A. Lemme, Démonstration On applique le foncteur (H 3 X, ?) ` a la suite exacte 0 ? Im(? 1 ) ? Ker

=. Im, Im(? 1 ))/j

I. Assem, Algèbres et modules, 1997.

S. Brenner and M. C. Buttler, Generalizations of the Bernstein-Gelfand-Ponomarev reflection functors, pp.103-169, 1980.
DOI : 10.1016/0021-8693(76)90184-8

M. Broué, Symmetric Algebras, dans " Introduction to Representation Theory

B. Keller, A remark on tilting theory and DG algebras, Manuscripta Mathematica, vol.569, issue.1, pp.247-253, 1993.
DOI : 10.1007/BF02568343

B. Keller, Basculement et homologie cyclique, Exposé de synthèse donné au Colloque du contact Franco-Belge, 1995.

B. Keller, Introduction to abelian and derived categories, disponible sur hhttp
DOI : 10.1017/cbo9780511600623.004

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.157.8259

S. König and A. Zimmermann, Tilting hereditary orders, Communications in Algebra, vol.142, issue.6, pp.1897-1913, 1996.
DOI : 10.1112/jlms/s2-43.1.37

S. König and A. Zimmermann, Tilting self-injective algebras and Gorenstein orders, 134 [13] S.König et A.Zimmermann, Derived equivalences for group rings, pp.351-361, 1997.

D. Passmann, A course in ring theory, 1991.
DOI : 10.1090/chel/348

I. Reinier, Maximal orders, 1975.

J. Rickard, Morita theory for derived equivalences, J. London Math. Soc, vol.39, pp.436-456, 1989.

J. Rickard, Derived categories and stable equivalence, Journal of Pure and Applied Algebra, vol.61, issue.3, pp.303-317, 1989.
DOI : 10.1016/0022-4049(89)90081-9

J. Rickard, Lifting theorems for tilting complexes, Journal of Algebra, vol.142, issue.2, pp.383-393, 1991.
DOI : 10.1016/0021-8693(91)90313-W

J. Rickard, Derived Equivalences As Derived Functors, Journal of the London Mathematical Society, vol.2, issue.1, pp.37-48, 1991.
DOI : 10.1112/jlms/s2-43.1.37

K. W. Roggenkamp, Blocks of cyclic defect and green-orders, Communications in Algebra, vol.1026, issue.6, pp.1715-1734, 1992.
DOI : 10.1017/S1446788700016761

K. W. Roggenkamp and V. Huber-dyson, Lattices over orders I, Lecture Notes in Mathematics, vol.115, 1970.

J. Rotman, Introduction to homological algebra, 1979.
DOI : 10.1007/b98977

P. Schapira, Categories and homological algebra, disponible sur http

J. L. Verdier, Catégories dérivées, Springer Lecture Notes in Mathematics, vol.4, issue.569, pp.262-311, 1977.

A. Zimmermann, Tilted symmetric orders are symmetric orders, Archiv der Mathematik, vol.73, issue.1, pp.15-17, 1999.
DOI : 10.1007/s000130050014

A. Zimmermann, Braid groups as self-equivalences of derived categories Algebra-Representation Theory, pp.419-438, 2001.