistent voxels determined after thresholding and morphological operators. Remark how uniform areas in
the images (e.g. the jacket) creates large consistent regions in space. The size of these regions depends on the
baseline (see Fig. 2.34 on page 54).

56

Chapter 2. Surface reconstruction 2.6. Practical algorithm

Loop step 2: Discontinuities

Under the previously discussed and reasonable assumption that the aspect of a surface depends on its
orientation, surface discontinuities result in image discontinuities. This remark is used to control the
two functions αx and αy that appear in the smoothing term (eq. 2.15b on page 44). These functions
drive the continuity of the surface: If they are null, the surface is free to be discontinuous whereas
for positive values, discontinuities are penalized. Furthermore, this control over the smoothing term is
mandatory to properly handle depth discontinuities because we use a convex term as motivated in Sec-
tion 2.5.4

�

�

	

Link with [Thresholded penalty]: Discontinuities can
be handled by setting a maximum penalty applied to a
depth variation (see Sec. 2.2.6 on page 26). The discon-
tinuities are then the points where the penalty reaches
this maximum. It means that the optimization engine
“decides” where the discontinuities are. Our approach
is different in that the discontinuities are detected a pri-
ori. The engine then “decides” to ignore some potential
discontinuities. In the former case, the engine is free to
make the surface discontinuous; in the latter, it is free to
make it continuous.

on page 46 (a non-convex one is likely to generate
spurious discontinuities) but if this term is not con-
trolled, it would hinder depth variations for they
would be over-penalized.

We propose to define these functions as
αx|y(x,y) = Aχx|y where A is a constant which cor-
responds to the desired smoothing strength when
there is no discontinuity and the functions χx|y is
a discontinuity factor varying between 0 (discon-
tinuity) and 1 (no discontinuity). βx|y is defined
similarly using Bχx|y with constant B much smaller
than A i.e. B � A.

αx|y(x,y) = A χx|y and βx|y(x,y) = B χx|y (2.18)

with B � A

We now expose how to localize potential surface discontinuities. The input images are used for
this purpose: The color of each surface point is estimated relatively to the input images. But since
this step occurs before the graph-cut optimization, we use the voxel approximation which a poor
geometric approximation but is sufficient for this task. In practice, we compute the color of each voxel

one of the original image χx χy

Fig. 2.38: Sample χx and χy functions

They corresponds to the briefcase man 2.43 on page 63. The gray levels go from black = 0 to white = 1. Note
that all the actual discontinuities are included in the maps. There are also spurious lines but the optimization
process can still produce a continuous surface at these locations (see the text for discussion of this point).

57

2.6. Practical algorithm Chapter 2. Surface reconstruction

by averaging its color in each camera and the color of the surface at a point (xi,y j) is the average of
the colors of all the voxels in the corresponding column. This estimation is reasonable because as
discussed previously, depth uncertainty (i.e. several voxels in a (xi,y j) column) results from surfaces
of uniform color. Therefore, only similar colors are averaged in this estimation.

Two discontinuity maps Dx and Dy are computed. Dx is related to the color difference between
(xi,y j) and (xi+1,y j) (or (xi,y j+1) for Dy). As the estimation of the color discontinuities has to be

�

�

	

How to set [Regularizing term]: It is con-
trolled through the values A and B in equa-
tion (2.18). If the surface is too “flat”, low-
ering these values overcome this points. On
the other side, if the surface is irregular, rais-
ing the values corrects the problem.

independent of the local contrast (for instance, the estima-
tion should not change between bright or dark lighting con-
ditions), it is normalized by the standard deviation γN i j

x
of

the color in a small neighborhood N i j
x (e.g. 6× 5 centered

on (xi+ 1
2
,y j)). Small values of γN i j

x
cause numerical instabil-

ities and make detect spurious discontinuities. We therefore
apply a threshold Γ according to the values of γN i j

x
:

Dx(xi,y j) =







0 if γN i j
x
< Γ

distance(color(xi,y j),color(xi+1,y j))
γ

N i j
x

else

We use the equivalent formula for Dy(xi,y j) to get:

χx|y(xi,y j) =
[

1−D2
x|y(xi,y j)

]+

Our approach is different from existing methods. Some of them [32, 62] consider discontinuities
as normal depth variations. This is obviously a drawback for important depth changes. Or the others
handle discontinuities in their optimization process but without controlling their localization [18, 28,
112, 120, 121, 219] (i.e. the optimization process “decides” on its own where are the discontinuities).
Our method adds this important issue of discontinuity localization according to the input images.

Figure 2.42 on page 62 illustrates the practical effect of this detection. It is more limited than one
may first think. The main reason is that objects are handled one by one in our algorithm. Therefore,
large depth variations are not like to occur within a single object. This limits the interest of this step.
However, a closer observation reveals that most of the details (in the briefcase for instance) are sharper
thanks to this step.

Loop step 3: Graph cut with self-occlusions

To account for self-occlusion, the graph-cut technique is adapted according to the geometric configu-
ration. Adapting the functional is straightforward, it is sufficient to add a visibility term V(f) which
is infinite if f corresponds to a self-occluding surface and 0 in all the other cases. Obviously, no
self-occluding surface can be minimal for this functional.

Note that this term is not the same as [121] but has an equivalent effect when considering one
disparity map: self-occlusion cannot appear

Then, visibility edges are added to the graph to ensure the correspondence property. Let’s consider
a voxel A occluded by a voxel B in an adjacent column (Fig. 2.39-a). An oriented edge with infinite
capacity is added as shown in Figure 2.39-b. This edge is oriented from the sink to the source.
Therefore any surface including both A and B crosses this edge with the orientation that makes the
edge count in the cut value. Note that any surface including a voxel behind A and/or a voxel in

58

Chapter 2. Surface reconstruction 2.6. Practical algorithm

x

y

z

A

A

B

B

C

Source side

Sink side

Self occluding
surface

Visibility
edge

(a) (b) (c)

Fig. 2.39: Visibility edges
For illustration purpose, only a xz plane is presented and the graph is the simple non-convex one (Fig. 2.25 on
page 45). (a) A is occluded by B. (b) The BA visibility edge and a surface containing both A and B. (c) The BA
and CB edges are sufficient to handle the occlusion between C and A.

front of B is self-occluding and crosses also this infinite edge as it should be. This proves that these
edges correspond to the visibility term for adjacent columns. As the relationship “is occluded by” is
transitive, this is sufficient to ensure the whole visibility constraint as illustrated by the Figure 2.39-c:
If A is occluded by B which is occluded by C then A is occluded by C and any surface included A and
C must cross either the BA edge or the CB edge.

Hence, it is sufficient to add four visibility edges per voxel to have a graph that accounts for
V(f). However, in practice the results we have obtained without these edges are never self-occluding.
Therefore, it seems they can be omitted to alleviate the computation without any loss of quality. This
point clearly deserves more study.

Loop step 4: Visibility

After each pass, the lines of sight blocked by the previously reconstructed objects are computed and
ignored in the following passes. In practice, the reconstructed objects are projected in the input images
and the covered pixels are flagged “occluded”.

2.6.3 Post-process: Mesh smoothing
�

�

	

Another view on [PDE smoothing]: Intuitively, the
surface is made “elastic” i.e. it tends to “shrink” un-
der some inner forces. The smoothing effect comes
from the evolution of the surface driven by these forces.
The feature preservation is achieved by making some
regions more “rigid” i.e. they do not deform or, at least,
the deformation is slower.

As the whole process up to this step is purely dis-
crete, it suffers from aliasing artifacts. A smooth-
ing filter, inspired by partial derivative equation
(PDE) based image denoising [11] is adapted to
a geometric surface because it can be driven by
the principal curvatures κ1 and κ2 of the surface.
Also, because the potential discontinuity lines are

59

2.6. Practical algorithm Chapter 2. Surface reconstruction

already located, the PDE smoothing filter can avoid diffusing across these lines. The following ex-
planation describes a smoothing filter designed for depth fields. This problem is simpler than the
general surface smoothing problem thanks to its parameterization. One can read the discussion by
Jones et al. [108] who give an interesting insight about the departures between both problems.

First, since χx|y evaluates the discontinuity between two adjacent columns, we define χ̂x|y a column-
centered function:

χ̂x(xi,y j) =
1
2

(χx(xi,y j) + χx(xi−1,y j))

and equivalently for χ̂y. To adapt to the directions θ1 and θ2 of the principal curvatures, we define a
discontinuity factor χ̂θ for the direction θ with the classical interpolation:

χ̂θ = cos2(θ) χ̂x + sin2(θ) χ̂y

Thus, we can formulate the filter as a surface evolution driven by the following PDE with virtual
time t:

∂ f
∂t

= χ̂θ̃1
g(κ̃1) κ1 + χ̂θ̃2

g(κ̃2) κ2

�

�

	

More about [Stopping function]: It decides whether a
feature should be smoothed or not. In our case, it differ-
entiates high curvatures due to edges from those due to
aliasing. Deciding on a Gaussian-convoluted version of
the surface is a way to check whether a feature is large
enough to survive, at least partly, a strong smoothing
filter. In that case, the stopping function locally “stops”
our filter to preserve the original shape of the feature.

where g is a stopping function that controls the dif-
fusion to preserve the curvatures (its role is dis-
cussed in detail by Black et al. [17]), κ̃ and θ̃ are
computed on a Gaussian filtered version of the sur-
face, which leads to more robust estimations to
control the filter as shown by Catté et al. [37].
Note that there are two controlling components:
g driven by the surface geometry and χ̂ account-
ing for color discontinuity. These ensure that both
curvature and discontinuities are preserved.

We demonstrate the behavior of our filter using an artificial surface in Figure 2.40: Noise is added
to a known surface with a sharp peak and sharp edges. These features are correctly recovered by our

Original noiseless surface Noisy surface Filtered surface

Fig. 2.40: Effect of our PDE filter on a reference surface

Our filter is able to preserve the main feature of the surface while removing most of the added noise.

60

Chapter 2. Surface reconstruction 2.6. Practical algorithm

Fig. 2.41: Comparison of our filter with an image filter
Compared to the filter dedicated to image denoising proposed by Alvarez et al. [6] (left) our geometric filter
(right) better preserve the peak and is insensitive to the slopes.

�

�

	

How to set [Smoothing filter]: The only prob-
lem may appear on a surface with small details.
In that case, the smoothing filter should be atten-
uated to preserve these details. It may let some
aliasing visible. The only solution is to use a finer
resolution to reconstruct the object to avoid that
the details have the same scale as the aliasing.

filter. Since we represent the surface with a depth field,
a naive approach would have been to apply a denoising
filter designed for gray-level images. But as discussed
by Koenderink and van Doorn [118], images and sur-
faces have fundamental differences even if both can be
represented by a scalar field (for instance, a rotation
around the x axis is a standard operation for a surface
whereas it is meaningless for an image). Figure 2.41 shows that, for a surface with limited noise (akin
to aliasing), our geometric formulation outperforms the image filter proposed by Alvarez et al. [6].

Figure 2.42 shows the improvement brought by this filter. It correctly removes most of the aliasing
artifacts while preserving the features of the model.

61

2.6. Practical algorithm Chapter 2. Surface reconstruction

resolution=168×208

without discontinuity detection

without PDE smoothing

without PDE smoothing

complete pipeline

Fig. 2.42: Effects of the discontinuity detection and of PDE smoothing
Top left: One of the original images. Top right: A reconstruction without the final smoothing and without
detecting the discontinuities. Bottom left: A reconstruction without the final smoothing. Bottom right: A
reconstruction with the complete described pipeline. The effect of the discontinuity detection is limited (the
main differences are pointed by the yellow arrows); this is discussed in the text. The final smoothing removes
most of the aliasing artifacts while preserving the sharp features of the model.

62

Chapter 2. Surface reconstruction 2.7. Results

2.7 Results

The implemented system is demonstrated on real examples. We show three typical sequences: the
briefcase man, keyboard, and lantern sequences illustrated in Figures 2.43, 2.44 and 2.45. For the
briefcase-man sequence, there are 40 frames for the street from Dayton Taylor’s time-freezing setup
with aligned and regularly spaced cameras. Except the time-freezing system which captures attractive
“moving” scene, this setup is rather similar to short video sequence: Baseline is short (40 images
spanning 1.5 meter), image resolution is limited (about 40× 40 for the face of the man), the images
contain a significant amount of noise and an exposition change occurs throughout the sequence due
to the back light. This sequence can be considered as representative of an input provided by a non-

Fig. 2.43: Result: Man with briefcase
Reconstruction of a man with a briefcase from 40 images at 692×461, face is about 40×40 pixels. Notice that
the discontinuities are preserved and that the topology is correctly handled.

63

2.7. Results Chapter 2. Surface reconstruction

specialist user. It is calibrated by a commercial system with about 70 points manually extracted from
the sequence.

There are 11 frames of resolution 640×480 for the keyboard sequence and 23 frames of 800×600
for the lantern sequence captured by a hand-held digital camera. The geometry of the cameras for
these sequences has been automatically computed using the system of Lhuillier and Quan [137]. To
compute effective solution for results, there is a broad range for the definition of consistency. For
simplicity, we use the photo-consistency (see Section 2.2 on page 9) in the hue-saturation-value color
space for our current examples. Any other color space would yield similar results; only a color metric
is needed (it may not be perceptual since we do not deal with perceptual issues). For each voxel, we
use the average color of the region covered by its projection (approximated by its bounding rectangle)
instead of the color of the pixel under its center. This makes the process slightly more robust to small
calibration errors.

The space resolution ranges typically from 1 to 10 million voxels with 5 nodes and 12 double
edges per voxel (Fig. 2.28 on page 49). The precision of the reconstruction results is very high. We
notice even the geometric details on the face of the man (Fig. 2.43), which comes from only a small
patch of about 40× 40 pixels. Almost every key on the keyboard is reconstructed and distinguish-
able (Fig. 2.44). We measured the physical size of the keyboard and the keys. This gives a 1/10 pixel
accuracy.

Fig. 2.44: Result: Keyboard
Reconstruction of a keyboard from 11 images at 640 × 480. Notice that the keys of the keyboard are clearly
distinguishable.

64

Chapter 2. Surface reconstruction 2.7. Results

Figure 2.45 shows a case with strong occlusion. The folded chess-board is hidden by the lantern
in half of the images. Nevertheless, our algorithm is able to exploit the remaining unoccluded views
to rebuild it.

We have tested the behavior of the technique with decreasing number of cameras. We used the
sequence of the man with briefcase that is a rather difficult input as discussed previously. With 20
images among a total of 40 (Fig. 2.46-middle), some details are slightly blurred away on the face
and the briefcase but the overall accuracy is almost the same. With 10 images, (Fig. 2.46-left), some
spurious geometry appears on the briefcase and the contours are less precise. However, the algorithm
still performs well and reaches satisfying results. We have tested with only 5 cameras, the quality
loss becomes unacceptable: large spurious shapes appear due to the background and the silhouettes
are too degraded. This result does not seem reasonably usable. So we have reached the limit of our
technique. It shows that it works well for 10 cameras or more, even with non-perfect images. This has
to be related to occlusion: the chess-board in Figure 2.45 is occluded half of the time, so it requires
20 images or more to be sure to reach a satisfying result.

2.7.1 Comparison with disparity maps

We have run the algorithm of Kolmogorov and Zabih [121] (whose code is available on the website:
http://www.cs.cornell.edu/People/vnk/software.html) on the sequence of the man with
a briefcase (Fig. 2.43). We have tried to match as close as possible our setup: we have used the same
calibrated cameras with an equivalent bounding region. For the labels, we have placed 10 planes
which span the whole depth of the subject, and 5 planes for the background in order to avoid spurious
influence of background objects. As suggested in their paper, we have used the robustified L1 distance
to compute the smoothing term. Since the input values are limited to integers, we have tried all the
relevant values for the smoothing term and selected the one leading to the best result. The obtained
disparity map is shown in Figure 2.47.

We can remark that contours are very precise but depth precision is limited: only 5 labels appear
for the man (among 10 possible). This let us think that this method is not able to reach a higher
precision on this sequence even if we allow more labels. Moreover, these labels introduce strong

Fig. 2.45: Result: Lantern and folded chess-board
Reconstruction of a lantern and a folded chess-board from 23 images at 800× 600 (left) Although the folded
chess-board is occluded from images 4 to 15, it is correctly reconstructed.

65

http://www.cs.cornell.edu/People/vnk/software.html

2.7. Results Chapter 2. Surface reconstruction

from 10 images from 20 images from 40 images

Fig. 2.46: Influence of the number of images
Reconstruction from the same sequence as Figure 2.43 but with a varying number of images. The technique
achieves acceptable results down to 10 images.

discontinuities in some regions where there is no clear reason to do so e.g. on the briefcase and on
the left arm. This clearly comes from the concave shape of the robustified L1 distance. From the
presented study, this point can be overcome with a convex smoothing term associated with an image-
driven detection of the discontinuities.

A side-by-side comparison (Fig. 2.47 on the next page) outlines the dramatic improvement of the
depth precision brought by our technique.

2.7.2 Graph flow implementation

The graph-cut optimization process is time consuming. These examples took about 15 minutes to
compute on a Intel Xeon 2.4GHz and they need between 300MB and 700MB of RAM. These values
have to be evaluated considering the size of the graph (≈ millions of vertices and edges). This has
to be compared to the graphs used in [121] (at most 600 000 vertices and 4 millions directed edges).
The huge graph-flow problem exceeds the existing graph-flow implementation. It has been made
tractable through a careful implementation of the push-relabel algorithm and heuristics presented by
Cherkassky and Goldberg [39].

Then we have added our own improvements. For memory space, the key point of our implemen-
tation is that it computes adjacency information on-the-fly instead of storing it. Then we ensure that
there is no circular flow in double edges so that the flow in double edges can be stored in a single
signed value instead of two. Note that the other classical implementation proposed by Boykov and
Kolmogorov [27] is not suitable for our graphs because it is specifically designed for small graphs
and they have shown that its higher complexity degrades performance for large graphs. This is a real
drawback in our case.

Our code is available at http://artis.imag.fr/Members/Sylvain.Paris/#code

66

http://artis.imag.fr/Members/Sylvain.Paris/#code

Chapter 2. Surface reconstruction 2.7. Results

40 images at 692×461 spanning 1.5 meter

classical disparity map our result

Fig. 2.47: Comparison with a disparity map
Disparity map computed with the method of Kolmogorov et al.[121] on the same sequence as Figure 2.43. [This
experiment has been kindly made by Yichen Wei.]

67

2.8. Conclusions Chapter 2. Surface reconstruction

2.8 Conclusions

We have described a method that yields accurate object reconstruction from a sequence of images.
We here outlines the origins of the information that, once combined, form the final result. We then
summarize the pros and cons of the presented method from a technical point of view. And, we propose
a more general and more personal discussion about the presented work. We end with a few possible
extensions to this work.

2.8.1 Information sources

Object topology and position: The topology of the object to be reconstructed is not limited and is
determined by our algorithm (Figure 2.43 on page 63 shows a surface with a hole for instance).
The genus of the surface to reconstruct comes from the thresholding of the voxel set that iso-
lates the objects and determines optimization domain (cf. Sec. 2.6.2 on page 55). Since this
step applies a threshold on voxel values, it can be linked to the carving methods which are
known to recover a bounding volume of the objects and to properly estimate their topology (cf.
Sec. 2.2.3 on page 19).

Object surface: The precise location of the surface comes from our graph-cut optimization. It re-
trieves the most consistent surface while imposing a piecewise regularity. Reaching a global
minimum is a powerful feature that overcomes difficult situations (observe how large the consis-
tent regions are in Figure 2.37 on page 56) and produces fine details as the keyboard (Fig. 2.44 on
page 64).

Visibility: The visibility of given point stems from a classical front-to-back sweep of the scene. This
restricts the algorithm to the scenes that can be ordered in such a way. However this corresponds
to numerous practical situations. We describes in the next chapter other schemes to deal with
visibility.

2.8.2 Limitations

Large resources: The described algorithm requires a lot of computation time and large resources. We
believe that all existing reconstruction techniques have a limited scalability i.e. they cannot
reconstruct arbitrary large objects or scenes. However, the results presented in the previous
section are already borderline relatively to a desktop machine. This issue is treated in the
following chapter.

Non-intrinsic functional : The proposed functional is not intrinsic e.g. turning the coordinate system
changes the stated problem. This has a limited impact in practice since artifacts are hardly
noticeable. One can observe the shoulders of the man in Figure 2.43 on page 63: Their slopes
are roughly parallel to the axes. However, from a theoretical point of view, it would be better to
have an intrinsic formulation. Appendix A.2 on page 170 proposes some ideas to alleviate this
problem.

Scalar field : This point is linked to the previous one. We have presented an algorithm using a Carte-
sian parameterization of the surface z = f (x,y). It is straightforward to adapt to other coordinate
system such as the cylindrical one r = f (h,θ) or the spherical one r = f (θ,ϕ). But, our op-
timization engine deals only with scalar field. This implies an a priori knowledge about the
surface to chose a correct parameterization. This shortcoming is addressed in the next chapter.

68

Chapter 2. Surface reconstruction 2.8. Conclusions

2.8.3 Contributions

Optimization engine: We have presented a new optimization engine that minimizes first order func-
tionals. The solution is guaranteed to be a global minimum of the functional up to an arbitrary
discretization. We believe that this is one of the explanation of the high precision of the pre-
sented results. Another benefit is that the engine does not require any “initial guess”. This
obviously overcomes the dependency on such a guess.

Geometric functional : We have designed a new functional that fits the proposed optimization engine.
This functional is purely geometric and independent of both image and space resolution. As
discussed after the study of the previous work (Sec. 2.2.9 on page 33), we believe this is a major
feature of a surface reconstruction technique compared to an image-based approach involving
disparity maps. Furthermore, this functional accounts for surface discontinuities; modeling
explicitly edges, corners, etc.

Smooth shapes: We have formally characterized the functionals able to properly recover smooth
shapes without introducing spurious discontinuities. We have coupled this theoretical crite-
rion with a practical technique to detect potential discontinuities in order to produce correct
edges and sharp features. These characterization and tools are general enough to be “plugged”
into other existing methods.

Efficient algorithm: We have described an algorithm that coherently includes the previous contribu-
tions. It demonstrates that all these steps can be merged together to reach a clear gain on the
resulting precision and robustness.

2.8.4 General discussion

We believe that our algorithm brings significant improvements over the existing techniques especially
on the precision. Our input images do not have a very high resolution, noise is even sometimes
quite high (Fig. 2.43 on page 63). So we may wonder if there is any fundamental reason beyond all
the technical arguments that justifies these results. For instance, one may say that we do not have
“invented” the graph-cut technique neither the geometric formulation. And we clearly agree. So
why our results have more details? Do we only use a higher resolution? The comparison with an
existing method on Section 2.7.1 on page 65 shows that it is not only a resolution issue since from
the same input, we achieve a precision noticeablely better. We here expose our point of view on the
“fundamental bases” of our results.

3D space

As discussed in the Previous Work, since we target 3D shapes, working in the 3D space is an important
choice. Even if from a technical point of view, our approach is close to the existing graph-cut tech-
niques that are image-based; from a fundamental point of view, it is more similar to the 3D methods
such as level sets and carving.

It would not be rigorous to argue that this 3D formulation brings any accuracy improvement by
itself because disparity and depth are mathematically linked: Any 3D formula can be turned into
disparity and conversely. But we are convinced that working in the space corresponding to our goal
is fundamental. The problems appear more directly and more obviously. For instance, a piecewise
constant disparity may look “nice” because it shows precise boundaries. But one has to imagine the

69

2.8. Conclusions Chapter 2. Surface reconstruction

represented 3D shape to discover the real geometry that may lack of depth precision or have spurious
discontinuities.

Therefore, we are convinced that using a 3D representation has helped us to better characterize
our difficulties and to better address them.

Summary: Working in the 3D space gives a clearer understanding of the 3D reconstruc-
tion issue than relying on an image description of the problem.

More information extracted

To us, another important point is that we extract more information from the input data. Most of the
existing optimization scheme (carving, level sets, graph cuts) rely on the same information computed
from the data: the consistency function. It can be evaluated with different estimators (mainly photo-
consistency and ZNCC) but as discussed in the Previous Work, each one has its own pros and cons
and can be “plugged” equivalently into an optimization engine. Therefore, the only major differences
between these methods mainly come from the prior and/or from the optimization method:

• Carving only requires the result to be consistent. Therefore, it produces the largest consistent
volume. This volume contains all the possible results since any additional prior would set more
constraints on the volume and shrink it.

• Level sets implicitly add the prior that the surface is C2 everywhere. In addition, the optimiza-
tion scheme makes the process relies on the initial guess only for the spatial localization. This
guess does not have to be a bounding volume of the result nor to provide its correct topology.

• Graph cuts use the prior of piecewise constant results. The technique also ensures a controlled,
and sometimes exact, convergence and therefore obviate the need for an initial guess. The
counterpart is the need for the topology information.

From this, we can draw our first remark: The optimization scheme provides some user facilities
(fewer constraints on the input). Concerning the accuracy, we also believe that the exact convergence

�

�

	

More about [Visual hull and consistency]: With
a distant background, the contour information
is “indirectly included” within the consistency
function. Even with a small baseline, such a
background causes significant differences in the
images near the object silhouettes because of
the large depth difference (see Figure 2.43 on
page 63). Hence, the consistency is bad in the sur-
rounding volume of the objects, making possible
an accurate segmentation and contour reconstruc-
tion (Fig. 2.43) that is almost “equivalent” in prac-
tice to what can be done by a visual hull. Zeng and
Quan propose an algorithm [237] that relies on
this remark to compute the visual without know-
ing the background.

extracts more information from the consistency func-
tion. A local convergence may miss some information
and under-exploits the available data. Hence, fewer de-
tails may be reconstructed. From this point of view,
our exact convergence is one of the advantage of our
method.

However, all these methods “dig the same mine”
and cannot find more gold than it contains. We believe
that the available information from the input images is
not only contained within the consistency function. For
instance, the visual-hull approach exploits different data
(contours). Therefore, the content that can be extracted
is different: Topology is straightforward whereas con-
cavities are impossible to recover independently of the
applied technique.

70

Chapter 2. Surface reconstruction 2.8. Conclusions

We believe that the presented method exploits another kind of data in addition to the consistency.
The potential discontinuities are clearly another source of information that is different from the con-
sistency and the contours. The color variations of the images are not directly included in consistency
or contours. As we have seen, a desired feature is to evaluate these variations independently of the
local contrast. Such an evaluation only accounts for the variations of the object color and not for the
one stemming from lighting changes. This gives a hint that the underlying notion of our evaluation
is the intrinsic image [208, 223] i.e. a separation of the image into albedo data (base color of the
object) and lighting data (light power illuminating a given pixel). Our potential discontinuities can be
interpreted as the discontinuities of the albedo layer.

To our knowledge, this information is seldom used in the existing work (only Veksler [219] pro-
poses a first study). We believe that it also participate to recovering more details: We extract and
exploit more information than the other methods.

Nonetheless, as illustrated in Figure 2.42 on page 62, it does not bring a large improvement.
An explanation may be that, similarly to the contours (cf. side box on the facing page), these dis-
continuities are somehow “indirectly included” in the consistency function: We have shown that the
consistency is ambiguous when the object has locally a uniform color. Conversely, on color changes
(our potential discontinuities) the consistency gives a precise surface location (Fig. 2.37 on page 56).
Since the optimization domain is composed of the most consistent point, it is very narrow near the
discontinuities. The resulting constraint is almost equivalent to our discontinuity detection. However,
we have shown (Fig. 2.42) that an explicit use still brings improvements, even if they are not as im-
portant as one could expect. It lets us think that a direct visual hull computation may also enhance our
results.

Summary: We believe that our algorithm extracts more information from the consistency
function because it converges exactly. Furthermore, even if it does not bring a dramatic
improvement, the discontinuity detection introduces information that is rarely used by the
other techniques.

Trade-off between regularization and consistency

We think that the regularization is another crucial point. The reconstruction problem is inherently
ill-posed and regularization is mandatory in most cases. Carving techniques do not explicitly regu-
larize their optimization. In consequence, they rely on multiple views widely spaced to constrain the
problem. It is well-known that these approaches do not properly handle scenarii with few cameras or
grouped viewpoints. Hence, to overcome this shortcoming, introducing a prior into the optimization
scheme is a reasonable solution and, to our knowledge, it is today the only way to achieve dense
reconstruction.

In the same time, a prior is by definition independent of the input data. It is an arbitrary constraint
set by the user. It may not correspond to the actual content of the images. For instance, the a priori
smoothness that we assume is obviously not suitable to handle the rough surface of an irregular rock.
We believe that any prior suffers from such out-of-prior cases. The smoothness assumption is however
reasonable and therefore largely used in the literature.

Nonetheless, even if we are convinced that this prior is a good choice, we have to handle it with
care. Let’s us study the fundamental action of the prior. It modifies the results coming from the

71

2.8. Conclusions Chapter 2. Surface reconstruction

consistency i.e. it may somehow overrule the data to drive the reconstruction. Since the problem is ill-
posed, such a behavior is desirable when several solutions are equivalent regarding the only input data.
In that case, the chosen solution is likely to be erroneous because it may come from implementation
choices or from the noise corrupting the input data. Hence, a prior can be seen as a way to correct the
errors arising from those cases; the correction being directly under the user control instead of coming
from the implementation or from the noise.

Unfortunately, the prior is likely to also impact correct points i.e. the data yield good results
but the prior overrules them and imposes a different solution. This partly explains why most of the
existing techniques (including ours) need a careful setting of the functional weights: One has to
adjust the prior influence considering the actual smoothness of the observed scene versus the noise
of the input data. But beyond that, we believe that a prior such as the C2 differentiability imposed
by the level sets is too strong in many cases. The images of objects with sharp edges and corners
provide sufficient information to reconstruct these details. But the C2 prior is not compliant with these
features and smoothes them away, yielding to less detailed results. The piecewise-C1 prior imposes
fewer constraints while being sufficient to regularize the problem. It therefore provides an improved
fidelity to the original data, producing more details.

From this analysis, we can observe that the dependency of our system relatively to orientation
of the axes is undesirable. It is useless to regularize the process nor to remove the errors. It only
introduces the spurious influence of an arbitrary user choice. Fortunately, this influence is light and
results in mostly unnoticeable artifacts. It would however be interesting to study and address this
point.

Now, the question is “Why are our results so different from the ones obtained with other graph-cut
techniques [32, 179, 180] using an equivalent smoothing term?” The very first reason is our convex
approximation of the linear penalty proposed in Section 2.5.4 on page 46. This point is proven and
demonstrated to dramatically improve the results obtained from a linear penalty (Fig. 2.27 on page 48).

Beyond this main reason, we believe that the optimization domain (Sec. 2.6.2 on page 55) also
contributes to this difference. By thresholding the consistency function, we ensure that the final
surface contains only highly consistent points. The morphological operators may add only a few
isolated “bad” points. Therefore, this domain acts as an additional constraint over the regularization
term: It cannot change too much the surface, especially in the textured regions where the domain
is narrow (see Fig. 2.37 on page 56, the stripped tie produces a thin domain). With other words,
the optimization domain is almost a hard constraint on the textured points (i.e. the surface must
go through these points). This counters the effects of the smoothing term that tends to produce flat
surfaces with null derivatives. So, the depth variations are forced to respect the feature points and the
convex approximation ensures smooth variations.

On the other side, disparity-map techniques do not constrain the optimization domain. Each point
can have any disparity among the entire available range. As a consequence, even a clear feature (such
as the tie in Fig. 2.47 on page 67) may be omitted because it suffers from a too important penalty from
the smoothing term.

72

Chapter 2. Surface reconstruction 2.8. Conclusions

Summary: We believe that the regularization has an important role relatively to the ac-
curacy of the results. It is twofold: On the one hand, it is mandatory to achieve satisfying
results because the base problem is ill-posed. But, on the other hand, it may produce results
that stems more from the user prior than from the input data.

Our regularizing term is lighter than the ones previously proposed (piecewise-C1 surfaces
instead of C2) while being sufficient to make the process well-posed. Moreover, the in-
fluence of this term is further limited by the optimization domain that forces the resulting
shape to respect the textured features.

Closure

To end this discussion, we would say that we are convinced that the key point to reconstruct detailed
surfaces is to be as close as possible of the input data and to introduce as few as possible additional
constraints that are not data-driven. The leading remark to this is that only the input data can provide
the information to recover the details.

Therefore, we believe that relying on the data to drive the discontinuities and to determine the
optimization is a positive aspect of our method. Assuming only a piecewise-C1 is also an advantage.
But not being intrinsic is a drawback.

Hence, we may wonder what could be an ideal algorithm, disregarding the technical feasibility.
Concerning the regularization, piecewise-C1 seems to be almost “minimal” since C0 would not be
enough (carving techniques are C0 and irregular). The counterpart is that the resulting functional is
not intrinsic. It would be interesting to study piecewise-C2 surfaces: The constraint is one order higher
but the functional would be intrinsic using the curvature and the piecewise aspect would still allow
sharp features.

Then about the information sources, using as many as possible appears as a natural strategy as long
as these sources are reliable. We have shown how to use the color discontinuities in addition to the
traditional image content. Contours may also be used with the latest techniques [237] to extract them
from unknown background. Shading has also surely a great potential [90] but it requires additional
input data (reference spheres in [90]) or is still hard to use in the general case [238] because of the
unknown lighting environment.

2.8.5 Extensions

The presented approach can be extended in numerous ways. The following chapter exposes a “patch
technique” that addresses several shortcomings: mainly scalability and parameterization. Beyond
these points, it would be interesting to study the use of more sophisticated point-matching criteria
(cf. Sec. 2.2 on page 9) because the classical ones (e.g. photo-consistency and ZNCC) require the
projected voxel size to lie in the order of a few pixels: According to our tests, the reconstruction
quality degrades quickly beyond 4 to 5 pixels.

Studying matching criteria coping with view-dependent effects is also a challenging direction.
Several existing approaches rely on a reflectance model e.g. Yang et al. [233] assume that only
the reflection intensity is view-dependent. We believe that robust statistics [96] can also provide
an interesting alternative, less dependent on a reflectance model.

73

2.8. Conclusions Chapter 2. Surface reconstruction

A more distant future work would be to include the lighting effects e.g. shading within our study.
Following this way, the approaches such the ones by Treuille et al. [214], Zhang et al. [238] or
Yang et al. [233] should be inspiring. Introducing learning in the process could be also considered. In
that, the technique to create new views from a set of images of Fitzgibbon et al. [66] is seducing since
it learns only from the initial image set.

As discussed before, making the functional intrinsic or at least less dependent on the parameteri-
zation is a interesting theoretical challenge. We give a few hints about this issue in Appendix A.2 on
page 170.

From a more general point of view, we have developed a system that has convincing qualities for
accuracy. We believe that it is possible to push further in this direction to build a system to acquire
meso-geometry e.g. bumps on a wall or cracks on a rock. This would capture input data to the latest
rendering techniques such as the work of Wang et al. [220] or Sloan et al. [200]. This would provide
a useful alternative to dedicated systems such as the one described by Han and Perlin [83].

On the other side, focusing on a larger scale such as architectural buildings (e.g. a cathedral) could
lead to interesting issues. A possible approach would be to use new space representation to better
address the specificities of this scale. For instance, the Billboard Clouds exposed by Décoret et al.
[59] may be a suitable structure to study in this context.

74

3
Patchwork reconstruction

This chapter reads better after the previous one on surface reconstruction.

Important parts of the work presented in the following sections has been made by Gang
Zeng who is a PhD student at Hong Kong University of Science and Technology with the
help of his supervisor, Long Quan. We have mainly contributed in the motivation of this
study whereas Gang Zeng has designed the practical algorithms and implemented them.
In this dissertation, we focus on our own contributions and provide a brief summary of
Gang Zeng’s work. We refer the reader to his future PhD thesis and to our common
publications ([236] is already published, more are coming).

3.1 Introduction

The method exposed in the previous chapter has shown great potential to recover fine details. How-
ever, it suffers from several limitations that impairs its usability:

• The amount of data to be handled is huge and requires a dedicated implementation. Even with
that the running time and required resources are important and already borderline for a common
desktop machine.

• The addressed scenario is not fully general: A separating plane must exist between the cameras
and the scene. It inherently restricts the reconstruction to the front-facing part of the objects.

• The surface parameterization is limited to z = f (x,y) that imposes the use of several functions
f1, f2, ... to describe complex scenes. We have shown how to deal with occluded objects. But
the definition of these functions in the general case still needs to be addressed.

In this chapter, we propose a surface representation to overcome these shortcomings. The surface
is (virtually) cut into small pieces that we call patches. In this chapter, we will show how to solve the
reconstruction problem using this representation.

3.2. Motivation and concept definition Chapter 3. Patchwork reconstruction

3.2 Motivation and concept definition

We here formalize our problem to outline the fundamental reasons that justify the use of patches. We
name S the object surface we are seeking. Let F(S) be a functional that represents our goal. For now,
we do not give more details about F to keep it as general as possible. We only assume that F(S) is
low if and only if F is a correct reconstruction of the object. The design of such a functional will be
discussed later. Here, we only study how to find a minimizer of F. We first define the patch concept
and then examine it from a complexity point of view and from a parameterization one.

Patch definition Intuitively, a patch is a small piece of the surface S . Formally speaking, a patch P
is a surface, subset of S . Performing a patch reconstruction is finding a set of patches {Pi} such that
S

Pi = S .

3.2.1 Study of the complexity

We here observe the complexity in term of space and time for two cases, a global optimization and
a patch-based one. To do so, let’s consider that S has an area aS and a volume vS and that it is
represented by a discrete structure with a discretization size δ. For instance, for level sets, this structure
is the distance field embedding the surface and for graph cuts, it is the quantized 3D (or disparity)
space that supports the surface vertices.

Global optimization: An algorithm that minimizes F over the whole surface S deals with a data
structure of size at least O

(
aS δ−2

)
. This is the case for some graph-cut techniques [121] and for the

narrow-band implementation of level sets [1]. Some algorithms (such as level sets, carving methods
or some graph-cut techniques) use volumetric representations, hence have a space complexity in order
of O

(
vS δ−3

)
.

Then, any minimizing process is at least linear respectively to the data. We consider an mini-
mizing process with a complexity of degree α ≥ 1. Therefore the time complexity is O

(
aα

S δ−2α) or
O
(
vα

S δ−3α) depending on the surface representation. The complexity of level sets [62, 138] is unclear
because it depends on the number of iterations depending itself of the starting point and target shape.
Graph-cut algorithms are typically cubic (or slightly better [39]). In practice, they behave almost lin-
early (α ≈ 1.2) [179]. Note that some graph-cut techniques (e.g. Kolmogorov and Boykov [121]) are
iterative and their complexity may be higher as mentioned for level sets.

Patch optimization: Let’s subdivide the surface S into patches P with area aP . The number of
patches η is in order of O (aS/aP). To compare with S , we also define a pseudo-volume vP = vS η− 3

2

by considering that surfaces and volumes are related by a logarithmic ratio of 3
2 .

Then optimizing F over a patch has a space complexity in order of O
(
aP δ−2

)
(or O

(
vP δ−3

)
for

a volumetric representation). Because patches are processed one by one, the overall space complexity
is the same. Only the storage of the final result requires more space but this can be done off-line (e.g.
on the hard drive). And since we optimize η patches, the overall time complexity is in O

(
η aα

P δ−2α)

or O
(
η vα

P δ−3α).

Comparison: Table 3.1 summarizes all these results. It appears that the patches bring significant
gain in term of space and time complexity. Relatively to our goal, the gain in space is the main

76

Chapter 3. Patchwork reconstruction 3.2. Motivation and concept definition

SPACE TIME

global patches gain global patches gain
surfacic aS δ−2 aP δ−2 η aα

S δ−2α η aα
P δ−2α ηα−1

volumetric vS δ−3 vP δ−3 η 3
2 vα

S δ−3α η vα
P δ−3α η 3

2 α−1

Table 3.1: Comparison of the complexity

�

�

	

More about [Space complexity]: Rigorously speak-
ing, we need to store the position of each patch rela-
tively to the global surface. This requires a storage in
order of O

(
log(aS δ−2)

)
or O

(
log(vS δ−3)

)
which is

negligible because for all practical cases it always fits
within three 32-bit values xyz.

one because we divide the memory needed by a
factor in order of the number of patches used.
But, we cannot decrease the size of the patches in-
finitely to increase their number because we would
not be able to find a satisfactory result (this issue
is discussed later in the paper).

Scalability property: The patches allow almost unlimited scalability because the space complexity
depends only on the patch size and no more on the object size.

The gain on volumetric representations is more important. This comes from the fact that the
patches ignore the inner volume of the object that requires extra storage and generates extra computa-
tion. In that, they are comparable to a narrow band optimization [1].

Summary: The patch algorithm is less complex than the global approach, both in time
and space. The spatial gain is the most important, since the required memory depends only
on the patch size and no more on the object size.

3.2.2 Study of the parametrization

The patches also alleviates the limitation on the parametrization inherent in graph-cut methods. These
methods handle scalar field: Typically, the depth is a function of the two other coordinates i.e.
z = f (x,y) for some function f . This limits the usability of these techniques. First, special care
is needed to properly handle the cases that require several z values for a single (x,y). Several

xx

x

y

y

y

z

z

z

Fig. 3.1: Three patches with their local coordinate system.

functions f1, f2,... are then manipulated. More-
over, if the object surface is tangent to the z axis,
these methods fail because of ||∇ f || = ∞.

The patch approach eliminates these short-
comings. By definition, the patch reconstruction
deals with several surfaces and therefore intrin-
sically manipulate several f functions. Further-
more, the xyz coordinate system can be adapted
to each patch. This means that the z axis can
be chosen orthogonal to the surface to guaran-
tee that the tangent case never occurs. Formally
speaking, this is always possible if the surface is

77

3.2. Motivation and concept definition Chapter 3. Patchwork reconstruction

piecewise C1: The only problem might occur with the points that are not C1. But those points can
described by a patch based on an adjacent C1 point. Remark that topology is not a problem in the
sense that patches can cope with any topology. However, topology is not determined by the patches
themselves: We rely on a side technique to determine it (this point is discussed later).

Representation property: The patches can describe any surface that is piecewise C1 independently
of the topology.

Since the surface representation is defined patch by patch, it is possible to adapt its precision to
focus on the most detailed parts. The discretization step can be changed to capture finer details on the
“important” regions whereas the other ones are more coarsely reconstructed to save time and space.

Summary: Thanks to their local representation, the patches can handle arbitrary topology.
It can also vary the resolution of the image representation from region to region.

3.2.3 Discussion

Problem specificity The complexity study is general and almost independent of the reconstruction
issue. However, it is important to remark that it relies on the assumption that it is sufficient to optimize
a patch once and no more. In that it is different from the classical approach in parallel computing that
subdivides a large problem (e.g. equilibrium in Mechanics) into small subproblems and boundary
problems that assure the overall coherence between the subproblems. Classically, the subproblems
are iteratively solved until convergence and lead to a complexity at least equal to the original one.
More details can be found in dedicated publications [133, 76]. We here assume that once we have
found a patch, the following computation have no impact on it. This explains why we have a gain in
time. It also implies that we do not solve the global problem (that requires the complete approach).

We are convinced that this assumption is reasonable considering the reconstruction problem: This
problem does not involve values that have an overall influence (unlike forces in mechanics for in-
stance). If a patch is correctly located in space then the problem is locally solved whatever exists in
the rest of the scene.

Normals and topology As previously discussed, the surface normal has to be determined because
we align the local z axis with it. To address this issue, we use a side technique that provides an
initial guess. Numerous choices exist: carving, visual hull, level sets, etc. See the Previous Work
section on page 8 for details. Note that we do not require this side technique to produce an accurate
reconstruction, we only need an estimation of the normal. Typically, it can be run at a very coarse
resolution to be able to fit within the available resources.

In addition, we might also rely on this side technique to provide the topology. In the following
sections, we detail a scenario for which we use the side technique only for normals and one that
requires both normals and topology.

Parameters There are several parameters that drive a patch reconstruction. We have not yet study
all of them. Nevertheless, we here discuss shortly their influence:

78

Chapter 3. Patchwork reconstruction 3.2. Motivation and concept definition

Order: By hypothesis, a patch ignores the computation that occurs after its creation. However, its
optimization can take into account the already created patches to get more information. There-
fore, it is important to order the process. We first reconstruct the most reliable regions so that
the weakest patches rely on them to be more accurate.

Patch size: There is a trade-off between efficiency and robustness: Smaller patches lead to faster
computation and require less resources. The counterpart is to rely on less data, making the
process sensitive to noise.

Patch border: To ensure a coherent optimization, the creation of patch has to deal with a larger domain
than the one that supports the patch. If we restrict the optimization domain to the patch, the
border points have a truncated neighborhood and may produce erroneous results. The question
of the domain extension then boils down the previous trade-off on the patch size.

79

3.3. Implementation using graph cut and distance field Chapter 3. Patchwork reconstruction

3.3 Implementation using graph cut and distance field

We here expose how we implement the general patch approach described in the previous section.

3.3.1 Graph-cut base

We naturally apply the graph-cut method that have motivated the patches. For each patch P , we
assume a local coordinate system (xP ,yP ,zP) to be known (this issue will be discussed later). We pa-
rameterize P by (u,v) 7→ xP (u,v)≡ (xP

x (u,v),yP
x (u,v),zP

x (u,v)) and we minimize the Functional C.2.3
over a domain DP as defined on page 186:

ZZ

DP

(

c(xP)+αu(u,v)
∣
∣
∣
∣

∂zP
x

∂u

∣
∣
∣
∣
+αv(u,v)

∣
∣
∣
∣

∂zP
x

∂v

∣
∣
∣
∣

)

dudv (3.1)

To minimize this functional, we use the optimization engine described in the previous chapter. To
evaluate the consistency c(·), we use the ZNCC estimator (see Section 2.2 on page 9) based on the
two most front-facing cameras according to the local coordinate system. This makes our system more
sensitive to noise but more robust to view-dependent effects (highlights).

Hard constraints

source

sink

∞

∞

xP

zP

(ẋP
1, żP

1)

(ẋP
2, żP

2)

(ẋP
3, żP

3)

Fig. 3.2: Hard-constrained voxels in 2D.

Some patches Q̇i may have already been reconstructed in
the neighborhood of P . We have to ensure a coherent tran-
sition between the “old” patches Q̇i and P : We force P to
contain the points of the Q̇i patches that are in its domain
DP . Denoting these points {(ẋP

j , ẏP
j , żP

j)}, we minimize
Functional (3.1) under the hard constraints:

zP
x

(

ẋP
j , ẏP

j

)

= żP
j (3.2)

These constraints are added into our optimization engine
by linking with infinite edges the voxels {(ẋP

j , ẏP
j , żP

j)} to
both the source on their top and the sink on their bottom
(Fig. 3.2). Since a cut separates the source from the sink, it
must go through these voxels. Hence, it satisfies the con-
straints (3.2). �

Other data types

This extension has been proposed by Gang Zeng.

We extend Functional (3.1) to other data types beside the traditional image consistency c(·). Let’s
use a general function γ instead of c within Functional (3.1). In addition to c, we define:

80

Chapter 3. Patchwork reconstruction 3.3. Implementation using graph cut and distance field

• A point function p that accounts for known 3D points pk coming from range scanners or from
robust stereoscopic techniques for instance. This p function penalizes the surface regions far
from the pk points. Considering that pk is weighted by βk :

p(x) = βk0 min
k

||x−pk|| with k0 = argmin
k

||x−pk||

In our current implementation, all the βk are equal. It would be interesting to evaluate the
reliability of the pk to give appropriate values to the βk.

• A visual-hull function v that ensures that the produced surface lies inside the visual hull formed
by the contours {Ci}. So, we can use the information stemming from a known background or
from a contour extraction technique. We define v by:

v(x) =

{

0 if x ∈ visual hull
(
{Ci}

)

∞ otherwise

Summing any of this three functions (c, p and v) to form γ makes possible to deal with the correspond-
ing data types (consistency, points and contours) within the same surface-reconstruction process.

Summary: We characterize the patches with the functional defined in the previous chap-
ter. This functional is just transposed into the local coordinate system. The same graph-cut
engine is used to create the patches.

The system is adapted to handle hard constraints (points which the surface must contain)
and other data types (3D points and contours) in addition of the images.

3.3.2 Registration in a distance field

This part has been laid down by Gang Zeng.

We have to register all the patches into a common structure. Several choices are possible. Each
one has it pros and cons. We have chosen to use a distance field: A cubic grid stores for each of its
nodes the distance to the surface. The drawback of this method is that the final surface needs to be
extracted with a technique such as the Marching Cube [140] that might lose some surface details. In
counterpart, it has several advantages:

• It can be incrementally updated (i.e. step by step) using the technique described by Curless and
Levoy [46]. A new patch is easily added in the structure.

• Its resolution can be locally adapted using a standard octree instead of a regular grid.

• The already built points {(ẋP
j , ẏP

j , żP
j)} are efficiently found using the distance information.

81

3.3. Implementation using graph cut and distance field Chapter 3. Patchwork reconstruction

3.3.3 Ordering strategy

This part has been defined in collaboration with Gang Zeng.

The order in which the patches are built is important since a patch depends only on the already
existing patches and ignores those reconstructed afterward. Our strategy is to first reconstruct the most
“reliable” patches so that the following patches can rely on them. For instance, if accurate 3D points
are available (e.g. from a 3D scanner), we consider first the patches containing these points before
filling the regions without such points. Defining the reliability of a patch depends on the application.
We can nevertheless give a few general guidelines:

Accurate input : We may sometimes enjoy precise input data such 3D points from a range scanner. In
this case, the patches containing these data should come first.

Functional value: The value of Functional (3.1) indicates how consistent and regular is a patch. Ad-
jacent patches are likely to have similar properties. Neighbors of a regular and consistent patch
(i.e. with a low functional value) should be considered earlier. If needed, this criterion can be
split into two separated items:

Image consistency: Highly consistent points (e.g. good ZNCC or photo-consistency score) are
likely to be precisely located and should come early.

Singular regions: Discontinuities and high curvatures are known to challenge surface recon-
struction. Patches in those regions should be delayed.

Performance: If running time is an important issue, then patches with large overlap with the already
created surface should be avoided since they would add a limited area.

82

Chapter 3. Patchwork reconstruction 3.4. Two practical algorithms

3.4 Two practical algorithms

The two presented algorithms have been designed by Gang Zeng.

We here describe shortly two algorithms that implement the patch approach following the techni-
cal choices previously presented. The first method shows the combination of images and 3D points.
The second one relies on images and contours to achieve. Both illustrate the patch flexibility and
ability to recover detailed shapes.

3.4.1 Propagation of 3D points

This algorithm starts from calibrated images and accurate 3D points. In our implementation, the points
are extracted using the quasi-dense approach by Lhuillier and Quan [138]. These quasi-dense points
are used to initiate a set of seeds. These seeds are reliable 3D points on which a patch can be based.

(a) (b) (c) (d) (e)

Fig. 3.3: Results from the propagation algorithm
Between 20 and 30 images (600× 800) lying around the object are given as input. (a) Sample input image.
(b) Initial 3D points. (c-d) Front and side views of the reconstructed shape. (e) Textured front view. [Experiment
made by Gang Zeng.]

83

3.4. Two practical algorithms Chapter 3. Patchwork reconstruction

These points are dense enough to allow an estimation of the local orientation of the surface (to align
the coordinate system). Then, the algorithm the following loop until no more seeds are available:

1. The best seed among all the available seeds is picked according to the criteria defined in Sec-
tion 3.3.3 on page 82.

2. If the patch domain is already covered by the previous patches the seed is discarded and a new
iteration starts in 1.

3. A graph-cut optimization process is run to generate a patch containing this seed.

4. New seeds are created on the new patch according to the criteria defined in Section 3.3.3 on
page 82. The normals corresponding to the selected seeds are estimated using the current patch.

5. The distance field is updated according to the new patch.

Note the difference between Step 1 which selects the best seeds among all the available seeds and
Step 4 which “promotes” the best points of the newly created patch into new seeds. The behavior of
the algorithm can be summarized as follows:

• First, the input 3D points are extended into patches.

• Then, the remaining holes are filled step by step starting in priority from the most reliable
regions.

(a) (b) (c)

Fig. 3.4: Comparison between the propagation algorithm, space carving and level sets
Left: Result from Space Carving. The surface is poor because of the highlights that foil the photo-consistency
criterion. Middle: Result from level sets. The surface is more accurate but is too smooth. This caveat is inherent
in level sets (Sec. 2.2.5 on page 23). Right: Our result. It is not yet perfect (observe the cheek) but has finer
details compared to the two other techniques. [Experiment made by Gang Zeng.]

84

Chapter 3. Patchwork reconstruction 3.4. Two practical algorithms

Results

We here present our first results using the propagation algorithm. This work is still on going and we
acknowledge that these results should be completed in the future with more experiments. However,
these first reconstructions are encouraging and validate the patch concept.

Figure 3.3 shows several reconstructed objects. The first two rows illustrate that our algorithm
can behave like a surface-from-points technique similarly to the approaches of Amenta et al. [7, 8] or
Hoppe et al. [91, 92, 93]. In the same time, if the point cloud becomes sparser as in the last row, it
exploits the images to properly fill the holes and not only interpolating a surface from the borders.

The first row also shows that complex objects with occlusion (e.g. the two legs) can be captured.
Visibility is not explicitly handled in our process. Nonetheless the ordering scheme ranks first the
unoccluded seeds since their consistency is higher than the occluded ones. The consistency of these
occluded seeds is evaluated using cameras that do not actually “see” the seeds but their occluders. It
is therefore unlikely to result in a consistent match. This phenomenon delays the reconstruction of the
occluded regions until their corresponding occluders have been recovered. Then, the occluded regions
are built using the only visible cameras. This scheme implicitly handles the visibility issue.

Figure 3.4 on the facing page provides a comparison with the carving and level-set methods.

3.4.2 Patch-wise carving

This algorithm is built upon the classical Space Carving technique [127] (see the Previous Work
section on page 19 for more details). The input data are a set of calibrated images with the contours
of the object within these images. In our implementation, these contours are automatically extracted

(a) (b) (c)

Fig. 3.5: Comparison of the carving algorithm with Space Carving and level sets
(a) Result from Space Carving. The surface is poor because of photo-consistency is not robust to highlights.
(b) Result from level sets. The surface is more accurate but is too smooth. This caveat is inherent in level sets
(Sec. 2.2.5 on page 23). (c) Our result has finer details compared to the two other techniques. It seems however
more sensitive to the highlights in the hair region. This results in some over-carved points. [Experiment made
by Gang Zeng.]

85

3.4. Two practical algorithms Chapter 3. Patchwork reconstruction

from an unknown background using the method of Zeng and Quan [237] (except for the sequence
used in Figure 3.6).

From these data, we compute the visual hull of the object and discretize it into voxels. Our voxels
have a size typically one order larger than classical voxels: They project on several pixels. The
algorithm is then very similar to Space Carving: The volume is swept in several direction. During
each sweep, the voxels are examined one by one (see Figure 2.14 on page 20): The inconsistent voxels
are carved out. The difference with the original process is our carving criterion. Instead of using the
point-wise photo-consistency, we run a graph-cut optimization to build a patch. The current surface
estimate is used to determine the local coordinate system. If the resulting value of the functional is
low enough (indicating a consistent patch), the patch is added into the distance field. Otherwise, it is
discarded and the voxel is carved.

This method can be seen as a regularized carving. The global algorithm layout is the same as
Space Carving but we have regularized the problem by accounting for a patch instead of a single
point. This approach makes the problem well-posed.

Results

Figure 3.6 and Figure 3.7 outline the behavior of our carving algorithm: It starts from a robust shape
estimate given by the visual hull and refines it using the patches. Figure 3.5 illustrates the same

Fig. 3.6: Results of the carving algorithm on a skull
Between 20 and 30 images (600 × 800) lying around the object are given as input. Background has been
manually extracted. First column: Visual hull of the model. Second column: Final result. Third column:
Textured result. Fourth column: Sample input images. [Experiment made by Gang Zeng.]

86

Chapter 3. Patchwork reconstruction 3.4. Two practical algorithms

remark that we have formulated for the propagation technique. The patches extract finer details than
a traditional Space Carving and than level sets.

3.4.3 Discussions

Similar results A first remark is that the results produced by both techniques look very similar.
They both enjoy sharp and fine details. The counterpart is that errors are noticeable because they
introduce spurious sharp features (e.g. the hair in Figure 3.5 on page 85).

This gives an evidence that the underlying patch approach is responsible for the overall quality of
the results. The practical implementation characterizes more the addressed scenario and the exploited
data than the final result.

Easier implementation An important point to know is that both algorithms have been coded using
the simple “linear” graph shown in Figure 2.25 on page 45 and without the discontinuity detection
described in Section 2.6.2 on page 57.

The linear graph does not produce flat and blocky results as one could expect. This comes from the
local coordinate system that is adapted according to the local estimate of the surface tangent. Hence,
a “flat” surface is in fact a surface parallel to the surface estimate and may be curved. Therefore, the
surface flatness is less noticeable. And there is almost no spurious discontinuity because the recon-
struction is constrained by more data (images and points or silhouettes). However, on can observe
some errors such as the teeth of the skull (the “mouth hole” is partly filled) coming from this artifact.
Implementing discontinuity detection should remove these few errors.

Faster algorithm Since the patches require less resource, we do not use our code dedicated to huge
graphs. This code does a lot of on-the-fly computations to avoid storing useless values. Here, storage
is no more a constraint so we can use a more efficient code.

Our code, is currently based on the BOOST library [23] that implements the same push-relabel
algorithm with stored values instead of on-the-fly computations. A further improvement would be to
use the algorithm described by Boykov and Kolmogorov [27] whose running time is shorter on small
graphs.

87

3.4. Two practical algorithms Chapter 3. Patchwork reconstruction

Fig. 3.7: Results of the carving algorithm on faces
Between 20 and 30 images lying around the object are given as input. First column: Visual hull of the model.
Second column: Final result. Third column: Textured result. Fourth column: Sample input images. [Experi-
ment made by Gang Zeng.]

88

Chapter 3. Patchwork reconstruction 3.5. Conclusions

3.5 Conclusions

This is still on-going work. Several issues have still to be explored:

• Influence of the patch size.

• Influence of the overlapping regions.

• Other ordering strategies.

• Other graph-cut algorithms.

More results are also needed to fully validate the approach. It would be especially convincing to build
an object with a non-zero genus (i.e. with holes) and to reconstruct a larger object.

Nonetheless, the results already obtained fulfill our expectation. We enjoy the precision of our
graph-cut reconstruction scheme on more general configurations. Cutting the surface into pieces
preserves the essential qualities of the optimization process while tackling the scalability and param-
eterization issues.

We believe that the patch approach is widely applicable beyond the graph-cut algorithms. All the
techniques suffer from the “limited resource” problem and several are impaired by the parameteri-
zation caveat. Patches propose a general solution to these two important shortcomings while being
compliant with all the reconstruction techniques: It does not change the stated problem but only the
surface domain and the coordinate system. Therefore, we are convinced that the patches have a great
potential and should be considered as a general “design pattern” for reconstruction algorithms.

89

3.5. Conclusions Chapter 3. Patchwork reconstruction

90

4
Face relighting

4.1 Introduction

In this chapter, we study how we can use a real picture to produce a new one under a different lighting
condition. For instance, we aim at changing a day-light picture to make a night-time one. The main
application of relighting is to pre-process images that are to be combined into a single image. If this
aspect is neglected, it strongly impedes the consistency of the composited image: the different parts
of the image look like they have been made separately and just pasted side by side, they never merge
into a single picture. Examples of typical pitfalls that may degrade a composition are: wrongly placed
highlights, shaded regions facing the light, missing shadows... All the details may be hard to notice at
first sight but undoubtedly degrade the overall perception of the image and convey an uncomfortable
feeling to the viewer. This is even more important for animation e.g. if a light is moving whereas the
shadows in the scene are still, it breaks down the overall realism.

Relighting is naturally split into two steps. First the lighting cues of the original picture are
removed and then the ones corresponding to a new lighting environment are added. Both steps require
some knowledge about the scene content:

• The geometry of the objects influences the shape and position of the shading, shadows, high-
lights, etc.

• The materials drive the appearance of these cues (think of a mirror ball compared to a wooden
ball for instance).

• The lighting configuration has also a clear impact. Both the color and the geometry of the light
sources modulate the final image. For instance, under a cloudy sky, there is almost no shadow
whereas the sun light produces sharp and contrasted shadows.

Considering the quantity of needed information, we believe that the general case in not tractable. The
number of special cases would be too high.

Hence, we have chosen to focus on human face. It is obviously a key feature of a person. It is the
first thing that we look at. It is perhaps the most important part of the body in the sense that a realistic

4.1. Introduction Chapter 4. Face relighting

rendering of a person cannot be achieved without a realistic rendering of the face. As a consequence,
we believe that producing satisfying images of a human face is much harder than rendering a common
object. We are so used to observe faces that our tolerance to error is very low whereas we accept
comparatively large artifacts for “normal” objects such as a teapot. For instance, the acceptable range
of colors for the skin is very narrow: A minor red shift can convey a “blemish” or “sun-burnt” aspect
whereas a larger one makes the skin look odd. The diversity of existing faces is especially challenging.
Coping with all, or at least a significant proportion of, the possible faces is not straightforward.

Furthermore, rendering skin is not trivial because of its complex interaction with light through
many layers (oil, epidermis, blood,...). Many phenomena are involved in the final appearance of the
skin. Among all these phenomena, we may cite:

• Its rough surface which has a typical scale inferior to one millimeter.

• Its spatially varying aspect because of scars, spots, etc.

• Its translucency that makes the light interactions with the deeper layers non negligible.

• Its layered structure that introduces inhomogeneous materials (blood, pigments, cells, etc).

• The oil that covers its surface and produces strong highlights.

• The tiny hairs that populate its surface.

• The presence of other materials in middle of the skin region (lips, eyes, teeth, etc).

Beyond these difficulties, there exist some techniques to achieve an accurate rendering of the skin.
But because of the previously mentioned difficulties, none of them achieve real-time performances
without consuming all the computation power of a consumer-grade graphics card. Once the skin has
been rendered, the rendering time for the current frame is almost over. This makes these techniques
hardly usable in games or similar applications. They require a rendering engine lightweight enough
to allow other computation in the same time e.g. character animation. But, it is quite clear that
the hardware will increase sufficiently enough in the near future to make these advanced techniques
usable. However, it will take a longer time for portable devices such as cellular phones or PDAs to
enjoy such a rendering power. There will still have some need for lightweight rendering techniques,
even when all the desktop machines will be equipped with powerful graphics hardware.

These remarks have motivated our approach. Our rendering technique is fast (real time) even
on widely available graphics cards and is light enough to allow the card to render other objects. To
achieve this, we restrict ourselves to a basic rendering engine and target to produce the best images
we can. Of course, we do not claim to reach the same realism than a complex model that does not run
in real time. Nevertheless we believe that it is possible to produce images with a high visual quality,
superior to typical results in interactive real-time applications.

Considering all these issues, we propose in this chapter a face relighting engine which runs with
very low hardware requirements. We also define a robust and easily applicable method to acquire the
data needed for this engine. Before going into the details of our method, we review in the following
section the most significant papers relatively to our goal.

92

Chapter 4. Face relighting 4.2. Previous work

4.2 Previous work

Face rendering involves numerous aspects: modeling the geometry, acquiring the skin reflectance,
building a generic model of such a reflectance, synthesizing facial expressions, etc. Most of the
existing work covers several subjects simultaneously to achieve their specific goal. Since we are
concentrating on relighting, we are especially concerned with reflectance acquisition and rendering
issues. In the following pages, we review the techniques the most relevant to our goal.

4.2.1 Fundamental concepts

Reflectance

The lighting properties of a material is described by the notion of reflectance. Formally speaking, it is
defined as the ratio:

reflectance =
exiting light power

incoming light power
(4.1)

Intuitively, it corresponds to the “quantity of light” reflected by the material. It is defined for a given
wavelength and is extended to the RGB channels i.e. “the quantity of red (blue, green) light reflected”.

Analytically, the reflectance is described by the bidirectional reflectance distribution function
(BRDF) introduced by Nicodemus et al. [164]: It is computed for given incident and reflected an-
gles. It assumes that the light-material interaction is point-wise i.e. that the incoming and existing
rays intersect the surface at the same point. If we consider that this may not be the case, that the light
penetrates inside the material and may exit at a distance from the entrance point then, the reflectance is

BRDF BSSRDF

outgoing raysoutgoing rays

incoming rayincoming ray

Fig. 4.1: BRDF and BSSRDF
Left: The BRDF represents the interaction of the light with a material. It is limited to the interactions in which
the incoming and outgoing points of the light are equal. For given surface point, the BRDF is a 4D function that
depends on the incoming direction (two Euler angles) and on the outgoing one (two more angles). Right: The
BSSRDF is an extension over the BRDF to model more complex interactions: An incoming ray of light diffuses
inside the material and may partly go out at surface points distant from the incoming one. For a given point, it
has two more parameters compared to the BRDF: It also depends on the outgoing surface point (two surface
coordinates).

93

4.2. Previous work Chapter 4. Face relighting

described by the bidirectional surface scattering reflectance distribution function which also depends
on the exit point in addition to the two directions. Figure 4.1 gives more details.

From a practical point of view, if the lighting environment and the reflectance of an object is
known, then we can compute its appearance. That is why the reflectance notion is important for the
relighting issue since it characterizes the relation between the aspect of an object and the light.

BRDF BSSRDF

Fig. 4.2: Comparison between BRDF and BSSRDF on skin
The difference between a BRDF and a BSSRDF rendering [105] is clearly visible for a finely detailed mesh
as this one. The subsurface scattering smooths away the bumpy appearance of the mesh. Remark also that it
produces softer shadow boundaries (near the nose). [By courtesy of Henrik Wann Jensen]

4.2.2 Reflectance acquisition: Sampling the reflectance

A natural approach is sampling the reflectance from real materials for several light and camera po-
sitions and to store these measures into a database. From these data, there are several techniques to
infer the aspect of the materials from any viewpoint under any illumination condition. These mainly
involve interpolation and integration of the most relevant measures in the database. We concentrate
on the proposed acquisition techniques.

�

�

	

Link with [Light field]: Levoy and Hanrahan [136]
and Gortler et al. [75] have introduced the light field
approach. As the reflectance measure, they densely
sample the rays of light exiting the scene. Neverthe-
less, they handle a general scene instead of a material
probe but restrict to fixed lighting conditions. From this
information, a new image is created by collecting the
rays that hit the image plane. The difficulties of these
techniques lie in acquiring, representing and storing this
huge amount of data. Considering that we target relight-
ing, the fixed lighting conditions is an important draw-
back. We refer the interested reader to the work from
Hakura et al. [82] which is a first step toward coping
with varying lighting environment.

Numerous acquisition systems exist; among
them, we may cite Ward [221], Rushmeier
and Bernardini [182], Marschner et al. [148],
Debevec et al. [50], McAllister [156], Ma-
tusik et al. [153, 154, 155]. These systems mainly
acquire BRDF data (i.e. they assume no sub-
surface scattering). They differ on the kind of
material they can handle and on some additional
data that may be captured (e.g. precise contours
of the object in [154]). BSSRDF is more com-
plex to measure since it deals with a broader
range of effects. Nonetheless, some techniques
have been designed recently to sample the effects
of subsurface scattering and evaluate a BSSRDF:

94

Chapter 4. Face relighting 4.2. Previous work

Multi-Color Monitor

Light Array

Cameras

Rotating Platform

Light Array

Rotating Platform

Cameras

Fig. 4.3: Capture system of Matusik et al. [154]
The system used by Matusik et al. [154]: Dense sampling of the appearance of an object yields accurate
rendering but requires a complex and cumbersome system. [By courtesy of Wojciech Matusik]

Jensen et al. [105] describe a method for homogeneous material and Goesele et al. [74] build one for
more general materials. A common point to all these systems is that they need at least a dedicated
apparatus. They even sometimes need a dedicated room because they use a robotic gantry or simi-
lar techniques to acquire images from controlled viewpoints and light positions. Therefore, although
these techniques provide very accurate and dense measures yielding to high quality rendering, these
systems are too cumbersome to fulfill our goal. We target a simpler setup acquisition setup that, ide-
ally, does not involve dedicated apparatus. However, if one aims at precise measures, these approaches
are the ones to be inspired from.

Furthermore, the amount of acquired data is generally huge (2000 photographs in [50]) because
of the dense sampling of the 4D or 6D reflectance function. This induces slow rendering techniques
because of complex requests in large databases (several minutes in [50]). This does not correspond
to our objective of efficient rendering. But, if rendering time is not a crucial issue compared to the
produced quality, these are the methods to apply.

Another drawback relatively to our goal is that only the system of Marschner et al. [148] is demon-
strated on faces. Working on faces is hard in general because one cannot work for hours on a still
material sample.

Summary: The sampling approach densely measures the aspect of a material under sev-
eral light and view positions. This requires dedicated systems to control the light source
and the camera. This results in cumbersome processes that are complex to use, especially
for faces. Additionally dealing directly with the large amount of captured data leads to slow
renderings.

Therefore, even if these methods are accurate and produce very high quality images, they
do not meet our requirements on capture setup and rendering efficiency.

95

4.2. Previous work Chapter 4. Face relighting

4.2.3 Reflectance acquisition: Parameterizing the reflectance

From the previous remarks, several approaches represent the appearance of a material by a formula
which analytically computes the reflectance value from the viewpoint and the lighting condition. This
formula depends on several parameters that describes the material aspect. This straightforwardly
results in much more compact representations (a few parameters instead of thousands of images) and
generally achieves faster computation because it avoids database search.

“Imitation” models

The very first models originally aimed at reproducing the overall appearance of an object. The physical
origin of the shading is only an inspiration to design some functions that “mimic” real shadows and
highlights. Among this category, the most famous model has been proposed by Phong [171]. It is the
only model of this type still in use nowadays: All the cards implement it at least per-vertex i.e. the
color is computed on the mesh vertices and then interpolated on the triangles (this techniques is also
known as the Gouraud shading [77]). This may lead to visible artifacts for large triangles because
the color of a face is computed only from its vertices, ignoring any lighting variation that occurs
in between. With the new programmable hardware, it can be now computed per-pixel: the lighting
computation is made for each pixel and correctly accounts for the lighting variations up to this scale
(which is sufficient in all practical cases).

This model is simple but is able to model, or at least approximate, a broad range of materials.
Although a more complex model could be used, our implementation is based on it to enjoy the widely
available hardware implementation. We therefore give more details.

It approximates the shading by the sum of three components:

Ambient : This is a constant term that is due to the indirect light coming from the surrounding envi-
ronment. This is typically a low intensity term. It describes the appearance of an object that has
no direct lighting (e.g. in the shadows).

Diffuse: It represents the light that interacts “in depth” with the material. It is assumed to be constant
in all the directions exiting the surface. It depends only on the incoming light direction.

Specular: It describes the highlights due to a surface reflection. The size of the highlight varies with
the material. The reflected intensity depends on both the incoming light direction and the view
direction.

l n

v

r

Fig. 4.4: Notations: l, n, r and v.

Denoting n the surface normal, (v, l,r) the view, light and reflection
directions (see Figure 4.4); the intensity of the channel X ∈ {R,G,B}
is:

IX(v) = XA
l XA

m
︸ ︷︷ ︸

ambient

+ XD
l XD

m l ·n
︸ ︷︷ ︸

diffuse

+ XS
l XS

m (r ·v)s

︸ ︷︷ ︸

specular

(4.2)

where A, D, S stand for the ambient, diffuse and specular components;
and l, m for the light and material values. For instance, RA

l is the
ambient light intensity in the red channel (i.e. the “quantity” of red
light coming from the reflection on the surrounding environment),

96

Chapter 4. Face relighting 4.2. Previous work

and BS
m is the specular response of the material to blue light (i.e. the proportion of the incoming

blue light reflected as an highlight). The exponent s controls the width of the specular lobe. Typical
values range from 2 (slightly glossy) to 1000 (almost reflective). Note that it makes the formula (4.2)
non-linear. Figure 4.5 illustrates this model.

ambient: XA
l XA

m diffuse: XD
l XD

m l ·n specular: XS
l XS

m (r ·v)s

++

Fig. 4.5: Phong model
It decomposes into three components. The ambient term represents the indirect lighting and is constant and of
low intensity. The diffuse term is the omni-directional reflection due to the direct lighting. The specular term
corresponds to the highlights and depends on both the light and view direction. The formulæ are given with the
notations used in equation (4.2).

Physically based models

Building upon the Phong model previously presented, Blinn [20] proposes a model motivated by the
physical analysis of micro-faceted surfaces by Torrance and Sparrow [213]. Even if the resulting ap-
pearance may sometimes be similar with Phong’s model, the main difference is that this model intends
to match the real material behavior and not only mimics its appearance. Therefore, the parameters of
the model are physically meaningful values e.g. the micro-facets distribution for [20]. Exploring the
same approach, several researchers propose physically-driven models such as Cook and Torrance [42],
He et al. [89], Oren and Nayar [168], Ashikhmin et al. [10], etc.

Among all these models, it is interesting to focus on the few ones that describes volumetric
or layered materials such as Hanrahan and Krueger [84], Jensen et al. [105], Stam [202] and Pre-
moze et al. [175]. All these models show that they are appropriate to render skin since it is composed
of two main layers: the epidermis (outer layer) and dermis (inner layer). For these models, the typ-
ical parameters are the thickness of the layers, their absorption coefficients, the roughness of their
surface, etc. So they allow a fine control over meaningful and observable characteristics of the skin
(e.g. color and “hardness” of the shadows). Unfortunately, these models suffer from two limitations.
First, they can be computationally expensive, even for the latest graphics cards. They involve complex
equations to evaluate the layer interaction and the light scattering within the material. Second, to our
knowledge, there is no method to accurately retrieve the parameters corresponding to the skin of a real
person. And it seems to be especially hard because, as just mentioned before, these models are com-
plex. Tsumura et al. [216] propose an image-based analysis of the skin that may be a first step toward
characterizing a set of parameters from a real skin. They quantify the contributions of the hemoglobin
(the red component of blood) and of the melanin (the brown pigment of skin). Their evaluation is
proven correct by medical experiments. Then from these data, they are able to re-synthesize the same

97

4.2. Previous work Chapter 4. Face relighting

face with a paler aspect (less hemoglobin) or a sun-burnt one (more melanin). But this is still not yet
a complete solution to this difficult point e.g. changes in the lighting condition are not handled. A
complementary model is exposed by Koenderink and Pont [116] to describe the characteristic halo of
the skin due to the tiny hairs that populate the human skin surface. This can be a complement to the
previous model to achieve a highly photo-realistic rendering.

Approximating models

As previously discussed, direct samplings of the reflectance or physics-based models are computa-
tionally expensive because of large data sets or complex mathematical expressions. This motivates
alternative methods relying on simpler representations. These techniques approximate the data which
represent a given BRDF with a formula that is more suitable for rendering purpose (e.g. faster com-
putation). The BRDF data can be either measurements on real materials or values computed with a
parametric model among those presented before. Ward [221] uses Gaussian distributions to fit these
data. Lafortune et al. [128] extend Phong’s model with several lobes. Matusik et al. [152] parameter-
ize the space of the BRDFs by a non-linear manifold of dimension 15. Lawrence et al. [131] decouple
the BRDF into a product of three terms depending at most on two variables.

Skin approximation: From their study on real skin, Marschner et al. [148] show an important result
concerning all these parametric models: Generic models such as Lafortune [128] and He [89] cannot
capture all the specificities of the skin appearance e.g. the reflection at grazing angles cannot be
represented. Only the dedicated models such as Hanrahan-Krueger [84] can.

Therefore, the trade-off is between the complex but accurate models and the efficient but approximate
models.

The resulting parameters have a limited physical meaning since these models mainly target accu-
rate fitting and are designed from analytical considerations and not physical ones. A typical use of
these models is:

1. Capturing data from a real sample or designing the appearance with a physical model.

2. Approximating this material by one of these efficient models.

3. Rendering the scene using this model.

This has the advantage to produce almost equivalent images in a much shorter time. However, one
has to consider using the original data or model whenever the numerical precision matters. This strat-
egy is suitable only if one can accept some numerical approximation. This is typically the case when
only the visual quality is important. Since it corresponds to our case, these approximating models
would be a natural choice for our application. Although we use a Phong model in our implemen-
tation, we believe that using one of these models would be an interesting future work to extend the
technique described in this chapter.

98

Chapter 4. Face relighting 4.2. Previous work

Summary: The parametric models are simpler representation of the reflectance than a
sampling of a real material. An analytic formula embeds the interaction of the light with
the material. It results in more compact data structures and more efficient computations.
Therefore, we have chosen to rely on such a representation for the skin.

The choice among these models is broad. According to our goal, the trade-off lies be-
tween efficiency and accuracy. Unfortunately, the simplest models are proven to be only
approximations and the accurate models involve higher computation times. In practice, our
implementation is based on the simple Phong model and already shows convincing results.
However, other models presented here could be used.

4.2.4 Reflectance acquisition: Retrieving the parameters

Acquiring the parameters of a model from a material sample that can be measured as densely as
needed is a rather simple problem. This is a standard fitting problem that is generally addressed by
the papers describing the considered model.

A more difficult problem stems from the practical case in which the available data are limited.
The problem is again a fitting issue but much harder. For instance, Ikeuchi and Sato [98] recover
both the reflectance parameters and the light position from a single image. But their technique seems
hardly usable because of the numerous thresholds to be finely tuned. Sato et al. [186] assume the light
position to be known and propose a more robust algorithm. Nishino et al. [165] propose a variant of
the method of Ikeuchi and Sato [98] that is more robust but still limited to simple objects and lighting
environments. Boivin and Gagalowicz [22] expose an approach in the case of a single picture of a
scene with several materials of known boundaries. Lensch et al. [135] use several pictures but the
regions for each material are unknown.

All the previously cited methods are general and we believe that they might be hard to apply in
some cases on skin because of its very specific lighting behavior. Let’s now observe the techniques
dedicated to faces in more details. Georghiades et al. [72] show that – under a fixed pose, ignoring
shadows and assuming that the skin aspect is purely diffuse (i.e. with no highlight) – the images of
a face form a 3D vectorial space. From this, they parameterize the face aspect from a few pictures
without shadow (i.e. with front-facing lighting). When rendering new images, they can correctly add
the shadows using ray-tracing. Only the acquisition step works without shadow.

Marschner and Greenberg [145] propose a face relighting also based on the diffuse assumption.
From an input photograph and 3D model of the face, they first determined the lighting environment.
Then they can modify the photograph in order to adapt to a new environment.

An important point to notice for this method and the previous one is the Lambertian assumption
which prevents them from rendering highlights. In practice, this means that the highlights are fixed on
the face i.e. even on the relighted face, the highlights still appear on their original location. This may
not be a so important drawback for still picture in real environment since it may be hard to relate the
specularities on a face with the lighting conditions. But as soon as we consider animation, the specular
component is fixed whereas the shadows and the “relighted” diffuse component move according the
changes of the light. This breaks down the coherence and the realism of the animated sequence.

99

4.2. Previous work Chapter 4. Face relighting

zoom on the base 3D mesh color of the skindiffuse rendering

highlights BSSRDF component full rendering

Fig. 4.6: BSSRDF rendering of a face from acquired parameters
This rendering [103] is performed from an extremely fine mesh (top left) that produces a bumpy aspect when
rendered with a purely diffuse material (top middle). The base skin color (top right) is acquired from real
pictures. The final image is decomposed into two main components: The highlights due to the oily layer which
covers the skin (bottom left) and the deeper light interaction simulated with BSSRDF (bottom middle). The final
image (bottom right) takes one week to be computed. [By courtesy of Henrik Wann Jensen]

To address the glossiness of the skin, Blanz and Vetter [19] adapt a Phong model to match the
skin aspect in some real images. Hence, they are able to produce complete relighting, including the
highlights. However they rely on the user to set the shininess exponent in order to reduce the problem
to a linear fit (see formula (4.2)). This produces satisfying results but it would be more satisfying not
to rely on the user. This would provide reproducible parameters i.e. independent of the user ability
to evaluate a Phong exponent. And we can expect a better evaluation of the parameters if they come
from an objective measure.

On the other side, Debevec et al. [50] show how to recover the parameters to describe the specular
component of a face according to the Torrance-Sparrow model [213]. They rely on a dense sampling
(2000 pictures) to render the diffuse contribution of the face. This last step is too slow to fulfill our
goal. It would be however interesting to study a combination with Blanz and Vetter’s technique [19]
to parameterize the diffuse part.

Marschner et al. [146] use a Lafortune model [128] with generic parameters measured on a real
person [148]. They only modulate the skin color using two pictures of the actual persons to be ren-
dered and lower the shininess of the bottom part of the face to match practical observations. Of
course, it would be possible to directly apply the complete technique described in [148] to derive the
Lafortune parameters of the actual person. But this would require much more time and manipulation.

Jensen [103] describes a face rendering using his subsurface scattering engine whose parameters
are tweaked from real images. This tweaking involves heuristics that are not described in this short

100

Chapter 4. Face relighting 4.2. Previous work

paper. However, this is perhaps the most advanced face rendering today (Fig. 4.6 on the facing page)
but it takes one week to perform.

Summary: Retrieving the parameters of a reflectance model is generally handled as a
fitting problem: How to match as close as possible the aspect in the materials seen in the
input pictures using the given model?

Techniques exist for common materials but it seems that the techniques dedicated to skin
are more limited. Some ignore the glossiness of the skin. Other retrieve only a subset of the
parameters, relying on the user to set the remaining ones. And more accurate techniques
would involve a complex acquisition process.

We believe that a new balance can be found among all these dedicated techniques. We
describe in this chapter a method that works from a light acquisition system while coping
with the specular aspect of the skin.

4.2.5 Texture enhancement

Rendering the whole face with a skin material using only the reflectance models previously described
would miss obvious features such as the mouth, the eyes, etc... One solution is to add specific 3D
models for these parts. This approach is followed by Marschner et al. [146] and Tarini et al. [209].
On the one hand, this produces detailed features that tolerates close-ups. This also allows animations:
The mouth can speak, the eyes blink, etc. On the other hand, these added parts are generic i.e. they
are slightly adjusted to fit the face model but the same base shape is used for every face. This clearly
impairs the fidelity of the overall model with the original faces. Since we do not target animation in
particular, we do not use such a technique however the method described later in this chapter is fully
compliant with it.

�

�

	

Another view on [Texture on shading]: If the
shading of the model is computed from a paramet-
ric model of reflectance, adding the fine details
(such as the skin roughness) with a texture map
can be seen as adding the residual of the fitting
process which has determined the model param-
eters. The residual is the error that remains be-
tween the fitted model and the input data. It typ-
ically contains these local variations that convey
roughness and that cannot be acquired by a global
fitting. In this case, texture-mapping is a way to
take this residual into account.

Another way to add these details (mouth, eyes,...)
is to directly texture-map them over the skin. This is
the approach we have chosen. Furthermore, this has
another advantage. The mesh is likely not to be fine
enough to represent all the tiny bumps at the skin sur-
face (see Figures 4.2 on page 94 and 4.6 on the facing
page). Such a fine mesh results in very high computa-
tion time (one week for Figure 4.6). Therefore most of
the techniques use a coarser mesh that would give an
unrealistically smooth aspect to the skin if used “as is”.
Texture-mapping the mesh is then an efficient mean to
add this slightly rough appearance to the skin. Rush-
meier et al. [184] have studied the perceptual effect of various situations: Precisely texturing a smooth
surface is one of the cases that give the best improvement. This explains why texture-mapping is
popular to improve the appearance of a 3D mesh: Rushmeier et al. [183] refine the normals and colors
of their model, Loscos et al. [141] correct the shading of the scene after adding/removing an object,

101

4.2. Previous work Chapter 4. Face relighting

Stamminger et al. [203] display plausible textures while the system runs a more precise but longer
computation in background, Liu et al. [139] add facial expression on a mesh, etc.

Shading and texture: An important result from the previous work [139, 141] on shading and textur-
ing is that the texture combination with the underlying color must be multiplicative. This preserves
the underlying shading.

This comes from the multiplicative influence of the light power on an image aspect. Intuitively, dou-
bling the power of a scene lighting produces twice brighter images. Using an additive combination
would produce features glowing in the dark even without any light source since non-zero intensity
values would be added at some points. We let to the interested readers the analytical details of this
property since a rigorous proof from the rendering equation [109] would not be helpful to the follow-
ing discussion.

The approach most similar to the method exposed in this chapter is from Wen et al. [227]. They
use a reference sphere to capture the incoming light. The skin is modeled as a purely diffuse material.
From this assumption, they derive an spherical-harmonics analysis to extract an albedo map of the
skin (i.e. the base color of skin independently of the shading). This map is made from a constant
color modulated by high-frequency details. It can be seen as a classical texture map that is modulated
by the shading intensity to produce the final picture. From all these data, they generate convincing
relighted faces (see Figure 4.7 on the next page). But, as previously discussed, because of the Lamber-
tian assumption, the highlights never move thus impairing the consistency of the produced pictures,
especially in animation.

Summary: Texture mapping is a simple and efficient way to represent both the large
features of a face (nose, mouth, eyes, etc) and the more subtle rough appearance of the
skin that is not caught by a reasonable 3D mesh (capturing these tiny details requires sub-
millimeter precision).

Previous work shows that such a texture should be multiplicative to preserve the shading
properties of the underlying material.

4.2.6 Complex material rendering

With the recent advances in hardware-accelerated rendering, several techniques have been proposed
to render complex material in more or less complex lighting environments. Several aspect are covered
by these methods, we may cite:

• The bumpy surfaces by Kautz and Seidel [111].

• The woven clothes by Daubert et al. [48].

• The spatially varying materials by McAllister et al. [157],

102

Chapter 4. Face relighting 4.2. Previous work

Fig. 4.7: Face relighting with Lambertian assumption
Top row: Ground truth (real pictures). Bottom row: Relighted faces using the method of Wen et al. [227].
Because of the Lambertian assumption, the highlights do not move. This can be observed more clearly when
the lighting is significantly different from the input one (first and last columns), especially on the nose, around
the eyes and on the forehead. [By courtesy of Zhen Wen]

• The complex materials in complex environments by Ramamoorthi and Hanrahan [176, 177],
Ng et al. [162, 163], Latta and Kolb [129] and Sloan et al. [198, 199].

• The BSSRDF rendering by Jensen et al. [104], Lensch et al. [134] and Mertens et al. [159, 160].

• The surface details by Tong et al. [212], Wang et al. [220] and Sloan et al. [200].

The methods that seem the most suitable to skin rendering are the BSSRDF ones but even the fastest
one is still too slow to meet our requirements: Mertens et al. [159] propose perhaps one of the most
efficient methods available today for skin and nonetheless reach a frame rate only in order of 5Hz. In
general, the main drawback of these methods considering our goal is that they only achieve real time
rendering for a single object even with the latest available hardware. However, these methods will be
fully in the future, the time to wait depending only the type of machine targeted (advanced hardware
will take longer to appear on cell phones).

All these techniques tend to achieve efficient representations of the object appearance. Recently,
complementary approaches have appeared to efficiently handle the lighting environment: Ng et al. [162]
use wavelets to compactly represent high and low lighting frequencies, Agarwal et al. [2] and Ostro-
moukhov et al. [170] determine a few directional light sources to approximate the original dense
lighting environment. We are especially interested in this result:

Complex environment approximation: If we are able to perform an efficient rendering for a single
directional light source then complex environments can be approximated by summing the contribu-
tions of several sources determined by one of the previously mentioned techniques.

103

4.2. Previous work Chapter 4. Face relighting

Finally, Debevec et al. [51] propose an original solution to obviate the face relighting problem.
First, they measure a target lighting environment varying in time. Then, using an immersive lighting
stage, they directly shoot a video of a real person in the captured environment. This hybrid approach
is by definition photo-realistic but requires a dedicated light stage and suffers from all the limitations
inherent in live shooting (need for a real actor, compositing, etc).

Summary: Techniques exist to render complex materials – and among them, some are
able to deal with skin. But they still requires the entire power of the graphics card; hence
impeding a combination in a full interactive system.

Related work also exposes how to decompose a complex lighting environment into several
directional light sources. This shows that we can restrict our study to the simple case of one
directional source and then produce complex results by combining them.

4.2.7 Discussion

From this review, we believe that numerous useful tools exist to handle the skin. It could be cer-
tainly possible to combine some of them to achieve face relighting in a satisfying way. Unfortunately,
because of the skin specificities discussed in Introduction (cf. page 91), we believe that quality ren-
derings require a dedicated solution. For instance, it seems that there exists no simple and robust
data acquisition setup for faces. The existing ones are either relatively cumbersome or partial (i.e.
they rely on some additional user input). Concerning the rendering, most of the methods target first
image accuracy and yield to computationally expensive solutions. On the other side, if one looks at
the face in games, they are still using simple textured model with limited light interaction. Hence,
we believe that a new balance exists to achieve quality images while using the standard capabilities
of the consumer-grade hardware. Of course, we cannot clearly produce as perfect images as the most
advanced but slow techniques but we are convinced that satisfying approximations can be made.

104

Chapter 4. Face relighting 4.3. Overview of the technique

4.3 Overview of the technique

The method exposed in this chapter presents both a lightweight rendering engine dedicated to face
relighting and the techniques to acquire the input data needed by this engine. In this section, we give
an overview of the engine and characterize the data that the acquisition process has to produce.

First, we use a 3D mesh of the face we are working with. To acquire this 3D geometric model,
we have explored various acquisition methods. We have mainly used a 3D scanner which directly
provides a precise mesh. We have also done some early work with models obtained from Computer
Vision techniques, which use only a camera to acquire the data. In our algorithm, this 3D mesh is
given off-line by the user i.e. we use it without any a priori about its origin and it does not change
from frame to frame.

Naturally, we also need information about the scene configuration: the face and light positions
and the camera setup (i.e. its 3× 4 projection matrix). These data can change dynamically between
two rendering phases to allow animations of camera, lights and face (only rigid transformations are
handled in our system but there is no intrinsic limitations against facial animations).

Input data Run-time data

Face 3D mesh Scene setup

Skin model
Shading Shaded

rendering 3D face

Detail texture Texturing
Relighted

face

Precomputed data Rendering engine Result

Fig. 4.8: Overview of the rendering engine
First the engine uses the 3D mesh of the face and a model of the skin appearance to render a shaded version
of face with only skin and no feature (no eyes, no mouth,...). Then a texture is applied to add all the missing
features to produce the final result. A challenge for the engine is to be able to adapt in real time to the scene
variations: the light, face and camera may move and we want to produce efficiently the corresponding images.

105

4.3. Overview of the technique Chapter 4. Face relighting

shaded face detail texture

× =

Fig. 4.9: Sample combination between a shaded 3D face and a detail texture
The shaded 3D face is rendered as if it were only composed of skin. It is composed afterward with the detail
texture to add all the missing features (eyes, mouth, etc) and the skin roughness.

We have chosen to separate the rendering into two steps:

1. The 3D mesh of the face is rendered as if it were only composed of skin. This results in what
we call the shaded face. For this rendering, we use a parametric model of the skin which is
precomputed from a photograph of the real face. Intuitively, this step renders all the lighting
cues: shading, shadows and highlights.

2. Then a texture (the detail texture) is combined with the shaded face to produce the final result.
As shown in the previous work section (cf. Sec. 4.2.5 on page 101), this combination must be
multiplicative. The detail texture is also precomputed from the real photograph. Intuitively, this
step adds all the lighting-independent features of the face.

Figure 4.9 illustrates the final image formation and Figure 4.8 shows the global organization of the
rendering engine.

How to precompute the parametric model and the detail texture are two main aspects of our
method. This will be exposed in the following sections. Both use a photograph of the real face
taken in a dark room using only a flash light. They also need a picture of a spherical mirror taken in
the same conditions in order to analyze the lighting environment. So, to summarize the input of our
method, the following data are needed:

• A 3D model of the face to relight.

• A calibrated photograph (i.e. with the corresponding projection matrix) of the face taken in a
dark room with a flash.

• A light probe (a spherical mirror) image taken in the same conditions.

In the following sections, we describe how the detail texture is built and how a parametric model
of the skin is retrieved. Then, we expose in more details the implementation of the rendering engine.

106

Chapter 4. Face relighting 4.3. Overview of the technique

Summary: Our rendering engine uses a 3D mesh of the face as basis. It is first completely
rendered using a parametric skin model precomputed from a real photograph of the skin.
This is the shaded face; it contains all the lighting cues (shading, shadows and highlights).
It is then textured to add the eyes, mouth, etc and the skin roughness. This texture is named
the detail texture; it contains the lighting-independent features.

107

4.4. Detail texture Chapter 4. Face relighting

4.4 Detail texture

As briefly explained in the previous section, a texture map is used to add all the details that are
independent of the underlying skin model: the eyes, the mouth, etc. We name it the detail texture.
Since the skin model renders all the lighting-dependent effects, this texture is lighting independent
(i.e. without shadow, highlight, etc.). Conceptually, to create the texture, we “subtract the shading
from the input photograph”.

To model the shading, we need a description of the skin appearance. We first compute a reflectance
map [94] of the skin as it is seen in the input image (a photograph of the real face).

Definition: A reflectance map describes the appearance of the skin for a fixed viewpoint under a fixed
lighting environment.

A reflectance map gives the color of the skin as a 2D function of the orientation of the skin surface.
Since the visible orientations form an hemisphere, a reflectance map can be represented as a colored
hemisphere: Each point on the hemisphere is painted with the color associated to its orientation.

The entire 3D model is then rendered with this reflectance map. This gives us the information
needed for the “subtraction”.

4.4.1 Skin reflectance map
�

�

	

Another view on [Reflectance
map]: It can be seen as a pic-
ture of a sphere composed of this
material seen under a given view-
point and a given illumination.

We build a specific model of the skin as it is seen in the input photo-
graph. Our goal is here to capture as precisely as possible the lighting
cues of the skin. We only aim at removing the shading from the photo-
graph, not at relighting.

Therefore, we use an approach similar to the methods presented in
Section 4.2.2 on page 94, we build a skin model by densely sampling
the appearance of the skin from a real photograph. But we do that only for the input viewpoint and
lighting. So, we avoid the previously discussed caveat of a large amount of data. And since this
step is precomputed, the rendering time is not an important issue. The advantage of this approach
is to provide a skin model which is more accurate than the parametric one that we use for the final
rendering. So we can afford a longer and less general computation as long as it provides reliable data
for the given viewpoint and lighting.

�

�

	

Link with [BRDF]: A reflectance map describes
a subset of the information embedded in a BRDF
since it deals only with a single viewpoint and a
fixed lighting. It also assumes an anisotropic ma-
terial since only the surface normal is important.
It is invariant to a rotation of the material around
the normal. It also handles a complete lighting
environment instead of a single directional light
source. Formally speaking, it integrates of the
BRDF over all the lighting environment. And
classically, the BRDF does not include the n · l
term that accounts for the spreading of the incom-
ing light flux over the surface. This term is in-
cluded within the reflectance map.

A face presents almost all the 3D orientations fac-
ing toward the camera. On the sphere of the directions
(a.k.a. the Gaussian sphere), the normals cover the
whole front facing hemisphere. Hence, under the ap-
proximation that skin follows the same reflectance map
on the whole face, the skin reflectance is sampled on
the hemisphere with only one image. To know where
skin lies in the input photograph (as opposed to back-
ground, hair, eyes, etc), we can either use a segmenta-
tion algorithm or ask the user to paint the skin region.
Figure 4.10 shows a sample segmentation made by the
user, which only requires a few minutes.

108

Chapter 4. Face relighting 4.4. Detail texture

input photograph mask skin region

Fig. 4.10: Sample skin segmentation
We need to segment the skin region from the input photograph (left). We rely on the user to provide this infor-
mation. In practice, a binary mask (middle) is painted using a standard image editing software. This mask does
not need to be very accurate because the following processes can handle outliers.

Each skin pixel is associated to its normal on the 3D model. This results in color samples on the
Gaussian sphere. Because of the hair, there are fewer samples for the upward directions (and for the
downward directions for bearded people). The samples are then grouped into clusters and the color of
each cluster is determined through a robust mean that discards outliers: We only consider the samples
whose distance to the classical mean is less than the standard deviation. The outliers may result from
errors in the 3D model, inaccuracies in the skin segmentation, etc. With the robust mean, all these
artifacts are handled without any user intervention.

Using a front facing flash eliminates self-shadowing. This is important because with other lighting
condition, coping with shadows would have been tedious (such preprocessing can take hours [199])
and would most probably have introduced more approximations and outliers.

We then extend the cluster values to a dense and continuous reflectance function by interpolation
and extrapolation. For a given point P on the sphere, we use a scheme that:

1. For each distance d, averages all the clusters at the same distance d of P to get one color value
v(d) per distance.

2. Associates a weight w(d) ≈ e−d to v(d) to guarantee that only the closest values to P have a
significant weight.

3. Computes the mean of the values to get the value of P.

This process slightly smooths the resulting function i.e. it removes high frequencies. This fits the
demonstration of Ramamoorthi and Hanrahan [177] who have shown that the reflected radiance of a
material is band-filtered by its BRDF. As a consequence, a material that has a low-frequency BRDF
(such as skin) cannot have a high frequency reflectance map.

Note that the map (Fig. 4.11-right) contains both the diffuse and specular components because no
separation is done after sampling the photograph. Highlights do not suffer from the outlier removal
since we sample a single picture with fixed viewpoint and lighting. The shading does not change
during the sampling process and is captured as it appears in the photograph, including both the diffuse
and specular components.

109

4.4. Detail texture Chapter 4. Face relighting

samples clusters final map

Fig. 4.11: Reflectance map
Left: The samples measured on the original photograph. From each skin pixel, we compute its normal and a
color point is placed on the position with the same normal on the hemisphere. Middle: These samples are then
clustered. Each cluster is assigned a color computed as a robust mean of the samples it contains. Right: The
clusters are then interpolated and extrapolated to form a complete and smooth reflectance map.

Summary: We have computed the reflectance map of the skin. This gives the color of the
skin as a function of the surface orientation.

This construction relies on a segmentation of the skin in the input photograph. In our cur-
rent implementation, this segmentation is provided by the user. The computation is made
robustly to account for outliers. Therefore we cope with a non-perfect segmentation (e.g.
scars and spots do not need to be marked).

4.4.2 Ratio image

The whole 3D model is then rendered with the same pose as the photograph and using the acquired
skin reflectance map (Fig. 4.11-right) to define the colors of the vertices. We call the resulting image
the shaded face. As shown in [139, 141], the combination of a detail texture with a base image should
be multiplicative. Therefore, the detail texture (Fig 4.12-right) is the ratio image between the input
photograph (Fig 4.12-left) and the shaded face (Fig 4.12-middle). It can be formally defined by:

ratio image =
input photograph

shaded model
(4.3)

Operation (4.3) is done pixel by pixel, RGB-component by RGB-component. To avoid numerical
problems, 0 is replaced by a small value in the shaded model.

The main caveat at this stage is to lose some information because of the photograph saturation
(i.e. the scene is too bright and exceed the captor capacity) due to a too intense flash. It would make
the skin texture disappear in saturated areas. We therefore use a flash of limited power which we

110

Chapter 4. Face relighting 4.4. Detail texture

have tested to guarantee that it produces images whose maximum intensity is about 80% of the captor
maximum.

Summary: The shaded face is rendered using the reflectance map of the skin previously
computed on the whole 3D mesh of the face. Then the detail texture is computed as the
ratio of the input photograph over the shaded face.

Figure 4.13 on the next page shows together the main steps to obtain the detail texture.

4.4.3 Limitations and discussion

The detail texture results from a process that makes several approximations. We discuss here their
limitations and validity.

Uniform skin First of all, we assume the skin to be an uniform material over the whole face. Clearly,
the skin is not exactly the same on the nose and on the chin. Nevertheless, as it is always composed in
the same way there is no large variation across the face. The small variations are partly corrected in
the final rendering by the detail texture. If one looks carefully, the detail texture (Fig 4.12-right) still
exhibits some highlights on the most shiny regions (e.g. on the nose). This comes from this approx-
imation because these regions are shinier than the “average” reflectance. However, these remaining
highlights have a limited intensity corresponding to the difference with the average.

Skin base We also consider that everything is a detail based on the skin reflectance. This is ob-
viously wrong for the eyes, the mouth, etc. The color of these details is so different from the skin
color that it induces extreme values in the texture (i.e. RGB ratios are far from 1) and both colors

input photograph shaded face detail texture

Fig. 4.12: Detail texture
The shaded face rendered using the reflectance map computed in Section 4.4.1 on page 108. The detail texture
is then the ratio image between the input photograph and the shaded face.

111

4.4. Detail texture Chapter 4. Face relighting

Input data

Photograph

Face 3D mesh

Sampling

Colors with normal

Normal clustering

Color robust mean

Clusters

Interpolation

Extrapolation

Reflectance

map

Reflectance map construction

Ratio

Rendering
Shaded

3D face
Division

Detail texture

Result

Fig. 4.13: Overview of the creation of the detail texture
First a reflectance of the skin is build from the input 3D mesh and photograph. Then it used to render the shaded
3D face. Finally, the photograph is divided pixel-by-pixel by the shaded face.

are almost decorrelated. These details contain many high frequency features (iris in the eyes, small
wrinkles on the lips, etc.), which hide most of the shading effects. Therefore, although they are not
skin details, this approximation does not lead to visible artifacts. The only caveat may be the eye and
lip highlights: They are not removed by the ratio image because they are not rendered in the shaded
face. They are then rendered by the detail texture independently of the light and the viewpoint. This

112

Chapter 4. Face relighting 4.4. Detail texture

can impede the overall consistency especially in close-up. This is overcome by removing them from
the input photograph by inpainting either automatically [16, 209] or manually.

Lighting-independent roughness Since we cannot afford to handle a 3D model precisely up to
the skin roughness, the skin textured aspect is rendered by the detail texture. This implies that it is
lighting independent whereas it results from the interaction of the light with the micro-relief of the
skin surface. This interaction is well described by subsurface scattering [105] but is hardly rendered
in real time [159]. Fortunately, contrary to the eye highlights that give strong cues about the lighting
environment, these low amplitude variations do not carry much information. Therefore, even if we
do not render the aspect changes of the skin roughness due to the light changes, it does not impact
strongly the coherence of the produced image.

113

4.5. Parameters of the skin model Chapter 4. Face relighting

4.5 Parameters of the skin model

In the previous section, we have built a texture which embeds all the lighting-independent parts of the
face. We now explain how to manage the lighting-dependent part.

This step must be efficient and lightweight since it is used to render the final images for which
we target real time. From the discussion in Section 4.2.3 on page 96, a suitable representation to
fulfill this goal is a parametric reflectance model. It must also be expressive enough to match the main
characteristics of the skin as seen in the input photograph. As explained in Section 4.2.4 on page 99,
this requirement excludes the too simplistic Lambertian model that ignores the highlights.

We have chosen the classical Phong model [171] in the RGB space because it is implemented in
all 3D cards and therefore achieves the best performance. In the following paragraphs we focus on this
model but a similar study could be done on any other parametric model (cf. Sec. 4.2.3 on page 96).

From formula (4.2) on page 96, Phong’s model is controlled by 10 parameters for the material:
the RGB values of ambient, diffuse and specular colors and the shininess exponent s and 9 parameters
for the light: the RGB values of ambient, diffuse and specular colors.

Our strategy is to match as closely as possible the input photograph with the model. We first
explain how to recover the lighting parameters and then the skin parameters.

4.5.1 Lighting parameters

The input face photograph is lit by a flash that we approximate by a point light source. Its characteris-
tics are determined with a photograph of a spherical mirror (a.k.a. light probe) taken under the same
condition as the face.

The first information to retrieve is the light position. A solution is to do physical measures with a
classical ruler. We prefer an evaluation from the probe picture that is likely to be more coherent since
we exploit the same information source. In practice, we have done both and they give similar values.

The 9 Phong parameters of the light are also needed. But in our setup, we have only two light
sources: the flash and the ambient light (i.e. the indirect light coming from all the surrounding objects).
Hence, among the 9 parameters, there are only 6 meaningful degrees of freedom: the RGB values for
both light sources. Hence according to Phong’s model, the flash corresponds to the specular and
diffuse sources (direct lighting). Consequently, the RGB values of the diffuse and specular are equal
to the flash color. In addition, the 3 parameters for the ambient lighting have to be estimated.

Flash position

The light position is computed thanks to the highlight position on the probe. In the (θ,φ) spherical
coordinate system, we have the classical relation (see the vector l and r in Figure 4.4 on page 96),
with l for the light and h for the highlight:

(θl,φl) = (2θh,2φh)

(θl,φl) are evaluated by selecting the pixels corresponding to the direct reflection of the flash on the
light probe (in red on Figure 4.14). Each of this pixel corresponds to a point on the probe sphere.
We average all these positions to estimate (θl,φl). In practice, the angular deviation of the flash light
compared to the view direction is about 2◦ above i.e. the highlight is located on the sphere at θh ≈ 0◦

and φh ≈ 1◦.

114

Chapter 4. Face relighting 4.5. Parameters of the skin model

Flash color

input photograph analysis

Fig. 4.14: Light probe analysis. Red: Direct reflection (satu-
rated pixel i.e. intensity over 0.85). Gives the flash position.
Yellow: Halo (middle intensity i.e. intensity between 0.5 and
0.85). Gives the flash hue. Blue: Background reflection giv-
ing the ambient light (intensity under 0.5). The given thresh-
old are those used in our implementation. Their exact values
have a limited influence over the extracted parameters.

The light color cannot be directly reached in
the highlight because it is always saturated be-
cause of the direct reflection in the mirror. But
as the mirror BRDF is never a ideal peak, there
is always a halo around the highlight (cf. Fig-
ure 4.14). This halo does not saturate the cam-
era sensors and can be used to measure the light
hue. Formally speaking, we measure the pro-
portion between the red, green and blue chan-
nels i.e. the measured values are valid up to
a scale factor. This method gives no informa-
tion about the color intensity since the mea-
sured color has been attenuated by the mirror
BRDF. For simplification, we assume this at-
tenuation to be equal for the three RGB chan-
nels. For more accuracy, one can calibrate the
light probe by comparing a white reference with its reflection on the mirror.

Note that even high dynamic range imaging [52] could hardly capture this information about the
intensity of a flash light because the flash is both short and very intense. Specialized instruments
such as the filters described by Goesele et al. [73] are needed. We do not apply that kind of techniques
because it is too complex relatively to our goals. Nonetheless, if one can afford such a system, it could
be easily inserted in our method. Our approach is to arbitrarily set the intensity to an approximate
value. It means that the light intensity is now expressed in relation to the input photograph. In
practice, with a good setup which makes the photographs bright but not saturated, 1 is a satisfying
value. However, to work with different flash lights, one must take photographs of a white reference
(e.g. a white matte ball) to calibrate the relative intensities of the flashes.

Ambient color

The ambient lighting is measured by integrating the light samples in a ring surrounding the high-
light halo (Fig. 4.14). The whole spherical probe is not used to guarantee that we have no outliers
(mainly from the support of the probe). Since there is no saturation, both hue and intensity are recov-
ered. However to be fully consistent with the flash light, their relative intensities have to be adjusted.
Unfortunately, the ambient contribution is too low to be used as a precise reference to set the flash
intensity. The ambient intensity is therefore optimized relatively to the flash. We use a gradient de-
scent performed once the skin parameters are known. The resulting variation is almost unnoticeable
but makes the set of parameters consistent.

Summary: Using a photograph of a spherical mirror, we can retrieve the flash position
and color, and the color of the ambient light. From these data, we straightforwardly derive
the lighting part of the Phong model.

Notice that the colors are dependent on the used flash. If several flashes are used, their
relative intensities have to be calibrated with a reference object (a white ball for instance).

115

4.5. Parameters of the skin model Chapter 4. Face relighting

4.5.2 Skin parameters

As suggested in [192] and also [50], we consider that the specular reflection introduces no spectral
distortion in the light; it is directly reflected by the upper oily layer of the skin. This means that the
specular color is (is, is, is) i.e. the reflection does not change the hue of the light, it may only attenuate
its intensity. Only is remains unknown. Diffuse and ambient colors are due to a deeper interaction
between the light and the skin. Because these colors result from the same cause, they have the same
value (rskin,gskin,bskin). With the shininess exponent, s, there are 5 unknowns.

Now, our task is to match the input photograph as well as possible. To do so, we rely on an
optimization process. Unfortunately, there is a strong ambiguity due to the specular part of the model.
If the shininess exponent is low, the specular component is flat and thus almost equivalent to the
ambient component. High values of the exponent make the specular component concentrated only
on a tiny area and almost equivalent to no specular reflection. Optimizing the exponent at the same
time as the other parameters makes the whole process non-linear and unstable due to numerous local
minima. s is therefore determined separately before the other parameters.

Specular exponent

The idea is to formalize the intuitive remark that a high exponent corresponds to a small highlight and
a low exponent to a wide one. We propose a method that measures the “size” of the highlight and
relates it to the Phong exponent s. This computation cannot rely on a full diffuse-specular separation
because it occurs before the determination of the corresponding parameters. Therefore it implies an
indirect estimator.

As explained in Section 4.5.2, each color in the reflectance map is a mix between the light and
skin colors. Since the flash is bright and almost white and the skin is darker and colored, color

�

�

	

Definition [Color saturation]: It intuitively measures
how “colorful” is a color. It has to be clearly differenti-
ated from the captor saturation that we have mentioned
before (this one indicates that the light hitting a CCD
captor exceeds its measure range). We use the definition
of the color saturation used in the HSV color space:

max(r,g,b)−min(r,g,b)

max(r,g,b)

saturation is a good indicator of the mix propor-
tions. To evaluate the highlight “size”, we lo-
cate the regions with the fastest saturation changes.
These fast-changing regions can be seen as the
“highlight boundaries”. Note that these bound-
aries are robust since they do not depend on the
actual values of the flash and skin colors and do
not require a full separation between the diffuse
and specular parts. Our strategy is to relate the
angular position of a boundary with the shininess
exponent.

 r

n

v = lα
α

reflectance
map

Fig. 4.15: Configuration for highlight measurement.

The highlight position on the reflectance map is
known thanks to light position previously computed.
Since the sampling resolution is finer near the equator
region (Sec. 4.4.1 on page 108), the angular deviation
of the fastest variations are measured toward the left
and right directions. These two values are averaged
to obtain a robust estimation of the angle correspond-
ing to the maximum variation of the saturation. We
denote this angle αmax

sat .

116

Chapter 4. Face relighting 4.5. Parameters of the skin model

We then study the Phong model. We compute the specular intensity Iflash(α) and diffuse intensity
Iskin(α) relative to the angle α (Fig. 4.15), as well as their ratio:

ρ(α) =
Iflash(α)

Iskin(α)

We denote αmax
ρ the angle where the ratio has its most important change. We conclude with the

argument that the largest saturation change is linked to the largest change in the ratio between the
specular and diffuse components. Hence we have:

αmax
sat = αmax

ρ (4.4)

To derive the expressions, we make some approximations: The view and light directions are
constant on the face (the variations are at most 2.5◦ in our experiments) and equal (the difference is at
most 2◦ in our experiments), and the ambient intensity is neglected compared to the diffuse one in the
reflectance model (this is reasonable because the input photograph is made in a dark room). Using the
notation of Figure 4.15 on the facing page and ∼ standing for “proportional to”:

Iskin(α) ∼ cos(α) and Iflash(α) ∼ coss(2α)

which gives the ratio: ρ(α) ∼ coss(2α)

cos(α)
(4.5)

And since αmax
I corresponds to the largest variation of ρ(α), it implies:

d2ρ
dα2 (αmax

I) = 0

 0

 5

 10

 15

 20

 5 10 15 20 25 30 35 40 45

sh
in

in
es

s
ex

po
ne

nt
s

αmax
sat in degrees

Fig. 4.16: Plot of function (4.6).

which leads with equations (4.5) and (4.4) to the fol-
lowing relation where ζ = sin(αmax

sat):

s =
4ζ4 −2ζ2 −1−

√

−16ζ6 +8ζ4 +1
8ζ2(ζ−1)(ζ+1)

(4.6)

Relation (4.6) fully determines the exponent s with
αmax

sat measured on the reflectance map. It is plotted in
Figure 4.16. As the slope may be steep, precision is
crucial. We therefore use a high angular resolution of
about 1◦.

To validate the technique, a photo of the same person has been scanned with different skin condi-
tions. As illustrated in Figure 4.17, numerical results agree with the images. The results are best seen
on video.

117

4.5. Parameters of the skin model Chapter 4. Face relighting

wet (s = 8.0) dry (s = 2.6) matte (s = 1.7)

Fig. 4.17: Comparison of the shininess exponent under various skin conditions
We have retrieved the Phong exponent for two extreme skin conditions and compared them with a reference
state (middle). The wet skin (left) is simply obtained with water. The matte skin (right) is made with foundation
cream. Our measurements are precise enough to recover the shininess variations between these three faces.

Summary: Among the skin parameters, we compute the shininess apart because it intro-
duces strong numerical instabilities if optimized in the same time as the other parameters.

To evaluate the shininess exponent, we first measure the highlight width on the previously
computed reflectance map. Then, we show that the exponent is a direct function of this
width. Hence, we can extract the exponent before the other parameters (see Figure 4.17 for
practical validation).

Other parameters

For the four remaining parameters (the skin color (rskin,gskin,bskin) and the specular intensity is), we
run an optimization process which minimizes the difference between the input photograph and an
image of the 3D model rendered with these parameters. This is sometimes referred as analysis by
synthesis in the literature. We use only the skin region in this process – using the same mask as
previously used to compute the reflectance map.

Since we target a visual match, the perceptual Luv space [67] is used to quantify the difference
between both images. The comparison is only made on the skin region using the classical L2 norm:

√

∑
skin

(

(Li −Lr)2 +(ui −ur)2 +(vi − vr)2
)

where i is for the input photograph and r is the rendered 3D model.

The Luv space is not linear relatively to the RGB space i.e. the Luv-RGB transformation is more
complex than a matrix multiplication. We cannot apply a standard linear method such as a least-square
optimization. Nevertheless, the problem is not a very hard one since we have overcome the main

118

Chapter 4. Face relighting 4.5. Parameters of the skin model

ambiguity source by separately computing the shininess exponent. Each one of the four parameters
has now a clear influence over the aspect of the final image. The last difficulty may come from the
fact that a brighter skin color may have, in some situations, similar effects as brighter highlights.
Fortunately, this point is not major since the spatial influence of both effects are different.

So, the minimization is done through a varying step gradient descent which performs a coarse-
to-fine refinement of the parameters. A standard gradient descent may be used but a coarse-to-fine
approach simply makes it faster. Descent techniques often suffer from local minima: We have val-
idated its robustness by running the process 200 times on the same input data with random starting
points. The standard deviation on the parameters is less than 2.5%. This shows that the process is
almost insensitive to the starting point, a “good” initial guess only speeds up convergence. Figure 4.18
shows a typical result of our system.

input optimized model difference

Fig. 4.18: Result of the parameter optimization
The Phong parameters are obtained with a coarse-to-fine gradient descent. It minimizes the perceptual differ-
ence between the skin in the original photograph and the image produced with the model. Note that the printed
version may show a larger visual difference. The difference image (right) shows that the front-facing regions
are too bright and the silhouettes too dark. It is a consequence of the approximate match provided by the Phong
model. However, it is hard to notice without a visual reference.

Summary: The remaining four parameters are optimized with a gradient descent that
adjusts them in order to produce an image similar to the input photograph. Since the pa-
rameters have separated influences, the process is robust and has almost no dependence on
the starting values.

Figure 4.19 on the next page gives an overview of the entire process leading to each parameter
needed by the rendering engine.

119

4.5. Parameters of the skin model Chapter 4. Face relighting

Input data

Mirror

photograph

Face
photograph

photograph

Face 3D mesh

Precomputed data

Reflectance

map

Direct computation

Lighting

Lighting
analysisanalysis
Highlight

parameters

parameters

Shininess
exponent

Rendering

Skin image
from parameters

Comparison

Skin color
Specular intensity

Gradient descent

Phong model

Result

Fig. 4.19: Overview of the Phong parameter retrieval
Some parameters are directly computed from the input data (i.e. without optimization): The lighting parameters
and the shininess exponent come respectively from the analysis of the light probe and of the reflectance map.
The other parameters (skin color and specular intensity) are adjusted with an optimization process to match
the input photograph.

120

Chapter 4. Face relighting 4.6. Implementation of the rendering engine

4.6 Implementation of the rendering engine

Our rendering engine is based on OpenGL but it can be easily implemented on any platform that
provides basic 3D rendering functions. We restrict the set of functions to the most basic ones to ensure
a low hardware dependency. In particular, we have not used the recent programmable pipelines based
on vertex programs and pixel shaders because the available functions still vary a lot according to the
graphics card. Nevertheless, since these features are extensions of the basic ones, one can implement
our engine using the latest improvements to get better performance on recent cards.

4.6.1 Basic rendering

Our engine performs first a Phong rendering (GL_LIGHTING) and then a multiplicative texture map-
ping (GL_MODULATE). Unfortunately, a straightforward implementation is not enough for our pur-
poses. Details brighter than the underlying skin color (the eyes for instance) require a multiplication
higher than 1 whereas a basic texture can only store values in [0,1]. To work around this constraint,
we use two passes:

1. We render the model using a texture with halved values.

2. Then the 3D mesh is rendered without texture nor lighting but with a (1,1,1) color and the
blending equation glBlendFunc(GL_DST_COLOR,GL_ONE). This results in doubling the pixel
RGB values.

The available range is then [0,2]. The method can be extended to [0,2n] with a texture multiplied by
2−n and n doubling passes. Note that each of these doubling passes divides the color precision by
two: the multiplication by 2−n rounds down the values losing n bits of precision. In practice, up to
n = 2 results are visually similar and n = 3 produces an almost unnoticeable alteration, which makes
multiplicative values up to 8 available without visible loss of quality (see Figure 4.20).

Since our rendering engine is lightweight, it supports various improvements to enhance the final
visual quality while still achieving fast rendering. We present the ones we have implemented in
following sections.

one doubling pass two doubling passes three doubling passes

Fig. 4.20: Effect of the doubling passes
Each doubling pass loses one bit of precision of RGB components. It therefore results in a color quantization
that increases with the number of doubling passes. However, this technique allows to handle multiplicative
values higher than 1. And up to three passes, the resulting artifacts are almost unnoticeable at a reasonable
scale (we here zoom on an area in the order of mm2). (The quantization may not be visible on the printed
version. In that case, please refer to the electronic version.)

121

4.6. Implementation of the rendering engine Chapter 4. Face relighting

4.6.2 Camera sensitivity

Fig. 4.21: Illustration of the over-
exposure effect. Stronger contrast
thanks to overexposure (exaggerated for
illustration purpose). Note that the de-
tails correctly disappear in the highlight.

When someone is photographed under the sun or with a strong
flash, some regions in the picture are poorly exposed. Parts of
the face that are in the shadow are often underexposed and those
directly in the light are over exposed. Technically, this comes
from the limited range of sensitivity of the sensors compared to
the intensity range in the observed scene (see [52] for details).
The effects are characterized by the disappearance of the details
either in the darkness (underexposure) or in the highlights (over-
exposure).

Underexposure is straightforwardly obtained by lowering
the light intensity. Overexposure can be simulated by clamping
to 1 (thresholding the highest values to 1); it corresponds to a
simple sensor model which is linear in [0,1] and saturates all the
values higher than 1. However, although light intensity can be
set higher than 1, direct rendering does not perform the correct
computation because clamping occurs before the texture map-
ping whereas we need it afterward. We use the same process as
previously: we divide the light intensity by 2m so it is lower than
1 and makes m additional doubling passes. This ensures that no
value is clamped before the texture mapping and thus achieves the correct result since the clamping
only occurs during the pass combination. This effects is shown in Figure 4.21.

4.6.3 Eye highlights

without

with

Fig. 4.22: Highlights in the eyes.

Eye highlights are a very strong cue for the lighting
environment: Due to their very high specularity, eyes
behave almost like mirrors that reflect the surround-
ing objects. However, because of the iris, the eyes
contains a lot of details and, thus, only high intensity
features of the environment are actually distinguish-
able. Therefore we can limit the surrounding envi-
ronment to only the light sources and still having a
convincing effect.

Practically, we place two hemispheres corre-
sponding to both eyes. These spheres are purely spec-
ular with a very high shininess exponent (e.g. 75).
Because of this
high exponent, the hemispheres have to be finely sub-
divided (in practice, we use two hemispheres with 256

vertices each). We perform an additive composition: The light reflected by the cornea is superimposed
to the light coming from the deeper part of the eye (iris, vitreous, etc.). This gives a hint of the radius
of the spheres, it should be approximately the cornea radius e.g. 7.8mm [231].

Figure 4.22 illustrates the impact of the highlights in the eyes. Without it, eyes look dry and frozen
whereas with it, they have the expected shiny aspect. The improvement can be better seen in the video.

122

Chapter 4. Face relighting 4.6. Implementation of the rendering engine

4.6.4 Cast shadows

Our model already includes shading effects because of the underlying Phong model. However, under
unidirectional lighting or with a point light source, cast shadows are also a significant lighting cue. We

without with

Fig. 4.23: Improvement brought by the cast shadows.

use the shadow maps [229] to add
cast shadows to the Phong rendering.
Compared to other classical methods
such as shadow volumes, this method
has the advantage that it can handle
complex geometry like faces. But it
involves three passes per light source:
one rendering from the light view
point, one for the lit part and one for
the shadowed part. This can signif-
icantly reduce the frame rate if there
are many sources. It should be used
carefully (e.g. in a level of detail con-
text). Figure 4.23 shows the improve-
ment obtained with the shadows.

Summary: The basic rendering engine is made only from very standard functions such
as Phong lighting and texture mapping.

Furthermore, the engine can be simply extended to handle special situation. We here demon-
strate some extensions: dynamic setting of the camera exposure, highlights in the eyes and
cast shadows. However, one has to realize that each additional effect is time-consuming and
may impair the efficiency. These extensions should be therefore thought in level-of-details
context e.g. eye highlights should be activated only on face close-ups.

123

4.7. Results Chapter 4. Face relighting

4.7 Results

Our scanner provides a mesh at a resolution of 200×200 with a maximum error of 300 micrometers.
It also shoots a 400× 400 photograph of known parameters while digitizing. This photograph has
a poor quality and no flash. So, we also shoot a high quality photograph with a flash. From this
one we extract a 512×512 face picture and the correspondence between this new image and the 3D
model is made by matching feature points between this photograph and the scanned one with known
parameters. The subject is always between 2 and 3 meters from the camera. Since the flash is about
6 centimeters above the optical center, we can estimate to 2◦ the maximum angular distance between
the view direction and the light direction and to 4◦ the maximum angular deviation of the view angle
on the face. Thus, the assumption made to compute the shininess exponent that these values are null
is reasonable. Our flash is a rectangle of 1cm× 2.5cm, and has in our acquisition setup a maximum
angular dispersion of 0.75◦. Thus it is accurately approximated by a point light source.

NVIDIA GeForce 3 NVIDIA GeForce FX

Fig. 4.24: Face renderings from the latest graphics cards
These images are extracted from the Zoltar demo for NVIDIA GeForce 3 (left) and from the dawn demo for
NVIDIA GeForce FX. [By courtesy of NVIDIA]

For comparison purposes, Figure 4.24 shows sample images rendered with the latest available
hardware. These images suffer either from their unrealistic texture (Fig. 4.24-left) or from a too
smooth aspect (Fig. 4.24-right). The method presented in this paper can easily improve both tech-
niques without losing their intrinsic qualities.

To validate our process, we have taken photographs with various light positions and compared
them with relighting results (Fig. 4.25 on the facing page). As the reference photographs have not
been taken under the same conditions as the input photograph, the pose and the facial expression are
different. There are other differences to discuss:

Facial expression All our captured faces look tensed. We have asked the subjects to tilt their head
backward to capture the geometry of their chin. Setting the 3D scanner on a lower position would let
the subject use a more comfortable pose and should address this point.

124

Chapter 4. Face relighting 4.7. Results

(a) real (b) synthetic

(c) real (d) synthetic

Fig. 4.25: Comparison between real photographs and relighted images.

125

4.7. Results Chapter 4. Face relighting

Shadows The contrast is lower in the relighted picture. This mainly comes from the 3D model,
which does not capture all the geometric details (e.g. the lips and wrinkles are not deep enough). This
makes some shadows too smooth. On the other hand, some shadow edges are too “hard” (near the lips
in Figure 4.25-b) because subsurface scattering is not rendered.

Fig. 4.26: Relighting in a complex environment.

Highlights As previously discussed, the nose highlight is
not strong enough and Marschner et al. [148] mention that
parametric models do not catch the right skin properties for
grazing angles, this can be seen in Figure 4.25-b on the left
cheek.

Details Some tiny details are also missing (wrinkles
around the mouth in Fig 4.25-d) or appear blurry (eye-
brows in Fig 4.25-b) because of the texture resolution
which is lower than the photograph resolution.

Nevertheless, the overall appearance matches: shadow
boundaries and shading are accurate. As the images are
rendered in real time, lighting variations therefore make
convincing shading variations including highlights and
cast shadows (see the video). Moreover, without any additional feature, the method deals with a
complex lighting environment (Fig 4.26) and a difficult case with a short beard through which skin
appears (Fig 4.27).

Fig. 4.27: Relighting a bearded face.

We have measured the frame rate for two models:
scanned coming directly from the scanner with 12,250 ver-
tices and 24,060 triangles (Fig 4.28-a) and simplified which
has been simplified to 787 vertices and 1,143 triangles
(Fig 4.28-b). We have tested a basic lighting environment
with one light source and a complex environment with 8
sources and over-exposure (two more passes). The graph-
ics cards are from NVIDIA: a TNT 2 (low 3D capacity), a
GeForce 4 MX 440 (middle 3D capacity) and a GeForce 4
Ti 4400 (high 3D capacity). The results are summarized in
Table 4.1. Note that the engine is able to render the sim-
plified mesh on all three cards at a rate high enough to be
able to render other objects and still maintain real time.
This point is remarkable since the TNT2 (1999) has lim-
ited capabilities compared to the newer cards. Moreover

our acquisition process produces data which resists extreme degradation of the supporting mesh. Fig-
ure 4.28 shows that even with 20 times fewer triangles, the face looks almost the same. There is a
limited loss of contrast on the coarser mesh because creases have been smoothed but the visual quality
is comparable.

We have tried to extend our method to 3D models obtained from Computer Vision techniques. The
main advantage of these techniques is that they use less equipment (only a camera) and a strong con-
sistency between the geometry and the input photographs. Readers interested by more details about

126

Chapter 4. Face relighting 4.7. Results

fine mesh coarse mesh

Fig. 4.28: Comparison between a fine mesh and coarse one

Fig. 4.29: First results from a Computer Vi-
sion model.

Computer Vision are referred to books like [61, 63, 86]. The lat-
est methods are very promising, including the work of Lhuillier
and Quan [137, 138], Zhang et al. [239], and Shan et al. [193].
We tested our method with a head model produced with the
method of Lhuillier and Quan [137, 138]. Even though the re-
sulting mesh is less precise than that from a scanner, we achieve
satisfying results on this model. It would be interesting as a
future to study a combination with our surface-reconstruction
methods proposed in Chapters 2 and 3. A sample image is
shown in Figure 4.29. The main artifacts appear near the hair
boundary. The sharp change of orientation of the surface is not
correctly caught by the model and results in erroneous normals.
This produces spurious lighting effects that look more or less
like caustics but move inconsistently when animated. However,
the overall aspect looks correct and let us think that better results
can be achieved.

SIMPLIFIED MESH SCANNED MESH

1 light 8 lights 1 light 8 lights

TNT2 95 28 3 1
MX 440 90 90 78 58
Ti 4400 110 110 110 60

Table 4.1: Performance of the rendering engine
The frame rate (in Hz) is measured with the simple mesh (787 vertices and 1143 triangles) and the scanned
mesh (12,250 vertices and 24,060 triangles), and with 1 and 8 light sources. The 8-light environment also
includes over-exposure that requires two more rendering passes. We have noticed some surprising results for
the very high frame rates (e.g. the TNT2 card is faster than the MX440). We suppose that it may come from
some “hidden” internal structures of the hardware that we do not take into account. However, frame rates over
60Hz are only a performance proof that is not useful since it may exceed the screen frame rate. This only shows
that we do not use the full available power.

127

4.7. Results Chapter 4. Face relighting

Summary: Our approach yields convincing results. As expected, some features are miss-
ing such as the skin reflections at grazing angles. However, the overall aspect is preserved
and the produced animations convey compelling lighting cues.

Furthermore, the rendering is performed in real time even on “old” graphics cards. It is
suitable for interactive applications since it does not consume the whole rendering power
available and let some resources available for other tasks.

128

Chapter 4. Face relighting 4.8. Conclusions and future work

4.8 Conclusions and future work

Our results suggest several conclusions. Nowadays hardware rendering uses programmable chips
that push farther and farther the limits of real-time rendering. Obviously, these cards introduce an
extended expressiveness associated with an enhanced rendering power. This allows us to simulate
complex phenomena faster and faster. For instance, subsurface scattering is almost already available
in real time with dedicated hardware functions.

However, this can sometimes hide the reflection that discerns which features are useful to simulate
exactly and which ones can be approximated or even omitted. For instance, we are convinced that
subsurface scattering coupled with an extremely fine mesh such as the one shown in Figure 4.6 on
page 100 should be reserved to the only tasks that require very high quality images without imposing
constraints on the rendering time. We believe that one of the interesting points of our work, beyond
the technical aspect, is to show that a classical texture can convey a visually compelling skin aspect.
In the same time, it shows what the missing features are. And it would be interesting to study in future
work whether some extensions could overcome these shortcomings. The recent techniques for soft
shadows [88] in hardware should be useful to approximate correct shadow boundaries. Simulating the
grazing-angle reflection would also be a challenging issue.

Another approach for future work would be to concentrate the hardware power on the spots where
it is actually needed whereas the other regions are rendered with a lightweight technique like ours.
One could imagine using a time-consuming shading system on limited areas such as the silhouettes
and the nose that are typically lacking highlights. This raises two challenging issues: locating the
regions to focus on and mixing two rendering systems.

It could be also possible to examine how this rendering technique can be adapted to animated
faces. We believe that there is no major obstacle to animate the base 3D mesh as long as the texture
coordinates are not altered by the animation.

We also plan to look carefully at hair. On the one hand, hair is quite different from the skin but
on the other, it also has a complex lighting behavior that naturally introduces numerous questions.
We believe that there is a way to find an efficient trade-off for hair rendering between exact rendering
and simplistic approximation. Moreover, this would nicely improve our face relighting engine which
lacks a specialized model for the hair and would extend our face rendering to the entire head. This
is all the more interesting that some Computer Vision algorithms are now able to acquire the whole
head geometry.

We provide in the next chapter a powerful tool to analyze and capture the hair geometry. This
paves toward such an efficient manipulation of hair.

129

4.8. Conclusions and future work Chapter 4. Face relighting

130

5
Capture of hair geometry

The work presented in this chapter has been partly done with the participation of Hector
Briceño who is post-doctoral researcher in the Artis team. He has contributed to writ-
ing the following text and to acquiring the input data. He has authored the movie that
presents our method. His regular feedback was of valuable help for designing the follow-
ing method.

5.1 Introduction

Hair is an important part of the general aspect of a human character. It has a great impact on the look
of the head and therefore requires special attention when creating digital characters. Today, hair ma-
nipulation relies strongly on user input. The process can be split into three parts: modeling, animating,
and rendering. Among these three steps, modeling is the time-consuming step since great progress
has been made for animation [9, 15, 38, 81, 172] and rendering [110, 114, 147]. Unfortunately, hair
modeling still requires a user-assisted process. Dedicated methods exist to drive the hair creation
process and help the user: [47, 80, 115]. These clearly allow a fine control over the geometry but it
becomes tedious if one wants to reproduce complex features like curls and waves of a real character.

We focus on this modeling step and propose an alternative solution to the creation of the hair
geometry: We use sequences of images of a real hair to produce a set of hair strands which capture
most of the features of the original hair. This hair-from-images approach is complementary to the
hair-from-user techniques. The produced set of strands can be used directly “as is” or may be the
starting point of a user-driven approach.

The advantage of the image-based approach is the reproduction of the hair of an existing person.
The main application is virtual actors: more and more movies use digital clones of the human actors
in their action scenes to shoot dangerous or technically impossible situations. Until now, the hair of
these digital actors is either short or straight – often a poor match with the original hair. The presented
technique is a first step toward duplicating a real hairstyle with complex features. Furthermore, one
can also imagine using this approach in games (to have your own clone inside the game), styling

5.1. Introduction Chapter 5. Capture of hair geometry

software (to preview color changes of your hair), criminal investigation and law enforcement (to
render people with different hairstyles), etc.

�

�

	

More about [Hair]: The diameter of
a hair fiber ranges from to 17 to 181µm
and there are from 90,000 to 140,000
fibers on a scalp [35].

The goal of our method is to produce a set of hairs which can
be rendered under different lighting conditions while preserving
the features of the original hairstyle. To achieve this, we create
dense curved lines. These lines do not exactly match each fiber
(it seems unfeasible from images with common resolution) but
nonetheless reproduce the main features of the input hair (curls, waves, etc). An alternative method
could produce a textured surface, but this would be hard to animate and render properly. We strive
for a dense set of hair such that no holes are visible. We would, in the future, also like to capture the
reflectance parameters and adapt the hair for animation.

Our strategy is to overcome one of the major difficulties with hair: light interaction that results in
large specularities, scattering, glints, etc. These properties hinder the use of 3D scanners and foil com-
puter vision techniques. We turn this specific behavior into a source of information: we analyze the
hair under various illuminations to extract their geometry. Our approach is to shoot image sequences
of a still head with a fixed viewpoint under a moving light source. The correspondence between im-
ages is straightforward but gives no stereoscopic localization, so depth and shape information come
from appearance variations. In that respect, it is related to shape-from-shading [31] and shape-from-
specularities [233]. Unfortunately, these techniques only recover a surface and may have trouble with
complex materials. Even example-based methods [90] that overcome this last point, recover only a
surface which is poor approximation of the hair geometry.

132

Chapter 5. Capture of hair geometry 5.2. Previous work

5.2 Previous work

There are many Computer Graphics methods for rendering hair from synthetic data, but few for cap-
turing it as pointed by Rushmeier [181]. Traditional 3D capture systems, such as laser scanners, have
trouble with hair due to its complex reflection properties, and yield erroneous results.

5.2.1 Generic approach

Fig. 5.1: Sample result from Matusik et al. [154].
[By courtesy of Wojciech Matusik]

Matusik et al. [154, 155] propose using image-based ren-
dering for various objects with complex lighting behav-
iors (see Figure 5.1). Even if not demonstrated on hair
in particular, this method undoubtedly yields quality re-
sults. However, it may suffice for rendering, but without
geometrical information, it would be difficult to animate
or edit captured objects.

5.2.2 User-driven approach

For better editing and rendering, we need a geo-
metrical model of hair. There are many packages
for generating hair models such as the characteristic
strands from which a whole hairstyle is build by Dalde-
gan et al. [47], the flow-editing system of Hadap and
Magnenat-Thalmann [80] (Figure 5.3) or hierarchical approach of Kim and Neumann [115] (Fig-
ure 5.2). Interested readers can find more methods in the state-of-the-art review [144] and course
notes [143] of Magnenat-Thalmann et al., and Kim’s web repository [113]. All these methods allow
a fine control over the created hairstyle while leveraging the editing power of the user by making
possible to control several hair strands at once.

Fig. 5.3: Sample hairstyle created with
a flow-editing system [80]. [By courtesy
of Nadia Magnenat-Thalmann, MIRALab
- University of Geneva]

Unfortunately, since they start from scratch, these meth-
ods are time-consuming when it comes to generate complex
hairstyles. We even believe that it would be hard to reproduce
a given hairstyle with one of this system because it would re-
quire to edit every single hair of the head. Nonetheless, these
approaches will always be needed since they give a total con-
trol to the user. A hair-from-images approach as we propose
in this chapter is complementary to these editing techniques.
Such an approach could be used as a bootstrapping step that
provides a first hair volume which the user can work from.

5.2.3 Image-based approach

The work of Kong et al. [124, 125] considers modeling hair
from pictures. It works by building a 3D hair volume from
various viewpoints of the subject’s hair. They point out the
difficulty of extracting a complete hair strand from an input
image. They propose a procedural method to fill this volume
with strands. For each hairstyle, a new generating function has

133

5.2. Previous work Chapter 5. Capture of hair geometry

Fig. 5.2: Various hairstyles from a hierarchical editing system [115]

These hairstyles are created using the system of Kim and Neumann [115]. [By courtesy of Tae-Yong Kim]

Fig. 5.4: Sample hairstyle created with a procedu-
ral and image-based system [125]. [By courtesy
of Hiroki Takahashi]

to be designed. The original paper describes one for
straight hair and each new style (curly, wavy, tangled,
etc) requires a new filling procedure. Moreover, there are
no guarantees regarding any local match; only the global
style is preserved. Thus, this method seems unlikely to
handle complex hairstyles well nor to reproduce an exist-
ing style. Sample result is shown in Figure 5.4.

Recent work in this area from Grabli et al. [78] (see
Figure 5.5 on the facing page), is the most relevant to
ours. This system works by studying the subject’s hair
under various lighting conditions. By fixing the view-
point, they can work with almost perfectly registered im-
ages. Their approach uses a single filter to determine the
orientation of hair strands, therefore, many images and
sequences may be required to achieve a dense sampling.
They only consider one general viewpoint and do not re-
construct all of the hair. Our technique builds upon their
approach and addresses these short-comings.

134

Chapter 5. Capture of hair geometry 5.2. Previous work

Fig. 5.5: Results from Grabli et al. [78]
These models (top row) are extracted from an image sequences of wig captured with robotic gantry (the bottom
row shows a sample input image). [By courtesy of Stéphane Grabli]

Summary: To our knowledge, there do not exist today any method to reproduce a given
real hairstyle. Systems exist to help the user create a whole hairstyle. But they seem limited
when it comes to reproduce the numerous details that make a hair model look like the
hairstyle of a given real person. On the other side, there are very few approaches using
images and none them is able to reproduce a whole head of hair.

Hence, we believe that a complete system working from images would be useful and com-
plementary to user-driven techniques.

135

5.3. Overview Chapter 5. Capture of hair geometry

5.3 Overview

Before exposing the main ideas of our method, we give a few definitions to clarify useful entities.
This nomenclature is specific to the following sections.

5.3.1 Definitions

We call a fiber a single and entire hair. A strand is a small group of fibers that are tightly grouped
together along their whole length. This is the visible entity in images since a fiber width is smaller
than a pixel. A segment is a small section (≈ 1mm) of a strand, it is well approximated by a small
line. These three entities are illustrated on Figure 5.6.

fiber strand segment

≈ 1mm

Fig. 5.6: Definitions of fiber, strand and segment

We call orientation the un-directed line containing a segment. To characterize one of the two
corresponding directed lines, we need to provide a direction.

5.3.2 Global approach

Our strategy relies on image sequences with fixed viewpoints and moving light source (Fig. 5.10 on
page 139). On the one hand, since the camera does not move, a pixel always represents the same

image
plane

hair

segm
entprojected

2D orientation

viewpoint

plane containing
the segment

Fig. 5.7: Viewpoint and 2D orientation of a segment in image.

3D location on the hair surface. On the
other hand, this gives no stereoscopic in-
formation about this 3D location. There-
fore the 3D information comes from the
analysis of the image variations throughout
the sequence. This analysis considers the
segments individually and is split into two
parts:

1. A 2D analysis of the image proper-
ties recovers the 2D orientation of a
segment projected in the image plane
and characterizes a plane containing
the segment (Fig. 5.7).

2. A 3D analysis of the illumination
variations gives a normal to the seg-
ment that results in a second plane.

136

Chapter 5. Capture of hair geometry 5.3. Overview

Fig. 5.8: The four viewpoints
We use four viewpoints (left, right, top, back) to capture a whole head of hair. For each viewpoint, we acquire
about 200 images (see Figure 5.10 on page 139).

Image
sequences

Input data Single-view computation

Signal
processing

2D orientation

Highlight
analysis

3D orientation

Segment
chaining

3D hair

Multi-view computation

Fig. 5.9: Overview of the hair capture process
The main part of the algorithm works from a single point of view: First the 2D orientation of the segments is
computed using signal processing techniques (Sec. 5.4.1 on page 140) and then, it raises into a 3D orientation
by analyzing the reflection of the light on the hair (Sec. 5.4.2 on page 148). Only the last step combines several
viewpoints to grow the strands one by one by chaining the segments together (Sec. 5.5 on page 151).

137

5.3. Overview Chapter 5. Capture of hair geometry

Intersecting both planes forms the 3D orientation of the segment. Linking these segments together
builds strands.

To form a full geometric models of a person’s hair, we propose in this paper a method to merge
the information from several image sequences with different viewpoints (Fig. 5.8 on the preceding
page). Figure 5.9 summarizes the whole algorithm.

Summary: We propose a method that exploits image sequences from a fixed viewpoint
with a moving point light source. There are three main steps in our algorithm: First, we
analyze the image content with signal processing techniques (Sec. 5.4.1 on page 140). Sec-
ond, we recover the 3D orientation of the hair segments by tracking the highlight position
(Sec. 5.4.2 on page 148). Third, we chain the segments together to form strands (Sec. 5.5 on
page 151). The first two steps work from a single viewpoint at a time. The collected data
are merged together during the last step.

5.3.3 Limitations

The method described in this chapter is widely usable. However, there are a number of assumptions
and some cases cannot be handled. Since we work from images, hidden hair strands are not captured.
For instance, curls that form toward the camera are partially reproduced: Only the visible half is
captured. Furthermore, our technique relies on the assumption that hair strands are thin and that their
orientation is visible in images. This implies that we cannot handle thick strands (like dreadlocks)
or short hairs pointing toward the camera. Lastly, there are inputs where our system would not work
well; for example, tangled hair might be unrecoverable because we work from the assumption that
there is one orientation per pixel.

138

Chapter 5. Capture of hair geometry 5.3. Overview

left-to-right sweep bottom-to-top sweep

top light

bottom lightleft light

right light

Fig. 5.10: Sample input sequence from a single viewpoint
The image sequences are composed of two sweeps: bottom to top and left to right. We show later that one would
not be enough to analyze the light reflection and that these two are sufficient. Each sweep has between 50 and
100 images of resolution 1024×768 (useful area is about 550×550) recorded at 7.5Hz.

139

5.4. Orientation of the segments Chapter 5. Capture of hair geometry

5.4 Orientation of the segments

The first step in reconstructing complete hair strands is to retrieve the 3D orientation of each segment.
To do so, we analyze the images from a single viewpoint. We proceed in two steps:

1. Signal processing retrieves the 2D orientation of the segments projected in the image plane

2. A highlight analysis raises this 2D data into 3D orientations.

5.4.1 Capturing the 2D orientation

Our technique starts by measuring the 2D orientation of each segment projected in the images. Since
a segment contains several fibers with the same orientation, it induces a local orientation in the image.
As illustrated by Figure 5.7 on page 136, this information gives a first indication on the actual 3D
orientation of a segment since it characterizes a 3D plane that contains the segment. Practically, this
steps boils down to a classical signal processing issue: What is the local orientation of an image?

Many approaches exist to give an answer to this question. Ziou and Tabbone [241] offer an
overview of edge-detection technique, and the signal-processing literature suggests many approaches
such as the oriented filters studied by Freeman and Adelson [71], the structure tensor of Granlund and
Knutsson [79], the curvelets of Candes and Donoho [33], the beamlets of Donoho and Huo [57], the
bandelets of Le Pennec and Mallat [132], etc. In general, these methods are proven “optimal” under
some theoretical hypotheses on the images (e.g. edge profile or differentiability of the iso-lines).

Unfortunately, we face a more complex problem. First, fibers are smaller than a pixel and in-
troduce aliasing. Moreover, hair lighting properties (self-shadowing, light scattering, etc.) make it
hopeless to predict any strong properties (e.g. the size of oriented segments or the shapes of edges).
Therefore, we do not rely on such a property and only assume that there is one orientation in each
pixel.

Our approach is not to propose a new filter but to choose for each pixel among a set of existing
filters the one that gives the most reliable results. Several existing methods [65, 79, 158] evaluate their
own reliability. This evaluation is filter-specific and cannot be compared across filters. Baker and
Nayar [12] compare filters on reference images regarding some known properties e.g. parallel edges.
As discussed before, hair images have few such properties.

Definition: Our evaluation is based on oriented filters [71]. A filter in this class is defined by its
kernel K designed to detect an x-aligned orientation. To test an arbitrary orientation θ in a image I at
pixel (x,y), K is rotated by θ (Kθ in short) and convoluted with I. It produces a score:

F(θ) = |Kθ ∗ I|(x,y)

The result of the filter is the orientation with the highest score:

θ̃F = argmax(F(θ))

In practice, there is only one maximum response when a filter is applied to real images. Hence, θ̃F is
uniquely defined.

140

Chapter 5. Capture of hair geometry 5.4. Orientation of the segments

We then observe the response curve of such a filter. We are seeking a peaked curve. If the curve
is flat, the result is uncertain because other results can almost fulfill the same criterion. The peakiness
of the curve is evaluated with its variance. Let’s define:

F(θ) = |Kθ ∗ I| filter response for orientation θ ∈]− π
2
,+

π
2
]

F̂ =
F

R

F
normalized version of F

d(θ1,θ2) = min(|θ1 −θ2|, |θ1 −θ2 ±π|) angular distance between θ1 and θ2.

The measure is then the classical variance formula:

V (F) =

+ π
2

Z

− π
2

d2(θ̃F ,θ)F̂(θ)dθ (5.1)

Comparison property: Since the variance only considers the normalized response curve of the ori-
ented filter, it is independent of the image and of the oriented filter. Therefore, different filters for
different pixels on different images can be rigorously compared together.

Moreover, this measure has these good characteristics:

• The normalization makes it insensitive to the scale of the filter and of the image, so an intensity
scale does not change our evaluation.

• When formula (5.1) is discretized, comparison can be done for any number of θ samples arbi-
trarily chosen as long as each sample is weighted with the measure function dθ.

Ishikawa [99] also introduces a statistical approach to chose among point-matching criteria. But
since his method is based on entropy, it is sensitive to the number and positions of the samples and is
invariant to a permutation of the response values, i.e., it does not distinguish whether the significant
scores are grouped or randomly spread. Yitzhaky and Peli [235] use a statistical analysis to aggregate
edge-detector results into a single edge map. But Forbes and Draper [68] show that this evaluation
is image dependent. And, it requires numerous filters to properly work whereas our technique gives
meaningful results with as few as two filters.

Practical Uses: For a given 2D location, several filters are tested with several parameters on images
with different lighting. V (·) gives an objective rating to select the “best” option. As we will see
in Section 5.4.1 on page 145, we can also use these values to compare and compute the similarity
between adjacent pixels to enhance our results.

141

5.4. Orientation of the segments Chapter 5. Capture of hair geometry

Summary: We use oriented filters to detect the 2D orientation of the hair segments pro-
jected in the image plane. We introduce the variance of the response curve of these filters
to evaluate their reliability. This objective measure makes it possible to chose the “best
option” between several filters, several sets of parameters and several images.

Practically, we compute the orientations for each pixel of the hair region. The value for
different pixels can be computed from different filters on different images. Intuitively, the
variance selects the “best” filter and the “best” lighting condition to determine the orienta-
tion at a given pixel.

Filters

We now detail the oriented filters that we use and their parameters. The first parameter is the scale at
which the images are analyzed. Figure 5.11 on the facing page shows that hair appearance significantly
varies with the observed wavelength. Frequency selection is done with a band-pass filter (a difference-
of-Gaussian filter in practice). Since we track hair strands which are very small, we only select the
short wavelengths of the image with a Gaussian band-pass filter centered on λ = 2 to be as close as
possible of the Nyquist sampling rate.

We test 64 orientations regularly spaced; this is a good trade-off between accuracy and computa-
tion time. We have chosen some oriented filters among the relevant existing ones (mainly edge and
line detectors). Table 5.1 gives the formulæ of the kernels we use. Canny [34] shows that these filters
can be decomposed into a detector profile that detects the signal variations and a projection profile
orthogonal to it, that accounts for the neighborhood of the examined point. See Figure 5.14.

 0

 0.1

0

π/2

π
θ

F(θ)

V (F) = 0.28
V (F) = 0.58

Fig. 5.12: Response curves of two different filters
applied to the same pixel.

Detector Profile: Depending on this profile, a filter de-
tects the orientation of different features. This has an im-
pact on the response curve (Fig. 5.12). Therefore several
profiles are used (plot in Figure 5.13). They are scaled
so that their pseudo-wavelength (i.e., the wavelength that
best describes their largest variations) equals the high-
pass wavelength (2 pixels in our case). For the Gabor
filter, from our experiments, we have found that testing

Gaussian first derivative (Canny) [34] −x e−
1
2 (x2+y2)

Gaussian second derivative (x2 −1) e−
1
2 (x2+y2)

Canny-Deriche [54] x e−|x|− 1
2 y2

Shen-Castan [194] − x
|x| e−|x|− 1

2 y2

Gabor [64] cos(ωx+φ) e−
1
2 (x2+y2)

Table 5.1: Oriented filters we use
Formulæ are given to detect a signal parallel to the y axis, rotation terms and scale factors are omitted for
clarity.

142

Chapter 5. Capture of hair geometry 5.4. Orientation of the segments

0 2 4 8 16 32 64 128

octave 1 octave 3 octave 5

λ = 2 λ = 8 λ = 32

original λ ≥ 8

Fig. 5.11: Frequency decomposition of an image
Top: Frequency profiles of the band-pass filters. Middle row: Three sample frequency bands a.k.a. octaves
(intensity is scaled to [0,1]). Bottom row: The original image and a low-frequency version (octaves 1 and 2
are removed). The high-frequency image (λ = 2) mainly represents the micro-structure of the image due to the
hair strands, while the low-frequency one (λ ≥ 8) presents its macro-structure due to illumination. The second
octave (λ = 4) is skipped because it still contains significant frequencies from the first one (observe the top
plot).

143

5.4. Orientation of the segments Chapter 5. Capture of hair geometry

-1

 0

 1

-1 0 1

Canny
Gaussian 2nd derivative

Canny Deriche
Shen Castan

-1

 0

 1

-1 0 1

Gabor (φ=π/2)

Gabor (φ=0)
Gabor (φ=π/4)

Gabor (φ=3π/2)

Fig. 5.13: Detector profiles
These are the shapes of the filter kernels along the axis in which we are looking for a signal variation (see the
detector profile on Figure 5.14). The profiles are scaled to a unit pseudo-wavelength.

four values for φ ∈ {0, π
4 , π

2 , 3π
4 } sufficiently covers the possible phases. We set ω = 1: smaller values

do not add significant improvements and larger values detect wider features (several strands side by
side) that do not correspond to what we track (the very local orientation of a segment) and degrade
the results.

detector axis

projection axis

Fig. 5.14: Detector and projection profiles.

Projection Profile: This accounts for the local environ-
ment. A Gaussian shape is generally used for this profile.
Canny [34] shows that its extension improves efficiency;
at the same time, he points out that orientation in real im-
ages is a local phenomenon and the extension cannot be
too large.

We have analytically computed the response of Canny’s fil-
ter on a perfect sine signal (Fig. 5.15 on the facing page).
It proves that the variance estimator subsumes Canny’s re-
mark: The more extended the profile is, the lower is the
variance (for an infinitely extended signal) – the better the
filter is.

In practice, the best results are reached with Gaussian profiles of standard deviations of 2, 4, and
8 pixels. Thus we test these three values.

Summary: Among the available settings, we first use a fixed frequency band within the
input images to deal only with the shortest wavelength. Then we use our variance-based
selection scheme to chose among several detector profiles and several stretching factors
while testing several images.

144

Chapter 5. Capture of hair geometry 5.4. Orientation of the segments

-π/2 -1 -0.5 0 0.5 1 π/2

1α =

10α =

F (θ)

θ

Fig. 5.15: Influence of the projection profile

The plots show the responses F(θ)of a Canny filter on a sine signal (x,y) 7→ sin(x). The projection profile
of the filter is stretched α times (from α = 1 for no stretching to α = 10 for a 10 times larger profile). This
graph illustrates that, the more extended is the filter, the more peaked is the response curve and the lower is its
variance. Details are in Appendix B.1 on page 175.

Data Enhancement with Bilateral Filtering

Hair geometry has a local coherence: Even if there are some discontinuities, in most cases, neighbor-
ing points are similar, thus interact analogously with the light. One consequence is the large extent
of the highlights on the hair surface. Information can be extracted from this coherence. If a point has
a poorly evaluated orientation, it can be “corrected” by the neighboring points that are more reliable.
If these neighboring points have the same appearance in the images they are likely to have the same
geometry.

�

�

	

How to [Compute a mean with
2D orientations]: To compute the
weighted mean of several 2D orien-
tations, the orientation θ ∈ [0,π[with
weight w is mapped to the complex
number c = wexp(2iθ). The reverse
mapping to the orientation is then θ =
1
2 arg(c). Our system does not suf-
fer from degenerated cases (c ≈ 0)
for it averages only coherent values.
See [222] for more details.

We locally spread the information according to the reliability
of the measure (i.e. its variance) and the appearance of the pixel in
the sequence. We apply a treatment inspired by the bilateral filter
introduced by Tomasi and Manduchi [211]. A diffusion process
(such as the approach of Tschumperlé and Deriche [215]) could
also be used; our choice is motivated by recent results such as the
work of Durand and Dorsey [58] and by the theoretical properties
demonstrated by Elad [60].

The resulting orientation op at point p is a weighted mean over
the neighborhood Np:

op = ∑
q∈Np

ws(p,q)wv(p,q)wc(p,q)oq

The weight of oq is split into:

• A spatial term ws that considers the location of p and q.

• A variance term wv that accounts for the reliability of the measure.

• A color term wc that accounts for the color similarity in the sequence.

We use Gaussian functions for each of them. The first one uses the Euclidean distance:

ws(p,q) = exp
(

−||p−q||2
σ2

d

)

145

5.4. Orientation of the segments Chapter 5. Capture of hair geometry

For the variance term, we rely on the ratio ρ(p,q) =
Vq

Vp
to define:

wv(p,q) = exp
(

−ρ(p,q)

σ2
ρ

)

The appearance similarity is evaluated from the maximum color difference Γ between p and q in the
image sequence. This comparison must only account for illumination similarity disregarding other
phenomena like glints that are related to the fiber structure and not to the strand geometry [147].
Therefore, Γ is computed on the low frequencies of the images (Fig. 5.11). This leads to:

wc(p,q) = exp
(

−Γ2(p,q)

σ2
Γ

)

zoom on a sample image Sobel

unenhanced enhanced

Fig. 5.16: Orientation result on a real hair
We compute an orientation for each pixel but displaying them all would clutter the picture. So we show flow
lines from 2D orientation fields. Upper-left: A closeup image from the sequence. Upper-right: Results of Sobel
filter. Lower-left: Our unenhanced results before the bilateral filter. Lower-right: Same results enhanced by the
bilateral filter.

146

Chapter 5. Capture of hair geometry 5.4. Orientation of the segments

original image

result with entire pipeline

result without bilateral filtering

result from single filter with bilateral filtering

Fig. 5.17: Influence of the difference treatments on the final result
Upper-left: Original Image from sequence. Upper-right: Result from selecting among many filters (different
pixels can use different filters) but no bilateral filtering; note the noisy aspect of the image. Lower-left: Result
from using single Gabor filter on a single image with bilateral filtering; note the large error on the right part
and the wrong highlights on the top and in the middle region. Lower-right: Result from selecting among many
filters with bilateral filtering.

�

�

	

How to set [Parameter sets and weights]: We have
tested several sets of parameters on the reference image
shown in Figure 5.18 on the following page. From these
experiments, we have selected the set with the highest
precision. We have performed a similar choice for the
weights of the bilateral filter.

Figure 5.16 on the preceding page illustrates the
significant improvement brought by this treatment.
Note that it preserves the orientation discontinu-
ities due to overlapping strands.

In our experiments, the best results are
achieved with: σd = 3, σρ = 1 and σΓ = 0.1.

147

5.4. Orientation of the segments Chapter 5. Capture of hair geometry

Comparison and Validation

Figure 5.16 on page 146 compares the orientations computed by the Sobel technique used by Grabli
et al. [78] with our unenhanced results and with the same results enhanced by a bilateral filter. So-
bel fails to provide any satisfying orientations whereas the enhanced results are convincing. Fig-
ure 5.17 on the page before show the importance of using various filters and bilateral filtering on the
final result of the pipeline.

The method is further validated with a reference image of known orientations. The result of this
experiment is shown in Figure 5.18. We have made a numerical evaluation of: the Canny filter in its
classical use (the gradient is estimated from the x and y first derivatives of an isotropic Gaussian, the
pseudo-wavelength is set to 2), the Sobel filter, our unenhanced and enhanced method; the mean errors
for these filters are: 43o, 17o, 2.9o, and 2.3o, respectively. It outlines the precision of our method and
shows that our bilateral filtering is a real enhancement (20% better) and not only visually pleasing.
More figures are given in Appendix B.2 on page 177.

zoom on original image Sobel enhanced variance

Fig. 5.18: Validation of the orientation measure on a reference image

The original image is composed of 4 radial sine signals centered on the 4 corners with wavelength λ = 2 (dotted
lines are the symmetry axes of the image). The image is aliased by itself because of the short wavelength; there
may be additional artifacts due to your printer or screen. Orientation measures are actually dense (1 per
pixel) but only some flow lines are shown for clarity. The Sobel filter produces results too curved whereas
our enhanced (using variance-based filter selection and bilateral filtering) data retrieve correct values. The
right image shows the reliability (variance: white for 0, black over 1) of the filter selected by our method. As
expected, it distinguishes the discontinuities and circle centers that make the measure less reliable.

Summary: Experiments show that our variance-based selection yields especially accurate
results on both synthetic and real pictures. Both visual and numerical evaluations confirm
this performance.

5.4.2 Capturing the normal vector

From our 2D study, a given segment is constrained to lie in a plane (Fig. 5.7 on page 136). We now
characterize its orientation inside that plane by analyzing its appearance under varying illumination.
This relies on a minimal knowledge of the fiber model from Marschner et al. [147]: The specular peak

148

Chapter 5. Capture of hair geometry 5.4. Orientation of the segments

hair under different light directions

hair
segment

in
te

ns
ity

light angle

θ1

θ2

θ3

θ1

θ2

θ3

l

n

v

Fig. 5.20: Determination of a vector normal to a hair segment
For each pixel, the maximum intensity in the image sequence characterizes the peak reflection configuration for
the underlying segment. This directly leads to a normal vector: n = v

||v|| −
l

||l|| .

root tip

tilted
cuticle
scales

elliptical
cross section
axis ratio a:1

α2α
> 2α

2α

R
TRT

TT

< 2α
surface roughness β

interior:
refrac. index η
absorption σa

Fig. 5.19: Hair fiber model of
Marschner et al. [147]. Our study only re-
lies on the existence of a direct reflection (R). [By
courtesy of Steve Marschner]

occurs in the standard reflection direction but the surface
is slightly tilted toward the root because of the cuticles
(see Figure 5.19).

Therefore, from the intensity curves (i.e. intensity
as a function of the light position) we can recover the
light position corresponding to maximum reflection. As
explained by Lu et al. [142], this gives a normal to the
hair fiber (see Figure 5.20).

By fixing the viewpoint (and the subject) we can
observe the same segment under varying lighting con-
ditions. Consider a light describing a circular motion
around a segment modeled as a cylinder. If the plane
of the light motion is not perpendicular to the segment
axis, we are guaranteed to have a specular highlight. If
the light motion is perpendicular to it, there is no intensity peak because we are always in the specular
region. To avoid this, we capture images with the light moving in two orthogonal planes (from left-
to-right and bottom-to-top). Thus, we are sure to have a useful sequence. We select the one whose
plane has the lowest angular deviation with the computed 2D orientation. For example, if the segment
is vertically aligned, we choose the bottom-to-top path so that the trajectory is never orthogonal to the
segment. Figure 5.21 on the next page shows sample intensity profiles that are obtained from these
light paths.

This technique still holds for an elliptical cylinder hair model without modification, but it would
need to compensate for the cuticle angle by slightly rotating the computed segment toward its root.
However, we have found that the results are satisfactory without this offset and in practice, on some
complex hairstyles, the root direction may be unknown.

149

5.4. Orientation of the segments Chapter 5. Capture of hair geometry

 0

 1

−π/2 0

 0

 1

−π/2 0 π/2

 0

 1

−π/2 0

 0

 1

−π/2 0

 π/2 π/2

 π/2

Left-to-right light path Bottom-to-top light path

Fig. 5.21: Intensity plots for two segments with different orientations
The light paths orthogonal to the segments’ axes are flat (with potentially the 2 caustic lobes predicted by
Marschner et al. [147]) and give no information about the normal. The other paths have a “diffuse+specular”
response that characterizes the normal. The choice between both paths is made from the 2D orientation of the
segment. The bottom-to-top path is limited by the floor.

One important caveat is that the light source does not describe a full circle. Our measurements
would be impaired. Forward scattering would occur if the segment were between the light and the
camera. We therefore limit the light-view angle to lie between ± π

2 (For the vertical light path the
bottom angle is limited by the floor to ≈ −20o). This bounds the detectable normal between ± π

4 ,
and still addresses the case of a great majority of the visible segments. The segments which have
normals outside this interval generally lie near the silhouettes and will be better captured from another
viewpoint.

Summary: Tracking the highlights through the image sequences characterizes a light po-
sition corresponding to the mirror reflection configuration. In that case, since the camera
position is known, it is straightforward to compute a vector normal to the considered seg-
ment.

For each segment, this normal defines a 3D plane that is intersected with the plane coming
from 2D analysis. The resulting line is the 3D orientation of the segment.

150

Chapter 5. Capture of hair geometry 5.5. Practical implementation

5.5 Practical implementation

In the previous section we have shown how to build a 3D orientation field (sometimes called line field
in the literature) from a given image sequence from a given viewpoint. To build a full model of a
person’s hair we need multiple viewpoints. For our initial implementation, we use four sequences:
right, left, back, and top. We register these four sequences to build a 3D orientation field that covers
the whole head. The final part of the algorithm is to grow strands following the 3D orientations. The
produced strands are dense enough to form the visible part of the hairstyle. As previously mentioned,
the hidden part of the hair is not recovered by our system.

5.5.1 Viewpoint registration

To generate hair throughout a head, we need a 3D orientation field that covers the whole head. We
use a simple setup to capture image sequences using a single camera. Hence, we need to register
the different viewpoints on a common coordinate system (the intrinsic parameters of the camera are
known and constant). A more sophisticated setup using multiple cameras could obviate this step.

�

�

	

More about [Acquisition system]: We have used a
home-made system and we consider it only as a proof
of concept. An ideal setup would be composed of:
• A head support to avoid the head moves (e.g. dentists

have such systems for tooth X-ray).
• Several fixed cameras (at least four but more would

be better) to capture all the viewpoints at once. These
cameras would finely be calibrated off-line.

• Finally, we see two main choices for the light: ei-
ther a robotic gantry or several fixed bulbs. The for-
mer one permits almost continuous light paths but
would be less precise since the light moves. The lat-
ter restricts the light positions but they are accurately
known since off-line calibration is possible.

Our registration is done manually: An el-
lipsoid is fitted to bound the hair volume. In
practice, a bounding ellipse (the projection of
the ellipsoid into the viewing plane) is fitted for
each viewpoint. Using the camera parameters
and the ellipses, the ellipsoid is characterized and
the cameras are located relatively to it (see Ap-
pendix B.3 on page 179). The camera-to-image
precision is in the order of 1mm (all the previous
steps rely only on this one) whereas the registra-
tion between the different viewpoints is in the or-
der of 10mm (impacting only the thin overlapping
regions, see Figure 5.22 on the next page).

5.5.2 Hair growth

For each view, we define a hair region (mask) which we use to compute the visual hull [130] of the
hair volume (see Section 2.2.2 on page 17 for details). We limit the influence of a viewpoint to half of
the volume because the left viewpoint would interfere with the right one – for instance, the boundaries
around the ears may not match. The visual hull is only used to ensure that the synthetic hair lies inside
the original hair volume.

The bounding ellipsoid we used for the viewpoint registration is then shrunk to fit inside the hull
to approximate the skull. More precisely, this will be the surface of the starting points of the visible
strands. When the hair is thick, this surface will be slightly bigger than the real skull. Alternatively,
another method for acquiring or approximating a person’s skull could be used (this point is discussed
later in Section 5.7.1 on page 159).

To form a strand, a point is picked on this skull. From it, we iteratively chain the 3D segments
(Fig. 5.23). The 3D segment at point p is computed by projecting p into the visible image planes. The
3D orientation at the projected point is computed in one of two ways:

If only one camera “sees” the point. The 3D segment is straightforwardly computed with a length
that corresponds to the back-projection of the image pixel (≈ 1mm); its direction is the one that is

151

5.5. Practical implementation Chapter 5. Capture of hair geometry

most similar to the last segment added to this strand (no sharp angles). The initial direction of the
strand is chosen to match the general hair direction e.g. up-to-down for most long hairs. If no such
direction exists, the direction pointing outside the skull is used.

Alternatively, if more than one camera sees the point, we limit the use of grazing lines of sight,
because corresponding normals may not be accurate as previously discussed. We select the two views
with the lowest grazing angles ψ (see Figure 5.22). We then average the corresponding orientations
weighted by cos2(ψ). The desired behavior for this blend function is favoring the single-view data

�

�

	

How to [Compute a mean with 3D
orientations]: In 3D, the sum of more
than 2 orientations is not defined. The
sum of 2 orientations is defined by
considering their common plane and
the sum of 2D orientations within this
plane.

that enjoy an accurate calibration for both the subject and the
camera are fixed. It should also provide a smooth transition be-
tween the different views but on limited areas since the camera-
to-camera calibration is likely to introduce additional errors (espe-
cially in our home-made system). Figure 5.22 shows the influence
of each view and confirms that 4 views (top, back, left and right)
correctly cover the hair volume. We can also check that the 3D
information for pixels is blended between different views only in
limited overlapping areas.

grazing angle grazing anglegrazing angle

back view top view left view blending weights

Fig. 5.22: Grazing angles relatively to three views
The color scale goes from white (0o) to black (over 90o). The blue and red lines correspond to 45o and 90o. The
lower-right corner shows the blending weights deduced for the three views (blue: left, green: back, red: top).

A strand is ended if it touches the visual hull boundary or if it reaches a certain length; the latter
being more common. To reduce unnecessary computation, we end the hair strand if more than a
number of them pass over a pixel (10 segments/pixel in practice). Depending on the model, we
generate from 30,000 to 70,000 strands.

Though it is a robust process, some isolated segments may still be wrongly oriented. Even if their
number is limited, their visual effects may be noticeable. Therefore, in a post-process we reduce the
highest curvatures of a strand with a diffusion process on the vertices p for which the curvature κ is
higher than a threshold κ0. The strand evolves according to (with s the curvilinear abscissa):

∂p
∂t

=







∂2p
∂s2 if κ > κ0,

0 otherwise.

152

Chapter 5. Capture of hair geometry 5.5. Practical implementation

ψ

visual
hullhair stopped

due to hull

hair stopped due to length
grazing
angle

starting
point

skull

segments

normal to
the skull

next segment
to be added

Fig. 5.23: Hair strand growth
The starting point is picked on the skull, segments are then added one by one. The influences of the cameras are
weighted by their grazing angles.

until it stabilizes. In practice, we use κ0 to bound the curvature radius over ≈ 10mm. We also limit
the number of iterations to the number of segments within the strand to avoid modifying too much the
original captured geometry.

Summary: The last step to create a whole head of hair is to build strands from the 3D
segments we have previously computed. This step is the one that aggregates the data from
the different viewpoints.

The strands are grown by chaining the segments together. When a segment is seen by several
cameras its orientation is the average of the value coming from these views to produce
smooth transitions. A strand is ended when it reaches the visual hull or a threshold length.

153

5.6. Captured hair results Chapter 5. Capture of hair geometry

5.6 Captured hair results

We first present the setup we use to capture hair. We then present and discuss our results.

5.6.1 Technical details

Setup

To acquire the image sequences, we use a setup in which the subject is able to keep his or her head
fixed for several seconds. A fixed video camera captures images at 7.5 frames per second with a
1024×768 resolution (in practice a region of ≈ 550×550 for the hair because the mirror balls must
visible). A point light source aimed at the subject’s hair is moved while its distance to the head is

mirror balls
(for light tracking)

head
support

distance guide
point light

source

video camera

Fig. 5.24: Our simple setup to capture a subject under moving
light and fixed camera.

constrained (≈1 m) and its angular position is
known thanks to 2 mirror balls. Figure 5.24
shows a picture of our setup. To acquire several
viewpoints, the person turns her head.

In a few seconds, hundreds of images are
taken. Thus we can assume that the hair is
not moving throughout the sequence. For each
viewpoint we currently segment the hair region
manually.

Four viewpoints are used: top, right, left,
and back. This is a minimal set for reconstruct-
ing the whole model of hair. A more sophisti-
cated setup with more cameras would do this
in one pass.

Rendering

We use the rendering model of Marschner et al. [147] for our visual comparisons. The parameters are
determined to roughly match the original color of the hair. This model is restricted to a single fiber and
does not account for hair-to-hair shadowing, scattering, etc. A neutral head is placed under the hair to
provide a consistent image. Each strand is rendered by anti-aliased GL lines; the color is computed
at each vertex. This rendering step is only provided for illustration purpose: highlights convey useful
visual cues about the hair geometry. We do not claim any contribution about hair rendering.

Difficulties

For some persons, the skull is poorly approximated by an ellipsoid (it would require a more sophisti-
cated shape such as a super-quadric); for long-haired person, it may also be hard to guess it under the
hair. Figure 5.25 shows an example of this problem; the ellipsoid cannot perfectly match both side
and back silhouettes. We have chosen to better approximate the side profile, thus the back profile does
not match; however, the hairstyle is still correct.

Acquiring data for long hair requires special care: Hair strands are likely to move when the subject
turns for a new viewpoint – especially for the sequence from the top. In this view, the hair silhouette
is no longer consistent with the other views; we ignore it for the hull computation. To minimize the
potential perturbation, the blending weights of the top view are halved. These slight changes overcome

154

Chapter 5. Capture of hair geometry 5.6. Captured hair results

these difficulties with a limited impact on the overall quality. A complete system with several cameras
would eliminate this issue (see the box on page 151).

The hair falling from the top of the head over the top of the face are captured with a lower precision
because we do not have a front view. An additional camera should ameliorate this point.

Timing

The acquisition of the 4 sequences takes about 5 minutes. Segmenting the hair areas takes 5 to 10
minutes. Running the filters and selecting the lowest variance lasts about 1 hour per view point (the
convolutions involve fast Fourier transforms on large domains); we found that using nine images rep-
resentative of each sequence yields good results. All the other steps (light tracking, segment chaining,
etc) takes only a few minutes. (We use an Intel-Xeon 2.4 GHz.)

5.6.2 Validation

Overall accuracy

Ideally we would like to compare our captured model with the ground truth which is obviously un-
known. A useful consistency check however involves verifying that a rendered image sequence using
the light path from the capture setup on our hair model creates similar reflection patterns. So, for each

Fig. 5.25: Capture of a black tangled hair
Left: comparison with original view. Right: a view different from the input sequences. This example demon-
strates the interest to exploit several images to compute the 2D orientation. With only one picture, a large
portion of the hair is too dark. Exploiting several images and hence several light position makes possible to
always work on a well-illuminated image.

155

5.6. Captured hair results Chapter 5. Capture of hair geometry

pixel we find the angle in 3D space of the light direction corresponding to the specular peak in the
synthesized sequence and compare it to the angle in the original sequence (Fig. 5.28; we compare
an image sequence like Fig. 5.27 on page 158). The actual corresponding normal error is half this
angular error (from the classical mirror reflection formula).

For example, a 5o error at a pixel means that the highlight in the synthetic image occurs at a light
position that is 5o different from the real sequence.

 0

 10

 0 30 60 90

error (in degrees)

%
of

pi
xe

ls

Fig. 5.28: Angular specular error distribution.

We find a mean error of 13o and median error of 6.4o.
This difference shows that there are a few large errors.
Those are mainly near the silhouette because of hair-to-
hair forward scattering which is not rendered. This is con-
firmed by only considering the front facing region (inside
the blue line in Figure 5.22): the mean and median errors
drop down to 7.6o and 5.0o, respectively.

This error seems reasonable since it sums the errors
from the whole process (setup calibration, blending, no-
cuticle approximation, etc). Moreover a visual comparison
conveys a convincing similarity. Figure 5.27 on page 158 shows one such result, notice the highlights
at the back and near the top of the head are aligned.

Fig. 5.26: Capture of a long wavy hair
Left: Comparison with an original view. Right: A view different of the input sequences. We encounter special
difficulties for this hairstyle because of our setup. Changing the head position makes the hair strands move.
However, a production-grade system would overcome this difficulty.

156

Chapter 5. Capture of hair geometry 5.6. Captured hair results

Types of hair

Our technique is able to work on a wide range of hairstyles and colors as illustrated by Figures 5.25, 5.26
and 5.27,. Large and small curls and waves are accurately captured. Black hair is challenging because
the strands are only visible in the highlights. Nonetheless, our method is robust enough to handle it,
even with complex small features.

157

5.6. Captured hair results Chapter 5. Capture of hair geometry

Fig. 5.27: Side by side comparison
The captured geometry is rendered under the same lighting condition as the real images on the right. Note how
the reflection patterns are similar.

158

Chapter 5. Capture of hair geometry 5.7. Discussion

5.7 Discussion

5.7.1 Approximating the skull

Determining the starting point of a strand is a crucial issue. In our current implementation, we rely
on the user to provide an ellipsoid which is sometimes a poor approximation of the skull shape.
Therefore, this point is to be improved to construct a production-grade system.

Hairstyle transfer

A first remark is that even with a poor approximation of the skull, our technique reproduces the correct
hairstyle. In other words, our technique is robust enough to handle slight deviations of the skull shape
while still capturing the overall aspect of the original hair. We may exploit this feature to “transfer” an
hairstyle to another skull: Currently, we first create the hair geometry (a set of curved lines) and then
fit a generic head model to render complete model (head+hair). As a consequence, the head shape
depends on the hair geometry. It may be useful to inverse the process: Given a head model, produce
a hair geometry adapted to it. This could be done by using the head 3D model as the skull shape on
which the strands are grown. This would produce a hairstyle that globally matches original one while
being tightly adjusted on the head 3D model.

Better shape

Hairstyle transfer can be useful but does not address our main problem: capturing the original shape
of the skull. The difficulty of this task is that what we call “skull” is not the skin-covered bone that
supports the hair roots. Our “skull” is the surface formed by the starting points of the visible strands.
Hence, X-rays are not adapted to retrieve its shape. Thick hairstyles are especially difficult because
the hidden part of the strands is important. It creates a large difference between the bone skull and the
surface we seek.

We believe that the solution is to use an image-based approximation of this “skull”. First, one
should notice that retrieving an accurate shape is almost equivalent to solving the whole hair-geometry
problem. It would be then sufficient to compute the 2D orientations and to project them on this surface.
Unfortunately, as previously discussed in the Previous Work, producing an accurate surface is hard.
Hence, we target only an approximation.

Multi-view techniques A first option is to use a technique such as the ones reviewed in Sec-
tion 2.2 on page 8. But, from our experience, these techniques hardly produce precise results on hair.
Their accuracy is impaired by complex phenomena that are both view-dependent and high frequency.
These methods currently produce plausible results whose accuracy has still to be evaluated.

Visual hull A second option is to use the visual hull. Its main advantage in our context is its
robustness to view-dependent effects. But it suffers from the concavities that are not captured. It also
requires numerous view to produce a satisfying geometry (without sharp edges).

We think that if the approximation is good enough, the edges can be smoothed away. A shrunk
version of the visual hull should be a satisfying approximation of the skull. The concavities are so
penalizing because hair volume seldom has large ones. Numerous images should be used. A correct
setup would at least use a 45◦ sampling of the view sphere. This guarantees at most 45◦ edges. Note
that our four-camera setup is 90◦ sampling that hinders this approach.

159

5.7. Discussion Chapter 5. Capture of hair geometry

Summary: Estimating the “skull” is a complex issue since what we seek is not the classi-
cal skull but the surface formed by the points where the strands become visible. It therefore
challenges techniques such as X-rays that would capture the real skull.

The robustness of our technique can be exploited to use any skull shape as a support for the
geometry. This would allow to transfer a given hairstyle on a head model different from the
original one.

But to better match the original hair geometry, we need to use a more precise approxima-
tion than our simple ellipsoid. We see two main options. On one hand, Computer Vision
techniques recover plausible shapes but still lack of accuracy on this complex task. On the
other hand, visual-hull technique is more robust but requires a more sophisticated setup.

5.7.2 Orientation evaluation and a priori knowledge

In our approach, we introduce the a priori knowledge of the local coherence of the segment orienta-
tions. It results in the bilateral filtering. This step is separated from the orientation measure i.e. we
measure a dense orientation field and then we apply a bilateral filter.

Remember our surface reconstruction technique (Chapter 2 on page 5): we measure a dense depth
field while accounting for an a priori piecewise smoothness. The difference is that the prior is directly
integrated in the measure.

The first remark is that, opposite to surface reconstruction, the orientation problem is well-posed.
Hence, regularization (the prior in our case) is not mandatory to properly solve the problem. However,
using an integrated approach may be interesting.

The bilateral filter has an important drawback: It does not estimate how consistent the newly
assigned value is. The new value is not tested on the input images before being assigned. Because of
the separation, the bilateral filter ignores the filter response curve; it “knows” only its variance. On the
other side, an integrated scheme would account for the filter response of the potential new orientation.
Hence, such a scheme is likely not to assign an inconsistent value.

But an integrated approach raises a hard question. Since it considers the actual value of the filter
response and handles several pixels at the same time, it somehow “compares” responses from different
filters. A straightforward comparison is not rigorous since it deals with different entities. A solution
would be to work from a single filter and a single image but the loss of information would be too
important. Therefore, studying the comparison issue would be an interesting problem for future work.

To conclude, one has to remark that our current system does not impair the final result and already
provides accurate results. Hence, the expected improvement would essentially be the ability to work
from a more limited input (less images).

160

Chapter 5. Capture of hair geometry 5.7. Discussion

Summary: Our orientation measures are post-processed by the bilateral filter to account
for the local coherence of the hair strands. This treatment is applied afterward without eval-
uating the relevance of the newly assigned values and, therefore, may induce inconsistency
relatively to the input images.

To address this issue, we may use an approach similarly to our surface reconstruction tech-
nique described in Chapter 2. On one hand, it would better integrate the local coherence
within the process. On the other hand, preserving the advantages of the presented method
(selection between several filters and several images) does not appear straightforward. It
would be an interesting direction for future work.

Since the current results are already accurate, the potential gain would be the possibility to
work from less images.

161

5.8. Conclusions Chapter 5. Capture of hair geometry

5.8 Conclusions

We have presented a technique to capture the real geometry of a person’s hair from multiple images.
This system uses the complex reflectance properties of hair to retrieve its 3D geometry. To take
advantage of this light interaction, we introduce a way to compare results from different filters and
parameters. The variance method links signal processing and statistics to reach precise and robust
measures. The theoretical foundation of this approach has been studied and shown to be related to
other classical methods. We have also exposed how to exploit the light reflection of hair to extract
valuable 3D information.

As a proof-of-concept, we propose a simple practical setup that exploits different image sequences
of a real person and show how to blend their results to generate a full hair geometry. This experiment
reaches satisfying results that justify the conception of a more sophisticated system. Several cameras
can be used at the same time with a light source on a robotic gantry. Such a setup would obtain a
high level of precision that could open new research directions. For instance, it could be possible to
densely measure the appearance properties of the hair to retrieve the parameters of a scattering model.
We believe that it would also be possible to acquire such a model from a single sequence. Because this
valuable knowledge would permit to work with less information, e.g., less images and light positions,
one can conceive the motion capture of hair.

It would also be interesting to adapt this technique to the other methods that manipulate hair. Our
poly-lines cannot be directly used for efficient animation and editing. Creating specific data structures
from images for these tasks like wisp hierarchy [15, 115] or fluid flow [80, 81] is a promising direction
to explore.

From a theoretical point of view, the study of filters also requires further attention. We have
presented and validated some parameters that we use in our filter selection. Future work will look
at other parameters. Since it only exploits the response curves, it is possible to apply this selection
scheme to other fields. The only requirement is, for a given measure, to have several “sensors” that
provide a response curve.

162

6
Conclusions

In this dissertation, we have addressed three main tasks involving data extraction from images:

• The surface reconstruction from several points of view.

• The face relighting from a single image and a 3D model.

• The capture of hair geometry from multiple light positions.

Our first remark is that these three points illustrate the variety of the information that can be exploited
in images: contour, highlight, texture, color, shading, etc. Furthermore, this information becomes
even richer when the evolution between several images can be observed.

We have also shown several useful configurations: fixed or moving camera, fixed or moving light,
images alone or image and 3D model. We propose a dedicated algorithm for each setup that extracts
a dense information.

From these case studies, we propose a few general conclusions.

Redundancy is useful

In the work on surface reconstruction and hair capture, we use numerous images of the same object
with a limited variation between two consecutive images (small camera or light move). Even if the
acquired data are redundant, we are convinced that this redundancy contributes to the accuracy of the
presented results.

Exploiting redundancy makes our algorithms robust i.e. they can work from non-perfect input
data. Since the information is “reproduced” several times in the data, we are able to compensate for
potential erroneous values. So we can “trust” more the input data and use less a priori knowledge to
drive our processes. We are “closer to the original data” because we can detect the outliers. This ro-
bustness is all the more important that we target a dense information: We have to produce a reasonable
result even for the parts that are poorly represented in the input images.

The completeness and the high level of detail of the surface and of the hair are an evidence of this
situation: We produce a good match with the real objects.

6.1. Future work Chapter 6. Conclusions

Information is visible

In all the presented pieces of work, the extracted information is “visible” in the input data. If we play
the sequence of images used for surface reconstruction as a short movie, everyone perceives the 3D of
the scene. For face relighting, everyone evaluates at first sight the skin state between matte, dry and
wet. And it is easy to follow the hair strands with a pen within our hair sequences.

This remark has encouraged us to push forward our study even in the hardest case. For instance,
for the hair capture, it was not clear from the original images that we can recover a dense orientation.
But once, we have seen the high-frequency image with clear lines and almost no highlights, we were
convinced that “if we see these lines, we can get them”.

This fact might not be always true. Remember the “flat cube” (Fig. 2.1 on page 6): We guess a
three-dimensional shape whereas there is objectively nothing 3D in there. However, in that case, it
is possible to introduce the a priori human knowledge based on conventions about parallel lines and
angles to retrieve the 3D information.

Nonetheless, it might exist more complex cases that we cannot work around even we “see” the
information. But we are convinced that these cases are rare and deserve to be studied: Our brain
extracts the information, hence there is a chance to find a solution.

Appropriate structure is important

We have already discussed this point for the surface reconstruction issue: We are convinced that a
3D formulation should be used when a 3D shape is targeted. We also think that reconstructing lines
for the hair geometry is an crucial choice that paves the way toward broader applications (reflectance
acquisition, geometry edition and animation) and is more appropriate than a textured surface. And
about the face relighting, understanding the influence of the parameters leads to determining a mean-
ingful set of parameters and to designing a robust extraction scheme. Manipulating an appropriate set
of parameters makes possible to robustly extract a complete reflectance model from a single image.

In this dissertation, we present methods aiming at reconstructing the original object disregarding
the use of the extracted data (except the relighting part that targets efficient rendering): We want a
surface that matches the one from the real objects, a set of hair that copies the original hairstyle.
These data are somehow “all purposes” data; they can be used for any application, potentially after
some treatment. It would be interesting to study the creation of “targeted” data that accounts for the
application. We detail more this idea in the Future Work section.

6.1 Future work

Beyond the future work of each presented section, we can propose a few general insight about the
future research following our work.

Volumetric data First, it would be interesting to study other cases. In that way, Reche et al. [178]
propose a study about tree reconstruction: Trees can be seen as non-opaque material. This leads
to a volumetric reconstruction which differs from our surface and line approaches. Following this
direction, we may consider other volumetric entities such as translucent objects (e.g. glass, bottle) but
also smoke and water. Applications would be inserting a digital actor within a real cloud of gas or
making possible complex interaction between real water and digital entities.

164

Chapter 6. Conclusions 6.1. Future work

Influence on the environment Another interesting direction is pointed by Chuang et al. [40] who
capture the shadow of an object under the sun and adapt it to a new scene. This work is inspiring in
that it does not capture the object but rather its effect on the environment. Goesele et al. [73] also
propose a first step to measure a directional light. It would be interesting to extend these techniques
to other “exiting” effects such as a general light source or more complex global illumination effects
(caustics, soft shadows, etc). This could lead to useful applications such as improved relighting or
better inclusion of the captured objects into a new scene.

“Targeted” data Beside considering other scenarii, we can also study “targeted” data as already
mentioned. By that, we mean that we could account for the future use of the extracted data during
the capture process. In this dissertation, only the face relighting technique follows this approach.
Considering surface reconstruction, it would be for instance result in creating NURBS surfaces with
control points if the geometry is to be further edited by the user. A proper approach will be to directly
determine the NURBS from the images and not to fit them on previously extracted data. Such a direct
link is more likely to produce consistent results. If the surface is to be rendered, then considering
dedicated data structures like billboard clouds [59] is a suitable choice.

Applying this “targeted” approach to hair leads to consider structures dedicated to animation such
as wisp hierarchy [15] or to editing such as fluid flow [80]. Note that our current process is close
to a fluid structure when we are dealing with 3D orientation field. On the other side, creating an
image-based wisp hierarchy appears more challenging.

Closure

As a closure, we would say that this research field is broad and challenging. Great progress is yet
to expect and we feel that we are getting closer and closer of production-grade algorithms. We have
shown that complete and dense information can be obtained from images. Usability is still to be
improved (e.g. automatically setting all the process thresholds and weights). However, the commu-
nities of Computer Vision and Computer Graphics have come closer and the results are numerous
and promising: Numerous researchers propose three-dimensional approaches based on images: 3D
photography [154], 3D video recorder [232], 3D TV [151], etc. We are convinced that this research
field will soon spawn new massively available interesting devices.

165

6.1. Future work Chapter 6. Conclusions

166

A
Technical details and perspective

on surface reconstruction

A.1 First-order and second-order regularization terms

We here consider the problem of the functional design for surface reconstruction (see Section 2.3 on
page 37). We demonstrate in the discrete case that using a first-order regularization term is equivalent
in some sense to a second-order term.

For remaining of the discussion, we consider two discrete non-negative smoothing terms defined
over a surface S : a first-order one S

d
1 and a second-order one S

d
2. We show in this section that they are

equivalent in the sense that there exist two positive constants c and C such that for any surface:

c S
d
1 ≤ S

d
2 ≤ C S

d
1 (A.1)

The right part demonstrates that bounding S
d
1 also bounds S

d
2, and that minimizing S

d
1 lowers the bound

on Sd
2. The left part shows the converse result which is less interesting in our case.

Formally, we work with a surface S parametrized by z = f (x,y) on a rectangular domain D (ex-
tension to more general domains is straightforward). We assume that D has a finite area as it is always
the case in practice. The x and y axes are discretized into {x1, . . . ,xnx} and

{
y1, . . . ,yny

}
.

To define the smoothing term, we originally use α functions to deal with discontinuities (see
Section 2.3 on page 37). However, in the discrete case, the maximum and minimum of these functions
are defined. For the sake of clarity, we do not address the case for which the minimum is zero but
it can be added by interested readers. So we have: 0 < minα(·) ≤ α(xi,y j) ≤ maxα(·). Hence,
we can omit the α functions in the definition of Sd

1 and Sd
2 for they would only affect the constants in

equation (A.1).

A.1. First-order and second-order regularization terms Appendix A

We use the following notations:

∆x f (xi,y j) = f (xi+1,y j)− f (xi,y j)

∆y f (xi,y j) = f (xi,y j+1)− f (xi,y j)

∆xx = ∆x∆x ∆yy = ∆y∆y ∆xy = ∆x∆y

First study: We first prove the equivalence in a simpler case. We define S̃
d
1 and S̃

d
2 (for clarity

purpose, we do not handle the index problems due to the boundaries of D):

S̃
d
1 = ∑∑

D

(∣
∣ f (xi,y j)

∣
∣+
∣
∣∆x f (xi,y j)

∣
∣+
∣
∣∆y f (xi,y j)

∣
∣
)

S̃
d
2 = S̃

d
1 + ∑∑

D

(∣
∣∆xx f (xi,y j)

∣
∣+
∣
∣∆yy f (xi,y j)

∣
∣+
∣
∣∆xy f (xi,y j)

∣
∣
)

Proof for S̃d
1 and S̃d

2: First, we remark that the set of the surfaces defined on the discretized domain
D by a function f is a vector space S. Then, S̃d

1 and S̃d
2 are two norms over this vector space (they are

actually the first- and second-order Sobolev norms of degree 1). In addition, S is a Banach space [224]
of finite dimension for it is isomorph to R

nx ×R
ny . And it is known that all norms are equivalent on

such a space. Therefore, S̃
d
1 and S̃

d
2 satisfy equation (A.1) and are equivalent. �

Equivalence of S
d
1 and S

d
2: We then define S

d
1 and S

d
2 from S̃

d
1 and S̃

d
2 by removing the zero-order

term of the sum:

S
d
1 = ∑∑

D

(∣
∣∆x f (xi,y j)

∣
∣+
∣
∣∆y f (xi,y j)

∣
∣
)

S
d
2 = S

d
1 + ∑∑

D

(∣
∣∆xx f (xi,y j)

∣
∣+
∣
∣∆yy f (xi,y j)

∣
∣+
∣
∣∆xy f (xi,y j)

∣
∣
)

Proof for Sd
1 and Sd

2: Sd
1 and Sd

2 are not anymore norms on S. However, we can build another vector
space on which they are norms. Let’s consider the subspace F of S composed of the flat surfaces
i.e. their associated function f is constant. With this subspace, we define the quotient vector space
Q = S/F i.e. surfaces are considered up to a constant z shift. We let the reader verify that Sd

1 and Sd
2

are norms on Q; in short:

•
(
Sd
∗(S) = 0

)
⇒ (f ≡ 0) since all the derivatives are null and therefore the surface is flat.

• ∀λ ≥ 0, Sd
∗(λS) = λSd

∗(S) is straightforward.

• Sd
∗(S1 +S2) ≤ Sd

∗(S1)+Sd
∗(S2) comes from the triangular inequality on the absolute values.

Q is also a Banach space of finite dimension. Therefore, Sd
1 and Sd

2 are equivalent. �

168

Appendix A A.1. First-order and second-order regularization terms

Discussion

x

z

1

2

2

Fig. A.1: Penalty location. A first-order
term impacts the slopes (in blue) whereas
a second-order term penalizes the creases
(in yellow).

We have proven that a first-order regularization term is equiva-
lent to a second-order one in the discrete case. We here provide
a few theoretical and practical remarks.

From a theoretical point of view:

• This proof is valid only if the second-order term also con-
tains the first-order derivatives.

• As a corollary, the property can be extended to higher or-
der as long as the first order is present.

• More generally, a term Tlow at order n is equivalent to a
term Thigh at order p ≥ n if Thigh includes order n (use a
subspace of order n−1 instead of F in the proof).

From a practical point of view: In practice, it means that minimizing the first derivatives tends to
also minimize the second derivatives. However, the constants in the equivalence definition (eq. (A.1))
“hide” the behavior of the regularization term. For instance, a first-order term penalizes steep slopes
whereas a second-order one penalizes creases (cf. Fig A.1 for an illustration in the 2D case). Hence,
even if we have shown that both terms are mathematically equivalent, they are not in practice.

Ideally, a regularization term would contain second-order quantities to allow the computation of
values independent of the coordinate system orientation such as the surface curvature. However, we
have shown that we can reach satisfying results with only first-order terms. This formal proof is one
of the explanation for these results: Even if both terms do not have the same practical effects, they are
sufficiently linked for our purpose.

169

A.2. Some ideas to extend the functional Appendix A

A.2 Some ideas to extend the functional

We propose a few directions to make the functional defined on page 186 intrinsic or, at least, less
dependent on the surface parameterization. We present here variations of the functional accompanied
by the graph design that minimizes it. These are only early ideas that have not been implemented.
They deserve further studies to achieve complete proofs and to be validated.

A.2.1 Minimal surfaces

A first solution would be to use the graph design proposed by Boykov and Kolmogorov [26]. This
implies a functional of the type:

ZZ

w(x)ds

that corresponds to a weighted minimal surface.

Our proposal is a straightforward use of this graph within the optimization domain determined
after the consistency thresholding (see Figure 2.37 on page 56). Similarly to our original scheme,
linking the upper boundary to the source and the lower one to the sink ensures that the surface spans
correctly according to the vertex coordinate property (see page 53).

Accounting for the potential discontinuities is possible by modulating the weight function w(·) in
a way similar to the α functions of our system. This may require some attention since the α functions
are 2D whereas w is 3D. But the adaptation seems possible.

A more important problem may be the lack of control over the surface shape. Without such a
control, the produced surface may have some spurious folds because of noise. This would create
inconsistent self-occlusions. Experiments are needed to evaluate the importance of this phenomenon.
It may be that this does not happen as we have observed with our functional. Otherwise, a possible
solution may be visibility edges (see page 58).

We lack experience with the technique of Boykov and Kolmogorov [26]. It is therefore hard to
predict the quality of the potential results. Nevertheless, this approach deserves further study.

A.2.2 Functional invariant to planar rotation

We here describe some ideas to design a graph that minimizes:
ZZ (

c(x)+α(x,y) ||∇zx||
)

dxdy (A.2)

The advantage of this functional is that it does not depend anymore on x and y. Only the z axis matters.
Therefore, the x and y axes can be arbitrarily chosen without impacting the result.

Depending on the z axis is acceptable since it ideally corresponds to the surface normal. Hence, if
Functional (A.2) can be minimized, the remaining problem would be to correctly evaluate this normal.

The following derivations are mainly “informal” mathematics. It only conveys an intuition of a
graph design. Many arguments clearly lack mathematical rigor and have to be better formalized in
the future. Interesting directions are contained in [55, 117, 225]. Nonetheless, we are confident in the
proposed approach.

170

Appendix A A.2. Some ideas to extend the functional

Intuition on the 2D case

x

z

δx

δ f
δs ϕ

tan
ge

nt

function

Fig. A.2: Function with its tangent.

We first focus on the integral over the domain Dx of the x
axis:

Z

Dx

∣
∣
∣
∣

∂ f
∂x

∣
∣
∣
∣
dx (A.3)

Our strategy is to transform this integral on x axis into an
integral on the z axis. The result will be more “graph-cut
friendly”.

Consider a small variation δx of x and the correspond-
ing small variations δ f of f and δs of the curvilinear ab-
scissa s. Now, we rewrite Integral (A.3) and “simplify by
δx”:

Z

Dx

|δ f |
δx

δx =
Z

Dx

|δ f | (A.4)

Hence, Integral (A.3) only sums the vertical variations of f . Let’s introduce the angle ϕ of the tangent
to f at point (x, f (x)) (Fig. A.2). We have now:

Z

Dx

|δ f | =
Z

Dx

|sin(ϕ)| δs

And in fact, this relation is rigorously valid:
Z

Dx

∣
∣
∣
∣

∂ f
∂x

∣
∣
∣
∣
dx =

Z

Dx

|sin(ϕ)| ds (A.5)

x

z

z0

z1

z2

z3

z4

z5

z6

Fig. A.3: Intuition of the integration on the z do-
main

Let’s now turn this integration on the x axis
into an integration on z axis. To do so, we
introduce the domain Dz and the set of points
L(z) = {(x, f (x))/ f (x) = z}.

Figure A.3 gives a first intuition for a z axis
discretized into {zi}. The total z variation is the
length δz times the sum of the number of points
in all the L(zi):

Z

Dx

|δ f | = δz×∑
i

∑
p∈L(zi)

1

︸ ︷︷ ︸

#points in L(zi)

Considering the continuous case, we integrate
over all the z values and for each of them, we sum the contributions of the points in L(z). Using
the tangent angle ϕ and the curvilinear length δs = δz/ |sin(ϕ)|, we obtain:

Z

Dx

|δ f | =
Z

Dz

∑
p∈L(z)

∣
∣sin
(
ϕ(p)

)∣
∣δs (A.6)

Formula (A.6) has a problem when L(z) is not countable. This happens each time f is constant on an
interval. Other degenerate cases may exist but we ignore them since they do not occur in practice. In

171

A.2. Some ideas to extend the functional Appendix A

that case, the sum ∑ is indefinite but fortunately, all the summed terms are null because of sin(ϕ) = 0.
Hence, informally, it is coherent to define ∑S 0δs = 0 for any δs value and even if S is uncountable.
So we can write:

Z

Dx

∣
∣
∣
∣

∂ f
∂x

∣
∣
∣
∣
dx =

Z

Dz

∑
p∈L(z)

∣
∣sin
(
ϕ(p)

)∣
∣ds

And ignoring the degenerate case, we obtain:
Z

Dx

∣
∣
∣
∣

∂ f
∂x

∣
∣
∣
∣
dx =

Z

Dz

∑
L(z)

dz (A.7)

Formula (A.7) is interesting because it shows that evaluating the integral (A.3) is equivalent to
count the number of points in the L sets. Intuitively, it results in a simpler task from a computational
point view: Sweep the L sets and count the number of points in each set.

Extension to the 3D case

We now consider the integral over the planar domain Dxy:
ZZ

Dxy

||∇ f ||dx dy (A.8)

We naturally extend the definition of L(z) to the surface points of depth z. The question is to find the
equivalent of the

(

∑L(z) 1
)

of 2D case. In fact, one can get convinced that in the general case, L(z)
is a planar curve. It is the classical level curve [226] displayed on the geographical maps. Hence, we
can guess that the length of this curve may have a role.

We turn the area element dxdy into dgdl where dg is aligned with the gradient and dl is orthogonal
to dg (a similar idea appears in [55, 117]). Hence, dl is always tangent to the curves L(z) and
corresponds also to their curvilinear element. For dg, we have the following relation:

||∇ f || =

∣
∣
∣
∣

∂ f
∂g

∣
∣
∣
∣

(A.9)

Defining ϕ as the angle between the surface normal and the z axis and ds as the projection of dg onto
the surface, we have a relation equivalent to the previous case:

|sin(ϕ)|ds = dz

We now apply relation (A.9):
ZZ

Dxy

||∇ f ||dx dy =
ZZ

Dxy

∣
∣
∣
∣

∂ f
∂g

∣
∣
∣
∣
dg dl

We remark that
∣
∣
∣

∂ f
∂g

∣
∣
∣dg is informally equal to the variation |δ f | of f . Hence, we split it into several δz

and integrate over the z values and over the L(z) curve:
ZZ

Dxy

∣
∣
∣
∣

∂ f
∂g

∣
∣
∣
∣
dg dl =

Z

z

Z

L(z)

|sin(ϕ)|ds dl (A.10)

172

Appendix A A.2. Some ideas to extend the functional

The integral
R

L(z) suffers from a problem equivalent to the 2D case when f is constant on a region,
making L(z) 2D instead of 1D. Fortunately we also have sin(ϕ) = 0 in that case. So, if we ignore this
issue, we can write:

ZZ

Dxy

||∇ f ||dx dy =
Z

z

Z

L(z)

dl

︸ ︷︷ ︸

length of L(z)

dz (A.11)

Formula (A.11) is interesting because it shows that Integral (A.8) can be computed by measuring the
length of the level curves of the surface.

This derivation is not very complex should already have demonstrated in some mathematical book.
Looking at Green’s theorem [225] may be interesting.

Boykov and Kolmogorov [26] show how to compute the length of a planar curve with a graph cut
using the Cauchy-Crofton formula. And if we observe a xy slice of our graph design, it corresponds
to the length measure using a 4-neighborhood. This a poor approximation of the isotropic Cartesian
distance. Boykov and Kolmogorov [26] expose how to improve this approximation using a more
complex neighborhood system.

Applied to our graph, the 4-neighborhood means that we have edges only in the x and y directions.
Improving our functional toward Functional (A.2) implies a more complex neighborhood i.e. using
more edge directions in the xy plane. The capacities of the xy edges are defined from the formulæ
in [26]. The discontinuity maps can be straightforwardly adapted to more directions and similarly
used to modulate the edge capacities.

In the z direction, we keep the same edge scheme based on four sub-edges for each direction used
in the xy plane. This still provides a convex approximation of the linear term α(x,y) ||∇zx||.

To conclude, note that the degenerate case is not a problem since a function constant on a region
does not cut any edges in the xy planes. Hence, this region has a null contribution as expected.

Summary: Our functional can be made invariant to a planar rotation by using more edges
in the xy planes. Their capacity is are derived from the Cauchy-Crofton formula using the
method exposed by Boykov and Kolmogorov [26].

173

A.2. Some ideas to extend the functional Appendix A

174

B
Technical details on hair capture

B.1 Influence of the Projection Profile on Canny’s Filter

We derive the formula used to plot the graph in Figure 5.15 on page 145. It demonstrates that the
more extended the projection profile of an oriented filter is, the lower is the variance of its response
curve – the more reliable the filter is.

We focus on the response of Canny’s filter FC
(0,0)(θ) at the origin for a sinusoidal signal s(x,y).

For a shorter derivation and without loss of generality, we make s turn according to −θ and fix the
orientation kernel filter. Since the final computation is normalized and with absolute value, we ignore
the real constants and use ∼ to indicate proportional quantities.

Let’s define:

Gσx,σy(x,y) = exp

(

− x2

2σ2
x
− y2

2σ2
y

)

2D Gaussian function,

∂Gσx,σy

∂x
(x,y) = − x

σ2
x

Gσx,σy(x,y) Canny’s kernel,

sθ(x,y) = sin(ω(xcos(θ)+ ysin(θ))) tested sinusoidal signal.

Matching the signal wavelength and the filter pseudo-wavelength implies σx = ω
4 . To study the filter

extension, we set
σy = ασx

and focus on the influence of α. With F (·) the Fourier transform, the formula derives from:

FC
(0,0)(θ) =

∣
∣
∣
∣
F −1

(

F
(∂Gσx,σy

∂x

)

F (s−θ)

)

(0,0)

∣
∣
∣
∣

B.1. Influence of the Projection Profile on Canny’s Filter Appendix B

For (u,v) the Fourier coordinates, δ(·) Dirac’s delta function, k0 = (ω
2π cos(θ),− ω

2π sin(θ)), k =
(u,v) and i2 = −1, the classical formulæ give:

F
(∂Gσx,σy

∂x

)

(u,v) ∼ iuF
(
Gσx,σy

)
∼ iuGσ−1

x ,σ−1
y

(u,v)

F (s−θ) ∼ iδ(k+k0)− iδ(k−k0)

Multiplying both and using Gσx,σy(−k) = Gσx,σy(k) we get a term proportional to:

cos(θ) Gσ−1
x ,σ−1

y
(k0)

(

δ
(
k+k0)+δ(k−k0)

)

Since F −1 (δ(k+k0)+δ(k−k0)) ∼ cos(ω(xcos(θ)+ ysin(θ))) that equals 1 at the origin (0,0), we
have: FC

(0,0)(θ) ∼ |cos(θ)Gσ−1
x ,σ−1

y
(k0)|. With β = ω2σ2

x/8π2 and then simplifying the cosine:

FC
(0,0)(θ) ∼

∣
∣
∣cos(θ)eβ(cos2(θ)+α2 sin2(θ))

∣
∣
∣ =

∣
∣
∣cos(θ)eβ(1−α2)sin2(θ)

∣
∣
∣

�

Figure 5.15 on page 145 is a plot of FC
(0,0) for α ∈ {1, · · · ,10} and β = 1.

176

Appendix B B.2. More figures on the orientation measure

B.2 More figures on the orientation measure

We here present a more detailed evaluation of our orientation measure technique. We use the reference
image presented in Figure 5.18 on page 148 to compare four methods:

• The Sobel filter.

• The Canny filter in its classical form (the gradient is estimated from the x and y first derivatives
of an isotropic Gaussian, the pseudo-wavelength is set to the image wavelength.

• Our unenhanced variance-based selection.

• The selection enhanced with bilateral filtering (without the Γ color term that is not available).

Three values are computed relatively to the reference:

• The mean error e (in degrees).

• The proportion of perfect results %perfect: The selected θ sample is the nearest available.

• The proportion of good results %good: The selected sample is the nearest available or one of its
neighbors.

We also compute their weighted counterparts (with a w superscript) that accounts for the variance
according to exp(−V/Vmean) similarly to the bilateral filter (we use the average variance Vmean over
the image to compute the weight). These values have no practical meaning, they only give a cue about
the pertinence of weights e.g. if the weighted error is lower than the normal one, it shows that the

λ = 2 λ = 4

Fig. B.1: Reference images used in our experiment

177

B.2. More figures on the orientation measure Appendix B

weights correctly distinguish the accurate measures from the others. These weighted values are not
available for Sobel and Canny filters since they do not rely on a response curve.

We compute these figures for two different images: an extremely aliased version with λ = 2 (the
one used in Figure 5.18 on page 148) and an aliasing-free version with λ = 4 (see Figure B.1 on
the page before). For comparison, we give the expected values of random measure using a uniform
distribution on [0,π[and the values of a perfect pick among the 64 possible θ values assuming a
uniform distribution of the reference orientations.

λ = 2 e %perfect %good ew %w
perfect %w

good

random 45◦ 1.6 4.7 - - -

perfect 0.70◦ 100 100 - - -

Sobel 17◦ 3.6 11 - - -

isotropic Canny 43◦ 2.7 5.9 - - -

unenhanced 2.9◦ 61 79 1.9◦ 49 91

enhanced 2.3◦ 49 86 1.9◦ 38 98

λ = 4 e %perfect %good ew %w
perfect %w

good

random 45◦ 1.6 4.7 - - -

perfect 0.70◦ 100 100 - - -

Sobel 2.7◦ 30 97 - - -

isotropic Canny 1.6◦ 91 97 - - -

unenhanced 1.9◦ 93 97 0.69◦ ≈ 100 ≈ 100

enhanced 0.80◦ 93 96 0.053◦ ≈ 100 ≈ 100

Table B.1: Detailed evaluation of our orientation measure

Table B.1 summarizes our results. We can observe that, on the aliased image, the Sobel filter gives
erroneous orientations (too curved, see Figure 5.18 on page 148) and the isotropic Canny filter clearly
fails because it is unadapted for such short wavelengths (it is foiled by the aliasing patterns). Our
evaluation reaches nonetheless accurate results. A surprising result: The number of “perfect” results
decreases after bilateral filtering and using the weighted figures. This indicates that our reliability
estimation is also impaired by the extreme aliasing. But, compared to the other tested methods, the
measure is robust enough to yield acceptable values.

On the aliasing-free image, all the tested techniques perform better. Sobel filter lacks accuracy
compared to the others. An interesting point is that the isotropic Canny filter yields more precise
results that our technique without bilateral filtering. This shows that it would be interesting to add an
isotropic Canny filter in our filter list when the analyzed images are not aliased.

The other remarkable point is the high accuracy of the enhanced measures. This is confirmed by
the weighted values that illustrate the relevance the weights. The committed error (0.80◦) has to be
compared to the error obtained from an exact selection among the θ samples (0.70◦). This shows that
our measure is almost optimal. The last point is the unexpected degradation of %good after the bilateral
filtering. Its limited amplitude let us think that it is due to numerical problems.

178

Appendix B B.3. Geometric registration of the viewpoints

B.3 Geometric registration of the viewpoints

z axis
Db

Di

db
1

db
2

di
1

di
2

α2

α1

zb

zi

image

plane

Fig. B.2: Geometric configuration of a
camera and a mirror ball. We have mea-
sured Db. The size of a CCD cell and zi

are given by the camera manufacturer. The
user indicates di

1 and di
2.

We here present in more details how the viewpoints can be reg-
istered with the help of the mirror balls and of the fitted ellipses.

B.3.1 Single camera registration

We first expose how a camera is located relatively to the mir-
ror balls. Figure B.2 illustrates the geometric setup. We make
the approximation that the contour of the mirror ball is its in-
tersection with the plane containing its center and parallel to
the image plane. This approximation simplifies the study and is
minor since the view angle is low in our configuration.

We have measured the ball diameter Db with an electronic
device up to 0.1mm. The camera manufacturer provides the
focal length zi and the dimension of a CCD cell with a precision
between 1% and 0.1%. The user provides the image boundaries
of the ball di

1 and di
2 with a pixel accuracy (these values are

converted in length unit using the CCD size). We can estimate
that the input data are known with an error in order of 1%.

Hence from classical geometry formulæ:

tan(α1) =
di

1
zi =

db
1

zb (B.1a)

tan(α2) =
di

2
zi =

db
2

zb (B.1b)

leading to:

zb =
Db

tan(α1)− tan(α2)
(B.2)

Using Equations (B.1) and (B.2) for both the x and y axes locate the camera relatively to the mirror

Db 67.2mm

CCD size 6.25µm
zi 12.5mm

Table B.2: Characteristic
lengths of our setup

ball. Since we have two spherical mirrors in our setup. We average their
results to get a global registration.

Then we assume that the depth of the ellipsoid skull is in between both
mirrors (this is precise up to a few centimeters and is later refined by the
user). This gives the z coordinate of its center. The x and y coordinates are
computed with formulæ similar to Equation (B.1).

Table B.2 gives the characteristic values of our setup.

B.3.2 Global registration

From the previous step, each camera is located relatively to the skull center. Then, the user indicates
the position of the view among {left, right, top, back}. This defines the axis of the skull in the current
coordinate system.

From these data, we can directly register all the views in the skull coordinate system: the skull
axes of each view are aligned and the skull centers are superposed (see Figure B.4).

179

B.3. Geometric registration of the viewpoints Appendix B

Fig. B.4: Global registration of the viewpoints
First, the axes are aligned. Then, the skull centers are superposed. This is a classical registration in a common
coordinate system, considering the skull coordinate system. (The color dots represent the skull centers.)

Fig. B.3: Ellipse fitted on the hair area.

Then, the user fits an ellipse for each viewpoint to match
closely the hair volume seen in the images (Figure B.3). With
a formula equivalent to Equations (B.1), this characterizes the
length of two of the three axes of the 3D ellipsoid. Averaging
the data from the four viewpoints gives the final geometry of the
ellipsoid.

This process has a precision in the order of few centime-
ters which is borderline for our purpose. The geometry actually
used in our experiment is manually tweaked to achieve a below-
centimeter accuracy.

180

C
Résumé français

Nous donnons ici un résumé français de ce manuscrit. L’essentiel des idées développées
dans cette thèse est repris dans ces quelques pages. Toutefois, il ne s’agit en aucun cas
d’une traduction intégrale (sauf pour l’introduction et la conclusion) et nous conseillons
vivement au lecteur averti de se reporter à la version anglaise pour plus détails.

C.1 Introduction

Le sujet de cette thèse porte sur la création des données utilisées en informatique graphique et plus
particulièrement pour synthétiser des images. Ces données peuvent être regroupées grossièrement en
trois catégories : la forme des objets, leur apparence et leur environnement lumineux. Nous nous
sommes principalement intéressés à la création de la forme et de l’apparence bien que l’on soit amené
régulièrement à travailler avec la lumière. Cette thèse propose plusieurs méthodes pour générer ces
données à partir d’images réelles : on ne demande pas à l’utilisateur de directement modéliser l’objet
souhaité mais plutôt d’en fournir une ou plusieurs photographies. Ces images sont alors automatique-
ment analysées par l’ordinateur qui en extrait l’information recherchée.

On attend de cette approche des données plus fidèles à l’original et un temps de création plus
court. Observons plus en détails un exemple concret.

Une tâche classique en informatique graphique est la création des données nécessaires à la syn-
thèse d’une image (d’une théière par exemple). L’approche standard est de compter sur les capacités
de l’utilisateur : la forme de la théière est modelée dans un logiciel dédié et l’aspect de porcelaine
est défini dans une boîte de dialogue qui laisse l’utilisateur choisir les caractéristiques du matériau
(couleur, brillance, motif, etc). Ce processus de création est particulièrement long car l’utilisateur
doit tout créer. Qui plus est, la «qualité» du résultat dépend l’habileté du créateur. Une approche plus
rapide est de choisir ces données dans une bibliothèque de formes et de matériaux déjà créés. Cela
facilite la tâche courante mais ne résout pas le problème de la création des données de la bibliothèque.

Une fois que ces données ont été produites, il existe de nombreuses méthodes pour synthétiser
l’image de la théière. Toutefois, cette synthèse dépasse le cadre de ce manuscrit.

C.1. Introduction Appendix C

Modéliser un objet existant Mais observons maintenant un cas plus délicat. L’utilisateur ne veut
plus modéliser une théière mais la théière qu’il utilise tous les jours. Une approche directe est de
commencer par créer une théière comme précédemment puis de l’adapter pour qu’elle ressemble à
l’original. Atteindre une ressemblance approximative est faisable. Mais imaginons que cette théière
soit décorée avec des motifs gravés et/ou peints avec de la dorure. Dans cette hypothèse, faire une
reproduction précise n’est plus possible pour l’utilisateur. Il faut employer des techniques plus so-
phistiquées qui ne reposent pas sur le seul utilisateur.

Pour capturer la forme d’un objet, on peut utiliser un scanner 3D : un appareil avec un laser ou
un faisceau de lumière modulée qui mesure la forme 3D d’un objet. L’acquisition d’un matériau peut
se faire à l’aide d’un gonioréflectomètre [221] : le comportement lumineux du matériau est mesuré
pour toutes les positions possibles de la lumière et du point de vue. Ces deux techniques sont précises
et nécessitent des équipement spéciaux ce qui est souvent un frein à leur mise en œuvre. De plus,
plusieurs situations peuvent perturber les mesures; par exemple, les scanners 3D échouent avec les
matériaux translucides ou dispersifs (le verre, la fourrure, les cheveux, etc).

Notre proposition Dans ce manuscrit, nous présentons une alternative utilisant des images. Pour le
problème de la théière, nous proposons d’utiliser une ou plusieurs images de la théière originale pour
en extraire les données nécessaires à sa reproduction. Ensuite, une analyse appropriée est menée pour
produire l’information utile. Par rapport à une approche utilisateur, on attend plusieurs améliorations :

Moins de temps utilisateur: De façon immédiate, un algorithme à base d’images demande moins de
temps à l’utilisateur. Le temps total peut être plus long à cause des calculs mais ce temps
machine laisse l’utilisateur libre pour d’autres tâches.

Caractérisation objective des données: Si on demande à plusieurs personnes de définir la brillance
d’une même théière, les réponses seront très probablement différentes. Ces «valeurs» provien-
nent d’estimations subjectives et il serait difficile de choisir la bonne. À l’opposé, un algorithme
a un critère déterministe dont la précision peut être étudiée. Autre avantage, cette mesure est
reproductible.

Plus de détails: En reproduisant un objet réel, un utilisateur peut oublier certains détails là où une
reconstruction automatique fait un parcours systématique des images.

Malgré cela, notre objectif n’est pas de remplacer la création «humaine». Nous proposons une
manière complémentaire de produire des données 3D qui est compatible avec la création «à la main»
ou l’exploitation de la bibliothèque : la forme obtenue à partir des images peut être éditée par la suite
et/ou stocker dans une bibliothèque.

Robustesse Nous sommes convaincus que les perturbations sont inhérentes à la capture : les images
sont inévitablement corrompues par du bruit, du flou, de la distortion, etc. La question est comment
gérer ce fait. Il y a deux réponses extrêmes. D’un côté, on peut laisser l’utilisateur prendre des
photos sans contrainte, ce qui implique un effort particulier lors de la phase d’analyse. L’algorithme
sous-jacent doit être robuste pour être capable d’extraire des données acceptables. En contrepartie, le
processus d’acquisition est simple et accessible à un non spécialiste. D’un autre côté, les conditions
de capture peuvent être totalement contraintes (salle noire, système optique de qualité et calibré avec
précision, bras robotique, etc). Il faut alors un spécialiste pour mener à bien la capture mais on peut
alors considérer les données acquises comme «parfaites». Cela permet alors à l’algorithme d’ignorer

182

Appendix C C.1. Introduction

les problèmes de robustesse et de se concentrer sur la précision. Des chercheurs ont décrit des so-
lutions intermédiaires qui imposent quelques contraintes à l’utilisateur en échange de plus précision.
Cela définit un continuum entre la facilité de capture et la précision.

Dans ce manuscrit, on a délibérément choisi une approche plus proche de la facilité de mise
en œuvre, sans pour autant négliger la précision. Cela implique simplement que l’on s’efforce de
mettre au point des algorithmes robustes : on accepte de travailler sur des données perturbées pour
alléger la charge du côté utilisateur. Cela sous-entend aussi que la précision obtenue peut ne pas être
toujours comparable aux techniques en environnement totalement contrôlé. On obtient néanmoins les
avantages suivants :

Un système d’acquisition moins encombrant : Les données initiales proviennent typiquement d’un ap-
pareil photo numérique ou d’une caméra numérique dont on peut aujourd’hui trouver couram-
ment des modèles de qualité et de petite taille. Si l’on a besoin d’une salle noire, on s’efforcera
d’être suffisamment robuste pour pouvoir travailler dans une salle normale dont on a simplement
éteint la lumière. Nous n’imposerons pas de salle au murs noirs mats ou un écran bleu.

Un système plus flexible: À partir des mêmes images, on peut utiliser différentes techniques d’analyse
en fonction de leur contenu alors qu’avec un appareil dédié, il faut tout changer s’il ne corre-
spond pas.

Une meilleure correspondance avec les images initiales: Dans certains cas, on peut travailler avec un
arrière-plan quelconque. Cela rend possible de travailler avec les objets dans leur contexte. Si
l’objectif est de modifier les images initiales (changer l’apparence d’un objet ou un insérer un
objet supplémentaire par exemple), les données extraites directement de ces images sont plus à
même d’être cohérentes que celles obtenus avec une technique qui les isole de leur contexte (ce
qui peut introduire des erreurs d’alignement par exemple).

Un meilleur choix des détails extraits: L’acquisition à partir d’images capturent les détails visuelle-
ment importants là où d’autres techniques (comme les scanners lasers) risquent de récupérer
des détails trop petits et d’en manquer d’autres de petites tailles mais avec un fort impact visuel.

Notre approche : étude de cas Se pose alors une question cruciale : Quel est notre but? Quel
type d’information veut-on obtenir? Nous sommes convaincus que le cas général n’est pas traitable :
acquérir de manière robuste la géométrie et l’apparence d’un objet sans aucun a priori est impossible.
Nous pensons qu’une approche plus raisonnable est de se concentrer sur un scénario représentatif pour
lequel on peut s’appuyer sur des caractéristiques connus. On peut imaginer alors développer plusieurs
scénarii et laisser l’utilisateur choisir l’algorithme approprié. Le piège serait alors de multiplier le
nombre de scénarii à l’infini mais tant que l’on étudie des scénarii avec un intérêt suffisant, nous
sommes convaincus que cette approche est valide et efficace.

Nous avons choisi ce chemin dans ce manuscrit. Nous identifions quelques cas intéressants qui
mènent vers des applications utiles and nous concentrons sur ceux-ci. Nous travaillons sur trois points
principaux : tout d’abord, nous présentons dans le chapitre 2 une méthode pour reconstruire la surface
d’un objet matte à partir d’une séquence d’images dont le point de vue se déplace. Cette technique est
étendue à un ensemble plus général de points de vue dans le chapitre 3. Cette méthode est conçue pur
être générique i.e. nous évitons de formuler des hypothèses trop spécifiques pour rester aussi général
que possible.

183

C.2. Reconstruction de surface Appendix C

Nous montrons ensuite dans le chapitre 4 comment on peut capturer l’apparence d’un visage à
partir d’une seule image et comment les données ainsi récupérées peuvent être utilisées pour synthé-
tiser le visage original sous un nouvel éclairage. Nous terminons ce document avec le chapitre 5 qui
expose une technique pour la capture de la géométrie d’une chevelure à partir de plusieurs images
prises avec une caméra fixe et avec une lumière qui se déplace. Une grande précision est nécessaire
pour que la ressemblance soit suffisante pour reconnaître la personne originale. Nous développons
donc un outils spécifique pour atteindre une fidélité plus importante qu’un utilisateur ou une méthode
générique. Une conclusion générale est donné dans le dernier chapitre.

C.2 Reconstruction de surface

C.2.1 Introduction

Il est aujourd’hui possible d’afficher des modèles 3D de taille de plus en plus importante. Les pro-
grès récents des cartes graphiques et des méthodes de gestion de la complexité rendent possible la
manipulation de modèles gigantesques. Ainsi par exemple dans les jeux vidéos actuels, plus personne
ne s’étonne de pouvoir se déplacer dans une ville. Néanmoins, la question de créer des modèles de
cette taille se pose toujours. Même s’il est toujours possible de faire appel à un ou plusieurs «artistes»
qui réaliseront cette tâche «à la main», cette approche nécessite de plus en plus de temps en temps et
semblent de moins en moins raisonnable. Quelques méthodes sont apparues pour créer des bâtiments
automatiquement mais peu de solutions convaincantes existent pour les objets de taille réduite (boîte
aux lettres, bancs, statues, etc). Cette remarque nous a été notre motivation initiale pour étudier le
problème de la reconstruction de la surface d’un objet à partir d’une séquence d’images. L’objectif
est de mettre au point un processus automatique qui crée un modèle tridimensionnel d’un objet sim-
plement à partir de quelques photographies.

Cette technique vient en complément de l’approche «à la main». De nombreux modèles pourraient
être acquis avec une intervention minimum de l’utilisateur, libre à ce dernier de retoucher les modèles
ainsi obtenus par la suite.

C.2.2 État de l’art

Initialement de nombreux travaux ont été menés pour imiter la vision humaine. Nos deux yeux as-
sociés à notre cerveau sont la preuve que deux images d’une même scène sont suffisantes pour en
retrouver un modèle tridimensionnel.

Les problèmes à deux images (potentiellement étendus à trois) ont été très largement étudiés et
nous ne nous attarderons pas sur leur description. Les principaux résultats qu’il faut néanmoins en
retenir sont :

• La reconstruction consiste essentiellement à être capable de «reconnaître» le même point de
l’espace dans plusieurs images. Une fois plusieurs points 2D associés comme étant les projec-
tions d’un même point 3D, reconstruire ce point n’est qu’une classique triangulation.

• Le problème de la reconstruction à partir d’images est intrinsèquement mal posé i.e. il existe
plusieurs scènes 3D qui produisent exactement les mêmes images.

Avec plusieurs images, on espère améliorer les points suivants par rapport au cas à deux images : une
plus grande robustesse face aux possibles imperfections des images (bruit, flou, etc), la possibilité

184

Appendix C C.2. Reconstruction de surface

de travailler malgré des occultations partielles (quand un objet est caché par un autre seulement dans
quelques images) et une plus grande précision grâce à la redondance de l’information disponible.

Pour résoudre ce problème mal posé, la plupart des méthodes existantes introduisent une connais-
sance a priori sur la scène observée, généralement l’hypothèse que les objets sont (plus ou moins)
lisses. Cette hypothèse est introduite formellement sous la forme d’une fonctionnelle (une expres-
sion mathématique) qui associe une composante qui, pour une reconstruction 3D donnée, évalue la
cohérence ce modèle avec les images et qui évalue aussi à quel point l’hypothèse a priori est respec-
tée. Intuitivement, la fonctionnelle «note» une reconstruction, l’objectif étant d’avoir la reconstruc-
tion avec la «meilleure note possible». D’un point de vue mathématique, il s’agit là d’un problème
d’optimisation.

Les méthodes suivantes sont regroupées selon la forme de leur fonctionnelle et selon la méthode
d’optimisation utilisée.

Pas de fonctionnelle, enveloppe visuelle Ces méthodes se basent la connaissance des silhouettes
de l’objet qui sont obtenues à l’aide de méthode type «écran bleu» ou soustraction d’arrière-plan. Ces
méthodes ont le désavantage de nécessiter cette connaissance supplémentaire et manquent aussi de
détails si peu de points de vue sont disponibles. Néanmoins, elles sont très rapides et robustes aux
effets comme les reflets ou la transparence.

Pas de fonctionnelle, sculpture À partir d’un volume englobant l’objet, l’algorithme supprime
(sculpte) petit à petit les parties incohérentes avec les images. Ces techniques nécessitent aussi de
nombreux points de vue pour être précises et sont peu robustes aux imperfections des images. Elles
sont toutefois simples à implémenter et à mette en œuvre.

Fonctionnelle par ligne, programmation dynamique L’objet est reconstruit tranche par tranche.
Comme dans chaque tranche, on cherche une ligne 1D et non plus une surface 2D, on peut utiliser
la technique de programmation dynamique qui permet de résoudre exactement une fonctionnelle im-
posant une certaine régularité. Néanmoins cette régularité n’est imposée que ligne par ligne et un
post-traitement est nécessaire pour obtenir une régularité entre lignes. Ces méthodes sont aujourd’hui
délaissées au profit des méthodes suivantes plus récentes qui évitent cette séparation en lignes et dont
les résultats sont meilleurs.

Fonctionnelle intrinsèque, niveaux Grâce à la méthode des niveaux, une surface est représentée
implicitement par une fonction potentielle dont elle est un niveau. Cette technique permet de définir
une fonctionnelle intrinsèque (qui ne dépend pas de la paramétrisation de la surface) et gérer sim-
plement la topologie de la surface. Toutefois, cette technique impose que la surface soit deux fois
différentiables partout ce qui produit des résultats trop lisses (sans coin ni arête). Par ailleurs, la
convergence du processus d’optimisation n’est pas garantie en théorie même si elle est observée en
pratique.

Fonctionnelle paramétrique, coupure de graphe La méthode de coupure de graphe permet de pro-
duire des résultats très précis au niveau des silhouettes des objets. Cette approche contrôle la conver-
gence de l’optimisation, voire pour certaines méthodes, en garantit la convergence exacte. Néanmoins
la fonctionnelle proposée est paramétrique (dépend de la paramétrisation de la surface) et surtout, ces

185

C.2. Reconstruction de surface Appendix C

techniques sont appliquées à des cartes de disparité qui sont une représentation «images» des objets
3D. Pour la plupart, ces résultats manquent aussi de précision pour la profondeur.

Fonctionnelle intrinsèque, coupure de graphe Récemment une méthode est apparue pour manip-
uler une fonctionnelle intrinsèque avec une coupure de graphe. Cette approche semblent prometteuse
mais est principalement appliquée au problème de la segmentation de données. Son utilisation dans
le cadre de la reconstruction 3D n’est pas trivial et l’étude en serait intéressante.

Méthodes hybrides Des approches mélangeant plusieurs des techniques précédentes existent et
apparaissent comme une voie naturelle pour tirer profit des qualités de plusieurs techniques. Des
résultats confirmant cette intuition ont été obtenus et cette voie mérite d’être explorée plus encore
qu’elle ne l’est aujourd’hui.

Au vu de cet état de l’art, nous avons choisi une approche basée sur une coupure de graphe afin de
contrôler la convergence de notre optimisation. Néanmoins nous efforcerons de poser notre problème
dans un cadre directement 3D et de nous affranchir de la notion de carte de disparité qui est peu
appropriée à notre objectif à cause de sa formulation dans l’espace image.

C.2.3 Définition du problème et formulation de la fonctionnelle

Pour étudier le problème de la reconstruction à partir d’images, on représente la surface recherchée
par un champs de profondeur standard : (u,v) 7→ x(u,v) ≡ (u,v, f (u,v)); si plusieurs valeurs sont
nécessaires pour z, on introduit plusieurs fonctions f1, f2, Le problème que l’on se pose alors est
de formuler une fonctionnelle qui représente sous une forme analytique un compromis entre la fidélité
aux images initiales et l’hypothèse a priori que la surface des objets est lisse.

Pour cela, nous nous appuyons sur une fonction de cohérence c(·) ≥ 0 dont les valeurs sont
d’autant plus faibles que le point 3D considéré est cohérent avec les images fournies. Plusieurs choix
sont possibles pour cette fonction (voir le manuscrit détaillé, section 2.2 en page 9). Nous proposons
ici la fonctionnelle suivante :

ZZ

(

c(x)+αu(u,v)
∣
∣
∣
∣

∂zx

∂u

∣
∣
∣
∣
+αv(u,v)

∣
∣
∣
∣

∂zx

∂v

∣
∣
∣
∣

)

dudv

Cette formulation n’implique que des dérivées du premier ordre. Ce choix est motivé par deux points.
Premièrement, la technique de minimisation proposée par la suite tire profit de cet aspect. Seconde-
ment, les dérivées d’ordre supérieur rendent le problème d’optimisation d’autant plus difficile.

Il est important de remarquer que cette fonctionnelle n’est pas intrinsèque : elle dépend de la
paramétrisation de la surface. Cela implique par exemple que la formulation du problème dépend de
l’orientation des axes xyz pourtant arbitraire.

Cette fonctionnelle combine l’avantage d’être formulée directement dans l’espace géométrique
propre au problème posé et celui de pouvoir être résolue par une technique de coupure de graphe. Cette
technique d’optimisation est détaillée dans les sections suivantes et permet d’obtenir un minimum
global de la fonctionnelle contrairement au minimum local atteint par les approches à base de courbes
de niveau ou certaines méthodes de coupures de graphe.

Par ailleurs, les fonctions αu et αv permettent un contrôle local de la régularisation. En leur
assignant une valeur nulle, on peut totalement supprimer cette régularisation et ainsi autoriser des
discontinuités dans la surface.

186

Appendix C C.2. Reconstruction de surface

C.2.4 Présentation générale des coupures de graphe

Intuition Le problème de la coupure de graphe peut être vu à travers une analogie avec un réseau
de tuyaux. Étant donné un réseau de tuyaux relié à une source et un puits, on se pose la question
de savoir quelle est le débit d’eau maximum qui peut passer à travers le réseau, de la source vers le
puits. Dans ce problème, les tuyaux sont donnés, ainsi que le débit maximum qui peut les traverser;
l’inconnue est le débit réel qui traverse chaque tuyau.

Intuitivement, on peut se convaincre que trouver ce débit maximum est lié à trouver le goulot
d’étranglement du réseau, c’est-à-dire l’ensemble de tuyaux qui sépare la source du puits et qui limite
le plus le passage de l’eau.

Formalisation Formellement, ce problème se décrit à l’aide d’un graphe orienté. La source et le
puits sont deux nœuds particuliers de ce graphe. Chaque arc du graphe est associé à une valeur de
capacité qui représente le débit maximum qui peut le traverser. Le problème posé est alors défini par
la donnée du graphe et de la fonction de capacité associée à ses arcs. L’objectif est de trouver une
fonction de flot maximale. Une fonction de flot associe à chaque arc une valeur au plus égale à sa
capacité. Le fait qu’elle soit maximale signifie qu’elle permet à un maximum d’eau de traverser le
graphe – c’est-à-dire de quitter la source ou de façon équivalent d’atteindre le puits.

On définit ensuite une coupure comme un ensemble d’arcs qui partitionne le graphe en deux
parties, l’une contenant la source et l’autre le puits. Les notions de flot et de capacité s’étendent à une
coupure en sommant les valeurs des arcs coupés par cette partition. On a alors un théorème fort qui
montre que le flot maximum à travers un graphe est égale au minimum de la capacité sur l’ensemble
des coupures.

Intuitivement, une coupure est un goulot d’étranglement potentiel (l’eau qui va de la source au
puits doit nécessairement traverser au moins un arc de la coupure). Le goulot d’étranglement effectif
est la coupure de capacité minimale, celle qui permet au moins d’eau de la traverser.

Théorème flot maximum - coupure minimale Ce théorème montre que résoudre le problème du
flot maximum dans un graphe revient à en trouver la coupure minimale. Ce résultat présente le prob-
lème du flot maximal comme un problème de minimisation. Ceci est d’autant plus intéressant qu’il
existe des algorithmes pour résoudre de façon exacte ce problème en temps polynomial.

Tout problème d’optimisation qui peut être formulé comme une recherche de coupure minimale
dans un graphe peut donc être résolu de manière exacte en temps polynomial. La version détaillée
présente deux exemples simples d’application de cette méthode.

C.2.5 Solution discrète globale

Pour la suite de l’étude, on sépare la fonctionnelle en deux termes : C qui évalue la cohérence de la
surface par rapport aux images et S qui en évalue la régularité.

C(f) =
ZZ

D

c(x,y, f (x,y))dxdy

S(f) =
ZZ

D

(

αx(x,y)
∣
∣
∣
∣

∂ f
∂x

(x,y)
∣
∣
∣
∣
+αy(x,y)

∣
∣
∣
∣

∂ f
∂y

(x,y)
∣
∣
∣
∣

)

dxdy

187

C.2. Reconstruction de surface Appendix C

Discrétisation Le premier important pour mettre au point une technique à base de graphe pour
minimiser la fonctionnelle choisie est de discrétiser cette fonctionnelle. En effet, par nature, un graphe
est une structure composée d’entités discrètes (les nœuds et les arcs). On obtient ainsi les formules
suivantes :

C
d(f) =

nx

∑
i=1

ny

∑
j=1

c(xi,y j, f (xi,y j))∆x∆y

S
d(f) =

nx−1

∑
i=1

ny

∑
j=1

αx(xi,y j)
∣
∣ f (xi+1,y j)− f (xi,y j)

∣
∣∆y +

nx

∑
i=1

ny−1

∑
j=1

αy(xi,y j)
∣
∣ f (xi,y j+1)− f (xi,y j)

∣
∣∆x

Premier graphe On propose dans un premier graphe qui permet de minimiser la fonctionnelle dis-
crète. Ce graphe a plusieurs propriétés fortes :

• La capacité de ses arcs est définie en termes géométriques. Cela permet de décrire le graphe
comme une entité 3D : les nœuds ont une position dans l’espace, les arcs une longueur, etc.

• Une surface correspond directement à une coupure grâce à cette correspondance géométrique :
les arcs coupés par la surface forme une coupure du graphe. On montre en plus qu’une coupure
minimale du graphe correspond nécessairement à une fonction du type zx = f (xx,yx).

• Pour finir, on démontre que la capacité d’une coupure est égale à la valeur de la fonctionnelle
pour la surface correspondante. Cela assure que l’on peut minimiser exactement la fonctionnelle
en calculant la coupure minimale du graphe proposé. On résout donc le problème discret en
temps polynomial.

Analyse du terme de régularisation Les résultats obtenus par ce premier graphe sont satisfaisants
mais présentent un aspect crénelé à cause de discontinuités parasites dans la surface reconstruite. Une
étude montre que cet effet indésirable est dû à la linéarité du terme de régularisation. La solution à ce
problème est un terme strictement convexe.

Second graphe On propose un second graphe qui supprime les discontinuités parasites. Pour cela,
le graphe résout une fonctionnelle légèrement différente dont le terme de régularisation est strictement
convexe et peut approcher arbitrairement près le terme linéaire définit dans l’intégrale.

Il est important de noter que la stricte convexité de la régularisation rend nécessaire la gestion des
discontinuités par les fonctions αu et αv. Sans celle-ci, les discontinuités de la surface seraient trop
pénalisées et aboutiraient à des résultats trop lisses.

C.2.6 Mise en œuvre

On applique le moteur d’optimisation précédemment décrit dans un scénario classique. On souhaite
reconstruire la surface d’un ou plusieurs objets qui reposent dans un demi espace à partir d’une
séquence d’images dont les points de vue sont dans l’autre demi espace.

L’algorithme proposé prend en entrée la séquence d’images calibrées et un volume englobant la
partie de la scène que l’on souhaite reconstruire.

188

Appendix C C.2. Reconstruction de surface

Initialisation On travaille dans un espace discrétisé en voxels. La grille utilisée est taillée de façon
à assurer une aire constante à la projection des voxels dans les images. On propose une construction
de la grille qui respecte cette propriété et l’on démontre qu’elle permet aussi de caractériser le contour
des objets à reconstruire.

Boucle principale Le cœur de l’algorithme est itératif et enchaîne les étapes suivantes jusqu’à ce
que tous les objets inclus dans le volume d’intérêt soient reconstruits.

1. On calcule la valeur de la fonction de cohérence c pour chaque voxel. On sélectionne les
voxels les plus cohérent en comparant cette valeur à un seuil. Afin de rendre robuste l’ensemble
de voxels ainsi obtenus (boucher les trous et supprimer les voxels isolés), on lui applique un
traitement morphologique. Par la suite, on ne considère plus que l’ensemble de voxels le plus
proche des caméras.

2. On détecte les discontinuités potentielles de la surface. Pour cela, on examine les changements
de couleurs dans les images. À l’aide des discontinuités de couleurs dans les images, on peut
définir les fonctions αu et αv.

3. La fonctionnelle est minimisée à l’aide d’une coupure de graphe. On montre comment adapter
le graphe pour éviter les auto-occultations. En pratique, cela ne s’est jamais avéré utile pour
nos tests.

4. La visibilité est mise à jour. Il s’agit simplement de marquer quels sont les pixels occultés dans
les images.

Post-traitement Pour finir, on lisse les surfaces obtenues pour supprimer les «marches d’escalier»
dues à la discrétisation de l’espace. En prend soin toutefois de préserver les discontinuités et points
caractéristiques de la surface.

C.2.7 Résultats

Plusieurs résultats sont présentés. Un homme portant une mallette illustre la robuste au bruit et au
faible écartement des caméras. Un clavier montre le haut niveau de précision que la méthode présentée
peut atteindre. Un échiquier caché par un lampion démontre la capacité de notre technique à lever les
occultations partielles.On a étudié l’impact du nombre d’images sur la qualité des résultats : pour une
séquence d’images significativement bruitée, les résultats sont acceptables jusqu’à 10 images. On finit
en comparant notre résultat avec une méthode reconnue à base de carte de disparité : nos résultats sont
plus précis et répondent mieux à la question de la reconstruction tridimensionnelle.

C.2.8 Conclusion

On a présenté un système de reconstruction de surface à partir d’images qui met en jeu à la fois des
techniques de type «sculpture de voxels» et une optimisation à base de coupure de graphe.

Cette approche soufre des limitations suivantes :

Ressources importantes: Les temps de calcul sont longs (plusieurs dizaines de minutes) et la mé-
moire requise est importante (plusieurs centaines de mégaoctets). Le chapitre suivante propose
d’améliorer ce point.

189

C.3. Reconstruction de patchwork Appendix C

Fonctionnelle non intrinsèque: Le problème défini par la fonctionnelle dépend de la paramétrisation
de la surface alors que, idéalement, il devrait en être indépendant. L’annexe A.2 en page 170
propose quelques pistes pour améliorer ce point.

Paramétrisation de la surface: On a montré dans ce chapitre comment travailler avec des surfaces
paramétrées par z = f (x,y). On peut étendre cette approche à d’autres systèmes de coordonnées
mais le cas reste problématique. Le chapitre suivant s’attaque à ce point.

Les contributions principales de cette méthode sont :

Technique d’optimisation: La méthode à base de graphe décrite atteint un minimum global de la
fonctionnelle pour une discrétisation qui peut être choisie arbitrairement. Cette méthode ne
requiert pas d’estimation initiale de la solution, ce qui résout directement le problème de la
construction d’une telle estimation.

Fonctionnelle géométrique: Nous avons proposé une fonctionnelle qui décrit le problème posé in-
dépendemment de la résolution de l’espace 3D et de l’espace image. Qui plus est, notre formu-
lation prend explicitement en compte l’existence de discontinuité dans les objets.

Formes lisses: La méthode proposée reconstruit des formes lisses, sans discontinuité parasite, tout en
étant capable de détecter et reconstruire les discontinuités réelles de la scène.

Aglorithme efficace: Nous avons mis au point un algorithme qui intègre de manière cohérente et
unifiée les points précédemment mentionnés. Les résultats obtenus montrent un gain significa-
tion en précision et en robustesse par rapport aux méthodes existantes.

C.3 Reconstruction de patchwork

C.3.1 Introduction

La méthode présentée dans le chapitre précédent est limitée par les ressources nécessaires et la
paramétrisation de la surface. On propose dans ce chapitre une méthode de reconstruction morceau
par morceau. On appelle chaque morceau reconstruit un patch.

C.3.2 Motivation

Cette approche se justifie par deux aspects principaux. Tout d’abord, si l’on considère que le problème
de la reconstruction est local, c’est-à-dire que les propriétés locales d’un objet ne dépendent pas du
reste de l’objet, on montre que les complexités spatiales et temporelles du problème découpé en patchs
sont inférieures à celles du problème «non découpé». Notamment la complexité spatiale (la mémoire
requise) ne dépend plus de la taille de la scène traitée mais seulement de la taille des patchs, ce qui
résout le problème des ressources en mémoire.

Ensuite, les patchs permettent de définir localement le système de coordonnées et la paramétri-
sation de la surface et ainsi offrent la flexibilité nécessaire à la description d’objets complexes. Cela
ouvre aussi les portes a une approche de type multi-résolution qui adapte le niveau de détails de la
reconstruction aux caractéristiques locales de l’objet.

190

Appendix C C.3. Reconstruction de patchwork

C.3.3 Mise en œuvre à l’aide de coupures de graphe et d’un champ de distance

On propose d’appliquer l’idée de la reconstruction par patchs à l’aide de la technique de coupure de
graphe du chapitre précédent, d’un champ de distance et d’une stratégie d’ordonnancement.

Coupure de graphe Chaque patch est déterminé par une coupure de graphe. On garantit ainsi que
chacun est optimal dans le sens où il réalise un minimum global de la fonctionnelle sur le problème
réduit à son domaine local. On propose aussi plusieurs amélioration de la technique initiale.

Contraintes: On montre comment modifier le graphe de manière à imposer que certains points fassent
partie de la surface résultat. Cela permet de prendre en compte les patchs déjà reconstruits et
d’assurer la continuité aux bordures.

Autres informations: La méthode initiale ne prend en compte que des informations de cohérence
basées sur la couleur dans les images. On propose ici d’étendre la fonctionnelle pour ajouter à
ce critère des informations de contour et des points 3D fiables (reconstruits avec un scanner 3D
par exemple).

Champ de distance Nous avons choisi une structure de champ de distance pour agréger les patchs
dans une structure commune. Concrètement, il s’agit d’une grille 3D où chaque nœud stocke sa
distance au point le plus proche de la surface. Il est aisé de reconstruire la surface à partir de cette
structure en utilisant l’algorithme du Marching Cube. Cette technique présente aussi les avantages
d’être incrémentale, de pouvoir être adapté à la multi-résolution grâce à un octree et de faciliter les
requêtes pour localiser des points dans la structure.

Ordonnancement L’ordre dans lequel on reconstruit les patchs est crucial puisque le processus de
création d’un patch peut tirer partie des patchs déjà reconstruits et uniquement de ceux-ci. La stratégie
à mettre en œuvre dépend des données disponibles; on peut toutefois dresser les grandes lignes d’une
telle stratégie :

• Il faut traiter en premier les patchs contenant les données les plus fiables; par exemple les points
3D issus d’un scanner.

• La valeur de la fonctionnelle sur un patch indique la «qualité» d’un patch; elle renvoie à la fois
à sa cohérence par rapport aux images et à sa régularité. On préférera traiter en priorité les
patchs voisins des «bons» patchs. Si besoin on peut découpler ce critère pour ne considérer que
la qualité d’un patch ou sa régularité (ou non singularité).

• Si les performances (temps de calcul) sont importantes, on donnera plus de priorité aux patchs
qui créent une surface nouvelle importante.

C.3.4 Deux algorithmes

Propagation de points 3D On reconstruit la surface à partir d’un ensemble de points 3D fiables
obtenus à partir d’un scanner 3D ou de la triangulation des points caractéristiques des images.

La surface est d’abord reconstruite à partir des régions denses en points 3D et ensuite les trous
sont comblés. L’algorithme se base sur une liste de graines (des points 3D fiables) qui est initialisée
avec les points fiables. Les points sont considérés un par un et «étendus» en un patch. À chaque fois,
de nouvelles graines sont extraites en localisant les points les plus fiables sur le nouveau patch. Ces

191

C.4. Ré-éclairage de visage Appendix C

nouvelles graines sont ajoutées dans la liste et traitées par la suite. La reconstruction est finie quand
la liste des graines est vide.

Cette approche se présente à la fois comme une technique de reconstruction de surface à base de
points dans les régions denses car dans ce cas la surface est guidée par les points fournis en entrée, et à
la fois comme une technique à base d’images car, en l’absence de points fiables, les patchs continuent
à exploiter l’information des images.

Sculpture par patchs Cette méthode s’inspire de la technique de sculpture par voxels dont un
des défauts majeurs est d’être trop locale. On propose ici d’utiliser de «gros» voxels. De manière
classique, ces voxels sont considérés un par un et selon leur cohérence par rapport aux images, ils
sont soit conservés soit supprimés. Notre apport à la méthode est le critère pour faire ce choix.

Pour décider de la cohérence d’un voxel, on essaie de construire un patch à l’intérieur du voxel.
Si on trouve un patch suffisamment bon i.e. avec une fonctionnelle suffisamment basse, on conserve
le voxel et on agrège le patch trouvé dans le champ de distance, sinon on le supprime.

Cette approche conserve les qualités de l’approche classique par sculpture tout en apportant une
cohérence locale qui transforme le problème initiale qui est mal posé, en un problème bien posé.

C.3.5 Conclusion

Ces travaux sont encore en cours et de nombreux points restent à étudier. Néanmoins, les premiers
résultats sont très encourageants. Et au-delà de ces résultats, nous sommes convaincus que le fonde-
ment de l’approche par patchs peut être largement appliqué, y compris à d’autres méthodes et que la
flexibilité apportée en terme de ressources matériels et de paramétrisation en fait un outils des plus
utiles pour mettre au point un système de reconstruction adapté aux grandes scènes ou aux modèles
très détaillés.

C.4 Ré-éclairage de visage

C.4.1 Introduction

L’objectif de ce chapitre est de changer les conditions d’éclairage d’une photographie réelle. On
souhaite par exemple être capable de changer une image prise en plein jour en une image de nuit.
L’intérêt premier d’une telle technique est de pouvoir combiner plusieurs images d’origines différentes
en accordant leur éclairage. Si cette étape n’est pas réaliser avant d’associer les images, la qualité
globale en est grandement réduite à cause d’indices visuels incohérents (ombres mal placées, etc).

Le ré-éclairage se décompose en deux parties : en premier lieu, il faut supprimer les indices visuels
(ombres, reflets, etc) liés à l’éclairage initial; ensuite, il faut en générer de nouveaux correspondant
aux nouvelles conditions. Ces deux étapes requièrent et utilisent les informations suivantes sur la
scène observée : la géométrie des objets (responsable de la forme et de la position de l’ombrage), leur
matériau (qui influe sur l’apparence de l’ombrage) et la configuration lumineuse (qui est impliqué dans
tous ces points). L’information nécessaire est particulièrement importante et traiter le cas général ne
semble pas faisable tant les cas rencontrés seraient divers. On s’est donc restreint au cas des visages.

Les visages sont une part importante du corps humain. Notre habitude de les observer nous rend
tout particulièrement exigeant quant à la qualité d’une image synthétique. La tolérance aux erreurs

192

Appendix C C.4. Ré-éclairage de visage

est bien moindre pour un visage que pour un objet «normal». Qui plus est la peau est un matériau
qui a une interaction spécifique avec la lumière à cause des multiples couches qui la compose (huile,
épiderme, sang, etc).

Il existe des techniques pour reproduire cette interaction complexe mais les temps de calcul sont
particulièrement longs. Elles deviennent aujourd’hui abordables sur les cartes graphiques les plus
récentes mais resteront inaccessibles longtemps sur les systèmes portables (PDA, téléphone, etc).

Ces travaux sont motivés par la mise au point d’une technique qui soit efficace même avec une
configuration matérielle limitée. On vise par conséquent un rendu temps réel sur du matériel grand
public. On recherche aussi un rendu de qualité, sachant qu’un rendu quasiment photoréaliste comme
en produisent les méthodes les plus sophistiquées n’est pas accessible dans notre cadre.

C.4.2 État de l’art

Acquisition de la réflectance : Échantillonage Pour obtenir la réflectance d’un objet (la fonction
qui définit son apparence en fonction de l’éclairage et du point de vue), une solution possible est
d’échantillonner son apparence sous plusieurs points de vue et plusieurs éclairages. On obtient ainsi
une base de données que l’on peut interroger afin de synthétiser de nouvelles images.

Cette approche comporte deux inconvénients majeurs. Le premier est le système d’acquisition qui
est toujours encombrant et est la plus part du temps construit spécifiquement pour la tâche visée. Un
tel système est difficilement utilisable. Le second désavantage vient de la taille des données acquises :
elle est si importante que le rendu d’une nouvelle image ne peut être fait en temps réel à cause de la
complexité des requêtes dans la base de données.

Acquisition de la réflectance : Paramétrisation Un représentation plus compacte de la réflectance
est d’utiliser un modèle paramétrique i.e. une expression analytique qui donne la valeur de la réflectance
en fonction de quelques paramètres. Il existe plusieurs grandes catégories parmi ces modèles :

Modèles d’imitation: Il s’agit là de simplement produire un effet visuel convaincant. Le seul modèle
encore populaire aujourd’hui est le modèle de Phong. Celui-ci est simple mais est suffisamment
expressif pour reproduire reproduire ombrage et reflet. Nos travaux sont basés sur ce modèle
car il est aujourd’hui disponible sur toutes les cartes graphiques, même les plus anciennes.

Modèles physiques: Ces modèles cherchent à reproduire au mieux les phénomènes physiques et op-
tiques en jeu au niveau de la surface. Les paramètres de contrôle sont des grandeurs physiques
comme l’absorbance du matériau ou sa rugosité. Certains modèles sont spécifiquement conçus
pour simuler la peau. Malheureusement ceux-ci sont généralement trop complexes pour attein-
dre des performances temps réel.

Approximations efficaces: Cette classe de modèle vise au contraire les perfomances lors de l’étape
de rendu. Les paramètres n’ont généralement pas de signification physique et sont déterminées
à partir d’un jeu d’échantillons réels ou d’un modèle physique. Ces modèles sont une piste pour
améliorer par le futur notre rendu.

Acquisition de la réflectance : Déterminer les paramètres Les méthodes évoquées ci-dessus four-
nissent pour la plupart une technique efficace pour en déterminer les paramètres. Toutefois, dans de
nombreux cas pratiques les données sont insuffisantes pour effectuer correctement cette opération.
Pour résoudre cette difficulté, plusieurs techniques ont été décrites dans le cas général.

193

C.4. Ré-éclairage de visage Appendix C

À cause des spécificités de la peau, ces méthodes ne sont généralement pas applicables et plusieurs
auteurs ont proposé des approches dédiées aux visages. Mais, soit ces méthodes travaillent avec un
modèle trop simplifié de la peau pour notre objectif (les reflets sont ignorés); soit elles reposent sur
l’utilisateur pour obtenir une partie des paramètres. Nous pensons qu’il est possible de trouver un
compromis avec un modèle comme celui de Phong qui est à la fois assez expressif pour prendre en
compte les reflets et à la fois suffisamment simple pour que l’ensemble des paramètres puisse être
calculé.

Amélioration avec une texture L’usage d’une texture pour rajouter du détail à un modèle est large-
ment répandu aujourd’hui. Dans le cas du visage, il s’agit de rajouter les éléments tels que les yeux
et la bouche qui ne peuvent pas être représentés par le modèle de peau. Une texture permet aussi de
rajouter les détails de la peau de taille plus petite comme les grains de beauté, cicatrices, etc. À une
échelle plus petite encore, on utilise une texture pour donner à la peau une certaine rugosité.

Plusieurs études ont montré que, dans le cadre du ré-éclairage, la texture doit être combinée mul-
tiplicativement avec le modèle sous-jacent pour préserver l’ombrage.

Rendu de matériaux complexes Depuis l’apparition des cartes graphiques programmables, il existe
de nombreuses méthodes pour représenter des matériaux complexes d’une manière efficace qui puisse
tirer profit de ces cartes. Le problème avec ces techniques est qu’elle utilise une très grande partie de
la puissance de calcul disponible. Cela en restreint l’usage à un objet et limite la complexité du reste
de la scène. Toutefois, les cartes graphiques étant de plus en plus puissantes, ces méthodes seront
rapidement utilisables; et il est envisageable de remplacer le moteur de rendu dans ce chapitre par une
de ces techniques, la partie analyse de nos travaux pouvant facilement s’adapter.

D’autres chercheurs ont obtenu un résultat connexe intéressant en travaillant cette fois sur la struc-
ture de l’environnement lumineux : il est possible d’approcher un environnement complexe par un
nombre fini de sources ponctuelles de lumière. Le corollaire de ce résultat est qu’il suffit d’être capa-
ble de synthétiser une image pour une seule source ponctuelle pour ensuite, en répétant le processus
pour plusieurs sources, obtenir un rendu dans un environnement complexe.

C.4.3 Vue d’ensemble de la méthode

Les données initiales sont :

Maillage 3D du visage: On utilise un modèle 3D du visage qui doit être suffisamment précis. En
pratique, nous avons utilisé un scanner 3D laser et nous avons aussi testé un modèle reconstruit
avec une technique de vision utilisant plusieurs images.

Photographie du visage: Cette photographie est prise au flash dans une salle sans lumière. Cette
image est calibrée : la correspondance avec le modèle 3D est connue.

Photographie d’un miroir sphérique: On prend une photo d’un miroir sphérique dans les mêmes con-
ditions que le visage.

À partir de ces données, une phase d’analyse extrait les paramètres nécessaires pour approcher
au mieux la peau avec un modèle de réflectance. Une texture de détails est aussi déterminée pour
améliorer le rendu de la peau.

On aboutit ainsi à un moteur de rendu particulièrement simple : le maillage est intégralement
rendu avec le modèle de la peau et la texture vient y ajouter tous les détails manquants (yeux, tâches

194

Appendix C C.4. Ré-éclairage de visage

de rousseur, rugosité, etc). Cette simplicité permet d’obtenir un rendu rapide, qui n’accapare pas
toute la puissance graphique disponible et qui ne nécessite que des fonctions disponibles sur toutes
les cartes graphiques grand public.

C.4.4 Texture de détails

Cette texture est appliquée sur le rendu de la peau et ne change pas en fonction des conditions lu-
mineuses. Elle se doit donc de ne contenir ni la peau du visage ni les indices visuels qui dépendent
du point de vue, c’est-à-dire principalement les reflets. Pour la calculer, on construit une image du
visage «entièrement en peau» et éclairé dans les conditions de la photographie. Ensuite la texture est
obtenue en divisant la photo initiale par cette image.

Carte de réflectance de la peau Pour synthétiser l’image du visage «entièrement en peau», on
détermine un modèle de la réflectance de la peau telle qu’elle apparaît dans la photographie. Pour
cela, on échantillonne la photographie et on met chaque couleur obtenue avec sa normale. On peut
représenter ces données comme des points à la surface de la sphère des directions. À partir de ces
points, on calcule par interpolation - extrapolation une carte complète de la réflectance pour chaque
orientation possible de la surface du visage.

La synthèse de l’image du visage «en peau» est alors directe à partir de cette carte de réflectance :
on assigne une couleur à chaque point du visage en fonction de sa normale.

Image ratio La texture est calculée en divisant pixel par pixel, composante par composante la pho-
tographie au flash par l’image du visage «en peau».

C.4.5 Paramètres du modèle de peau

Les travaux présentés dans ce chapitre s’appuie sur le modèle de Phong. Ce modèle décrit la couleur
de l’éclairage par 9 paramètres (rouge, vert, bleu pour spéculaire, diffus, ambiant) et le matériau par
10 paramètres (la brillance en plus).

Paramètres de l’éclairage Grâce au reflet du flash dans le miroir sphérique, on peut déterminer sa
position angulaire. En observant le halo qui entoure cette réflexion, on détermine la teinte du flash,
son intensité étant fixée arbitrairement et toutes les intensités lumineuses impliquées dans le processus
sont exprimées en rapport à celle du flash. La partie sombre du miroir sphérique permet de calculer la
couleur de l’éclairage ambiant (i.e. qui vient après réflexion sur les murs).

Paramètres de la peau Notre stratégie est une analyse par synthèse : à partir d’un jeu de paramètres,
on synthétise une image du visage que l’on compare à la photographie initiale et on adapte les
paramètres pour améliorer la ressemblance. Pour cela, on utilise une descente de gradient à pas
variable. Toutefois, le paramètre de brillance ne peut pas être inclus dans ce processus car il introduit
plusieurs cas ambigus qui rendent l’optimisation instable. Ce paramètre est donc déterminé séparé-
ment en analysant la carte de réflectance précédemment construite.

195

C.5. Capture de la géométrie d’une chevelure Appendix C

C.4.6 Moteur de rendu

Le principe du moteur est basique : un rendu Phong avec les paramètres de la peau est combiné avec
la texture de détails. Il peut donc être implémenté avec n’importe quelle bibliothèque de rendu. Nous
avons utilisé OpenGL pour nos exemples.

Comme la texture contient des valeurs supérieures à 1, il faut soit bénéficier d’une carte supportant
cette option soit faire appel à un rendu multi-passes (qui est décrit dans la version complète).

Ce système étant particulièrement léger, il est aisé de lui ajouter des fonctions pour améliorer un
point spécifique. À titre d’exemples, nous avons ajouté la simulation de la sous- et surexposition, des
reflets dans les yeux et des ombres projetées.

C.4.7 Résultats

Les différents résultats montrent que la technique présentée permet de créer des images de qualité
à une cadence élevée (au delà de 30Hz) y compris pour des cartes graphiques peu puissantes. Par
rapport à d’autres techniques où les données sont produites par des artistes, l’aspect des visages sont
plus réalistes. En comparant avec des images réelles, on peut noter un certain nombre de différences
significatives (reflet du nez absent, ombres trop dures ou trop douces, etc) mais l’ombrage dans son
ensemble est cohérent. Plus particulièrement, les résultats animés mettant en scène des sources lu-
mineuses en mouvement donnent des résultats convaincants et très satisfaisants, tout en laissant de la
puissance de calcul «en réserve».

C.4.8 Conclusion

On a décrit une analyse robuste qui permet, à partir d’une photographie du visage et de son modèle
3D, d’extraire les informations nécessaires pour effectuer un rendu rapide et de qualité. Qui plus
est la technique de rendu est compatible avec l’animation du visage tant que celle-ci respecte les
coordonnées de texture, ce qui est le cas la plupart du temps.

Les résultats obtenus montrent que malgré la simplicité de la technique la plupart des régions
du visage est synthétisée de manière convaincante. Cela invite à étudier la possibilité d’un rendu en
niveau de détails où seules les régions les plus importantes se verraient synthétiser avec un modèle
complexe alors que les autres régions seraient rendues avec une méthode simple et rapide comme celle
que l’on vient de présenter.

C.5 Capture de la géométrie d’une chevelure

C.5.1 Introduction

La création de la géométrie d’une chevelure est la partie la plus fastidieuse pour un utilisateur qui
travaille avec des cheveux virtuels. Le rendu et l’animation ont connu des progrès importants ces
dernières années et sont aujourd’hui largement automatiques alors que la modélisation repose encore
essentiellement sur l’utilisateur qui doit tout créer à partir de zéro. Quand en plus il s’agit de repro-
duire une chevelure donnée, le processus d’édition devient particulièrement fastidieux pour reproduire
chaque boucle, ondulation...

On propose dans ce chapitre de créer la géométrie d’une chevelure à partir d’une série de photos
d’une vraie personne. La technique proposée reproduit l’ensemble des caractéristiques géométriques

196

Appendix C C.5. Capture de la géométrie d’une chevelure

visibles dans les photos. Cette approche est complémentaire des systèmes d’édition traditionnels : le
résultat de la capture peut être utilisé tel quel ou utiliser comme base pour une session utilisateur.

L’application principale de la méthode proposée est la création de la chevelure d’un clone virtuel.
Une telle technique peut aussi être utile dans le domaine de la coiffure et de la recherche criminelle
pour établir une base de données de chevelures.

L’objectif de ces travaux est de produire des données exploitables pour le rendu de la chevelure
sous un point de vue et/ou un éclairage nouveau. On cherche par conséquent à reconstruire un ensem-
ble de lignes représentant les mèches de la chevelure.

Un des points forts de notre méthode est d’exploiter les propriétés de l’interaction lumineuse des
cheveux pour en tirer de l’information alors que pour les méthodes classique de reconstruction cette
interaction complexe est un problème majeur empêchant d’atteindre des résultats corrects.

C.5.2 État de l’art

Les techniques de reconstruction à partir d’images sont pour la plupart fortement perturbées par
l’apparence des cheveux qui varie fortement en fonction du point de vue. Beaucoup de scanners
3D échouent aussi à cause de la diffusion de la lumière par les fibres capillaires.

Et dans le meilleur des cas, ces techniques renvoient une surface qui n’est pas une description
appropriée de la chevelure.

Méthodes génériques On peut utiliser des méthodes qui capturent l’apparence d’un objet indépen-
demment de sa géométrie. Ces techniques fonctionnent sur les cheveux mais les données ainsi ac-
quises sont particulièrement difficiles à éditer.

Modélisation par l’utilisateur Il existe plusieurs approches pour faciliter le travail d’un «artiste»
qui doit créer une chevelure. Ces techniques proposent des outils pour éviter d’avoir à manipuler les
cheveux un par un. Toutefois créer une chevelure est toujours un processus long car il faut partir de
zéro. Et s’il faut reproduire toutes les boucles et ondulations d’une personne réelle, la tâche devient
particulièrement fastidieuse.

Méthodes à base d’images Il existe très peu de méthodes à base d’images. Certaines proposent de
capturer uniquement le volume des cheveux à l’aide des images et ensuite de remplir ce volume avec
des cheveux créés indépendamment des images. Dans ce cas, seul le volume est reproduit, le style lui
n’est au mieux que ressemblant.

La seule méthode travaillant 100% à partir d’images à ce jour ne donne malheureusement que des
résultats partiels. Néanmoins la trame de la méthode proposée dans ce chapitre est inspirée de ces
travaux.

C.5.3 Vue d’ensemble de la méthode

Les données d’entrée sont des séquences d’images prises à partir d’une caméra fixe avec une source
lumineuse qui se déplace. Ainsi, on peut observer un point de la chevelure sous plusieurs éclairages
différents. En contrepartie, on ne peut extraire aucune information stéréoscopique des images. Par
conséquent, l’information tridimensionnelle provient de l’analyse des reflets sur la chevelure. Pour
capture l’intégralité des cheveux, on utilise plusieurs séquences d’images prises autour de la tête.

197

C.5. Capture de la géométrie d’une chevelure Appendix C

Notre étude se base sur les mèches qui sont l’entité visible dans les images car les fibres sont
trop fines. Ces mèches sont considérés comme un ensemble de courts segments rectilignes d’environ
un millimètre. L’approche présentée se décompose en deux grands blocs : tout d’abord une phase
qui analyse les séquences une par une pour calculer l’orientation tridimensionnelle des segments; puis
dans un second temps, une phase qui construit la géométrie de la chevelure en combinant l’information
venant de tous les points de vue.

Le calcul de l’orientation se décompose en deux temps : l’orientation de segments est calculé en
2D dans le plan image avant d’être transformée en une orientation 3D grâce à l’analyse des reflets.

Limitations La méthode proposée fonctionne dans de nombreux cas. Néanmoins, il est des situa-
tions qui ne peuvent être résolues par notre technique. Travaillant à partir d’images, le système ne
capture que la partie visible de la chevelure. La méthode repose sur l’hypothèse que les mèches sont
à l’échelle d’un pixel, des dreadlocks ne seraient pas correctement reconstruits par exemple. On sup-
pose aussi que chaque pixel à une seule orientation ce qui peut poser problème avec des cheveux très
emmêlés.

C.5.4 Orientation des segments

Orientation 2D On veut calculer l’orientation de la projection de chaque segment dans le plan
image. Il s’agit d’un problème classique en traitement d’images : quelle est l’orientation locale d’une
image?

Il existe de nombreuses techniques pour répondre à cette question. Ces techniques se fondent
toutes sur une propriété théorique de l’image (le profil des contours par exemple). Malheureusement
les images de cheveux sont complexes car une fibre est plus fine qu’un pixel ce qui introduit des
problèmes d’aliasing. En plus, les cheveux réfléchissent, diffractent, diffusent,... ce qui rend sans
espoir de définir une propriété forte sur les images dont l’on dispose. On suppose alors uniquement
qu’il existe une orientation en chaque pixel.

On propose dans ce chapitre, non pas une nouvelle technique de mesure de l’orientation dans les
images, mais une méthode pour choisir la technique de mesure la plus fiable parmi plusieurs. Pour
cela, on travaille avec les filtres dits orientés : l’image est convoluée localement avec un noyau que
l’on fait tourner pour tester toutes les orientations possibles. On obtient ainsi une courbe réponse dont
la valeur la plus élevée correspond à l’orientation résultat. Pour évaluer la fiabilité de ce résultat, on
examine la courbe réponse. Si elle est plate, alors le résultat n’est pas fiable car plusieurs orientations
remplissent le même critère. Si la courbe est piquée, le filtre est discriminant et le résultat est fiable.
Pour chiffrer cette fiabilité, on utilise donc la variance de la courbe réponse : une faible variance
indique un résultat fiable.

L’intérêt majeur de ce critère est qu’il permet de comparer rigoureusement la fiabilité de plusieurs
filtres appliqués potentiellement sur des images différentes et/ou à des positions différentes. Pour un
pixel donné, on peut ainsi tester plusieurs filtres, chacun sur plusieurs images avec des conditions
d’éclairage différentes et choisir l’orientation issue de la configuration la plus fiable.

Plusieurs paramètres rentrent en jeu pour cette série de tests :

Fréquence: Afin de n’étudier que l’orientation des mèches et non pas celle des reflets, on applique un
filtre passe-bande aux images pour ne conserver que les fréquences les plus élevées.

198

Appendix C C.5. Capture de la géométrie d’une chevelure

Profile détecteur: Il s’agit du profile du noyau du filtre dans la direction de la variation à détecter.
Nous avons testé 8 profiles différents.

Profile projecteur: C’est le profile orthogonal. Nous avons montré que le critère de variance a le
même comportement des critères connus : pour un signal infiniment allongé, plus ce profil est
allongé, plus fiable est la détection. Comme en pratique le signal n’est pas infiniment allongé,
nous testons 3 allongements différents.

Pour tirer partie de la cohérence locale de l’orientation des cheveux, on finit en appliquant un
filtre bilatéral aux orientations 2D calculées. Ce filtre «corrige» l’orientation d’un pixel à l’aide de ses
voisins en prenant en compte : la distance qui les sépare (un voisin distant a moins d’influence), leur
fiabilité (un voisin plus fiable a plus d’influence) et la similarité de leur apparence (un voisin qui a une
apparence proche a plus de poids).

Cette technique pour mesurer l’orientation 2D locale des images est validée sur des images syn-
thétiques de référence et des images réelles et comparer à des méthodes connues. À chaque fois, les
résultats obtenus sont plus précis, ce qui montre l’intérêt de cette méthode pour les cas difficiles tels
que les images de cheveux.

Orientation 3D L’idée ici est de trouver, pour chaque segment, une position de la lumière qui
correspond à la configuration miroir (où le point de vue et la lumière forment deux angles égaux avec
la normale au segment). Pour chaque pixel, on cherche dans les images celle qui donne la réflexion la
plus importante. La position de la lumière correspondante est dans la configuration miroir et on peut
ainsi calculer une normale au segment qui se trouve le pixel étudié.

Connaissant la position de la caméra et l’orientation 2D d’un segment, on peut calculer un premier
plan dans l’espace 3D qui contient ce segment. Ensuite, la normale que l’on vient de calculer définit
un second plan qui, intersecté avec le premier, caractérise l’orientation 3D du segment.

C.5.5 Mise en œuvre

Pour couvrir l’ensemble de la chevelure, nous utilisons 4 points de vue : haut, arrière, gauche et droite.
L’étude précédente est répétée à chaque fois afin d’obtenir une orientation 3D pour chaque pixel.

Calibration du système L’utilisateur fournit pour chaque point de vue une ellipse qui approche la
silhouette de la chevelure. En combinant ces ellipses ensemble on construit un ellipsoïde 3D que l’on
considère comme une approximation de l’ensemble des points de départ des mèches. Cet ellipsoïde
permet aussi de ramener dans un repère commun tous les points de vue pour calibrer le système.

Croissance des mèches Les mèches sont créées une par une. La croissance commence toujours
par un point à la surface de l’ellipsoïde. Ensuite les segments sont ajoutés à la suite des un des
autres. Quand plusieurs caméras «voient» la position du prochain segment à chaîner, on combine
linéairement les segments que chacune propose en tenant compte de leur angle de vue : les angles
rasants sont moins influents car ils correspondent aux silhouettes où l’information est de piètre qualité
à cause de la perspective fuyante.

199

C.6. Conclusion générale Appendix C

C.5.6 Résultats

Nous avons reconstruits plusieurs chevelures de plusieurs types : une blonde mi-longue à grandes
ondulations, une auburn longue ondulée et une brune courte à petites boucles désordonnées. Nous
avons rencontrés des difficultés : l’ellipsoïde est parfois une mauvaise approximation de la forme de
cheveux, les cheveux longs ont tendance à bouger lors de la capture.

Néanmoins, les résultats sont à chaque fois convaincants. Nous avons synthétisé une séquence qui
reproduit le même mouvement de lumière : les motifs des reflets sont similaires aux originaux. Nous
avons aussi mesurés l’erreur angulaire sur la déviation de la lumière nécessaire en chaque pixel pour
obtenir le même reflet. L’erreur ainsi obtenue est de l’ordre de quelques degrés ce qui est acceptable
compte tenu du fait que notre système expérimental n’a vocation qu’à être une preuve de concept et
reste améliorable sur de nombreux points.

C.5.7 Conclusion

D’un point de vue pratique, le système proposé fonctionne et capture de manière précise la géométrie
d’une chevelure. D’un point de vue théorique, la sélection par la variance a été prouvée partager des
propriétés communes avec d’autres méthodes.

Nous pensons que cette technique ouvre la voie vers une nouvelle façon de travailler avec les
cheveux. Il serait entre autres intéressants et utile d’acquérir aussi la réflectance des cheveux. Plus
ambitieusement, on pourrait étudier le problème de la capture des mouvements des cheveux. Pousser
plus loin l’étude théorique serait aussi intéressant.

C.6 Conclusion générale

Dans ce manuscrit, nous avons abordé trois points principaux autour de l’extraction de données à
partir d’images :

• La reconstruction de surface à partir de plusieurs points de vue.

• Le ré-éclairage de visage à l’aide d’une seule image et d’un modèle 3D.

• La capture de la géométrie d’une chevelure à l’aide d’une lumière placée à plusieurs endroits.

Notre première remarque est de souligner que ces trois points illustrent la variété de l’information qui
peut être exploitée dans les images : contour, reflet, texture, couleur, ombrage, etc. Et ces informations
sont d’autant plus riches quand on peut observer leur évolution sur plusieurs images.

Nous avons aussi montré plusieurs configurations utiles : caméra fixe ou mobile, lumière fixe
ou mobile, images seules ou image plus modèle 3D. Pour chaque configuration, nous proposons un
algorithme dédié qui extrait une information dense.

À partir de ces études de cas, nous proposons quelques conclusions générales.

La redondance est utile

Dans nos travaux sur la reconstruction de surface et la capture de chevelure, nous utilisons de nom-
breuses images du même objet avec une faible variation entre deux images consécutives (petit dé-
placement de la caméra ou de la lumière). Même si les données utilisées sont redondantes, nous
sommes convaincus que cette redondance participe à la précision des résultats obtenus.

200

Appendix C C.6. Conclusion générale

En exploitant cette redondance, nos algorithmes sont robustes – c’est-à-dire qu’ils peuvent fonc-
tionner à partir de données non parfaites. Puisque l’information est «reproduite» plusieurs fois dans
les données, il nous est possible de compenser certaines erreurs. Nous pouvons ainsi accorder plus
de «confiance» aux données en entrée et introduire moins de connaissances a priori pour contrôler
nos processus. Nous sommes «plus près» des données originales parce que nous pouvons détecter les
données corrompues. Cette robustesse est d’autant plus importante que l’on recherche des données
denses : nous devons produire un résultat raisonnable même pour les régions peu représentées dans
les images de départ.

La complétude et le haut niveau de détails des surfaces et des chevelures confirment cette situa-
tion : nous reproduisons correctement les objets réels.

L’information est visible

Dans toutes les parties présentées, l’information extraite est «visible» dans les données de départ. Si
l’on joue la séquence d’images utilisée pour la reconstruction de surface comme un film, on perçoit la
3D de la scène. Pour le ré-éclairage de visage, on peut évaluer facilement l’état de la peau entre mat,
sec et mouillé. Et il est facile de suivre les mèches de cheveux avec un crayon sur nos séquences de
chevelures.

Cette remarque nous a encouragé à poursuivre nos recherches dans les cas les plus durs. Par
exemple, pour la capture de chevelure, il n’était pas évident à partir des images originales qu’il était
possible de retrouver une orientation dense. Mais une fois que l’on a vu les hautes fréquences des
images avec des lignes bien marquées et presque aucun reflet, nous étions convaincus que «si on voit
les lignes, on peut les retrouver».

Cela peut ne pas toujours être vrai. Reprenons le «cube plat» (figure 2.1 en page 6) : on devine
une forme tridimensionnelle tandis qu’objectivement il n’y a rien de 3D. Malgré tout, dans ce cas, il
est possible de d’introduire la connaissance humaine a priori qui s’appuie sur les lignes parallèles et
les angles pour retrouver l’information 3D.

Néanmoins, il existe peut-être des cas plus compliqués pour lesquels on ne peut pas résoudre le
problème même si l’on «voit» l’information. Mais nous sommes néanmoins convaincus que ces cas
sont rares et méritent d’être étudiés : notre cerveau est capable d’extraire l’information, il y a donc
une chance de trouver une solution.

Une structure de données appropriée est importante

Nous avons déjà discuté ce point pour la reconstruction de surface : nous sommes convaincus qu’une
formulation dans l’espace 3D est fondamentale pour capturer une forme 3D. Nous pensons aussi que
créer des lignes pour représenter la géométrie d’une chevelure est un choix crucial qui ouvre la voie
à d’autres applications (l’acquisition de la réflectance, l’édition de la géométrie et son animation) et
que ce choix est plus judicieux qu’une surface texturée. À propos du ré-éclairage de visage, com-
prendre l’influence de chaque paramètre permet de déterminer un jeu de paramètres qui fait sens et de
mettre au point un schéma d’optimisation robuste. Manipuler un bon jeu de paramètres rend possible
l’extraction complète d’un modèle de réflectance à partir d’une seule image.

Dans ce manuscrit, nous présentons des méthodes qui visent à reconstruire l’objet original in-
dépendemment de l’usage ultérieur de cette donnée (à l’exception du ré-éclairage de visage qui est
adapté au rendu rapide) : nous cherchons une surface qui ressemble à l’objet de départ, un ensemble
de cheveux qui copie la chevelure originale. Ces données sont en quelque sorte des données «à tout

201

C.6. Conclusion générale Appendix C

faire»; elles peuvent être utilisées pour n’importe quelle application, éventuellement après un traite-
ment. Il serait intéressant d’étudier la création de données dédiées qui tiennent compte de l’usage
visé. Cette idée est discutée plus loin dans les travaux futurs.

C.6.1 Travaux futurs

Au-delà des travaux futurs présentés dans chaque chapitre, nous proposons un aperçu de ce que pour-
rait être la suite de nos travaux.

Données volumétriques Tout d’abord, il serait intéressant d’étudier d’autres cas. Dans cette direc-
tion, Reche et al. [178] proposent une étude sur la reconstruction d’arbres en les considérant comme
un matériau non opaque. Cela amène à une reconstruction volumétrique différente de notre recon-
struction de surfaces et de lignes. Toujours dans cette direction, on peut aussi envisager de travailler
sur des entités volumétriques comme des objets translucides (un verre, une bouteille par exemple)
mais aussi la fumée et l’eau. Les applications seraient l’insertion d’un acteur digital dans un nuage de
gaz réel ou rendre possible des interactions complexes entre de l’eau réelle et des éléments virtuels.

Influence sur l’environnement Une autre direction intéressante est pointé par Chuang et al. [40]
qui capturent l’ombre d’un objet sous le soleil et l’adapte à une nouvelle scène. Ce travail est original
en ce qu’il capture non pas l’objet mais son effet sur son environnement. Goesele et al. [73] proposent
aussi un premier pas pour mesurer une lumière directionnelle. Il serait intéressant d’étendre ces tech-
niques à d’autres effets «périphériques» tels qu’une source de lumière plus générale ou des effets
d’illumination globale plus complexes (caustiques, ombres douces, etc). Cela pourrait aboutir à des
applications utiles comme du ré-éclairage amélioré ou une meilleure incrustation des objets capturés
dans une nouvelle scène.

Données «dédiées» À côté des autres scénarii, on peut aussi étudier des données «dédiées» comme
déjà mentionné. On entend par cela que l’on pourrait prendre en compte l’usage futur des données
pendant leur capture. Dans ce manuscrit, seul le ré-éclairage de visage suit cette voie. Pour la recon-
struction de surface, il s’agirait par exemple de créer des surfaces NURBS avec des points de contrôle
pour donner la possibilité de l’éditer. Une approche appropriée serait de déterminer les NURBS
directement à partir des images et non pas de les ajuster sur la surface déjà extraite. Une telle rela-
tion direction aboutirait à une résultat plus cohérent. Si la surface doit être rendue alors étudier des
représentations spécifiques comme les «nuages d’imposteurs» [59] est un choix pertinent.

Pour les cheveux, cela amènerait à considérer des structures dédiées à l’animation comme les
hiérarchies de mèches [15] ou à l’édition comme les flots de fluide [80]. Il est bon de remarquer que
notre technique actuelle est proche d’un flot lorsqu’on manipule le champ d’orientation 3D. De l’autre
côté, créer une hiérarchie de mèches à partir d’images serait plus ambitieux et délicat.

Clôture

En conclusion, nous souhaitons dire que ce domaine de recherche est large et recèle de nombreux
défis à relever. De grands progrès sont encore à attendre et nous sentons que nous sommes de plus en
plus proche d’algorithmes utilisables en production. Nous avons montré qu’une information complète
et dense peut être obtenue à partir d’images. La facilité d’utilisation doit encore être améliorée (en
réglant automatiquement tous les seuils et poids des algorithmes par exemple). Néanmoins les com-
munautés de informatique graphique et de vision par ordinateur se sont rapprochées et les fruits en

202

Appendix C C.6. Conclusion générale

sont nombreux et prometteurs : de nombreux chercheurs proposent des techniques à base d’images : la
photographie 3D [154], le magnétoscope 3D [232], la télévision 3D [151], etc. Nous sommes conva-
incus que ce domaine de recherche va bientôt engendrer de nouveaux appareils qui seront accessibles
au grand public.

203

C.6. Conclusion générale Appendix C

204

List of Figures

Surface reconstruction 5
2.1 This picture is not 3D . 6
2.2 Trivial reconstruction . 7
2.3 How to recover a 3D point from two images . 8
2.4 An ill-posed case . 9
2.5 The two main matching criteria: photo-consistency and ZNCC 10
2.6 The homography used in the ZNCC computation 11
2.7 Comparison of the elements ds and dx dy . 14
2.8 Depth and disparity . 16
2.9 Disparity map definition . 16
2.10 Sample disparity map on a reference case . 17
2.11 Voxel ring . 17
2.12 Visual hull in 2D . 18
2.13 Visual hull from 4 silhouettes . 18
2.14 Sample Space Carving process . 20
2.15 Sample reconstruction from the Voxel Coloring technique 21
2.16 Shape represented line by line . 22
2.17 Sample reconstruction using level sets . 23
2.18 Level sets: Sample evolution . 24
2.19 Level sets: Overview of the process in 2D . 25
2.20 Parametrized penalty is rotation-dependent . 30
2.21 Intuition on the Cauchy-Crofton formula in 2D . 31
2.22 Sample reconstruction using various information sources 32
2.23 Example of a cut on a graph . 41
2.24 Two simple examples of graph-cut optimization . 42
2.25 Graph with a linear smoothing term . 45
2.26 Equivalence between a discontinuous variation and a continuous one 47
2.27 Comparison between a linear and a convex smoothing term (influence on 3D results) 48
2.28 Graph with a convex smoothing term . 49
2.29 Discontinuous variation and a continuous one are no more equivalent 50
2.30 Configuration of our scenario . 51
2.32 Configuration of our study case . 51
2.31 Overview of the whole process . 52
2.33 Consistent voxel not part of the surface . 53
2.34 Vertex coordinate property . 54
2.35 Basic morphological operators . 55
2.36 Morphological treatment applied to the consistent voxels 56

205

List of Figures List of Figures

2.37 An horizontal slice through the voxel space . 56
2.38 Sample χx and χy functions . 57
2.39 Visibility edges . 59
2.40 Effect of our PDE filter on a reference surface . 60
2.41 Comparison of our filter with an image filter . 61
2.42 Effects of the discontinuity detection and of PDE smoothing 62
2.43 Result: Man with briefcase . 63
2.44 Result: Keyboard . 64
2.45 Result: Lantern and folded chess-board . 65
2.46 Influence of the number of images . 66
2.47 Comparison with a disparity map . 67

Patchwork reconstruction 75
3.1 Three patches with their local coordinate system . 77
3.2 Hard-constrained voxels in 2D . 80
3.3 Results from the propagation algorithm . 83
3.4 Comparison between the propagation algorithm, space carving and level sets 84
3.5 Comparison of the carving algorithm with Space Carving and level sets 85
3.6 Results of the carving algorithm on a skull . 86
3.7 Results of the carving algorithm on faces . 88

Face relighting 91
4.1 BRDF and BSSRDF . 93
4.2 Comparison between BRDF and BSSRDF on skin 94
4.3 Capture system of Matusik et al. [154] . 95
4.4 Notations: l, n, r and v . 96
4.5 Phong model . 97
4.6 BSSRDF rendering of a face from acquired parameters 100
4.7 Face relighting with Lambertian assumption . 103
4.8 Overview of the rendering engine . 105
4.9 Sample combination between a shaded 3D face and a detail texture 106
4.10 Sample skin segmentation . 109
4.11 Reflectance map . 110
4.12 Detail texture . 111
4.13 Overview of the creation of the detail texture . 112
4.14 Light probe analysis . 115
4.15 Configuration for highlight measurement . 116
4.16 Plot of function (4.6) . 117
4.17 Comparison of the shininess exponent under various skin conditions 118
4.18 Result of the parameter optimization . 119
4.19 Overview of the Phong parameter retrieval . 120
4.20 Effect of the doubling passes . 121
4.21 Illustration of the over-exposure effect . 122
4.22 Highlights in the eyes . 122
4.23 Improvement brought by the cast shadows . 123

206

List of Figures List of Figures

4.24 Face renderings from the latest graphics cards . 124
4.25 Comparison between real photographs and relighted images. 125
4.26 Relighting in a complex environment . 126
4.27 Relighting a bearded face . 126
4.28 Comparison between a fine mesh and coarse one 127
4.29 First results from a Computer Vision model . 127

Capture of hair geometry 131
5.1 Sample result from Matusik et al. [154] . 133
5.3 Sample hairstyle created with a flow-editing system [80] 133
5.2 Various hairstyles from a hierarchical editing system [115] 134
5.4 Sample hairstyle created with a procedural and image-based system [125] 134
5.5 Results from Grabli et al. [78] . 135
5.6 Definitions of fiber, strand and segment . 136
5.7 Viewpoint and 2D orientation of a segment in image 136
5.8 The four viewpoints . 137
5.9 Overview of the hair capture process . 137
5.10 Sample input sequence from a single viewpoint . 139
5.12 Response curves of two different filters applied to the same pixel 142
5.11 Frequency decomposition of an image . 143
5.13 Detector profiles . 144
5.14 Detector and projection profiles . 144
5.15 Influence of the projection profile . 145
5.16 Orientation result on a real hair . 146
5.17 Influence of the difference treatments on the final result 147
5.18 Validation of the orientation measure on a reference image 148
5.20 Determination of a vector normal to a hair segment 149
5.19 Hair fiber model of Marschner et al. [147] . 149
5.21 Intensity plots for two segments with different orientations 150
5.22 Grazing angles relatively to three views . 152
5.23 Hair strand growth . 153
5.24 Our simple setup to capture a subject under moving light and fixed camera 154
5.25 Capture of a black tangled hair . 155
5.28 Angular specular error distribution . 156
5.26 Capture of a long wavy hair . 156
5.27 Side by side comparison . 158

Appendices 167
A.1 Penalty location . 169
A.2 Function with its tangent . 171
A.3 Intuition of the integration on the z domain . 171

B.1 Reference images used in our experiment . 177
B.2 Geometric configuration of a camera and a mirror ball 179
B.4 Global registration of the viewpoints . 180
B.3 Ellipse fitted on the hair area . 180

207

List of Figures List of Figures

208

List of Tables

Patchwork reconstruction 75
3.1 Comparison of the complexity . 77

Face relighting 91
4.1 Performance of the rendering engine . 127

Capture of hair geometry 131
5.1 Oriented filters we use . 142

Appendices 175
B.1 Detailed evaluation of our orientation measure . 178
B.2 Characteristic lengths of our setup . 179

209

List of Tables List of Tables

210

Bibliography

[1] David Adalsteinsson and James A. Sethian. A fast level set method for propagating interfaces. Journal
of Computational Physics, 118:269–277, 1995. cited on page(s) 76, 77

[2] Sameer Agarwal, Ravi Ramamoorthi, Serge Belongie, and Henrik Wann Jensen. Structured importance
sampling of environment maps. ACM Transactions on Graphics, 22(3), July 2003. Proceedings of the
SIGGRAPH conference. cited on page(s) 103

[3] Aseem Agarwala, Mira Dontcheva, Maneesh Agrawala, Steven Drucker, Alex Colburn, Brian Curless,
David H. Salesin, and Michael F. Cohen. Interactive digital photomontage. ACM Transactions on
Graphics, 23(3):294–302, July 2004. Proceedings of the SIGGRAPH conference. cited on page(s) 33

[4] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows: Theory, Algorithms, and
Applications. Prentice Hall, 1993. ISBN 013617549X. cited on page(s) 26, 40, 41

[5] Daniel Aliaga, Rui Bastos, Mary Whitton, Fred Brooks, Dinesh Manocha, Jon Cohen, Andrew Wil-
son, Eric Baker, Hansong Zhang, Carl Erikson, Kenny Hoff, Tom Hudson, and Wolfgang Stuerzlinger.
MMR: an interactive massive model rendering system using geometric and image-based acceleration.
In Proceedings of the symposium on Interactive 3D graphics, pages 199–206. ACM SIGGRAPH, 1999.
ISBN:1-58113-082-1. cited on page(s) 5

[6] Luis Alvarez, Pierre-Louis Lions, and Jean-Michel Morel. Image selective smoothing and edge detection
by nonlinear diffusion (II). SIAM Journal of Numerical Analysis, 29(3), June 1992. cited on page(s) 61

[7] Nina Amenta, Marsahll Bern, and Manolis Kamvysselis. A new voronoi-based surface reconstruction
algorithm. In Proceedings of the ACM SIGGRAPH conference, pages 415–421. ACM, 1998. cited on
page(s) 85

[8] Nina Amenta, Sunghee Choi, and Ravi Kolluri. The power crust, unions of balls, and the medial axis
transform. Computational Geometry: Theory and Applications, 19(2-3):127–153, 2001. cited on page(s)
85

[9] Ken-ichi Anjyo, Yoshiak Usami, and Tsuneya Kurihara. A simple method for extracting the natural
beauty of hair. Computer Graphics, 26(2):111–120, July 1992. Proceedings of the ACM SIGGRAPH
conference. cited on page(s) 131

[10] Michael Ashikhmin, Simon Premoze, and Pete Shirley. A microfacet-based BRDF generator. In Pro-
ceedings of the SIGGRAPH conference. ACM, 2000. cited on page(s) 97

[11] Gilles Aubert and Pierre Kornprobst. Mathematical problems in image processing: Partial Differential
Equations and the Calculus of Variations, volume 147 of Applied Mathematical Sciences. Springer,
2002. cited on page(s) 59

[12] Simon Baker and Shree Nayar. Global measures of coherence for edge detector evaluation. In Pro-
ceedings of the conference on Computer Vision and Pattern Recognition, volume 2, June 1999. cited on
page(s) 140

[13] Bruce Guenther Baumgart. Geometric modeling for computer vision. PhD thesis, Stanford University,
1974. cited on page(s) 17

[14] Richard Bellman. Dynamic Programming. Princeton University Press, 1957. cited on page(s) 22

211

Bibliography Bibliography

[15] Florence Bertails, Tae-Yong Kim, Marie-Paule Cani, and Ulrich Neumann. Adaptive wisp tree. In
Proceedings of the Symposium on Computer Animation. ACM, 2003. cited on page(s) 131, 162, 165,
202

[16] Marcelo Bertalmio, Guillermo Sapiro, Vincent Caselles, and Coloma Ballester. Image inpainting. In
Proceedings of the SIGGRAPH conference, pages 417–424. ACM, 2000. cited on page(s) 113

[17] Michael J. Black, Guillermo Sapiro, David H. Marimont, and David Heeger. Robust anisotropic diffu-
sion. Transactions on Image Processing, 7(3):421–432, March 1998. cited on page(s) 60

[18] Andrew Blake and Andrew Zisserman. Visual reconstruction. Mit Press, 1987. ISBN:0-262-02271-0.
cited on page(s) 47, 58

[19] Volker Blanz and Thomas Vetter. A morphable model for the synthesis of 3D faces. In Proceedings of
the SIGGRAPH conference, pages 187–194. ACM, 1999. cited on page(s) 100

[20] James F. Blinn. Models of light reflection for computer synthesized pictures. In Proceedings of the
SIGGRAPH conference, pages 192–198. ACM, 1977. cited on page(s) 97

[21] Aaron F. Bobick and Stephen S. Intille. Large occlusion stereo. International Journal of Computer
Vision, 33(3):181–200, September 1999. cited on page(s) 22

[22] Samuel Boivin and André Gagalowicz. Image-based rendering of diffuse, specular and glossy surfaces
from a single image. In Proceedings of the SIGGRAPH conference, pages 107–116. ACM, 2001. cited
on page(s) 99

[23] BOOST website. http://www.boost.org/. cited on page(s) 87

[24] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
ISBN 0521833787. cited on page(s) 14

[25] Edmond Boyer and Jean-Sébastien Franco. A hybrid approach for computing visual hulls of complex
objects. In Proceedings of the Computer Vision and Pattern Recognition Conference, volume 1, pages
695–701, June 2003. cited on page(s) 18, 21

[26] Yuri Boykov and Vladimir Kolmogorov. Computing geodesics and minimal surfaces via graph cuts. In
Proceedings of the International Conference on Computer Vision, volume 1, pages 26–33. IEEE, October
2003. cited on page(s) 31, 38, 45, 51, 170, 173

[27] Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of min-cut/max-flow algorithms
for energy minimization in computer vision. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, To appear 2004. cited on page(s) 42, 66, 87

[28] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy minimization via graph cuts.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(11):1222–1239, 2001. cited on
page(s) 28, 29, 38, 46, 58

[29] Allan C. Brik, John Williams, and Jerome J. Connor. Multiresolution, incremental generation of 3D
computer models from video data. In Proceedings of the symposion on Solid Modeling and Applications,
pages 95–102. ACM, 1993. cited on page(s) 17

[30] Andrian Broadhurst, Tom Drummond, and Roberto Cipolla. A probabilistic framework for space carv-
ing. In Proceedings of the International Conference on Computer Vision, pages 388–393. IEEE, July
2001. cited on page(s) 20

[31] Michael J. Brooks and Berthold K. P. Horn, editors. Shape from Shading. MIT Press, 1989. ISBN:0-
262-08183-0. cited on page(s) 132

[32] Chris Buehler, Steven Gortler, Michael Cohen Leonard, and McMillan. Minimal surfaces for stereo. In
Proceedings of the European Conference on Computer Vision, 2002. cited on page(s) 28, 38, 46, 47,
51, 58, 72

212

http://www.boost.org/

Bibliography Bibliography

[33] Emmanuel Candès and Dave Donoho. Recovering edges in ill-posed inverse problems: Optimality of
curvelet frames. Technical Report 2000-16, Department of Statistics, Stanford University, 2000. cited
on page(s) 140

[34] John Canny. Finding edges and lines in images. Master’s thesis, Massachusetts Institute of Technology,
June 1983. cited on page(s) 142, 144

[35] CAQTI website. http://www.caqti.com/. cited on page(s) 132

[36] Vincent Caselles, Ron Kimmel, and Guillermo Sapiro. Geodesic active contours. International Journal
of Computer Vision, 22(1):694–699, February/March 1997. cited on page(s) 37, 38

[37] Francine Catté, Pierre-Louis Lions, Jean-Michel Morel, and Tomeu Coll. Image selective smoothing and
edge detection by nonlinear diffusion. SIAM Journal of Numerical Analysis, 29(1):182–193, February
1992. cited on page(s) 60

[38] Johnny T. Chang, Jingyi Jin, and Yizhou Yu. A practical model for hair mutual interactions. In Proceed-
ings of the Symposium on Computer Animation. ACM, 2002. cited on page(s) 131

[39] Boris V. Cherkassky and Andrew V. Goldberg. On implementing the push-relabel method for the maxi-
mum flow problem. Algorithmica, 19(4):390–410, 1997. cited on page(s) 42, 66, 76

[40] Yung-Yu Chuang, Dan B Goldman, Brian Curless, David H. Salesin, and Richard Szeliski. Shadow
matting and compositing. ACM Transactions on Graphics, 22(3):494–500, July 2003. Proceedings of
the SIGGRAPH conference. cited on page(s) 165, 202

[41] Robert Collins. A space-sweep approach to true multi-image matching. In Proceedings of the Computer
Vision and Pattern Recognition, pages 358–363. IEEE, June 1996. cited on page(s) 19

[42] Robert L. Cook and Kenneth E. Torrance. A reflectance model for computer graphics. ACM Transactions
on Graphics, 1(1), 1982. cited on page(s) 97

[43] Wagner T. Corrêa, James T. Klosowski, and Cláudio T. Silva. iWalk: Interactive out-of-core rendering
of large models. Technical Report TR-653-02, Princeton University, 2002. cited on page(s) 5

[44] Ingemar J. Cox, Sunita L. Hingorani, Satish B. Rao, and Bruce M. Maggs. A maximum likelihood stereo
algorithm. Journal of Computer Vision and Image Understanding, 63(3), May 1996. cited on page(s)
22

[45] W. Bruce Culbertson, Thomas Malzbender, and Gregory G. Slabaugh. Generalized voxel coloring. In
Proceedings of the International Workshop on Vision Algorithms, Lecture Notes on Computer Science,
pages 100–115. Springer Verlag, September 1999. cited on page(s) 19

[46] Brian Curless and Marc Levoy. A volumetric method for building complex models from range images.
In Proceedings of the SIGGRAPH conference. ACM, 1996. cited on page(s) 81

[47] Agnes Daldegan, Nadia Magnenat-Thalmann, Tsuneya Kurihara, and Daniel Thalmann. An integrated
system for modeling, animating and rendering hair. Computer Graphics Forum, 12(3):211–221, 1993.
cited on page(s) 131, 133

[48] Katja Daubert, Hendrik P. A. Lensch, Wolfgang Heidrich, and Hans-Peter Seidel. Efficient cloth mod-
eling and rendering. In Proceedings of Eurographics Workshop on Rendering, 2001. cited on page(s)
102

[49] Jeremy S. de Bonet and Paul Viola. Poxels: Probabilistic voxelized volume reconstruction. In Proceed-
ings of the International Conference on Computer Vision. IEEE, 1999. cited on page(s) 20

[50] Paul Debevec, Tim Hawkins, Chris Tchou, Haarm-Pieter Duiker, Westley Sarokin, and Mark Sagar.
Acquiring the reflectance field of a human face. In Proceedings of the SIGGRAPH conference. ACM,
2000. cited on page(s) 94, 95, 100, 116

213

http://www.caqti.com/

Bibliography Bibliography

[51] Paul Debevec, Andreas Wenger, Chris Tchou, Andrew Gardner, Jamie Waese, and Tim Hawkins. A
lighting reproduction approach to live-action compositing. ACM Transactions on Graphics, 21(3), 2002.
Proceedings of the SIGGRAPH conference. cited on page(s) 104

[52] Paul E. Debevec and Jitendra Malik. Recovering high dynamic range radiance maps from photographs.
In Proceedings of the SIGGRAPH conference. ACM, August 1997. cited on page(s) 115, 122

[53] Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. Modeling and rendering architecture from
photographs. In Proceedings of the SIGGRAPH conference. ACM, August 1996. cited on page(s) 12

[54] Rachid Deriche. Using Canny’s criteria to derive a recursively implemented optimal edge detector.
International Journal of Computer Vision, 1(2), May 1987. cited on page(s) 142

[55] Rachid Deriche and Olivier Faugeras. Les EDP en traitement des images et vision par ordinateur. journal
du Traitement du Signal, 13(6), 1996. cited on page(s) 170, 172

[56] Huong Quynh Dinh, Greg Turk, and Greg Slabaugh. Reconstructing surfaces using anisotropic basis
functions. In Proceedings of the International Conference on Computer Vision. IEEE, 2001. cited on
page(s) 20

[57] Dave Donoho and Xiaoming Huo. Beamlet pyramids. In Proceedings of SPIE conference, volume 4119,
2000. cited on page(s) 140

[58] Frédo Durand and Julie Dorsey. Fast bilateral filtering for the display of high-dynamic-range images.
ACM Transactions on Graphics, 21(3), 2002. Proceedings of the SIGGRAPH conference. cited on
page(s) 145

[59] Xavier Décoret, Frédo Durand, François X. Sillion, and Julie Dorsey. Billboard clouds for extreme
model simplification. ACM Transactions on Graphics, 22(3), July 2003. Proceedings of the SIGGRAPH
conference. cited on page(s) 74, 165, 202

[60] Michael Elad. On the bilateral filter and ways to improve it. IEEE Transactions On Image Processing,
11(10):1141–1151, October 2002. cited on page(s) 145

[61] Olivier Faugeras. Three-Dimensional Computer Vision. MIT Press, November 1993. ISBN 0-262-
06158-9. cited on page(s) 8, 9, 127

[62] Olivier Faugeras and Renaud Keriven. Complete dense stereovision using level set methods. IEEE
Transactions on Image Processing, 7(3), 1998. cited on page(s) 23, 24, 25, 33, 34, 37, 38, 58, 76

[63] Olivier Faugeras, Quang-Tuan Luong, and Theo Papadopoulo. The Geometry of Multiple Images. MIT
Press, 2001. cited on page(s) 8, 127

[64] Hans G. Feichtinger and Thomas Strohmer, editors. Advances in Gabor Analysis. Birkhauser, 2003.
cited on page(s) 142

[65] Michael Felsberg and Gerald Sommer. A new extension of linear signal processing for estimating local
properties and detecting features. In Proceedings of DAGM Symposium Mustererkennung, 2000. cited
on page(s) 140

[66] Andrew W. Fitzgibbon, Yonatan Wexler, and Andrew Zisserman. Image-based rendering using image-
based priors. In Proceedings of the International Conference on Computer Vision. IEEE, 2003. cited on
page(s) 74

[67] James D. Foley, Andries van Dam, Steven K. Feiner, John F. Hughes, and Richard L. Phillips. Introduc-
tion to Computer Graphics. Addison Wesley Professional, 1993. ISBN: 0201609215. cited on page(s)
118

[68] Lance A. Forbes and Bruce A. Draper. Inconsistencies in edge detector evaluation. In Conference on
Computer Vision and Pattern Recognition. IEEE, June 2000. cited on page(s) 141

[69] Lester R. Ford and Delbert R. Fulkerson. Flows in Networks. Princeton University Press, New Jersey,
1962. cited on page(s) 40, 41

214

Bibliography Bibliography

[70] Jean-Sébastien Franco and Edmond Boyer. Exact polyhedral visual hulls. In Proceedings of the British
Machine Vision Conference, volume 1, pages 329–338, September 2003. cited on page(s) 18

[71] William T. Freeman and Edward H. Adelson. The design and use of steerable filters. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 13(9):891–906, 1991. cited on page(s) 140

[72] Athinodoros S. Georghiades, Peter N. Belhumeur, and David J. Kriegman. Illumination-based image
synthesis: Creating novel images of human faces under differing pose and lighting. In Proceedings of
the Workshop on Multi-View Modeling and Analysis of Visual Scenes, pages 47–54. IEEE, 1999. cited
on page(s) 99

[73] Michael Goesele, Xavier Granier, Wolfgang Heidrich, and Hans-Peter Seidel. Accurate light source
acquisition and rendering. ACM Transactions on Graphics, 22(3), July 2003. Proceedings of the SIG-
GRAPH conference. cited on page(s) 115, 165, 202

[74] Michael Goesele, Hendrik P. A. Lensch, Jochen Lang, Christian Fuchs, and Hans-Peter Seidel. DISCO -
acquisition of translucent objects. ACM Transactions on Graphics, 23(3), July 2004. Proceedings of the
SIGGRAPH conference. cited on page(s) 95

[75] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen. The lumigraph. In
Proceedings of the SIGGRAPH conference. ACM, 1996. cited on page(s) 94

[76] Pierre Gosselet. Méthodes de décomposition de domaine et méthodes d’accélération pour les problèmes
multichamps en mécanique non-linéaire. PhD thesis, Université Paris 6, 2003. cited on page(s) 78

[77] Henri Gouraud. Continuous shading of curved surfaces. IEEE Transactions on Computers, 20(6):623–
628, 1971. cited on page(s) 96

[78] Stéphane Grabli, François Sillion, Stephen R. Marschner, and Jerome E. Lengyel. Image-based hair
capture by inverse lighting. In Proceedings of the Graphics Interface conference, pages 51–58, 2002.
cited on page(s) 134, 135, 148, 207

[79] Gösta H. Granlund and Hans Knutsson. Signal Processing for Computer Vision. Kluwer Academic
Publishers, 1995. cited on page(s) 140

[80] Sunil Hadap and Nadia Magnenat-Thalmann. Interactive hair styler based on fluid flow. In Proceedings
of the Workshop on Computer Animation and Simulation. Eurographics, August 2000. cited on page(s)
131, 133, 162, 165, 202, 207

[81] Sunil Hadap and Nadia Magnenat-Thalmann. Modeling dynamic hair as a continuum. Computer Graph-
ics Forum, 20(3), 2001. cited on page(s) 131, 162

[82] Ziyad S. Hakura, Jerome E. Lengyel, and John M. Snyder. Parameterized animation compression. In
Proceedings of the Eurographics Workshop on Rendering, 2000. cited on page(s) 94

[83] Jefferson Y. Han and Ken Perlin. Measuring bidirectional texture reflectance with a kaleidoscope. ACM
Transactions on Graphics, 22(3), July 2003. Proceedings of the SIGGRAPH conference. cited on page(s)
74

[84] Pat Hanrahan and Wolfgang Krueger. Reflection from layered surfaces due to subsurface scattering. In
Proceedings of the SIGGRAPH conference, pages 165–174. ACM, 1993. cited on page(s) 97, 98

[85] Richard Hartley. Lines and points in three views and the trifocal tensor. International Journal of Com-
puter Vision, 22(2):125–140, 1997. cited on page(s) 12

[86] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer Vision. Cambridge
University Press, June 2000. cited on page(s) 8, 127

[87] Jean-Marc Hasenfratz, Marc Lapierre, Jean-Dominique Gascuel, and Edmond Boyer. Real-time capture,
reconstruction and insertion into virtual world of human actors. In Proceedings of the Vision, Video and
Graphics conference, pages 49–56. Eurographics, Elsevier, 2003. cited on page(s) 18

215

Bibliography Bibliography

[88] Jean-Marc Hasenfratz, Marc Lapierre, Nicolas Holzschuch, and François Sillion. A survey of real-time
soft shadows algorithms. Computer Graphics Forum, 22(4):753–774, 2003. State-of-the-Art Reviews.
cited on page(s) 129

[89] Xiao Dong He, Kenneth E. Torrance, François Sillion, and Donald P. Greenberg. A comprehensive
physical model for light reflection. In Proceedings of the SIGGRAPH conference. ACM, 1991. cited on
page(s) 97, 98

[90] Aaron Hertzmann and Steve Seitz. Shape and materials by example: A photometric stereo approach. In
Proceedings of the Computer Vision and Pattern Recognition Conference. IEEE, 2003. cited on page(s)
73, 132

[91] Hugues Hoppe. Surface reconstruction from unorganized points. PhD thesis, Department of Computer
Science and Engineering, University of Washington, June 1994. cited on page(s) 85

[92] Hugues Hoppe, Tony DeRose, Tom Duchamp, Mark Halstead, Hubert Jin, John McDonald, Jean
Schweitzer, and Werner Stuetzle. Piecewise smooth surface reconstruction. In Proceedings of the SIG-
GRAPH conference, pages 295–302. ACM, 1994. cited on page(s) 85

[93] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle. Surface recon-
struction from unorganized points. Computer Graphics journal, 26(2), 1992. Proceedings of the ACM
SIGGRAPH conference. cited on page(s) 85

[94] Berthold K. P. Horn. Robot Vision. MIT Press, 1986. ISBN 0-262-08159-8. cited on page(s) 108

[95] Berthold K. P. Horn and Michael J. Brooks, editors. Shape From Shading. MIT Press, July 1989. ISBN
0-262-08183-0. cited on page(s) 32

[96] Peter J. Huber. Robust Statistics. Probability and Statistics. Wiley-Interscience, February 1981. cited on
page(s) 73

[97] William V. Baxter III, Avneesh Sud, Naga Govindaraju, and Dinesh Manocha. Gigawalk: Interactive
walkthrough of complex environments. In Proceedings of the Eurographics Rendering Workshop, 2002.
cited on page(s) 5

[98] Katsushi Ikeuchi and Kosuke Sato. Determining reflectance properties of an object using range and
brightness images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(11):1139 –
1153, November 1991. cited on page(s) 99

[99] Hiroshi Ishikawa. Global Optimization Using Embedded Graphs. PhD thesis, New York University,
May 2000. cited on page(s) 28, 38, 45, 46, 48, 49, 141

[100] Hiroshi Ishikawa. Exact optimization for markov random fields with convex priors. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 25(10):1333–1336, October 2003. cited on page(s) 28,
45, 49

[101] Hiroshi Ishikawa and Davi Geiger. Occlusions, discontinuities, and epipolar lines in stereo. In Proceed-
ings of the European Conference on Computer Vision, pages 232–248, June 1998. cited on page(s) 38,
46

[102] John Isidoro and Stan Sclaroff. Stochastic refinement of the visual hull to satisfy photometric and silhou-
ette consistency constraints. In Proceedings of the International Conference on Computer Vision, pages
1335–1342. IEEE, 2003. cited on page(s) 18, 32

[103] Henrik Wann Jensen. Digital face cloning. In Proceedings of the SIGGRAPH conference. ACM, 2003.
Technical Sketch. cited on page(s) 100

[104] Henrik Wann Jensen and Juan Buhler. A rapid hierarchical rendering technique for translucent materials.
ACM Transactions on Graphics, 21(3), 2002. Proceedings of the SIGGRAPH conference. cited on
page(s) 103

216

Bibliography Bibliography

[105] Henrik Wann Jensen, Stephen R. Marschner, Marc Levoy, and Pat Hanrahan. A practical model for
subsurface light transport. In Proceedings of the SIGGRAPH conference. ACM, 2001. cited on page(s)
94, 95, 97, 113

[106] Hailin Jin, Anthony J. Yezzi, and Stefano Soatto. Region-based segmentation on evolving surfaces
with application to 3D reconstruction of shape and piecewise constant radiance. In Proceedings of the
European Conference on Computer Vision, 2004. cited on page(s) 24

[107] Hailin Jin, Anthony J. Yezzi, Yen-Hsi Tsai, Li-Tien Chen, and Stefano Soatto. Estimation of 3D surface
shape and smooth radiance from 2D images: a level set approach. journal of Scientific Computing,
19(1-3):267–292, 2003. cited on page(s) 24

[108] Thouis R. Jones, Frédo Durand, and Mathieu Desbrun. Non-iterative, feature-preserving mesh smooth-
ing. ACM Transactions on Graphics, 22(3), July 2003. Proceedings of the SIGGRAPH conference. cited
on page(s) 60

[109] James T. Kajiya. The rendering equation. In Proceedings of the SIGGRAPH conference, pages 143–150.
ACM, 1986. cited on page(s) 102

[110] James T. Kajiya and Timothy L. Kay. Rendering fur with three dimensional textures. In Proceedings of
the SIGGRAPH conference. ACM, 1989. cited on page(s) 131

[111] Jan Kautz and Hans-Peter Seidel. Towards interactive bump mapping with anisotropic shift-variant
BRDFs. In Proceedings of the conference on Graphics Hardware. ACM SIGGRAPH/Eurographics,
2000. cited on page(s) 102

[112] Junhwan Kim, Vladimir Kolmogorov, and Ramin Zabih. Visual correspondence using energy minimiza-
tion and mutual information. In Proceedings of the International Conference on Computer Vision. IEEE,
October 2003. cited on page(s) 28, 38, 46, 58

[113] Tae-Yong Kim. http://www.rhythm.com/~tae/Links.htm. cited on page(s) 133

[114] Tae-Yong Kim and Ulrich Neumann. Opacity shadow maps. In Proceedings of the Eurographics Ren-
dering Workshop, July 2001. cited on page(s) 131

[115] Tae-Yong Kim and Ulrich Neumann. Interactive multiresolution hair modeling and editing. ACM Trans-
actions on Graphics, 21(3), 2002. Proceedings of the SIGGRAPH conference. cited on page(s) 131,
133, 134, 162, 207

[116] Jan J. Koenderink and Sylvia Pont. The secret of velvety skin. Journal on Machine Vision and Applica-
tions, 14(4):260–268, September 2003. cited on page(s) 98

[117] Jan J. Koenderink and Ans J. van Doorn. Two-plus-one-dimensional differential geometry. Pattern
Recognition Letters, 15:439–443, 1994. cited on page(s) 170, 172

[118] Jan J. Koenderink and Ans J. van Doorn. Image processing done right. In Proceedings of the European
Conference on Computer Vision, pages 158–172, May 2002. cited on page(s) 61

[119] Vladimir Kolmogorov. Graph Based Algorithms for Scene Reconstruction from Two or More Views.
PhD thesis, Cornell University, January 2004. cited on page(s) 28

[120] Vladimir Kolmogorov and Ramin Zabih. Computing visual correspondence with occlusions using graph
cuts. In Proceedings of the International Conference on Computer Vision. IEEE, July 2001. cited on
page(s) 28, 38, 51, 58

[121] Vladimir Kolmogorov and Ramin Zabih. Multi-camera scene reconstruction via graph cuts. In Proceed-
ings of the European Conference on Computer Vision, May 2002. cited on page(s) 28, 29, 38, 46, 47,
51, 58, 65, 66, 67, 76

[122] Vladimir Kolmogorov and Ramin Zabih. What energy functions can be minimized via graph cuts? IEEE
Transactions on Pattern Analysis and Machine Intelligence, February 2004. cited on page(s) 29

217

http://www.rhythm.com/~tae/Links.htm

Bibliography Bibliography

[123] Vladimir Kolmogorov, Ramin Zabih, and Steven Gortler. Generalized multi-camera scene reconstruction
using graph cuts. In Proceedings of the International Workshop on Energy Minimization Methods in
Computer Vision and Pattern Recognition, July 2003. cited on page(s) 28, 29, 34

[124] Wai Ming Kong, Hiroki Takahashi, and Masayuki Nakajima. Generation of 3d hair model from hair
volume. In Proceedings of the SPIE conference, 1997. cited on page(s) 133

[125] Wai Ming Kong, Hiroki Takahashi, and Masayuki Nakajima. Generation of 3d hair model from multiple
pictures. In Proceedings of the Multimedia Modeling conference, pages 183–196, 1997. cited on page(s)
133, 134, 207

[126] Kiriakos N. Kutulakos. Approximate N-view stereo. In Proceedings of the European Conference on
Computer Vision, pages 67–83, 2000. cited on page(s) 20

[127] Kiriakos N. Kutulakos and Steven M. Seitz. A theory of shape by space carving. International Journal
of Computer Vision, 38(3):199–218, 2000. cited on page(s) 19, 21, 34, 53, 55, 85

[128] Eric P.F. Lafortune, Sing-Choong Foo, Kenneth E. Torrance, and Donald P. Greenberg. Non-linear
approximation of reflectance functions. In Proceedings of the SIGGRAPH conference, pages 117–126.
ACM, 1997. cited on page(s) 98, 100

[129] Lutz Latta and Andreas Kolb. Homomorphic factorization of BRDF-based lighting computation. ACM
Transactions on Graphics, 21(3), 2002. Proceedings of the SIGGRAPH conference. cited on page(s)
103

[130] Aldo Laurentini. The visual hull concept for silhouette-based image understanding. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 16(2):150–162, February 1994. cited on page(s) 17, 151

[131] Jason Lawrence, Szymon Rusinkiewicz, and Ravi Ramamoorthi. Efficient BRDF importance sampling
using a factored representation. ACM Transactions on Graphics, 23(3), July 2004. Proceedings of the
SIGGRAPH conference. cited on page(s) 98

[132] Erwan Le Pennec and Stéphane Mallat. Sparse geometric image representation with bandelets. IEEE
Transactions on Image Processing, 2003. cited on page(s) 140

[133] Patrick Le Tallec. Computational Mechanics Advances, volume 1, chapter Domain Decomposition Meth-
ods in Computational Mechanics, pages 123–217. North Holland, 1994. cited on page(s) 78

[134] Hendrik P. A. Lensch, Michael Goesele, Philippe Bekaert, Jan Kautz, Marcus A. Magnor, Jochen Lang,
and Hans-Peter Seidel. Interactive rendering of translucent objects. In Proceedings of the Pacific Graph-
ics conference, 2002. cited on page(s) 103

[135] Hendrik P. A. Lensch, Jan Kautz, Michael Goesele, Wolfgang Heidrich, and Hans-Peter Seidel. Image-
based reconstruction of spatially varying materials. In Proceedings of the Eurographics Workshop on
Rendering, 2001. cited on page(s) 99

[136] Marc Levoy and Pat Hanrahan. Light field rendering. In Proceedings of the SIGGRAPH conference.
ACM, 1996. cited on page(s) 94

[137] Maxime Lhuillier and Long Quan. Match propagation for image-based modeling and rendering. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24(8):1140–1146, 2002. cited on page(s)
64, 127

[138] Maxime Lhuillier and Long Quan. Surface reconstruction by integrating 3D and 2D data of multiple
views. In Proceedings of the International Conference on Computer Vision. IEEE, October 2003. cited
on page(s) 24, 26, 32, 38, 76, 83, 127

[139] Zicheng Liu, Ying Shan, and Zhengyou Zhang. Expressive expression mapping with ratio images. In
Proceedings of the SIGGRAPH conference, pages 271–276. ACM, 2001. cited on page(s) 102, 110

218

Bibliography Bibliography

[140] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3D surface construction
algorithm. In Proceedings of the SIGGRAPH conference, pages 163–169. ACM, 1987. cited on page(s)
20, 81

[141] Céline Loscos, Marie-Claude Frasson, George Drettakis, Bruce Walter, Xavier Granier, and Pierre
Poulin. Interactive virtual relighting and remodeling of real scenes. In Proceedings of Eurographics
Workshop on Rendering, volume 10, pages 235–246, June 1999. cited on page(s) 101, 102, 110

[142] Rong Lu, Jan J. Koenderink, and Astrid M.L. Kappers. Specularities on surfaces with tangential hairs
or grooves. In Proceedings of the International Conference on Computer Vision, pages 839–846. IEEE,
September 1999. cited on page(s) 149

[143] Nadia Magnenat-Thalmann. Photorealistic hair modeling, animation, and rendering. In Course notes of
SIGGRAPH conference. ACM, 2003. cited on page(s) 133

[144] Nadia Magnenat-Thalmann, Sunil Hadap, and Prem Kalra. State of the art in hair simulation. In Pro-
ceedings of International Workshop on Human Modeling and Animation, pages 3–9. Korea Computer
Graphics Society, June 2002. cited on page(s) 133

[145] Stephen R. Marschner and Donald P. Greenberg. Inverse lighting for photography. In Proceedings of the
Color Imaging conference, pages 262–265. IS&T/SID, 1997. cited on page(s) 99

[146] Stephen R. Marschner, Brian Guenter, and Sashi Raghupathy. Modeling and rendering for realistic facial
animation. In Proceedings of the Eurographics Workshop on Rendering, 2000. cited on page(s) 100,
101

[147] Stephen R. Marschner, Henrik Wann Jensen, Mike Cammarano, Steve Worley, and Pat Hanrahan. Light
scattering from human hair fibers. ACM Transactions on Graphics, 22(3), July 2003. Proceedings of the
SIGGRAPH conference. cited on page(s) 131, 146, 148, 149, 150, 154, 207

[148] Stephen R. Marschner, Stephen H. Westin, Eric P. F. Lafortune, Kenneth E. Torrance, and Donald P.
Greenberg. Image-based BRDF measurement including human skin. In Proceedings of the Eurographics
Workshop on Rendering, pages 139–152, 1999. cited on page(s) 94, 95, 98, 100, 126

[149] Wojciech Matusik, Chris Buehler, and Leonard McMillan. Polyhedral visual hulls for real-time render-
ing. In Proceedings of the Eurographics Workshop on Rendering, 2001. cited on page(s) 18

[150] Wojciech Matusik, Chris Buehler, Ramesh Raskar, Steve J. Gortel, and Leonard McMillan. Image-based
visual hulls. In Proceedings of the SIGGRAPH conference. ACM, 2001. cited on page(s) 18

[151] Wojciech Matusik and Hanspeter Pfister. 3D TV: A scalable system for real-time acquisition, transmis-
sion, and autostereoscopic display of dynamic scenes. ACM Transactions on Graphics, 23(3), July 2004.
Proceedings of the SIGGRAPH conference. cited on page(s) 165, 203

[152] Wojciech Matusik, Hanspeter Pfister, Matthew Brand, and Leonard McMillan. A data-driven reflectance
model. ACM Transactions on Graphics, 22(3), July 2003. Proceedings of the SIGGRAPH conference.
cited on page(s) 98

[153] Wojciech Matusik, Hanspeter Pfister, Matthew Brand, and Leonard McMillan. Efficient isotropic BRDF
measurement. In Proceedings of the Eurographics Symposium on Rendering, 2003. cited on page(s) 94

[154] Wojciech Matusik, Hanspeter Pfister, Addy Ngan, Paul Beardsley, Remo Ziegler, and Leonard McMil-
lan. Image-based 3D photography using opacity hulls. ACM Transactions on Graphics, 21(3), 2002.
Proceedings of the SIGGRAPH conference. cited on page(s) 94, 95, 133, 165, 203, 206, 207

[155] Wojciech Matusik, Hanspeter Pfister, Remo Ziegler, Addy Ngan, and Leonard McMillan. Acquisition
and rendering of transparent and refractive objects. journal on Rendering Techniques, 2002. Proceedings
of the Eurographics Workshop on Rendering. cited on page(s) 94, 133

[156] David K. McAllister. A Generalized Surface Appearence Representation for Computer Graphics. PhD
thesis, University of North Carolina, 2002. cited on page(s) 94

219

Bibliography Bibliography

[157] David K. McAllister, Anselmo Lastra, and Wolfgang Heidrich. Efficient rendering of spatial bi-
directional reflectance distribution functions. In Proceedings of the conference on Graphics Hardware.
ACM SIGGRAPH/Eurographics, 2002. cited on page(s) 102

[158] Peter Meer and Bogdan Georgescu. Edge detection with embedded confidence. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 23(12), 2001. cited on page(s) 140

[159] Tom Mertens, Jan Kautz, Philippe Bekaert, Frank Van Reeth, and Hans-Peter Seidel. Efficient rendering
of local subsurface scattering. In Proceedings of the Pacific Graphics conference, 2003. cited on page(s)
103, 113

[160] Tom Mertens, Jan Kautz, Philippe Bekaert, Frank Van Reeth, and Hans-Peter Seidel. Interactive ren-
dering of translucent deformable objects. In Proceedings of the Eurographics Symposium on Rendering,
2003. cited on page(s) 103

[161] Ken Museth, David E. Breen, Ross T. Whitaker, and Alan H. Barr. Level set surface editing operators.
ACM Transactions on Graphics, 21(3), 2002. Proceedings of the SIGGRAPH conference. cited on
page(s) 32, 56

[162] Ren Ng, Ravi Ramamoorthi, and Pat Hanrahan. All-frequency shadows using non-linear wavelet lighting
approximation. ACM Transactions on Graphics, 22(3), July 2003. Proceedings of the SIGGRAPH
conference. cited on page(s) 103

[163] Ren Ng, Ravi Ramamoorthi, and Pat Hanrahan. Triple product wavelet integrals for all-frequency re-
lighting. ACM Transactions on Graphics, 23(3), July 2004. Proceedings of the SIGGRAPH conference.
cited on page(s) 103

[164] Fred E. Nicodemus, Joseph C. Richmond, Jack J. Hsia, I. W. Ginsberg, and T. Limperis. Geometrical
considerations and nomenclature for reflectance. Technical report, National Bureau of Standards, 1977.
cited on page(s) 93

[165] Ko Nishino, Zhengyou Zhang, and Katsushi Ikeuchi. Determining reflectance parameters and illumina-
tion distribution from a sparse set of images for view-dependent image synthesis. In Proceedings of the
International Conference on Computer Vision, pages 599–606. IEEE, 2001. cited on page(s) 99

[166] Yuichi Ohta and Takeo Kanade. Stereo by intra- and interscanline using dynamic programming. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 7(2):139–154, 1985. cited on page(s) 22

[167] Masatoshi Okutomi and Takeo Kanade. A multiple-baseline stereo. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 15(4):353–363, April 1993. cited on page(s) 22, 24, 30

[168] Michael Oren and Shree K. Nayar. Generalization of Lambert’s reflectance model. In Proceedings of
the SIGGRAPH conference, pages 239–246. ACM, 1994. cited on page(s) 97

[169] Stanley Osher and James A. Sethian. Fronts propagating with curvature-dependent speed: Algorithms
based on Hamilton-Jacobi formulations. Journal of Computational Physics, 79:12–49, 1988. cited on
page(s) 23, 38

[170] Victor Ostromoukhov, Charles Donohue, and Pierre-Marc Jodoin. Fast hierarchical importance sam-
pling with blue noise properties. ACM Transactions on Graphics, 23(3), July 2004. Proceedings of the
SIGGRAPH conference. cited on page(s) 103

[171] Bui-Tuong Phong. Illumination for computer generated images. Communication of the ACM, 18(6):311–
317, June 1975. cited on page(s) 96, 114

[172] Eric Plante, Marie-Paule Cani, and Pierre Poulin. A layered wisp model for simulating interactions
inside long hair. In Proceedings of the Eurographics workshop on Computer Animation and Simulation,
2001. cited on page(s) 131

[173] Marc Pollefeys, Reinhard Koch, Maarten Vergauwen, and Luc Van Gool. Automated reconstruction
of 3D scenes from sequences of images. ISPRS Journal Of Photogrammetry And Remote Sensing,
55(4):251–267, 2000. cited on page(s) 22

220

Bibliography Bibliography

[174] Pierre Poulin, Marc Stamminger, François Duranleau, Marie-Claude Frasson, and George Drettakis.
Interactive point-based modeling of complex objects from images. In Proceedings of the Graphics In-
terface conference, June 2003. cited on page(s) 31

[175] Simon Premoze. Analytic approximations for light transport in volumetric materials. In Proceedings of
the Pacific Graphics conference, 2002. cited on page(s) 97

[176] Ravi Ramamoorthi and Pat Hanrahan. An efficient representation for irradiance environment maps. In
Proceedings of the SIGGRAPH conference. ACM, 2001. cited on page(s) 103

[177] Ravi Ramamoorthi and Pat Hanrahan. Frequency space environment map rendering. ACM Transactions
on Graphics, 21(3), 2002. Proceedings of the SIGGRAPH conference. cited on page(s) 103, 109

[178] Alex Reche, Ignacio Martin, and George Drettakis. Volumetric reconstruction and interactive render-
ing of trees from photographs. ACM Transactions on Graphics, 23(3), July 2004. Proceedings of the
SIGGRAPH conference. cited on page(s) 164, 202

[179] Sébastien Roy. Stereo without epipolar lines: A maximum-flow formulation. International Journal of
Computer Vision, 34(2/3):147–162, August 1999. cited on page(s) 28, 38, 45, 72, 76

[180] Sébastien Roy and Ingemar J. Cox. A maximum-flow formulation of the n-camera stereo correspondence
problem. In Proceedings of the International Conference on Computer Vision, pages 492–499. IEEE,
January 1998. cited on page(s) 27, 38, 72

[181] Holly E. Rushmeier. 3D capture for computer graphics. In Proceedings of the International Conference
on 3D Digital Imaging and Modeling, 2001. cited on page(s) 133

[182] Holly E. Rushmeier and Fausto Bernardini. Computing consistent normals and colors from photometric
data. In Proceedings of the International Conference on 3-D Digital Imaging and Modeling, pages
99–108. IEEE, 1999. cited on page(s) 94

[183] Holly E. Rushmeier, Fausto Bernardini, Joshua Mittleman, and Gabriel Taubin. Acquiring input for
rendering at appropriate levels of detail: Digitizing a pietà. In Proceedings of the Eurographics Workshop
on Rendering, pages 81–92, 1998. cited on page(s) 101

[184] Holly E. Rushmeier, Bernice E. Rogowitz, and Christine Piatko. Perceptual issues in substituing texture
for geometry. In Proceedings of the conference on Human Vision and Electronic Imaging, volume 3959,
pages 372–383. SPIE, 2000. cited on page(s) 101

[185] Hideo Saito and Takeo Kanade. Shape reconstruction in projective grid space from large number of
images. In Proceedings of the Computer Vision and Pattern Recognition Conference. IEEE, June 1999.
cited on page(s) 52

[186] Yoichi Sato, Mark D. Wheeler, and Katsushi Ikeuchi. Object shape and reflectance modeling from
observation. In Proceedings of the SIGGRAPH conference. ACM, 1997. cited on page(s) 99

[187] Daniel Scharstein and Richard Szeliski. A taxonomy and evaluation of dense two-frame stereo corre-
spondence algorithms. International Journal of Computer Vision, 47(1/2/3):7–42, April-June 2002. cited
on page(s) 33

[188] Daniel Scharstein and Richard Szeliski. High-accuracy stereo depth maps using structured light. In
Proceedings of the Computer Vision and Pattern Recognition Conference, volume 1, pages 195–202.
IEEE, June 2003. cited on page(s) 33

[189] Alexander Schrijver. On the history of the transportation and maximum flows problems.
http://homepages.cwi.nl/~lex/files/histtrpclean.ps. cited on page(s) 40

[190] Steven M. Seitz and Charles R. Dyer. Photorealistic scene reconstruction by voxel coloring. In Proceed-
ings of the Computer Vision and Pattern Recognition Conference, pages 1067–1073. IEEE, 1997. cited
on page(s) 9, 19, 21, 51

221

http://homepages.cwi.nl/~lex/files/histtrpclean.ps

Bibliography Bibliography

[191] James A. Sethian. Level Set Methods and Fast Marching Methods (Evolving Interfaces in Computational
Geometry, Fluid Mechanics, Computer Vision, and Materials Science). Cambridge University Press,
1999. cited on page(s) 37, 38

[192] Steven A. Shafer. Using color to separate reflection components. Color Resolution Applications,
10(4):210–218, 1985. cited on page(s) 116

[193] Ying Shan, Zicheng Liu, and Zhengyou Zhang. Model-based bundle adjustment with application to face
modeling. In Proceedings of the International Conference on Computer Vision, pages 644–651. IEEE,
2001. cited on page(s) 12, 127

[194] Jun Shen and Serge Castan. An optimal linear operator for edge detection. In Proceedings of the
Conference on Computer Vision and Pattern Recognition. IEEE, 1986. cited on page(s) 142

[195] Gregory G. Slabaugh, Thomas Malzbender, and W. Bruce Culbertson. Volumetric warping for voxel
coloring on an infinite domain. In Proceedings of the European Workshop on 3D Structure from Multiple
Images of Large Scale Environments, Lecture Notes on Computer Science, pages 109–123. Springer
Verlag, July 2000. cited on page(s) 19, 52

[196] Gregory G. Slabaugh, Thomas Malzbender, W. Bruce Culbertson, and Ron Schafer. Improved voxel
coloring via volumetric optimization. Technical Report 3, Center for Signal and Image Processing,
2000. cited on page(s) 19

[197] Gregory G. Slabaugh, Ronald W. Schafer, and Mat C. Hans. Multi-resolution space carving using level
sets methods. In Proceedings of the International Conference on Image Processing, 2002. cited on
page(s) 24

[198] Peter-Pike Sloan, Jesse Hall, John Hart, and John Snyder. Clustered principal components for pre-
computed radiance transfer. ACM Transactions on Graphics, 22(3), July 2003. Proceedings of the
SIGGRAPH conference. cited on page(s) 103

[199] Peter-Pike Sloan, Jan Kautz, and John Snyder. Precomputed radiance transfer for real-time rendering in
dynamic, low-frequency lighting environments. ACM Transactions on Graphics, 21(3), 2002. Proceed-
ings of the SIGGRAPH conference. cited on page(s) 103, 109

[200] Peter-Pike Sloan, Xinguo Liu, Heung-Yeung Shum, and John Snyder. Bi-scale radiance transfer. ACM
Transactions on Graphics, 22(3), July 2003. Proceedings of the SIGGRAPH conference. cited on page(s)
74, 103

[201] Dan Snow, Paul Viola, and Ramin Zabih. Exact voxel occupancy with graph cuts. In Proceedings of the
Computer Vision and Pattern Recognition Conference. IEEE, June 2000. cited on page(s) 21, 32

[202] Jos Stam. An illumination model for a skin layer bounded by rough surfaces. In Proceedings of the
Eurographics Workshop on Rendering, June 2001. cited on page(s) 97

[203] Marc Stamminger, Jörg Haber, Hartmut Schirmacher, and Hans-Peter Seidel. Walkthroughs with cor-
rective texturing. In Proceedings of the Eurographics Workshop on Rendering, 2000. cited on page(s)
102

[204] Mark R. Stevens, W. Bruce Culbertson, and Thomas Malzbender. A histogram-based color consistency
test for voxel coloring. In Proceedings of the International Conference on Pattern Recognition, August
2002. cited on page(s) 11

[205] Richard Szeliski and Polina Golland. Stereo matching with transparency and matting. International
Journal of Computer Vision, 32(1):45–61, 1999. cited on page(s) 20, 52

[206] Richard Szeliski and Daniel Scharstein. Sampling the disparity space image. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 26(3):419–425, March 2004. cited on page(s) 11

[207] Richard Szeliski and Richard Weiss. Robust shape recovery from occluding contours using a linear
smoother. In Proceedings of the conference on Computer Vision and Pattern Recognition. IEEE, June
1993. cited on page(s) 18

222

Bibliography Bibliography

[208] Marshall F. Tappen, William T. Freeman, and Edward H. Adelson. Recovering intrinsic images from a
single image. In Processing of the conference on Neural Information Processing Systems, 2002. cited
on page(s) 71

[209] Marco Tarini, Hitoshi Yamauchi, Jörg Haber, and Hans-Peter Seidel. Texturing faces. In Proceedings of
the Graphics Interface conference, 2002. cited on page(s) 101, 113

[210] Demetri Terzopoulos, Andrew Witkin, and Michael Kass. Constraints on deformable models: Recov-
ering 3D shape and nonrigid motion. Artificial Intelligence, 36(1):91–123, 1988. cited on page(s) 37,
38

[211] Carlo Tomasi and Roberto Manduchi. Bilateral filtering for gray and color images. In Proceedings of
the International Conference on Computer Vision, pages 839–846. IEEE, 1998. cited on page(s) 145

[212] Xin Tong, Jingdan Zhang, Ligang Liu, Xi Wang, Baining Guo, and Heung-Yeung Shum. Synthesis
of bidirectional texture functions on arbitrary surfaces. ACM Transactions on Graphics, 21(3), 2002.
Proceedings of the SIGGRAPH conference. cited on page(s) 103

[213] Kenneth E. Torrance and Ephraim M. Sparrow. Theory for off-specular reflection from roughened sur-
faces. Journal of Optical Society of America, 1967. cited on page(s) 97, 100

[214] Adrien Treuille, Aaron Hertzmann, and Steve M. Seitz. Example-based stereo with general BRDFs. In
Proceedings of the European Conference on Computer Vision, 2004. cited on page(s) 32, 74

[215] David Tschumperlé and Rachid Deriche. Orthonormal vector sets regularization with PDE’s and appli-
cations. International Journal on Computer Vision, 50:237–252, 12 2002. cited on page(s) 145

[216] Norimichi Tsumura, Nobutoshi Ojima, Kayoko Sato, Mitsuhiro Shiraishi, Hideto Shimizu, Hirohide
Nabeshima, Syuuichi Akazaki, Kimihiko Hori, and Yoichi Miyake. Image-based skin color and texture
analysis/synthesis by extracting hemoglobin and melanin information in the skin. ACM Transactions on
Graphics, 22(3), July 2003. Proceedings of the SIGGRAPH conference. cited on page(s) 97

[217] Morgan Ulvklo, Hans Knutsson, and Gösta Granlund. Depth segmentation and occluded scene recon-
struction using ego-motion. In Proceedings of the Conference on Visual Information Processing, pages
112–123. SPIE, April 1998. cited on page(s) 22, 55

[218] Régis Vaillant and Olivier Faugeras. Using extremal boundaries for 3-D object modeling. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 14(2):157–173, 1992. cited on page(s) 18

[219] Olga Veksler. Efficient Graph-Based Energy Minimization Methods in Computer Vision. PhD thesis,
Cornell University, August 1999. cited on page(s) 28, 29, 38, 46, 58, 71

[220] Lifeng Wang, Xi Wang, Xin Tong, Stephen Lin, Shimin Hu, Baining Guo, and Heung-Yeung Shum.
View-dependent displacement mapping. ACM Transactions on Graphics, 22(3), July 2003. Proceedings
of the SIGGRAPH conference. cited on page(s) 74, 103

[221] Gregory J. Ward. Measuring and modeling anisotropic reflection. In Proceedings of the SIGGRAPH
conference, pages 265–272. ACM, 1992. cited on page(s) 2, 94, 98, 182

[222] Geoffrey S. Watson. Statistics on spheres. John Wiley and Sons, 1983. cited on page(s) 145

[223] Yair Weiss. Deriving intrinsic images from image sequences. In Proceedings of International Conference
on Computer Vision. IEEE, 2001. cited on page(s) 71

[224] Eric W. Weisstein et al. Banach space. MathWorld – A Wolfram Web Resource .
http://mathworld.wolfram.com/BanachSpace.html. cited on page(s) 168

[225] Eric W. Weisstein et al. Green’s theorem. MathWorld – A Wolfram Web Resource .
http://mathworld.wolfram.com/GreensTheorem.html. cited on page(s) 170, 173

[226] Eric W. Weisstein et al. Level set. MathWorld – A Wolfram Web Resource .
http://mathworld.wolfram.com/LevelSet.html. cited on page(s) 172

223

http://mathworld.wolfram.com/BanachSpace.html
http://mathworld.wolfram.com/GreensTheorem.html
http://mathworld.wolfram.com/LevelSet.html

[227] Zhen Wen, Zicheng Liu, and Thomas S. Huang. Face relighting with radiance environment maps. In
Proceedings of the conference on Computer Vision and Pattern Recognition. IEEE, 2003. cited on page(s)
102, 103

[228] Marta Wilczkowiak. 3D Modelling From Images Using Geometric Constraints. PhD thesis, Institut
National Polytechnique de Grenoble, 2004. cited on page(s) 12

[229] Lance Williams. Casting curved shadows on curved surfaces. In Proceedings of the SIGGRAPH confer-
ence, pages 270–274. ACM, 1978. cited on page(s) 123

[230] Peter Wonka, Michael Wimmer, François Sillion, and William Ribarsky. Instant architecture. ACM
Transactions on Graphics, 22(3), July 2003. Proceedings of the SIGGRAPH conference. cited on
page(s) 5

[231] Günther Wyszecki and Walter S. Stiles. Color science: Concepts and methods, quantitative data and
formulae. John Wiley and Sons, 1982. cited on page(s) 122

[232] Stephan Würmlin, Edouard Lamboray, Oliver G. Staadt, and Markus H. Gross. 3D video recorder. In
Proceedings of Pacific Graphics conference, 2002. cited on page(s) 165, 203

[233] Ruigang Yang, Marc Pollefeys, and Greg Welch. Dealing with textureless regions and specular highlights
– a progressive space carving scheme using a novel photo-consistency measure. In Proceedings of
International Conference on Computer Vision. IEEE, October 2003. cited on page(s) 32, 73, 74, 132

[234] Anthony Yezzi, Greg Slabaugh, Adrian Broadhurst, Roberto Cipolla, and Ron Schafer. A surface evo-
lution approach to probabilistic space carving. In Proceedings of the International Symposium on 3D
Processing, Visualization, and Transmission, 2002. cited on page(s) 24

[235] Yitzhak Yitzhaky and Eli Peli. A method for objective edge detection, evaluation and detector parameter
selection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(8), 2003. cited on
page(s) 141

[236] Gang Zeng, Sylvain Paris, Long Quan, and Maxime Lhuillier. Surface reconstruction by propagating
3d stereo data in multiple 2d images. In Proceedings of the European Conference on Computer Vision,
2004. cited on page(s) 75

[237] Gang Zeng and Long Quan. Silhouette extraction from multiple images of an unknown background. In
Proceedings of the Asian Conference of Computer Vision, 2004. cited on page(s) 18, 70, 73, 86

[238] Li Zhang, Brian Curless, Aaron Hertzmann, and Steven M. Seitz. Shape and motion under varying
illumination: Unifying structure from motion, photometric stereo, and multi-view stereo. In Proceedings
of the International Conference on Computer Vision. IEEE, 2003. cited on page(s) 32, 73, 74

[239] Zhengyou Zhang, Zicheng Liu, Dennis Adler, Michael Cohen, Erik Hanson, and Ying Shan. Cloning
your own face with a desktop camera. In Proceedings of the International Conference on Computer
Vision. IEEE, 2001. cited on page(s) 127

[240] Remo Ziegler, Wojciech Matusik, Hanspeter Pfister, and Leonard McMillan. 3D reconstruction using
labeled image regions. In Proceedings of the Eurographics Symposium on Geometry Processing, 2003.
cited on page(s) 21

[241] Djemel Ziou and Salvatore Tabbone. Edge detection techniques - an overview. International Journal of
Pattern Recognition and Image Analysis, 8:537–559, 1998. cited on page(s) 140

This dissertation focuses on the creation of the information used in Computer Graphics. We
especially concentrate on the data needed to render images. We do not ask the user to work directly
on the object modeling but we rely on her to provide one or several images of the targeted object.
These pictures are then automatically analyzed to extract the sought data. From this approach, we
expect data more faithful to the original object and a shorter creation time for the user.

Our work is centered on three case studies that have useful applications. We first recover the
surface of a matte object from a short image sequence whose viewpoint is moving. We then show
how the appearance of a human face is retrieved from a single image and how the extracted data are
used to render the original face under a new lighting environment. We end with a technique to capture
the hair geometry using multiple images from a fixed viewpoint and a moving light.

We introduce several theoretical and technical contributions that enhance both precision and ro-
bustness of the capture. Results are provided to illustrate these improvements.

Le sujet de cette thèse porte sur la création des données utilisées en informatique graphique pour
synthétiser des images. On ne demande pas à l’utilisateur de modéliser l’objet souhaité mais plutôt
d’en fournir une ou plusieurs photographies. Ces images sont automatiquement analysées pour en
extraire l’information recherchée. On attend de cette approche des données plus fidèles à l’original et
un temps de création plus court pour l’utilisateur.

Nos travaux sont centrés sur trois cas d’études qui mènent à des applications utiles. Tout d’abord,
nous reconstruisons la surface d’un objet matte à partir d’une séquence d’images dont le point de vue
se déplace. Nous capturons ensuite l’apparence d’un visage à partir d’une seule image et montrons
comment les données récupérées sont utilisées pour synthétiser ce visage sous un nouvel éclairage.
Nous terminons avec la capture de la géométrie d’une chevelure à partir de plusieurs images prises
avec une caméra fixe et une lumière qui se déplace.

Nous introduisons plusieurs contributions théoriques et techniques qui améliorent aussi bien la
précision que la robustesse de la capture. Des résultats illustrent ces améliorations.

	Introduction
	Surface reconstruction
	Introduction
	Previous work
	Problem statement and design of the functional
	General presentation of graph cuts
	Global discrete solution
	Practical algorithm
	Results
	Conclusions

	Patchwork reconstruction
	Introduction
	Motivation and concept definition
	Implementation using graph cut and distance field
	Two practical algorithms
	Conclusions

	Face relighting
	Introduction
	Previous work
	Overview of the technique
	Detail texture
	Parameters of the skin model
	Implementation of the rendering engine
	Results
	Conclusions and future work

	Capture of hair geometry
	Introduction
	Previous work
	Overview
	Orientation of the segments
	Practical implementation
	Captured hair results
	Discussion
	Conclusions

	Conclusions
	Future work

	Appendices
	Technical details and perspective on surface reconstruction
	First-order and second-order regularization terms
	Some ideas to extend the functional

	Technical details on hair capture
	Influence of the Projection Profile on Canny's Filter
	More figures on the orientation measure
	Geometric registration of the viewpoints

	Résumé français
	Introduction
	Reconstruction de surface
	Reconstruction de patchwork
	Ré-éclairage de visage
	Capture de la géométrie d'une chevelure
	Conclusion générale

	List of Figures
	List of Tables
	Bibliography

