M. Du and . Hcm, Computational problems in the theory of Riemann surfaces Collaboration interdisciplinaire Il s'agit d'un travail en cours avec Denis Eckert, chargé de recherche au CNRS en géographie. Dans la mesure o` u ce travail est indépendant du reste de ce rapport, je renvoie au texte [M10] accessible sur ma page Web www.lama.univ-savoie.fr/~mangolte Cette recherche m'a amenéamenéàamenéàêtre coordinateur adjoint de l'atelier Me2S de l'ACI TTT (Terrains, Techniques, Théories) depuis, 2001.

. Mobilité, Ma??treMa??tre de conférences. Prime d'encadrement doctoral et de recherche, 1996.

S. Akbulut and H. King, Rational structures on 3-manifolds, Pacific Journal of Mathematics, vol.150, issue.2, pp.201-204, 1991.
DOI : 10.2140/pjm.1991.150.201

W. Barth, C. Peters, and A. , Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik, 1984.

A. Beauville, Surfaces Alg??briques Complexes, 1978.
DOI : 10.1007/978-3-642-11087-0_1

R. Benedetti and A. Marin, D??chirures de vari??t??s de dimension trois et la conjecture de Nash de rationalit?? en dimension trois, Commentarii Mathematici Helvetici, vol.67, issue.1, pp.514-545, 1992.
DOI : 10.1007/BF02566517

F. Bihan, Betti numbers of real numerical quintic surfaces, Amer. Math. Soc. Transl. Ser, vol.2, issue.202, pp.31-38, 2001.
DOI : 10.1090/trans2/202/04

J. Bochnak, M. Buchner, and W. Kucharz, Vector bundles over real algebraic varieties, K-Theory, vol.3, issue.3, pp.271-298, 1989.
DOI : 10.1007/BF00533373

J. Bochnak, M. Coste, and M. Roy, Real algebraic geometry, Ergeb. Math. Grenzgeb, vol.36, issue.3, 1998.
DOI : 10.1007/978-3-662-03718-8

J. Bochnak and W. Kucharz, On Real Algebraic Morphisms Into Even-Dimensional Spheres, The Annals of Mathematics, vol.128, issue.3, pp.415-433, 1988.
DOI : 10.2307/1971431

J. Bochnak, W. Kucharz, and R. Silhol, Morphisms, line bundles and moduli spaces in real algebraic geometry, Pub. Math. I.H.E.S, vol.86, 1997.

E. Borel and A. Haefliger, La classe d'homologie fondamentale d'un espace analytique, Bulletin de la Société mathématique de France, vol.79, pp.461-513, 1961.
DOI : 10.24033/bsmf.1571

F. Catanese and P. Frediani, REAL HYPERELLIPTIC SURFACES AND THE ORBIFOLD FUNDAMENTAL GROUP, Journal of the Institute of Mathematics of Jussieu, vol.2, issue.2, pp.163-233, 2003.
DOI : 10.1017/S1474748003000070

A. Comessatti, Sulla connessione delle superficie razionali reali, Annali di Matematica Pura ed Applicata, vol.VII, issue.2, pp.215-283, 1914.
DOI : 10.1007/BF02419577

A. Degtyarev and V. Kharlamov, Topological classification of real Enriques surfaces, Topology, vol.35, issue.3, pp.711-730, 1996.
DOI : 10.1016/0040-9383(95)00038-0

URL : https://hal.archives-ouvertes.fr/hal-00129701

R. Friedman and J. W. Morgan, Smooth four-manifolds and complex surfaces, Ergeb. Math. Grenzgeb, vol.27, issue.3, 1994.
DOI : 10.1007/978-3-662-03028-8

J. Huisman, Cycles on real abelian varieties, Preprint, 1994.

J. Huisman and F. Mangolte, Every orientable Seifert 3-manifold is a real component of a uniruled algebraic variety, Topology, vol.44, issue.1
DOI : 10.1016/j.top.2004.03.003

URL : https://hal.archives-ouvertes.fr/hal-00001369

I. Itenberg and V. M. Kharlamov, Towards the maximal number of components of a non-singular surface of Degree 5 in RP 3 , In : Topology of real algebraic varieties and related topics, Amer, Math. Soc. Transl. Ser. Amer. Math. Soc, vol.2, pp.173-111, 1996.

N. Joglar-prieto, Rational surfaces and regular maps into the 2- dimensional sphere Math, Z, vol.234, pp.399-405, 2000.

N. Joglar-prieto and J. Kollár, REAL ABELIAN VARIETIES WITH MANY LINE BUNDLES, Bulletin of the London Mathematical Society, vol.35, issue.01, pp.79-84, 2003.
DOI : 10.1112/S0024609302001509

N. Joglar-prieto and F. Mangolte, Real algebraic morphisms and Del Pezzo surfaces of degree $2$, Journal of Algebraic Geometry, vol.13, issue.2, pp.269-285, 2004.
DOI : 10.1090/S1056-3911-03-00344-8

URL : https://hal.archives-ouvertes.fr/hal-00001368

A. Kas, On the Deformation Types of Regular Elliptic Surfaces, 1977.
DOI : 10.1017/CBO9780511569197.008

V. Kharlamov, Variétés de Fano réelles, Sém, p.872, 1999.

J. Kollár, The Nash conjecture for threefolds, ERA of AMS, vol.4, pp.63-73, 1998.

J. Kollár, The topology of real and complex algebraic varieties, Taniguchi Conference on Mathematics Nara '98, Adv. Stud. Pure Math. Math. Soc. Japan, vol.31, pp.127-145, 2001.

W. Kucharz, Algebraic Equivalence and Homology Classes of Real Algebraic Cycles, Mathematische Nachrichten, vol.79, issue.1, pp.135-140, 1996.
DOI : 10.1002/mana.3211800108

W. Kucharz, Algebraic morphisms into rational real algebraic surfaces, J. Algebraic Geometry, vol.8, pp.569-579, 1999.

W. Kucharz, Algebraic equivalence of real divisors, Max-Planck-Institut für Mathematik, Preprint Series, p.61, 2000.

F. Mangolte, Une surface réelle de degré 5 dont l'homologie est entì erement engendrée par des cycles algébriques, C. R. Acad. Sci, vol.318, pp.343-346, 1994.

F. Mangolte, Cycles alg??briques sur les surfaces K3 r??elles, Mathematische Zeitschrift, vol.225, issue.4, pp.559-576, 1997.
DOI : 10.1007/PL00004321

URL : http://arxiv.org/abs/alg-geom/9506016

F. Mangolte and J. Van-hamel, Algebraic cycles and topology of real Enriques surfaces, Compositio Math, pp.215-237, 1998.

F. Mangolte, Surfaces elliptiques r??elles et in??galit?? de Ragsdale-Viro, Mathematische Zeitschrift, vol.235, issue.2, pp.213-226, 2000.
DOI : 10.1007/s002090000132

F. Mangolte, Cycles alg??briques et topologie des surfaces bielliptiques, r??elles, Commentarii Mathematici Helvetici, vol.78, issue.2, pp.385-393, 2003.
DOI : 10.1007/s000140300016

G. Mikhalkin, Blowup equivalence of smooth closed manifolds, Topology, vol.36, issue.1, pp.287-299, 1997.
DOI : 10.1016/0040-9383(95)00062-3

J. Nash, Real Algebraic Manifolds, The Annals of Mathematics, vol.56, issue.3, pp.405-421, 1952.
DOI : 10.2307/1969649

S. Yu and . Orevkov, Real quintic surface with 23 components, C. R. Acad. Sci. Paris Sér. I Math, vol.333, pp.115-118, 2001.

P. Scott, The Geometries of 3-Manifolds, Bulletin of the London Mathematical Society, vol.15, issue.5, pp.401-487, 1983.
DOI : 10.1112/blms/15.5.401

G. Shimura, Introduction to the arithmetic theory of automorphic functions, 1971.

T. Shioda, On elliptic modular surfaces, Journal of the Mathematical Society of Japan, vol.24, issue.1, pp.20-59, 1972.
DOI : 10.2969/jmsj/02410020

R. Silhol, Real algebraic surfaces with rational or elliptic fiberings, Mathematische Zeitschrift, vol.171, issue.4, pp.465-499, 1984.
DOI : 10.1007/BF01162775

R. Silhol, Real Algebraic Surfaces, Lecture Notes in Math, vol.1392, 1989.
DOI : 10.1007/BFb0088815

R. Silhol, Compactifications of moduli spaces in real algebraic geometry, Inventiones Mathematicae, vol.5, issue.1, pp.151-202, 1992.
DOI : 10.1007/BF01231886

J. Van-hamel, Algebraic cycles and topology of real algebraic varieties, CWI TRACT 129, 2000.

J. Welschinger, Real structures on minimal ruled surfaces, Commentarii Mathematici Helvetici, vol.78, issue.2, pp.418-446, 2003.
DOI : 10.1007/s000140300018

URL : https://hal.archives-ouvertes.fr/hal-00012416

H. G. Zeuthen, Sur les différentes formes des courbes duquatrì eme ordre, Math. Ann, vol.7, pp.410-432, 1874.