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Résumé

L..-déformations

Rappelons quelques faits et définitions concernant les L,-algébres avant de donner
une introduction a la théorie des déformations qu’on va développer dans le Chapitre 1.

L-algébres Une L-algébre sur un anneau k de caractéristique 0 est par définition
un module Z-gradué L muni d'une suite p, = (f5)n>0 de morphismes p, : L — L
gradués antisymétriques de degré 2 —n telle que, pour chaquen > 0O et ay,...,a, € L,
on a la condition suivante:

Z Z (_1)k(l_1)X(O_)Ml (/Lk(aa(l)v ce >aa(k))’ Ao (k+1)y - -+ aacr(n)) =0 (*n)
k+1=n+1 €Sh(k,n)

Ici, Sh(k,n) dénote 'ensemble des (k,n)-shuffles, c’est-a-dire I'ensemble des toutes les
permutations o € ¥, telles que (1) < ... < o(k) et o(k+1) < ...o(n). Le terme
x(0) = x(o,a1,...,ay) est le signe qui est défini par la condition

Aoy N -+ N gy = x(0)ar A ... A ap.

Souvent on ne considére que les Ly.-algébres (L, ) telles que py = 0. Dans ce
cas, la condition (1) signifie juste que (L, 1) est un DG module, la condition (x3)
signifie que p est une différentielle vis-a-vis du produit pe. La condition (x3) signifie
que (L, p2) satisfait la condition de Jacobi pour les algebres de Lie graduées a ho-
motopie (donnée par pug) prés. Donc les Loo-algeébres généralisent les algeébres de Lie
différentielles graduées (qu’on va appeler DGL algébres).

Grace au fait général suivant, les DGL algebres et les Loo-algébres jouent un role
important dans la théorie des déformations: & un objet donné, on peut associer une
DGL algébre qui gouverne sa théorie des déformations. Deux objets ont une théorie
des déformations équivalente dés que leurs DGL algébres associées respectives sont
équivalentes comme Lq,-algébres.

Construction bar et morphismes La construction bar associe & une L,-algébre
(L, pi) une DG coalgebre libre dont le module sous-jacent est ’algébre graduée symé-

trique S(L[1]) sur le shifting L[1] de L. Posons M := L[1]. Les morphismes u,
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définissent des morphismes gradués symétriques
QM :| o 17 M®™ — M

de degré 1. Une telle suite (QM),>¢ définit de maniére unique une codérivation
QM sur S(M) et la suite de conditions (%,),>1 est équivalente & la seule condition
(QM)2 = 0. La construction bar nous donne ainsi une correspondance bijective entre
les Loo-algébres et les DG coalgébres libres. On définit les morphismes de L.-algébres
de telle maniére que cette correspondance devient fonctorielle. C’est-a-dire qu'un
morphisme f : L — L’ de Lo -algébres est une suite f,, : L — L’ de morphismes
(n > 1) gradués symeétriques de degré (1 — n) telle que la suite (| f, 1")n>1 définit
un morphisme S(L[1]) — S(L'[1]) de DG coalgebres (voir Section 1.1).

DGL algébres a homotopie prés Une classe importante de Lyo-algébres est don-
née par les DG modules, homotopiquement équivalents & une DGL algébre. On peut
montrer que, si (M,d™) est un DG module, si (L,d,[,-]) est une DGL algébre et
si f: M — L est une équivalence d’homotopie, alors il existe une structure p, de
Loo-algebre sur M telle que py = d™ et il existe un morphisme f, : M — L de Loo-
algébres tel que f; = f. Comme cas particulier, on obtient 'existence de la structure
de Lo-algebre sur la cohomologie H d’une DGL algebre (L, d, [-,-]) dont le complexe
(L,d) est scindé. Ce résultat a été obtenu par des méthodes non-constructives. En
vue des applications a la théorie des déformations, on voudrait avoir une description
explicite d'une telle structure p, sur H. Dans cette thése on démontre le résultat
suivant:

Théoréme 0.0.1. Soit n un scindage du complexe (L,d) satisfaisant les conditions
n? =0, ndn =n et dnd = d. Les morphismes gradués antisymétriques p, : H®" —
H de degré (2 —n) qui suivent définissent une structure de Loo-algébre sur H :

M1 = 0

M2 = ( _dn)['v']

= (G S @01~ o)l b -l D) o o
¢€O0t,

Ici la somme porte sur tous les arbres binaires ¢ de n feuilles et

(L = [dynD[s-1snls )y sml+]) désigne la forme n-linéaire qui est donnée en asso-
ciant la forme bilinéaire (1 — [d,n))[-,+] a la racine de l'arbre ¢ et la forme n[-,-] a
toute autre ramification de ¢. Le symbole oy, désigne l'antisymétrisation et e(¢) est
un signe qui dépend de la géométrie de ¢.

On obtient aussi une description du morphisme f: H — L:
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Théoréme 0.0.2. Les morphismes gradués antisymétriques f,, : H®" — L de degré

f1: = inclusion

fai=—nl,]

for=—(5)""0 D e@)sl ], nl D) o an.

théorie est que la catégorie de Lo.-algébres satisfait 'axiome M1 de Quillen pour
les catégories des modeles. Le fait analogue pour les A-algébres a été prouvé par
K.Leféevre |28] et dans cette thése on le prouve pour les Loo-algébres:

Proposition 0.0.3. Soit
A——C
ro
d
B——D
un diagramme commutatif de Loo-algébres. Supposons que (a) le morphisme f est

injectif et scindé, (b) le morphisme e est surjectif et scindé, (c) soit f soit e est un
Loo-quasi-isomorphisme. Alors il existe un morphisme g : B — C de L.-algébres

tel que tout le diagramme
A C
B D

|\

commute.

En posant, dans ce diagramme A := C := H et B := L, ou L et H sont choisis
comme en Théoreme 0.0.2 on obtient l'existence d’un morphisme g : L — H tel
que go f = Idyg. Donc, H est un facteur direct de L. En utilisant de nouveau la
Proposition 0.0.3, on montre le résultat plus précis:

Théoréme 0.0.4. Soit F':= Kern(1—[d,n]) le complément de H = Kern([d,n]) dans
(L,d). Il y a alors un isomorphisme

(L7 d7 ['7 ]) = (H7 /J,*) ® (L, d, 0)
dans la catégorie des Loo-algébres.

Une conséquence directe est que si on travaille sur un corps, alors ’existence d’un
Lo-quasi-isomorphisme entre deux DGL-algébres définit une relation d’équivalence
sur la classe des DGL algébres qu’on appelle Loo-équivalence.



DG variétés formelles et singularités On motive l'interprétation géomeétrique
des Loo-algebres en utilisant une construction du Chapitre 2:

Dans ce paragraphe on suppose que K est un corps de caractéristique zéro. On va
montrer que, pour toute singularité X qui est plongée dans le germe lisse (K™, 0), il
existe un K-espace vectoriel gradu¢ M = @;>0M* avec M? = K" et une codifféren-
tielle QM sur la coalgebre graduée libre S(M) telle que X est I'espace des zéros de
'application analytique M? — M?'. C’est-a-dire: pour k > 0, soit fj, : M? — M?!

Papplication x — Q]]C\/[(m, ...,x). Alors X est 'espace des zéros de
o 1
f=> 1/
E>1

On obtient (M, QM) en “prédualisant” une résolution de Tyurina de 1’algébre an-
alytique associée 4 X. En plus, le couple (M,QM) est uniquement défini & Leo-
équivalence prés. Autrement dit:

Proposition 0.0.5. Il existe un foncteur de la catégorie des singularités dans la
localisation de la catégorie des Loo-algébres par les Los-quasi-isomorphismes.

Suivant une suggestion de Kontsevich, pour une DG coalgébre libre (S(M), QM),
on appelle le couple (M, Q™) une DG variété formelle. On appelle les codérivations
sur S(M) des (super) champs vectoriels.

Déformations Soient (M, QM) et (B, QP) deux DG variétés formelles. Une défor-
mation de (M,QM) a base (B, QP) est un super champs vectoriel Q sur B x M tel
que

(i) Qlioyxnm = 0.

(ii) Le super champs vectoriel Q := QM + QB + Q est une DG structure sur B x M,
c’est-a-dire Q2 = 0.

(iii) La projection B x M — B est un morphisme de DG variétés formelles.

On dénote une déformation de (M, QM) comme triplet (B, Q”, Q). Une déforma-
tion est dite triviale, si la projection Bx M — M respecte les structures @ and QM.

Pour un élément b de S(B) fixé, la “fibre” QM + Q(b, ) peut étre interprétée
comme perturbation du super champs vectoriel QM sur M, mais c’est seulement une
DG structure, si QB (b) = 0.

Un morphisme entre les déformations (B, QF,Q) et (B, Q% , Q) est une paire
(F, f) oit F est un morphisme entre les DG variétés formelles (B x M,Q = QF +
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QM + Q) et (B x M,Q := QP + QM + Q') et f est un morphisme entre les DG
variétés formelles (B, QF) et (B, Q') tel que le diagramme

BxM—B' xM

L

B B’

est cartésien et le diagramme

M\
BxM—B x M

commute.
Deux déformations sont dites équivalentes, s'il existe des morphismes dans les
deux sens.

La déformation universelle Une déformation (U,QY,Q) de (M,QM) est dite
universelle si, pour chaque autre déformation (B,QP,Q’), il y a un morphisme

(F, f): (B,Q%,Q") — (U,QY,Q) ou f est défini de maniére unique.

La construction de la déformation universelle est trés naturelle dans ce contexte.
Sa base est donnée par le shift (U,QY) de la DGL algébre L = Coder(S(M)) qui
s’appelle complexe tangent. Définissons le super champs vectoriel Q) sur U x M
(qui est linéaire dans U) de la maniére suivante:

Qn+1(u7m1)' .. amn) = (T u)(mlv s ,mn)

pour u € U et m; € M. On va montrer que (QV + QM + Q)% = 0, donc le triplet
(U,QY,Q) est bien une déformation de (M, Q). Pour une déformation arbitraire
(B,QP,Q") de (M,QM), on définit un morphisme f : B — U en posant

(T fr(b))s(m) = Q;_,_S(b,m)

pour b € B®" et m € M®%. Ensuite, on prouve que la paire (f x Id, f) définit un
morphisme de déformations. On obtient le théoréme:

Théoréme 0.0.6. Le triplet (U, QY, Q) est une déformation universelle de (M, QM).

Une déformation semi-universelle Une déformation (V,QY,Q) de (M, QM) est
dite semi-universelle si, pour toute déformation (B, QF,Q"), il existe un morphisme

(B,Q%,Q") — (V,Q",Q)

de déformations et si (V, Q") est minimale, c’est-a-dire que QY = 0.



On va construire une déformation semi-universelle de la maniére suivante : sup-
posons que le complexe tangent L = Coder(S(M)) est scindé. Alors il existe une
Loo-structure g, sur la cohomologie H de L = Coder(S(M)). Le shift (V,Q") de
(H, pts) donne la base d’'une déformation semi-universelle. Un “changement de base”
par le morphisme V — U définit une déformation (V,Q",Q’) a partir de la défor-
mation universelle (U, QY,Q). Comme (V,Q") est minimale, pour que (V,Q",Q’)
soit semi-universelle, il suffit qu’il y ait un morphisme (U, QY,Q) — (V,Q", Q") de
déformations. Ceci peut étre réalisé en utilisant la décomposition du Théoréme 0.0.4
et de nouveau la Proposition 0.0.3. Donc on obtient:

Théoréme 0.0.7. La déformation (V,QV,Q") de (M,QM) est semi-universelle.

Application aux déformations de singularités Dans le Chapitre 2, on appli-
quera le Théoréme 0.0.7 & la théorie formelle des déformations de singularités. Pour
une singularité isolée (formelle ou convergente) donnée X on va obtenir d’une maniére
explicite une singularité formelle S qui est la base d'une déformation semi-universelle
de X.

Comme expliqué ci-dessus, pour une singularité X, il existe une DG variété for-
melle (M, QM) qui contient X comme sous-espace. Inversement, il existe un foncteur
V qui associe un germe d’espace formel & chaque DG-variété qui est de dimension finis
en chaque degré. On va prouver qu'une déformation semi-universelle formelle de X
est donnée par le foncteur V appliqué 4 une déformation semi-universelle de (M, QM).

Cohomologie de Hochschild

Le théoréme HKR Rappelons le théoréeme classique de Hochschild, Kostant et
Rosenberg et sa preuve dans le cas particulier o1 'on ne considére que des algébres
libres, avant d’expliquer les généralisations de ce théoréme qu’on va démontrer au
Chapitre 3.

Le complexe naif de Hochschild C2V°(A) d'une k-algébre A est le complexe
simpliciale de A-algébres, défini par CRaVe(A) := A®"+1 n >0, dont la composante
by @ AP — A®" de la différentielle b est la somme alternée > i (—1)'d; des
morphismes

di a0 ®...Q00, — AR ... QA At1 Q... R Gy,

pour 0 <7 < net

dp:a0®...Q0 Apt— Gp o X ... R ap_1.

L’homologie naive de Hochschild HHZ2V®(A/k) de A sur k est 'homologie du com-
plexe naif de Hochschild.
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Posons R := A®;, A. Le bar complexe C?'(A) de A sur k est le complexe de R-
algébres, défini par CPa*(A) := A®"*+2 dont la n-iéme composante de la différentielle
b est définie par b), := Z?:_Ol(—l)idi. Le bar complexe est une résolution simpliciale
de A sur R, mais on verra que le complexe CPa"(A)® := CP3(A) porte aussi une
structure d’une DG algébre! sur R. La corrélation bien connue entre le complexe de
Hochschild et le bar complexe est 1'isomorphisme

Cnaive(A) ~ Cbar(A) ®r A,

ot A est considéré comme R-module par la multiplication y : R — A. Si A est
plat comme k-module, alors le bar complexe est une résolution plate de A sur R, d’ou
I’isomorphisme

HHgaive(A) = Torf(A, A).
Si A est la k-algebre libre k[x, ..., x,], & part la “résolution standard” CP*(A), il y
a une deuxiéme DG résolution naturelle de A sur R, notamment, le complexe de Koszul
K(X) sur R, donné par la séquence réguliere X = {$(z; ® 1 —1® ;)| i =1,...,n}.
On construit un morphisme de complexes

K(X) — CP¥(A)

de R-module plats. On applique le foncteur ~ ®pg A et obtient un quasi-isomorphisme
K(X)®rA — C™V¢(A). L'observation que K (X)®pg A est égale au complexe A®y
donne directement le théoreme HKR pour les algébres libres:

Théoréme 0.0.8. Pour A = k[xy,...,z,], on a un quasi-isomorphisme
/\.QA SN O?aive(A),
ot N*Q g est muni de la différentielle triviale.

En vue des applications géométriques, on généralise ce théoréeme dans trois direc-
tions:

(1) 1l faut admettre que A est une DG algebre libre. Dans ce cas, AQ4 et CP3V¢(A)
sont bigradués et seulement la différentielle verticale de AQ24 est triviale.

(2) 11 faut généraliser la DG version pour des “complexes simpliciaux” d’algébres,
c.a.d. pour des foncteurs NV — Alg, ou N est une petite catégorie (un “com-
plexe simplicial”). Dans les applications géométriques, N apparaitra comme le
“nerf” d’un recouvrement d'un espace (voir ci-dessous).

(3) Il faut admettre que A appartient a une classe d’algebres topologiques, par exem-
ple la classe des algébres analytiques. Dans cet exemple, les produits tensoriels
doivent étre remplacés par des produits tensoriels analytiques, et les modules
de différentielles de Kéhler doivent étre remplacés par leur contreparties analy-
tiques.

'c.a.d. d'une algébre graduée B = Higo B!, muni d’une différenticlle d® de degré 1, telle que
ab = (—1)9D9Opqg et dP (ab) = dP(a)b + (—1)?“ad® (b), pour des éléements homogenes a,b € B.



Pour réaliser (1), on généralise la construction de Koszul pour les algébres graduées
commutatives: si R est une algébre graduée commutative et si X C R est un sous-
ensemble g-fini?, on définit le complexe de Koszul de X sur R comme l'algébre
double graduée commutative? libre R[E], ou E est un ensemble de générateurs libres
qui contient, pour chaque x € X, un élément e(x) de bidegré (g(z),—1), et dont la
différentielle verticale! est définie par e(x) — .

On donne la définition et caractérisation suivante des séquences réguliéres dans
une algébre graduée commutative:

Définition et Théoréme 0.0.9. Supposons que l’anneau de base K contient Q.
Soit X C R un sous-ensemble et soit I l'idéal dans R engendré par X. Supposons
que, pour chaque sous-ensemble Y C X, on a Np>1I"R/(Y) = 0. Alors X est appelé
une séquence réquliére, si au moins une des conditions équivalentes équivalentes
sutvantes est satisfaite:

(i) Soit T un ensemble de générateurs d’algébre libres qui contient pour chaque
x € X un élément t(x) du méme degré que x. Le morphisme R/I[T] —
gri(R)=R/IDI/I*® ... de R/I-algébres, qui applique t(z) sur la classe de
dans I/I? est un isomorphisme d’algébres différentielles graduées sur R/I.

(i) Pour chaque élément x € X et chaque idéal J C R généré par un sous-ensemble
Y C X tel que x €Y, on a la condition suivante: si g(x) est pair, alors x n’est
pas un diviseur de zéro dans R/J. Si g(x) est impair, alors Uannulateur de x
dans R/J est l'idéal généré par la classe de x.

(i5i) Le complexze de Koszul K(X) est une DG résolution de R/(X) sur R.
(iv) H-Y(K(X)) = 0.

En utilisant 'implication (ii)=-(iii) de ce théoréme, on démontrera une DG version
du Théoréeme 0.0.8 comme suit : Si A = k[z;];er est une DG algebre libre, alors
R := A®; A est une DG algebre libre dont les éléments de la forme %(mZ ®1l-1®x;)
forment une séquence réguliere X C R dans le sens de Définition et Théoréme 0.0.9.
Donc le complexe de Koszul K(X) de X sur R est une DG résolution libre de A sur
R.

On a un morphisme K(X) — CP(A) de complexes de R-modules gradués,
qui par contre ne respecte pas les différentielles horizontales. Mais on observe l'effet
remarquable suivant : aprés tensorisation par A sur R, on obtient un morphisme

ANy = K(X) QrA — Cbar(A) Qpr A= Cnaive(A)

2La lettre g dénote toujours la graduation.

3¢.a.d. une algébre avec une double graduation négative qui est une algébre graduée commutative
par la graduation totale

“c.a.d. de bidegre (0,41)
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qui respecte aussi les différentielles horizontales. Ceci prouve la DG généralisation du
Théoreme 0.0.8.

En ce qui concerne les généralisations (2) et (3) : On définit un complexe sim-
plicial NV comme une classe de sous-ensembles d’un ensemble I telle que {i} € N
pour chaque i € I, telle que ) € N et telle que a € N et 5 C « implique 5 € N. Les
éléements de NV engendrent une catégorie dont les seuls morphismes sont les inclusions.
Pour une catégorie C d’algebres (ont de modules), on dénote la catégorie des foncteurs
covariants N — C par CV. On dénote la catégorie des algeébres graduées commu-
tatives dont la composante de degré zéro appartient a C par gr(C) (pour les énoncés
plus précis, voir Section 3.1.2).

En Section 3.1, nous allons introduire des “bonnes paires de catégories” (C, M)
qui consistent en une catégorie C d’algébres et une catégorie de modules M sur les
algébres dans C qui satisfont une liste d’axiomes, disant par exemple que M est une
catégorie additive dans laquelle il existe des produits tensoriels. Les exemples les plus
importants sont:

(1) La paire (C, M) ou C est la catégorie des K-algeébres (Noethériennes) et M la
catégorie des modules sur les algeébres dans C.

(2) La paire (C, M), ou C est la catégorie des algébres analytiques, c.a.d les algébres
des sections sur un compact de Stein. Dans ce cas les algébres dans C sont muni
d’une topologie DNF (duale nucléaire de Fréchet). Et M est par définition la
catégorie des DNF modules sur les algébres dans C.

Une algébre libre de n générateurs dans ce contexte est une algébre qui représente
un sous-foncteur du foncteur Idg : C — (ensembles) qui est défini par un “marquage”
(voir Section 3.1.1). Pour obtenir les généralisations (2) et (3), on va réduire la preuve
esquissée ci-dessus sur les axiomes qui définissent les bonnes paires de catégories. En
plus, on va faire toutes les constructions dans la preuve d’une maniére N -compatible.

On obtient ainsi le Théoréme 0.0.8 pour le cas ou A est une DG algebre dans gr(C)™V.

L’invariance d’homotopie du complexe de Hochschild Si (C, M) est une
bonne paire de catégories dont les produits tensoriels sont des produits tensoriels
topologiques, pour les algébres A dans C, le complexe naif de Hochschild C"8iVe(A)
n’a pas toutes les propriétés qu’on voudrait. Par exemple, si C est la catégorie des
algébres analytiques sur C, le complexe C"¥V¢(A) n’est pas un complexe de A-modules
projectifs. On définit donc un complexe de Hochschild modifié:

Définition et Théoréme 0.0.10. Soit a une k-algébre. Choisissons une DG réso-
lution A de a sur k et posons R := A ®y A. Choisissons en plus une DG résolution
S de A sur R. On définit le complexe de Hochschild H(a/k) de a sur k comme
lobjet S @p a dans la catégorie d’homotopie K(M(a)). Le compleze H(a/k) est bien
défini a un isomorphisme (non canonique) dans K(M/(a)) pres.
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La preuve de I'invariance d’homotopie est basée sur le fait que deux DG résolutions
libres g-fini d’'un morphisme de DG algébres sont homotopiquement équivalentes. Ce
fait est bien connu en algébre homologique et on le généralisera pour les bonnes paires
de catégories.

Comparons cette définition avec la définition du complexe cotangent L/, comme
lobjet Q4 ®4 a dans K(M(a)). Par un théoréme de Bingener et Kosarew [2], le
complexe cotangent est également bien défini & un isomorphisme dans K (M a)) prés.
Nous allons prouver le théoréme suivant :

Théoréme 0.0.11. 1l y a un isomorphisme AL, — H(a/k) dans la catégorie
K(M(a)).

Pour prouver ce théoréme, il faut construire, pour chaque choix des résolutions A
et .S, un morphisme
S®ra— ANQ4R4a

dans gr(C) qui est une équivalence d’homotopie. Par le théoréme de comparaison de
DG résolutions (voir Théoréme 1.8.4 de [2]), il existe un quasi-isomorphisme § —
tot CPa*(A) sur R. On obtient des quasi-isomorphismes

S @p A~ tot C™Ve(A) = AQy

de DG algébres libres. Pour le deuxiéme quasi-isomorphisme, on utilise la DG version
du Théoréme 0.0.8. L’application du foncteur ®4 a terminera la preuve.

On généralise les Définition et Théoréme 0.0.10 et le Théoréme 0.0.11 pour les
morphismes k¥ — a dans gr(C)N, ou C appartient a une bonne paire de catégories et
ou N est un complexe simplicial.

Schémas et espaces complexes La construction du complexe de Hochschild pour
les (morphismes de) schémas Noethériens et les espaces complexes ressemble & la
construction du complexe tangent. Pour un espace X et un recouvrement X = U;c1 X},
le nerf du recouvrement est défini comme

N = {a - I| Xa = ﬁieaXi 75 @}

Le nerf est une catégorie dont les seules morphismes sont les inclusions. La famille
X, = (Xo)aen avec les inclusions pg, : Xo — Xg, pour 8 C «, peut étre vue
comme foncteur contravariant N/ — (espaces). Si X est un schéma et UX; un recou-
vrement ouvert par des schémas affines, on va étudier la catégorie des Ox,-modules,
c’est-a-dire la catégorie des familles F, = (Fy)aen 00t chaque Fy, est un Ox, -module
avec de morphismes pzﬁfa — Fp, pour a C 3, qui sont compatibles. La catégorie
des Ox,-modules quasi-coherentes est isomorphe a la catégorie de A,-modules dans

(K — 900)V, ot A, est défini par A, := ['(X,,Ox.,).
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Dans toutes les constructions de ce paragraphe, on peut remplacer un schéma
Noethérien par un espace complexe et un ouvert affine par un compact de Stein pour
obtenir la théorie analytique.

On peut plonger la catégorie des Ox-modules par le foncteur j* : F — (F|x, )acn
comme sous-catégorie dans la catégorie des Ox,-modules. Soit j, l'inclusion X, —
X, pour & € M. Pour construire l’adjoint j,, on a besoin d'une construction de Cech
qui & un Oy, -module G, associe un complexe é'(g*) de Ox-modules ou

C«n(g*) - H ja*fa

|a)=n

dont la différentielle est définie de la maniére usuelle. Le foncteur j, donne les sections
globales

Avant de donner la définition du complexe de Hochschild pour un morphisme f :
X — Y de type fini de schémas Noethériens (ou un morphisme d’espaces complexes),
il faut la définition suivante:

Definition 0.0.12. Si f : X — Y est un morphisme de type fini de schémas
Noethérien, on définit une résolvante de X sur Y comme quadruple (X, Ys, Py, Ay)
qui consiste en (1) le complexe simplicial Y, associé a un recouvrement affine, lo-
calement fini (Y});cs de Y; (2) le complexe simplicial X, = (Xq)aen associé a un
recouvrement affine, localement fini (ij')jej,z’elj de X. Ce recouvrement est choisi de
telle fagon que, pour j € J fixé, la famille (Xj;);cr; est un recouvrement de FHY5);
(3) un complexe simplicial P, = (Py)aen sur la méme catégorie d’indice; (4) un
diagramme commutatif de la forme:

X,——=P,

o

Y,

Ici, f = (f, ) est le morphisme induit de complexes simpliciales; ¢ est une immersion
fermé et g est un morphisme lisse’; (5) une résolution libre, g-fini A, de Oy, telle que

A0 = Op,.

Il n’est pas difficile de démontrer 'existence d’une résolvante pour chaque mor-
phisme f : X — Y de type fini. Il est plus difficile de démontrer 'invariance
d’homotopie dans la définition suivante:

5Ceci signifie que, pour chaque oo € NV et chaque p € P, le germe Op, , est une algébre libre sur
Oy. .
()Y
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Définition et Théoréme 0.0.13. Pour un morphisme f : X — Y de type fini, on
définit le complexe de Hochschild de X sur'Y comme suit: Soit (X, Y, Pi, Ax)
une résolvante de X surY et S, une DG résolution de A, sur R, = A, R0y, A,.. Le
complexe simplicial de Hochschild de X sur'Y est l'objet

H,(X/Y) = S. @4, Ox.

dans la catégorie d’homotopie K(X,). A isomorphisme dans K (X,) pres, le compleze
simpliciale de Hochschild ne dépend pas du choiz de A et S.

Le complexe de Hochschild de X sur'Y est l'objet
H(X/Y) = C*(HL(X/Y))

dans la catégorie dérivée D(X). A isomorphisme dans D(X) pres, le compleze de
Hochschild ne dépend pas du choiz de la résolvante (X, Y, Py, Ay).

On définit la n-iéme homologie de Hochschild HH,, (X/Y') de X sur Y comme
la (-n)-iéme hyper-cohomologie du complexe H(X/Y") et la n-iéme cohomologie de
Hochschild de X sur Y avec des valeurs dans un Ox-module F comme

HH"(X/Y, F) := Ext% (H(X/Y), F).

La version simpliciale du Théoréeme 0.0.11 donne directement un quasi-isomorphime
AL(X/Y), — H(X/Y).. L’application du foncteur de Cech qui est exact, donne le
théoréme suivant:

Théoréme 0.0.14. Pour un morphisme X — Y d’espace complexes ou un mor-
phisme de type fini de schémas Noethériens, il y a un isomorphisme

AL(X/Y) — H(X/Y)
dans la catégorie D(X).

Pour les morphismes d’espaces complexes, ce théoréme a été prouvé d’une maniére
complétement différente par Buchweitz et Flenner [7]. Comme conséquences directes,
on obtient la décomposition suivante pour ’homologie de Hochschild

HH,(X/Y) = ] HYX,A\PL(X/Y)),

et la décomposition suivante pour la cohomologie de Hochschild

HH"(X/Y,F) = ] Eatf(AL(X/Y), F).
ptg=n

On observe que la (n — 1)-iéme cohomologie tangente

T 1 (X/Y) = Exty '(L(X/Y), F)



Résumé 13

est un facteur directe de la n-iéme cohomologie de Hochschild.

Pour les variétés (algébriques ou analytiques) lisses, le complexe L(X) est une
résolution du faisceau cotangent x. Donc on obtient un isomorphisme H(X) = AQx
dans la catégorie D(X). On peut on déduire les “décompositions de Hodge” :

Corollaire 0.0.15. Si X est un schéma Noethérien lisse ou une variété analytique,
on a

HH"(X) = [[ H'(X,NTx), (0.1)
i+j=n

HH,(X) = [] H/ (X A'Qx). (0.2)
i—j=n

Ici, Tx dénote le faisceau tangent.

Pour les schémas lisses, I'isomorphisme (0.1) a été prouvé d’une maniére différente
par Yekutieli [49]. Pour les schémas lisses, 'isomorphisme (0.2) a été prouvé avant
(en utilisant la A-décomposition du complexe naif de Hochschild) par Weibel [46].
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Introduction

The context of this thesis

The classic questions of the analytic deformation theory (for example the question of
the existence of semi-universal deformations for isolated singularities, compact com-
plex spaces or complex structures on compact complex manifolds) are completely
understood and resolved. However, there still remain reasons for considering exten-
sions of the classic deformation theories. The two principal motivations are discussed
below:

I. Within the classic deformation theory, the following undesired phenomena ap-
pear: (a) moduli spaces (i.e. bases of semi-universal deformations) are almost always
singular. This results in obstructing the extension of small deformations to larger
ones. (b) Deformation functors are almost never representable. This means that in-
finitely close to the base point of a local moduli space, there are different points with
isomorphic fibers. Several attempts have been made to avoid this phenomena. The
two main attempts are: (1) To change from classical spaces to graded spaces (like
supermanifolds) or to DG spaces®. This can be done either by extending just the
category of the to-be-deformed objects alone or extending the category of the to-be-
deformed objects and the base category. (2) To give up some of the properties of the
to-be-deformed object, for example, the commutativity of the structure sheaf of the
space. This attempt is related to motivation II.

There is hope to get moduli spaces with better behavior in such a generalized
context. The classic moduli space should be an analytic subspace of the generalized
moduli space, defined by some natural conditions. This ideas is sometimes referred to
as derived moduli program.

The derived moduli program has not yet produced a general method for extending
deformation problems to achieve smooth moduli spaces or representable deformation
functors. There are only a few examples’ where smooth moduli spaces are found in
this way.

In this thesis, we develop two approaches which are inspired by the derived moduli
program.

5DG spaces are spaces whose structure sheaf carry a differential graded structure.
"One example is the deformation of “generalized” complex structures on a complex manifold with
trivial first Chern class [1].

17
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IT. The second motivation for the extension of the classic (analytic) deforma-
tion theory is to consider deformations of commutative spaces in the framework of
noncommutative geometry. As the example of deformation quantization shows, it
is interesting to consider noncommutative structures that are close to commutative
structures. Therefore, a noncommutative deformation theory of commutative initial
spaces should be developed. This can serve as tool for the construction of noncom-
mutative schemes, which are not yet well understood.

Classic deformation theory of schemes and complex spaces requires elaborate ho-
mologic tools. The first step to achieving a noncommutative extension is to develop
adequate homological tools for the noncommutative theory. A geometric version of
the Hochschild Complex would prove useful for this purpose.

The content of this thesis

Here, only a brief insight into the contents of this thesis is given, since each chapter
has a detailed introduction.

The first part (Chapter 1 and 2), focuses on the creation of a deformation theory
for Ly,-algebras or their geometric counterpart, the formal DG manifolds. The base
of a deformation of a formal DG manifolds is also, in this theory, a DG manifold. On
one hand, this is interesting because of the fundamental role played by L..-algebras
in deformation theory. On the other hand, formal DG manifolds are DG general-
izations of (formal) singularities. This means that the deformation theory of formal
DG manifolds is an extended deformation theory of singularities. It is demonstrated
that the differential graded Lie algebra (DGL) L of super vectorfields on a formal DG
manifold M gives rise to a universal deformation and that a “minimal model” for L
gives rise to a “generalized moduli space” of M, containing the classic (formal) moduli
space as (formal) analytic subspace. This generalized moduli space is still obstructed.
However, it holds all of the information contained in the DGL structure on L. Thus,
the generalized moduli space contains more invariants of the initial object M than
the classic moduli space.

The methods applied in the first part belong to abstract deformation theory,
deformations of singularities, combinatorics of trees and to the theory of model cate-

gories®.

The second part (Chapter 3) of this thesis will focus on developing simultaneously
the theory of the Hochschild (cochain) complex for complex spaces and algebraic
varieties. Especially, the relation between the Hochschild cochain complex and the
tangent complex is considered closely. It is shown that Hochschild cohomology con-
tains tangent cohomology plus additional information. This result leads to interesting

%in the sense of Quillen [40]
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interpretations and speculations about the deformation of complex spaces and vari-
eties in terms of noncommutative geometry. For manifolds and smooth varieties, this
leads to a “Hodge-decomposition” of Hochschild (co-) homology.

The methods applied in the second part of this thesis mainly belong to homologic
and homotopic algebra: DG resolvents, simplicial complexes (which are associated to
coverings of spaces), algebraic Hochschild theory, a generalized Koszul construction, a
generalization of the Hochschild-Kostant-Rosenberg theorem and Cech constructions.
Arguments are reduced, in this part, to a system of axioms, defining “good pairs of
categories”. This axiomatic approach makes the theory accessible for the algebraic
and the analytic situation. The fact that the axioms for good pairs of categories hold
in the analytic situation is based on the theory of Stein spaces, for example, the fact
that the sections over a Stein compact form a Noetherian algebra is applied implicitly
in this part.

Which results are new?

The following list contains the mew results of this thesis. More precise explications
concerning this statements are given in the introductions to the chapters.

In homological algebra: Regular sequences in graded commutative algebras are
defined and characterized (Theorem 3.1.28). In algebraic geometry: For a mor-
phism X — Y of schemes of finite type, the homotopy invariance of the Hochschild
cochain complex is proved (Proposition 3.2.6). The existence of a quasi-isomorphism
between the relative Hochschild complex and the exterior algebra of the relative tan-
gent complex is proved (Theorem 3.3.13). A decomposition theorem, saying that
relative tangent cohomology is a direct factor of relative Hochschild cohomology is de-
duced (Corollary 3.3.14). In analytic geometry: For analytic manifolds, a “Hodge-
decomposition” of Hochschild homology and a “Hodge-decomposition” of Hochschild
cohomology is demonstrated (Corollary 3.3.17). For L.,-algebras: An L. -structure
on the cohomology H(L) of a differential graded Lie algebra L is constructed in such
a way that H(L) and L are L. -equivalent’(Theorem 1.4.4). Deformations of L.-
algebras with L.o-bases are defined and a (semi-) universal deformation is constructed
explicitly (Theorem 1.2.9 and Theorem 1.5.13).

For which statements are new proofs provided?

The following list contains familiar statements for which a new proof is provided.
References to the original proofs are given in the introductions to the chapters and in
the text.

9 At this point, we must precise that Huebschmann/ Stasheff [19] stated (without proof) a recursion
formula for the structure on H (L) and for the morphism H (L) — L and that the Ao-analogue was
shown by various authors.
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In analytic geometry: For a morphism X —— Y of complex spaces, the in-
variance of the relative Hochschild (co-) homology is shown (Proposition 3.3.8); the
existence of a quasi-isomorphism between the relative Hochschild complex and the
exterior algebra of the relative tangent complex is demonstrated (Theorem 3.3.13); a
decomposition theorem, saying that relative tangent cohomology is a direct factor of
relative Hochschild cohomology is shown (Corollary 3.3.14). In algebraic geome-
try: For smooth varieties M, a “Hodge-decomposition” of Hochschild homology and a
“Hodge-decomposition” of Hochschild cohomology is demonstrated (Corollary 3.3.17).
In singularity theory: A formal semi-universal deformation for isolated singularities
is constructed with L..-methods (Chapter 2).



Chapter 1

Deformation of L, -algebras

Introduction

L-algebras (see Section 1.1) play a crucial role in deformation theory. They are nat-
ural generalizations of differential graded Lie algebras (DGL’s). Deformation prob-
lems can always be described by DGL’s (see [22], for instance). The importance of
Lso-algebras in deformation theory is due to the fact that two different deformation
problems are equivalent, if the corresponding DGL’s are equivalent as Lo-algebras.
This was one ingredient of Kontsevich’s |22] proof that any Poisson manifold has a
deformation quantization. Lo-algebras also build a bridge between algebra and ge-
ometry. A simple shift in degrees makes a formal DG-manifold out of an L..-algebra
(see Section 1.1). This observation is also due to Kontsevich. If a deformation prob-
lem is governed by a DGL L, then the (formal) local moduli space, if it exists, is an
“analytic subspace” of the formal DG-manifold corresponding to L.

In the other direction, to each DGL L, an abstract deformation functor Defy, can
be defined. In the classical theory Defy is a set-valued functor on the category of
(Artinian, local) algebras. Recent studies in mirror symmetry (|23], [34]) have led to
an extension of this functor first to graded and then to differential graded Artinian
algebras. The aim of this extension is to produce smooth (in a sense) formal moduli
spaces with tangent space isomorphic to the whole cohomology of L. But sometimes,
it is not evident (or even possible) to give an algebraic or geometric meaning to the
objects obtained as deformations of an initial object by the extended deformation
functor. (However, at other times, this is possible. For the classic deformations of
associative algebras, the extended deformation functor produces A.-algebras.)

The deformation theory of L.o-algebras (or, in geometric terms, of formal DG-
manifolds) presented in this thesis is in fact an extended deformation theory of (formal)
singularities. Instead of working with deformation functors, we present a completely
geometric (extended) deformation theory of formal DG manifolds. The bases of de-
formations are also formal DG manifolds. We will observe in Section 1.2 that this

21
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extended deformation theory is still obstructed.

The deformations of a given formal DG-manifold M = (M, QM) are governed by
the DGL L of formal vectorfields on M (see Section 1.2). The degree 1 shift of L
is again a formal DG manifold denoted by U. Two nice observations are made here:
The first is that the transition from M to U doesn’t change the category. (This one is
trivial.) The second (Theorem 1.2.9) is that U is the base of a universal deformation
of M. For the construction of a semiuniversal deformation of M, we have to construct
an Leo-structure on the cohomology H of (L,d) such that H and L are equivalent as
L-algebras. H with such an L-structure is called a minimal model for L.

Hence, the essence of this chapter is the following general method for the con-
struction of (formal) analytic moduli spaces: Take a minimal representative in the
class of Lyo-algebras modulo L,-equivalence of the DGL controlling the deformation
problem. In Chapter 2, we will apply this method to construct a formal moduli space
for isolated singularities.

The content of this chapter: In Section 1.1, we remind the definitions of L.o-
algebras and of their correspondence with differential graded coalgebras. We state the
conditions for a sequence of maps, to define an Lo,-morphism. We will prove those
conditions in the Appendix since they are hard to find in the literature. Then, we
remind Kontsevich’s geometric point of view (—formal DG manifolds) of Ly-algebras.
In Section 1.2, we define deformations of formal DG manifolds with formal DG bases
and morphisms of those. Our definition generalizes the one of Fialowski and Penkava
[38]. We show that for an arbitrary formal DG manifold M, the differential graded Lie
algebra Coder(S(M), S(M)) (which we call tangent complex of M) is a base of a uni-
versal deformation of M. In Section 1.3, we give an ad-hoc combinatorial introduction
to binary trees. In a sense, binary trees contain the algebraic structure of L..-algebras
(see [45]). In Section 1.4, they are used to define an Luo-structure g, on the coho-
mology H of a differential graded Lie algebra L = (L,d, [-,-]) (admitting a splitting).
Furthermore, again with the help of binary trees, in Section 1.4, we construct explicitly
an Loo-quasi-isomorphism between (H, u,) and (L,d,[-,:]). In Section 1.5, we prove
that (L,d,[,-]) is as Lso-algebra isomorphic to the direct sum of the L-algebras
(H, py) and (F,d), where F' is the complement of H in L. As a consequence, we can
show that for each formal DG manifold M such that L = Coder(S(M), S(M)) splits,
the shift V' of (H, u.) is the base of a semi-universal deformation of M.
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1.1 L.-algebras and coalgebras

In this chapter, we shall always work over a commutative ground ring K with unit of
characteristic zero.

1.1.1 Graded symmetric and exterior algebras

For a graded module W, the graded symmetric algebra S(W) is defined as the tensor
algebra T(W) = @,>0W®" modulo the relations w; ® wy — (—1)“*“2we @ wy = 0.
We denote the graded symmetrical product by ®. The algebra T (W) (resp. S(W))
is bigraded. The graduation on T(W) (resp. S(W)) defined by g(w; ® ... ® wy,) =
g(wy) + ...+ glwy) (resp. g(w; ® ... ® wy) = g(wy) + ...g(wy,)), where g is the
graduation of W, will be called linear graduation. The one defined by g(w; ®
... ®@wy) =n (resp. g(w; ® ... ®wy,) =n) will be called polynomial graduation.
Set S4 (W) := @®,>1 W, On Sy (W), there is a natural K-linear comultiplication
At S (W) — S (W) ® S (W), given by

n—1
WO 0wy = Y Y (0w W) W) O O W) D Wo(j41) O - - O Wer(r).-
j=1oeSh(j,n)

Here, €(0) := (o, w1, ..., wy) is defined such that w,(1)® ... Owe(,) = €(0)w1 ©...O
wy,. Note that we have Kern AT = W. On S(W), there is a K-linear comultiplication
A, defined by A(1) :==1® 1 and A(w) == w® 1+ A'(w) + 1 @ w, for w € SL(W).
Note that A is injective.

For a graded module L, the graded exterior algebra /\+ L without unit is defined as
the tensor algebra T (L) = &,,>1L%" modulo the relations a; ®as+(—1)*2ay®a; =
0. We denote the graded exterior product by A. By L[1], we denote the graded module
with L[1]* = L**! and by | the canonical map L — L[1] of degree —1. Set T:=| 1.
Remark that for each n > 1, there is an isomorphism

1" N\'L— Lo
al A...N\ay, — (—1)(”_1)'a1+"'+1"““1 lai®...0 | ap.

. . n(n—1) . .
Its inverse map is given by (—=1)~ 2 1™, In this formula, we deduce the sign from the

Koszul convention. More generally, for homogeneous graded morphisms f, g of graded
modules, we set (f ® g)(a®b) := (—1)9"f(a) ® g(b). In the exponent, a always means
the degree of an homogeneous element (or morphism) a and ab means the product of
degrees and not the degree of the product.

For o € ¥,, and ay,...,a, € L, we define the sign x(o) := x(o,an,...,a,) in such
a way that
Aoy N -+ N gy = x(0)ar A ... A ap.

The following statement about the correlation between y and € is an easy exercise:
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Lemma 1.1.1. For aq,...,a, € L, we have
x(o,a1,...,a,) = (—1)(”_1)(‘“+a°(1))+"'+1'(a”‘1+a"("fl>)e(a,l a,...,} ap).

For a graded module V', we define two different actions of the symmetric group
¥, on V®": The first one is given by

Y, x Ve ., yen
(0,01 ® ... Q) = €(0,v1,. .., Vp) V(1) @ - .. @ VUg(n)-

Here, the application of a o commutes with the canonical projection V&? —s VR,
The second one is given by

Y, x Ven ., yen

(0,01 ® ... ®vp) = X(0,01, -, Vp) V(1) @ -+ . @ VUg()-

Here, the application of a o commutes with the canonical projection V& — A"V
When we work with symmetric powers, we use the first action; when we work with ex-
terior powers, we use the second one. Since the context shall always be clear, we don’t
distinguish both actions by different notation. We will use the anti-symmetrisation
maps:
oy, = Z o. VO, yen
TEY

When o. denotes the first action, a;, can be seen as map V" — V®" when o.
denotes the second action, o, can be seen as map A"V — V&  Furthermore, for
both cases, we will use the maps

Qg 2= Z 0. Ve yen,
oeSh(k,n)

For the natural projection 7 : W — W (resp. V€ — A" V), we have

Toa=n!ld.

1.1.2 Free differential graded coalgebras

Let (C1,A1) and (Co,Ag) be coalgebras. Remember that a module homomorphism
F : C; — (5 is a coalgebra morphism, if and only if the diagram

Cq Co (1.1)

Al A2

01 ®C1 25 G ® Oy
commutes. Each coalgebra morphism F : (S(W),A) — (S(W’), A) satisfies F/(1) =
1. The restriction F' + F|g, (y) is a one-to-one correspondence between coalgebra
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morphisms (S(W),A) — (S(W’), A) and coalgebra morphisms F': (S (W), A") —
(S} (W), A7),

The next proposition gives a one-to-one correspondence between coalgebra maps
F:SW) — S(W') and sequences of linear maps F), : Sp,(W) — W', n > 1. We
fix the following notations:

B, :=F|yon : WO — S(W)
Fy1 :==pry o OFk WO — W/Ql
Fy:=F,1 : W — W'

Sometimes, we shall consider the maps F,, as antisymmetric maps W®* — W'

instead of maps W®" — W’. For each multi-index I = (i1,...,4;) € N¥, we set
IN:=qy!- .. -dgland |I]| :==41 + ...+ i and
1
F] = m(ﬂl®®ﬂk)oan

Here, by F;; ©®...® F;,, we mean the composition of I}, ® ... ® Fj, and the natural
projection W'®F — W/,

Proposition 1.1.2. For n > 1, we have that

n |[I|=n
F,=) Y F. (1.2)
k=1 JeNk

The proof can be found in the appendix.

A coalgebra homomorphism F' : S(W) — S(W’) is called strict, if F,, = 0 for
each n > 2.

For a coalgebra (C,A), remember that a module homomorphism @ : ¢ — C'is
a coderivation, if and only if the diagram

c 9 c (1.3)
g |

commutes. By the next proposition, there is a one-to-one correspondence between
coderivations @ : S(W) — S(W) of degree +1 and sequences of linear maps @, :
Sp(W) — W of degree +1. We fix the following notations:

Qn =Qlyon : WO — S(W)
Qk, == Dpryet oQk WOk ol
Qn ::Qn,l WO — W
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Proposition 1.1.3. Let Q) be a coderivation of degree +1 on the graded coalgebra
(S(W),A). Then, Q(1) = Qo(1) € W and for n > 1 and wy,...,w, € W, we have

Qn (w1, ..., w, Z d e Wa(1)s -+ + s Wa(l)) © Wo(i41) © -« © Wo(ny, (1.4)
=0 oeSh(l,n)

where the | = 0 term must be interpreted as Qp(1) © w1 ® ... O wy,.

The proof can be found in the appendix. Remark that there is a 1:1 - correspondence
between coderivations of degree +1 on (S (W), A1) and coderivations of @ degree
+1on (S(W),A) with Q(1) =

Corollary 1.1.4. Let Q be a coderivation of degree +1 on the coalgebra S(W), Q'
a coderivation of degree +1 on the coalgebra S(W) and F := S(W) — S(W') a
morphism of coalgebras. Then, forn>1and 1 <[ <n+1, 1<k <n, we have

Qn,l = (Qn—l—i—l 1I®...® ]-) O Qp—[+1,n

For= Y. Fo.

i1+...+ig=n
The map F respects the coderivations Q and Q' if and only if F(Q(1)) = Q'(1) and

for each n > 1, we have

and

n
ZZQ;OFI: Z Fio(Qr®1®...®@1)0agn,. (1.5)
k=1 renk k4l=n+1
| T|=n

On the right hand - side, the sum is over alll > 1 and k > 0. The term
(Qo®1®...01) (w1 ®... Q0 wy,) must be interpreted as Qp(l) @ w1 & ... R wy,.

1.1.3 L. -algebras

Remember that a module L with a sequence of maps p,, : A" L — L of degree 2 —n,
for n > 0, is called an L.-algebra if the coderivation @ (of degree +1) on S(W),
defined by the maps

Qn 1= (=1)"" D2 L oppo 1 WO — W
is a codifferential, i.e. Q% = 0.

Proposition 1.1.5. The condition Q*> = 0 just means that for each n > 0 and
elements wy,...,w, € W, the term

(QQ)n(wla"'a Z Z Ql Qk "'7wa(k))7wa(k+l)7"'7w0(n))

k+l=n+1ceSh(k, n)
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disappears. This condition is equivanlent to the equations

Z Z (=D D3 (o) i1k (@o(1ys - -+ Qo(k))s Ao (hrt)s - - - > Qom)) =0 (1.6)
k+l=n-+1 oeSh(k,n)

for each n >0 and ay,...,a, € L.

In the literature, po is mostly assumed to be trivial. If this is the case, (L, 1) is
a DG module.

Definition 1.1.6. An L.-algebra (L, u,),>1 is called minimal, if 4y = 0. It is
called linear, if u; = 0 for ¢ > 2.

Now let (L, ps) and (L', ) be Loo-algebras. Set W := L[1], W’ := L’[1] and
denote the induced codifferentials on S(W) and S(W’) by @ and Q'. A sequence of
maps fn, : A" L — L'; n > 1 of degree 1 — n is called Lo-morphism, if the maps
F, := W% — W' induced by f, (explicitly: F,, = (=1)*"=1/2 | of, 0 1") define a
morphism F : S(W) — S(W’) of differential graded coalgebras. Rewrite condition
(1.5) in terms of f,, and p,:

10 fr = v ol wb(fir f) 0 iy

b e (—1)RED 2 D i o fy (1.7)

[I|=n

= Zk+l:n+1(_1)k(l_1)fl o ®1®...®01) ok,

For the case where L' is a differential graded Lie-algebra, i.e. pj = 0 for k = 0 and
k> 3,set d:=p} and [, | := p. We get the following conditions for the maps f,, to
define an L.,-morphism (see Definition 5.2 of [27]):

dfn(al) s aan)_
Y itimn Yoo X (@) (1)U e T F ) [£i(a ) o), i (@aien)s - Bam))]

= Zk—i—l:n—l—l ZUESh(k,n)(_1)k(l_1)X(U)fl(Nk(aa(l)7 SER) aa(k))a Ao (k+1)s -+ aa(n))7

where ay,...,a, € L and the second sum goes over all o in Sh(é,n) such that (1) <
o(i+1).

Definition 1.1.7. A morphism f : (L,pn)n>1 — (L, p),)n>1 of Loo-algebras is
called an Ly.-quasi-isomorphism, if f; is a quasi-isomorphism of differential graded
modules.
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1.1.4 L. -algebras and formal DG manifolds

In this section, we explain briefly the geometric point of view of Ly,-algebras, as pro-
posed by Kontsevich [22]. First, recall the definition of pointed modules (see Section
I1.6 of [2]): A pointed module is a pair (M, *) of a module M and an element x € M.
We restrict ourselves to the case where * is just the zero element. For modules M and
N, a homogeneous polynomial of degree p on M with values in IV is a mapping
f: M — N of the form foA® where f is a p-multilinear form M x ...x M — N
and AP is the diagonal m — (m,...,m). The polarization formula (Lemma I1.6.2 of
[2]) says that f +— f is a 1:1-correspondence between symmetrical p-multilinear forms
M x ...x M — N and homogeneous polynomials of degree p on M with values in
N. For pointed modules M = (M,0) and N = (N,0), a formal map f: M — N is a
formal sum f = szl fp, where fp is a homogeneous polynomial of degree p. Pointed
modules together with formals maps form a category. By the polarization formula and
Proposition 1.1.2, there is a 1:1-correspondence between formal maps f: M — N
and morphisms S(M) — S(N) of (non-graded free) coalgebras.

For the definition of formal supermanifolds, modules are replaces by Z-graded
modules and symmetric multilinear forms by graded symmetric multilinear forms.

Definition 1.1.8. A formal supermanifold is a pair M = (M,0) of a Z-graded
module M and its zero element. A formal map f: M — N of degree j of formal
supermanifolds is a sequence (fp)p>1, where f, is a graded symmetric multilinear
form M x ... x M — N of linear degree j. The composition f o g of formal maps
g:L— M and f: M — N is defined as the sequence (gp)p>1 with

p
gpzz Z frogr.

k=1 renk
[I|=p

A morphism of formal supermanifolds is a formal map of degree zero.

It is clear by this definition that the category of formal supermanifolds is equivalent
to the category of free, graded coalgebras with coalgebra maps of degree zero.

Definition 1.1.9. A vectorfield of degree j on a formal supermanifold M is a
coderivation of degree j on S(M).

By Proposition 1.1.3, a vectorfield on M can be interpreted as formal map M —
M. The M on the right hand-side of the arrow should be considered as tangent
space of M. The graded commutator defines the structure of a graded Lie algebra on
Coder(S(M),S(M)). Therefore, there is a bracket [-, -] of vectorfields.

Let (M, QM) and (N, Q") be formal supermanifolds with vectorfields. A formal
map f: M — N is called Q-equivariant, if the induced map S(M) — S(N) of
coalgebras commutes with Q™ and Q. Remark that in the case where M and N
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are non-graded free K-modules of finite dimension, this definition coincides with the
classic definition and the @-equivariance just means that

QNof=DfoQM.

Definition 1.1.10. A formal DG manifold is a pair (M, QM) of a formal super-
manifold M and a vectorfield Q™ of degree 1 such that [QM, @M] = 0. Morphisms of
formal DG manifolds are Q-equivariant maps of formal supermanifolds (sometimes we
call them L.,-morphisms). Denote the category of formal DG manifolds by DG-Manf.

By the previous subsection, the lifting L +— L[1] gives an isomorphism between the
category of L.-algebras and the category of formal DG manifolds, and the functor
M — S(M) gives an isomorphism between the category of formal DG manifolds and
the category of free differential graded coalgebras.

We use the following superscripts to denote full subcategories of DG-Manf:

L (“local”): the subcategory of all (M, QM) in DG-Manf such that Q) = 0;

M (“minimal”): the subcategory of all (M, Q™) in DG-Manf” such that Q! = 0;

G (“g-finite”): the subcategory of all (M,QM) in DG-Manf’ such that H(M,QM) is
g-finite;

C (“convergent”): the subcategory of all (M, QM) in DG-Manf®M such that the map-
ping My — M, induced by QM converges.

1.2 Deformation of L.-Algebras

Fialowski and Penkava [38] have defined a deformation theory of L.,-algebras such
that the base of a deformation is an algebra with augmentation. The new approach
here is to take Loo-algebras also as bases of deformations. Since the geometric lan-
guage is more elegant, we will talk about formal DG manifolds instead of L.,-algebras.
Thus, the objects that we deform are DG structures, i.e. degree 1 vectorfields Q) with
Q? = 0 on formal supermanifolds.

In our setting, the “fiber” of a deformation of a DG structure on M does not give
a DG structure on M in general, but only a degree 1 vectorfield. But it is easy to
find those points of the basis B of a deformation of M for which the associated defor-
mation of QM is again a DG structure. They just correspond to the zero locus of the
vectorfield QF.

A very nice fact for this deformation theory is that we get a universal deformation
for free: The deformations of a DG manifold M are governed by the differential
graded Lie algebra of vectorfields on M, i.e. the DGL L of coderivations on S(M)
with graded commutator as bracket [-,] and differential d = [-,@™]. In contrast to
Fialowski/ Penkava, we use the linear grading on L (see Section 1.1). Set U := L[1]
and denote the vectorfield corresponding to the DGL structure of L by QU. We will
see that (U, QY) is the base of a universal deformation of M.
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1.2.1 Definitions

Definition 1.2.1. Let (M, Q) in DG-Manf and (B, Q?) in DG-Manf” be formal DG
manifolds. A deformation of M with base B, or more exactly a deformation of the
DG structure QM| is a degree 1 vectorfield Q on B x M with Qy = 0 such that

(i) Qlioyxm = 0.
(ii) The vectorfield Q := QM + QF + Q is a DG structure on B x M.
(iii) The projection B x M — B is a homomorphism of formal DG manifolds.

We denote deformations of (M, QM) as triples (B, @7, Q). Remark that condition
(i) is equivalent to the condition that the inclusion M — B x M is a morphism of
formal DG manifolds. Condition (iii) is equivalent to the condition

im(Q) C {0} x M.
A deformation is trivial, if the projection B x M — M respects the DG structures
Q and QM.

Definition 1.2.2. A morphism of deformations (B,Q”,Q) and (B/,QB/,Q/) of
(M, QM) is a pair (F, f), where F is a morphism of formal DG manifolds (Bx M, Q :=
QP +QM +Q)and (B' x M,Q" := QP + QM + Q') and f is a morphism of formal

DG manifolds (B, QF) and (B’, Q") such that the diagram

BxM—B xM

L

B B’

is cartesian and the diagram

M

|

BxM—=B xM
commutes.

Definition 1.2.3. Two deformations are called equivalent, if there exist homomor-
phisms in both senses.

Convention: For elements my,...,m, in a module M and for shuffles o € Sh(k,n),
we will sometimes write m/, for My(1) © ... © My () and m{ for Mo (k1) © - - O My(n)
and sometimes just m instead of miy ® ... © m,,.
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Proposition 1.2.4. (Base change) Suppose that (B’,QBI,Q’) is a deformation of
(M, QM) and f : B — B’ a homomorphism of formal DG manifolds with B =
(B,QB) in D¢-Hanfl. Via

Qn(bla"'7b7“7mla"' 7m8) = Z Z Q;-{-t(ff(blw" 7b7“)7m17"' 7m5)7

t=1 1ent
[IT|=r

forr > 1 withr+s=mnandb; € B', mj € M, we can define a deformation (B, Q7. Q)
of (M, QM) and (f x 1d, f) is a morphism of deformations.

Proof. We have to show that (Q?),(b1,...,bs,m1,...,mg) =0, for by,...,b, € B and
mi,...,mgs € M. First, let s > 1. Then

@ )nbm) =" Y ()@l (Qrb,miy),m))

k=r aESh(k’—r s)

+Z 3 d0)Quir-k(QE W), 0L, m)

k=1 oeSh(k, r)

+Z > d0)Qni1-k(b, QY (m),), m])

k=0 oeSh(k, s)

r—1
+ Y Y % Y 0)e(r)Qub,, Qrby,ml),m).

k+l=n+1p=1 oc€Sh(p,r) T€Sh(k+p—r,s)

Using the definition of ) and the assumption that f is a DG morphism, after changing
the order of summation, this sum takes the following form:

Z > Z 3 0)QM 1 (Qh s (Fr(b),mly), mlh)

t=1 IeNt p=0o€Sh(p,s)

[I]=
+ZZZ S ) Qs QE (W), frr (b)), m)

p=1t=1 I".I" u occSh(p,r )

T D> D Qi (f1(0),Qp (i), my)

t=1 r1ent p=0c€Sh(p,s)

| I|=r

r—1 s

+Z Z Z Z Z T)Qprs—g1(fr (V) @ (frr (b)), m7), m7),

p=1q¢=0 t=1 I',]" uwoeSh(p,r) T€Sh(q,s )

where in the second and forth term, the sum is taken over all I’ € N such that |I’| = p
over all u =1,...,r — p and all I” € N* such that [I”| = r — p. But this sum equals

Z > QL (fi(br, . be)ma, . my),

t=1 1ent
[I|=r
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which is zero. The case s = 0 goes in the same manner.

Now, f x Id is a map of formal DG manifolds and for a diagram

B/
one can see that j := g x (pry; oh) is a DG morphism completing the diagram com-

mutatively. Hence, the quadratic diagram is cartesian and the pair (f x Id, f) is a
morphism of deformations. g

Corollary 1.2.5. If (F, f) is a morphism (B,Q”,Q) — (B',Q”',Q') of deforma-

tions and f an isomorphism, then (F, f) is also an isomorphism.

Proof. The deformation (B, @Q%, Q) is natural isomorphic to the deformation obtained
by base change. For the latter one, the statement is clear. O

1.2.2 A Universal deformation

Definition 1.2.6. A deformation (U, QY, Q) of (M,QM) is called universal, if for
each deformation (B,QP,Q’), there exists a morphism (F,f) : (B,Q%,Q") —
(U,QY,Q), where f is uniquely defined. A deformation (V,QY,Q) is called semi-
universal, if for each deformation (B, Q?,Q’), there exists a homomorphism

(B,Q,Q) — (V.Q",Q)
of deformations and if (V, Q") is minimal (in the sense of Definition 1.1.6).
Let L be the differential graded Lie algebra Coder(S(M), S(M)) with bracket
[s,t] =so0t—(—1)tos,
for homogeneous s,t and differential d(s) := (—1)%[s, QM].
Definition 1.2.7. The complex (L, d) is called the tangent complex of M.
Set U := L[1] and denote the vectorfield corresponding to the DGL structure on

L by QY. There is a canonical construction of a deformation @ of M with base U:
Define multilinear maps ¢, : U ® M®"~!1 — M of degree +1 by
UM Q... Mp—1— (Tu)(m ©... 0 mpy_1)

and denote the symmetrisation of the map (U x M)®" — U x M induced by g,
by Q. Hence, we get a vectorfield @ of degree +1 on U x M such that Q|01 = 0.
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Proposition 1.2.8. The vectorfield Q := QM +QUV +Q is a DG vectorfield on U x M
and the projection U x M — U respects the DG structures Q and QU

Proof. Remember that we have

(@*)n = Z Qo (Qr®1®...®1)0ay,.

k+l=n+1

Since QM and QU are Lo-structures, we have (Q2)n(ar,...,a,) = 0 if all a; belong
to M or if all a; belong to U. Hence, it is enough to show that (2 is zero on products
of the form

wrO...0w; ©m; ©... O My,

for i =1,2 and n > 1. In the case i = 1, write w instead of w;. We have

(@41 (w,ma, ... ;my) =

Z Z J m Ql (Qk—i—l(wvm;)’mg)

k+l=n+1o€Sh(k,n)

D DD DI —1)"Qy(w, QY (m), m’)

k+l=n+1geSh(k,l)

+Qn(Q1 (w),m) =

YooY domQM (T w)(my),my)

k+l=n+1oeSh(k,n)

+ > N om) - (1) (1 w) QY (mly), ml)

k-+l=n+1 oeSh(k,l)

HEDPTH(T w) 0 QY = QM o (1 w))(m),

which is zero since the first two factors are minus the last factor. For i = 2, we have

Qn+2(w1,w2,m1,...,mn) = Qn+1(Qg(w17w2)7m)

+ Z Z e(a,m)(=1)*' Q1 (w1, Qry1(wa, my, ), m,;)

k+l=n+1oceSh(k,n)

+ > > eom) (=) Qu (wy, Qp (wi, myy), my),

k+l=n+10eSh(k,n)

which is equal to the sum
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(=1 T wr, T wa)(m)+

Yoo > elom) (=1 (T w)((T wa)(mi,), myy)

k+l=n+1geSh(k,n)

+ > Y e — 1) (1 ) (1w ) (ml), mis),

k+l=n+1geSh(k, n)

which is zero, since the first factor is the negative of the last two factors. O

Hence, (U,QY, Q) is a deformation of (M, QM).
Theorem 1.2.9. The triple (U,QY,Q) is a universal deformation of QM. More
precisely, the mapping Q' — f, where

(T fn(bl ®...0 bn))k(ml,. . ,mk) = Q;L—i-k(blw . ,bn,ml,. .. ,mk)

defines a one-to-one correspondence between deformations of M with base (B, QP)
and morphisms B — U of formal DG manifolds. In other words, U represents the
functor

B — {deformations of M with base B}.

Proof. We have to show that (QM + QB 4 Q')? = 0, if and only if the family (f,)»
defines a map f : S(B) — S(U) of differential graded coalgebras, i.e. if and only if
for each n and by, ...,b, € B, the equation

Q1 (fn(b Z Z e(o,b) Q2 (fi(by), fi(bg)) =

H—] =n oeSh(i,n)

S5 Y o AQEM,) ) (28)

k+l=n+1ceSh(k,n)

holds. In equation (2.8), we apply both sides on terms m; ® ... ®m, € M®" and use
the definition of f. Then, the condition on f is equivalent to the condition that the
following term is zero:

S dr )@ (@bl ml)

k+l=r+17€Sh(k,r)

H(=D)FE NN (1, m) Q) (b, QR (M), mY)

k+l=r+1 TESh(k r)

T Z Z E(U’ b)( a(l)+ et Z Z 2+l(b:77 Q;’—i—k(bg? m;—)7 m;{)

i+j=n geSh(i,n) k=0 TeSh(k, r)
i,j>1

+ 3N o )@ (QE,), b m)

k+l=r+1oeSh(k,n)
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But this term just equals

QM + QB + Q)?(b1,... by, ma,...,my).

This proves the second part of the theorem.

To prove the first part, we show that the map F := (f xId): Bx M — U x M
respects the DG structures, i.e. that for n > 0, the following equality holds:

- 1 -
Qan+§ ZQ?OE@FjOQi,n
i+j=n

n 1 -
+ZZF_HQ,€O(FZ- ®...0F)oay, (2.9)

k=3 1enk
|I|=n

= Z Fo(Q,®1®...01)0a,
ktl=n+1

Remark that F}, takes the following values on products b1 ®...0b,OM1®...O My,
with r <n, b; € B and m; € M:

Ey(by,....bp,my,.c.omp_p) =0 for 0O<r<n
FE.(b1,...,bp) = fu(b,...,bp)
EF,(my,...,mp) =0 for m>1

Fl(ml) = mi

Applying the left hand-side of equation (2.9) on b1 ®...© b, ©my O ... O My_p, We
only get the term

Ql—i—n—r(fr(bla e 7b7“)7m17 e 7mr)-

Applying the right hand-side of equation (2.9) on b1 ®... b, OmM1 © ... O Mpy_p, We
only get the term

Q;L(bl,- . ,br,ml, e ,’I?’Lr).

By our construction, both terms coincide. ]

At the end of Section 1.5, we will be able to construct a semiuniversal deformation
of an L-algebra with split tangent complex (see Theorem 1.5.13).

1.2.3 Infinitesimal deformations and obstructions

In deformation theory, an infinitesimal deformation is always a deformation over the
double point. What do we mean by double point in our context ?
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Definition 1.2.10. The n-fold point is the formal DG manifold (B, Q?) with B =
Cep @ Cey, deg(e;) =i and

B ep for j=n,
7 (egy...,€0) = .
Q7 (e 0) { 0 for j#n.

Fix an arbitrary formal DG manifold (M, QM) with tangent complex (L,d, [-,-])
and corresponding (U, QY), which is the base of a universal deformation of M. Recall
that for given B = (B, QP), deformations of M with base B correspond to morphisms
B — U of formal DG manifolds.

Proposition 1.2.11. Let D = (D,QP) be the double point. There is a 1:1- corre-
spondence between morphisms D — U and formal maps q : DY — U° such that
q1(e0) € Kern(QY). The morphism D — U is linear if and only if q is linear.

Proof. We can extend a given ¢ : D° — U? in the following way to a morphism

D — U:

»q1(€0))

€0, €0); q1(eo))

)
(
+ QY (g3(eo. 0, €0), q1(e0))

0

Thus, a deformation over the double point is just a formal map Ceqg — U. We
want to call only the minimal “infinitesimal deformations”.

Definition 1.2.12. Let ¢; be a vector of degree i € Z. A deformation of (M, QM)
with base Ce; is called infinitesimal deformation in degree ¢, if the corresponding
morphism g : Ce; — U is linear.

We see that we can interpret Kern(QY)NU? as space of infinitesimal deformations
in degree i. It will be clear after Section 1.5.3 that elements of Im(QY) N U? define
trivial infinitesimal deformations (they are in the kernel of the map g : U — V| see
Section 1.5.3). Hence, the homology H*!(L) can be interpreted as set of equivalence
classes of infinitesimal deformations in degree i of (M,QM).

Proposition 1.2.13. Let T = (T, Q") be the triple point and q : T° — U° a formal
map such that q(eg) € Kern(QY). We can extend q to a morphism T — U if and
only if

QY (42(e0, €0)) + QF (q1(e0), q1(e0)) = 0.
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Proof. In the same manner as Proposition 1.2.11. ([l

In particular, an “infinitesimal deformation” ¢ : Cey — U can be extended to a
deformation over the triple point, if and only if

Q3 (a1(e0), q1(e0)) € Im(QY).

Since QY (q1(eq), q1(e0)) € Kern(QY), obstructions belong to HY(U) = H?(L). More
generally, for each even 7, the obstructions for extending an infinitesimal deformation
in degree i belong to H"L(U).

1.3 Trees

Trees were first used by Kontsevich/ Soibelman [23] to describe the Ay-structure
that a DG module, homotopy equivalent to a differential graded algebra inherits. We
have a similar objective, but for L — oco-algebras instead of A..-algebras. Trees in
our definition are always binary trees. We give a definition of binary trees and assign
several invariants to them, which are important in order to get good signs later on.

1.3.1 Definitions

Definition 1.3.1. A (binary) tree with n leaves consists of a pair ¢ = (¢,V)
where V' = {Kj,...,K,_2} denotes a set of ramifications and ¢ denotes a map
¢ :{Kq,...,K,—1} — {Kop,...,K,_1} such that for each i =0,...,n — 2, we have:

(1) The inverse image ¢~ (K;) contains at most 2 elements.

(2) There is an n > 0 such that ¢"(K;) = Kp.
Ky is called root of ¢.
There is a tree with one leaf and no ramification which will always be denoted by 7.
Definition 1.3.2. An orientation of a tree (¢,V) is a family 7 = (7x)key of
inclusions 7 : ¢ H(K) — {1,2}. The triple ¢ = (¢, V,7) is called an oriented

tree.

Definition and Proposition 1.3.3. For each oriented tree (¢,V, ), there is a nat-
ural ordering on the set V: For K € V '\ Ky, suppose that ¢"(K) = Ky. We set

Tor) () mp2(x0) (0(K)) Tm (i) (0™ HK))
g T g ot 3 .

Set v(Ky) :=0. Then v:V — R is injective, hence it induces an ordering on V.
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When we write down the value v(K) of a ramification K in its 3-ary decomposition,
we just get an algorithm, how to get from the root Ky to K. For example 0.1121 means
“go (in the driving direction) right-right-left-right”. When (¢, V, ) is an oriented tree
with n leaves, we can extend the map ¢ to a map ¢ : V. \ KoU{l,...,n} — V such
that

e For 1 <i<j<mn,wehave ¢(i) < ¢(j).
e For each K € V, ¢~ '(K) has exactly 2 elements.

The numbers 1,...,n stand for the leaves of ¢. Furthermore, we can extend the map
v:K —[0,1)on V:=VU{L,...,n} in such a way that the 3-ary decomposition of
v(7) describes the way from the root to the i-th leaf of ¢, for i = 1,...,n. Then we
have v(i) < v(j), for 1 <i < j < n. In consequence, we have an ordering on V.

Definition 1.3.4. Two trees (¢, V) and (¢/, V') are called equivalent, if there is a
bijection f:V — V' of the ramification sets such that fo ¢ = ¢’ o f. Two oriented
trees (¢, V, ) and (¢, V', ') are called oriented equivalent, if there is a bijection
f:V — V' of the ramification sets such that fo¢ =¢' o f and 7’ o f = 7.

When we draw oriented trees, we shall put elements K’ of ¢~1(K) down left of K
if 1 (K') =1 and down right of K if mx(K') = 2.

Example 1.3.5. The following trees with three leaves are equivalent but not oriented

equivalent:
0 0
0.11 0.12 0.2 01 021 0.22

For each ramification and each leaf, we have indicated its value.
Set Ot(n) to be the set of equivalence classes of oriented trees with n leaves.
Example 1.3.6. (1) The set Ot(2) contains just one element. We denote it by f.

(2) The set Ot(4) contains just the following elements:

N RN AN AN /SN

Definition 1.3.7. For a tree (¢,V) and K € V| there is a tree ¢|x with root K and
ramifications {K' € V : ¢"(K') = K for an n > 0}.

We have to introduce several invariants:

For a tree ¢ with n > 1 leaves and 1 <7 < n, set wy(i) to be the difference of the
number s4(i) of ramifications of ¢ which are smaller than ¢ and ¢ — 1. (i — 1 is the
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number of leaves of ¢, smaller than i.) For K € V, set wy(K) 1= wg_g|, (K), where
on the right hand-side, K is considered as leaf of ¢ — ¢|x.

Remark 1.3.8. For K € V, the integer wy(K) is just the number of 1’s arising in
the 3-ary decomposition of v(K).

Now, for each tree ¢ with at least 2 leaves, set e(¢) := (—1)we()ttws(n),
Set e(1) :=1

Example 1.3.9. (1) e(f) = -1

(2) For the first tree in Example 1.3.5, we have e(¢) = —1; For the second tree in
Example 1.3.5, we have e(¢) = +1;

Now, let L be a graded module, ¢ an oriented tree with n leaves and B = (b ) gey
a family of bilinear maps L ® L. — L. Recursively, we want to define a multilinear
map

#(B): L — L.
e If ¢ has one leaf, i.e. B is empty, we set ¢(B) := Id.

e If ¢ has only two leaves, i.e. V = {K}, for a bilinear map by : L® L — L, we
set (b(bo) = by.

If ~1(Kp) contains exactly one element, say K7, and 7, (K1) = 1, we set

P(B) := by o (¢|k, (bx) kev\K,) @ 1)

If ~1(Kp) contains exactly one element, say K7, and 7, (K1) = 2, we set
¢(B) :=bo o (1 ® d|Kk, ((bx)Kev\Ky))-
If o1 (Ko) = {K1, K2} with ¢, (K1) = 1 and ¢g, (K2) = 2, we set
¢(B) :=bo o (¢|r, ((bx)Keni) @ |k, (bx ) Kens))-

Here, V} denotes the ramification set of ¢|x, and V5 the ramification set of ¢|x, .

1.3.2 Operations on trees

Addition Let (¢,V,n) and (¢',V’,7’) be oriented trees with disjoint ramification
sets. Let R be a point in neither one of them. Set V" := VU V' U{R}. We define a

map ¢ : V" \ R — V" by ¥[y\g, 1= &, ¢|ynk; = ¢ and (Ko) = (k) == R.
There is a family (77,)gew of inclusions 7%, : =1 (K) — {0,1} with 7% = 7,
for K € V, nf, = ) for K € V' and 7},(Ko) = 0 and 7,(K{) = 1. Now, we set

It is obvious how to define the addition of non-oriented trees. The addition of oriented
trees is not commutative. The addition of non-oriented trees is commutative.
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Example 1.3.10. We have 7 + 7 = 3. Furthermore, each tree can be reconstructed
by addition out of copies of 7.

Subtraction Let (¢, V) be a tree with n leaves and K € V. Let [ be the number of
leaves of ¢|k. The definition of a tree ¢ — ¢|x with n — [ + 1 leaves is quite obvious.

Composition Let (¢, V,7) be an oriented tree with n leaves and let

(W, VO 7Y (™ V) 7)) he oriented trees. Let W be the disjoint union
of V and all V. For K € V set n(K) := 2 — |¢p~'(K)|. (This is the number of
leaves belonging to K.) Let K; < ... < Kj all elements K of V' with n(K) > 0. We
define a map ® : W\ Ky — W as follows: For K € V' \ Ky, set ®(K) := ¢(K). For

Kev® \K(i), set ®(K) := 1 (K). And define the values of ® on the K setting

@K, .. o(KEM)) = (Ky,... Ky,... K., K).

a'e

ni times n; times

Then, (®,W) is a tree with a canonical orientation 7', given as follows: For each
i, K € VO and K’ € & 1K), we set 7/(K') := 7®O(K'). For K € V and
K' € & YK)NnV, we set n'(K') := m(K'). It remains to define 7y on elements
of @~YK;)\V, for i = 1,...,1. So, if n(K;) equals 2, then @ }(K;) \ V has two
elements, say K\ and K\ with j < k. Set @, (K) := 1 and &, (K = 2. If
n(K;) equals 1, then ®~!(K;) has one element in V, say K and one element which is
not in V, say K'. Set ®g,(K’') :=1if ¢k, (K) =2 and Pk, (K') :=2 if ¢k, (K) = 1.

We will denote this decomposition by ® = ¢ o (™), ..., ().

The next lemma follows directly from the definitions:
Lemma 1.3.11. In this situation, suppose that there is a family B = (bx)xew of
of bilinear maps L @ L — L. Set BO) .= (bx)Kkev and B .= (b ) ey, for
1=1,...,n. We have

po (W, ... M) (B) = (-1)errerip(BO) o (y(BW) @ ... @ ¢p™ (BM)),

where the exponent is the sum

V>1 V>n—1
( Z bK)(Z br) +... 4 ( Z bi)( Z bk).
Kev(@) KeV Key(n—1) Kev

We remind that V' > i means that the value v(V') is greater than the value v(i) of the
i-th leaf of ¢.
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1.4 L.-equivalence of L and H(L)

Let L = (L,d,[-,-]) be a differential graded Lie algebra, where the differential d is of
degree +1. Suppose that there is a splitting 7, i.e. a map of degree —1 such that
dnd = d. Furthermore, suppose that 7> = 0 and ndn = . When we use a Lie bracket
on Hom(L, L), we mean the graded commutator.

In this section, we want to construct an L-algebra structure u, on H := H(L,d)
with p; = 0 such that (L,d,[-,:]) and (H,ps) are Loo-equivalent. The multilinear
forms pu,, will be constructed using trees as in the last section. In the A,.-context,
the existence of an A,.-structure on the cohomology of a DG algebra A had already
be shown (for A connected) by Kadeishvili [21], Gugenheim/ Stasheff [15] and (in the
general case) by Merkulov [35]. Merkulov gives a recursion formula for construction of
the higher products. A similar recursion formula for the L..-case can be found in the
article [19] of Huebschmann and Stasheff. Kontsevich and Soibelman 23] rewrote the
higher terms obtained by Merkulov’s construction (Aso-case) in terms of decorated
trees. Their formulas are still recursion formulas.

In contrast to Kontsevich/ Soibelman, we only work with binary trees and give
explicit (non-recursion) formulas for the terms p,. Using the invariants e(¢) defined
in the last section, we are able to control signs terms.

We have to make some preparations. First of all, there is the following simple but
important lemma:

Lemma 1.4.1. Let n > 3 be a natural number. There is a 1:1-correspondence be-
tween triples (®, K,0), where ® = (®,V,m) is an oriented tree with n leaves, K is a
ramification in 'V, o a permutation in X, and 6-tuples (k,d,, p,7,0), where k is a
natural number with 2 < k <n —1, ¢ is a tree in Ot(k), 1 is a tree in Ot(l) where
l:=n+1—k, pisa shuffle in Sh(k,n) and v € ¥;, § € Xy are permutations.

Example:

The fine lines represent the tree 1 and the fat lines the

tree ¢.

In the sequel, the first r leaves of ® will be associated to

the indezes o(1) = p(y(1) + k — 1),...,0(r) = p(v(r) +

k — 1), the following k leaves to the indezes o(r + 1) =

p(6(1)),...,o(r+k) = p(6(k)) and the remaining leaves to
the indezes o(r +k+1) = p(v(r+2)+k—1),...,0(n) =

r=3 leaves p(y() +k —1).

smaller K —_—
k=3 leaves of ¢

To the triple (®, K, o), we associate the following data: Set k to be the number of
leaves of ®| i, ¢ := |k, ¥ := P—¢. Let r be the number of leaves F' of ® with F' < K.
The shuffle p is chosen in such a way that {p(1),...,p(k)} = {o(r +1),...,0(r + k)}.
The permutation § is defined by 6(i) :== p~ (o (r +1)), fori=1,...k and v is defined
i the following way:
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p Ho@)—k+1 for i=1,..,r
(i) = 1 for di=r+1
p YNoli+k—1)—k+1 for i=r+2..,1
In the other direction, to the 6-tuple (k,¢,v,p,7,8), we associate the following
data: Set v :=~~1(1) — 1. Then ® is the composition
S=vo(r,..7,0,7,....,T),
——
r times

where T again stands for the tree with one leaf. The ramification K is the root of ¢,
considered as ramification of ® and o is given by

p(v@)+k—=1) for i=1,..,r
o(i) = p(o(i—r)) for di=r+1,.,r+k
pv@—(k—=1)+k—=1) for i=r+k+1,..,n
Now suppose that such corresponding tuples (@,f(,a) and (k,¢,¢,p,v,0) are
given. Let V' be the ramification set of ¢ and V" the ramification set of ¢. Then

V := V' U V" is the ramification set of ®. Again, set r :== v~ (1) — 1. Remark that
the ordering on V' depends on . We define a permutation 4 € ¥;_1 by

v@)—1 for i=1,..,r
y@i+1)—1 for i=r+1,.,01-1

Lemma 1.4.2. We keep all notation from above. Let B = (bg)kev be a family
of homogeneous bilinear forms L @ L. — L. Denote the subfamilies (bg)key: and
(bx)keyr by B' and B". Set W to be the set of all ramifications K € V such that
K > K. Then we have

PY(B)oyo(p(B)od®1®..01)op

= (-1 Y(BYo(1®..010¢(B")1®..01) o0
r times

= (-1t Exew hB G (B) o o.
Proof. Let aq,...,a, be homogeneous elements of L. We get

((B)oyo(¢p(B")od®@1®...01)0p)(a1 ® ... ® a,) =

- X(p7 ALy ey an)X(éa ap(1)7 ceey ap(k’))

(W(B") o y)(@(B" ) ap(s(1))s - Ap(s(k))) @ Cp(hes1) R-or @ Up))
—— ~——

= u2 ug

= X(p7 A1,y an)X(éa ap(1)7 A ap(k))X(’Y7 ULy eeey Ul)@b(B/)(Uy(l)a a3 u'y(l))'
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Using the following three formulas

X(Ua ai, .“’an) — (_1)kr+(ag(1)+...+ag(r))(ap(1)+...+ap(k))X(p’al’ .'.7(1”)'
X(0; @p(1)5 s Qp(k) )X (V5 Qp(kt1) s -+ Ap(m) )
Uny(1) @ - ® Uy gy = (—1) B @e TP o).
(1®..010¢B") @ 1.0 1)(ag1) ® .. ® Ag(n));
XV, Uty ey tg) = (=) T @O T T (5 gy,

this expression is just

(=D)**"x(0,a1, .. an) (BN (1®..012¢(B")@1®..® (1) ® - @ Gg(n)))-

The second equality of this Lemma is just a special case of Lemma 1.3.11. 0

We turn to the construction of an Loo-structure on H(L).

Proposition 1.4.3. The map [d,n] = dn-+nd is a projection, i.e. [d,n]> = [d,n]. And
H := Kernld, n] is as module, isomorphic to H(L). Remark that under the assumption
of the beginning of this section, we have

H = Kernd N Kernn.

The bracket on L induces a Lie-bracket on H(L) and the induced bracket on H (via
the isomorphism H — H (L)) is just given by (1 —dn)[-,-] = (1 = [d,n])[-, "]

For simplicity, we set g := n[-, -].

Theorem 1.4.4. The following graded anti-symmetric maps p, : H®" — H of
degree 2 — n define the structure of an Log-algebra on H:

= (5" S @1 = (i)l g, ) o an

¢cOty,

Here, the sum is taken over all trees ¢ with n leaves and ¢((1 — [d,n))[,"],g,-..,9) is
the n-linear form obtained by assigning the bilinear form (1 — [d,n])[-,-] to the root of
the tree ¢ and the bilinear form g to each other ramification. The sign e(¢) is defined
i Section 1.8. and oy, is the anti-symmetrisation map.
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Proof. We must show that

S (D)Mo @l®..©1) o, =0. (4.10)
k+l=n+1

Up to the factor (—1)"! this sum has the form

SN ST (DR e(@)e(w)b((L — [dy )l ] g g) 00

k  é py,6
o(op((1—[dynD[],9yv9)00R@1®...Q1)0p, (4.11)

where k ranges from from 2 ton —1,l =n+1—k, ¢ and ¢ vary in Ot(k) and Ot(l),
p in Sh(k n), v and ¢ in ¥; and Xj. For corresponding tuples (k, ¢,v, p,~,d) and
(®,K,0) as in Lemma 1.4.1, we denote as usual 7 := y~1(1) — 1 and by ¢ the number
of ramifications of ¢, greater than r 4+ 1. Using

e(®) = (=1)"* O FEDe(g)e(y)
we(K)=1—-1—1r—t

and Lemma 1.4.2, the expression (4.11) can be expressed as

oo Y @)~ ®e(B) o an,

@€0t(n )KeV\Ko

where B = (Bg)xev is the family with by, = by = (1 —[d,n])[-,-] and by = 7], -] for
K +# Ko, K. To show that the last term is zero, it is enough to show the following
two conditions:

Z Z Z T—HUCI)(K ((I))q)((].— [d,n])['7‘]797-~-797 [7] 797"'79)0020’
®e0t(n) KEV\Koo€X, pos. K
(4.12)

For each tree ®, we have

> (e Ee@)@((1 — [doa)ls g5 9, [doll ], g 9) 00 = 0. (413)
N—_——

KeV\Ko position K

The first condition follows by the Jacobi-identity and an easy combinatorial argu-
ment. In equation (4.13) the term annihilate each other since the differential d trickles
down the branches of ®:

Initiation of the trickling: Suppose that ®~1(Kj) contains an element K’ with
7, (K') = 1. We have the following picture:

(1 —[d,n))d[, ] (1= [d,n)[, ] 1 -]
0 = /\ — /\ +(_1)ﬁramiﬁc. of &/ /\

77['7 ] 77['7 ] d77['7 ] 77['7 ] 77['7 ] d’l][', ]
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Here, we only have drawn the top of the tree ® for the case where ®~!(Kj) consists
of two elements K’, K” and the corresponding bilinear forms. It is quite obvious how
this goes when ®~!(Kj) has only one element, since d|y = 0.

Going-on of the trickling at a ramification K € V: We illustrate the case,
where ®1(K) has two elements K', K" with 7y (K') = 1.

Wd['7 ] 77['7 ] 77[" ]
_ /\ _(_l)uramiﬁc. of & e/ /\ - 0

77['7 ] 77['7 ] d77['7 ] 77[" ] 77[" ] d77['7 ]

Iterating the trickling down to the leaves and using d|y = 0, we see that all terms in
the sum are annihilated. O

Remark 1.4.5. The restriction of ;1 defines a formal map H' — H?. One can show
that this is just the Kuranishi map as defined in |26].

Theorem 1.4.6. The following anti-symmetric maps f, : HS" — L of degree 1 —n
define an Loo-equivalence H — L (i.e. an Loo-quasi-isomorphism,).

f1: = inclusion
Jai=—g
foi= =G Y dd)dlg,- - 9) o an

$€0t(n)
Proof. For n > 0, we have to prove the equation
g S o= Y (DM o e1e . o) oa
n Z 9 i J 1 n n
i+j=n k+l=n+1
For [ =1, the right hand-side is just u,. Since
1.
dfn:(T)n ! Z e(qb)gb(—dn[-,-],g,...,g)oan,
$€0t(n)

it is sufficient to show the following three identities:

- Z fwf] Ain = (__1)n—1 Z 6(@25)(]3([, ‘]797 o 79) O O (414)

i+j=n ¢ec Ot(n)

fio(o([,],9,--,9) 00, ®1®@...®1) o, =0for I >1,k+l=n+1. (4.15)
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(_71)”_1 Z €(¢)¢(77d[,],9, ,g)oan -
c Ot(n)
=Y MY S (T () (4.16)
SN peOt(k)

fio(d(dn+nd)[-,-],9,...,9) 0 @1®...Q 1) 0 agy.
Proof of equation (4.16): The right hand-side of equation (4.16) is

k,0>2

B (=0 Ye(@)e(w)i(g, o g) 00

k+l=n+1 ¢, ~v,0,p
(o([d,n][,],9,-y9) 00 R1®...Q1)0p.

As in the proof of Theorem 1.4.4, this expression takes the form

LY D > (e ®e(@)a(B)o,

PeOt(n) Key 0€XA
where B = (bi)kev is the family with b = [d,n][-,-] and bx = n[-, -] for K # K.
Hence to show equation (4.16), it is enough to show that for each tree ¢, we have

(I)(T}d["']’gw"ag) = Z (_1)r+w¢)(K)q>(B)'

KeV\Ko

This is true by the same trickling argument as in Theorem 1.4.4.
Proof of equation (4.15): This is again the Jacobi-identity and some combinatorics.

Proof of equation (4.14):

3 ﬂ[.,.] o(fi® fj)oain=

2
i+j=n
Liicigi (_1)i
=Yt Y S+ )1 g9) 0
itj=n HEOt (i) He0t(5)
= (Y @) ], 00) 0
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Almost in the same manner, one can realize the following: If L = (L,d,[-,-]) is
a DGL and f; : (M,d™) — (L,d) a homotopy equivalence between DG modules,
then there is an Leo-algebra structure g, on M with puy; = d™ and an L. -quasi-
isomorphism f : (M, u.) — (L,d,[-,+]), extending fi. In other words: An up to
homotopy differential graded Lie algebra is an L-algebra. In the A..-context, this
was already shown by Markl [31].

1.5 Decomposition theorem for differential graded Lie al-
gebras

In this section, we want to achieve two things: (a) the construction of an inverse
map of the quasi-isomorphism f : (H, p.) — (L,d,[-,-]) constructed in Section 1.4;
(b) the construction of a semi-universal deformation (V,Q",Q’), for a given formal
DG manifold. As consequence of (a), we get the following decomposition theorem
(L,d,[-,]]) = (H, ps) ® (F,d,0) for DGLs, where F' is the complement of H in L and
the sum is taken in the category of L.-algebras. The existence of such a decomposi-
tion was already stated by Kontsevich (see [22]) and an A.-analogue was proved by
Kadeishvili (see [21]). In fact, each Loo- (resp. Ao-algebra) over a field is isomorphic
to the direct sum of a minimal and a linear contractible one. Our Proposition 1.5.6
is analogue to the corresponding statement for A..-algebras, which was proved by
Lefevre (see [28]). The proof here is almost a transcription of Lefevre’s proof.

1.5.1 Obstructions

Consider the formal DG manifolds (W, Q) and (W', Q’). For any n > 0, there is a
differential & of degree +1 on the graded module Hom(W®" W'), given by §(g) =
Q09— (—1)9goQyn. Now, let f : W — W’ be a morphism of formal supermanifolds.

Set
n—1 n
r(fi, o o)) =Y fioQui—Y Y. Qo fr
=1

k=21i{1+...+ip=n
Recall that f is an Ls,-homomorphism, if for each n > 1, we have §(f,) =
r(f1,..., fn—1). If this condition is satisfied only for n < m, we call f (or the family
(f1,--+, fm)) an L,,-homomorphism.

Lemma 1.5.1. Suppose that f is an L,_1-homomorphism.
Then (5(T(f1, “o ,fn_l)) = 0.

The proof of Lemma 1.5.1 is done in the appendix. The proof of the next lemma
is an easy exercise:

Lemma 1.5.2. Lete: W — W' and f : V' — V be strict Loo-morphisms and let
g:V — W be any Loo-morphism. Then

(1) 7((9f)1-- - (9 )n—1) =7(g1,- -, gn-1) © [,

(2) r((eg)1,---,(eg)n—1) =€107(g1,--,gn-1)-
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1.5.2 Constructions

Proposition 1.5.3. Let f : M — M’ be a morphism of formal supermanifolds.
Suppose, there is a module homomorphism g’ : M' — M such that ¢’ o f1 = Idyy.
Then, there is a morphism g : M’ — M of formal supermanifolds such that g = ¢’
and gf = Idps. If f1 is an isomorphism with inverse g and if f is Q-equivariant and
if g respects Q{W and QM , then g can be chosen Q-equivariant as well.

Proof. One can check directly that the sequence of maps defined by

gn=—Y_> giofrolg),

k=2 renk
| T|=n

for n > 2, define a morphism of formal supermanifolds with the desired property. [

Lemma 1.5.4. Let f:V — W be a morphism of formal DG manifolds.

(1) If f1 is split injective, then there is a formal DG manifold W' and an Luo-
isomorphism k : W — W' such that ko f is strict.

(1) If f1 is split surjective, then there is a formal DG manifold V' and an L-
isomorphism Kk : V! — V such that f o k is strict.

Proof. (i) As module, set W’ := W. We have to construct an isomorphism & :
S(W) — S(W’) of graded coalgebras and then, we can define the DG structure on W’
via QW' := ko QW ok™L. Set k1 := Id. Inductively, we define maps k,, : WO — W'
such that for 2 < m < n, we have

(Kof)m:Zkaofle.

k=1 renk
[ I|=n

Let g : W — V be a module homomorphism with g o f; = Idy. When k1,...,k, is
already constructed, set

n

1

Knt1 ::—Z Z kg o frog?"th
P

=1 71enk
[I|=n+1

Obviously, (ko f), =0, for 2 <m <n+ 1. (ii) goes in a similar way. d

For our situation, we have the following more explicit statement:

Lemma 1.5.5. Let f : H — L be the Ly -quasi-isomorphism constructed in Sec-
tion 1.4. Consider the morphisms k, : L®" — L, defined by r1 := 1d and k, :=
—fno pr?}", forn > 2. Then, k is an Loo-morphism and ko f is strict. Furthermore,
(kY1 =1d and (1), = fnopry", forn > 2.
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Proof. For n > 2, we have

n
(K,Of)nzz Z ’{kofI:fn_fnZO-
k=1 1enK
[T|=n
The second statement is as easy to prove. ]

The following important proposition says that the quadruple (category of Leo-
algebras; class of Ly,-quasi-isomorphisms; class of those L,,-morphisms f such that
f1 is split injective; class of those Loo-morphism f such that f; is split surjective)
satisfies Quillen’s Axiom M1 (see [40]) for model categories.

Proposition 1.5.6. Let
A——=C
roe
B—2-D
a commutative diagram of L..-algebras. Suppose that f is split injective and that e is

split surjective and that either f or e is an Loy -quasi-isomorphism. Then, there is an
Loo-morphism g : B — C such that the complete diagram

A——C

||

B——D
commutes.

Proof. By Lemma 1.5.4, we may suppose that e and f are strict. Inductively, we will
construct morphisms g,, : B®® — C such that

(1) 5(gm) + T(glv cee 7gm—1) = 07
(ii) gmofigmzcm:
(iii) e1 0 gm = dp,

for each m < n. Choose maps u : (D, QP) — (C,QY) and v : (B,QP) — (A4,Q7)
of DG-modules such that vo f; =Id4 and ey ou = Idp. A candidate for g; can easily
be found. Suppose that g1,..,g,—1 are already constructed. Then

B = cpv®" + ud, — ueic, v

satisfies conditions (i) and (ii). By Lemma 1.5.2, we get

(6(B) + (g1, gn-1)) 0 f{" =
8(Bo fr™) +r((9f)1s- - (9f)n—1) =
0(en) +r(cty...,en—1) =0.
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On the other side, again by Lemma 1.5.2, we have

e10(6(8) +7(g1s---s9n-1)) =
5(elﬁ) + T((eg)lv SRR (eg)n—l) =
5(dy) + r(dys . dyy) = 0.

Hence, §(8) +7(g1,--.,9n—1) has a factorization
pen —= Cokern(f{™) 4 Kern(ey) L0,

where ¢ is the natural inclusion and p the natural epimorphism. By Lemma 1.5.1,
0(B) +r(g1,.-.,9n—1) is a cycle, so d(q) = 0, i.e. ¢ is a map of complexes. Now,
either Cokern(f;”") or Kern(e;) is contractible. Hence ¢ = §(h), for a morphism
h : Cokern(f{"") — Kern(e;) of graded modules. Then g, := 8 — i o h o p satisfies
the conditions (i)-(iii). O

Corollary 1.5.7. There is a map g : (L,d,[,-]) — (H, pis) of Loo-algebras such that
gof=Idg.

Corollary 1.5.8. Let M be an Loo-manifold and (B, QP, Q) a deformation of M such
that (B, QP) is contractible and Q1 = 0. Then (B,QP,Q) is a trivial deformation.

Proof. There is a commutative diagram

M (B x M,Q" + QM + Q)

| |

(B x M, Q" + QM) B

where the vertical left arrow induces an injective quasi-isomorphism of DG-modules
and the vertical right arrow induces a surjective map of DG modules. By Proposi-
tion 1.5.6, there is a map ¢ : (B x M,QP + QM) — (B x M,QP + QM + Q) with
q1 = Id, completing the diagram commutatively. In particular, ¢ establishes an iso-
morphism of the given deformation and of the trivial deformation of M with base B. [

Proposition 1.5.9. There exists

(a) a homomorphism v : (F,d,0) — (L,d,[-,:]) of Loo-algebras such that vy is the
natural inclusion,

(b) a homomorphismp : (L,d,[-,:]) — (F,d,0) of Loo-algebras such that por = Idp.



Deformation of L.,-algebras 51

Proof. (a) Suppose that there are already homomorphisms ¢, : F®™ — L, for
m < n — 1, which form an L,_i-homomorphism. We have to find an ¢, such that
8(tn) = 7(t1,. - ytn_1). Since (F,d) is contractible, Hom(F®" L) is acyclic, so the
existence of ¢, follows by Lemma 1.5.1.

(b) By Lemma 1.5.4, we can assume that ¢ is strict. Set p; := prp = [d,n]. Now
assume that pi,...,p,—1 are already constructed such that they define an L,_1-
homomorphism p’ : L — F such that (p’ o), = 0, for m < n—1. We have to
find p, : L®"® — F such that

8(pn) +7(P1s- - Pn—1) =0,
pn o B = 0.

We may chose p, := nr(p1,...,pn—1). Then, since r(p1,...,pp—1) € Kernd, we have
0(pn) = [n,d] or(p1,...,pn—1) =r, and again by Lemma 1.5.2, we get

pnot® =nor(pr,...,pn_1) 0" =0.

So inductively, the map p can be constructed. O

As a consequence, we get the expected decomposition theorem for differential
graded Lie algebras admitting a splitting:

Theorem 1.5.10. We have an isomorphism of Ly -algebras
fxt:HXF— L.

Corollary 1.5.11. If (L,d,[-,"]) and (L',d',[-,"]) are differential graded Lie algebras
such that (L,d) and (L',d") are split, then, for each Loo-quasi-isomorphism f: L —
L', there exists an Loo-morphism g : L' — L such that f1 and g1 are inverse maps
on the homology. In particular, if K is a field, then “Loo-quasi-isomorphic” is an

1.5.3 A semiuniversal deformation

Proposition 1.5.12. (i) Let M = (M,QM) be a formal DG manifold and N a
QM -closed submodule of M, i.e. Q;-V[(nl,...,nj) € N, for all j > 1 and
ni,...,n; € N. Then, (N,QM|y) is a formal DG manifold and the inclusion
N — M is a morphism in DG-Manf.

(i) Let (B,QP,Q) be a deformation of (M,QM). Suppose that (B,QP) is a di-
rect sum of formal DG manifolds (B',QP") and (B",QPB"). Then, the triple
(B”,QBN,Q|B,,XM) 1s also a deformation of M and the canonical map

(B" x M, Q%" + Q™ + Q|prxm) — (B x M, Q% + Q™ + Q) (5.17)

defines a morphism of deformations.



52 Decomposition theorem for differential graded Lie algebras

(iii) If in the situation of (i), (B',QP") is contractible, then the map (5.17) is an
equivalence of deformations.

Proof. The statements (i) and (ii) are easy to see. To show (iii), we apply Proposi-
tion 1.5.6 to the commutative diagram

(B" x M,QB" + QM + Q|prxur) (Bx M, QP +QM + Q)

| |

(B" x (B" x M), Q% + Q" + QM + Q|prxur) (B,Q")

of formal DG manifolds. We get an isomorphism

(B> QB7 Q|B"><M) I (B7 QB7 Q)

of deformations with base B. Obviously, the left one is equivalent to the deformation
(BlvaB 7Q|B"><M)- O

For the rest of this subsection, we work in the setting of Section 1.2. Thus L is
the DGL Coder(S(M), S(M)), for some formal DG manifold (M,QM). Again, we
must assume that the complex (L,d) has a splitting n. Equip the cohomology H of
(L, d) with the L.o-structure u, constructed in Section 1.4. Set U := L[1], V := H][1]
and denote the morphism V — U induced by the quasi-isomorphism H — L con-
structed in Section 1.4 again by f.

Let (U,QY,Q) be the universal deformation of M (see Section 1.2). Again, set
Q = QY + QM + Q. By base change f: V — U, we get a deformation (V,QV, Q")
of (M,QM). Explicitly, on products v1 ®... v, ®m; ® ... ® m, with r,s > 1 and
n = r + s, the perturbation Q' is given by

Q;@(vh ey, Upy, My, ... 7m8) = (T f?“(v17 .. 7”T))S(m17 o 7m5)~
Set Q' :=QV + QM + Q.
Theorem 1.5.13. The deformation (V,QV,Q") is semi-universal.

Proof. Since (H,p.) is minimal and (U,QY, Q) is universal, we only have to show
that there exists a morphism of deformations from (U, QY, Q) to (V,QV,Q’). This is
a consequence of Theorem 1.5.10 and Proposition 1.5.12. O

Corollary 1.5.14. If the tangent complezes of two formal DG manifolds M, M’
are split and Lo, -quasi-isomorphic, then M and M’ have a common base of a semi-
universal deformation.
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1.6 Appendix

1.6.1 Some calculations

Proof of Proposition 1.1.2: Induction on n
The case n = 1 follows by the commutativity of diagram 1.1 and Kern(A1) = W',
Now suppose that the formula is proved for all m <mn — 1. Then we have

(F®FoA") (wy,...,w,) =

Z Z 6(7-7 wy, ... 7wn)Fj(wT(l)7'-- 7w7'(j)) ®Fn—j(w7—(j+1),--- 7w7'(n)) =
J=17€Sh(j,n)

n—1

1
SN g (Fa ©- - OF;)oa; 8(Fy ©.. .0 Fy, Joon ;1o n(wr ©. ..Own),
j=1kk 1,I'/

where k ranges over 1,...,7; k' over 1,...,n — j, I takes all values in N* such that
|I] = j and I’ takes all values in N¥ such that |I’| = n—j. The last expression equals

k— |=n
ZZ i 1 —z F0...0F)®(Fy,, ©...0 F,)]oay(w, ..., w,). (6.18)
I=1 [eNF

On the other hand we have

Z Z Z I‘k" We(1)s - -+ Wali)) O - OF5 (Wo(n—ig1+1)5 - - - s Wo(n))) =

k=2 1enk c€X,
[T|=n

n k—
SN e Z Z 0): s By (0))Fs, ) (0) © ... 0 Fy ) (0)®
=1 Sh(l

k=2 1eNk o€X,
[T|=n

Fi-r(l+1) 0)o...o Fz‘T(k)(O) =

n = ,
Z Z Z <l> Z MG(O_’wl""’wn)Fil(o)®“‘®Fil(<>)®

k=2 renk =1 (S
[ T|=n

Fiy (0) 0. © Fy (0).

. k
Here, we have set Fj (0) := Fi, (Wo(iy 4. 4ip_141)s -+ > Wolis 4. tip))- SINCE (l) . % =
“(k—l_l)!, we see that both sides coincide. Hence, by the commutativity of diagram
(1.1), the difference

Fy(wy,...,wy) —

. 1
Z Z Z me(J)Fil (’wg(l), ce ,’wg(il)) ©...0 Fik (wg(n_ik+1), ca ,’wg(n))

k=21i1+...+i=n oEX,



54 Appendix

belongs to Kern(A™) = W’. Thus it is just the term F,,(wj, ..., w,), and the induction
step is done. ]

Proof of Proposition 1.1.3: Induction on n. Set qp := Qo,1(1). (1) By the
commutativity of diagram (1.3), comparing terms of polynomial degree zero, we have
that Q; 0 = 0, for each ¢ > 0. (2) By the commutativity of diagram (1.3), comparing
terms of polynomial degree i and linear degree +1, we have that Qg; = 0, for i # 1.
(3) By similar arguments, we see that for w € W, we have Q1 2(w) = ¢o ® w and
Q1 =0, for ¢ > 3. Thus the cases n = 0,1 are done.

Now suppose that the statement is proved for all m < n —1. Then (Q® 1+ 1®
Q)(A(wy,...,wy)) can be written in the form

Z Z Z 6(0-)6(7—7 Wo (1)« - awa(k—i-l—l))

1=0 k=1 o€Sh(k-+1—1,n) 7€Sh(l,k+1—1)

QU Wo(7(1))s -+ Wo(r(1))) © OWa(r(141)) @ - -+ O Wo(r(kti—-1)) @ Wo (k1) @ « -+ O Wo(n)

n—1n—I

+ Z Z Z Z e(o)e(r, W (k+1)5 - - - ,wa(n))wa(l) O O W)@

=0 k=1 oeSh(k,n) TeSh(l,n—k)
® QUWo(ktr(1))s - - + s Woktr(1))) © Wo(ktit1) © -+ © We(p)-
This is just the sum over k and I of the following expression:

Z G(J)Ql(w(r(l)) s 7w(r(l))®wo‘(l+1)®' : 'Qw(r(k-i-l—l)@wa(k-i—l)@' : 'Qwa(n)
oeSh(l,k+1-1,n)

+ Z 6(0’)(—1)w0(1)+"'+w‘7(’€)6(7', We(1)s - - ,wg(k+l_1))wg(1) ®...0 wg(k)®
oeSh(k,k+1,n)

@ QU Wa(kt1)s - -+ » Wor (k) © Wo(kpit1) © - - - © Wo(n)-

Here, by Sh(l,m,n) we mean the set of all permutations o € ¥, such that o(1) <
wo<o(l)and o(l+1) < ... <o(m) and o(m+ 1) < ... < g(n). On the other side,

n—1
A(Z Z G(J)Ql(wa(l), ce ,wa(l)) ® We(141) ... wa(n))
{=0 o€eSh(l,n)

can be written as sum over k and [ of expressions of the form

> Yo 0)e(T w1y © . O Ur(gy) @ Ur(r1) © -+ O Ur(ni11),
oeSh(l,n) TeSh(k,l—n+1)

where we have set

(ula s 7un—l+1) = (Ql(wa(l)) ce awa(l))) Wo(14+1)5 - -+ 7wa(n))'
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We see easily that on both sides we have the same sums. This completes the induction
step. ]

Proof of Lemma 1.5.1: From our hypothesis, for each m < n — 1, we have

Q10 fm = fm©Qmm= > fioQmi—>_ > Quofr (6.19)

k+l=m+1 k=2 1enk
k22 |I|=m

Furthermore, we can generalize the fact that @) is an L. -structure to the the following
equations: Let m, k,[ be natural numbers such that m > 1 and k41 =m + 1. Then

Ql,l © Qm,l + Qm,l © Qm,m + Z Qm—i—l—s,l © Qm,m—i—l—s =0. (6-20)

r+s=k+1
r,s>2

Of course, they are also correct for Q. Now, we apply § on the first summand of
r(f1, ...y fn—1). Using equations (6.20) and (6.19), it takes the following form:

> Qo froQua—QioQ)o fr) =

k=2 1eNk
[ T|=n
D2 QkoQhuofi+) D, D QoQiofi+) ) QiofioQua=
kI kI r+s=k+1 K 1
r,s>2
n—1 Ty

k
=D 200 D Qe eQu@ 1™ )0 Sy i gidivit)
I

k=2 v=1r=2j1+...+jr=tv
n
! ®u / v _
Y Y Y @eTeqerof
k=2 |I|enk 7+5=k+1 u+0=T—1
7,5>2

[I|=n

=1 st+t=iy+1

The first and second summand annihilate each other, since we have the following 1:1
- correspondence of index sets:

(b, Lv,r, J) b= (k =k 47— 1,1 = (i1, ey 1, J1s ons Jrs Gt 1y ooy i), T = iy = v — 1),

(k‘ = ’F,I = (gl,...,%ﬂ,gﬁ+§+1, ...,ZE),V—{-’L_L—F 1,7" = g,J = (gﬂ_l’_l,...’gﬂ_l’_g)) — (]Z‘,j, 77, ﬂ)
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We apply d on the second summand of r(f1, ..., frn—1):

s> QLOfI)zzk:ZI:(onfIOQn,n—QSOonfI)=

k=2 1enk
[T]=n
2.2 QiofroQun=2 3 QuoQurefi=) ) Z QuoQruo f1 =
utv=k+1

n—1 ki
Z Z Z Z Z Qo (1 @QL@1%F ) o fu i i)

k=2 I v=1r=2ji1+...4+jr=iy

Z Z Z Qk °© f(il7~~~7iu—1737iu+17---7ik) © (1®i1+...+i,,_1 ® Qiu,b‘ ® 1®i”+1+m+ik)
k

—ZZ Yoo > Que(1*eqQ,@1%) e 1.

t>2
I utv=k+1 c+d=u—1

u,v>2

The first and third summand annihilate each other, since we have the following 1:1 -
correspondence of index sets:
(b, Lvyr, J) /= (k =k =147, 1 = (i1, ey 1, J1s cons Jrs bt 1y ooy i), 4 = kyc = v — 1)
and

(k=T = (i1, ey licy bty s i), V = C+ 1,1 =0, = (Geg1y oees fetv—1))-

The second term is just the remaining term above. So the statement is proved. g



Chapter 2

Deformation of singularities via
L~o-algebras

Introduction

In this chapter, we apply the following general idea for the construction of moduli
spaces to isolated singularities: Take the differential graded Lie algebra L describing
a deformation problem (for isolated singularities, this is the tangent complex) and
find a minimal representative M of L in the class of Lo-algebras (see Chapter 1). In
geometric terms, M is a formal DG-manifold, containing the moduli space as analytic
substructure.

We show the existence of a functor F' from the category of analytic space germs
to the localization of the category of L..-algebras by L..-equivalence. For a singu-
larity X, we take the semi-universal L.-deformation (V,Q") of F(X) constructed in
Chapter 1. If X is an isolated singularities, then the components V? are of finite di-
mension. The restriction of the vectorfield Q" defines a formal map (Kuranishi-map)
VO — V! whose zero locus gives the formal moduli space.

2.1 Definitions and reminders

In the whole chapter, we work over a ground field K of characteristic zero.

Denote the category of formal (resp. convergent) complex analytic space germs by
Anf (resp. An). Denote the category of isomorphism classes of formal DG manifolds
by DG-Manf. We use the same superscripts to denote full subcategories of DG-Manf as
in Section 1.1.4.

We call a morphism f = (f,),>1 in DG-Manf” weak equivalence, if the morphism
f1 of DG vectorspaces is a quasi-isomorphism, i.e. if the corresponding morphism of
Lso-algebras is an Lyo-equivalence. Recall that by Theorem 4.4 and Lemma 4.5 of

o7
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[22], weak equivalences define an equivalence relation in DG-Manf” and that in each
equivalence class, there is a minimal model, i.e. an object belonging to DG-Manf .

2.2 The functors F' and V

In this section we explain how to represent (formal) singularities by formal DG man-
ifolds.

Let C be the category of formal analytic algebras, A € Ob(C) and R = (R, d") a
resolvent of A over K i.e. a g-finite free DG-algebra in gr(C) such that H°(R,d®) =
A and HI(R, dR) =0, for j < 0. For [ > 0, let I; be an index set containing one index
for each free algebra generator of R of degree —I. Consider the disjoint union I of all
I; as graded set such that g(i) = [, for ¢ € I;. Fix an ordering on I, subject to the
condition i < 7, if g(i) < g(j).

Thus, as graded algebra, R = k[[X°]][X ], where X° = {x;] i € I, g(i) = 0} and
X~ ={x;|i€l,g(i) > 1} are sets of free algebra generators with g(x;) = —g(7).

Set M := [[,c;ke; to be the free, graded K-vectorspace with base {e; : i €
I}, where g(e;) = g(i). Consider S(M) = [[,,50 M®" as graded coalgebra as in
Section 1.1. Set -

S(M)* := Homg _seo(S(M), k) = | [ Homg_nroa(M*, k).
Jj=0

We identify products x;, - ... z; in R with the maps M® — k, defined by
€y ... €, — Lland ej -...-ej, — 0, for {j1,...,5i} # {i1,...,4}. Especially, we
identify each constant A\ € k with the map k¥ — k, sending 1 to A\. We have

RI =[] Hom’ (M®", k)
n>0

and R = ][, RJ. The differential df of R extends naturally to R := [li<o RI. As
complexes, R and R are identical, but not as graded modules. We identify R = S(M)*.
Set

Der(R) := [[Der'(R,R) and  Coder(S(M)) := [ ] Coder’(S(M), S(M)).
1€Z €L

Denote Diff(R) (resp. Codiff(S(M))) the submodule of differentials (resp. codiffer-
entials). The following proposition explains why, for a formal DG manifold W, the
complex Coder(S(W), S(W)) is called tangent complex of W.

Proposition 2.2.1. Toeke R and M as above. The natural map

Coder(S(M)) — Der(R),
Qs
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where s9(g) = g o Q, is bijective and the restriction gives rise to an isomorphism
Codiff(S(M)) — Diff(R).

Proof. The injectivity is clear. Surjectivity: We have to find a coderivation @ of de-
gree j on S(M) such that, for u € S(M)*, we have s(u) = uo Q.

For each i € I, set f; := s(x;). Then, f; is a product ((fi)n)n>1 with (fi), €
Hom 9O+ (M©" k). We define the coderivation Q by

Qu(ma,...,my) =Y (filn(ma,...,mn) e,

el

for homogeneous myq, ..., m, € M. In fact, the non-vanishing terms in the sum satisfy
the condition g(mi) + ...+ g(my) = g(i), hence the sum is finite. To show that for
u € S(M)*, we have s(u) = uo(@, it is enough to show that for all i € I, s(x;) = z;0Q.
But by definition, for mq,...,m, € M, we have

(xio Q)n(mi,...,my) = (fi)n(mi,...,my) = (s(x;))(m,...,my).

The second statement is a direct consequence of the first. ]

As consequence, the differential d® on R induces a codifferential Q™ on S(M). We
consider the pair (M, QM) as formal DG manifold in DG-Manf’C. Tt has the following
property: The restriction of Q™ to MO? defines a formal map M° — M. Its zero
locus is isomorphic to X.

Summarizing the above construction, to each formal space germ X with associ-
ated formal analytic algebra A, we can construct a formal DG manifold (M,QM),
containing X as “subspace”. Of course, (M, Q") depends on the choice of the resol-
vent (R,d?). But we will show that (M, Q™M) is well defined up to weak equivalence,
i.e. there exists a functor

F : Anf — DG-Manf’C/ ~

into the localisation of the category of local, g-finite formal DG manifolds by weak
equivalences. Remark that such a functor F' can’t be defined explicitely. We make
use of the existence of a functional class, mapping each formal analytic algebra to a
DG resolvent, which follows by set-theory.

Lemma 2.2.2. If W = (W,d) is a DG K-vectorspace and if the dual complex
Hom(W, k) is acyclic, then W is acyclic. Consequently, if f : V. — W is a mor-
phism of DG K-vectorspaces such that the dual complex f* : W* — V* is a quasi-
isomorphism, then f is a quasi-isomorphism.
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Proof. Assume that M is cyclic, i.e. there is an n and an element a € M™ such that
d"(a) = 0 and a ¢ Imd"~!. Let B’ be a base of imd"~!. We extend B’ U {a} to a
base B of M™. Let p: M™ — k be the projection on the coordinate a of B. Then,
d*(p) =pod* ! =0and p(a) =1, hence p ¢ Imd*. Contradiction ! O

Lemma 2.2.3. Let f : M — M’ be a morphism in DG-Manf" such that the corre-
sponding map S(M) — S(M') is a quasi-isomorphism of complezes. Then, f is a
weak equivalence.

Proof. By the Decomposition Theorem for L..-algebras (see Lemma 4.5 of [22]|) and
Lemma 1.5.4, we may assume that M is minimal and that f is strict. In this case,
the homomorphism f: S(M) — S(M’) of DG coalgebras is a direct sum of maps of
complexes fi; : M — M’ and

Zf?j:HMQjHHM@j.

j>2 5>2 j>2

Since the sum is a quasi-isomorphism, both factors are quasi-isomorphisms. ]

Corollary 2.2.4. Let g : (M,Q™) — (M',QM’) be a morphism of formal DG
manifolds in DG-Manf'C and suppose that the dual map If S(M')* — S(M)* is a

Proof. This follows by Lemma 2.2.2 and 2.2.3. g

Thus, we have proved the functoriality of F'. Next, we define a functor
V : DG-Manf™? — Anf

as already mentioned above: For a DG manifold (M, QM) in DG-Manf’¥ | set

V(M, QM) to be the zero locus of the formal map M° — M?', induced by QM.
More precisely, if we define “homogeneous polynomials” f, : M? — M! by

fa(z) == QM (z,...,z), then X is the zero locus of the analytic map f =3, <, & fn.

The category Anf/ = of isomorphism classes of formal analytic space germs, is the
category of formal space germs without fixed coordinates. In fact, V defines a functor

V : DG-Manf ) ~— QAnf/ = .

Since the functor F' factors through 2Anf/ = and V o F is naturally isomorphic to the
identity functor on 2Anf/ =, we see that Anf/ = is equivalent to a full subcategory of
DG-ManflC/ ~.
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2.3 Deformations and embedded deformations

In this section we recall the classical result that each deformation of a singularity is
equivalent to an embedded deformation.

Consider a complex space germ X with corresponding analytic algebra Ox. Sup-
pose that X is embedded in the smooth space germ P with corresponding analytic
algebra R°. Let R = (R,d") be a g-finite, free algebra resolution of Ox such that
R? = Op.

For any space germ (S, Og), set Rg := R®cOg and
C(S) := {6 € Der'(Rg, Rs)| 6(0) = 0 and (d® + §)* = 0}

Furthermore, let D(S) be the equivalence class of deformations of X with base S, i.e.
the equivalence class of all flat morphisms X — S such that there is a cartesian

X X
* S
where * denotes the single point. Then, C and D are fibered grouppoids over 2in and
we define a morphism G : C — D as follows: For § € C(5), let X be the space germ
with Oy = H%(Rg,d® + 6) and X — S the composition of the closed embedding
X — S x P and the canonical projection S x P — S. Obviously, there is a cartesian

diagram (3.1). I. e. G(J) :== X — S is a deformation of X. We want to remind the
proof of the well-known fact that G is surjective.

diagram

—_—

(3.1)

—_—

Let (A,m) be a local analytic algebra, B a graded, g-finite free A-algebra and C
a flat DG-algebra over A. For A-modules M, we set M’ := M&4A/m. The following
statement is a special case of Proposition 8.20 in Chapter I of |2]:

Proposition 2.3.1. Let v/ € Derjlg(,)(B’,B’) be a differential and ¢' : B — C’' a
surjective quasi-isomorphism of DG-algebras over A’. Then, there is a differential
v E Der]lgo(B,B), lifting v and a surjective quasi-isomorphism ¢ : B — C of DG-
algebras over A, lifting ¢'.

Corollary 2.3.2. For all S in An, G(S) : C(S) — D(S) is surjective.

Proof. For X — S in D(S), we have to find a Og-derivation 6 : Rg — Rg of degree
1 with 6(0) = 0 such that d 4§ is a differential and a surjective quasi-isomorphism
(Rs,d®+3) — Ox. Since Rg®0,C = R and Ox®p,C = Ox, the existence follows
by Proposition 2.3.1, if we set A := Og, B := Rg and C := Oy. O
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In the literature (see |2|, for instance), the deformation functor is defined such
that a space germ S maps to the quotient of C(S) by the Lie group, associated to the
Lie algebra Der’(Rg, Rg). In fact, G factors through this quotient and the first factor
is even “minimal smooth”. For the construction here, we don’t need to consider this
group action to get semi-universal deformations. One can say that the group action
is replaced by the going - over to a minimal model.

2.4 A semi-universal formal deformation

In this section, we apply the new method for the construction of a semi-universal
formal deformation to isolated singularities X. We need a technical lemma. The
symbol ® always denotes the (formal) analytic tensor product over the ground field
K.

Lemma 2.4.1. Let (R,d®) and (S,d®) be g-finite resolvents of the (formal) ana-
lytic algebras Ox and Oy, respectively. Set Ry = R ® Oy. Suppose that § €
Der}gy(Ry,Ry) is a derivation such that d® + 6 is a differential on Ry. Then, on
R® S, there exists a derivation v € Der}g(R@) S,R® S) such that the following two
conditions hold:

(a) The projection 1@ : R® S — R ® Oy commutes with v and 0.
(b) The derivation d® 4+ d° 4+~ on R® S is a differential.

Proof. Since Derg(R® S, R ® S) = Derg(R, R ® S), for the definition of v, we only
need to choose its values on the free generators of the graded algebra R. We proceed
inductively. For free algebra generators x € R of degree zero, set yo(x) := 0. For free
algebra generators € R of degree —1, we define y_1(z) € R°® S in such a way that
(1 ®m)(y—1(x)) = d(x). For free algebra generators € R of degree —2, we define
7 (z) € R~ ® S% in such a way that (1 ® 7)(7/(x)) = 6(z). Then we have

(d® +4)(dF ++)(z) € Kern(1 ® ) = Im(1 ® d°).
Thus we can choose 7" (z) € R ® S~! such that
d5(7"(x)) + (A% +_1)(dF ++"5)(z) = 0.
We set y_o(x) :=+'(x) + " (). We can varify directly that (d® + d% 4+ ~)2(x) = 0.

We have the following scheme:
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SRR S? RS

R—2®S°—>R—1®S°—>R°®SO

o ®. SO

The horizontal arrows denote the derivation df 4+ +/. The dotted arrows denote (in

function of their slope) the derivations ", ... and the down-right arrows denote

the differential d°.

If v1,...,7 are already constructed, then on free algebra generators x € R of
degree k — 1, choose 7'(z) € R¥ ® SY in such a way that (1 ® 7)(7/(z)) = d(x). As
above, we can choose 7" (z) € RFT! ® S~1 such that

d°(7"(x)) + (a + ) (¢ (x)) = 0.

We can choose 7" (x) € R¥? @ S~2 such that
d® (7" (@) + (@ + ) (" (@) +7"(7/ (x)) = 0.
Going on like this, we can finally choose v(=¥*1)(z) € R® ® S* such that
EGEI@) + @ +7)6 I @)+ V@) + 44 @) =0,

Then, we set ,_1(z) := 7/ () +. ..+ "FD(z). We get immediately by construction
that (d® 4 d° 4+ ~)?(x) = 0. O

Now, suppose that the space germ X is an isolated singularity. (If X is only a
formal space germ, then suppose that the tangent cohomology of X is g-finite, in-
stead.) Let (M, Q™) be a formal DG-manifold in DG-Manf”“ that represents F(X).
As in Section 2.2, denote the resolvent of the analytic algebra Ox, having S(M)* as
completion, by (R, d).

Theorem 1.5.13 describes a semiuniversal deformation (V,QY, Q) of (M, Q™). Re-
call that as graded module, we have V' = HJ[1], where H denotes the cohomology of
the tangent complex Coder(S(M),S(M)) = Der(R, R), i.e. the tangent cohomology
of X. It is well-known that for isolated singularities, the tangent cohomology H is
g-finite.
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We apply the functor V to the morphism (V x M, QY +QM +Q) — (V, Q") and
get a morphism Z — Z in 2Anf.

Theorem 2.4.2. The morphism Z — Z is a semi-universal formal deformation of
the space germ X.

Proof. Let

Yy—-X
Y *
be any formal deformation of X. By Corollary 2.3.2, we may assume that this defor-
mation is embedded, i.e. that ) is a subgerm of M? x Y and Oy = H°(Ry,d" + ),
for a certain § € C(Y") (see Section 2.3) and that the morphism J) — Y is the com-
position of the inclusion ) — M? x Y and the projection M? x Y — Y.

Let (N, Q) be the formal DG manifold F(Y). Let (S,d°) be a DG resolvent of Oy,
dual to (N, Q"), i.e. the completion of (S, d”)is S(N)*. By Lemma 2.4.1, there exists

a derivation v € Der!(R® S, R® S) such that d® 4 d° 4 ~ is a differential on R ® S
and such that HO(R® S,d? + d° + v) = Oy.

_

Using Proposition 2.2.1, we can translate the situation from the language of DG
algebras to the geometric language of formal DG manifolds. Like d® is dual to QM
and d° is dual to QY the derivation v is dual to a certain super-vectorfield @, on
N x M. Furthermore, the triple (N, QN,QV) is a deformation of the formal DG
manifold (M,QM). Since (V, Q") is semi-universal, we get a morphism

(N x M, QN + QM +Q,) —= (Vx M,QV + Q™ + Q)

| |

(N, Q) (V,QY)

of deformations. Application of the functor V gives a cartesian diagram

y—=2Zz

|

Y——7

which obviously respects the distinguished fiber X — *. Hence, the diagram is a
morphism of deformations. This shows that Z — Z is versal. Since Z is a formal an-
alytic subgerm of V® = H!, we have dim(7TZ) < dim H'. Thus, necessarily Z — Z
is semi-universal (see Chapter 2.6 of [37]). O



Chapter 3

Hochschild cohomology for
complex spaces and Noetherian
schemes

Introduction

One motivation for considering Hochschild cohomology in geometry is its possible
application in noncommutative deformation theory. Even if the geometrical objects
(complex spaces, schemes) considered in this chapter belong to classical commutative
geometry, it is interesting to find out how they can be deformed into noncommutative
spaces, and in which way classical deformation theory is contained in noncommuta-
tive deformation theory!'. Classical deformations of schemes and complex spaces are
governed by tangent cohomology (see for example [37]), and since deformations of
(noncommutative) associative algebras are governed by Hochschild cohomology (see
[11]), we may assume that Hochschild cohomology of schemes and complex spaces
governs their noncommutative deformation theories. This leads to the question of
how their Hochschild and tangent cohomologies are related, which is the subject of
this chapter.

Hochschild complexes and Hochschild homology for schemes were first defined
by Weibel/ Geller [47]. They defined the Hochschild complex as sheafification of the
cyclic bar complex. An alternative definition is due to Yekutieli [49]. Hochschild co-
homology for schemes was defined by Gerstenhaber/ Schack [11]. Kontsevich [22]| sug-
gested to define Hochschild cohomology of a complex manifold X as Exty2(Ox,Ox).
Swan [44] showed that for schemes, the Gerstenhaber/ Schack- definition is equiva-
lent to Kontsevich’s definition. The definition of Hochschild complexes and Hochschild
(co)homology for complex spaces is due to Buchweitz/ Flenner [7]. Weibel and Geller’s
definition of Hochschild complexes is not recommendable for complex spaces. This is

'So far, deformation theory for noncommutative schemes has not been developed and noncom-
mutative complex spaces with singularities are not jet defined.
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due to the fact that the (cyclic) bar complex of an analytic algebra A (in which tensor
products are replaced by analytic tensor products) is not a complex of projective A-
modules. Thus, if we defined the Hochschild cohomology as cohomology of the dual
of the cyclic bar complex of A, we would not arrive at the desired Ext-interpretation.
Instead, we must define the Hochschild complex piecewise (on Stein compacts) via
free algebra resolutions, and globally via a Cech construction (see [7] or Section 3.3).

In order to avoid having to prove each statement for each situation, we unify the
algebraic and analytic theories. To do so, we follow an approach due to Bingener/
Kosarew |2| who extracted the common features of both situations and listed them as
axioms for “admissible pairs of categories”. These are pairs (C, M) where C is a
suitable category of algebras and M a category of modules over C. Admissible pairs of
categories enable the description of “affine” spaces. For example C may be the category
of sections on Stein compacts or the category of sections on affine schemes (i.e. the
category of algebras). In the this chapter we will mainly talk about admissible pairs of
categories. These are interesting by themselves, as they are useful in many more situa-
tions (see Examples 3.1.1) than affine schemes and Stein compacts. We will show how
to apply results for admissible pairs to schemes and complex spaces only in Section 3.3.

The main results for admissible pairs (C, M) of categories are the following: (1)
In Section 3.1.8 we characterize regular sequences in graded commutative algebras in
C. (2) We define the Hochschild complex for simplicial algebras in C (i.e. functors from
a small category N to C) and show that the Hochschild complex is homotopy invariant
(Proposition 3.2.2). (3) We prove a HKR theorem for free commutative graded DG
algebras in C, if the ground ring k contains Q. Loday’s textbook [29] contains a sketch
of proof of the special case of this theorem where C is just the category of k-algebras.
A corollary of this HKR theorem is the following Quillen-type theorem for a k-algebra
in C: There is a quasi-isomorphism

H(a/k) ~ AL(a/k)

from the Hochschild complex to the exterior algebra of the tangent complex. (Quillen
[41] stated this result in the case where C is the category of k-algebras.) We generalize
this theorem for objects in CN, and, in Section 3.3, we deduce the main result of
this chapter by means of a Cech construction. (4) If X — Y is a morphism of
complex spaces (paracompact and separated) or a separated morphism of finite type
of Noetherian schemes in characteristic zero, then there exists a quasi-isomorphism

H(X/Y) ~ AL(X/Y) (0.1)

over Ox, where H(X/Y) is the relative Hochschild complex of X over Y (see Sec-
tion 3.3) and L(X/Y') is the relative cotangent complex. From the main result we
deduce several decomposition theorems for Hochschild (co)homology. (5) Hochschild
cohomology contains tangent cohomology:

HH"(X/Y, M) = [] Ext/(VL(X/Y),M). (0.2)

i+j=n
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The left side is the n-th Hochschild cohomology of X over Y with values in M. The
right side contains the (i — 1)-th relative tangent cohomology Ext'™1(L(X/Y), M)
as a direct factor. For complex spaces, this decomposition as well as equation (0.1)
has already been proved in a completely different way by Buchweitz/Flenner [7]. (6)
The second corollary is a decomposition theorem for the Hochschild cohomology of
complex analytic manifolds and smooth schemes in characteristic zero:

HH"(X) = [] H'(X,NTx). (0.3)

i+j=n

On the right, we have the sheaf cohomology of the exterior powers of the tangent
complex. A proof of this result for complex analytic manifolds has been announced
(but not yet published) by Kontsevich. For smooth schemes, decomposition (0.3) was
proved in a different way by Yekutieli [49]. A similar statement for quasi-projective
smooth schemes is due to Gerstenhaber/Schack [11] and Swan [44]|. (7) If X is a
smooth scheme in characteristic zero, or a manifold, then we can deduce the “Hodge
decomposition” of the Hochschild homology:

HH,(X) = [ H/(X, A'Qx) (0.4)

i—j=n

Remark that the difference with the Hodge composition of the De Rham cohomology
is that we sum over the columns of the “Hodge diamond” instead of over the lines.
For schemes, this result was shown in a different way (using the A-decomposition of
the Hochschild complex) by Weibel [48].

Conventions: For a ring k, we denote the category of k-modules by k-9t00. A
ring A together with a ring homomorphism & — A is called an algebra over k or
a k-algebra. For a morphism f : A — B in any category, we denote the kernel of
f in the categorical sense (see [46]) by kern f, i.e. kern f is a morphism K — A,
where K is an object, determined up to a canonical isomorphism. By Kern f, we
mean the object K. We use the notions cokern, Cokern, im and Im in the same way.
For example, we have Im f = Kern(cokern f). We write ~ for quasi-isomorphisms
and ~ for homotopy equivalences. We use the letter D to denote derived categories
and K to denote homotopy categories, i.e. the localization of categories by homotopy
equivalences.

The differential of a DG object is always of degree +1. If the degree g(a) of a
homogeneous element a of a graded ring or module arises in an exponent, we just
write a instead of g(a). By convention, (—1)? means (—1)9(®9®) and not (—1)9(eb).



68 Admissible pairs of categories

3.1 Admissible pairs of categories

In order to describe geometric objects locally by means of algebraic objects, one has to
handle pairs of categories (C, M), where C is a category of algebras and M a category
of modules over algebras in C. If the algebraic calculus should include the local
description of commutative schemes, complex spaces and even infinite dimensional
spaces, like Banach analytic spaces, then the frame of admissible pairs of categories
is a good choice. Before listing the axioms defining an admissible pair of categories
(figured out by Bingener and Kosarew in |2]), we give several examples:

Examples 3.1.1. The following pairs (C, M) are admissible pairs of categories:
(1) Let C( be the category of all commutative K-algebras and M(©) the category
of modules over algebras in C(©).

(2) Recall that a Stein compact (see [14]) is a compact subset X of a complex
space, admitting a base of open neighborhoods U such that each U € il is a Stein
space. Let C(Y) be the category of all analytic C-algebras, i.e. the category of all
sections of the structure sheaf of a Stein compact. Then each algebra in C(V) is a
DFN-algebra, i.e. a topological algebra with respect to the dual Frechet nuclear
topology (see [39], for instance) and each homomorphism of such algebras is
continuous. Let M®) be the category of all DFN-modules over algebras in C(V).

(3) In the first example, we can replace C© by the category of all Noetherian,
commutative K-algebras.

(4) In the second example, we can replace C(V) by the category of local analytic
algebras.

(5) For e € (0,1], let C(®) be the category of commutative complete PO-algebras
in the sense of [37] and M) the category of all complete PO-modules and
PO.-homomorphisms.

The reader, only interested in schemes or algebraic varieties, doesn’t have to care
about the following definition and may always take (C, M) as in Example (1) instead.

We fix a commutative ground ring K with unit (in our main reference [2], K is
the field Q, so here we start with a more general setting). Denote by C a category of
commutative K-algebras and by C-900 the category of all modules over algebras in C.
For objects A, B in C and M in A-9t00, N in B-9t00, a homomorphism M — N in
C-Mod is a pair (¢, f), where ¢ : A — B is a homomorphism in C and f : M — Ny
is a homomorphism in A-9M00d. Let M be a subcategory of C-9t0d. For algebras A
in C, we denote the intersection of M and A-2Mod by M(A) and the subcategory
of C of all algebras with a morphism A — B by C4. The pair (C, M) is called an
admissible pair of categories if the following conditions hold:

1) In C there exist finite fibered sums that we denote as usual by A % B.
( Yy K

(2) If ¢ : A — B is a homomorphism in C and N a module in M(B), then N is
via ¢ an object of M(A), and for each module M in M(A), Homaqay(M, Nig)



Hochschild cohomology for complex spaces and schemes 69

is the set of all homomorphisms f : M — N in M such that (¢, f) is a
homomorphism in C-9100.

Let A be an algebra in C. Then M(A) is an additive category, in which kernels
and cokernels exist. Further, C4 is a subcategory of M(A) and the functor of
M(A) in A-9od commutes with kernels and finite direct sums.

Let ¢ : A — B a homomorphism in C and u : M — N a homomorphism in
M(B). Let L (vesp. L) be the kernel of u (resp. upg) in M(B) resp. M(A).

Then the canonical map L' — Ly is an isomorphism in M(A).

Let A be an algebra in C and N a module in M(A). For each finite family
M;; i € I of modules in M(A), there is a given K-submodule

MultM(A)(Mi,i S I,N)

of the module Mults(M;,i € I;N) of A-multilinear forms [[,.; M; — N,

which is functorial in each M; and N and has the following properties:

(5.1) Let 49 be an element of I and u : M — M;, a homomorphism in M(A).
Set M;! := Cokern(u) and M{ := M{" := M;, for i € I'\ {ig}. The sequence

OHMultM(A)(MZ-”,Z' € I;N) —
— Mult g4y (M, i € I; N) — Mult pqay (M, i € I; N)

induced by u is exact.

(5.2) For modules M, N € M(A), there is a canonical isomorphism
Multm(A)(M;N) — HomM(A)(M; N).

(5.3) For M in M(A), the multiplication map py : A X M — M is in
MultM(A)(A x M; M).

(5.4) If o : I — J is a bijective map, then the restriction of the isomorphism
Mult4(M;,i € I; N) — Multa(My-1(;),5 € J; N)
defined by o, defines an isomorphism
Mult v a) (M, i € I; N) — Mult pga)(Mg-1(5),J € J; N).
(5.5) Each homomorphism ¢ : A — B in C induces a cartesian diagram

MultM(B)(MZ',i €I;N) —>MultM(A)((Mi)[¢},2’ SWE N[¢])

| |

MultB(Mi,’i el N) MultA((Mi)[¢],i eI N[¢])
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(5.6) Foreachi e I,let L;, j € J; anonempty finite family of modules in M(A).
Set J := ;ecrJ;. The canonical map

(J [ Mt gy (Liedi; Mi)) x Mult g ) (Miier; N) — Multa(Lj,jes; N)
el
factorises through Mult v 4)(Lj,j € J; N).
(5.7) The functor N +— Mult g 4y(M;,i € I;N) on M(A) is represented by a
module ®ieli\x/tMi in M(A).
(5.8) If I is a disjoint union Uj¢c;I; with I; # () for all j, then the canonical

homomorphism
®"1— @@ M)
i€l 4 jeTq iel;
is an isomorphism in M(A).
(5.9) The canonical map A ®%' M — M is an isomorphism in M(A).

(6) Let ¢ : A — B be a homomorphism in C and M a module in M(A) and N a
module in M(B). The module N ®ﬁ/t M is via the canonical A-bilinear map?

B x NW ®/Xl M — NW ®£A M
a module in M(B). The analogue statement holds for M ®%" Nig)-

(7) Let k — A and kK — B be two homomorphisms in C and ¢ (resp. 1) the
canonical maps of A (resp. B) in C := A ®' B. Let M be a module in M(k)
and p: C'x M — M an element of Mult ;) (C x M; M) such that

(a) The map p extends the multiplication of k& on M.
(b) The module M is via p a C-module.
(¢c) The module My belongs to M(A) and My belongs to M(B).

Then M is in M(C).

(8) For algebras A and B in Cj, the canonical map A @' B — A ®@¢ B is an
isomorphism in M(k).

Axioms (1) - (8) hold in the algebraic, as well as in the analytic context. The
difference between these contexts is manifest in the difference between Axiom (S1)
and (S1'):

Axioms. Let A be an algebra in C.
(S1) If u: M — N is a homomorphism of finite A-modules in M(A), then the
cokernel of u in M(A) coincides with the cokernel of u in A-9tod and for N = A
the cokernel of u is an algebra in C4 with respect to the canonical projection

A — Cokern(u).

>The existence of this map is a consequence of (2), (5.7) and (5.8).



Hochschild cohomology for complex spaces and schemes 71

(S1’) For any homomorphism u : M — N of A-modules, the cokernel of u in
M(A) coincides with the cokernel of u in A-9t0d and for N = A the cokernel of
w is an algebra in C4 with respect to the canonical projection A — Cokern(u).

(S2) Bijective homomorphisms in M(A) are isomorphisms.

Examples 3.1.2. Again, consider the Examples 3.1.1.
(1) The pair (C©, M(©) is an admissible pair of categories that satisfies Axioms
(S1’) and (S2).
(2) Let Mult ) ( ) be the group of all continuous multilinear forms. Then
(€D, MDY is an admissible pair of categories that satisfies Axioms (S1) and
(S2).

The following lemma is an easy exercise. The proof can be found in the Appendix.

Lemma 3.1.3. Let (C, M) be an admissible pair of categories. Let k be an algebra in
C and A, B,M and N modules in M(k).

(1) For elements a,a’ € A and b,b' € B, we have (a ® b)(a’ @ b') = aad’ @ bb'.

(2) Each homomorphism h € Hom (A @M B, N) is uniquely determined by its
values on the elements of the form a ® b.

Remark that in the graded commutative context (see below) we will have
(a ®b)(d ®b) = (—1)"ad’ @ b¥, for homogeneous a,b,a’, V.

3.1.1 Free modules and algebras

To motivate the definition of markings on categories of algebras and modules: Let X
be a compact n-dimensional polydisk. This is a Stein compact. We want to consider
the algebra A = colimy—x I'(U, Ocn) of global sections on X as a free algebra in ¢,
generated by n algebra generators xzi,...,x,. If B is the algebra of sections on a
second polydisk @), we can’t just choose n elements of B as images of x1,...,x, to
define a homomorphism in C), since the corresponding map ( — C" would not,
in general, land in X. There are restrictions on the values that each z; may take. A
marking on the category C is such a restriction. A non-restrictive marking is called
canonical. Usually, when the modules in M are non-graded, the marking on M will
be the canonical one.

Let (C, M) be an admissible pair of categories.

Free algebras: A marking on C is a family (F}),c1 of subfunctors F, : C — (sets)
of the identity functor such that F,(B) contains 0, for all 7, and all objects B in C.
For a given object k of C and a family (7;);er, we consider the functor Fjj; : A —
[Lic; Fr(A) on the category Ci. If Fyy is representable, i.e. there is a k-algebra A
and a canonical bijection

b: Hom{ (A, B) — [ [ F~(B)
el
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for each algebra B in C, then A together with the family (e;);er = b(Id4) is called the
free algebra over k with free algebra generators e;, i € I. We will write A = k{e;)icr.
The marking F' is called representable, if F7 ; is representable for each £ in C and
each finite family (7;)er.

Free modules: A marking on M is a family (G, )ucp of subfunctors G, : M —
(sets) of the identity functor such that, for each v € U, the following condition holds:
For each homomorphism ¢ : A — B in C and each module W in M(B), we have
Gu(Wig)) = Gu(W). For a given algebra A in C and a family (u;);er, we consider the
functor G7,4 : N +— [[;c; Gu,(IN) on the category M(A). If Gy 4 is representable, i.e.
there is an A-module M and a canonical bijection

b : Hom g4y (M, N) — [ [ Gu,(N)
el
for each A-module N, then M together with the family (e;);er = b(Idas) is called
the free module over A with free module generators e;, ¢ € I. We will write

M = [1;c; Ae;. The marking G is called representable, if G 4 is representable, for
each A in C and each finite family (u;);er.

A marking on (C, M) is a pair (F,G) of a marking F' = (F;);eT on C and a
marking G = (Gy)yevy on M together with a map n: T — U such that F(A4) C
Gy(r)(A), for each A in C and each 7in T.

Axioms. Let (F,G) be a marking on (C, M).
(F1) The functor F' is representable.

(F2) Let k be an algebra in C and A = k(e;)icr be a free k-algebra in C. The
canonical homomorphism kle;|;cr — k(e;i)ier in k-90d is flat and the functor
M — A @M M is exact on the category of finite modules in M(k).

(F3) Let A be like in (F2) and A’ = k(e});cp be another free k-algebra in C with
I CI'. Then A’ is flat over A via the homomorphism A — A" with e; — €.

(F4) The functor G is representable.
(F5) For each u € U and each A in C, G, is a right exact functor on M(A).

(F6) Let A be an algebra in C and E = [[,.; Ae; be a free A-module with respect
to G with finite basis (e;);cr and let M be a module in M(A). The canonical
homomorphism M! — M ®4 E in A-90d is bijective.

(F7) Let k be an algebra in C and A = k{e;)icr be a free k-algebra in C with
finite I. Then Q4 is a free A-module with base de; € G,y (Qax); @ € 1.

Remark that Axiom (F2) implies that free algebra generators (of degree 0) are not
zero divisors.

Definition 3.1.4. The marking (F,G) is called good, if Axioms (F1), (F4), (F5),
(F6) and (F7) hold. An admissible pair of categories (C, M) equipped with a good
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marking (F,G) is called a good pair of categories if it satisfies Axioms (S1) and
(S2).

Examples 3.1.5. (1) On the admissible pair (C(0), M(©)) of Example 3.1.1, we
work with the canonical marking, i.e. F(A) = A, for each algebra A in C,
and G(M) = M, for each module M in M(A). With this marking, (C©), M)
is a good pair of categories, that satisfies additionally Axioms (F2) and (F3).

(2) Consider the admissible pair (C, M™M). For A in ¢V and t € T := (0, o0),
let F;(A) be the set of all elements of A such that the Gelfand-transformation
(see [5] for the definition) y(A) — C factorises through {z € C : |z| < t}.
Further, let G be the canonical marking on MM Then the pair (C(l),/\/l(l)),
together with the marking (F,G) is a good pair of categories, that satisfies
Axioms (F2) and (F3).

(3) If C is the category of local analytic algebras and M the category of DFN-
modules over C, then G is set to be the canonical marking and for objects A,
we set F'(A) to be the maximal ideal my of A. Then (C, M) is a good pair of
categories that satisfies Axioms (F2) and (F3).

3.1.2 Graded objects

Let (C, M) be an admissible pair of categories. As in [2]|, we can construct a new
admissible pair (gr(C),gr(M)) as follows: Let gr(C) be the category of graded com-
mutative® rings A = [[;o4 A® with A% in C, all A* in M(A°) such that the multiplica-
tion maps A’ x A7 — A*J belong to Mll].tM(AO)(Ai x A7, A™J). A homomorphism
¢ : A — B in gr(C) is a homomorphism of graded commutative rings such that ¢°
is a homomorphism in C and all ¢’ : A* — B’ are ¢- linear homomorphisms in M.

Let gr(M) be the category over gr(C) whose objects over an algebra A in gr(C)
are the graded A-modules M = [[,, M?, with M? = 0, for almost all 7 > 0, such that
each M? is in M(AY) and the maps A* x M? —s M**J belong to Mult pq 40y (A" X
M7, M), If B is another algebra in gr(C) and N is a module in gr(M)(B), then
Homg,(pq) (M, N) is the set of all pairs (¢, f), where ¢ : A — B is a homomorphism
in gr(M) and f: M — N is a ¢-linear homomorphism of degree zero, such that all
fi: M?* — N* are homomorphisms in M over ¢°.

For modules Mj, ..., M, and N in gr(M)(A), let Multg )y (M1 X ... x My, N)
be the K-module of all maps f: M; x ... x M,, — N with the following properties:

(1) For kq,...,k, in Z, the restriction f\Mklx . ke factorises through a map in
Tl x ME

1\/hllt/\/t(,a1(J)(J\4{Cl X ... x Mbn | Nkitethn),

e ab = (—1)9Y9pqg, for homogeneous a,b € A
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(2) For elements a € A and m; € M;, we have
flmy, ... omea,mpy1...my) = f(Mma,...,mp,ampyq,...,my), for 1 < r < n,
and f(mq,...,mpa) = f(my,...,mp)a

We just have made use of the fact that we can make each M in gr(M)(A) a graded
symmetrical A-bimodule by setting m - a := (—1)90™9(@) ¢ . m, for homogeneous ele-
ments a € A and m € M.

To define free algebras in gr(C), we modify the definition in Section 3.1.1 as
follows: There is a map g : T — Z<o and each functor F; is a subfunctor of the
functor A — A9(7). In this context, if F is representable, then each functor Fr 4 is
representable, if for n < 0, the set of all 7; with g(7;) = n is finite. In this case the
free algebra A(e;)icr is called g-finite free algebra. Of course, the degree g(e;) of a
free generator e; is just g(7;).

To define free modules in gr(M), we modify the definition in Section 3.1.1 as fol-
lows: There is a map g : U — Z and each functor G, is a subfunctor of the functor
M +— M9 In this graded context, when G is representable, then each functor Gr.a
is representable, if for each n, the set of all u; with g(u;) = n is finite. In this case the
free module ], ; Ae; is called g-finite free A-module. We have g(e;) = g(u;) fori € I.

To define a marking on (gr(C), gr(M)), we have to add in Section 3.1.1 the condi-
tion that the map n: T — U is compatible with g.

Example 3.1.6. If G is a marking on M, then we get a marking gr(G) = (gr(GQ))wev’
on gr(M) in the following way: Set U’ := U x Z. For A in gr(C), M in gr(M) and
u' = (u,n) € U’ set gr,(G)(M) := G,(M™). Here we have g(u’) = n.

If (F,G) is a marking on (C, M), then we get a marking gro(F) = (gro(F))ret
in the following way: Let T’ be the disjoint union of Tx{0} and U xZ¢. For Ain gr(C)
and 7' = (1,n), we set gro(F)(A) = F.(A), if n =0, and gre(F)(A) = G- (A"),
if n <0.

If (F,G) is a marking on (C, M), then (grg(F'),gr(G)) is a marking on
(gr(C),gr(M)) with the map 7' : T" — U’ given by (7,0) — (n(7),0) and (u,n) —
(u,n), for n < 0.

Remark that by Lemma 1.7.6 of [2], free algebra generators of negative degree
behave much like polynomial variables? and if (C, M) is a good pair of categories,
then (gr(C),gr(M)) is a good pair of categories as well.

If (C, M) is an admissible pair of categories that satisfies Axiom (S2), then by
Proposition 1.6.9 of 2], the admissible pair (gr(C),gr(M)) also satisfies Axiom (S2).
In general, this is not true for Axiom (S1). But we have:

*For a more precise statement, see Proposition 3.1.19.
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Proposition 3.1.7. Let (C, M) satisfy Aziom (S1) and let A be an object of gr(C)
such that all A" are finite A°-modules. Then, for g-finite modules M, N in gr(M)(A)
each homomorphism f : M — N in gr(M)(A) is strict, i.e. the cokernel of f in
gr(M) coincides with the set-theoretical cokernel.

Proposition 3.1.8. Let (C, M) be an admissible pair of categories with a marking
(F,G), where G is canonical. Suppose that Aziom (S1) holds. Let k be an algebra in C
and let My, My and N be modules in M(k) such that My and My are finite k-modules
with M; C N and My N My = {0}. Then we have

(1) The inclusions M; — N are homomorphisms in M(k).

(2) The sum My + My is in M(k).

(8) The inclusions M; — My + Ms are homomorphisms in M(k).

(4) The projections p; : My + My — M; are homomorphisms in M (k).

(5) My + My = My & Ms.
In (gr(C),gr(M)) the same statement is true if we suppose that all k' are finite k°-
modules and My, Ms and N are g-finite.

The proof is very simple. It can be found in the Appendix. In the sequel, we will
denote the full subcategory of gr(C) generated by all algebras A such that each A’ is
a finite  A%module by gr'(C).

Lemma 3.1.9. (1) Suppose that (C, M) is a good pair of categories and that k
is an algebra in gr'(C). Let R = k(T) be a free g-finite algebra over k in gr(C).
We have the following decomposition

R=k®> Rt

teT

in the category gr(M)(k).

(2) Suppose that additionally the marking G on M is trivial and that Aziom (F2)
holds. Then, for each n > 0, R decomposes as

R=k® > tk®...& > ti-...tk® Yt tgaR

t1€T t1,e.tn €T t1,.cstny1 €T

Proof. We only prove (1) and leave the proof of (2) as exercise. We can form the
free g-finite R-module M = [, Re(t), where to each free algebra generator ¢
grg(F)7 we have associated a free module generator e(t) € gr(G), - (M). Consider
the homomorphism M — R in gr(M)(R) with e(t) — t. By Proposition 3.1.7, the
cokernel map of this homomorphism coincides with the cokernel map in R-9100, which
is just the projection p: R — R/(T) and R/(T') is an algebra in gr(C). Now there

is a diagram
™

|

R/(T)

R
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in gr(C), where 7 : R — k is the homomorphism given by ¢ — 0 for ¢t € T and
the homomorphism & — R/(T) is the canonical inclusion. The diagram commutes,
since in both directions an element ¢ € T goes to 0. So we get Kern(w) = (7). But
obviously, we have R = k & Kern(). O

3.1.3 Balanced and convex markings

Let k be an algebra in gr(C) and A := k(T) a free algebra over k in gr(C) with a
g-finite set T' of free generators ¢ € F ) (RY®). Then A ®y, A is a free algebra over k
with two free algebra generators t; =t® 1 and to =1®t, foreacht € T. Fort € T,
set tT 1= Z(t1 +t2) and t~ := (t; — t2). Let T be the set of all t* and T~ be the
set of all 7.

We say that the marking F' on C is balanced, if for each 7 € T, A in C and
t € F;(A), we have —t € F;(A). We say that the marking F' is convex if for each
T€T,AinC, t1,ty € Fr(A) and a,b € K with a + b =1, we have aty + bty € F.(A).

Proposition 3.1.10. If the marking grg(F') on gr(C) is balanced and convez, we have
AR A= k<T+ urT-).

Example 3.1.11. (1) The trivial marking on C is balanced and convex.

(2) If C is the category C™) of (local) analytic algebras and M the category
M) of DFN-modules over C()| then the marking F on C (see Example 3.1.5)
is balanced and convex.

Proof. The first example is trivial. For the second example, we show that if a free
generator ¢ is in F-(R), then ¢t and ¢~ are in F.(R ®p R): Here, 7 stands for a
positive real number and F:(R) is the set of all » € R such that, for each character
&€ X(R), we have |{(r)| < 7. Now, t; =t ® 1 and t2 = 1 ® t belong to F-(R®p R),
so for each character £ € X(R ®p R), we have |{(t1)] < 7 and [£(t2)] < 7. Hence

€)= 15(E(t1) + &(t2))| < 7 and [€(t7)] = |53(&(t1) — &(t2))] < 7. The case of local
analytic algebras is clear, since maximal ideals are additively closed. ]

3.1.4 Simplicial complexes

Let I be an index set. Then a set A of subsets of I is called simplicial complex
over I, if ) & N; if for all ¢ € I, we have {i} € N and if every nonempty subset of an
element in N is again in N.

For an element « of a simplicial complex A over I, containing n elements, set
la| := n — 1. Then for n > 0, the set N of all & € N with |a| < n is again a
simplicial complex over I.
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A simplicial complex N can be seen as category, where Hom(«, 3) contains only
the inclusion a C B if o C [ and is empty in all other cases.

Let A be a category. An N-object in A is a covariant functor N' — A. The
N-objects in A again form a category, denoted by AN 1t (C,N) is an admissible
pair of categories and A = (A, )aen an object of CN, then we denote the category of
N-objects M = (Mg)aen in MV with M, € ob(M(A,)) by MV (A).

Let (C, M) be an admissible pair of categories and A a simplicial complex. Let
((F7)reT, (Gu)uer) be a marking on (C, M). Then, for each pair (a,7) in N’ x T,
there is a functor F, ; : A — F;(A,). For a family (o, 7;),i € I of elements of N'x T
and A in CV, there is a set-valued functor B — [Lic; Fai . (B). We denote it by FT 4.

Definition and Proposition 3.1.12. Suppose that for « € N, the free Ay-algebra
Al = Aa(e(.o‘)>aiga in the free generators ega) € F, (A)) exists. For a C 3, let

1
pap @ Al — A’ﬁ be the homomorphism in C over A,, given by ega) — egﬂ). Then
A" = (A))aen is an algebra in CN | and together with the family (el®)Y;cp, it represents
the functor Fr a. We call it the free A-algebra in the free generators e; := egai) €
Fo, +(A") and denote it by Ale;)icr-

For each pair (a,u) € N x U, there is a functor G4 : M +— Gy,(M,). For a
family (ay,u;),i € I of elements of ' x U and A in CN | there is a set-valued functor
N = [Lic; Gayu; (M). We denote it by G, 4.

Definition and Proposition 3.1.13. Fiz a family (o, u;),i € I of elements of
N x U and an algebra A in CN. Suppose that for each o € N, the free Aq-module
M, = HaiCa Aaega) in the free generators ez(-a) € Gy, (M) ezists. For a C f3, let
Pap : My — Mg be the homomorphism in M over A,, given by ez(-a) — egﬁ). Then
M = (My)aen is a module in MY and together with the family (e(*));c; it represents
the functor Gr.a. We call it the free A-module with free generators e; = ez(-ai €

G ui(A') and denote it by [];.; Ae;.

To distinguish the non-simplicial from the simplicial context, we call the first one
affine.

3.1.5 Resolvents

Fix an admissible pair (C, M) of categories with marking (F,G). For a DG module K
in gr(M)(R) with differential d, we define the i-th homology H',(K) of K in M(R)
as cokernel of the natural map Im(d*~!) — Kern(d') (image and kernel formed in the
category M(R)). If K is separated, i.e. the cokernels of the map d : K — K'T!
and of the induced maps K — Kern(d'™!) and Kern(d’) — K* coincide with their
cokernels formed in the category R-9100, then H}M(K) is as R-module isomorphic to
the ¢ — th cohomology of K, considered as complex in R — 2Mo0. We call K acyclic,
if HY((K) =0 for all i.
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Lemma 3.1.14. Suppose that (C, M) satisfies Aziom (S1) and all K* are finite R-
modules. The complex K is acyclic if and only if K is acyclic as complez in R —900.

A DG resolution of an object B in M is a DG module M in gr(M) such that
H' (M) =0, fori <0, and H}, (M) = B.

We recall Definition 1.8.1 of [2].

Definition 3.1.15. Let A — B be a homomorphism of DG objects in gr(C)V. A
resolvent of B over A is a free DG algebra R over A in gr(C)V (with respect to the
marking gro(F)) together with a morphism R — B of DG objects in gr(C)V which
is a surjective quasi-isomorphism on each o € N.

In this chapter, we will mostly work in a Noetherian context, i.e. we will mostly
assume that the following axiom is satisfied:

Axiom (N) Each algebra A in C is Noetherian and each finite module M in
M(A) is a quotient of a finite free A-module.

If the good pair (C, M) satisfies Axioms (N) and (F2) and if A and B belong to
gr’(C) and if AY is a quotient of a g-finite B%-module €' in CV such that each C, is a
finite free BY-algebra, then such resolvents exist by Proposition 1.8.7 and 1.8.8 of [2]
or alternatively by Lemma 3.1.23 below.

The next proposition is of great importance for this work. In the algebraic con-
text, the statement is well-known and was used by Quillen and others. The difference
in the analytic context is that a free DG algebra over a ring k is not, in general, a
complex of free k-modules as long as there are analytic algebra generators, i.e. free
algebra generators of degree zero.

Suppose that the marking G on M is trivial and that Axiom (N) is satisfied.

Proposition 3.1.16. Let A — B be a homomorphism of DG algebras in gr(C)N.
For two g-finite resolvents Ry and Rs of B over A, there exists a homomorphisms
Ry — Ry in gr(C)N, which is a homotopy equivalence over A.

Proof. We first prove the affine case and then sketch the generalization to N-objects
in gr(CYV, then. First affine case: Suppose that R =R).

Set A’ := A® 40 RY. Then Ry and Ry are resolvents of B over A’. By Proposition 1.8.1
of [2], there is a quasi-isomorphism R; — Ry in gr(C) over A’. Since RY = RY = A",
Ry and Ry are free A’-modules in gr(M). Hence the quasi-isomorphism is already a
homotopy-equivalence.

Second affine case: Suppose that Rg is a finite free algebra over R(l) in C.

By induction, we can restrict ourselves to the case where R = R?(e} is just a free
algebra in one generator. Consider the free R-algebra R := R{(e, f) in gr(C), gener-
ated by a free generator e of degree 0 and a free generator f of degree —1. We define a
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differential on R by setting f — e. By Lemma 3.1.9, we have R{(e) = Ro®eR)(e). So
by Axiom (S2), the differential gives an isomorphism fR{(e) — eR{(e). With this
in mind, we can easily construct a contracting homotopy on R. Now R := R; ®Ro R
is homotopic over R; to R;. More precisely, the inclusion Ry — R and the projec-
tion R} — R’ are homotopy equivalences. By the first case, there is a homotopy-
equivalence R] — Ry in gr(C).

General affine case: Let R3 be a free g-finite resolution of B over Ry ® 4 Ro. Now
R3 is free over Ry and Ry and by the second case, we get a homotopy-equivalence
Ry — R3 — R».

N N

In the simplicial case, a free algebra in gr(C)”V over an algebra A in gr(C)” is not
a free module in gr(M)N(A), even if all free algebra generators are of strictly negative
degree. The point is that even A itself is not free as A-module. But a free algebra over
A with free algebra generators of negative degree is as A-module in gr(M)N a direct
sum A® M with a free A-module M. To prove the simplicial case, we must first gener-
alize the Comparison Theorem (see Theorem 2.2.6 of [46]) to (free) DG resolutions in
gr(M) which is strait forward. Secondly, observe that for a DG algebra A in gr(C)V
and free A-modules M, N, each quasi-isomorphism Id xf: A® M — A@ N is even
a homotopy equivalence. With those tools we can generalize the first case above. To
avoid overloading, we have put a detailed proof of the simplicial case in the Appendix.
The second and third case go just as in the affine situation. O

3.1.6 Double graded objects

Let (C, M) be an admissible pair of categories. We define the pair (gr?(C), gr?(M))
as follows: The objects of gr?(C) are the double graded rings A = [ <o A with
A% in C and all A% in M(A%?) such that

(1) for a € A% and b € AR we have ab = (—1)F)U+F)pg,

(2) the multiplication maps A" x ARl — A7k +E helong to
MultM(Ao,O) (Ai’j X Ak’l, Ai+j’k+l).

Following the ideas of Section 3.1.2, we can define Homyg,2 ) (A, B), for objects A, B
in gr?(C), the category gr?(M), Homg,2( ) (M, N) for objects M, N of gr?(M) and
Multg2(agy(a) (M1, ..., My, N) for modules My, ..., My, N in gr*(M)(A). We don’t
make this definitions explicit here.

Proposition 3.1.17. Let A be an object of gr?>(C) and M, N objects of gr>(M). For
(p,q) in Z X Z, set TP := Hi+j:p7k+l:qMZ’k ®%,0 NIt Then T = ]_[pg P4 s
a tensor product of A and B in gr?(M)(A%0). T can be seen in two different ways
as an object of gr’(M)(A). Consider the homomorphism u : A ® 400 T — T in
gr?(M)(A%0), sending a@m @n to ma®@n —m®an. u can be seen in two manners

as homomorphism in gr?(M)(A). Both of them induce the same A-module structure
on T := Cokern(u). We see that T is a tensor product of M and N in gr?(M)(A).
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Proposition 3.1.18. The pair (gr?(C), gr(M)?) is an admissible pair of categories.
Proof. Analogue to the proof of Proposition 6.9 of [2]. O

Convention: When we consider an object K of gr(M) as object of gr?(M), we
set K40 = K% and K% =0 for j # 0.

In the same manner as above, we can define a marking (grZ (F),gr?(G)) on the
pair (2x2(C), gr(M)):
Define the index set T” as T x {0,0} UU x (Z=° x Z=9)\ (0,0). For 7" = (1,0,0) €
T” and A € gr?(C) set gr&(F).»(A) := F-(A%) and for 7" = (u,p,q) in T” with
(p,q) # (0,0) set grz,(F).»(A) := G,(AP?). Define the index set U” as U x Z x Z.
For v’ = (u,p,q) € U” and M € gr?(M), set gr(G)yr (M) := G, (MP9).

Proposition 3.1.19. (1) Let A be an algebra in gr?(C) and A" = Ale;)icr a free
algebra over A, with respect to the marking gré(F). Suppose that the bidegree
of each e; is different to 0. Then the canonical homomorphism Ale;lier — A’
in A-lg is bijective.

(2) If (F,G) is good, then (grZ/(F),gr®(G)) is good as well.
Proof. Analogue to the proof of Lemma 1.7.6 of [2]. O

Definition 3.1.20. A DG algebra in gr(C) is an algebra A in gr’(C) equipped
with a (vertical) A%O-derivation® v: A — A of bidegree (0,1) with s2 =0. A DDG
algebra in gr?(C) is a DG algebra A in gr?(C) equipped with a (horizontal) derivation
h of bidegree (1,0) that anti-commutes with v such that h? = 0. A homomorphism
of (D)DG algebras is a morphism in gr?(C) that commutes with the vertical (and
horizontal) differentials.

The definition of (D)DG modules over D(DG) algebras is straightforward (pay
attention to Koszul signs).

Lemma 3.1.21. Let K = (K, h,v) be a DG algebra in gr®(C). Consider a free algebra
K(E) over K in gr’(C) with a set E = {e; : i € I} of free algebra generators with
e € gré(F)TiN(K<E>), for a certain 7" € T". For each i, if g(z;) # (0,0) choose an
element h; € Gy, (K (E)I@)+HL0)Y and an element v; € Gy, (K (E)9@)+O00) “where u;
is the first component of 7; = (u;, g(x;)). Then, setting h(e;) := h; and v(e;) := v,
we get an extension of the horizontal and the vertical derivation h and v of K. This
extensions make K(FE) a DDG algebra, if and only if, for each i, we have

(1) h(v;) 4+ v(h;) =0 and
(2) h(hi) = v(ug) = 0.

>This means that for homogeneous a,b € A we have v(ab) = v(a) + (—1)*av(b). In the exponent,
by a, we mean the total degree of a.
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Proof. Inductively, we can reduce the proof to the case where E consists of a single
element e of bidegree (p,q). In this case, it is an easy calculation. ]

Definition 3.1.22. A DG resolvent of an algebra B in gr(C) is a free DG algebra
A in gr?(C) such that, for all i, the i-th row is a surjective DG module resolution of
Bi. A DDG resolvent of a DG algebra B in gr(M) is a DDG algebra A in gr?(M)
which is a DG resolvent of B such that the map A*? — B is a homomorphism of
DG algebras in gr(C).

For a homomorphism A — B of DG algebras in gr(C), to get a resolvent R of
B over A it is enough to construct a DDG resolvent K of B which is free over A as
object of gr?(C). Then we can choose R as total complex tot(K). This leads to the
question of the existence of DDG resolvents. The following remark provides a positive
answer:

Lemma 3.1.23. Suppose that for the pair (C, M) the Azioms (N) and (F2) hold.
Let K = (K, h,v) be a DDG algebra in gr®(C) and u : K*° — A a homomorphism
of DG algebras in gr(C). Suppose that each A € gr'(C) and that each K% a finite
K% module.
(1) If A° is a quotient of a free K°0-algebra, then there exists a free DDG algebra
L = K(F) over K, where F is a g-finite set of generators of bidegree (k,0); k <
0, and a surjective homomorphism L*0 — A over K*9.

(2) Suppose that u is surjective and that for a fized p < 0, we have uPt! =
cokern(vPTH=1). There exists a free DDG algebra L = K(F U G) over K
with finite sets F' and G of generators of bidegree (p,—1) and (p + 1,—1),
respectively such that we still have uP™' = cokern(vP*1~1) and additionally
uP = cokern(vP~1) holds.

(3) Fiz p < 0 and ¢ < —1. Suppose that we have HITL(KPHL*) = 0. There
exists a free DDG algebra L = K(F UG) over K spanned by finite sets F' and

G of generators of bidegree (p,q) and (p + 1,q), respectively such that we still
have HMY(KPHL*) =0, and additionally H (KP*) = 0 holds.

Proof. The proofs of (1) - (3) are very similar, so we are only carrying the proof of (3).
We choose G such that there is an epimorphism 7 : nggKO’Og — Kern(vPthatl) 0
Kern(hPT14F1). Set v(g) := 7(g) and h(g) := 0. We choose F such that there is an
epimorphism 7/ : Il ;e p KO0 f — Kern(vP4+1). Set v(f) = 7/(f) and choose h(f) in
K% in such a way that v(h(f)) = —h(v(f)). O

Definition 3.1.24. For a g-finite free DG module M = [[ ..y Ae in gr(M) with
differential d (this construction can be done more generally in gr(M)Y), we define
the exterior algebra A4 M to be the free DDG algebra A(E) in gr?(C), where E
contains for each e € E a free algebra generator é of bidegree (g(e), —1). The vertical
differential of A4 M is set to be trivial, and the horizontal differential A is defined
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in such a way that the assignment e — é identifies M as DG module with the line
A(E)*~1. The total complex AyM := tot(A4 M) has the structure of a DG algebra
in gr(C) and corresponds to the ordinary definition of the exterior algebra.

In this situation, let /\ilM be the DG module in gr(M) with (/\QM)” = A(E)m—3),
for all j > 0. As usual, for eq,...,e; € I, write e; A... Ae; for the element in /\QM,
corresponding to é; - -- &, € A(E)* .

In particular, we have /\%M =~ A and A}4M = M and

AaM = tot(Aa M) = [] MV MLj). (1.5)
j=0

3.1.7 The bar complex and the naive Hochschild complex

For the reader’s convenience and to motivate our definitions in Section 3.2, in this sec-
tion, we state several statements about the bar complex and the classical Hochschild
complex. The classical Hochschild complex (or cyclic bar complex) is called “naive
Hochschild complex” in this thesis, since we will define a more elaborate “Hochschild
complex” which is better for the treatment of algebras in good pairs of categories in
Section 3.2. In the algebraic context, the statements of this subsection are well-known
and they apply directly to admissible pairs of categories.

Let (C, M) be an admissible pair of categories. Consider a homomorphism k — A
of DG algebras in gr(C). The tensor product R := A ®%r(c) A is a DG algebra with
differential d® = d*®1+1®d*, and the natural “multiplication” map pu : A®iA — A
respects the differentials.

Let M be a DG A-bimodule in gr(M), which is a symmetrical k-bimodule. We can
consider M as DG object of gr(M)(R), where the scalar multiplication R x M — M
satisfies (a®@a’,m) — (=1)%"ama’, for homogeneous elements® a,a’ € A and m € M.
To see this, we have to apply Axioms (5.3), (5.5) and (5.6). The same axioms must
be used to define the mappings in the sequel.

For n =0,1,... set C2aV¢(A M) := M ® A®™ and C2* (A, M) := M ® A®" @ A.
(All tensor products are formed in the category gr(M)(k).) Consider the homomor-
phisms

di: M @ A®™ — M @ A®"!

a®...00a, —ay®...0a;-ai+1 ... an
for i =0,...,n— 1, and the homomorphism d,,, defined by

ao R...Q0 Gy — (_1)an(a1+...+an—1)a0 c Gy, & ai RXR...RQ Apn—1-

In the exponents we write sometimes just a instead of g(a) for homogeneous elements. ab then
means g(a) - g(b) and not g(ab), which is just g(a) + g(b).
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Each d; is a homomorphisms in gr(M)(A), if we regard the tensor products M ® A ®
...® A as A-modules by left-multiplication on the first factor. Remark that when M
is only a A-right module, we consider it as an antisymmetrical A-bimodule by setting
m-a:=(—1)"a-m.

Set v/, ;:=do— ...+ (=1)""1d,_; and b, := b+ (—1)"d,. Exactly as in the al-
gebraic case (see paragraph I11.2.1 of [2]), b defines a differential on CTaVe(A, M), i.e.
b2 = 0. The pair (C2¥V¢(A, M),b) is called naive Hochschild complex. &’ defines
a differential on CP3 (A, M). The pair (CP* (A, M),b') is called bar complex. For
later use, we set CP¥ (A, M)™" := CP¥ (A, M) and C™Ve(A, M)™" := CRaive(A, M),
for n > 0.

Observe that CPa'(A, M) is even a complex in gr(M)(R), when we define the
R-module structure on M @ A" @ A by

(a®d) (MRa®aps) = (=D 0/'m @ a @ a- ani

for homogeneous elements a,a’,a and m. In the sequel, we write CT#ve(A) for
Cnaive( A A) and CP¥(A) for CP3 (A, A).

In gr(M)(k) there exist homomorphisms CP#(A) — CP2% (A), sending elements
1 ®...0a,t01®a; ®...R a,. They define a contracting homotopy for the bar
complex. Hence the bar complex CP2(A) is acyclic. By Theorem I11.2.2 of [2], we can
even define a DDG algebra structure on CP#(A). We explain how to form the product
% on the total complex tot(CP*(A)): For elements ci,...,c, in A and a permutation
o € X, we introduce the sign p(o) := p(o,c1,...,cx) in such a way that we have the
following relation

Te) @ . OT oy =p>0)Tc10...0Tc

in the the symmetric algebra S(A[1]). Here, 1 is just the shift A — A[l] (see Sec-
tion 1.1). On bihomogeneous elements ag®...®a, 1 € CP¥*(A) and by ®...Q by 1 €
CPhar(A), the product * has the form

(a0®. . Bl s1)#(bo®. . ®Bbmy1) =% > p(0)agbo@cy(1)®- . BCo(nim) Dn41bm+1,
o—1eSh(n,m+n)

where + is the sign

(_1)b0(a1+---+an+1+n)+an+l(bl +...4+bn+m)

and (c1,...,Cmin) = (a1,...,an,b1,...,by). Hence tot(CP2*(A)) is a DG algebra
resolution of A over R. But it can only serve as resolvent in the algebraic case since:

Attention: In the analytic case, tot(CP®(A)) is not a free object in gr(C).
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Recall two well-known relations between the bar complex and the naive Hochschild
complex. We consider R as A-bimodule via a(a; ® ag) = aay ® ay and (a1 ® ag)a =
a1 K aza.

Proposition 3.1.25. We have an isomorphism C}Ve(A R) — CP2*(A) of com-
plezes in gr(M)(A), which is in the n-th component given by

CRe(A, R) — O (A)
((I ® a/) ® o — (_1)a(a’+a)a/ ® «a ® a
with o € A®™. Furthermore, we have an isomorphism C2V¢(A, M) — M®rCP¥(A)

of complexes in gr(M)(A), where the differential of the second complex is given by
1®1V. The n-th component has the following form:

CIVe(A, M) — M ®@p CJ*(A)
mar—melea®l.

The classical Hochschild cochain complex is called naive Hochschild cochain
complex in this thesis. It is defined as the complex C*(A, M) = (C*(A, M), 3) where
CY%A,M) = M and C™(A, M) = Homy(A®", M), for n = 1,2,... The differential 3
is given by:

B(f)(a1,...,ant1) = arf(az,...,ant1) — flar1-ag, ... any1) + ...
+(=1)"f(a1, ..., anane1) + (=) f(a1,. .., an)an1.

We will define a more elaborate Hochschild cochain complex in Section 3.2.

Proposition 3.1.26. If M is a graded symmetric A-bimodule, then there exists an
1isomorphism of complexes

Homy,(A®", M) — Hom(C™¥(A), M),

where the differential on the left complex is B and the differential on the right com-
plex is the one induced by the differential b on C2Ve(A). Furthermore, we have an
1isomorphism of complexes

HomR(CPar(A), M) — Homk(A®”, M),

sending an f : CP™ — M to the mapping a1 @ ... Qan — f(1R a1 ® ... ap @ 1).

3.1.8 Regular sequences

In this section we want to define a regular sequence for the graded commutative con-
text. In our definition the question as to weather a sequence is regular won’t depend
on the order of its elements. We suppose that the ground ring K contains the rational
numbers.
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We work with a good pair of categories (C, M), equipped with a marking
((Ft)ier, (Gu)uev), which induces the marking ((grg(F))rer, (8r(G))wer’) on
(gr(C), gr(M)) and the marking ((gr2 (F)),vetr, (gr2)ureyr) on (gr?(C), gr*(M)). As-
sume that Axiom (F3) holds.

Definition 3.1.27. Let R be an algebra in gr(C). We call a g-finite subset X of R a
handy sequence if for each x, there is an u(z) € U such that

When R = (R,s) is a DG algebra, then a handy sequence X C is called handy
s-sequence if we have s(X) C (X). For a handy sequence X C R, let E be
a set of free algebra generators, containing for each x € X a generator e(z) €
8% (F) (u(z),g(x),—1) (R(E)) of bidegree (g(x),—1). Then we call the free DG alge-
bra K(X) := R(E) in gr?(C) over R, whose differential (of bidegree (0,—1)) is given
by e(x) — x, the Koszul complex of X over R.

For practical reasons, when we work with a handy sequence X = {z; : i € J}, we
define an ordering on the index set .J, subject to the condition g(z;) < g(x;), fori < j.
Remark that for a handy sequence X C R and each subset Y C X, the quotient”
R/(Y) exists in gr(C). And if R is a DG algebra (R, s) and X is s-handy, then the
quotient R/(X) is also a DG algebra.

Definition and Theorem 3.1.28. Suppose that Q C K.

Let X C R be a handy sequence and let I be the ideal (X) C R. Suppose that for each
subset Y C X, we have Np>1I"R/(Y) = 0. Then X is called a reqular sequence, if
one of the following equivalent conditions holds:

(i) Let T be a set of free algebra generators that contains for each x € X, an element
t(z) with g(t(x)) = g(z). The map R/I[T] — gr;(R) = R/I®T/I*® ... in
gr(Q — Alg)g/r, sending t(x) to the class of x in I/1? is an isomorphism of
(differential) graded R/I-algebras.

(i) For each x € X and for each ideal J C R, which is generated by a subset Y C X
with x € Y, we have: If g(x) is even, then x is not a zero divisor in R/J. If
g(x) is odd, then the annulator of x in R/J is just the ideal, generated by the
class of x.

(i5i) The Koszul compler K(X) is a DG resolvent of R/(X) over R.
(iv) H YK (X)) = 0.

Proof. The implication (iii)=-(iv) is trivial.
Proof of (i)=-(ii) For an element r € R, let n(r) be the greatest n such that r is

"By “quotient”, we mean the cokernel in gr(M) of the embedding (X) — R.
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contained in I"™ and let in(r) be the class of r in I™") /[*")+1 C gr;(R). For elements
r,r’ € R, we have that:

in(r) - in(r') = v + [POAREOHL (1.6)

Claim: A subset X C R satisfies condition (ii), if the subset {in(z) : = € X} C
gr;(R) satisfies condition (ii).

Proof of the claim: First step: For z € X, if g(z) is even and in(x) is not a zero
divisor, then z is not a zero divisor. If g(z) is odd and the annulator of in(x) in gr;(R)
is the ideal, generated by in(z), then the annulator of z in R is the ideal generated by x.

The even case follows immediately by (1.6). In the odd case, let r be in the annu-
lator of z, i.e ro = 0. By (1.6), we get in(z) - in(r) = 0. By the assumption, there is
an a1 € R such that in(r) = in(z) -in(a;). This implies that r1 := r — zay is in 7*7)+1
and n(ry) > n(r) + 1. Since 22 = 0, we have riz = rz = 0, and in the same way we
find a ap € R with 75 := r; —zay € I""~D+1 Inductively, for each m > n(r), we find
ai,...,a such that ry :=r—x(a;+...+ay) € I"™. Thus r belongs to Ng>o((x) +I¥),
which, by the condition Np>1I"R/(x) = 0, equals (z).

Second step: For x € X if weather g(x) is even and in(z) is not a zero divisor, or
g(x) is odd and the annulator of in(z) in gr;(R) is (in(z)), then (z) N I™M®)+7 = g™,
for each n > 0.

One inclusion and the even case are easy to see. Suppose that g(x) is odd and that
rx is in 1@+ We have to find 7/ € I" such that zr = zr/. If r € I", we are done.
Otherwise, we have n(r) < n and in(r) - in(z) = rz 4 I*+2@)+1 = 0. So there exists
a y € R such that in(r) = in(z) - in(y). This means that 7y := r — 2y is in 1"+ and
we have 71z = rx. Inductively, we find an 7’ := r,,_,,,y such that ' € I" and 'z = rx.

As consequence, taking R := R/(x) and I := I/(x), we get an isomorphism

gr(R)/(in(x)) = gri(R).

We deduce inductively that for R := R/(x1,...,25) and I := I/(z1,...,7s), we get
an isomorphism

gr(R)/(in(z1), ..., in(xs)) = grr(R).
Last step: When g(z) is even, we have to show that x is not a zero divisor in
R/(z1,...,xs). We know that in(z) is not a zero divisor in gr;(R)/(in(x1), ..., in(zs))

= gr7(R). By the first step, the assumption follows. For the odd case, we use the ana-
logue argument. This proves the claim.

If (i) is true, it is clear that {in(z) : z € X}, which corresponds to the set T,
satisfies condition (ii) and by the claim, X satisfies condition (ii).
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Proof of (ii)=-(iii) We have to show that for p < 0, the p-th row of the double com-
plex K(X) is a DG resolution in M over R? of the p-th component of R/(X). For this
we can suppose that X is finite with g(x) > p, for all x € X. Say X = {x1,...,2,}.
We have that K(X) = K(21) ® ... ® K(z,).

Each K (X)®% is obviously a finite R-module, so by Lemma 3.1.14, we only have

to show that K (X)®* is a resolution of (R/(X))P in the category of R-modules. We
show this by induction on n.
For n—1, we write z instead of z; and e instead of e;. Set m := g(z). Remark that if
m is even, then the total degree m — 1 of e is odd, so in this case we have e? = 0. If
m is odd, then the total degree of e is even, so e? # 0. In the first case, K (z) is just
the complex

0 0 0 0 0
! ! ! | |
0 0 Roe “ee Rm_le Rme
! ! ! | |
RO e Rm+1 R™ . R2m—1 R2m
! l ! ! l
RY ... Rmtl Rm/RO.’L‘ o R2m—1/Rm—1:L, R2m/Rm.’L‘

s is injective since x7 is not a zero divisor in R, hence the rows are exact. In the
second case, K (z) is the complex

0 0 0 . 0 R0€2
! ! ! ! |
0 0 Roe o Rm_le Rme
! ! ! ! |
R ... Rmt! R™ o R2m—1 R2m
! ! ! ! |
RO . Rm-‘rl Rm/ROIE o R2m—1/Rm—1x R2m/Rmx

In R?, for i < m, there is no element that annulates x, so up to the row m — 1, the
situation is as above. In the m-th row, the kernel of R™e — R?™ is just R'ze, so it
coincides with the image of the map R%¢?> — R™e. Remark that here, we use that
2 is invertible in R. Inductively we see that all rows are exact. Here, we use that all
naturals are invertible.

Now suppose that the statement is proved for n. Set L = K(z1,...,x,) =
R(ey,...,en) and K(X) = K(21,...,2Zn+1). We write x and e instead of 2,41 and
ent1. K(z) is (as object of gr?(M)(R)) a direct sum Ko @® K_1 & K_5 @ ..., where
in the case where x is even, we have Ky 2 R, K_; & R[-m,1] and K, = 0 for
s < —1 and in the odd case, we have K, = R[sm, —s] for all s < 0. Hence, we have
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KP7 =~ Rptam for all p, and in the even case for —1 < ¢ < 0 and in the odd case

for ¢ < 0. The differential on K (z) is given by the maps d, : Kq' — K;ff_l, where

dy: K7 — Kgff'l is just the multiplication by z.
We have

K(X)P = (K(z) @ L)P
=(Ko@r L)?*1® (K1 @r L)1 ...
> [Pagpmatl g

where in the even case the sum has only two factors. Hence in the even case, for p < 0,
the complex K (X)P* is the total complex of the double complex

v v v
Lp,—2 -~ Lp—m,—2 <~ () <

P

-1 -~ T G | P
I

In the odd case, K(X)P"* is the total complex of the double complex

v v v
Lp,—2 ~ Lp—m,—2 -~ Lp—2m,—2 <

ook

Lp,—l ~ Lp—m,—l <~ Lp—2m,—1 <

S

Lp,O ~ Lp—m,O -~ Lp—2m,0 <o

The first double complex is a DDG resolution in gr?(M)(R) of the DG module
(R/(x1,..,xp))P — (R/(x1,...,2p))P «— 0« ...

where the left arrow stands for multiplication by . But this DG module is a resolution
of (R/(x1,...,2n,2))P over R, since g(z) is even. So K(X)P* is a resolution of
(R/(21,...,7n,2))P. The second double complex is a DDG resolution in gr?(M)(RP)
of the DG module

(R/(x1,...,xp))P — (R/(x1,...,xp))P — (R/(T1,...,2p))F — ...
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where the arrows stand for multiplication by z. But this DG module is a resolution
of (R/(x1,...,2n,2))P over R?, since g(x) is odd. So K(X)P* is a resolution of
(R/(x1,...,xpn,2))P. For both cases, the induction step is done.

Proof of (iv)=-(i) Without restriction, we can suppose that C is the category of
commutative (Q-algebras. For each 7 > 0, we have to show that the j-th homogeneous
component (R/I[T)); in the T-grading of R/I[T] maps isomorphically to I7/I7+1,

We will already make use of the implication (ii)=-(iii). Set S := Q[T]. We consider
R as S-algebra via the map ¢(z) — z. Obviously T' C S satisfies condition (ii), so by
(iii), the Koszul complex Kg(T') is a DG resolution of Q over S.

We consider the exact sequence
0 — () /(TyY T — S/(T)T — S/(T) — 0

of graded S-modules. The quotient (T')7 /(T)7*! is a free graded g-finite Q-vectorspace,
which is a S-module via the canonical map S — Q. We write [[,. ; Qe; for it. Now
[Lics Ks(T)e; is a free resolution of [[,.; Qe; over S. So we get

Tor{ (T /(T)'*',R) = H /(] [(Ks(T)e: @5 R)) = [[ H™ " (K(X)e:) = 0.
i€J e
By the property of left derived functors, there is an exact sequence
0 — Tor{ (S/(T)*', R) — Tor? (S/(T)’, R) —
(TY /(TY* @s R — S/(T)Y* @5 R — S/(T) @5 R — 0.

By induction on j and the exactness of the first line, we see that Tory(S/(T)?, R) = 0
for any j > 0. The second line gives rise to a short exact sequence

0 — (R/I[T]); — R/I? — R/IP*t — 0,

which implies the desired isomorphism. O

Remark 3.1.29. The assumption Q C K is used only to prove the implications
(ii)=-(iii) and (iv)=-(i). The assumption that for each subset ¥ C X we have
Mp>1I"R/(Y) = 0 is used only to prove (i)=-(ii). So if you want to get rid of it,
use condition (ii) for the definition of regular sequences. It can be stated in a slightly
modified manner which depends on the order of the elements of X.

Definition 3.1.30. Let R be a DG algebra in gr(C)V. Let (o4, u;, g;)ics be a family
in N x U and X = {z;: i € J} a family of elements with z; € G,,(R%.) such that,
for 5,8 C a, the sets {pga(z;) : @ = [} and {pg(xi) : o = [’} are disjoint.
Suppose that

Xa = Ugcalppa(®i) : ai = B}
is a regular (resp. handy) (s,-)sequence in R, for each a. Then X is called a regular
(s-)sequence (resp. handy (s-)sequence) in R.
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Corollary 3.1.31. If R = (R, s) is a DG algebra in gr(C)N and X a handy s-sequence
in R, then K (X) is a DG algebra in gr*>(CYN and if X is reqular, then K(X) is a DG
resolution of R/(X) over R.

Remark 3.1.32. When R carries the structure of a DG algebra (R, s), one would
like the Koszul complex to carry the structure of a DDG module. In general, this is
not the case.

If X is an s-handy sequence then, since I = (X)) is s-stable, then the algebra gr;(R) has
the structure of a DG algebra in gr(2lg) such that each I"/I"™! is a DG submodule
of gry(R). If, for example, R is already a free DG algebra in gr(Q — 2lg) with a set
X of free algebra generators, i.e. R = R/I[X], then the differential of gr;(R) = R
differs in general from the differential s. In this way we get a modified differential 5
on R. In a similar way we get a modified differential, when R is a free DG algebra in
gr(C), for any good pair of categories (C, M). In geometric language, going over from
s to § is a deformation to the normal cone.

The interest of this deformation of s comes from the fact that the Koszul construction
of R over X is compatible with the differential §, i.e. K(X) isa DDG resolvent of R/X
over (R, ). This can be of interest for the construction of the Hochschild complex.

3.1.9 The universal module of differentials

Fix an admissible pair of categories (C, M). Let kK — A be a morphism of DG alge-
bras in gr(C).

As in paragraph 1.6.12 of [2], we define the universal module Q,/, of k-
differentials as the first homology of the complex CJ*V¢(A), i.e. the cokernel in
gr(M)(A) of the map by : A®p AR A — A® A, sending a @ b® ¢ to ab® ¢ —
a ® be + (—=1)"ac @ b, for homogeneous elements a,b,c € A. Qur is a DG mod-
ule over A and there is an A-derivation d : A — €,/ (i.e. a homomorphism of
DG k-modules, which is a derivation), sending elements a € A to the class of a ® 1.
Q 4, is universal in the sense that, for each A-module M in gr(M), the natural map
Homg,(aqy(4) (245, M) — Derg(A, M) is bijective.

Set R:= A ®g A and denote the kernel of the multiplication map p: R — A in
the category gr(M)(R) by I. (Attention: In general A is the cokernel of the inclusion
I — R only in the category R-900.) A natural question is if 4, is isomorphic
to the “quotient” I/I%. But we already need several assumptions for the existence of
I/1? in the category gr(M)(A). An answer which is sufficient for our purpose is given
by the following proposition. For our examples, the statement is well-known. The
proof for the general case can be found in the appendix.

Proposition 3.1.33. Suppose that (C, M) is a good pair of categories satisfying
Aziom (S1) and that the marking G on M is canonical. Suppose that A € gr'(C)
(i.e. all A* are finite A°-modules) and that I is a g-finite R-module. Then we have
A = R/I := Cokern(I — R) and I/I? is in a natural way a module in gr(M)(A).



Hochschild cohomology for complex spaces and schemes 91

Furthermore, the map A — I/1%, sending a € A to the class of a®@ 1 —1®a is a
k-derivation and the quotient I/I? is a universal module of derivations. In particular

I/12 = Q.

Denote the differential of R = A®j A by s. The next Proposition is a consequence
of Proposition 3.1.33 and Definition and Theorem 3.1.28:

Proposition 3.1.34. Tuke the assumptions of Proposition 3.1.33. Suppose that the
ideal I C R is generated by an s-reqular sequence X C R. Then Q 4y, is a free DG A-
module in gr(M), generated by a set E = {e(x)| x € X}, containing one free module
generator, for each element x € X.

The definitions and statements of this subsection carry over directly to N -objects

in gr(C) and gr(M).

3.1.10 A HKR-type theorem for DG algebras

Use a good pair of categories (C, M), satisfying Axioms (S1) and (F3) such that the
marking F' on C is balanced and convex. Again, suppose that the ground ring K
contains Q. Let k be an algebra in CV. Suppose that the marking G on M is trivial.
Recall that this implies that each free algebra in gr’(C)N with free algebra generators
only of strictly negative degree is a direct sum of A and a free A-module.

Consider a free g-finite DG algebra A = k(z;,i € I) in gr(C). By Proposi-
tion 3.1.34, as graded module, we have Q4 = Qyu/;, = [[;c; Aei, where e; is a free
module generator of degree g(z;). Write d for the canonical derivation A — Q4 and
denote as usual the composition of d with the projection Q4 — Ae; by 0/0z;. For
n € N, we can define A-linear maps

€nt AN'Qg — CRAVe(A)

A AN = Z X(U)'1®xia(1)®"'®$io(n)'
oEYX,

(for the exterior powers, see Definition 3.1.24). Here, x(0) = x(0,€4y,...,€;,) is a
sign satisfying

ei, N...Ne;, =x(o)- Cigay N N iy -
Verify (or see [29]) that the image of ¢, is in the kernel of the differential of the naive
Hochschild complex, i.e. we have a map of complexes € : A®Qq — CDaVe(A) of
differential graded A-modules, where the vertical differential on A®$24 is set to be
trivial. On the other hand, there is a morphism

o CPAVe(A) — A®Qy

which is, on each simplex in AV, in the n-th component given by

1 1 8@1 da
an(a0®...®an):mao-dal/\.../\dan:aao-'Z :l:axil---aT;eil--'ein,
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where the sign is obtained using the Koszul-convention. Remark that aoe = Id.
The following theorem is a DG-generalization of the classical Hochschild - Kostant -
Rosenberg Theorem as stated for example in Loday’s textbook [29]. It is the central
result of this chapter.

Theorem 3.1.35. The map € (and consequently «) is a quasi-isomorphism of com-
plexes of DG-modules in gr(M)N over A. If A is concentrated in degree zero, there is
no need to assume that Q C k.

Proof. The proof is Loday’s sketch of proof for the DG situation together with Def-
inition and Theorem 3.1.28. It works as follows: The maps € and « are morphisms
of double complexes. Since we are only interested in the vertical differential, we can
forget about the differential on each AJQ4 and A®J*!. This is necessary, since we
make use of the Koszul construction (see Definition and Theorem 3.1.28), which is
not compatible with horizontal differentials.

Set M to be the free, graded k-module [[,.; ke;. Set R to be the graded algebra
A ®) A. We can identify the Koszul complex K(X) over R of the regular sequence
{i(z;®1—-1®ua;)| i € I} C R (since the marking is balanced and convex, this is
a set of free generators of a free subalgebra of R, hence it is regular) with the DG
algebra A ®;, A® A®*M in gr?(C). The (vertical) differential of the latter is defined by
e; — %(1 ® x; —x; ® 1). We have a map of complexes

AR AR N M — CP3(A)

a@ad @eiy A Ae, — (1) Eatta) Ny (g)a@a,, ©... @
UEZTL

!
o) ®C

of graded R-modules. By Definition and Theorem 3.1.28 and Axiom (F3), the left
complex is a flat resolutions of A over R. By Section 3.1.7, the right complex is a flat
resolution of A over R. Applying the functor - @z A, we just get the map e:

A = K(X)®p A — CJY°(A)

By flatness, this is still a quasi-isomorphism. ]

Example 3.1.36. Let A = C{z1,...,x,} be a convergent power series algebra. The
m-fold complete tensor power A®™*! can be identified with the convergent power
series algebra

(C{:L‘go),... 20 ..,xgm),...,xq(lm)}

rrn 9

in (m 4+ 1) - n variables. The m-th component of the quasi-isomorphism
a: C"Ve(A) — A®Qy can be written as

o f
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3.2 Hochschild complex and Hochschild cohomology

3.2.1 Homotopy invariance of the Hochschild complex

In the (algebraic) literature, for an algebra homomorphism k& — a, the Hochschild
complex of a over k is defined as our naive Hochschild complex C"#¥¢(g). However,
as observed by Buchweitz and Flenner, there are reasons to define the Hochschild
complex in the case where a and k are analytic algebras in a different manner. In
this case, if a is flat over k, then the bar complex CP® (a) is still a complex of flat
a-modules but even if k is just the field C, the bar complex CP®"(a) is not a complex
of projective a-modules. Thus, for the definition of Hochschild homology, the naive
Hochschild complex would do, but for the definition of Hochschild cohomology as
cohomology of the a-dual of the Hochschild complex, it is not a good choice. Thus,
for a morphism & — a of algebras in good pairs of categories, we will give a dif-
ferent definition of the Hochschild complex H(a/k) of a over k. We will see that in
the flat case it coincides up to a quasi-isomorphism with the naive Hochschild complex.

The definitions of this section were inspired by the article [7]. For simplicity, we
restrict ourselves to the Noetherian context. Fix a simplicial complex N and a good
pair of categories (C, M) with marking (F,G), where G is the canonical marking of
M. Suppose that the Axioms (N) and (F2) are satisfied.

Using a Cech construction (for more details, see paragraph 1.10.1 of [2]), we get a
functor C* : gr(M)N — gr(K — Mod), sending a DG module M € gr(M)V to the
total complex totII(C*(M*®)) of the double complex

COM™) —= CH M)

| |

CO(MO) N Cl(MO) ............ -

where CP(M?) =[], M? and the differentials as usual. This functor sends quasi-
isomorphisms to quasi-isomorphisms. We will write H"™(M) for H™(C*(M)).

Let k — a be a finite morphism of A-objects in C, i.e. a is a quotient of a
free k-algebra b in CV such that, for each a € N, the algebra b, is a a free finite
kq-algebra. (More generally, we may assume that & — a is a morphism in gr(C)N,
as long as there exists a g-finite resolvent of a over k.) By Proposition 8.8 of 2], there
exists a g-finite resolvent of a over k. Fix such a resolvent A. Set R := A®%r(c) A and
consider A as an algebra over R by the multiplication map u: R — A. Let S be a
free g-finite resolvent® of A over R.

8 Again by [2], such a resolvent exists. We can even construct it in such a way that S° = R°.
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Definition 3.2.1. The simplicial Hochschild complex H,(a/k) of a over k is the
object represented by the complex S®ra in the homotopy category K~ (M (a)). The
Hochschild complex H(a/k) is the object represented by the complex C*(H, (a/k))
in the derived category D(K — Mod).

Proposition 3.2.2. The simplicial Hochschild complex H,(a/k) is a well defined ob-
ject in K= (MM (a)). More precisely, for two choices A;, S; of resolvents (i = 1,2),
there exists a morphism S1 ®g, a — S2 @R, a in gr(CYV(a), which is a homotopy
equivalence. Consequently, H(a/k) is a well-defined object in D(K — Mod).

Proof. For i = 1,2, let A; be a g-finite resolvent of a over k, R; := A; ®, A; and
let S; be a g-finite resolvent of A; over R;. We have to find a homotopy equivalence
S1®R,a ~ Sa®@p,a over a. By Proposition 3.1.16, there is a homomorphism A; — As
in gr(C)N which is a homotopy equivalence over k. Hence,

Ri~ A Qra~ Ay R a~ Ro.

By Proposition 3.1.16, the quasi-isomorphism R; &~ Rj is even a homotopy equivalence
over k. Thus we get a quasi-isomorphism

S1 2851 ®r, R — S1®r, Ry

over Ry. Both Sy and S} := S7 ®p, Re are resolvents of a over Ro. Hence, there
is a homomorphism S] — Sy in gr(C)N, which is a homotopy equivalence over
Rs. We can tensor both sides over Ry with a and still get a homotopy equivalence
S1 ®R1a—>52 XR, a. O

Recall that the notion C?*(a) = CP2"(a)® stands for the complex CP% (a).

Proposition 3.2.3. Suppose that a is flat over k. Then there is an isomorphism
H,(a/k) — C"3¥e(q) in the derived category D(a — 9Mod). More precisely, for each
representation S ®p a of H(a), there ewists a morphism S ®p a — C"Ve(q) in
gr(C)V, which is a quasi-isomorphism over a.

Proof. Set r := a ®}, a. Since a is flat over k, R is a resolvent of r and C"*'(a) a flat
resolution of @ over r. Another one is s :== S ®g r. By Theorem 1.8.4 of |2], there is
a morphism s — C"?(a) in gr(C)V over r. By flatness, we get a quasi-isomorphism

Cnaive(a) o Cbar(a) Rra=s®R.a=2SQga.

Definition 3.2.4. We define the n-th Hochschild homology of a over &

as H™"(Hy(a/k)).
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Definition 3.2.5. Let M be an object of MY over a. We define the Hochschild
cochain complex of a over k£ with values in M to be the complex

Hom? (H.(a/k), M),

a

with the differential induced by the differential of H,(a/k). We define the Hochschild
cohomology HH(a/k, M) of a over k with values in M to be the cohomology of the
Hochschild cochain complex.

Proposition 3.2.6. The Hochschild cochain complex is well defined up to homotopy
equivalence.

Proof. This is a consequence of Lemma 1.3.7 of [2] and Proposition 3.2.2. O

3.2.2 A Quillen-type theorem

We work over a good pair of categories with the same properties as in Section 3.1.10.

Recall that for an algebra a over k in C with resolvent A in gr/(C)YV, the cotan-
gent complex L(a/k) of a over k is defined as the class of 24 ®4 a in the homotopy
category K (M? (a)). By Theorem II1.2.4 of [2], the homotopy class does not depend
on the resolvent A.

Theorem 3.2.7. Consider a homomorphism k — a in CN. There ezists a homotopy
equivalence

ALar, — H(a/k)

m gr(C)N over a. More precisely, for any choice of resolvents A and S as in Sec-
tion 3.2.1, there is a morphism

S®ra — NQy®4a

in gr(CYN which is a homotopy equivalence over a.

Proof. The total complex of CP¥(A)* = CP¥(A) is a DG algebra and a resolution of
A over R. By Theorem 1.8.4 of [2|, we get a morphism S — tot CP?*(A4) in gr(C)V
over R such that the diagram

S — tot CP(A)

S

A

commutes. By flatness of S and CP'(A), after tensoring over R with A, we get a
quasi-isomorphism

S @p A — tot(C™aVe(A))
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in gr(C)V. Applying Theorem 3.1.35, we get a quasi-isomorphism
SQrA— NQy

of free DG-algebras in gr(C)N over A. By Proposition 3.1.16, this quasi-isomorphism
is already a homotopy equivalence. Tensoring over A with a gives the desired result. [

Remark that Quillen’s proof does not work in our situation, since the category M
is not, in general, Abelian.

Corollary 3.2.8. If a is already free over k (in this case there is no need to assume
that Q C a) and A = a, then §,;, is an object of Cé\[ and we get isomorphisms

NaQqyi = Hp(H(a/k)).
Dually, with Ty i, := Homa (24, A) we get
H"(Hom,(H(a/k),a)) = A" T, i

3.2.3 Decomposition of Hochschild (co-) homology
Let M be a module in MV (a).

Theorem 3.2.9. We have the following decomposition of Hochschild (co)homology:

HH, (a/k) = H HY (N L(a/k)), (2.7)
HH"(a/k, M) = [] H'(Hom,(A)L(a/k), M)). (2.8)
i+j=n

Proof. The first isomorphism is a direct consequence of Theorem 3.2.7. We show the
second one:

HH"(a/k, M) = H"(Homg(H(a/k), M)) = H" (Hom,(AL(a/k), M))

> H™(Homa(tot(A Qayx), M)) 2 H"(Homa (] [ A% Qayxj], M))

Jj=0
= H"(] [ Homa(ANyQayilil, M)) = [ [ H" (Hom (A Qa, M))
J Jj=0
=~ [[ H'(Homa(NyQap M)).
i+j=n
The first equality holds by definition. The second one follows by Theorem 3.2.7. The
other equalities are elementary. g

Remark that tangent cohomology is a direct factor on the right hand-side of iso-
morphism (2.8).
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3.3 Application to complex spaces and varieties

In this section, all schemes and complex spaces are supposed to be paracompact and
separated. For more details on many of the constructions, we refer to [6] and [7].

First, we will sketch the correlation between the theory of coherent sheaves on
schemes or complex spaces and the theory of AM-objects in good pairs of categories.
The main tools that we need here are:

(1) Instead of considering a space X, we consider the simplicial scheme, associated to
an affine covering of X. By an affine subspace, we mean an open affine subscheme
in the case of schemes and a Stein compact? in the case of complex spaces. There
are functors that make simplicial modules out of sheaves of modules and functors
doing the inverse.

(2) Let X be a complex space or a Noetherian scheme. For affine subsets U C X,
we use the equivalence of categories of coherent Opy-modules and finite modules
over the ring I'(U, Ox). (Remember that I'(U, Ox) is Noetherian, when X is a
complex space.) This equivalence is given by Cartan’s theorem A in the analytic
case and by Exercise 11.2.4 of [16] in the algebraic case.

More generally, let X be a ringed space and (X;);cs a locally finite covering of X.
The nerve N of this covering is the set of all subsets o C I such that N;co X; # 0.
This set AV is a simplicial complex in the sense of Section 3.1.4. Further, there is a
contravariant functor from A in the category of ringed spaces, mapping an object « to
the object X, := N;eqX;. For a C 3, denote the inclusion Xg — X, by pog. Such a
functor is called simplicial complex of ringed spaces. Let X, = (X, )acn be a sim-
plicial complex of ringed spaces. Following [9], we define the category of Ox,-modules
as follows: Its objects are families F, = (Fy)aen with Fy in Mod(X,,), together with
compatible maps psFo — Fg. For Ox,-modules F,G, we set Homx, (F,G) to be
the set of compatible families f, : F, — G,. We denote this category by Mod(X).
The full subcategory of those Fi, where each F, is coherent is denoted by Coh(X).

Definition 3.3.1. Let A and B be simplicial complexes over the index sets Ay and
By. Suppose that X, = (Xa)aca and Y, = (Yg)gep are simplicial complexs of ringed
spaces. A morphism [ : X, — Y, consists of a mapping 7 : Ay — By such that
for a € A, we get 7(a) € B, and a family of compatible maps fq : Xo — Y (o).

As in |9], we can form the adjoint functors
f* Mod(Y,) — Mod(X,) and
[ :Mod(X,) — Mod(Ys).

For F in Mod(Y.) and a € A, we have (f*F)q := f3Fr(a). The construction of f,
is more complicated. For the general case, we refer to [9]. We need only a particular
case which is explained below.

9Remember that a Stein compact is a compact subset of a complex space, having a base of
neighborhoods, consisting of Stein spaces. A Stein compact is only a pseudocomplex space.
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Examples 3.3.2. (1) If X is a Noetherian scheme or a complex space and
(X;)icr is a covering by affine subspaces, then by the separated condition, all
X, are affine. Now let (C, M) be the good pair (C9, M) or (¢, M) (see
Example 3.1.1). Then, a, := (I'(X,,Ox, ))acn is an N-object in C and there
is a 1:1-correspondence between the objects of Coh(X,) and the N-objects M,
in M over a4 such that each M, is finite over a,.

(2) If X is a complex space and the covering (X;);cs is locally finite and chosen
in such a way that each X; admits a closed embedding into a polydisc P,, then
we get another simplicial complex of Stein compacts: Set P, := [[;c, F;. For
a C 3, we have the projection P3 — P,. This makes Py, = (Py)aen a simplicial
complex of Stein compacts and there is a closed embedding X, — Pk.

(3) Let X be a scheme of finite type over a ring K and (X;);e;r an open affine
covering of X. We can construct a new simplicial scheme: Set a, 1= I'(X4,Ox, ),
for « € N. For each «, there is a free, finitely generated algebra K[T| that maps
surjectively onto a,. We get a closed embedding X, — Spec(K[X]) =: P,. As
above, we get a simplicial complex P, and a closed embedding X, — Pi.

The inclusions j, : X4 — X give rise to a map j : X, — X of simplicial
complexs of ringed spaces. Next, we will study the adjoint functors j, and j*:
J* is just the exact functor, mapping an O x-module F to the Ox, -module (F|x, )acn -
To describe j,, we consider the Cech -functor: For an O, -module F,, set

ép(f*) = H JaxFa
|lo|=p
and define a differential on C*(F,) in the usual sense. Then, j,F, is just HO(C*(F,)).
7+j* is the identity functor. One can prove the adjointness of j* and j, directly by
a gluing argument. Since j* is an exact functor and j, is right adjoint to j*, we see
that j, transforms injective objects in Mod(X,) into injective objects in Mod(X).

For each o € N, we define a functor py, : Mod(X,) — Moo (X,) via

PBa,Fa for B Ca
(pa*fa)ﬁ = {

0 for all other cases

By Proposition 2.26 of |6], each Ox,-module admits an injective resolution by modules
of the form [], cn PaxZa with injective Ox,,-modules Z,. We will use the following
properties of the functor C*:
Lemma 3.3.3. (1) Forp >0, the functor CP is exact.
(2) If Fo is an Ox,-module, then C*(pasTFo) is a resolution of ju(PasFa)-
(3) If F is an Ox-module, then C*(j*F) is a resolution of F.
We generalize a part of Proposition 2.28 of [6] for the case where X is only assumed

to be a ringed space and X, is the simplicial complex of ringed spaces associated to
an open or closed covering (X;);cr of X:
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Proposition 3.3.4. The functor j* : D(X) — D(X.) embeds D(X) as a full and
exact subcategory into D(X,) and C* = Rj, is an exact right adjoint. In particular,
for F,G € D(X) and M, € D(X,), there are functorial isomorphisms

Exth (F,G) 2 Exth_(*F,j*G) and
Exth_(j*F, M.) = Exth (F,C*(M)).
If all the maps pzﬂ(Ma) — Mg, for o C 3 in N, are quasi-isomorphisms, then the

natural map

JCN M) — M.

18 a quasi-isomorphism, and in consequence, for all n, there are isomorphisms
n -k n (/ve
Ext’y (My, " F) =2 Exts (C*(M.), F).

Proof. For the proof that C*® is the right derived functor of j,, we use an injective
resolution Z, of an Ox, -module F, of the same form as above. We have

(R]*)(f*) = (]*I*). = Hj*(pa*za). ~ HO.(pa*Ia) = O.(I;) ~ C“(f*)

We only prove the first formula for Ext. Here, Z? denotes an injective resolution of

J'G.
Extly, (j*F, j*G) =H"(Homy, (j*F,Z8)) = H"(Homx(F, j.Z?))
= Exty (F. 1. 12) = Ext (F, (Rj.) (j°0))
=FExt% (F,C*(j*G)) = Ext% (F,G).

0

In the sequel, let X be a complex space or a scheme of finite type over a Noetherian
ring.

The structure sheaf Oy defines an N-Object a = a4 in C. In the algebraic case
each Oy-module F defines an N-object F' = F, in M over a. In the analytic case
each coherent Oy-module F defines an N-object F = F, in M over a. Here, (C, M)
stands for (C(9, M(©) in the algebraic case and for (C(V), M™M) in the analytic case
(see Example 3.1.1).

We make the following convention to avoid the distinction between analytic and
algebraic tensor products:

Convention: Let f: X, — Y, be a morphism of simplicial complexs of Stein
compacts and let F,G be graded objects in Mod(X), coherent in each degree. By
F ®0, G, we mean the object in Mod(X,), which is given by the sheafification of the
object T, in gr(CYV, defined as follows:
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For a € N, set By 1= I'(Yr(a), Ov,(,)): Fa := T'(Xa, Fa) and Gq :=T'(Xa, Ga). Then,
F, and G, are modules over B, via the comorphism of f,. Set Ty, := F, ®p, Gq-
This defines a simplicial DG algebra T.

In the same manner, we define the tensor product F ®% G, when F and G are
modules over a sheaf of Oy,-modules R, coherent in each degree.

3.3.1 Hochschild cohomology for complex spaces and varieties

Let f: X — Y be a morphism of complex spaces or a morphism of finite type of
Noetherian schemes.

A resolvent of X over Y is a collection of the following things:
(1) The simplicial complex Y; associated to a local finite affine covering (Y;);es of Y;
(2) the simplicial complex X, = (X, )aen associated to a local finite affine covering
(Xji)jeqier, of X. This covering is chosen in such a way that, for a fixed j € J, the
family (Xji)ier, is a covering of f~1(Y}); (3) a simplicial complex P, = (Py)acn with
the same index category; (4) a commutative diagram of the following form:

Here, f = (f,7) is the induced map of simplicial complexs; ¢ is a closed embedding
and g is a smooth map'%; (5) a free resolution A, of Ox, as sheaf of DG-algebras
on P, with A = Op, such that in each degree there is only a finite number of free
algebra generators.

If A, — B, is a morphism of sheaves of DG-algebras, coherent in each degree, on a
simplicial space X,, where each X4, is affine, then, going over to global sections, we can
construct a free resolution S, of By := (I'( X4, Ba))aen over A, = (I'(Xa, An))aeN
at least when B? is a quotient of a free algebra over AY in gr(C)N. This follows by
Proposition 1.8.8 of |2]. Sheafifying S, we get a free resolution S, of B over A. Using
this remark, it is easy to deduce the existence of resolvents in both situations we are
going to consider.

Example 3.3.5. Suppose that X is smooth and Y is just the single point Spec(C).
For i € I, we can choose P, = X;. Then, X, is a diagonal in P, and A can be chosen
to be a Koszul resolution of a = (I'(Xq, Ox,))aen over A? = (T'(Py, Op,))aen- In
this case, one can prove that for each «, 24, is a module resolution of Q. It follows
that for o C 3, the restriction maps Ly (a/C) — Lg(a/C) are quasi-isomorphisms.
Consequently, the canonical map L(X) — Qx is a quasi-isomorphism.

'0This means that for each o € A" and each p € P, the stalk Op, , is free (in the analytic case as
local analytic algebra) over Oy, .y
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Let (X,,Ys, Py, A) be a resolvent of the morphism f : X — Y. Set R :=
A®py, A and let S be a free resolution of A over R.

The following definition coincides for complex spaces with the corresponding def-
inition in [7]:

Definition 3.3.6. The simplicial Hochschild complex of X over Y is the object
in the derived category D(X,) of Ox, -modules, represented by

H.(X/Y) =8 ®r Ox..

The Hochschild complex of X over Y is defined as the object in D(X), represented
by
H(X/Y) := C*(H.(X/Y)).

When Y is just the simple point, we will write H(X) instead of H(X/Y).

To show the independence of the Hochschild complex of the choice of the resolvent,
we have to use the following version of Lemma 1.13.7 of [2]:

Lemma 3.3.7. Let f: X — X' be a flat homomorphism of complex spaces (resp.
schemes) and (X;)icr and (X]);ep be compact locally finite coverings of X and X' by
Stein compacts (resp. open affine subsets). Let T : I — I’ be a mapping, such that
f(Xi) € X,y for alli € I. Denote the associated simplicial complexs by X and X!
Then, f defines a homomorphism (f,T) of simplicial complezs of ringed spaces. Let
G® be a complex in Coh(X") such that, for « C (3, the restriction map p;ﬁg; — G5
18 a quasi-isomorphism. Then, the canonical homomorphism

frC(G*) — C(fG*)
1S a quasi-isomorphism.

Proposition 3.3.8. The definition of H(X/Y) depends neither on the resolvent
(Y, Xy, Py, Ay) nor on the choice of the resolvent S.

Proof. Let (Y, Xy, P LA*) and (ff*,X’*Z P*,/L) be:cwo resolvents, S a free resolution
of Aover A® A and S a resolvent of A over A ® A. We have to show that there is a
quasi-isomorphism

C(S®p Ox.) — C(S @r Ox,).
First case: Suppose that Y, = f/*, X, = X* and P, = P*_ By Proposition 3.2.2,
there is a quasi-isomorphism

5@@ Og, — S®r Ox,

in Mod(X,). Applying the Cech functor, this case is proved.
General case: Let Y/ be the simplicial complex associated to the covering {Y;} U
{Y/}, and let X{ be the simplicial complex associated to the covering {X;;} U {X|;}.
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We construct P, in the canonical way and can find a resolvent A’ such that (Y/, X_, PL,
A!) forms another resolvent of f: X — Y. There is a commutative diagram

X*—h>X;

e ]

Vi —Y!
By the first case, there is a quasi-isomorphism
(S @rr Ox:) = S ®r Ox,.
By Lemma 3.3.7, there is a quasi-isomorphism
C(S @rs Ox:) = C(h*(S' @r/ Ox1)).

Hence, we get C(S®r Ox,) ~ C(S'®r/Ox:). In the same way we get C'(‘§®7~30)~(*)
CV'(S/ QR OX;)-

(I

As in 7], we define the n-th Hochschild cohomology of X over ) with values
in the sheaf F as Ext} (H(X'/Y),F). We define the n-th Hochschild homology of
X over Y as H (X, H(Y/Y)). At least in the case where F is coherent, we want to
show that this definition is equal to the following one, which seems to be more natural
from the viewpoint of good pairs of categories:

Definition 3.3.9. [alternative]
Suppose that F is coherent. Let a be the algebra (I'( X4, Ox..))acn in CV, let k be the
algebra ((I'(Yz(a)» OYT(Q)))QGN in CN. Then to f, there is associated a homomorphism

k — ain CN. Let F be the module (I'(Xq, Fa))acr- We define the n-th Hochschild
cohomology of X over Y with values in F as

HH"(X /Y, F) := H"(Hom,(H,(a/k), F)).
We define the n-th Hochschild homology of X over Y as
HH,(X/Y) := H "(H.(a/k)).

We see directly that the Hochschild cohomology is concentrated in non-negative
degrees, whereas Hochschild homology, in general has positive and negative degrees.

Lemma 3.3.10. For M, := H,.(X/Y), the assumption of the second part of Propo-
sition 8.8.4 is satisfied, i.e., for « C 3, the maps pzﬁ(/\/la) — Mg are quasi-
isomorphisms.

Proof. See Lemma 1.7 of [7]. O
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Corollary 3.3.11. For coherent Ox-modules F, the two definitions of Hochschild
(co)homology coincide, i.e.

HH"(X/Y, F) = Ext%(H(X/Y),F)  and
HH,(X/Y) =~ H"(X,H(X/Y)).
Proof. Since H, (X /Y) is a complex of free O, -modules, by Proposition 3.3.4 we get
Exty (H(X/Y), F) = Extl (H.(X/Y),5*F)
= H"(Hom, (Hy(a/k), Fy)) = HH"(X/Y, F).
The second isomorphism is obtained as follows:
H(X,H(X/Y)) 2H (tot" I'(X,C*(j*H(X/Y))))
= H (tot" I'(X, C*(j*C*H.(X/Y))))
> (tot"' T(X, C*H,(X/Y))) = H(C*H,(a/k)) = H(H,(a/k)).

In the third step, we have made use of Remark 3.3.10. O

In the absolute case, i.e. in the case where Y = Spec C, Definition 3.3.6 is up to
quasi-isomorphism equivalent to the definition proposed by Weibel/ Geller [47].

Proposition 3.3.12. Let X be a Noetherian scheme of finite type over a field or
a complex space. Let C*Ve(X) be the complex of sheaves in 9Mod(X) associated to
the presheaf U +— C*3Ve(I'(U,Ox)). (In the analytic case, the naive Hochschild com-
plez is formed, using the analytic tensor product, of course.) There exists a quasi-
1isomorphism of sheaves

H(X) — C™V°(X).

Proof. Choose a resolvent (X, Py, Ax) of X. Let S be aresolvent of A over R = AR.A.
Let a, A, R and S be the simplicial algebras in gr(C)N corresponding to Ox, , A, R and
S. By Lemma 3.3.3, there is a quasi-isomorphism

C«(j*cnaive(X)) . Cnaive(X)'

Now, j*C"@V¢(X) corresponds to C™¥V¢(a). Set r := a ®j a. In the absolute case, R
is a resolvent of r over k, hence S ®pg 7 is a resolvent of a over r. Thus, there is a
quasi-isomorphism

S — CP¥(q).

Since CP2(a) is a complex of flat 7-modules, after tensoring over r with a, we get a
quasi-isomorphism S ®, a — C""¢(a), i.e. a quasi-isomorphism

S QR OX* N j*Cnaive(X)
in Moo (X,). Applying the Cech functor, we get the desired result. O
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3.3.2 The decomposition theorem

The quasi-isomorphism AL,/ — H(a/k) in gr(M)V over a in Theorem 3.2.7 defines
a quasi-isomorphism

AL.(X/Y) — H.(X/Y)

in Mod(X,). Since the Cech -functor is exact, we get the following Quillen-type
theorem:

Theorem 3.3.13. There is an isomorphism
AL(X/Y) — H(X/Y)
in the derived category D(X).

Corollary 3.3.14. There are natural decompositions

HH"(X/Y, M) = ] Ext} (AL(X/Y), M)
p+qg=n
H,(X/Y)= J[ HYUX APLX/Y)).

p—gq=n

For complex spaces, this is just Theorem 4.2 of [7]. There is another nice descrip-
tion of Hochschild cohomology of complex spaces or Noetherian schemes over a field
K in any characteristic:

Remark 3.3.15. HH"(X) = Ext x2(Ox, Ox).

Proof. We use the letter K for the field K or for the complex numbers, depending on
the context. With the notation as above, we get:

HH"(X) =H"(Hom,(S ®r a,a)) = H"(Hompg(S,a))
=H"(Homgg,q(S ®r (a ®k a),a)) = H”(Horn(gXz (S ®@r Ox2,0x,))

:EX'CT(LQX2 (OX*,OX*) = Extx2 (Ox, Ox)

Here, we have used that S ®g Ox2 is a free resolution of Ox, over Ox2. O

3.3.3 Hochschild cohomology for manifolds and smooth varieties

Theorem 3.3.16. Let X be a complex analytic manifold or a smooth scheme of finite
type over a field K of characteristic zero. There exists an isomorphism

H(X) = ANQx

in the derived category D(X).



Hochschild cohomology for complex spaces and schemes 105

Proof. This is a direct consequence of Theorem 3.3.13 and Example 3.3.5

For the case that K is algebraically closed, we have the following alternative proof:
Define the morphism
o CPVe(X) — AQx
locally in the n-th component as o, : ¢ ® ... ® a, +— %ao -a1 A ... N\ay,. Since
this maps are natural, they define a map of complexes of Ox-modules. For smooth
manifolds, « is a quasi-isomorphism (on the stalks), by Theorem 3.1.35. For smooth
schemes, « is a quasi-isomorphism (on the stalks), by the classical HKR theorem (the

local rings Ox , are geometrically regular, hence smooth; see the Remark on page 318
of [46]). Thus the theorem is true by Proposition 3.3.12. O

Remark that for smooth schemes in positive characteristic, by [44] Lemma 2.4,
there are natural isomorphisms A, Qx — Hy,(H(X)), but I don’t know if they are
induced by a quasi-isomorphism of complexes.

Corollary 3.3.17. Let X be a complexr analytic manifold or a smooth scheme of
finite type over a field K of characteristic zero. There is the following decomposition
of Hochschild (co)homology:

HH"(X) = [] H'(X,NTx) (3.9)
i+j=n
HH,(X) = [[ B (X, A'Qx). (3.10)

Proof. We consider Ap, 2x as complex in negative degrees, so AQdxy = szo N Qx 4]
and
HH"(X) = Ext% (H(X),Ox) = [[ Ext} 7 (M Qx, Ox).
Jj=20

By Theorem 7.3.3 of [13], there exists a (bounded) spectral sequence with EY? =
HP(X, &t (NQx,Ox)), converging to Extx (A Qx, Ox). But A/Qx is a locally free
Ox-module, so Sxtgf(AjQX,(’)X) is zero for ¢ > 0 and Homx (N Qx,Ox) for ¢ = 0.
Hence, the spectral sequence degenerates at once and we get

Ext4 (AN Qx,Ox) = HY(X, Homx (N Qx, Ox)).
There is a natural isomorphism of sheaves
NTx = AjHomX(QX,(’)X) — HomX(/\jQX,OX),
which, by Proposition 7, p. 154 of [3], is an isomorphism. As consequence,

HH"(X) = [[H" (X, NTx) = ] H(X,NTx).
7>0 i+j=n

The second equality is a direct consequence of Theorem 3.3.16. O
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A proof of this result for complex analytic manifolds has been announced (but not
yet published) by Kontsevich. For smooth schemes, decomposition (3.9) was proved
in a different way by Yekutieli [49]. A similar statement for quasi-projective smooth
schemes is due to Gerstenhaber/Schack [11] and Swan [44]. For smooth schemes,
decomposition (3.10) was proved in a different way by Weibel [48].
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3.4 Ly-structure of the Hochschild cochain complex

This section contains some open questions and conjectures. Furthermore, we give
a very brief idea for an interpretation of Hochschild cohomology of complex spaces
in terms of non-commutative deformation theory. The exposition of this section is
not assumed to be exhaustive. We only want to indicate how the subject could be
developed further. We make use of the notions and constructions of Chapters 1 and 2.

Let X be complex space with fixed locally finite covering by Stein compacts with
nerf A/. Denote the associated simplicial complex of Stein compacts by X, = (X4 )aen
(see Section 3.3). Set a = a, := (I'(X4, Ox,,))aen and fix a resolvent A = A, of a
over C. Classical deformation theory of X is described by the differential graded Lie
algebra (L' d%" [. .]), where

L™ = Derc(A, A) = Homa(Qa, A)

is the tangent complex of X (for fixed covering, L'*" is independent up to homotopy
of the choice of A; otherwise, L' is independent up to quasi-isomorphism of the
choice of the covering and the resolvent A; see Chapter IV of [2]), [+, -] is the graded
commutator and d*%" = |-, dA]. Roughly speaking, deformations of X are obtained by
simultaneously perturbing the differential d> on A,, for each a € N. This effects
simultaneous perturbations of Oy, = H%(A,,d4). “Simultaneous” means that the
perturbed Stein compacts X, can be glued together to a complex space X, which is
a deformation X.

To interpret the Hochschild cohomology of X in terms of deformation theory, we
need a DGL structure on the Hochschild cochain complex

Hom (S ®@r A, A)

(where R:= A® A and S is a resolvent of A over R) or at least an Lyo-structure (it
was noticed by Merkulov [32] and others that a deformation functor can be defined
for each L.o-algebra). We suggest the following: By Theorem 3.2.7, there exists a
homotopy equivalence

Homu (S ®r A, A) — Homa(AQ4, A). (4.11)

On L := Homy(AQ4,A) = ANHoma(Q4,A), there is a DGL structure (L,d, [-,]),
where the differential d is induced by d4 and the graded Lie bracket [-,-] is the
Schouten-Nijenhuis-bracket (see [22]). It has the following form:

A A& A AT =) E[E NG A L AGAL A ANAL L ATAL AT
Z"j

Remark that the inclusion L' — [ is a DGL morphism. With the method of
Section 1.4, we can define an Ly -algebra structure on Homy (S ®p A, A) such that
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the linear map (4.11) is the first term of an L.-equivalence.

By Proposition 3.1.35 , the natural maps

a1 CRAVe(A) — ATQ),
AR ...0a,+— ag-dail A...Aday

define a homotopy equivalence of complexes of simplicial DG A-modules. Dually, we
have a quasi-isomorphism

¢ : L = Hom4(AQ, A) — Hom 4 (CVe(A), A).

The complex Hom 4 (C2%v¢(A), A) is also a DGL. Its Lie bracket is the so-called Ger-
stenhaber bracket. Instead of giving an explicit formula for the Gerstenhaber
bracket, we recall that the complex Hom 4(C%(A), A) is isomorphic to the complex
Coder(T'(A[1]), T(A[1])), where T'(A[1]) denotes the (simplicial) graded tensor algebra
of the shift of the graded module A. This follows in analogy to the correspondence
between formal super-vectorfields on a formal DG manifold M and coderivations on
the graded symmetric algebra S(M), see Section 1.1. There is a codifferential QAN
on T(A[1]) with first order term induced by the differential d* and second order term
induced by the multiplication A® A — A. (One should think of it as odd vectorfield
on the simplicial non-commutative formal superspace A[1].) The DGL structure on
Coder(T'(A[1]), T(A[1])) is given by the graded commutator as bracket and differential
[-,QAM]. The DGL structure on Hom 4 (C™2¥®(A), A) is the induced one.

Attention: The DG map ¢ does not respect the brackets! In other words:
Schouten-Nijenhuis is not compatible with Gerstenhaber.

But: The restriction to L' does respect the brackets, thus we have two different
extensions of the DGL L' i.e. two possibilities to extend (on the abstract level of
deformation functors) the classical deformation theory.

It was the main point in Kontsevich’s (Fields-price-winning) proof for the possibil-
ity of quantization of each Poisson structure on manifolds that this lack can be cured
in the situation, where A is replaced by the algebra I of global sections on a Poisson
manifold. I.e. there exists a morphism

® : AHomp(Qr,I') — Homp(C™¥¢(I'),T)
in the category of Loo-algebras with ®; = ¢. This is the so-called Formality Theorem.
Question 1. Is there a Formality Theorem for our situation ?

A positive answer would imply that the two mentioned extensions of deformation
theory of complex spaces are in fact equivalent. For one of them, we have the following
“geometric” interpretation:
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In the same way as the underlying module M of the free coalgebra S(M) is con-
sidered as formal germ of a supermanifold (see Section 1.1.4), the underlying module
of the free coalgebra T'(M) should probably be considered as formal germ of a non-
commutative superspace and coderivations on T'(M) should again be considered as
vectorfields.

It is well-known (see e.g. [33], [38]) that the differentials described by the differ-
ential graded Lie algebra Coder(T'(A[1]),T(A[1])) are the deformations of the Ano-
structure of A, or in “geometric” terms deformations of the simplicial complex A[1] of
formal non-commutative DG manifolds. A deformation theory for non-commutative
formal DG manifolds can be developed in analogy to the theory in Section 1.2.

Question 2. Is the base of a universal deformation of a formal non-commutative DG
manifold M given by by the universal enveloping algebra of the DGL
Coder(T' (M), T(M)) ?

The following question is motivated by Hinich and Schechtman’s observation [17]
that the C'ech complex of a sheaf of DGL has the structure of an L..-algebra:

Question 3. Is any simplicial complex of Ay -algebras (resp. Loo-algebras) again an
Aoo- (resp. Loo) algebra 7

In the next question, F' is the functor Anf — DG-Manf of Section 2.2.

Question 4. If Question 3 is true, can we reconstruct the complex space X by the
Loo-algebra corresponding to (F(Xa))aen ?
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3.5 Appendix

In this Appendix, we give some details ommited in Section 3.1.

Proof of Lemma 3.1.3

Let k be an algebra in C. and A, B, M and N modules in M (k). By Axiom (5.2), there
is a natural isomorphism ~: Mult vy (A x B, M) — Hom y4)(A @' B, M). This
means that each morphism f: M — N in M(k) induces a commutative diagram:

MultM(k)(A x B, M) —N>H0mm(k)(A ®']/€Vl B, M)

| |

Mult vy (A X B, N) — > Hom ) (A @' B, N)
We denote the inverse map of ~ also by ~ .
Lemma 3.5.1. For h € Hom ;) (A @M B,N), we have h = h o ldagp.
Proof. In the diagram above, set M := A®Q/l B and f:=h. We have h = h*(IdagB).

So h is the image of Idagp by going through the diagram starting up right, going
down left. The result choosing the other way is h o ld g 5. O

Now suppose that A and B are k-algebras in C. There are two ways to see the
elements a ® b in A ®{€V‘ B=A ®(kf B: By the universal property of fibered products,
there is a natural homomorphism of k-algebras o : A ®zug B— A ®g B.

Lemma 3.5.2. For elements a®b 0fA®§[[gB, we have a(a®@™h) = IHA®£AB((G, b)).

Proof. We see that « is just the image of IdA®/ka by the composition of the mappings

Hom (A @M B, A @' B) = Mult (A x B,A @M B) —

Multy,_sgnoa(A x B, A @M B) = Homy,_goo (A @7° B, A @' B).

The first point of Lemma 3.1.3 is a direct consequence of Lemma 3.5.2. The second
point of Lemma 3.1.3 is a direct consequence of Lemma 3.5.1.
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Proof of Proposition 3.1.8

(1) There are free finite k-modules L; in M(k) and homomorphisms ¢; : L; — N
such that the inclusions M; — N is Kern(cokern(¢;)). (2) We have M; + My — N =
Kern(cokern(¢1 + ¢2)). (3) M; — N factorises through Kern(cokern(¢; + ¢2)). (4)
The projection My + My — Mj is the kernel of the inclusion My — M; + M5 in
E-9tod, so as well in M(k). (5) Consider homomorphisms f; : M; — P in M(k).
We define a homomorphism M + N — P as f; op; + fo o ps. Then the diagram

My + My <— My

N

My P

in M(k) commutes. The graded case follows in the same manner.

Proof of simplicial version of Proposition 3.1.16

We need two lemmas to prove a simplicial version of Proposition 3.1.16. The first one
is a simplicial version of the Comparison Theorem (for the affine case, see Theorem

2.2.6 of [46]).

Lemma 3.5.3. Let A be a DG algebra in gr(CYN. Let P = [Lic; Aei be a free DG
A-module in gr(M)N with a homomorphism P® — M of A%-modules in MN (A°).
Let N be an AY-modules in MY and Q in gr(MYN(A) a DG-resolution of N. Let
¢ : M — N be a A'-homomorphism in MN . Then there ezists a homomorphism
f: P —Q, lifting ¢ and it is unique up to a chain homotopy.

Proof. The existence of such an f is not hard to prove. But we only make use of
the uniqueness. We only prove this part here: Let f and g two DG-homomorphisms
lifting ¢. Inductively, we construct families {s, : |a| < m} of compatible homotopy
maps Sq : Py — Qu[—1] satisfying

" — ff=dgosl+ (—1)"st odp.

Suppose that the free generator e; is associated to the pair (a;, 2;) with o; € N and
z; < 0. For m = 0 and each § in N with |3| = 0, we see that Pj is free DG-module
in gr(M)(Aq), and we can construct sy just as in the affine case. Now, suppose that
{sa : |a| < m} is already constructed. Then, for each 8 € N with 3| = m + 1, we
have

For ae C 3, denote the restriction map P, — Pg by p,g. For free generators e; with
a; C B but oy # 3, set sg(e;) := pa,3(Sa;(€:)). Then, we get

(95 = fa)(€i) = pa;ip((9a: — fa;)(€i) = paip([Sas, da;](€i)) = [, dp](e:)-
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For free algebra generators e; with a; = [ and say n = z; = g(e;), exactly as in the
1

affine case, by induction on n, we can find elements m; in Pgi_ such that
(95 = fo)ei) = spld(ei)) + (=1)"d(my).
Then we set sg(e;) := m;.
In this manner, we get a family (s, )acn Of compatible chain homotopies. O

Lemma 3.5.4. Let A be a DG algebra in gr(C)N such that each A' is a finite A°-
module. Let M = [],.; Ae; and N = HjeJ Ae; two g-finite free DG A-modules in

N .
gr(M)?V such that all generators e; and e; are of negative degree. Suppose that there
18 a quasi-isomorphism

f=ldaaf Ao M — A® N.
Then f is already a homotopy equivalence. More precisely, there is a homomorphism
g=Ildy®g :A®N — ADN

of DG-modules and a map s, : M — M[—1] of graded modules such that s =0 and
gof—1Id=/s,d.

Proof. Consider the following diagram, where the first line is just the mapping cone
cone(f) = N & M][1] of f and the vertical maps are the canonical inclusions:

"'—>M_1@N_2—>MO@N_1—>NO

| 1

N2 N1 NO

Since f is a quasi-isomorphism, the mapping cone of f is acyclic, so the first line is
a resolution of the module {0}. The map ¢ of DG-modules is a lifting of the trivial
map 0 — 0. The zero map N — cone(f) is a second candidate for such a lifting.
So we are almost in the situation of the uniqueness statement in the Comparison
Theorem. The only difference is, that N = A @& N’ is not a free module in gr(M)V.
But to construct a chain homotopy o : N — cone(f)[—1] = N[—1] & M for 0 ~ ¢,
we can set 0|4 to be the composition of the inclusions A — A @& M’ = M and
M — cone(f)[—1]. On the free generators of N, the map o can be defined exactly
as in the proof of the comparison theorem. So we can work with a family of maps

o = (gn’tn) N — M @Nn—l
for n < 0, satisfying the condition

Ln — 5n—lo_n + (_1)n0_n+1dn.
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Here, d denotes the differential of N and § the differential of cone(f). The evaluation
of this conditions shows that g is a chain map N — M and that ¢ is a chain homo-
topy for Idy =~ fog.

In an analogous manner, we get a chain map h: M — N with Idy; >~ g o h. We see
easily that then, we have h >~ f, so we get Idys ~ g o f. O

Of course, we can also show that two free module resolutions of a module in
gr(M)N are homotopy equivalent over the base ring. Now the proof of the sim-
plicial version of Proposition 3.1.16 is as follows: For the first step we have to use
Lemma 3.5.4. The second and third step are easy to generalize.

Proof of Proposition 3.1.33

First of all, we have to ask if we can consider the R/I-module I/I? as an object of

gr(M)(A).

Lemma 3.5.5. Let R = (R, s) be a DG-object in gr(C) such that all R are finite
RY-modules. Consider an ideal I C R which is generated by a handy s-sequence
X ={xj: j€J}in R. Then, I is a DG-object of gr(M)(R) and I/I? is isomorphic
as R/I-module to a DG-object of gr(M)(R/I).

Proof. For each x € X, we choose a free module generator e(z) with g(e(z)) = g(z)
and we see that I is the image'' of the map from the free module [[, .y Re(z) to R
defined by e(z) — x. So I is already an object of gr(M)(R). But since I is s-stable
by assumption, I is a DG-module.

For each pair 7,j in J with ¢ < j, we choose a free module generator e;; with
g(eij) = g(xi) + g(zj). We get a homomorphism [[,.; Re;; — R of modules in
gr(M)(R) by sending e;; to the product x;z;. This homomorphism factorises through
I, so there is a homomorphism 7 : Higj Re;; — I and there is an isomorphism of
R-modules Cokern7 = I/I2. Tt it easy to see that the differential s induces a differ-
ential on Cokernn that makes it a DG-module in gr(M)(R).

Now, I/I? is also an R/I-module and in R/I — 900 the objects Cokern 7 and

Cokern 7 ®%(M) R/I are isomorphic. And the latter is an object of gr(M)(R/I). O

. M
In the sequel, by I/I? in fact we mean Cokern 7 ®‘g( ) R/I.

Proposition 3.5.6. Let k — A be a homomorphism of DG-objects in gr(C). Suppose
that all A® are finite A%-modules and that I := Kern(u : A ®g A — A) is generated
by an s-handy sequence X in R := A®p A — A. Here, s denotes the differential
of R induced by the differential of A. Then, by a — [a], we get an isomorphism
I/T? — Quyp in gr(M)(R) whose inverse is given by (o] — a —up(a). Here, @
denotes the class in I1/I? represented by a and [a] denotes the class in Q4 represented
by a.

"'We remind that by image we mean the kernel of the cokernel map.
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Proof. First we have to show that the map I/I? — Qa/k, @ [a] is well defined.
There is a homomorphism 1 : I ® g I — I in gr(M)(R) with a ® b — ab. Consider
the homomorphism & : I — Qy 3, a — [a]. For the well-definedness, it is enough to
prove that £ o = 0. Since the bar complex C?*(A/k) is acyclic, we see that b gives
rise to an epimorphism A®3 — I. Hence, it is enough to show that the map

A% — Qe

aRbRcRdRe® [ [(ab@c—a®be)(de® f—d & ef)]
is zero. But the argument in the brace on the right hand-side is just the image of

(- 1)cd+ce+dbadbe(cf RIR1I-1®c® f)—
(—1)b*edadb(cef @101 - 1@ c@ef)—
(—1)bdtbetedteeggobef @1 @1 —1®be® f)+
(=1 +edgd(beef 11 —1Qbe @ ef)

ade

by the map bo.
Secondly we have to show that the map Q4 — I/I?, [a] — o — syp(c) is well
defined. But there is a derivation

5:A—>I/12
a—1®a—a®l.

So by the universal property of €4, (see the proof of Lemma 1.6.13 of [2]), there is a
map Q4 — I/1? sending a class [a®b] to ad(b) =a-1®@b—b® 1 and we see that
this map is just the map we want.

To see that the both given maps are inverse to each other, we remark that elements
of the form a ® 1 in A ® A are in the image of by, so they represent the zero class. [

I/I? has the structure of an A-module in gr(M)(A). The multiplication A x
I/1?> — I/I? is inherited by the multiplication a -« = t1(a) -« on A ® A. But on
A ® A there is also a left multiplication « - a := a - t2(a). Remark that the left- and
right multiplication induced on I/I? make I/I? an antisymmetrical A-bimodule.

Now, let R = (R, s) be a DG-object of gr(C) and suppose that all R? are finite R°-
modules. Let I C R be an ideal which is generated by a regular s-sequence X C R.
Say X = {x; : i € J}. s defines a differential § on R/I that we denote again by
5. Consider the free module [[;. ; R/Ie;, where the e; are free module generators of
degree g(x;).

Proposition 3.5.7. We can make [ [, ; R/Ie; a DG-module, by defining a differential
t in the following sense: For i € J, there is a finite family of elements a;; € R

such that s(z;) = 3_;aijz;. Now we set 6(a) = s(a), for elements a € R/I and

o(e;) == Zj aije;.
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Proof. To show that this defines a differential on [[;. ; R/Ie;, we only have to show,
that 6%(e;) = 0, for 4 € J. But, since s is a differential on R, we have

0= s*(z;) = S(Z aijr;) = > (1) aijaewy + Z s(aij)z;.

J)k J

We can reorganize the coefficients and get a sum > ;" | bz, = 0 where the zy, are
pairwise different. Remark that > 1" bgey is just 62(e;). To show that this sum is
zero, we have to show that each by belongs to I. But assume that one by, say b,
does not belong to I, then by, is a nonzero annulator of z,, in R/(x1,...,2m,_1) and
it doesn’t belong to Rx,,. This contradicts the hypothesis that X is regular. ([l

In the algebraic case, the following proposition is an immediate consequence of
condition (i) in Definition and Theorem 3.1.28.

Proposition 3.5.8. In this situation, the assignment

II r/Tex) — 1/, e(a) — z
zeX

gives rise to an isomorphism of DG-objects in gr(M)(R/I).

Proof. 1t is clear that the map commutes with the differentials.

Obviously the map is well defined and surjective. By Axiom (S2), we only have to
show that the map is injective. So let Z;’;l e;a; be an element of the kernel of this
map. Then we have Y a@;z; =0, i.e. Y a;z; € I?. We must show that all a; are ele-
ments of I. Let Y be a finite subset of X such that 3 a;x; isasum 3 oy a(yy')yy’
with a(yy’) € R. Now as in the well-known nongraded case, when we assume that one
aj, say ap, is not in I, we can deduce that a,, is a zero divisor in R/J, where J C R
is the ideal generated by Y \ z,,. This leads to a contradiction! g

The condition on A in the following corollary is something like a smoothness
condition.

Corollary 3.5.9. Suppose that all A* are finite A°-modules. If the kernel of the
multiplication map R := A ®, A — A is generated by a reqular s-sequence X in R
then there is a natural isomorphism of DG-modules in gr(M)(A)

QA/k e H AE(.’E)
zeX

Here, X denotes the reqular s-sequence in R and to x € X we have associated a free
module generator e(x) with g(e(z)) = g(x). The differential on the right is given by
the rule e(x) — Y azye(y), where for x € X the family agzy is chosen in a way such
that s(x) = > ayy and a denotes the residue class in R/(X) = A of an element a € R.

From this statement, we can deduce the corresponding simplicial statement.
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