D. W. Pohl, W. Denk, and M. , Optical stethoscopy: Image recording with resolution ??/20, Applied Physics Letters, vol.44, issue.7, pp.651-653, 1984.
DOI : 10.1063/1.94865

D. Courjon, K. Sarayeddine, and M. Spajer, Scanning tunneling optical microscopy, Optics Communications, vol.71, issue.1-2, pp.23-28, 1989.
DOI : 10.1016/0030-4018(89)90297-6

G. Binnig, C. F. Quate, and C. Gerber, Atomic Force Microscope, Physical Review Letters, vol.56, issue.9, pp.930-933, 1986.
DOI : 10.1103/PhysRevLett.56.930

T. R. Albrecht, P. Grütter, D. Horne, and D. Rugar, cantilevers for enhanced force microscope sensitivity, Journal of Applied Physics, vol.69, issue.2, pp.668-673, 1991.
DOI : 10.1063/1.347347

D. J. Keller and F. S. Francke, Envelope reconstruction of probe microscope images, Surface Science, vol.294, issue.3, p.409, 1993.
DOI : 10.1016/0039-6028(93)90126-5

F. Atamny and A. Baiker, Direct imaging of the tip shape by AFM, Surface Science, vol.323, issue.3, p.314, 1995.
DOI : 10.1016/0039-6028(94)00752-7

K. F. Jarausch, T. J. Stark, and P. E. Russell, Silicon structures for in situ characterization of atomic force microscope probe geometry, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.14, issue.6, p.3425, 1996.
DOI : 10.1116/1.588774

L. D. Landau and E. M. Lifchitz, Théorie de L'élasticité. Physique théorique, 1990.

L. Nony, Analyse de la Microscopie de Force Dynamique: Application À L'étude de l'ADN, 2000.

G. Reiter, G. Castelein, and J. S. , Liquidlike Morphological Transformations in Monolamellar Polymer Crystals, Physical Review Letters, vol.86, issue.26, p.5918, 2001.
DOI : 10.1103/PhysRevLett.86.5918

P. Mazeran, Microscopie À Force Atomique et Imagerie Mécanique, 1998.

Z. Elkaakour, La Microscopie À Force Atomique Comme Moyen D'étude Des Films de Polymères: Evaluation et Proposition D'une Approche Pour la Modification de Structures À L'échelle Submicromètrique, p.24

C. Basire and C. Fretigny, Experimental Study of the Friction Regimes on Viscoelastic Materials, ACS Symposium Series, 2000.
DOI : 10.1021/bk-2000-0741.ch014

A. D. Humphris, A. N. Round, and M. M. , Enhanced imaging of DNA via active quality factor control, Surface Science, vol.491, issue.3, pp.468-472, 2001.
DOI : 10.1016/S0039-6028(01)01312-7

H. Hölscher, Q-controlled dynamic force spectroscopy, Surface Science, vol.515, issue.2-3, pp.517-522, 2002.
DOI : 10.1016/S0039-6028(02)01971-4

L. Nony, R. Boisgard, and J. Aimé, Nonlinear dynamical properties of an oscillating tip???cantilever system in the tapping mode, The Journal of Chemical Physics, vol.111, issue.4, pp.1615-1627, 1999.
DOI : 10.1063/1.479422

URL : https://hal.archives-ouvertes.fr/hal-00011145

S. Kitamura and M. Iwatsuki, Observation of $\bf 7\times 7$ Reconstructed Structure on the Silicon (111) Surface using Ultrahigh Vacuum Noncontact Atomic Force Microscopy, Japanese Journal of Applied Physics, vol.34, issue.Part 2, No. 1B, pp.145-148, 1995.
DOI : 10.1143/JJAP.34.L145

S. Kitamura and M. Iwatsuki, Observation of Silicon Surfaces Using Ultrahigh-Vacuum Noncontact Atomic Force Microscopy, Japanese Journal of Applied Physics, vol.35, issue.Part 2, No. 5B, pp.668-671, 1996.
DOI : 10.1143/JJAP.35.L668

J. Aimé, R. Boisgard, L. Nony, and G. Couturier, Nonlinear Dynamic Behavior of an Oscillating Tip-Microlever System and Contrast at the Atomic Scale, Physical Review Letters, vol.82, issue.17, pp.3388-3391, 1999.
DOI : 10.1103/PhysRevLett.82.3388

J. Aimé, G. Couturier, R. Boisgard, and L. Nony, Relationship between the non linear dynamic behaviour of an oscillating tip???microlever system and the contrast at the atomic scale, Applied Surface Science, vol.140, issue.3-4, pp.333-338, 1999.
DOI : 10.1016/S0169-4332(98)00550-9

F. Geissibl, Atomic Resolution of the Silicon (111)-(7x7) Surface by Atomic Force Microscopy, Science, vol.267, issue.5194, pp.68-71, 1995.
DOI : 10.1126/science.267.5194.68

Y. Sugarawa, M. Otha, H. Ueyama, and S. Morita, Defect Motion on an InP(110) Surface Observed with Noncontact Atomic Force Microscopy, Science, vol.270, issue.5242, p.1646, 1995.
DOI : 10.1126/science.270.5242.1646

R. Lüthi, E. Meyer, L. Howald, H. Haefke, D. Anselmetti et al., Progress in noncontact dynamic force microscopy, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.12, issue.3, p.1673, 1994.
DOI : 10.1116/1.587260

A. Schwarz, W. Allers, U. D. Scwarz, R. Wiesendanger, and . App, Simultaneous imaging of the In and As sublattice on InAs(110)-(1??1) with dynamic scanning force microscopy, Applied Surface Science, vol.140, issue.3-4, pp.293-297, 1999.
DOI : 10.1016/S0169-4332(98)00543-1

G. Couturier, J. Aimé, and J. S. , A virtual non contact-atomic force microscope (NC-AFM): Simulation and comparison with analytical models, The European Physical Journal Applied Physics, vol.15, issue.2, pp.141-147, 2001.
DOI : 10.1051/epjap:2001175

J. P. Cleveland, B. Anczykowski, A. E. Schmid, and V. B. , Energy dissipation in tapping-mode atomic force microscopy, Applied Physics Letters, vol.72, issue.20, p.2613, 1998.
DOI : 10.1063/1.121434

F. Dubourg, J. P. Aimé, S. Kopp-marsaudon, R. Boisgard, . Ph et al., Probing viscosity of a polymer melt at the nanometre scale with an oscillating nanotip, The European Physical Journal E, vol.6, issue.1, pp.49-55, 2001.
DOI : 10.1007/s101890170027

P. Rouse, A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers, The Journal of Chemical Physics, vol.21, issue.7, p.1272, 1953.
DOI : 10.1063/1.1699180

P. G. De-gennes, Introduction to Polymer Dynamics, 1990.

H. Watanabe, Viscoelasticity and dynamics of entangled polymers, Progress in Polymer Science, vol.24, issue.9, pp.1253-1403, 1999.
DOI : 10.1016/S0079-6700(99)00029-5

T. Inoue and K. O. , Role of Polymer Chain Flexibility on the Viscoelasticity of Amorphous Polymers around the Glass Transition Zone, Macromolecules, vol.29, issue.5, pp.1595-1599, 1996.
DOI : 10.1021/ma950981d

G. Strobl, The Physics of Polymers

P. G. De-gennes, Reptation of a Polymer Chain in the Presence of Fixed Obstacles, The Journal of Chemical Physics, vol.55, issue.2, pp.572-579, 1971.
DOI : 10.1063/1.1675789

M. Doi and S. F. Edwards, Dynamics of concentrated polymer systems. Part 1.???Brownian motion in the equilibrium state, J. Chem. Soc., Faraday Trans. 2, vol.74, issue.0, pp.1789-1801, 1978.
DOI : 10.1039/F29787401789

M. Doi and S. F. Edwards, Dynamics of concentrated polymer systems. Part 2.???Molecular motion under flow, J. Chem. Soc., Faraday Trans. 2, vol.74, issue.0, pp.1802-1817, 1978.
DOI : 10.1039/F29787401802

M. Doi and S. F. Edwards, Dynamics of concentrated polymer systems. Part 4.???Rheological properties, J. Chem. Soc., Faraday Trans. 2, vol.75, issue.0, pp.38-54, 1978.
DOI : 10.1039/F29797500038

M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, 1986.

F. Brochard-wyart and P. G. De-gennes, Viscosity at small scales in polymer melts, The European Physical Journal E - Soft Matter, vol.1, issue.1, pp.93-97, 2000.
DOI : 10.1007/s101890050011

J. D. Tong and R. Jérôme, Synthesis of poly(methyl methacrylate)-b-poly(n-butyl acrylate)-b-poly(methyl methacrylate) triblocks and their potential as thermoplastic elastomers, Polymer, vol.41, issue.7, pp.2499-2510, 2000.
DOI : 10.1016/S0032-3861(99)00412-7

J. Ferry, Viscoelastic Properties of Polymers, 1980.

W. Graessley, The entanglement concept in polymer rheology, Adv. Polym. Sci, vol.16, pp.1-179, 1974.
DOI : 10.1007/BFb0031037

G. Luengo, J. Israelachvili, and S. Granick, Generalized effects in confined fluids: new friction map for boundary lubrication, Wear, vol.200, issue.1-2, pp.328-335, 1996.
DOI : 10.1016/S0043-1648(96)07248-1

G. Ianniruberto and G. Marrucci, Convective orientational renewal in entangled polymers, Journal of Non-Newtonian Fluid Mechanics, vol.95, issue.2-3, pp.363-374, 2000.
DOI : 10.1016/S0377-0257(00)00179-8

G. Ianniruberto and G. Marrucci, Convective orientational renewal in entangled polymers, Journal of Non-Newtonian Fluid Mechanics, vol.95, issue.2-3, pp.363-374, 2000.
DOI : 10.1016/S0377-0257(00)00179-8

G. Ianniruberto and G. Marrucci, A multi-mode CCR model for entangled polymers with chain stretch, Journal of Non-Newtonian Fluid Mechanics, vol.102, issue.2, pp.383-395, 2002.
DOI : 10.1016/S0377-0257(01)00188-4

G. Ianniruberto and G. Marrucci, On compatibility of the Cox-Merz rule with the model of Doi and Edwards, Journal of Non-Newtonian Fluid Mechanics, vol.65, issue.2-3, pp.241-246, 1996.
DOI : 10.1016/0377-0257(96)01433-4

T. Inoue, Y. Yamashita, and K. Osaki, Viscoelasticity of an Entangled Polymer Solution with Special Attention on a Characteristic Time for Nonlinear Behavior, Macromolecules, vol.35, issue.5, pp.1770-1775, 2002.
DOI : 10.1021/ma011219g

E. V. Menezes and W. Graessley, Nonlinear rheological behavior of polymer systems for several shear-flow histories, Journal of Polymer Science: Polymer Physics Edition, vol.20, issue.10, p.1817, 1982.
DOI : 10.1002/pol.1982.180201006

J. Van-alsten and S. G. , Molecular Tribometry of Ultrathin Liquid Films, Physical Review Letters, vol.61, issue.22, p.2570, 1988.
DOI : 10.1103/PhysRevLett.61.2570

S. Granick, Motions and Relaxations of Confined Liquids, Science, vol.57, issue.14, p.1374, 1991.
DOI : 10.1103/PhysRevLett.57.1753

G. Carson, H. W. Hu, and S. G. , Molecular Tribology of Fluid Lubrication: Shear Thinning, Tribology Transactions, vol.94, issue.3, p.405, 1992.
DOI : 10.1126/science.253.5026.1374

A. Rasmont, . Ph, C. Leclère, G. Doneux, J. D. Lambin et al., Microphase separation at the surface of block copolymers, as studied with atomic force microscopy, Colloids and Surfaces B: Biointerfaces, vol.19, issue.4, pp.381-395, 2000.
DOI : 10.1016/S0927-7765(00)00146-6

A. Knoll, R. Magerle, and G. Krausch, Tapping Mode Atomic Force Microscopy on Polymers:?? Where Is the True Sample Surface?, Macromolecules, vol.34, issue.12, p.4159, 2001.
DOI : 10.1021/ma001311x

R. Zhang, Polymer Data Handbook, pp.609-619, 1999.

C. A. Bero and C. M. Roland, Terminal Relaxations in Linear and Three-Arm Star Polyisoprenes, Macromolecules, vol.29, issue.5, pp.1562-1568, 1996.
DOI : 10.1021/ma951439s

L. Wang, Analytical descriptions of the tapping-mode atomic force microscopy response, Applied Physics Letters, vol.73, issue.25, pp.3781-3783, 1998.
DOI : 10.1063/1.122893

J. Chen, R. Workman, D. Sarid, and R. Höper, Numerical simulations of a scanning force microscope with a large-amplitude vibrating cantilever, Nanotechnology, vol.5, issue.4, p.199, 1994.
DOI : 10.1088/0957-4484/5/4/003

R. G. Winkler, J. P. Spatz, S. Sheiko, M. Möller, R. Reineker et al., Imaging material properties by resonant tapping-force microscopy: A model investigation, Physical Review B, vol.54, issue.12, pp.8908-8912, 1996.
DOI : 10.1103/PhysRevB.54.8908

B. Anczycowsky, D. Krüger, and H. Fuchs, Cantilever dynamics in quasinoncontact force microscopy: Spectroscopic aspects, Physical Review B, vol.53, issue.23, pp.15485-15488, 1996.
DOI : 10.1103/PhysRevB.53.15485

R. Garcia, S. Paulo, and A. , Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy, Physical Review B, vol.60, issue.7, pp.4961-4967, 1999.
DOI : 10.1103/PhysRevB.60.4961

R. Boisgard, D. Michel, and J. Aimé, Hysteresis generated by attractive interaction: oscillating behavior of a vibrating tip???microlever system near a surface, Surface Science, vol.401, issue.2, pp.199-205, 1998.
DOI : 10.1016/S0039-6028(97)01079-0

H. Bielefeldt and F. J. Giessibl, A simplified but intuitive analytical model for intermittent-contact-mode force microscopy based on Hertzian mechanics, Surface Science, vol.440, issue.3, pp.863-867, 1999.
DOI : 10.1016/S0039-6028(99)00861-4

N. Sasaki, M. Tsukada, and . App, Theory for the effect of the tip???surface interaction potential on atomic resolution in forced vibration system of noncontact AFM, Applied Surface Science, vol.140, issue.3-4, pp.339-343, 1999.
DOI : 10.1016/S0169-4332(98)00551-0

H. Tang, C. Girard, and C. Joachim, Theoretical study of the atomic-force-microscopy imaging process on the NaCl(001) surface, The Journal of Chemical Physics, vol.108, issue.1, p.359, 1997.
DOI : 10.1063/1.475383

R. Perez, I. Stich, M. C. Payne, and K. Terakura, Role of Covalent Tip-Surface Interactions in Noncontact Atomic Force Microscopy on Reactive Surfaces, Physical Review Letters, vol.78, issue.4, pp.678-681, 1997.
DOI : 10.1103/PhysRevLett.78.678

G. Pätzold, A. Linke, T. Hapke, and D. W. Heermann, Computer simulation of nanoindentation into polymer films, Zeitschrift f??r Physik B Condensed Matter, vol.104, issue.3, pp.513-521, 1997.
DOI : 10.1007/s002570050484

F. Dubourg and J. Aimé, Role of the adhesion between a nanotip and a soft material in tapping mode AFM, Surface Science, vol.466, issue.1-3, pp.137-143, 2000.
DOI : 10.1016/S0039-6028(00)00749-4

J. N. Israelachvili, Intermolecular and Surface Forces, 1992.

J. Aimé, D. Michel, R. Boisgard, and L. Nony, Growth kinetics of a nanoprotuberance under the action of an oscillating nanotip, Physical Review B, vol.59, issue.3, pp.2407-2416, 1999.
DOI : 10.1103/PhysRevB.59.2407

R. Boisgard, J. P. Aimé, and G. Couturier, Surface mechanical instabilities and dissipation under the action of an oscillating tip, Surface Science, vol.511, issue.1-3, pp.171-182, 2002.
DOI : 10.1016/S0039-6028(02)01436-X

C. Odin, J. Aimé, Z. Elkaakour, and T. Bouhacina, Tip's finite size effects on atomic force microscopy in the contact mode: simple geometrical considerations for rapid estimation of apex radius and tip angle based on the study of polystyrene latex balls, Surface Science, vol.317, issue.3, pp.321-340, 1994.
DOI : 10.1016/0039-6028(94)90288-7

J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics, 1965.
DOI : 10.1007/978-94-009-8352-6

O. P. Behrend, Phase imaging: Deep or superficial?, Applied Physics Letters, vol.75, issue.17, p.2551, 1999.
DOI : 10.1063/1.125074

D. W. Van-krevelen, Properties of Polymers, 1990.

W. Stocker, J. Beckmann, R. Stadler, and J. Rabe, -methyl methacrylate) Triblock Copolymer:?? A Tapping Mode Scanning Force Microscope Study, Macromolecules, vol.29, issue.23, pp.7502-7507, 1996.
DOI : 10.1021/ma9604000

URL : https://hal.archives-ouvertes.fr/hal-01206790

J. Tamayo and R. Garcia, Deformation, Contact Time, and Phase Contrast in Tapping Mode Scanning Force Microscopy, Langmuir, vol.12, issue.18, pp.4430-4435, 1996.
DOI : 10.1021/la960189l

D. Michel, Applications de la Microscopie À Force Atomique En Contact et Contact Intermittent À L'étude Des Polymères: Contraste Mécanique À L'échelle Du Nanomètre, p.12, 1997.

R. Salardenne and . Boisgard, Recent Advances in Scanning Probe Microscopy of Polymers, Macromol. Symp, vol.167, p.179, 2001.

H. P. Huinink, J. C. Brokken-zijp, and M. A. , Asymmetric block copolymers confined in a thin film, The Journal of Chemical Physics, vol.112, issue.5, pp.2452-2462, 2000.
DOI : 10.1063/1.480811

M. W. Matsen, Thin films of block copolymer, The Journal of Chemical Physics, vol.106, issue.18, pp.7781-7791, 1997.
DOI : 10.1063/1.473778

J. Aimé, R. Boisgard, L. Nony, and G. Couturier, Influence of noncontact dissipation in the tapping mode: Attempt to extract quantitative information on the surface properties with the local force probe method, The Journal of Chemical Physics, vol.114, issue.11, p.4945, 2001.
DOI : 10.1063/1.1349179

J. Perez, Physique et Mécanique Des Polymères Amorphes, 1992.

F. London, The general theory of molecular forces, Transactions of the Faraday Society, vol.33, pp.8-26, 1937.
DOI : 10.1039/tf937330008b

J. J. Thompson and H. B. Stewart, Non Linear Dynamics and Chaos, J. Wiley and sons, 1991.

P. Manneville, Structures Dissipatives, Chaos et Turbulences, Aléa Saclay, 1991.

B. Gotsmann, C. Seidel, B. Anczykowski, and H. Fuchs, Conservative and dissipative tip-sample interaction forces probed with dynamic AFM, Physical Review B, vol.60, issue.15, pp.11051-11061, 1999.
DOI : 10.1103/PhysRevB.60.11051

M. Gauthier and M. Et-tsukada, Theory of noncontact dissipation force microscopy, Physical Review B, vol.60, issue.16, pp.11716-11722, 1999.
DOI : 10.1103/PhysRevB.60.11716

I. Dorofeyev, H. Fuchs, G. Wenning, and B. Gotsmann, Brownian Motion of Microscopic Solids under the Action of Fluctuating Electromagnetic Fields, Physical Review Letters, vol.83, issue.12, pp.2402-2405, 1999.
DOI : 10.1103/PhysRevLett.83.2402

R. Bennewitz, A. S. Foster, L. N. Kantorovich, M. Bammerlin, C. Loppacher et al., Atomically resolved edges and kinks of NaCl islands on Cu(111): Experiment and theory, Physical Review B, vol.62, issue.3, pp.2074-2084, 2000.
DOI : 10.1103/PhysRevB.62.2074

P. Chaikin and T. Lubensky, Principles of Condensed Matter Physics, N.Choimet, vol.128, 2001.

N. En-mode, une augmentation du signal d'amortissement lorsque la surface approche-alors que l'oscillateur est supposé se trouver dans une situation de noncontact-a amené de nombreux groupes 126] à se poser la question de l'origine de cette dissipation, Gotsmann et al. [123] incriminent une variation d'amplitude liée à la distorsion du pic en interaction de Van der Waals. M. Gauthier et M. Tsukada

. Dorofeyev, une pointe et d'une surface conductrices décrivent les pertes d'énergie induites par effet Joule et obtiennent une variation de l'énergie dissipée en (D ? A) ?4 . Pour notre part nous considérons une perte d'énergie liée au déplacement de la surface sous l'effet des forces de Van der Waals. Lorsque une nanopointe oscille à proximité d'une surface, les forces de Van der Waals attractives peuvent provoquer un déplacement de matière sans contact avec la pointe. Si ce déplacement est celui d'un matériau viscoélastique son retard par rapport à la force exercée introduit une disymétrie des forces de Van der Waals entre l'approche et le