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Introduction

The main goal of operations research is to model real-life situations where some decisions
have to be taken and help to identify the best one(s). One may for example want to choose
between several available alternatives, tune numerical parameters in an engineering design or
schedule the use of machines in a factory.

The concept ofbest decisiondepends of course on the problem considered and is not easy
to de¯ne mathematically. The most common way to do this is to describe a decision as a set of
parameters calleddecision variables, and try to minimize (or maximize) an objective function
depending on these variables. This function may for example compute the cost associated
to the decision. Moreover, we are most of the time in a situation where some combinations
of parameters are not allowed (e.g. physical dimensions cannot be negative, a system must
satisfy some performance requirements,: : :), which leads us to consider a set of constraints
acting on the decision variables.

Optimization is the ¯eld of mathematics whose goal is to minimize or maximize an
objective function depending on several decision variables under a set of constraints. The
main topic of thesis is a special category of optimization problems calledconvex optimization1.

Why convex optimization ?

A fundamental di±culty in optimization is that it is not possible to solve all problems ef-
¯ciently. Indeed, it is shown in [Nes96] that a hypothetical method that would be able to

1This class of problems is sometimes calledconvex programming in the literature. However, following other
authors [RTV97, Ren00], we prefer to use the more natural word \optimization" since the term \programming"
is nowadays strongly connected to computer science. The same treatment will be applied to the other classes
of problems that will be considered in this thesis, such as linear optimization, geometric optimization, etc.

1



2 Introduction

handle all optimization problems would require at least 1020 operations to solve with 1%
accuracy some problems involving only 10 variables. There are basically two fundamentally
di®erent ways to react to this distressing fact:

a. Ignore it, i.e. design a method that can potentially solve all problems. Because of the
above-mentioned result, it will be slow (or fail) on some problems, but hopefully will
be e±cient on most real-world problems we are interested in. This is the approach that
generally prevails in the ¯eld of nonlinear optimization .

b. Restrict the set of problems that the method is supposed to solve. The goal is then to
design a provably e±cient method that is able to solve this restricted class of problems.
This is for example the approach taken inlinear optimization , where one requires the
objective function and the constraints to be linear.

Each of these two approaches has its advantages and drawbacks. The major advantage of the
¯rst approach is its potentially very wide applicability, but this is counterbalanced by a less
e±cient analysis of the behaviour of the corresponding algorithms. In more technical terms,
methods in ¯rst approach can usually only be proven to converge to an optimum (in some
weak sense), while one can usually estimate the e±ciency of methods designed for special
categories of problems, i.e. bound the number of arithmetic operations they need to attain
an optimum with a given accuracy. This is what led us to focus our research for this thesis
on that second approach.

The next relevant question that has to be answered consists in asking ourselves which
classes of problems we are going to study. It is rather clear that there is a tradeo® between
generality and algorithmic e±ciency: the more general your problem, the less e±cient your
methods. Linear optimization is in this respect an extreme case: it is a very particular (yet
useful) type of problem for which very e±cient algorithms are available (see Chapter 1).

However, some problems simply cannot be formulated within the framework of linear
programs, which led us to consider a much broader class of problems calledconvex optimiza-
tion. Basically, a problem belongs to this category if its objective function is convex and its
constraints de¯ne a feasible convex set. As we will see in Chapter 2, very e®ective methods
are available to solve these problems.

Unfortunately, checking that a given optimization problem is convex is far from straight-
forward (and it might even be more di±cult than solving the problem itself). We have
therefore to consider problems that are designed in a way that guarantees them to be convex.
This is done by using speci¯c classes of objective functions and constraints, and is called
structured convex optimization. This is the central topic of this thesis, which is treated in
Chapters 3{8.

To conclude, we mention that although it is not possible to model all problems of interest
with a convex formulation, one can do it in a surprisingly high number of situations, either
directly or using a equivalent reformulation. The reward for the added work of formulating
the problem as a structured convex optimization problem is the great e±ciency of the methods
that can be then applied to it.
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Overview of the thesis

We give here a short introduction to the research work presented in this thesis, which consists
in three parts (we however refer the reader to the abstract and the introductory section placed
at the beginning of each chapter for more detailed comments).

a. Interior-point methods . This ¯rst part deals with algorithms. We start with the
case of linear optimization, for which an e±cient method is known since the end of the
¯fties: the simplex method [Dan63]. However, another class of algorithms that could
rival the simplex method was introduced in 1984 [Kar84]: the so-calledinterior-point
methods, which are surveyed in Chapter 1 (this Chapter was published in [Gli98a], which
is a translated and reworked version of [Gli97]). These methods can be generalized to
handle any type of convex problems, provided a suitable barrier function is known. This
is the topic of Chapter 2 [Gli00d], which gives a self-contained overview of the theory
of self-concordant barriers for structured convex optimization [NN94].

b. Conic duality . The second part of this thesis is devoted to the study of duality issues
for several classes of convex optimization problems. We ¯rst present in Chapter 3 conic
optimization, a framework to describe convex optimization problems based on the use
of convex cones. Convex problems expressed in this fashion feature a very symmetric
duality theory, which is also presented in this Chapter. This setting is used in Chapters 4
[GT00] and 5 [Gli99], where we describe and study two classes of structured convex
optimization problems known as lp-norm optimization and geometric optimization.

The approach used in these two chapters is very similar: we ¯rst de¯ne a suitable convex
cone that allows us to express our problem with a conic formulation. The properties of
this cone are then studied, which allows us to formulate the dual problem. One can then
apply the conic duality theory described in Chapter 3 to give simpli¯ed proofs of all the
duality properties that relate these primal and dual problems. Chapter 4 also presents
a polynomial-time algorithm for lp-norm optimization using a suitable self-concordant
barrier and the results of Chapter 2.

Despite some similarities, the convex cones introduced in Chapters 4 and 5 do not share
the same structure. The goal of Chapter 6 [Gli00b] is to provide a di®erent convex cone
for geometric optimization that is more amenable to a common generalization with the
cone for lp-norm optimization presented in Chapter 4. This generalization is the topic
of Chapter 7, which presents a very large class of so-calledseparableconvex cones that
uni¯es our formulations for geometric and lp-norm optimization, as well as allowing the
modelling of several others classes of convex problems.

c. Approximations . The last part of this thesis deals with various approximations of
convex problems. Chapter 8 [Gli00a] uncovers an additional connection between geo-
metric and lp-norm optimization by showing that the former can be approximated by
the latter. Basically, we are able to associate to a geometric optimization problem a
family of lp-norm optimization problems whose optimum solutions tend to the optimal
solution of the original geometric problem. This also allows us to derive the duality
properties of geometric optimization in a di®erent way. Finally, Chapter 9 [Gli00c]
presents computational experiments conducted with the polyhedral approximation of
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the second-order cone presented in [BTN98]. This leads to a linearizing scheme that
allows any second-order cone problem to be solved up to an arbitrary accuracy using
linear optimization.
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INTERIOR-POINT METHODS
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CHAPTER1

Interior-point methods for linear optimization:
a guided tour

The purpose of mathematical optimization is to minimize (or maximize) a function
of several variables under a set of constraints. This is a very important problem
arising in many real-world situations (e.g. cost or duration minimization).

When the function to optimize and its associated set of constraints are linear, we
talk about linear optimization . The simplex algorithm , �rst developed by Dantzig
in 1947, is a very ef�cient method to solve this class of problems [Dan63]. It
has been thoroughly studied and improved since its �rst appearance, and is
now widely used in commercial software to solve a great variety of problems
(production planning, transportation, scheduling, etc.).

However, Karmarkar introduced in 1984 a new class of methods: the so-called
interior-point methods [Kar84]. Most of the ideas underlying these new meth-
ods originate from the nonlinear optimization domain. These methods are both
theoretically and practically ef�cient, can be used to solve large-scale problems
and can be generalized to other types of convex optimization problems.

The purpose of this chapter is to give an overview of this rather new domain,
providing a clear and understandable description of these methods, both from
a theoretical and a practical point of view. This will provide a basis for the
following chapters, which will present our contributions to the �eld.

7



8 1. Interior-point methods for linear optimization

1.1 Introduction

In this section, we present the standard formulations of a linear program and give a brief
overview of the main di®erences between the simplex method, the traditional approach to
solve these problems, and the recently developed class of interior-point methods, as well as a
short historical account.

1.1.1 Linear optimization

The purpose of linear optimization is to optimize a linear objective function f depending on
n decision variables under a set of linear (equality or inequality) constraints, which can be
mathematically stated as (using matrix notation)

min
x2 Rn

f (x) = cT x s.t.
½

Aex = be

A i x ¸ bi
; (1.1)

where vector x contains the n decision variables, vectorc de¯nes the objective function and
pairs (Ae; be) and (A i ; bi ) de¯ne the me equality and mi inequality constraints. Column
vectors x and c have sizen, column vectors be and bi have sizeme and mi and matrices Ae

and A i have dimensionsme £ n and mi £ n.

Many linear programs have simpler inequality constraints, e.g. nonnegativity constraints
(x ¸ 0) or bound constraints (l · x · u). The linear optimization standard form is a special
case of linear program used for most theoretical developments of interior-point methods:

min
x2 Rn

cT x s.t.
½

Ax = b
x ¸ 0

: (1.2)

The only inequality constraints in this format are nonnegativity constraints for all variables,
i.e. there are nofree variables (we have thus that mi is equal to n, A i is the identity matrix
and bi is the null vector). It is furthermore possible to show that every linear program
in the general form (1.1) admits an equivalent program in the standard form, obtainable
by adding/removing variables/constraints (by equivalent problem, we mean that solving the
transformed problem allows us to ¯nd the solution of the original one).

1.1.2 The simplex method

The set of all x satisfying the constraints in (1.2) is a polyhedron in Rn . Since the objective
is linear, parallel hyperplanes orthogonal toc are constant-cost sets and the optimal solution
must be at one of the vertices of the polyhedron (it is also possible that a whole face of
the polyhedron is optimal or that no solution exists, either because the constraints de¯ning
the polyhedron are inconsistent or because it is unbounded in the direction of the objective
function).

The main idea behind thesimplex methodis to explore these vertices in an iterative way,
moving from the current vertex to an adjacent one that improves the objective function value.
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This is done using an algebraic characterization of a vertex called abasis. When such a move
becomes impossible to make, the algorithm stops. Dantzig proved that this always happens
after a ¯nite number of moves, and that the resulting vertex is optimal [Dan63].

1.1.3 A ¯rst glimpse on interior-point methods

We are now able to give a ¯rst description of interior-point methods. As opposed to the
simplex method which uses vertices, these methods start with a point that liesinside the set
of feasible solutions. Using the standard form notation (1.2), we de¯ne the feasible setP to
be the set of vectorsx satisfying the constraints, i.e.

P = f x 2 Rn j Ax = b and x ¸ 0g ;

and the associated setP+ to be the subset ofP satisfying strict nonnegativity constraints

P+ = f x 2 Rn j Ax = b and x > 0g :

P+ is called the strictly feasible set1 and its elements are calledstrictly feasible points.

Interior-point methods are iterative methods that compute a sequence of iterates be-
longing to P+ and converging to an optimal solution. This is completely di®erent from the
simplex method, where anexact optimal solution is obtained after a ¯nite number of steps.
Interior-point iterates tend to an optimal solution but never attain it (since the optimal so-
lutions do not belong to P+ but to P n P+ ). This apparent drawback is not really serious
since

¦ Most of the time, an approximate solution (with e.g. 10¡ 8 relative accuracy) is su±cient
for most purposes.

¦ A rounding procedure can convert a nearly optimal interior point into an exact optimal
vertex solution (see e.g. [RTV97]).

Another signi¯cant di®erence occurs when an entire face ofP is optimal: interior-point
methods converge to the interior of that face while the simplex method ends on one of its
vertices.

The last di®erence we would like to point out at this stage is about algorithmic complexity.
While the simplex method may potentially make a number of moves that grows exponentially
with the problem size [KM72], interior-point methods need a number of iterations that is
polynomially bounded by the problem size to attain a given accuracy. This property is with
no doubt mainly responsible for the huge amount of research that has been carried out on
the topic of interior-point methods for linear optimization.

1.1.4 A short historical account

The purpose of this paragraph is not to be exhaustive but rather to give some important
milestones in the development of interior-point methods.

1P + is in fact the relative interior of P , see [Roc70a].
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First steps of linear optimization.

1930{1940. First appearance of linear optimization formulations.
1939{1945. Second World War: operations research makes its debuts with mili-

tary applications.
1947. Georges B. Dantzig publishes the ¯rst article about the simplex

method for linear optimization [Dan63].
1970. V. Klee and G. Minty prove that the simplex method has exponential

worst-case complexity [KM72].

First steps of interior-point methods.

1955. K. R. Frisch proposes abarrier method to solve nonlinear programs [Fri55].
1967. P. Huard introduces the method of centersto solve problems with nonlinear

constraints [Hua67].
1968. A. V. Fiacco and G. P. McCormick develop barrier methods for convex

nonlinear optimization [FM68].
1978. L. G. Khachiyan applies the ellipsoid method (developed by N. Shor in 1970

[Sho70]) to linear optimization and proves that it is polynomial [Kha79].

It is important to note that these barrier methods were developed as methods for nonlinear
optimization. Although they are applicable to linear optimization, their authors do not
consider them as viable competitors to the simplex method. We also point out that the
complexity advantage of the ellipsoid method over the simplex algorithm is only of theoretical
value, since the ellipsoid method turns out to be very slow in practice2.

The interior-point revolution.

1984. N. Karmarkar discovers a polynomial interior-point method that is prac-
tically more e±cient than the ellipsoid method. He also claims superior
performance compared to the simplex method [Kar84].

1994. Y. Nesterov and A. Nemirovski publish a monograph on polynomial
interior-point methods for convex optimization [NN94].

2000. Since Karmarkar's ¯rst breakthrough, more than 3000 articles have been
published on the topic of interior point methods. A few textbooks have been
published (see e.g. [Wri97, RTV97, Ye97]). Research is now concentrating
on nonlinear optimization, especially on convex optimization.

Karmarkar's algorithm was not competitive with the best simplex implementations, especially
on small-scale problems, but his announcement concentrated a stream of research on the topic.

2The simplex method only shows an exponential complexity on some hand-crafted linear programs and
is much faster on real-world problems, while the ellipsoid method always achieves its worst-case polynomial
number of iterations, which turns out to be slower than the simplex method.
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We also point out that Khachiyan's method is not properly speaking the ¯rst polynomial
algorithm for linear optimization, since Fiacco and McCormick's method has been showna
posteriori to be polynomial by Anstreicher [Ans90].

1.2 Building blocks

In this section, we are going to review the di®erent concepts needed to get a correct under-
standing of interior-point methods. We start with the very well studied notion of duality for
linear optimization (see e.g. [Sch86]).

1.2.1 Duality

Let us state again the standard form of a linear program

min
x2 Rn

cT x s.t.
½

Ax = b
x ¸ 0

: (LP)

Using the same data (viz. A, b and c) it is possible to describe another linear program

max
y2 Rm

bT y s.t.
½

AT y · c
y is free

: (LD')

As we will see later, this program is closely related to (LP) and is called thedual of LP (which
will be called primal program). It is readily seen that this program may also be written as

max
y2 Rm ;s2 Rn

bT y s.t.
½

AT y + s = c
s ¸ 0 and y free

: (LD)

This extra slack vector s will prove useful in simplifying our notation and we will therefore
mainly use this formulation of the dual. We also de¯ne the dual feasible and strictly feasible
setsD and D+ in a similar fashion to the setsP and P+

D =
©

(y; s) j AT y + s = c and s ¸ 0
ª

;

D+ =
©

(y; s) j AT y + s = c and s > 0
ª

:

From now on, we will assume that matrix A has full row rank, i.e. that its rows are linearly
independent3. Because of the equationAT y + s = c, this implies a one-to-one correspondence
between they and s variables in the dual feasible set. In the following, we will thus refer to
either (y; s), y or s as the dual variables.

We now state various important facts about duality:

3This is done without loss of generality: if a row of A is linearly dependent on some other rows, we have
that the associated constraint is either redundant (and can be safely ignored) or impossible to satisfy (leading
to an infeasible problem), depending on the value of the right-hand side vector b.
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¦ If x is feasible for (LP) and (y; s) for (LD), we have bT y · cT x. This means that
any feasible point of (LD) provides a lower bound for (LP) and that any feasible point
of (LP) provides an upper bound for (LD). This is the weak duality property. The
nonnegative quantity cT x ¡ bT y is called the duality gap and is equal toxT s.

¦ x and (y; s) are optimal for (LP) and (LD) if and only if the duality gap is zero. This
is the strong duality property. This implies that when both problems have optimal
solutions, their objective values are equal. In that case, sincexT s = 0 and x ¸ 0, s ¸ 0,
we have that all products x i si must be zero, i.e. at least one ofx i and si is zero for each
i (this is known as complementary slackness).

¦ One of the following three situations occurs for problems (LP) and (LD)

a. Both problems have ¯nite optimal solutions.

b. One problem is unbounded (i.e. its optimal value is in¯nite) and the other one is
infeasible (i.e. its feasible set is empty). In fact, the weak duality property is easily
seen to imply that the dual of an unbounded problem cannot have any feasible
solution.

c. Both problems are infeasible.

This result is known as the fundamental theorem of duality.

Let us point out that it is possible to generalize most of these duality results to the class of
convex optimization problems (see Chapter 3).

1.2.2 Optimality conditions

Karush-Kuhn-Tucker (KKT) conditions are necessary optimality conditions pertaining to
nonlinear constrained optimization with a di®erentiable objective. Moreover, they are su±-
cient when the problem is convex, which is the case for linear optimization. For problem (LP)
they lead to the following system

x is optimal for (LP) , 9 (z; t) s.t.

8
>><

>>:

Ax = b
AT z + t = c

x i t i = 0 8i
x and t ¸ 0

: (KKT)

The second equation has exactly the same structure as the equality constraint for the dual
problem (LD). Indeed, if we identify z with y and t with s we ¯nd

x is optimal for (LP) , 9 (y; s) s.t.

8
>><

>>:

Ax = b
AT y + s = c

x i si = 0 8i
x and s ¸ 0

:

Finally, using the de¯nitions of P and D and the fact that when u and v are nonnegative

ui vi = 0 8i ,
X

i

ui vi = 0 , uT v = 0
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we have

x is optimal for (LP) , 9 (y; s) s.t.

8
<

:

x 2 P
(y; s) 2 D

xT s = 0
:

This is in fact a con¯rmation of the strong duality theorem, revealing the deep connections
between a problem and its dual: a necessary and su±cient condition for the optimality of a
feasible primal solution is the existence of a feasible dual solution with zero duality gap (i.e.
the same objective value).

Similarly, applying the KKT conditions to the dual problem would lead exactly to the
same set of conditions, requiring the existence of a feasible primal solution with zero duality
gap.

1.2.3 Newton's method

The fact that ¯nding the optimal solution of a linear program is completely equivalent to
solving the KKT conditions may suggest the use of a general method designed to solve systems
of nonlinear equations4. The most popular of these methods is theNewton's method, whose
principle is described in the following paragraph.

Let F : Rn 7! Rn be a di®erentiable nonlinear mapping. Newton's method is an iterative
process aiming to ¯nd an x 2 Rn such that F (x) = 0. For each iterate xk , the method
computes a ¯rst-order approximation to F around xk and setsxk+1 to the zero of this linear
approximation. Formally, if J is the Jacobian ofF (assumed to be nonsingular), we have

F (xk + ¢ xk ) ¼ F (xk ) + J (xk )¢ xk

and the Newton step ¢xk is chosen such that this linear approximation is equal to zero:
we let thus xk+1 = xk + ¢ xk where5 ¢ xk = ¡ J (xk )¡ 1F (xk ). Convergence to a solution is
guaranteed if the initial iterate x0 lies in a suitable neighbourhood of one of the zeros ofF .

Newton's method is also applicable to minimization problems in the following way: let
g : Rn 7! R be a function to minimize. We form a second-order approximation tog(x) around
xk , namely

g(xk + ¢ xk ) ¼ g(xk ) + r g(xk )T ¢ xk +
1
2

¢ xk
T r 2g(xk )¢ xk :

If the Hessian r 2g(xk ) is positive de¯nite, which happens when g is strictly convex, this
approximation has a unique minimizer, which we take as next iterate. It is de¯ned by ¢xk =
¡r 2g(xk )¡ 1r g(xk ), which leads to a method that is basically equivalent to applying Newton's
method to the gradient-based optimality condition r g(x) = 0.

One problem with the application of Newton's method to the resolution of the KKT
conditions is the nonnegativity constraints on x and s, which cannot directly be taken into

4Strictly speaking, the ¯rst two conditions are linear while only the x i si = 0 equations are nonlinear. The
nonnegativity constraints are not equations and cannot be handled by such a method.

5Computation of ¢ xk is usually done with the linear system J (xk )¢ xk = ¡ F (xk ) rather than computing
explicitly J (xk )'s inverse.
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account via the mapping F . One way of incorporating these constraints is to use abarrier
term, as described in the next paragraph.

1.2.4 Barrier function

A barrier function Á : R+ 7! R is simply a di®erentiable function such that limx! 0+ Á(x) =
+ 1 . Using such a barrier, it is possible to derive a parameterized family of unconstrained
problems from an inequality-constrained problem in the following way

min
x2 Rn

f (x) s.t. gi (x) ¸ 0 8i (G)

! min
x2 Rn

f (x) + ¹
X

i

Á(gi (x)) ; (G¹ )

where¹ 2 R+ . The purpose of the added barrier term is to drive the iterates generated by an
unconstrained optimization method away from the infeasible zone (where one or moregi 's are
negative). Of course, we should not expect the optimal solutions to (G¹ ) to be equal to those
of (G). In fact each value of ¹ gives rise to a di®erent problem (G¹ ) with its own optimal
solutions.

However, if we solve a sequence of problems (G¹ ) with ¹ decreasing to zero, we might
expect the sequence of optimal solutions we obtain to converge to the optimum of the original
problem (G), since the impact of the barrier term is less and less signi¯cant compared to the
real objective function. The advantage of this procedure is that each optimal solution in the
sequence will satisfy the strict inequality constraints gi (x) > 0, leading to a feasible optimal
solution to (G) 6.

The application of this technique to linear optimization will lead to a fundamental notion
in interior-point methods: the central path.

1.2.5 The central path

Interior-point researchers use the following barrier function, called thelogarithmic barrier :

Á(x) = ¡ log(x) :

Using Á, let us apply a barrier term to the linear optimization problem (LP)

min
x2 Rn

cT x ¡ ¹
X

i

log(x i ) s.t.
½

Ax = b
x > 0

(P¹ )

and to its dual (LD) (since it is a maximization problem, we have to subtract the barrier
term)

max
y2 Rm

bT y + ¹
X

i

log(si ) s.t.
½

AT y + s = c
s > 0 and y free

: (D ¹ )

6The notion of barrier function was ¯rst investigated in [Fri55, FM68].
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It is possible to prove (see e.g. [RTV97]) that both of these problems have unique optimal
solutions x¹ and (y¹ ; s¹ ) for all ¹ > 0 if and only if both P+ and D+ are nonempty7. In that
case, we call the sets of optimal solutionsf x¹ j ¹ > 0g ½ P+ and f (y¹ ; s¹ ) j ¹ > 0g ½ D+

respectively the primal and dual central paths. These parametric curves have the following
properties:

¦ The primal (resp. dual) objective value cT x (resp. bT y) is monotonically decreasing
(resp. increasing) along the primal (resp. dual) central path when¹ ! 0.

¦ The duality gap cT x¹ ¡ bT y¹ for the primal-dual solution ( x¹ ; y¹ ; s¹ ) is equal to n¹ .
For this reason, ¹ will be called the duality measure. When a point (x; y; s) does not
lie exactly on the central path, we can compute its estimated duality measure using
¹ = ( cT x ¡ bT y)=n.

¦ The limit points x¤ = lim ¹ ! 0 x¹ and (y¤; s¤) = lim ¹ ! 0(y¹ ; s¹ ) exist and hence are
optimal solutions to problems (LP) and (LD) (because we havecT x¤ ¡ bT y¤ = 0).
Moreover, we have that x¤ + s¤ > 0, i.e. this optimal pair is strictly complementary 8.

1.2.6 Link between central path and KKT equations

To conclude this section we establish a link between the central path and the KKT equations.
Applying the general KKT conditions to either problem (P ¹ ) or (D ¹ ) we ¯nd the following
necessary and su±cient conditions

8
>><

>>:

Ax = b
AT y + s = c

x i si = ¹ 8i
x and s > 0

,

8
<

:

x 2 P +

(y; s) 2 D +

x i si = ¹ 8i
: (KKT ¹ )

This system is very similar to the original KKT system, the only di®erence being the
right-hand side of the third condition and the strict inequalities. This means in fact that
the points on the central path satisfy a slightly perturbed version of the optimality KKT
conditions for (LP) and (LD).

We now have all the tools we need to give a description of interior-point methods for
linear optimization.

1.3 Interior-point algorithms

Since Karmarkar's breakthrough, many di®erent interior-point methods have been developed.
It is important to note that there exists in fact a whole collection of methods, sharing the
same basic principles but whose individual characteristics may vary a lot.

7This condition is known as the interior-point condition .
8For optimal solutions ( x; s) we always have x i si = 0, i.e. at least one of x i and si is zero. In the case of a

strictly complementary solution, exactly one of x i and si is zero.
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Among the criteria that are commonly used to classify the methods, we have

¦ Iterate space . A method is said to be primal, dual or primal-dual when its iterates
belong respectively to the primal space, the dual space or the Cartesian product of these
spaces.

¦ Type of iterate . A method is said to be feasible when its iterates are feasible, i.e.
satisfy both the equality and nonnegativity constraints. In the case of an infeasible
method, the iterates need not satisfy the equality constraints, but are still required to
satisfy the nonnegativity conditions.

¦ Type of algorithm . This is the main di®erence between the methods. Although
the denominations are not yet fully standardized, we will distinguish path-following
algorithms, a±ne-scaling algorithms and potential reduction algorithms. Sections 1.3.1,
1.3.2 and 1.3.3 will describe these three types of algorithms with more detail.

¦ Type of step . In order to preserve their polynomial complexity, some algorithms are
obliged to take very small steps at each iteration, leading to a high total number of
iterations when applied to practical problems9. These methods are calledshort-step
methods and are mainly of theoretical interest. Thereforelong-stepmethods, which are
allowed to take much longer steps, have been developed and are the only methods used
in practice.

It is not our purpose to give an exhaustive list of all the methods that have been developed
up to now, but rather to present some representative algorithms, highlighting their underlying
principles.

1.3.1 Path-following algorithms

We start with the most elegant category of methods, the path-following algorithms. As
suggested by their denomination, the main idea behind these methods is to follow the central
path up to its limit point. One could imagine the following naive conceptual algorithm (at
this point, we want to keep generality and do not specify whether our method is primal, dual
or primal-dual)

Given an initial iterate v0 and a sequence of duality measures monotonically
decreasing to zero:¹ 1 > ¹ 2 > ¹ 3 > : : : > 0 and limk! 0 ¹ k = 0.

Repeat for k = 0 ; 1; 2; : : :

Using vk as starting point, compute vk+1 , the point on the central path with a
duality measure equal to¹ k+1 .

End

9Please note that this is not in contradiction with the fact that this number of iterations is polynomially
bounded by the size of the problem. This may simply mean that the polynomial coe±cients are large.
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It is clear from this scheme that vk will tend to the limit point of the central path, which
is an optimal solution to our problem.

However, the determination of a point on the central path requires the solution of a
minimization problem like (P ¹ ) or the (KKT ¹ ) conditions, which potentially implies a lot of
computational work. This is why path-following interior-point methods only try to compute
points that are approximately on the central path, hopefully with much less computational
work, and will thus only loosely follow the central path. Our conceptual algorithm becomes

Given an initial iterate v0 and a sequence of duality measures monotonically
decreasing to zero:¹ 1 > ¹ 2 > ¹ 3 > : : : > 0 and limk! 0 ¹ k = 0.

Repeat for k = 0 ; 1; 2; : : :

Using vk as starting point, compute vk+1 , an approximation of the point on the
central path with a duality measure equal to ¹ k+1 .

End

The main task in proving the convergence and complexity of these methods will be to assess
how well we approximate our targets on the central path (i.e. how close to the central path
we stay).

Short-step primal-dual path-following algorithm

This speci¯c algorithm is a primal-dual feasible method, which means that all the iterates lie
in P+ £ D + . Let (xk ; yk ; sk ) be the current iterate with duality measure ¹ k . We also suppose
that this iterate is close to the point ( x¹ k ; y¹ k ; s¹ k ) on the central path. To compute the
next iterate, we target (x¹ k +1 ; y¹ k +1 ; s¹ k +1 ), a point on the central path with a smaller duality
measure¹ k+1 (thus closer to the optimal limit point). The main two characteristics of the
short-step method are

¦ The duality measure of the point we target is de¯ned by ¹ k+1 = ¾¹k where ¾ is a
constant strictly between 0 and 1.

¦ The next iterate will be computed by applying one singleNewton step to the perturbed
primal-dual conditions (KKT ¾¹k ) de¯ning our target on the central path 10

8
<

:

Ax = b
AT y + s = c

x i si = ¾¹k 8i
: (1.3)

Formally, we have presented Newton's method as a way to ¯nd a root of a functionF and
not as a way to solve a systems of equations, so that we have ¯rst to de¯ne a function whose
roots are solution of the system (1.3). Indeed, considering

Fk : R2n+ m 7! R2n+ m :

0

@
xk

yk

sk

1

A 7!

0

@
Ax k ¡ b

AT yk + sk ¡ c
X kSke¡ ¾¹ke

1

A ;

10 Note that we have to ignore the nonnegativity conditions for the moment.
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where e stands for the all-one vector andX k and Sk are diagonal matrices made up with
vectors xk and sk (these notations are standard in the ¯eld of interior-point methods), we
¯nd that the Newton step we take is de¯ned by the following linear system

0

@
0 AT I
A 0 0
Sk 0 X k

1

A

0

@
¢ xk

¢ yk

¢ sk

1

A =

0

@
0
0

¡ X kSke+ ¾¹ke

1

A : (1.4)

This leads to the following algorithm

Given an initial iterate ( x0; y0; s0) 2 P + £ D + with duality measure ¹ 0 and a
constant 0 < ¾ < 1.

Repeat for k = 0 ; 1; 2; : : :

Compute the Newton step (¢xk ; ¢ yk ; ¢ sk ) using the linear system (1.4).

Let (xk+1 ; yk+1 ; sk+1 ) = ( xk ; yk ; sk ) + (¢ xk ; ¢ yk ; ¢ sk ) and ¹ k+1 = ¾¹k .

End

We now sketch a proof of the correctness of this algorithm. For our path-following
strategy to work, we have to ensure that our iterates (xk ; yk ; sk ) stay close to the points
(x¹ k ; y¹ k ; s¹ k ) on the central path, which guide us to an optimal solution. For this purpose
we de¯ne a quantity that measures the proximity between a strictly feasible iterate (x; y; s) 2
P+ £ D + and the central point (x¹ ; y¹ ; s¹ ). Since the main property of this central point is
x i si = ¹ 8i , which is equivalent to11 xs = ¹e , the following measure (see e.g. [Wri97])

±(x; s; ¹ ) =
1
¹

kxs ¡ ¹e k =

°
°
°
°

xs
¹

¡ e

°
°
°
°

seems adequate: it is zero if and only if (x; y; s) is equal to (x¹ ; y¹ ; s¹ ) and increases as we move
away from this central point. It is also interesting to note that the size of a neighbourhood
de¯ned by ±(x; s; ¹ ) < R decreases with¹ , because of the leading term1

¹ .

Another possibility of proximity measure with the same properties is

±(x; s; ¹ ) =
1
2

°
°
°
°

r
xs
¹

¡

r
¹
xs

°
°
°
°

where the square roots are taken componentwise (see [RTV97]).

The proof has the following steps [RTV97, Wri97]

a. Strict Feasibility . Prove that strict feasibility is preserved by the Newton step: if
(xk ; yk ; sk ) 2 P + £D + , we have (xk+1 ; yk+1 ; sk+1 ) 2 P + £D + . We have to be especially
careful with the strict nonnegativity constraints, since they are not taken into account
by Newton's method.

11 xs denotes here the componentwise product of vectorsx and s.
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b. Duality measure . Prove that the target duality measure is attained after the Newton
step: if (xk ; yk ; sk ) has a duality measure equal to¹ k , the next iterate ( xk+1 ; yk+1 ; sk+1 )
has a duality measure equal to¾¹k

c. Proximity . Prove that proximity to the central path targets is preserved: there is
a constant ¿ such that if ±(xk ; sk ; ¹ k ) < ¿ , we have ±(xk+1 ; sk+1 ; ¹ k+1 ) < ¿ after the
Newton step.

Adding the additional initial assumption that ±(x0; s0; ¹ 0) < ¿ , this is enough to prove that
the sequence of iterates will stay in a prescribed neighbourhood of the central path and will
thus (approximately) converge to its limit point, which is a (strictly complementary) optimal
solution. The last delicate question is to choose a suitable combination of constants¾and ¿
that allows us to prove the three statements above. For the ¯rst duality measure we presented
the following values are acceptable (see [Wri97])

¾= 1 ¡
0:4
p

n
and ¿ = 0 :4 ;

where n stands for the size of vectorsx and s as usual, while for the second measure we may
choose (see [RTV97])

¾= 1 ¡
1

2
p

n
and ¿ =

1
p

2
:

To conclude this description, we specify how the algorithm terminates. Given an accuracy
parameter " , we stop our computations when the duality gap falls below", which happens
when n¹ k < " . This guarantees that cT x and bT y approximate the true optimal objective
value with an error smaller than " . We now state this algorithm in its ¯nal form:

Given an initial iterate ( x0; y0; s0) 2 P + £ D + with duality measure ¹ 0, an accu-
racy parameter " and suitable constants 0< ¾ < 1 and ¿ such that ±(x0; y0; s0) <
¿.

Repeat for k = 0 ; 1; 2; : : :

Compute the Newton step (¢xk ; ¢ yk ; ¢ sk ) using the linear system (1.4).

Let (xk+1 ; yk+1 ; sk+1 ) = ( xk ; yk ; sk ) + (¢ xk ; ¢ yk ; ¢ sk ) and ¹ k+1 = ¾¹k .

Until n¹ k+1 < "

Moreover, it is also possible to prove that in both cases, the solution with" accuracy will
be reached after a number of iterationsN such that

N = O
³ p

n log
n¹ 0

"

´
: (1.5)

This polynomial complexity bound on the number of iterations that varies like the square
root of the problem size is the best attained so far for linear optimization.

However, it is important to note that values of ¾ presented above will always be in
practice nearly equal to one, which means that the duality measures will decrease very slowly.
Although its complexity is polynomial, this method requires a large number of iterations and
is not very e±cient from a practical point of view.
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Dual short-step path-following methods

This second short-step method is very similar to the previous one but its iterates lie in the
dual spaceD+ . We keep the general principle of following the dual central path and targeting
points (y¹ k ; s¹ k ) on it but we have to make the following adjustments12

¦ We cannot deduce the Newton step from the (KKT¹ ) conditions any more, since they
involve both primal and dual variables. We apply instead a single minimizing Newton
step to the (D¹ ) barrier problem, which gives the following (n + m) £ (n + m) linear
system µ

AT I
AS ¡ 2

k AT 0

¶ µ
¢ yk

¢ sk

¶
=

µ
0

b
¾¹k

¡ AS ¡ 1
k e

¶
: (1.6)

¦ We have to modify our measure of proximity: we now de¯ne±(s; ¹ ) with [RTV97]

±(s; ¹ ) = min
x

f ±(x; s; ¹ ) j Ax = bg =
1
¹

min
x

fk xs ¡ ¹e k j Ax = bg

(we have that this measure is zero if and only ifs = s¹ ).

Our algorithm simply becomes

Given an initial iterate ( y0; s0) 2 D + with duality measure ¹ 0, an accuracy
parameter " and suitable constants 0< ¾ < 1 and ¿ such that ±(y0; s0) < ¿ .

Repeat for k = 0 ; 1; 2; : : :

Compute the Newton step (¢yk ; ¢ sk ) using the linear system (1.6).

Let (yk+1 ; sk+1 ) = ( yk ; sk ) + (¢ yk ; ¢ sk ) and ¹ k+1 = ¾¹k .

Until n¹ k+1 < "

In this case we may for example choose

¾= 1 ¡
1

3
p

n
and ¿ =

1
p

2
;

which leads to the same complexity bound (1.5) for the total number of iterations.

Primal-dual long-step path-following methods

The long-step primal-dual method we are going to describe now is an attempt to overcome
the main limitation of the short-step methods: their very small step size. As presented above,
the fundamental reason for this slow progress is the value of¾that has to be chosen nearly
equal to one in order to prove the polynomial complexity of the method.

12 It is of course also possible to design a primal short-step path-following method in a completely similar
fashion.
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A simple idea to accelerate the method would simply be to decrease the duality measure
more aggressively, i.e. still using¹ k+1 = ¾¹k but with a lower ¾. However, this apparently
small change breaks down the good properties we were able to prove for the short-step algo-
rithms. Indeed, if our target on the central path is too far from our current iterate, we may
have that

¦ The Newton step computed by (1.4) is no longer feasible. The reason for that is easy to
understand. Newton's method is asked to solve the (KKT¹ ) system, which is made of
two linear equations and one mildly nonlinear equation. Because of this third equation,
the linear system we solve is only an approximation of the real set of equations, and
the further we are from the solution we target, the less accurate this approximation is.
When our target is located too far away, the linear approximation becomes so bad that
barrier term does not play its role and the Newton step jumps out of the feasible region
by violating the nonnegativity constraints 13 x > 0 and s > 0.

Since the iterates of an interior-point method must always satisfy the strict nonnega-
tivity conditions, we have to take a so-calleddampedNewton step, i.e. reduce it with a
factor ®k < 1 in order to make it stay within the strictly feasible region P+ £ D + :

(xk+1 ; yk+1 ; sk+1 ) = ( xk ; yk ; sk ) + ®k (¢ xk ; ¢ yk ; ¢ sk ) :

¦ This damping of the Newton step cancels the property that the duality measure we
target is attained. It is indeed possible to show that the duality measure after a damped
Newton step becomes (1¡ ®k (1¡ ¾)) ¹ k , which varies linearly between¹ k and ¾¹k when
® decreases from 1 to 0.

There is unfortunately no way to circumvent this drawback, and we have to accept that
our iterates never exactly achieve the targeted duality measures, unless a full Newton
step is taken.

¦ We cannot guarantee that a single Newton step will keep the proximity to the central
path in the sense of±(x; s; ¹ ) < ¿ , for the same reasons as above (nonlinearity). In
the long-step strategy we describe, we take several Newton steps with the same target
duality measure until proximity to the central path is restored. Then we may choose
another target and decrease¹ .

Our long-step method may be described in the following way:

Given an initial iterate ( x0; y0; s0) 2 P + £ D + , an initial duality measure ¹ 0,
an accuracy parameter " and suitable constants 0 < ¾ < 1 and ¿ such that
±(x0; y0; s0) < ¿ .

Repeat for k = 0 ; 1; 2; : : :

Compute the Newton step (¢xk ; ¢ yk ; ¢ sk ) using the linear system (1.4).

Let (xk+1 ; yk+1 ; sk+1 ) = ( xk ; yk ; sk ) + ®k (¢ xk ; ¢ yk ; ¢ sk ) with a step length ®k

chosen such that (xk+1 ; yk+1 ; sk+1 ) 2 P + £ D + .

13 Note that since the ¯rst two conditions Ax = b and AT y + s = c are linear, they are always ful¯lled after
the Newton step.



22 1. Interior-point methods for linear optimization

If ±(xk+1 ; sk+1 ; ¾¹k ) < ¿ Then let ¹ k+1 = ¾¹k Else let ¹ k+1 = ¹ k .

Until n¹ k+1 < "

As opposed to the complexity analysis of the short-step method, we may choose here
whatever value we want for the constant¾, in particular values much smaller than 1. It is
the choice of¿ and ®k that makes the method polynomial. The main task is here to analyse
the number of iterations that is needed to restore proximity to the central path. Taking for
¾a constant independent ofn (like .5, .1 or .01), it is possible to prove that suitable choices
of ¿ and ®k lead to the following number of iterations

N = O
³

n log
n¹ 0

"

´
:

Let us point out an odd fact: although this method takes longer steps and is practically more
e±cient than the short-step methods, its theoretical complexity is worse than the short-step
complexity (1.5).

1.3.2 A±ne-scaling algorithms

The intensive stream of research on the topic of interior-point methods for linear optimization
was triggered by Karmarkar's seminal article [Kar84]. His method used projective transforma-
tions and was not described in terms of central path or Newton's method. Later, researchers
simpli¯ed this algorithm, removing the need for projective transformations, and obtained a
class of methods called a±ne-scaling algorithms. It was later discovered that these methods
had been previously proposed by Dikin in Russia, 17 years before Karmarkar [Dik67].

A±ne-scaling algorithms do not explicitly follow the central path and do not even refer
to it. The basic idea underlying these methods is the following: consider for example the
primal problem (LP)

min
x2 Rn

cT x s.t.
½

Ax = b
x ¸ 0

: (LP)

This problem is hard to solve because of the nonnegativity constraints, which give the feasible
region a polyhedral shape. Let us consider the current iteratexk and replace the polyhedral
feasible region by an inscribed ellipsoid centered atxk . The idea is to minimize the objective
on this ellipsoid, which should be easier than on a polyhedron, and take this minimum as
next iterate.

How do we construct an ellipsoid that is centered atxk and inscribed into the feasible
region ? Consider a positive diagonal matrixD . It is easy to show that problem (PD )

min
w2 Rn

(Dc)T w s.t.
½

ADw = b
w ¸ 0

(PD )

is equivalent to (LP), the x variable being simply scaled byx = Dw (this scaling operation is
responsible for the denomination of the method). Choosing a special diagonal matrixD = X k ,
which maps the current iterate xk to e, we obtain the following problem

min
w2 Rn

(X kc)T w s.t.
½

AX kw = b
w ¸ 0

:
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We are now able to restrict the feasible region de¯ned byw ¸ 0 to a unit ball centered at e,
according to the inclusion f w j kw ¡ ek · 1g ½ fw j w ¸ 0g. Our problem becomes

min
w2 Rn

(X kc)T w s.t.
½

AX kw = b
kw ¡ ek · 1

;

i.e. the minimization of a linear objective over the intersection of a unit ball and an a±ne
subspace, whose solution can be easily computed analytically via a linear system. Back in
the original space, this is equivalent to

min
x2 Rn

cT x s.t.
½

Ax = b
kX ¡ 1

k x ¡ ek · 1
;

whose feasible region is an ellipsoid centered atxk . This ellipsoid is called the Dikin ellipsoid
and lies entirely inside P. The minimum over this ellipsoid is given by xk + ¢ xk , where14

¢ xk = ¡
X kPAX k X kc
kPAX k X kck

: (1.7)

Because our ellipsoid lies entirely within the feasible region, the step ¢xk is feasible and the
next iterate xk + ¢ xk is expected to be closer to the optimal solution thanxk .

Short- and long-step primal a±ne-scaling algorithms

Introducing a constant ½to reduce the step size, we may state our algorithm as

Given an initial iterate x0 2 P + and a constant 0< ½ < 1.

Repeat for k = 0 ; 1; 2; : : :

Compute the a±ne scaling step ¢k with (1.7) and let xk+1 = xk + ½¢ k .

End

This scheme is known as the short-step primal a±ne-scaling algorithm. Convergence to
a primal solution has been proved for½= 1

8 , but we still do not know whether this method
has polynomial complexity15. It is of course possible to design a dual and even a primal-dual
variant of this method (all we have to do is to de¯ne the corresponding Dikin ellipsoids).

It is also possible to make the algorithm more e±cient by taking longer steps, i.e. moving
outside of the Dikin ellipsoid. Keeping the same direction as for the short-step method, the
maximum step we can take without leaving the primal feasible region is given by

¢ xk = ¡
X kPAX k X kc

max [PAX k X kc]
; (1.8)

where max[v] stands for the maximum component of vectorv, which leads to the following
algorithm:

14 PQ denotes the projection matrix onto Ker Q, the null space of Q, which can be written as PQ = I ¡
QT (QQT )¡ 1Q when Q has maximal rank.

15 When certain nondegeneracy conditions hold, convergence has been proved for 0< ½ < 1.
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Given an initial iterate x0 and a constant 0< ¸ < 1.

Repeat for k = 0 ; 1; 2; : : :

Compute the a±ne scaling step ¢k with (1.8) and let xk+1 = xk + ¸ ¢ k .

End

The constant ¸ decides which fraction of the way to the boundary of the feasible re-
gion we move16. Global convergence has been proved when 0< ¸ · 2=3 but a surprising
counterexample has been found witḩ = 0 :999 (see [Mas93]). Finally, as for the short-step
method, we do not know whether this method has polynomial complexity.

Link with path-following algorithms

There is an interesting and unexpected link between a±ne-scaling methods and path-following
algorithms. Taking for example the de¯nition (1.6) of the dual Newton step in the path-
following framework and letting ¾ tend to zero, i.e. letting the target duality measure tend
to zero, we ¯nd that the resulting limit direction is exactly equal to the dual a±ne-scaling
direction ! This surprising fact, which is also valid for their primal counterparts, gives us
some insight about both methods:

¦ The a±ne-scaling method can be seen as an application of Newton's method that is
targeting the limit point of the central path, i.e. that tries to jump directly to an
optimal solution without following the central path.

¦ Looking at (1.6), it is possible to decompose the dual Newton step into two parts:

¢ xk =
1

¾¹k
¢ axk + ¢ cxk ;

where

µ
AT I

AS ¡ 2
k AT 0

¶ µ
¢ ayk

¢ ask

¶
=

µ
0
b

¶
and

µ
AT I

AS ¡ 2
k AT 0

¶ µ
¢ cyk

¢ csk

¶
=

µ
0

¡ AS ¡ 1
k e

¶
:

{ ¢ axk is called the a±ne-scaling component. It has the same direction as the
a±ne-scaling method and is only seeking optimality.

{ ¢ cxk is called the centering component. It is targeting a point on the central path
with the same duality measure as the current iterate, i.e. only tries to improve
proximity to the central path.

It is possible to show that most interior-point methods follow in fact directions that are
combinations of these two basic directions.

16 This constant has to be strictly less than 1 since we want to stay in the interior of the feasible region.
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1.3.3 Potential reduction algorithms

Instead of targeting a decreasing sequence of duality measures, the method of Karmarkar
made use of a potential function to monitor the progress of its iterates. A potential function
is a way to measure the worth of an iterate. Its main two properties are the following:

¦ It should tend to ¡1 if and only if the iterates tend to optimality.

¦ It should tend to + 1 when the iterates tend to the boundary of the feasible region
without tending to an optimal solution 17.

The main goal of a potential reduction algorithm is simply to reduce the potential function
by a ¯xed amount ± at each step, hence its name. Convergence follows directly from the ¯rst
property above.

Primal-dual potential reduction algorithm

We are going to describe the application of this strategy in the primal-dual case. The Tanabe-
Todd-Ye primal-dual potential function is de¯ned on the strictly feasible primal-dual space
P+ £ D + by

©½(x; s) = ½logxT s ¡
X

i

logx i si ;

where ½is a constant required to be greater thann. We may rewrite it as

©½(x; s) = ( ½¡ n) log xT s ¡
X

i

log
x i si

xT s=n
+ n logn

and note the following

¦ The ¯rst term makes the potential tend to ¡1 when (x; s) tends to optimality, since
we have then the duality gap xT s tending to 0.

¦ The second term measurescentrality of the iterate. A perfectly centered iterate will
have all its products x i si equal to their average valuexT s=n, making the second term
equal to zero. As soon these products become di®erent, this term increases, and tends
to + 1 if one of the productsx i si tends to zero without xT s tending also to zero (which
means exactly that we approach the boundary of the feasible region without tending to
an optimal solution).

The search direction for this method is not new: it is the same as for the path-following
algorithm, de¯ned with a target duality measure n¹ k=½(i.e. with ¾ = n=½). However, in
this case,¹ k will not follow a prede¯ned decreasing sequence, but will have to be recomputed
after each step (since this algorithm cannot guarantee that the duality measure targeted by
the Newton step will be attained). The algorithm proceeds as follows:

17 We cannot of course simply prevent the method from approaching the boundary of the feasible region,
since our optimal solution lies on it.
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Given an initial iterate ( x0; y0; s0) 2 P + £ D + with duality measure ¹ 0 and a
constant ½ > n. De¯ne ¾= n=½.

Repeat for k = 0 ; 1; 2; : : :

Compute the Newton step (¢xk ; ¢ yk ; ¢ sk ) using the linear system (1.4).

Let (xk+1 ; yk+1 ; sk+1 ) = ( xk ; yk ; sk ) + ®k (¢ xk ; ¢ yk ; ¢ sk ) where ®k is de¯ned by

®k = arg min
®

©½(xk + ®¢ xk ; sk + ®¢ sk )

s.t. (xk ; yk ; sk ) + ®(¢ xk ; ¢ yk ; ¢ sk ) 2 P + £ D + :

Evaluate ¹ k+1 with ( xT
k+1 sk+1 )=n.

Until n¹ k+1 < "

The principle of this method is thus to minimize the potential function along the search
direction at each iteration. The main task in analysing the complexity of this method is to
prove that this step will provide at least a ¯xed reduction of © ½ at each iteration. Using
½= n +

p
n, it is possible to prove that ©½(xk+1 ; sk+1 ) · ©½(xk ; sk ) ¡ ± with ± = 0 :16 (see

e.g. [Ans96]), leading to a total number of iterations equal to

N = O
³ p

n log
n¹ 0

"

´
;

matching the best complexity results for the path-following methods.

It is in general too costly for a practical algorithm to minimize exactly the potential
function along the search direction, since ©½ is a highly nonlinear function. We may use
instead one the following strategies

¦ De¯ne a quadratic approximation of ©½along the search direction and take its minimizer
as next iterate.

¦ Take a ¯xed percentage (e.g. 95%) of the maximum step along the search direction
staying inside of the feasible region.

We note however that polynomial complexity is no longer guaranteed in these cases.

1.4 Enhancements

In the following, we present various enhancements that are needed to make the theoretical
methods of the previous section work in practice.

1.4.1 Infeasible algorithms

All the algorithms we have described up to now are feasible methods, which means they need
a strictly feasible iterate as starting point. However, such a point is not always available:
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¦ For some problems, anatural strictly feasible point is not directly available and ¯nding
one may be as di±cult as solving the whole linear program.

¦ Some problems have no strictly feasible points although they are perfectly valid and
have ¯nite optimal solutions. This situation happens in fact if and only if the optimal
solution set is not bounded18.

We can think of two di®erent strategies to handle such cases: embed the problem into a
larger one that admits a strictly feasible starting point (this will be developed in the next
paragraph) or modify the algorithm to make it work with infeasible iterates. We are now
going to give an overview of this second strategy.

We recall that the iterates of an infeasible method do not satisfy the equality constraints
Ax = b and AT y + s = c but are required to be nonnegative, i.e.x > 0 and s > 0. The
main idea is simply to ask Newton's method to make the iterates feasible. This amounts to
a simple modi¯cation of the linear system (1.4), which becomes

0

@
0 AT I
A 0 0
Sk 0 X k

1

A

0

@
¢ xk

¢ yk

¢ sk

1

A =

0

@
c ¡ AT yk ¡ sk

b¡ Ax k

¡ X kSke+ ¾¹ke

1

A : (1.9)

The only di®erence with the feasible system is the right-hand side vector, which now incor-
porates the primal and dual residualsb¡ Ax k and c ¡ (AT yk + sk ). Newton steps will try to
reduce both the duality measure and the iterate infeasibility at the same time.

Infeasible variants of both path-following and potential reduction methods have been
developed using this search direction. Without going into the details, let us point out that
an additional constraint on the step has to be enforced to ensure that infeasibility is reduced
at least at the same pace as the duality measure (to avoid ending with an "optimal" solution
that would be infeasible). The complexity results for these methods are the same as those of
their feasible counterparts, although the analysis is generally much more involved.

1.4.2 Homogeneous self-dual embedding

As mentioned in the previous subsection, another way to handle infeasibility is to embed our
problem into a larger linear program that admits a known feasible starting point. We choose
a starting iterate ( x0; y0; s0) such that x0 > 0 and s0 > 0 and de¯ne the following quantities

b̂ = b¡ Ax 0

ĉ = c ¡ AT y0 ¡ s0

ĝ = bT y0 ¡ cT x0 ¡ 1

ĥ = xT
0 s0 + 1 :

18 This is the case for example when a variable that is not bounded by the constraints is not present in the
objective.
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We consider the following problem, introduced in [YTM94]

min ĥ µ
s.t. Ax ¡ b ¿ + b̂ µ = 0

¡ AT y + c ¿ ¡ ĉ µ ¡ s = 0
bT y ¡ cT x ¡ ĝ µ ¡ · = 0

¡ b̂T y + ĉT x + ĝ ¿ = ¡ ĥ
x ¸ 0 ¿ ¸ 0 s ¸ 0 · ¸ 0

: (HSD)

It is easy to see ¯nd a strictly feasible starting point for this problem. Indeed, one can
check that (x; y; s; ¿; ·; µ) = ( x0; y0; s0; 1; 1; 1) is a suitable choice. Without going into too
many details, we give a brief description of the new variables involved in (HSD): ¿ is a
homogenizing variable, µ is measuring infeasibility and · refers to the duality gap in the
original problem. We also point out that the ¯rst two equalities correspond to the feasibility
constraints Ax = b and AT y + s = c.

This program has the following interesting properties (see [YTM94]):

¦ This program is homogeneous, i.e. its right-hand side is the zero vector (except for the
last equality that is a homogenizing constraint).

¦ This program is self-dual, i.e. its dual is identical to itself (this is due to the fact that
the coe±cient matrix is skew-symmetric).

¦ The optimal value of (HSD) is 0 (i.e. µ¤ = 0).

¦ Given a strictly complementary solution (x¤; y¤; s¤; ¿¤; · ¤; 0) to (HSD) we have either
¿¤ > 0 or · ¤ > 0.

¦ If ¿¤ > 0 then (x¤=¿¤; y¤=¿¤; s¤=¿¤) is an optimal solution to our original problem.

¦ If · ¤ > 0 then our original problem has no ¯nite optimal solution. Moreover, we have
in this casebT y¤ ¡ cT x¤ > 0 and

{ When bT y¤ > 0, problem (LP) is infeasible.

{ When ¡ cT x¤ > 0, problem (LD) is infeasible.

Since we know a strictly feasible starting point, we can apply a feasible path-following
method to this problem that will converge to an optimal strictly complementary solution.
Using the above-mentioned properties, it is then possible to compute an optimal solution to
our original problem or detect its infeasibility.

This homogeneous self-dual program has roughly twice the size of our original linear
program, which may be seen as a drawback. However, it is possible to take advantage of the
self-duality property and use some algorithmic devices to solve this problem at nearly the
same computational cost as the original program.
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1.4.3 Theory versus implemented algorithms

We have already mentioned that a polynomial complexity result is not necessarily a guarantee
of good practical behaviour. Short-step methods are de¯nitely too slow because of the tiny
reduction of the duality measure they allow. Long-step methods perform better but are
still too slow. This is why practitioners have implemented various tricks to accelerate their
practical behaviour. It is important to note that the complexity results we have mentioned
so far do not apply to these modi¯ed methods, since they do not strictly follow the theory.

The infeasible primal-dual long-step path-following algorithm is by far the most com-
monly implemented interior-point method. The following tricks are usually added:

¦ The theoretical long-step method takes several Newton steps targeting the same duality
measure until proximity to the central path is restored. Practical algorithms ignore this
and take only a single Newton step, like short-step methods.

¦ Instead of choosing the step length recommended by the theory, practical implemen-
tations usually take a very large fraction of the maximum step that stays within the
feasible region (common values are 99.5% or 99.9%). This modi¯cation works especially
well with primal-dual methods.

¦ The primal and dual steps are taken with di®erent step lengths, i.e. we take

xk+1 = xk + ®P ¢ xk and (yk+1 ; sk+1 ) = ( yk ; sk ) + ®D (¢ yk ; ¢ sk ) :

These steps are chosen according to the previous trick, for example with (®P ; ®D ) =
0:995 (®P

max ; ®D
max ). This modi¯cation alone is responsible for a substantial decrease of

the total number of iterations, but is not theoretically justi¯ed.

1.4.4 The Mehrotra predictor-corrector algorithm

The description of the methods from the previous section has underlined the fact that the
constant ¾, de¯ning the target duality measure ¾¹k , has a very important role in determining
the algorithm e±ciency:

¦ Choosing ¾ nearly equal to 1 allows us to take a full Newton step, but this step is
usually very short and does not make much progress towards the solution. However it
has the advantage of increasing the proximity to the central path.

¦ Choosing a smaller¾ produces a larger Newton step making more progress towards
optimality, but this step is generally infeasible and has to be damped. Moreover this
kind of step usually tends to move the iterate away from the central path.

We understand that the best choice of¾may vary according to the current iterate: small if a
far target is easy to attain and large otherwise. Mehrotra has designed a very e±cient way to
choose¾according to this principle: the predictor-corrector primal-dual infeasible algorithm
[Meh92].
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This algorithm ¯rst computes an a±ne-scaling predictor step (¢ xa
k ; ¢ ya

k ; ¢ sa
k ), i.e. solves

(1.9) with ¾= 0, targeting directly the optimal limit point of the central path. The maximum
feasible step lengths are then computed separately using

®a;P
k = arg max f ® 2 [0; 1] j xk + ®¢ xa

k ¸ 0g ;

®a;D
k = arg max f ® 2 [0; 1] j sk + ®¢ sa

k ¸ 0g :

Finally, the duality measure of the resulting iterate is evaluated with

¹ a
k+1 =

(xk + ®a;P
k ¢ xa

k )T (®a;D
s ¢ sa

k )
n

:

This quantity measures how easy it is to progress towards optimality: if it is much smaller than
the current duality measure ¹ k , we can choose a small¾and hope to make much progress, on
the other hand if it is just a little smaller, we have to be more careful and choose¾closer to
one, in order to increase proximity to the central path and be in a better position to achieve a
large decrease of the duality measure on thenext iteration. Mehrotra suggested the following
heuristic, which has proved to be very e±cient in practice

¾=
µ

¹ a
k+1

¹ k

¶ 3

:

We now simply compute acorrector step (¢ xc
k ; ¢ yc

k ; ¢ sc
k ) using this ¾and take the maximum

feasible step lengths separately in the primal and dual spaces.

However, this algorithm can be improved a little further using the following fact. After a
full predictor step, the pairwise product x i si is transformed into (x i + ¢ xa

i )(si + ¢ sa
i ), which

can be shown to be equal to ¢xa
i ¢ sa

i . Since Newton's method was trying to makex i si equal
to zero, this last product measures the error due to the nonlinearity of the equations we are
trying to solve. The idea is simply to incorporate this error term in the computation of the
corrector step, using the following modi¯cation to the right-hand side in (1.9)

0

@
0 AT I
A 0 0
Sk 0 X k

1

A

0

@
¢ xk

¢ yk

¢ sk

1

A =

0

@
c ¡ AT yk ¡ sk

b¡ Ax k

¡ X kSke¡ ¢ X a
k ¢ Sa

k e+ ¾¹ke

1

A : (1.10)

This strategy of computing a step taking into account the results of a ¯rst-order prediction
gives rise to a second-order method. The complete algorithm follows:

Given an initial iterate ( x0; y0; s0) with duality measure ¹ 0 such that x0 > 0 and
s0 > 0, an accuracy parameter" and a constant ½ < 1 (e.g. 0.995 or 0.999).

Repeat for k = 0 ; 1; 2; : : :

Compute the predictor Newton step (¢ xa
k ; ¢ ya

k ; ¢ sa
k ) using the linear system (1.9)

and ¾= 0.

Compute the maximal step lengths and the resulting duality measure with

®a;P
k = arg max f ® 2 [0; 1] j xk + ®¢ xa

k ¸ 0g ;

®a;D
k = arg max f ® 2 [0; 1] j sk + ®¢ sa

k ¸ 0g ;

¹ a
k+1 =

(xk + ®a;P
k ¢ xa

k )T (sk + ®a;D
k ¢ sa

k )
n

:
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Compute the corrector Newton step (¢xc
k ; ¢ yc

k ; ¢ sc
k ) using the modi¯ed linear

system (1.10) and¾=
¡
¹ a

k+1 =¹ k
¢3.

Compute the maximal step lengths with

®P
k = arg max f ® 2 [0; 1] j xk + ®¢ xc

k ¸ 0g ;

®D
k = arg max f ® 2 [0; 1] j sk + ®¢ sc

k ¸ 0g :

Let xk+1 = xk + ½ ®P
k ¢ xc

k and (yk+1 ; sk+1 ) = ( yk ; sk ) + ½ ®D
k (¢ yc

k ; ¢ sc
k ).

Evaluate ¹ k+1 with ( xT
k+1 sk+1 )=n.

Until n¹ k+1 < "

It is important to note that the predictor step is only used to compute ¾and the right-
hand side of (1.10) and is not actually taken. This has a very important e®ect on the
computational work, since the calculation of both the predictor and the corrector step is
made with the same current iterate. This implies that the coe±cient matrix in the linear
systems (1.10) and (1.9) is the same, the only di®erence being the right-hand side vector.
The resolution of the second system will then reuse the factorization of the coe±cient matrix
and will only need a computationally cheap additional backsubstitution. This property is
responsible for the great e±ciency of Mehrotra's algorithm: a clever heuristic to decrease the
duality measure using very little additional computational work.

1.5 Implementation

We mention here some important facts about the implementation of interior-point algorithms.

1.5.1 Linear algebra

It is important to realize that the resolution of the linear system de¯ning the Newton step
takes up most of the computing time in interior-point methods (some authors report 80{90%
of the total CPU time). It should be therefore very carefully implemented. Equations (1.9)
are not usually solved in this format: some pivoting is done, leading ¯rst to the following
system (where we de¯neD 2

k = S¡ 1
k X k )

µ
¡ D ¡ 2

k AT

A 0

¶ µ
¢ xk

¢ yk

¶
=

µ
c ¡ AT yk ¡ ¾¹kX ¡ 1

k e)
b¡ Ax k

¶
(1.11)

¢ sk = ¡ sk + ¾¹kX ¡ 1
k e¡ D ¡ 2

k ¢ xk ; (1.12)

and then to this one

AD 2
kAT ¢ yk = b¡ A(xk ¡ D 2

kc + D 2
kAT yk + ¾¹kS¡ 1

k e) (1.13)

¢ sk = c ¡ AT yk ¡ sk ¡ AT ¢ yk (1.14)

¢ xk = ¡ xk + ¾¹kS¡ 1
k e¡ D 2

k¢ sk : (1.15)
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System (1.11) is called theaugmentedsystem and can be solved with a Bunch-Partlett fac-
torization. However, the most usual way to compute the Newton step is to solve (1.13), called
the normal equation, with a Cholevsky factorization, taking advantage of the fact that matrix
AD 2

kAT is positive de¯nite (see [AGMX96] for a discussion). At this stage, it is important
to note that most real-world problems have very few nonzero entries in matrixA. It is thus
very important to exploit this sparsity in order to reduce both computing times and storage
capacity requirements. More speci¯cally, one should try to ¯nd a reordering of the rows and
columns of matrix AD 2

kAT that leads to the sparsest Cholevsky factor19. This permutation
has to be computed only once, since the sparsity pattern of matrixAD 2

kAT is the same for
all iterations.

On a side note, let us note that the complexity of solving this linear system isO
¡
n3

¢

arithmetic iterations, which gives the best interior-point methods a total complexity of

O
¡
n3:5 log

n¹ 0

"

¢

arithmetic operations20.

1.5.2 Preprocessing

In most cases, the linear program we want to solve is not formulated in the standard form
(1.2). The ¯rst task for an interior-point solver is thus to convert it by adding variables and
constraints

¦ Inequality constraints can be transformed into equality constraints with a slack variable:
f T x ¸ b , f T x ¡ s = b with s ¸ 0.

¦ A free variable can be split into two nonnegative variables:x = x+ ¡ x¡ with x+ ¸ 0
and x¡ ¸ 0. However this procedure has some drawbacks21 and practical solvers usually
include a modi¯cation of the algorithm to handle free variables directly.

¦ Lower bounds l · x are handled using a translationx = x0+ l with x0 ¸ 0.

¦ Upper bounds x · u could be handled using a slack variable, but practical solvers
usually implement a variation of the standard form that takes these bounds directly
into account.

After this initial conversion, it is not unusual that a series of simple transformations can
greatly reduce the size of the problem

¦ Zero lines and columns are either redundant (and thus may be removed) or make the
problem infeasible.

19 Because the problem of ¯nding the optimal reordering is NP-hard, heuristics have been developed, e.g. the
minimum degree and minimum local ¯ll-in heuristics.

20 A technique of partial updating of the coe±cient matrix AD 2
k AT in the normal equation can reduce this

total complexity to O
�
n3 �

.
21 It makes for example the optimal solution set unbounded and the primal-dual strictly feasible set empty.
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¦ Equality constraints involving only one variable are removed and used to ¯x the value
of this variable.

¦ Equality constraints involving exactly two variables can be used to pivot out one the
variables.

¦ Two identical lines are either redundant (one of them may thus be removed) or incon-
sistent (and make the problem infeasible).

¦ Some constraints may allow us to compute lower and upper bounds for some variables.
These bounds can improve existing bounds, detect redundant constraints or diagnose
an infeasible problem.

Every practical solver applies these rules (and some others) repeatedly before starting to solve
the problem.

1.5.3 Starting point and stopping criteria

The problem of ¯nding a suitable starting point has already been addressed by the homoge-
neous self-dual embedding technique and the infeasible methods. In both cases, any iterate
satisfying x0 > 0 ands0 > 0 can be chosen as starting point. However, the actual performance
of the algorithm can be greatly in°uenced by this choice.

Although there is no theoretical justi¯cation for it, the following heuristic is often used
to ¯nd a starting point. We ¯rst solve

min
x2 Rn

cT x +
!
2

xT x s.t. Ax = b and min
(y;s)2 Rm £ Rn

bT y +
!
2

sT s s.t. AT y + s = c :

These convex quadratic programs can be solved analytically at a cost comparable to a single
interior-point iteration. The negative components of the optimal x and s are then replaced
with a small positive constant to give x0 and (y0; s0).

As described earlier, the stopping criteria is usually a small prede¯ned duality gap"g.
In the case of an infeasible method, primal and dual infeasibility are also monitored and
are required to fall below some prede¯ned value" i . One can use for example the following
formulas

kAx ¡ bk
kbk + 1

< " i ;
kAT y + s ¡ ck

kck + 1
< " i ;

kcT x ¡ bT yk
kcT xk + 1

< " g :

The denominators are used to make these measures relative and the +1 constant to avoid
division by zero. However, when dealing with an infeasible problem, infeasible methods tend
to see their iterates diverging towards in¯nity. Practical solvers usually detect this behaviour
and diagnose an infeasible problem.

1.6 Concluding remarks

The theory of interior-point methods for linear optimization is now well established ; several
textbooks on the topic have been published (see e.g. [Wri97, RTV97, Ye97]). From a prac-
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tical point of view, interior-point methods compete with the best simplex implementations,
especially for large-scale problems.

However some unsatisfying issues remain, in particular the gap between theoretical and
implemented algorithms. Another interesting point is the number of iterations that is practi-
cally observed, almost independent from the problem size or varying like logn or n1=4, instead
of the

p
n theoretical bound.

Research is now concentrating on the adaptation of these methods to the nonlinear
framework. Let us mention the following directions:

¦ Semide¯nite optimization is a promising generalization of linear optimization in which
the nonnegativity condition on a vector x ¸ 0 is replaced by the requirement that a
symmetric matrix X is positive semide¯nite. This kind of problem has numerous ap-
plications in various ¯elds, e.g. combinatorial optimization (with the famous Goemans-
Williamson bound on the quality of a semide¯nite MAXCUT relaxation [GW95]), con-
trol, classi¯cation (see [Gli98b] and Appendix A), structural optimization, etc. (see
[VB96] for more information). The methods we have presented here can be adapted
to semide¯nite optimization with relatively little e®ort and several practical algorithms
are able to solve this kind of problem quite e±ciently.

¦ In their brilliant monograph [NN94], Nesterov and Nemirovski develop a complete the-
ory of interior-point methods applicable to the whole class ofconvex optimization prob-
lems. They are able to prove polynomial complexity for several types of interior-point
methods and relate their e±ciency to the existence of a certain type of barrier depend-
ing on the problem structure, a so-calledself-concordant barrier. This topic is further
discussed in Chapter 2.



CHAPTER2

Self-concordant functions

This chapter provides a self-contained introduction to the theory of self-conc-
ordant functions [NN94] and applies it to several classes of structured con-
vex optimization problems. We describe the classical short-step interior-point
method and optimize its parameters to provide its best possible iteration bound.
We also discuss the necessity of introducing two parameters in the de�nition
of self-concordancy, how they react to addition and scaling and which one is
the best to �x. A lemma from [dJRT95] is improved and allows us to review
several classes of structured convex optimization problems and evaluate their
algorithmic complexity, using the self-concordancy of the associated logarithmic
barriers.

2.1 Introduction

We start with a presentation of convex optimization.

2.1.1 Convex optimization

Convex optimization deals with the following problem

inf
x2 Rn

f 0(x) s.t. x 2 C ; (C)

where C µ Rn is a closed convex set andf 0 : C 7! R is a convex function de¯ned on C.
Convexity of f 0 and C plays a very important role in this problem, since it is responsible for

35
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the following two important properties [Roc70a, SW70]:

¦ Any local optimum for (C) is also a global optimum, which implies that the objective
value is equal for all local optima. Moreover, all these optima can be shown to form a
convex set.

¦ It is possible to use Lagrange duality to derive a dual problem strongly related to (C).
Namely, this pair of problems satis¯es a weak duality property (the objective value
of any feasible solution for one of these problems provides a bound on the optimum
objective value for the dual problem) and, under a Slater-type condition, a strong
duality property (equality and attainment of the optimum objective values for the two
problems). These properties are described with more detail in Section 3.2.

We ¯rst note that it can be assumed with any loss of generality that the objective function f 0

is linear, so that we can de¯ne it asf 0(x) = cT x using a vector c 2 Rn . Indeed, it is readily
seen that problem (C) is equivalent to the following problem with a linear objective:

inf
x2 Rn ; t2 R

t s.t. (x; t ) 2 ¹C ;

where ¹C µ Rn+1 is suitably de¯ned as

¹C =
©

(x; t ) 2 Rn+1 j x 2 C and f (x) · t
ª

:

We will thus consider in the rest of this chapter the problem

inf
x2 Rn

cT x s.t. x 2 C : (CL)

It is interesting to ask ourselves how one can specify the data of a problem cast in such a
form, i.e. how one can describe its objective function and feasible set. While specifying the
objective function is easily done by providing vectorc, describing the feasible setC, which is
responsible for thestructure of problem (CL), can be done in several manners.

a. The traditional way to proceed in nonlinear optimization is to provide a list of convex
constraints de¯ning C, i.e.

C =
©

x 2 Rn j f i (x) · 0 8i 2 I = f 1; 2; : : : ; mg
ª

; (2.1)

where each of them functions f i : Rn 7! R is convex. This guarantees the convexity of
C, as an intersection of convex level sets.

b. An alternative approach consists in considering the domain of a convex function. More
precisely, we require the interior ofC to be equal to the domain of a convex function.
Extending the real line R with the quantity + 1 , we introduce the convex function
F : Rn 7! R [ f + 1g and de¯ne C as the closure of its e®ective domain, i.e.

C = cl dom F = cl f x 2 Rn j F (x) < + 1g :

Most of the time, we will require in addition F to be a barrier function for the set C,
according to the following de¯nition.
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De¯nition 2.1. A function F is a barrier function for the convex setC if and only if
it satis¯es the following assumptions:

(a) F is smooth (three times continuously di®erentiable for our purpose),

(b) F is strictly convex, i.e. r 2F is positive de¯nite,

(c) F (x) tends to + 1 wheneverx tends to @C, the boundary of C (this is the barrier
property).

Note 2.1. We also note that it is often possible to provide a suitable barrier functionF
for a convex setC given by a functional description (2.1) using the logarithmic barrier
[Fri55] de¯ned as

F : Rn 7! R : x 7! F (x) = ¡
X

i 2 I

log(¡ f i (x)) ;

where we de¯ne logz = + 1 wheneverz 2 R¡ . We have indeed to check thatF is strictly
convex and is a barrier function for C, which is not always the case (for example, in
the case ofC = R+ , taking f 1(x) = jxj ¡ x does not lead to a strictly convexF while
f 1(x) = ¡ xx leads to F (x) = ¡ x logx, which does not possess the barrier property).

c. It may also be worthwhile to consider the special case whereC can be described as the
intersection of a convex coneC µ Rn and an a±ne subspaceb+ L (where L is a linear
subspace)

C = C \ (b+ L) = f x 2 C j x ¡ b 2 Lg :

The resulting class of problems is known as conic optimization, and can be easily shown
to be equivalent to convex optimization [NN94] (in practice, subspaceb+ L would be
de¯ned with a set of linear equalities).

Special treatment for the linear constraints, i.e. their representation as an intersection
with an a±ne subspace, can be justi¯ed by the fact that these constraints are easier
to handle than general nonlinear constraints. In particular, let us mention that it is
usually easy for algorithms to preserve feasibility with respect to these constraints, and
that they cannot cause a nonzero duality gap, i.e. strong duality is valid without a
Slater-type assumption for linear optimization. We will not need to use this approach
in this chapter. It will nevertheless constitute the main tool used in the second part of
this thesis, which focuses on the topic of duality (see Chapters 4{7).

2.1.2 Interior-point methods

Among the di®erent types of algorithms that can be applied to solve problem (CL), the so-
called interior-point methods have gained a lot of popularity in the last two decades. This is
mainly due to the following facts:

¦ it is not only possible to prove convergence of these methods to an optimal solution
but also to give a polynomial bound on the number of arithmetic operations needed to
reach a solution within a given accuracy,
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¦ these methods can be implemented and applied successfully to solve real-world prob-
lems, especially in the ¯elds of linear (where they compare favourably with the simplex
method), quadratic and semide¯nite optimization.

A fundamental ingredient in the elaboration of these methods is the above-mentioned notion
of barrier function F for the set C. Namely, let us consider the following parameterized family
of unconstrained minimization problems:

inf
x2 Rn

cT x
¹

+ F (x) ; (CL ¹ )

where parameter¹ belongs toR++ and is called thebarrier parameter. The constraint x 2 C
of the original problem (CL) has been replaced by a penalty termF (x) in the objective
function, which tends to + 1 as x tends to the boundary of C and whose purpose is to
avoid that the iterates leave the feasible set (see the classical monograph [FM68]). Assuming
existence of a minimizer x(¹ ) for each of these problems (strong convexity ofF ensures
uniqueness of such a minimizer), we call the setf x(¹ ) j ¹ > 0g µ C the central path for
problem (CL).

It is intuitively clear that as ¹ tends to zero, the ¯rst term proportional to the original
objective cT x

¹ becomes preponderant in the sum, which implies that the central path converges
to a solution that is optimal for the original problem. The principle behind interior-point
methods will thus be to follow this central path until an iterate that is su±ciently close to
the optimum is found.

However, two questions remain pending: how do we computex(¹ ) and how do we choose
a suitable barrier F . The ¯rst question is readily answered: interior-point methods rely on
Newton's method to compute these minimizers, which leads us to a re¯ned version of the
second question: is it possible to choose a barrier functionF such that Newton's method is
provably e±cient in solving subproblems (CL¹ ) and has an algorithmic complexity that can
be estimated ? This crucial question is thoroughly answered by the remarkable theory of
self-concordant functions, ¯rst developed by Nesterov and Nemirovski [NN94], which we will
present in the next section.

2.1.3 Organization of the chapter

The purpose of this chapter is to give a self-contained introduction to the theory of self-
concordant functions and to apply it to several classes of structured convex optimization
problems. Section 2.2 introduces a de¯nition of self-concordant functions and presents sev-
eral equivalent conditions. A short-step interior-point method using these functions is then
presented along with an explanation of how the proof of polynomiality works. Our contri-
bution at this stage is the computation of the best possible iteration bound for this method
(Theorem 2.5).

Section 2.3 deals with the construction of self-concordant functions. Scaling and addition
of self-concordant functions are considered, as well as a discussion on the utility of two pa-
rameters in the de¯nition of self-concordancy and how to ¯x one of them in the best possible
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way. We then present an improved version of a lemma from [dJRT95] (Lemma 2.3). This
lemma is the main tool used in Section 2.4, where we review several classes of structured
convex optimization problems and prove self-concordancy of the corresponding logarithmic
barriers, improving the complexity results found in [dJRT95]. We conclude in Section 2.5
with some comments.

2.2 Self-concordancy

We start this section with a de¯nition of a self-concordant function.

2.2.1 De¯nitions

We ¯rst recall the following piece of notation: the ¯rst, second and third di®erentials of a
function F : Rn 7! R evaluated at the point x will be denoted by r F (x), r 2F (x) and
r 3F (x). These are linear mappings, and we have indeed

r F (x) : Rn 7! R : h1 7! r F (x)[h1]

r 2F (x) : Rn £ Rn 7! R : (h1; h2) 7! r 2F (x)[h1; h2]

r 3F (x) : Rn £ Rn £ Rn 7! R : (h1; h2; h3) 7! r 3F (x)[h1; h2; h3] :

De¯nition 2.2. A function F : C 7! R is called (·; º )-self-concordant for the convex set
C µ Rn if and only if F is a barrier function according to De¯nition 2.1 and the following
two conditions hold for all x 2 int C and h 2 Rn :

r 3F (x)[h; h; h] · 2·
¡
r 2F (x)[h; h]

¢3
2 ; (2.2)

r F (x)T (r 2F (x)) ¡ 1r F (x) · º (2.3)

(note that the square root in (2.2) is well de¯ned since its argument r 2F (x)[h; h] is
positive because of the requirement thatF is convex).

This de¯nition does not exactly match the original de¯nition of a self-concordant bar-
rier in [NN94], but merely corresponds to the notion of strongly non-degenerate· ¡ 2-self-
concordant barrier functional with parameter º , that is general enough for our purpose.

Note 2.2. We would like to point out that no absolute value is needed in (2.2): while some
authors usually require the apparently stronger condition

¯
¯r 3F (x)[h; h; h]

¯
¯ · 2·

¡
r 2F (x)[h; h]

¢3
2 ; (2.4)

this is not needed since it su±ces to notice that inequality (2.2) also has to hold in the
direction opposite to h, which gives

r 3F (x)[¡ h; ¡ h; ¡ h] · 2·
¡
r 2F (x)[¡ h; ¡ h]

¢3
2 , ¡r 3F (x)[h; h; h] · 2·

¡
r 2F (x)[h; h]

¢3
2

(using the fact that the nth -order di®erential is homogeneous with degreen), which combined
with (2.2) gives condition (2.4).
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It is possible to reformulate conditions (2.2) and (2.3) into several equivalent inequalities
that may prove easier to handle in some cases. However, before we list them, we would like
to make a few comments about the use of inner products in our setting, following the line of
thought of Renegar's monograph [Ren00].

It is indeed important to realize that the de¯nitions of gradient and Hessian, i.e. ¯rst-
order and second-order di®erentials are in fact dependent from inner product that is being
used. Nevertheless, in most texts, it is customary to use the dot product1 as standard inner
product. This has the disadvantage to make all developmentsa priori dependent from the
coordinate system. However, Renegar notices that it is possible to develop the theory of self-
concordant functions in a completely coordinate-free manner, i.e. independently of a reference
inner product. The is due to the fact that the two principal objects in this theory are indeed
independent from the coordinate system: the Newton stepn(x) and the intrinsic inner product
h¢; ¢ix . Given a barrier function F and a point x belonging to its domain, these two objects
are de¯ned according to:

n(x) = ¡ (r 2F (x)) ¡ 1r F (x) and h®; ¯ i x = h®;r 2F (x)¯ i :

It is also convenient to introduce the intrinsic norm k¢kx based on the intrinsic inner product
h¢; ¢ix according to the usual de¯nition kakx =

p
ha; ai x .

Let x 2 int C and h 2 Rn and let us introduce the one-dimensional functionFx;h : R 7!
R : t 7! F (x + th), the restriction of F along the line f x + th j t 2 Rg. We are now in position
to state several reformulations of conditions (2.2) and (2.3), grouped in the following two
theorems:

Theorem 2.1. The following four conditions are equivalent:

r 3F (x)[h; h; h] · 2·
¡
r 2F (x)[h; h]

¢3
2 for all x 2 int C and h 2 Rn (2.5a)

F 000
x;h (0) · 2·F 00

x;h (0)
3
2 for all x 2 int C and h 2 Rn (2.5b)

F 000
x;h (t) · 2·F 00

x;h (t)
3
2 for all x + th 2 int C and h 2 Rn (2.5c)

³
¡

1
q

F 00
x;h (t)

´ 0
· · for all x + th 2 int C and h 2 Rn : (2.5d)

Proof. SinceFx;h (t) = F (x + th), we can write

F 0
x;h (t) = r F (x + th)[h]; F 00

x;h (t) = r 2F (x + th)[h; h] and F 000
x;h (t) = r 3F (x + th)[h; h; h] :

Condition (2.5b) is thus simply condition (2.5a) written di®erently. Moreover, condition (2.5c)
is equivalent to condition (2.5b) written for x + th instead of x. Finally, we note that

³
¡

1
q

F 00
x;h (t)

´ 0
· · ,

1
2

F 00
x;h (t)¡ 3

2 F 000
x;h (t) · · , F 000

x;h (t) · 2·F 00
x;h (t)

3
2 ;

which shows that (2.5d) and (2.5c) are equivalent.

1The dot product of two vector x and y whose coordinates are (®1 ; ®2 ; : : : ; ®n ) and ( ¯ 1 ; ¯ 2 ; : : : ; ¯ n ) in a
given coordinate system is equal to

P n
i =1 ®i ¯ i .



2.2 { Self-concordancy 41

Theorem 2.2. The following four conditions are equivalent:

r F (x)T (r 2F (x)) ¡ 1r F (x) · º for all x 2 int C (2.6a)

F 0
x;h (0)2 · ºF 00

x;h (0) for all x 2 int C and h 2 Rn (2.6b)

F 0
x;h (t)2 · ºF 00

x;h (t) for all x + th 2 int C and h 2 Rn (2.6c)
³

¡
1

F 0
x;h (t)

´ 0
¸

1
º

for all x + th 2 int C and h 2 Rn : (2.6d)

Proof. Proving these equivalences is a little more involved than for the previous theorem. We
start by showing that condition (2.6b) implies condition (2.6a). We can write

r F (x)T (r 2F (x)) ¡ 1r F (x) = r F (x)[( r 2F (x)) ¡ 1r F (x)] = F 0
x; (r 2F (x)) ¡ 1 r F (x) (0)

·
p

º
q

F 00
x; (r 2F (x)) ¡ 1 r F (x) (0) using condition (2.6b)

=
p

º
p

r 2F (x)[( r 2F (x)) ¡ 1r F (x); (r 2F (x)) ¡ 1r F (x)]

=
p

º
q

r F (x)T (r 2F (x)) ¡ 1r 2F (x)( r 2F (x)) ¡ 1r F (x)

=
p

º
q

r F (x)T (r 2F (x)) ¡ 1r F (x) ;

which implies condition (2.6a). Considering now the reverse implication, we have

F 0
x;h (0)2 = ( r F (x)[h])2 =

¡
r F (x)T h

¢2

=
¡
r F (x)T (r 2F (x)) ¡ 1r 2F (x)h

¢2
= h(r 2F (x)) ¡ 1r F (x); hi 2

x

·
°
° (r 2F (x)) ¡ 1r F (x)

°
° 2

x khk2
x (using the Cauchy-Schwarz inequality)

=
¡
r F (x)T (r 2F (x)) ¡ 1r 2F (x)( r 2F (x)) ¡ 1r F (x)

¢ ¡
hT r 2F (x)h

¢

· º r 2F (x)[h; h] using condition (2.6a)

= ºF 00
x;h (0) :

Condition (2.6c) is condition (2.6b) written for x + th instead of x, and we ¯nally note that

³
¡

1
F 0

x;h (t)

´ 0
¸

1
º

, F 0
x;h (t)¡ 2F 00

x;h (t) ¸
1
º

, ºF 00
x;h (t) ¸ F 0

x;h (t)2 ;

which shows that (2.6d) and (2.6c) are equivalent.

The ¯rst three reformulations for each condition are well-known and can be found for
example in [NN94, Jar96, Ren00]. Conditions (2.5d) and (2.6d) are less commonly seen (they
were however mentioned in [Bri00]).

2.2.2 Short-step method

As outlined in the introduction, interior-point methods for convex optimization rely on a
barrier function and the associated central path to solve problem (CL). Ideally, we would like
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our iterates to be a sequence of points on the central pathx(¹ 0); x(¹ 1); : : : ; x(¹ k ); : : : for
a sequence of barrier parameters¹ k tending to zero (and thus x(¹ k ) tending to an optimal
solution).

We already mentioned that Newton's method, applied to problems (CL¹ ), will be the
workhorse to compute those minimizers. However, it would be too costly to compute each of
these points with high accuracy, so that interior-point methods require instead their iterates
to lie in a prescribed neighbourhood of the central path and its exact minimizers.

Let xk , the kth iterate, be an approximation of x(¹ k ). A good proximity measure would
be kxk ¡ x(¹ k )k or, to be independent from the coordinate system,kxk ¡ x(¹ k )kxk

. However,
these quantities involve the unknown central point x(¹ k ), and are therefore di±cult to work
with. Nevertheless, another elegant proximity measure can be used for that purpose. Let us
de¯ne n¹ (x) to be the Newton step trying to minimize the objective in problem (CL ¹ ), which
is thus aiming at x(¹ ). Since this objective is equal toF¹ (x) = cT x

¹ + F (x), we have

n¹ (x) = ¡ (r 2F¹ (x)) ¡ 1r F¹ (x) = ¡ (r 2F (x)) ¡ 1(
c
¹

+ r F (x))

= ¡
1
¹

(r 2F (x)) ¡ 1c + n(x) : (2.7)

Let us now de¯ne ±(x; ¹ ), a measure of the proximity of x to the central point x(¹ ), as the
intrinsic norm of the newton step n¹ (x), i.e. ±(x; ¹ ) = kn¹ (x)kx . This quantity is indeed a
good candidate to measure how farx lies from the minimizer x(¹ ), since the Newton step at
x targeting x(¹ ) is supposed to be a good approximation ofx(¹ ) ¡ x. The goal of a short-
step interior-point method will be to trace the central path approximately, ensuring that the
proximity ±(xk ; ¹ k ) is kept below a prede¯ned bound for each iterate.

We are now in position to sketch a short-step algorithm. Given a problem of type (CL),
a barrier function F for C, an upper bound on the proximity measure ¿ > 0, a decrease
parameter 0 < µ < 1 and an initial iterate x0 such that ±(x0; ¹ 0) < ¿ , we set k Ã 0 and
perform the following main loop:

a. ¹ k+1 Ã ¹ k (1 ¡ µ)

b. xk+1 Ã xk + n¹ k +1 (xk )

c. k Ã k + 1

The key is to choose parameters¿ and µ such that ±(xk ; ¹ k ) < ¿ implies ±(xk+1 ; ¹ k+1 ) < ¿ ,
so that proximity to the central path is preserved. This is the moment where the self-
concordancy of the barrier function F comes into play. Indeed, it is precisely this property
that will guarantee that such a choice is always possible.

2.2.3 Optimal complexity

In order to relate the two proximities ±(xk ; ¹ k ) and ±(xk+1 ; ¹ k+1 ), it is useful to introduce
an intermediate quantity ±(xk ; ¹ k+1 ), the proximity from an iterate to its next target on the
central path. We have the following two properties:
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Theorem 2.3. Let F be a barrier function satisfying (2.3), x 2 domF and ¹ + = (1 ¡ µ)¹ .
We have

±(x; ¹ + ) ·
±(x; ¹ ) + µ

p
º

1 ¡ µ
:

Proof. Using (2.7), we have

¹ + n¹ + (x) ¡ ¹ + n(x) = ¡ (r 2F (x)) ¡ 1c = ¹n ¹ (x) ¡ ¹n (x)

(dividing by ¹ ) , (1 ¡ µ)n¹ + (x) ¡ (1 ¡ µ)n(x) = n¹ (x) ¡ n(x)

, (1 ¡ µ)n¹ + (x) = n¹ (x) ¡ µn(x)

) (1 ¡ µ)
°
° n¹ + (x)

°
°

x · k n¹ (x)kx + µkn(x)kx

) (1 ¡ µ)±(x; ¹ + ) · ±(x; ¹ ) + µ
p

º ;

which implies the desired inequality, where we used to derive the last implication the fact
that

kn(x)kx =
p

hn(x); n(x)i x =
q

r F (x)T (r 2F (x)) ¡ 1r 2F (x)( r 2F (x)) ¡ 1r F (x)

=
q

r F (x)T (r 2F (x)) ¡ 1r F (x) ·
p

º ;

because of condition (2.3).

Theorem 2.4. Let F be a barrier function satisfying (2.2) and x 2 domF . Let us suppose
±(x; ¹ ) < 1

· . We have that x + n¹ (x) 2 domF and

±(x + n¹ (x); ¹ ) ·
·± (x; ¹ )2

(1 ¡ ·± (x; ¹ ))2 :

This proof is more technical and is omitted here ; it can be found in [NN94, Jar96, Ren00].

Note 2.3. It is now clear why the self-concordancy property relies on two separate conditions:
one of them is responsible for the control of the increase of the proximity measure when the
target on the central path is updated (Theorem 2.3), while the other guarantees that the
proximity to the target can be restored, i.e. su±ciently decreased when taking a Newton step
(Theorem 2.4).

Assuming for the moment that ¿ and µ can be chosen such that the proximity to central
path is preserved at each iteration, we see that the number of iterations needed to attain a
certain value of the barrier parameter ¹ e depends solely on the ratio¹ 0

¹ e
and the value of µ.

Namely, since¹ k = (1 ¡ µ)k ¹ 0, it is readily seen that this number of iterations is equal to
»

log(1¡ µ)
¹ e

¹ 0

¼
=

»
1

log(1 ¡ µ)
log

¹ e

¹ 0

¼
: (2.8)

Given a (·; º )-self-concordant function, we are now going to ¯nd a suitable pair of pa-
rameters ¿ and µ . Moreover, we will optimize this choice of parameters, i.e. try to provide
the greatest reduction for the parameter ¹ at each iteration, in other words maximize µ in
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order to get the lowest possible total iteration count. Letting ± = ±(xk ; ¹ k ), ±0 = ±(xk ; ¹ k+1 )
and ±+ = ±(xk+1 ; ¹ k+1 ) and assuming± · ¿, we have to satisfy ±+ · ¿ with the greatest
possible value forµ.

Let us assume ¯rst that ±0 < 1
· . Using Theorem 2.4, we ¯nd that

±+ ·
·± 02

(1 ¡ ·± 0)2

and therefore require that
·± 02

(1 ¡ ·± 0)2 · ¿ :

This is equivalent to
µ

·± 0

1 ¡ ·± 0

¶ 2

· ·¿ ,
µ

1
·± 0 ¡ 1

¶ 2

¸
1

·¿
,

1
·± 0 ¸ 1 +

1
p

·¿

(this also shows that the assumption·± 0 < 1 we made in the beginning was valid). Using
now Theorem 2.3, we know that

±0 ·
±+ µ

p
º

1 ¡ µ
) ±0 ·

¿ + µ
p

º
1 ¡ µ

,
1

·± 0 ¸
1 ¡ µ

·¿ + µ·
p

º

and thus require that
1 ¡ µ

·¿ + µ·
p

º
¸ 1 +

1
p

·¿
:

Letting ¡ = ·
p

º and ¯ =
p

·¿ we have

1 ¡ µ
¯ 2 + µ¡

¸ 1 +
1
¯

, 1 ¡ µ ¸ (1 +
1
¯

)( ¯ 2 + ¡ µ) , 1 ¡ ¯ ¡ ¯ 2 ¸ µ
µ

1 + ¡ +
¡
¯

¶
;

which means ¯nally that we have to chooseµ such that

µ ·
1 ¡ ¯ ¡ ¯ 2

1 + ¡ + ¡
¯

(2.9)

in order to guarantee ±+ · ¿. We are now in position to optimize the value ofµ, i.e. ¯nd the
value of ¯ that maximizes this upper bound. However, this value is likely to depend on ¡ (and
thus on · and º ) in a complex way. We are therefore going to work with the following slightly
worse upper bound, which has the advantage of allowing the optimization of̄ independently
of ¡ (we use the fact that ¡ = ·

p
º ¸ 1, see [NN94])

µ ·
1
¡

³ 1 ¡ ¯ ¡ ¯ 2

2 + 1
¯

´
=

f (¯ )
¡

³
·

1 ¡ ¯ ¡ ¯ 2

1 + ¡ + ¡
¯

´
:

It is now straightforward to maximize f (¯ ): computing the derivative shows there is a unique
maximizer when ¯ ¼ 0:273 (the exact value is the real root of 1¡ 2¯ ¡ 5¯ 2 ¡ 4¯ 3) and our
upper bound in (2.9) becomes 0:65

1+4 :66¡ . Translating back into our original quantities ¿, · and
º we ¯nd that we can choose

¿ =
¯ 2

·
¼

1
13:42·

and µ =
1 ¡ ¯ ¡ ¯ 2

1 + ¡ + ¡
¯

¼
1

1:53 + 7:15·
p

º
; (2.10)
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which is the best result obtainable if we want¯ to be independent from· and º (more precisely,
it essentially corresponds to the best result in the case where·

p
º = 1). This improves several

results from the literature, e.g. µ = 1
9·

p
º in [Jar96] and µ = 1

1+8 ·
p

º in [Ren00].

Before we conclude this section with a global complexity result, let us say a few words
about termination of the algorithm. The most practical stopping criterion is a small target
value ¹ e for the barrier parameter, which gives the iteration bound (2.8). Our ¯nal iterate
xe will thus satisfy ±(xe; ¹ e) · ¿, which tells us it is not too far from x(¹ e), itself not too far
from the optimum since ¹ e is small. Indeed, using again the self-concordancy property ofF ,
it is possible to derive the following bound on the accuracy of the ¯nal objectivecT xe, i.e. its
deviation from the optimal objective cT x¤

cT xe ¡ cT x¤ ·
¹ e

1 ¡ 3·¿
·

p
º (2.11)

(proof of this fact is omitted here and can easily be obtained combining Theorems 2.2.5 and
2.3.3 in [Ren00]). We are now ready to state our ¯nal complexity result:

Theorem 2.5. Given a convex optimization problem(CL) , a (·; º )-self-concordant barrier
F for C and an initial iterate x0 such that ±(x0; ¹ 0) < 1

13:42· , one can ¯nd a solution with
accuracy ² in »

(1:03 + 7:15·
p

º ) log
1:29¹ 0·

p
º

²

¼
iterations.

Proof. Using our optimal values for µ and ¿ from (2.10) and the bound on the objective
accuracy in (2.11), we ¯nd that the stopping threshold on the barrier parameter ¹ e must
satisfy

¹ e

1 ¡ 3=13:42
·

p
º · ² , 1:29¹ e·

p
º · ² , ¹ e ·

²
1:29·

p
º

:

Plugging this value into (2.8) we ¯nd that the total number of iterations can be bounded by
(omitting the rounding bracket for clarity)

1
log(1 ¡ µ)

log
¹ e

¹ 0
·

1
log(1 ¡ µ)

log
²

1:29¹ 0·
p

º

= ¡
1

log(1 ¡ µ)
log

1:29¹ 0·
p

º
²

·
¡ 1

µ
¡

1
2

¢
log

1:29¹ 0·
p

º
²

= (1 :03 + 7:15·
p

º ) log
1:29¹ 0·

p
º

²
;

as announced (the third line uses the inequality 1
log(1¡ µ) ¸ 1

2 ¡ 1
µ , which can be easily derived

using the Taylor series of logx around 1).

2.3 Proving self-concordancy

The previous section has made clear that the self-concordancy property of the barrier function
F is essential to derive a polynomial bound on the number of iterations of the short-step
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method. Moreover, smaller values for parameters· and º imply a lower total complexity.
The next question we may ask ourselves is how to ¯nd self-concordant barriers (ideally with
low parameters).

2.3.1 Barrier calculus

An impressive result in [NN94] states that every convex set inRn admits a (K; n )-self-
concordant barrier, whereK is a universal constant (independent ofn). However, the univer-
sal barrier they provide in their proof is de¯ned as a volume integral over ann-dimensional
convex body, and is therefore di±cult to evaluate in practice, even for simple sets in low-
dimensional spaces. Another potential problem with this approach is that evaluating this
barrier (and/or its gradient and Hessian) might take a number of arithmetic operations that
grows exponentially with n, which would lead to an exponential algorithmic complexity for
the short-step method, despite the polynomial iteration bound.

Another approach to ¯nd self-concordant function is to combine basic self-concordant
functions using operations that are known to preserve self-concordancy (this approach is called
barrier calculus in [NN94]). We are now going to describe two of these self-concordancy pre-
serving operations, positive scaling and addition, and examine how the associated parameters
are a®ected in the process.

Let us start with positive scalar multiplication.

Theorem 2.6. Let F be a(·; º )-self-concordant barrier for C µ Rn and ¸ 2 R++ a positive
scalar. Then (¸F ) is also a self-concordant barrier forC with parameters ( ·p

¸
; ¸º ).

Proof. It is clear that ( ¸F ) is also a barrier function (i.e. smoothness, strong convexity and
the barrier property are obviously preserved by scaling). Looking at the restrictions (̧F )x;h =
¸F x;h , we also have that

(¸F )0
x;h = ¸F 0

x;h ; (¸F )00
x;h = ¸F 00

x;h and (¸F )000
x;h = ¸F 000

x;h :

Since F is (·; º )-self-concordant, we have (using conditions (2.5b) and (2.6b) from Theo-
rems 2.1 and 2.2)

F 000
x;h (0) · 2·F 00

x;h (0)
3
2 and F 0

x;h (0)2 · ºF 00
x;h (0) for all x 2 int C and h 2 Rn :

This is equivalent to

¸F 000
x;h (0) · 2

·
p

¸
(¸F 00

x;h (0))
3
2 and (¸F 0

x;h (0))2 · ¸º¸F 00
x;h (0) for all x 2 int C and h 2 Rn ;

which is precisely stating that (¸F ) is ( ·p
¸

; ¸º )-self-concordant.

This theorem show that self-concordancy is preserved by positive scalar multiplication,
but that parameters · and º are both modi¯ed. It is interesting to note that these param-
eters do not occur individually in the iteration bound of Theorem 2.5 but are rather always
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appearing together in the expression·
p

º . This quantity, which we will call the complexity
value of the barrier, is solely responsible for the polynomial iteration bound. Looking at what
happens to it when F is scaled by¸ , we ¯nd that the scaled complexity value is equal to

·p
º

p
¸º = ·

p
º , i.e. that the complexity value is invariant to scaling. This means in ¯ne

that scaling a self-concordant barrier does not in°uence the algorithmic complexity of the
associated short-step method, a property than could reasonably be expected from the start.

Let us now examine what happens when two self-concordant barriers are added.

Theorem 2.7. Let F be a (· 1; º 1)-self-concordant barrier for C1 µ Rn and G be a (· 2; º 2)-
self-concordant barrier for C2 µ Rn . Then (F + G) is a self-concordant barrier for C1 \ C2

(provided this intersection is nonempty) with parameters(maxf · 1; · 2g; º 1 + º 2).

Proof. It is straightforward to see that ( F + G) is a barrier function for C1 \ C2. Looking at
the restrictions (F + G)x;h , we also have that

(F + G)0
x;h = F 0

x;h + G0
x;h ; (F + G)00

x;h = F 00
x;h + G00

x;h and (F + G)000
x;h = F 000

x;h + G000
x;h :

We can write thus

(F + G)000
x;h = F 000

x;h + G000
x;h · 2· 1F 00

x;h
3
2 + 2 · 2G00

x;h
3
2

· 2 maxf · 1; · 2g(F 00
x;h

3
2 + G00

x;h
3
2 )

· 2 maxf · 1; · 2g(F 00
x;h + G00

x;h )
3
2 = 2 maxf · 1; · 2g(F + G)00

x;h

(where we used for the third inequality the easily proven factx
3
2 + y

3
2 · (x+ y)

3
2 for x; y 2 R++ )

and

¯
¯(F + G)0

x;h

¯
¯ =

¯
¯F 0

x;h + G0
x;h

¯
¯ ·

¯
¯F 0

x;h

¯
¯ +

¯
¯G0

x;h

¯
¯

·
p

º 1

q
F 00

x;h +
p

º 2

q
G00

x;h

·
p

º 1 + º 2

q
F 00

x;h + G00
x;h =

p
º 1 + º 2

q
(F + G)00

x;h

(where we used for the third inequality the Cauchy-Schwarz inequality applied to vectors

(
p

º 1;
p

º 2) and (
q

F 00
x;h ;

q
G00

x;h )), which is precisely stating that ( F + G) is (maxf · 1; · 2g; º 1 +

º 2)-self-concordant.

2.3.2 Fixing a parameter

As mentioned above, scaling a barrier function with a positive scalar does not a®ect its self-
concordancy, i.e. its suitability as a tool for convex optimization, and leaves its complexity
value unchanged. One can thus make the decision to ¯x one of the two parameters· and º
arbitrarily and only work with the corresponding subclass of barrier, without any real loss of
generality. We describe now two choices of this kind that have been made in the literature.
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First choice. Some authors [dJRT95, RT98, Jar89, dRT92] choose to work with the second
parameter º ¯xed to one. However, this choice is not made explicitly but results from the
particular structure of the barrier functions that are considered. Indeed, these authors con-
sider convex optimization problems whose feasible sets are given by a functional description
like (2.1), i.e.

inf
x2 Rn

cT x s.t. f i (x) · 0 8i 2 I :

In order to apply the interior-point method methodology, a barrier function is needed and it
is customary to use the logarithmic barrier as described in Note 2.1

F : Rn 7! R : x 7! F (x) = ¡
X

i 2 I

log(¡ f i (x)) :

The following lemma will prove useful.

Lemma 2.1. Let f : Rn 7! R be a convex function and de¯neF : Rn 7! R [ f + 1g : x 7!
¡ log(¡ f (x)) , whose e®ective domain is the setC = f x 2 Rn j f (x) < 0g. We have that F
satis¯es the second condition of self-concordancy(2.3) with parameter º = 1 .

Proof. Using the equivalent condition (2.6b) of Theorem 2.2, we have to evaluate forx 2 int C,
h 2 Rn and t = 0

F 0
x;h (t) = ¡

r f (x + th)[h]
f (x + th)

and F 00
x;h (t) =

r f (x + th)[h]2 ¡ r 2f (x + th)[h; h]f (x + th)
f (x + th)2 ;

which implies

F 0
x;h (0)2 =

r f (x)[h]2

f (x)2 ·
r f (x)[h]2 ¡ r 2f (x)[h; h]f (x)

f (x)2 = F 00
x;h (0)

(where we have used the fact thatr 2f (x)[h; h] ¸ 0 becausef is convex andf (x) · 0 because
x belongs to the feasible setC), which implies that F satis¯es the second self-concordancy
condition (2.3) with º = 1.

Since the complete logarithmic barrier is a sum of terms for which this lemma is appli-
cable, we can use Theorem 2.7 to ¯nd that it satis¯es the same condition withº = jI j = m,
the number of constraints.

This means that we only have to check the ¯rst condition (2.2) involving · to es-
tablish self-concordancy for the logarithmic barrier. Assuming that each individual term
¡ log(¡ f i (x)) can be shown to satisfy it with · = · i , we have that the whole logarithmic bar-
rier is (maxi 2 I f · i g; m)-self-concordant, which leads to a complexity value equal tok· k1

p
m,

where we have de¯ned· = ( · 1; · 2; : : : ; · m ).

Second choice. Another arbitrary choice of self-concordance parameters that one en-
counters frequently in the literature consists in ¯xing · = 1 in the ¯rst self-concordancy
condition (2.2). This approach has been used increasingly in the recent years (see e.g.
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[NN94, Ren00, Jar96]), and we propose to give here a justi¯cation of its superiority over
the alternative presented above.

Let us consider the same logarithmic barrier, and suppose again that each individual
term Fi : x 7! ¡ log(¡ f i (x)) has been shown to satisfy the ¯rst self-concordancy condi-
tion (2.2) with · = · i . Our previous discussion implies thus thatFi is (· i ; 1)-self-concordant.
Multiplying now Fi with · 2

i , Theorem 2.6 implies that · 2
i Fi is (1; · 2

i )-self-concordant. The
corresponding complete scaled logarithmic barrier

~F : x 7! ¡
X

i 2 I

· 2
i log(¡ f i (x))

is then (1;
P

i 2 I · 2
i )-self-concordant by virtue of Theorem 2.7, which leads ¯nally to a com-

plexity value equal to
q P

i 2 I · 2
i = k· k2. This quantity is always lower than the complexity

value for the standard logarithmic barrier considered above because of the well-known norm
inequality k· k2 ·

p
m k· k1 , which proves the superiority of this second approach (the only

case where they are equivalent is when all parameters· i 's are equal).

Note 2.4. The fundamental reason why the ¯rst approach is less e±cient is that it makes us
combine barriers with di®erent· parameters, with the consequence that only the largest value
maxi 2 I f · i g appears in the ¯nal complexity value (the other smaller values become completely
irrelevant and do not in°uence the ¯nal complexity at all). The second approach avoids this
situation by ensuring that · is always equal to one, which means that· 's are equal for each
combination and that the ¯nal complexity is well depending on the parameters of all the
terms of the logarithmic barrier.

2.3.3 Two useful lemmas

We have seen so far how to construct self-concordant barrier by combining simpler functionals
but still have no tool to prove self-concordancy of these basic barriers. The purpose of this
section is to present two lemmas that can help us in that regard.

The ¯rst one deals with the second condition of self-concordancy with logarithmically
homogeneous barriers [NN94].

Lemma 2.2. Let us supposeF is a logarithmically homogeneous function with parameter®,
i.e.

F (tx ) = F (x) ¡ ®log t : (2.12)

We have thatF satis¯es the second condition of self-concordancy(2.3) with parameter º = ®.

Proof. This fact admits the following straightforward proof. We start by di®erentiating both
sides of (2.12) with respect tot, to ¯nd

r F (tx )[x] = ¡
®
t

:

Fixing t = 1 gives
r F (x)[x] = r F (x)T x = ¡ ® : (2.13)
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Di®erentiating this last equality again, this time with respect to x, leads to

r F (x) + r 2F (x)x = 0 , r F (x) = ¡r 2F (x)x : (2.14)

Looking now at the left-hand side in (2.3) we have

r F (x)T (r 2F (x)) ¡ 1r F (x) = ¡r F (x)T (r 2F (x)) ¡ 1r 2F (x)x = ¡r F (x)T x = ®

(using successively (2.14) and (2.13)), which implies immediately thatF satis¯es the second
condition of self-concordancy (2.3) with º = ®. It is worth to point out that this inequality
is in this case always satis¯ed with equality.

The second lemma we are going to present deals with the ¯rst self-concordancy condi-
tion. Let us ¯rst introduce two auxiliary functions r1 and r2, whose graphs are depicted in
Figure 2.1:

r1 : R 7! R : ° 7! max
©

1;
°

p
3 ¡ 2=°

ª
and r2 : R 7! R : ° 7! max

©
1;

° + 1 + 1 =°
p

3 + 4=° + 2=°2

ª
:

Both of these functions are equal to 1 for° · 1 and strictly increasing for ° ¸ 1, with the
asymptotic approximations r1(° ) ¼ °p

3
and r2(° ) ¼ ° +1p

3
when ° tends to + 1 .
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Figure 2.1: Graphs of functionsr1 and r2

Lemma 2.3. Let us supposeF is a convex function with e®ective domainC µ Rn
+ and that

there exists a constant° such that

r 3F (x)[h; h; h] · 3° r 2F (x)[h; h]

vu
u
t

nX

i =1

h2
i

x2
i

for all x 2 int C and h 2 Rn : (2.15)
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We have that

F1 : C 7! R : x 7! F (x) ¡
nX

i =1

logx i

satis¯es the ¯rst condition of self-concordancy (2.2) with parameter · 1 = r1(° ) on its domain
C and

F2 : C £ R 7! R : (x; u) 7! ¡ log
¡
u ¡ F (x)

¢
¡

nX

i =1

logx i

satis¯es the ¯rst condition of self-concordancy (2.2) with parameter · 2 = r2(° ) on its domain
epiF = f (x; u) j F (x) · ug.

Note 2.5. A similar lemma is proved in [dJRT95], with parameters · 1 and · 2 both equal to
1 + ° . The second result is improved in [Jar96], with· 2 equal to maxf 1; ° g, as a special case
of a more general compatibility theory developed in [NN94]. However, it is easy to see that
our result is better. Indeed, our parameters are strictly lower in all cases forF1 and as soon
as ° > 1 for r2, with an asymptotical ratio of

p
3 when ° tends to + 1 .

Proof. We follow the lines of [dJRT95] and start with F1: computing its second and third
di®erentials gives

r 2F1(x)[h; h] = r 2F (x)[h; h] +
nX

i =1

h2
i

x2
i

and r 3F1(x)[h; h; h] = r 3F (x)[h; h; h] ¡ 2
nX

i =1

h3
i

x3
i

:

Introducing two auxiliary variables a ¸ 0 and b ¸ 0 such that

a2 = r 2F [h; h] and b2 =
nX

i =1

h2
i

x2
i

(convexity of F guarantees that a is real), we can rewrite inequality (2.15) as

r 3F (x)[h; h; h] · 3°a2b :

Combining it with the fact that
¯
¯
¯
¯
¯
¯

Ã
nX

i =1

h3
i

x3
i

! 1
3

¯
¯
¯
¯
¯
¯

·

Ã
nX

i =1

jhi j
3

jx i j
3

! 1
3

·

Ã
nX

i =1

h2
i

x2
i

! 1
2

= b ; (2.16)

where the second inequality comes from the well-known relationk¢k3 · k¢k 2 applied to vector
( h1

x1
; : : : ; hn

xn
), we ¯nd that

r 3F1(x)[h; h; h]

2(r 2F1(x)[h; h])
3
2

·
3°a2b+ 2b3

2(a2 + b2)
3
2

:

According to (2.2), ¯nding the best parameter · for F1 amounts to maximize this last quantity
depending ona and b. Since a ¸ 0 and b ¸ 0 we can write a = r cosµ and b = r sinµ with
r ¸ 0 and 0· µ · ¼

2 , which gives

3°a2b+ 2b3

2(a2 + b2)
3
2

=
3°
2

cos2 µsinµ + sin 3 µ = h(µ) :
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The derivative of h is

h0(µ) =
3°
2

cos3 µ ¡ 3° sin2 µcosµ + 3 cosµsin2 µ = 3 cosµ
³ °

2
cos2 µ + (1 ¡ ° ) sin2 µ

´
:

When ° · 1, this derivative is clearly always nonnegative, which implies that the maximum
is attained for the largest value of µ, which gives hmax = h( ¼

2 ) = 1 = r1(° ). When ° > 1, we
easily see thath has a maximum when °

2 cos2 µ + (1 ¡ ° ) sin2 µ = 0. This condition is easily
seen to imply sin2 µ = °

3° ¡ 2 , and hmax becomes

hmax = 3
°
2

cos2 µsinµ + sin 3 µ =
¡
3(° ¡ 1) + 1

¢
sin3 µ

= (3 ° ¡ 2)
µ

°
3° ¡ 2

¶ 3
2

=
°

p
3 ¡ 2=°

= r1(° ) :

A similar but slightly more technical proof holds for F2. Letting ~x = ( x; u); ~h = ( h; v)
and G(~x) = F (x) ¡ u, we have that F2(~x) = ¡ log(¡ G(~x)) ¡

P n
i =1 logx i . G is easily shown

to be convex and negative on epiF , the domain of F2. SinceF and G only di®er by a linear
term, we also have that r 2F (x)[h; h] = r 2G(~x)[~h; ~h] and r 3F (x)[h; h; h] = r 3G(~x)[~h; ~h; ~h].
Looking now at the second di®erential ofF2 we ¯nd

r 2F2(~x)[~h; ~h] =
r G(~x)[h]2

G(~x)2 ¡
r 2G(~x)[~h; ~h]

G(~x)
+

nX

i =1

h2
i

x2
i

:

Let us de¯ne for conveniencea 2 R+ , b 2 R+ and c 2 R with

a2 = ¡
r 2G(~x)[~h; ~h]

G(~x)
; b2 =

nX

i =1

h2
i

x2
i

and c = ¡
r G(~x)[h]

G(~x)

(convexity of G and the fact that it is negative on the domain of F2 guarantee that a is real),
which implies r 2F2(x)[~h; ~h] = a2 + b2 + c2. We can now evaluate the third di®erential

r 3F2(~x)[~h; ~h; ~h] = ¡
r 3G(~x)[~h; ~h; ~h]

G(~x)
+ 3

r 2G(~x)[~h; ~h]r G(~x)[~h]
G(~x)2 ¡ 2

r G(~x)[~h]3

G(~x)3 ¡ 2
nX

i =1

h3
i

x3
i

= ¡
r 3G(~x)[~h; ~h; ~h]

G(~x)
+ 3a2c + 2c3 ¡ 2

nX

i =1

h3
i

x3
i

· ¡
r 3G(~x)[~h; ~h; ~h]

r 2G(~x)[~h; ~h]

r 2G(~x)[~h; ~h]
G(~x)

+ 3a2c + 2c3 + 2b3 using again (2.16)

= ¡
r 3F (x)[h; h; h]
r 2F (x)[h; h]

r 2G(~x)[~h; ~h]
G(~x)

+ 3a2c + 2c3 + 2b3

· 3°a2b+ 3a2c + 2c3 + 2b3 using condition (2.15) :

According to (2.2), ¯nding the best parameter · for F2 amounts to maximize the following
ratio

r 3F2(~x)

2(r 3F2(~x))
3
2

·
3°a2b+ 3a2c + 2c3 + 2b3

2(a2 + b2 + c2)
3
2

=
3°
2 a2b+ 3

2a2c + c3 + b3

(a2 + b2 + c2)
3
2

:
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Since this last quantity is homogeneous of degree 0 with respect to variablesa, b and c, we
can assume thata2 + b2 + c2 = 1, which gives

3°
2

a2b+
3
2

a2c + c3 + b3 =
3
2

a2(°b + c) + c3 + b3 =
3
2

(1 ¡ b2 ¡ c2)( °b + c) + b3 + c3 :

Calling this last quantity m(b; c), we can now compute its partial derivatives with respect to
b and c and ¯nd

@m
@b

= ¡
3
2

¡
(3° ¡ 2)b2 + °c2 + 2bc¡ °

¢
and

@m
@c

= ¡
3
2

¡
b2 + c2 + 2bc° ¡ 1

¢
:

We have now to equate those two quantities to zero and solve the resulting system. We can
for example write @m

@b ¡ ° @m
@c = 0, which gives (g ¡ 1)b(b ¡ c(° + 1)) = 0, and explore the

resulting three cases. The solutions we ¯nd are

(b; c) = (0 ; § 1) and (
° + 1

p
3° 2 + 4° + 2

;
1

p
3° 2 + 4° + 2

)

with an additional special caseb+ c = 1 when ° = 1. Plugging these values intom(b; c), one
¯nds after some computations the following potential maximum values

§ 1 and
° 2 + ° + 1

p
3° 2 + 4° + 2

=
° + 1 + 1 =°

p
3 + +4 =° + 2=°2

(and 1 in the special case° = 1). One concludes that the maximum we seek is equal tor2(° ),
as announced.

While the lemma we have just proved is useful to tackle the ¯rst condition of self-
concordancy (2.2), it does not say anything about the second condition (2.3). The following
Corollary about the second barrier F2 might prove useful in this respect.

Corollary 2.1. Let F satisfy the assumptions of Lemma 2.3. Then the second barrier

F2 : C £ R 7! R : (x; u) 7! ¡ log
¡
u ¡ F (x)

¢
¡

nX

i =1

logx i

is (r2(° ); n + 1) -self-concordant.

Proof. Since G(x; u) = F (x) ¡ u is convex, ¡ log(u ¡ F (x)) = ¡ log(¡ G(x; u)) is known
to satisfy the second self-concordancy condition (2.3) withº = 1 by virtue of Lemma 2.1.
Moreover, it is straightforward to check that each term ¡ logx i also satis¯es that second
condition with parameter º = 1. Using the addition Theorem 2.7 and combining with the
result of Lemma 2.3, we can conclude thatF2 is (r2(° ); n + 1)-self-concordant.

Note 2.6. We would like to point out that no similar result can hold for the ¯rst function
F1, since we know nothing about the status of the second self-concordancy condition (2.3)
on its ¯rst term F (x). Indeed, taking the case ofF : R+ 7! R : x 7! 1

x , we can check that
r 2F (x)[h; h] = 2 h2

x3 and r 3F (x)[h; h; h] = ¡ 6h3

x4 , which implies that condition (2.15) holds
with ° = 1 since

¡ 6
h3

x4 · 3 £ 2
h2

x3

jhj
x

, ¡ h3 · h2 jhj
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is satis¯ed. On the other hand, the second self-concordancy condition (2.3) cannot hold for
F1 : R+ 7! R : x 7! 1

x ¡ logx, since

r F (x)T (r 2F (x)) ¡ 1r F (x) =
F 0

1(x)2

F 00
1 (x)

=
(x+1) 2

x4

(2+ x)
x3

=
(x + 1) 2

x(x + 2)

does not admit an upper bound (it tends to +1 when x ! 0).

To conclude this section, we mention that since condition (2.15) is invariant with respect
to positive scaling of F , the results from Lemma 2.3 hold for barriersF¸; 1(x) = ¸F (x) ¡P n

i =1 logx i and F¸; 2(x; u) = ¡ log(u ¡ ¸F (x)) ¡
P n

i =1 logx i where ¸ is a positive constant.

2.4 Application to structured convex problems

In this section we rely on the work in [dJRT95], where several classes of structured convex
optimization problems are shown to admit a self-concordant logarithmic barrier. However,
Lemma 2.3 will allow us to improve the self-concordancy parameters and lower the resulting
complexity values.

2.4.1 Extended entropy optimization

Let c 2 Rn , b 2 Rm and A 2 Rm£ n . We consider the following problem

inf
x2 Rn

cT x +
nX

i =1

gi (x i ) s.t. Ax = b and x ¸ 0 (EEO)

where scalar functionsgi : R+ 7! R : z 7! gi (z) are required to satisfy

¯
¯g000

i (z)
¯
¯ · · i

g00
i (z)
z

8z > 0 (2.17)

(which by the way implies their convexity). This class of problems is studied in [HPY92,
PY93]. Classical entropy optimization results as a special case whengi (x) = x logx (in that
case, it is straightforward to see that condition (2.17) holds with · i = 1).

Let us use Lemma 2.3 withFi : x i 7! gi (x i ) and ° = · i
3 . Indeed, checking condition (2.15)

amounts to write

h3g000
i (x) · 3

· i

3
h2g00

i (x)
jhj
x

,
h
jhj

g000
i (x) · · i

g00
i (x)
x

;

which is guaranteed by condition (2.17). Using the second barrier and Corollary 2.1, we ¯nd
that

Fi : (x i ; ui ) 7! ¡ log
¡
ui ¡ gi (x i )

¢
¡ logx i
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is (r2( · i
3 ); 2)-self-concordant2. However, in order to use this barrier to solve problem (EEO),

we need to reformulate it as

inf
x2 Rn ; u2 Rn

cT x +
nX

i =1

ui s.t. Ax = b; gi (x i ) · ui 81 · i · n and x ¸ 0 ;

which is clearly equivalent. We are now able to write the complete logarithmic barrier

F : (x; u) 7! ¡
nX

i =1

log
¡
ui ¡ gi (x i )

¢
¡

nX

i =1

logx i ;

which is (r2( maxf · i g
3 ); 2n)-self-concordant by virtue of Theorem 2.7. In light of Note 2.4, we

can even do better with a di®erent scaling of each term, to get

~F : (x; u) 7! ¡
nX

i =1

r2(
· i

3
)2 log

¡
ui ¡ gi (x i )

¢
¡

nX

i =1

r2(
· i

3
)2 logx i

which is then (1;
q

2
P n

i =1 r2( · i
3 )2)-self-concordant. In the case of classical entropy optimiza-

tion, these parameters become (1;
p

2n) , since r2( 1
3) = 1.

2.4.2 Dual geometric optimization

Let f I kgk=1 :::r be a partition of f 1; 2; : : : ; ng, c 2 Rn , b 2 Rm and A 2 Rm£ n . The dual
geometric optimization problem is (see Chapter 5 for a complete description)

inf
x2 Rn

cT x +
rX

k=1

2

4
X

i 2 I k

x i log(
x iP

i 2 I k
x i

)

3

5

s.t. Ax = b and x ¸ 0 (GD)

It is shown in [dJRT95] that condition (2.15) holds for

Fk : (x i ) i 2 I k 7!
X

i 2 I k

x i log(
x iP

i 2 I k
x i

)

with ° = 1, so that the corresponding second barrier in Lemma 2.15 is (1; jI k j + 1)-self-
concordant. Using the same trick as for problem (EEO), we introduce additional variablesuk

to ¯nd that the following barrier

F : (x; u) 7!
rX

k=1

¡ log
³

uk ¡
X

i 2 I k

x i log(
x iP

i 2 I k
x i

)
´

¡
nX

i =1

logx i

is a (1; n + r )-self-concordant barrier for a suitable reformulation of problem (GD).

2This corrects the statement in [dJRT95] where it is mentioned that gi (x i ) ¡ log x i , i.e. the ¯rst barrier in
Lemma 2.3, is self-concordant. As it is made clear in Note 2.6, this cannot be true in general
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2.4.3 lp-norm optimization

Let f I kgk=1 :::r be a partition of f 1; 2; : : : ; ng, b 2 Rm , ai 2 Rm , f k 2 Rm , c 2 Rn , d 2 Rr and
p 2 Rn such that pi ¸ 1. The primal lp-norm optimization problem is (see Chapter 4 for a
complete description)

sup
y2 Rm

bT y s.t. f k (y) · 0 for all k = 1 ; : : : ; r ; (Plp)

where functions f k : Rm 7! R are de¯ned according to

f k : y 7!
X

i 2 I k

1
pi

¯
¯aT

i y ¡ ci
¯
¯pi + f T

k y ¡ dk :

This problem can be reformulated as

sup
y2 Rm ; s2 Rn ; t2 Rn

bT y s.t.

8
><

>:

¯
¯aT

i y ¡ ci
¯
¯ · si 8i = 1 ; : : : ; n

si · t1=pi
i 8i = 1 ; : : : ; nP

i 2 I k

t i
pi

· dk ¡ f T
k y 8k = 1 ; : : : ; r

where each of them constraints involving an absolute value is indeed equivalent to a pair of
linear constraints aT

i y ¡ ci · si and ci ¡ aT
i y · si . Once again, a self-concordant function

can be found for the di±cult part of the constraints, i.e. the nonlinear inequality si · t1=pi
i .

Indeed, it is straightforward to check that f i : t i 7! ¡ t1=pi
i satis¯es condition (2.15) with

° = 2pi ¡ 1
3pi

< 1, which implies in the same fashion as above that

¡ log
¡
t1=pi
i ¡ si

¢
¡ log t i

is (1; 2)-self-concordant. Combining with the logarithmic barrier for the linear constraints,
we have that

¡
mX

i =1

log(si ¡ aT
i y + ci ) ¡

mX

i =1

log(si + aT
i y ¡ ci ) ¡

mX

i =1

log
¡
t1=pi
i ¡ si

¢
: : :

: : : ¡
mX

i =1

log t i ¡
rX

k=1

log
¡
dk ¡ f T

k y ¡
X

i 2 I k

t i

pi

¢

is (1; 4m + r )-self-concordant for our reformulation of problem (Plp) (since each linear con-
straint is (1 ; 1)-self-concordant).

Let us mention that another reformulation is presented in [dJRT95], where Lemma 2.3
is applicable to the nonlinear constraint with parameter ° = jpi ¡ 2j

3 , with the disadvantage of
having a parameter that depends onpi (although r2(° ) will stay at its lowest value as long
as pi · 5).

We conclude this section by mentioning that very similar results hold for the duallp-norm
optimization problem, and we refer the reader to [dJRT95] for the details3.

3However, we would like to point out that the nonlinear function involved in these developments is wrongly

stated to satisfy condition (2.15) with ° =
p

2( qi +1)
3qi

, while a correct value is
p

5q2
i ¡ 2qi +2
3qi

.
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2.5 Concluding remarks

We gave in this chapter an overview of the theory of self-concordant functions. We would
like to point out that this very powerful framework relies on two di®erent conditions (2.2)
and (2.3) and the two corresponding parameters· and º , each with its own purpose (see the
discussion in Note 2.3). However, the important quantity is the resulting complexity value
·

p
º , which is of the same order as the number of iterations that is needed to reduce the

barrier parameter by a constant factor by the short-step interior-point algorithm.

It is possible to scale self-concordant barriers such that one of the parameters is arbitrarily
¯xed without any real loss of generality. We have shown that this is best done ¯xing parameter
· , considering the way the complexity value is a®ected when adding several self-concordant
barriers. However, it is in our opinion better to keep two parameters all the time, in order to
simplify the presentation (for example, Lemma 2.3 intrinsically deals with the · parameter
and would need a rather awkward reformulation to be written for parameter º with · ¯xed
to 1).

Several important results help us prove self-concordancy of barrier functions: Lemmas 2.1
and 2.2 deal with the second self-concordancy condition (2.3), while our improved Lemma 2.3
pertains to the ¯rst self-concordancy condition (2.2). They are indeed responsible for most
of the analysis carried out in Section 2.4, which is dedicated to several classes of struc-
tured convex optimization problems. Namely, it is proved that nearly all the nonlinear (i.e.
corresponding to the nonlinear constraints) terms in the associated logarithmic barriers are
self-concordant with · = 1 (the exception being extended entropy optimization, which en-
compasses a very broad class of problems). We would also like to mention that since all
the barriers that are presented are polynomially computable, as well as their gradient and
Hessian, the short-step method applied to any of these problems would need to perform a
polynomial number of arithmetic operations to provide a solution with a given accuracy.

To conclude, we would like to speculate on the possibility of replacing the two self-
concordancy conditions by a single inequality. Indeed, since the complexity value·

p
º is the

only quantity that really matters in the ¯nal complexity result, one could imagine to consider
the following inequality

F 000
x;h (0)F 0

x;h (0)

F 00
x;h (0)2 · 2¡ for all x 2 int C and h 2 Rn ; (2.18)

which is satis¯ed with ¡ = ·
p

º for (·; º )-self-concordant barriers (to see that, simply multiply
condition (2.5b) by the square root of condition (2.6b)). We point out the following two
intriguing facts and leave their investigation for further research:

¦ Condition (2.18) appears to be central in the recent theory ofself-regular functions
[PRT00], an attempt at generalizing self-concordant functions.

¦ Following the same principles as for (2.5d) and (2.6d), condition (2.18) can be reformu-
lated as Ã

¡
F 0

x;h (t)

F 00
x;h (t)

! 0

· 2¡ ¡ 1 ;
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where the quantity on the left-hand side is the derivative of the Newton step applied to
the restriction Fx;h .
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CHAPTER3

Conic optimization

In this section, we describe conic optimization and the associated duality theory.
Conic optimization deals with a class of problems that is essentially equivalent
to the class of convex problems, i.e. minimization of a convex function over a
convex set. However, formulating a convex problem in a conic way has the
advantage of providing a very symmetric form for the dual problem, which often
gives a new insight about its structure, especially dealing with duality.

3.1 Conic problems

The results we present in this Chapter are well-known and we will skip most of the proofs.
They can be found for example in the Ph.D. thesis of Sturm [Stu97, Stu99a] with similar nota-
tions, more classical references presenting equivalent results are [SW70] and [ET76, Chapter
III, Section 5]).

The basic ingredient of conic optimization is a convex cone.

De¯nition 3.1. A set C is a cone if and only if it is closed under nonnegative scalar multi-
plication, i.e.

x 2 C ) ¸x 2 C for all ¸ 2 R+ :

Recall that a set is convex if and only if it contains the whole segment joining any two
of its points. Establishing convexity is easier for cones than for general sets, because of the
following elementary theorem [Roc70a, Theorem 2.6]:
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Theorem 3.1. A cone C is convex if and only if it is closed under addition, i.e.

x 2 C and y 2 C ) x + y 2 C :

In order to avoid some technical nuisances, the convex cones we are going to consider
will be required to be closed, pointed and solid, according to the following de¯nitions. A cone
is said to bepointed if it doesn't contain any straight line passing through the origin, which
can be expressed as

De¯nition 3.2. A cone C is pointed if and only if C \ ¡C = f 0g, where ¡C stands for the set
f x j ¡ x 2 Cg

Furthermore, a cone is said to besolid if it has a nonempty interior, i.e. it is full-
dimensional.

De¯nition 3.3. A cone C is solid if and only if int C 6= ; (where int S denotes the interior of
set S).

For example, the positive orthant is a pointed and solid convex cone. A linear subspace
is a convex cone that is neither pointed, nor solid (exceptRn itself).

We are now in position to de¯ne a conic optimization problem: let C µ Rn a pointed,
solid, closed convex cone. The (primal) conic optimization problem is

inf
x2 Rn

cT x s.t. Ax = b and x 2 C ; (CP)

where x 2 Rn is the column vector we are optimizing and the problem data is given by cone
C, a m £ n matrix A and two column vectors b and c belonging respectively toRm and Rn .
This problem can be viewed as the minimization of a linear function over the intersection
of a convex cone and an a±ne subspace. As an illustration, let us mention that a linear
optimization problem in the standard form (1.2) is formulated by choosing coneC to be the
positive orthant Rn

+ .

At this stage, we would like to emphasize the fact that although our coneC is closed, it
may happen that the in¯mum in (CP) is not attained (some examples of this situation will
be given in Subsection 3.3).

It is well-known that the class of conic problems is equivalent to the class of convex
problems, see e.g. [NN94]. However, the usual Lagrangean dual of a conic problem can be
expressed very nicely in a conic form, using the notion of dual cone.

De¯nition 3.4. The dual of a coneC µ Rn is de¯ned by

C¤ =
©

x¤ 2 Rn j xT x¤ ¸ 0 for all x 2 C
ª

:

For example, the dual of Rn
+ is Rn

+ itself. We say it is self-dual. Another example is the
dual of the linear subspaceL , which is L ¤ = L ? , the linear subspace orthogonal toL (note
that in that case the inequality of De¯nition 3.4 is always satis¯ed with equality).

The following theorem stipulates that the dual of a closed convex cone is always a closed
convex cone [Roc70a, Theorem 14.1].
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Theorem 3.2. If C is a closed convex cone, its dualC¤ is another closed convex cone. More-
over, the dual (C¤)¤ of C¤ is equal toC.

Closedness is essential for (C¤)¤ = C to hold (without the closedness assumption onC,
we only have (C¤)¤ = cl C where clS denotes the closure of setS [Roc70a, Theorem 14.1]).
The additional notions of solidness and pointedness also behave well when taking the dual
of a convex cone: indeed, these two properties are dual to each other [Stu97, Corollary 2.1],
which allows us to state the following theorem:

Theorem 3.3. If C is a solid, pointed, closed convex cone, its dualC¤ is another solid,
pointed, closed convex cone.

The dual of our primal conic problem (CP) is de¯ned by

sup
y2 Rm ;s2 Rn

bT y s.t. AT y + s = c and s 2 C¤ ; (CD)

where y 2 Rm and s 2 Rn are the column vectors we are optimizing, the other quantitiesA,
b and c being the same as in (CP). It is immediate to notice that this dual problem has the
same kind of structure as the primal problem, i.e. it also involves optimizing a linear function
over the intersection of a convex cone and an a±ne subspace. The only di®erences are the
direction of the optimization (maximization instead of minimization) and the way the a±ne
subspace is described (it is a translation of the range space ofAT , while primal involved a
translation of the null space of A). It is also easy to show that the dual of this dual problem
is equivalent to the primal problem, using the fact that (C¤)¤ = C.

One of the reasons the conic formulation (CP) is interesting is the fact that we may
view the constraint x 2 C as a generalization of the traditional nonnegativity constraint
x ¸ 0 of linear optimization. Indeed, let us de¯ne the relation º on Rn £ Rn according
x º y , x ¡ y 2 C. This relation is re°exive, since x º x , 0 2 C is always true. It is also
transitive, since we have

x º y and y º z , x ¡ y 2 C and y ¡ z 2 C ) (x ¡ y) + ( y ¡ z) = x ¡ z 2 C , x º z

(where we used the fact that a convex cone is closed under addition, see Theorem 3.1). Finally,
using the fact that C is pointed, we can write

x º y and y º x , x ¡ y 2 C and ¡ (x ¡ y) 2 C ) x ¡ y = 0 ) x = y ;

which shows that relation º is antisymmetric and is thus a partial order on Rn £ Rn . De¯ning
º ¤ to be the relation induced by the dual coneC¤, we can rewrite our primal-dual pair (CP){
(CD) as

inf
x2 Rn

cT x s.t. Ax = b and x º 0

sup
y2 Rm

bT y s.t. c º ¤ AT y ;

which looks very much like a generalization of the primal-dual pair of linear optimization
problems (LP){(LD').

For example, one of the most versatile cones used in convex optimization is thepositive
semide¯nite coneSn

+ .
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De¯nition 3.5. The positive semide¯nite cone Sn
+ is a subset ofSn , the set of symmetric

n £ n matrices. It consists of all positive semide¯nite matrices, i.e.

M 2 Sn
+ , zT Mz ¸ 0 8z 2 Rn , ¸ (M ) ¸ 0

where ¸ (M ) denotes the vector of eigenvalues ofM .

It is straightforward to check that Sn
+ is a closed, solid, pointed convex cone. A conic

optimization problem of the form (CP) or (CD) that uses a cone of the type Sn
+ is called

a semide¯nite problem1. This cone provides us with the ability to model many more types
of constraints than a linear problem (see e.g. [VB96] or Appendix A for an application to
classi¯cation).

3.2 Duality theory

The two conic problems of this primal-dual pair are strongly related to each other, as demon-
strated by the duality theorems stated in this section. Conic optimization enjoys the same
kind of rich duality theory as linear optimization, albeit with some complications regarding
the strong duality property.

Theorem 3.4 (Weak duality). Let x a feasible (i.e. satisfying the constraints) solution for
(CP) , and (y; s) a feasible solution for (CD) . We have

bT y · cT x ;

equality occurring if and only if the following orthogonality condition is satis¯ed:

xT s = 0 :

This theorem shows that any primal (resp. dual) feasible solution provides an upper
(resp. lower) bound for the dual (resp. primal) problem. Its proof is quite easy to obtain:
elementary manipulations give

cT x ¡ bT y = xT c ¡ (Ax )T y = xT (AT y + s) ¡ xT AT y = xT s ;

this last inner product being always nonnegative because ofx 2 C, s 2 C¤ and De¯nition 3.4
of the dual coneC¤. The nonnegative quantity xT s = cT x ¡ bT y is called the duality gap.

Obviously, a pair (x; y) with a zero duality gap must be optimal. It is well known that
the converse is true in the case of linear optimization, i.e. that all primal-dual pairs of optimal

1The fact that our feasible points are in this case matrices instead of vectors calls for some explanation.
Since our convex cones are supposed to belong to a real vector space, we have to consider thatSn , the space of
symmetric matrices, is isomorphous to Rn ( n +1) =2 . In that setting, an expression such as the objective function
cT x, where c and x belong to Rn ( n +1) =2 , is to be understood as the inner product of the corresponding
symmetric matrices C and X in the space Sn , which is de¯ned by hC; X i = trace CX . Moreover, A can be
seen in this case as an application (more precisely a tensor) that mapsSn to Rm , while AT is the adjoint of A
which maps Rm to Sn .



3.2 { Duality theory 65

solutions for a linear optimization problem have a zero duality gap (see Section 1.2.1), but
this is not in general the case for conic optimization.

Denoting by p¤ and d¤ the optimum objective values of problems (CP) and (CD), the
previous theorem implies that p¤ ¡ d¤ ¸ 0, a nonnegative quantity which will be called the
optimal duality gap. Under certain circumstances, it can be proved to be equal to zero, which
shows that the optimum values of problems (CP) and (CD) are equal. Before describing
the conditions guaranteeing such a situation, calledstrong duality, we need to introduce the
notion of strictly feasible point.

De¯nition 3.6. A point x (resp. (y; s)) is said to be strictly feasible for the primal (resp.
dual) problem if and only if it is feasible and belongs to the interior of the coneC (resp. C¤),
i.e.

Ax = b and x 2 int C (resp. AT y + s = c and s 2 int C¤) :

Strictly feasible points, sometimes calledSlater points, are also said to satisfy theinterior-
point or Slater condition. Moreover, we will say that the primal (resp. dual) problem is
unboundedif p¤ = ¡1 (resp. d¤ = + 1 ), that it is infeasible if there is no feasible solution,
i.e. when p¤ = + 1 (resp. d¤ = ¡1 ), and that it is solvable or attained if the optimum
objective value p¤ (resp. d¤) is achieved by at least one feasible primal (resp. dual) solution.

Theorem 3.5 (Strong duality). If the dual problem (CD) admits a strictly feasible solution,
we have either

¦ an infeasible primal problem (CP) if the dual problem (CD) is unbounded, i.e. p¤ =
d¤ = + 1

¦ a feasible primal problem(CP) if the dual problem (CD) is bounded. Moreover, in this
case, the primal optimum is ¯nite and attained with a zero duality gap, i.e. there is at
least an optimal feasible solutionx¤ such that cT x¤ = p¤ = d¤.

The ¯rst case in this theorem (see e.g. [Stu97, Theorem 2.7] for a proof) is a simple
consequence of Theorem 3.4, which is also valid in the absence of a Slater point for the dual,
as opposed to the second case which relies on the existence of such a point. It is also worth
to mention that boundedness of the dual problem (CD), de¯ning the second case, is implied
by the existence of a feasible primal solution, because of the weak duality theorem (however,
the converse implication is not true in general, since a bounded dual problem can admit an
infeasible primal problem ; an example of this situation is provided in Subsection 5.3.4).

This theorem is important, because it provides us with way to identify when both the
primal and the dual problems have the same optimal value, and when this optimal value is
attained by one of the problems. Obviously, this result can be dualized, meaning that the
existence of a strictly feasible primal solution implies a zero duality gap and dual attainment.
The combination of these two theorems leads to the following well-known corollary:

Corollary 3.1. If both the primal and the dual problems admit a strictly feasible point,
we have a zero duality gap and attainment for both problems, i.e. the same ¯nite optimum
objective value is attained for both problems.
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When the dual problem has no strictly feasible point, nothing can be said about the
duality gap (which can happen to be strictly positive) and about attainment of the primal
optimum objective value. However, even in this situation, we can prove an alternate version
of the strong duality theorem involving the notion of primal problem subvalue. The idea
behind this notion is to allow a small constraint violation in the in¯mum de¯ning the primal
problem (CP).

De¯nition 3.7. The subvalueof primal problem (CP) is given by

p¡ = lim
² ! 0+

h
inf
x

cT x s.t. kAx ¡ bk < ² and x 2 C
i

(a similar de¯nition is holding for the dual subvalue d¡ ).

It is readily seen that this limit always exists (possibly being +1 ), because the feasible
region of the in¯mum shrinks as ² tends to zero, which implies that its optimum value is a
nonincreasing function of ². Moreover, the inequality p¡ · p¤ holds, because all the feasible
regions of the in¯ma de¯ning p¡ as ² tends to zero are larger than the actual feasible region
of problem (CP).

The casep¡ = + 1 , which implies that primal problem (CP) is infeasible (since we have
then p¤ ¸ p¡ = + 1 ), is called primal strong infeasibility, and essentially means that the
a±ne subspace de¯ned by the linear constraintsAx = b is strongly separated from coneC.
We are now in position to state the following alternate strong duality theorem:

Theorem 3.6 (Strong duality, alternate version). We have either

¦ p¡ = + 1 and d¤ = ¡1 when primal problem (CP) is strongly infeasible and dual
problem (CD) is infeasible.

¦ p¡ = d¤ in all other cases.

This theorem (see e.g. [Stu97, Theorem 2.6] for a proof) states that there is no duality
gap betweenp¡ and d¤, except in the rather exceptional case of primal strong infeasibility
and dual infeasibility. Note that the second case covers situations where the primal problem
is infeasible but not strongly infeasible (i.e.p¡ < p ¤ = + 1 ).

To conclude this section, we would like to mention the fact that all the properties and the-
orems described in this section can be easily extended to the case of several conic constraints
involving disjoint sets of variables.
Note 3.1. Namely, having to satisfy the constraints x i 2 Ci for all i 2 f 1; 2; : : : ; kg, where
Ci µ Rn i , we will simply consider the Cartesian product of these conesC = C1£C2£¢ ¢ ¢£Ck µ
R

P k
i =1 n i and express all these constraints simultaneously asx 2 C with x = ( x1; x2; : : : ; xk ).

The dual cone ofC will be given by

C¤ = ( C1)¤ £ (C2)¤ £ ¢ ¢ ¢ £(Ck )¤ µ R
P k

i =1 n i ;

as implied by the following theorem:

Theorem 3.7. Let C1 and C2 two closed convex cones, andC = C1 £ C2 their Cartesian
product. Cone C is also a closed convex cone, and its dualC¤ is given by

C¤ = ( C1)¤ £ (C2)¤ :
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3.3 Classi¯cation of conic optimization problems

In this last section, we describe all the possible types of conic programs with respect to
feasibility, attainability of the optimum and optimal duality gap, and provide corresponding
examples.

Given our standard primal conic program (CP), we de¯ne

F+ = f x 2 Rn j Ax = b and x 2 Cg

to be its feasible set and± = dist( C; L ) the minimum distance between coneC and the a±ne
subspaceL = f x j Ax = bg de¯ned by the linear constraints. We also call F++ the set of
strictly feasible solutions of (CP), i.e.

F++ = f x 2 Rn j Ax = b and x 2 int Cg:

3.3.1 Feasibility

First of all, the distinction between feasible and infeasible conic problems is not as clear-cut
as for linear optimization. We have the following cases2

¦ A conic program is infeasible. This means the feasible setF+ = ; , and that p¤ = + 1 .
But we have to distinguish two subcases

{ ± = 0, which means an in¯nitesimal perturbation of the problem data may trans-
form the program into a feasible one. We call the programweakly infeasible(z).
This corresponds to the case of a ¯nite subvalue, i.e.p¡ < p ¤ = + 1 .

{ ± > 0, which corresponds to the usual infeasibility as for linear optimization.
We call the program strongly infeasible, which corresponds to an in¯nite subvalue
p¡ = p¤ = + 1 .

¦ A conic program is feasible, which meansF+ 6= ; and p¤ < + 1 (and thus ± = 0). We
also distinguish two subcases

{ F++ = ; , which implies that all feasible points belong to the boundary of the
feasible setF+ (this corresponds indeed to the case where the a±ne subspaceL
is tangent to the cone C). This also means that an in¯nitesimal perturbation of
the problem data can make the program infeasible. We call the programweakly
feasible.

{ F++ 6= ; . We call the program strongly feasible. This means there exists at least
one feasible solution belonging to the interior ofC, which is the main hypothesis
of the strong duality Theorem 3.5.

It is possible to characterize these situations by looking at the existence of certain types
of directions in the dual problem (level direction, improving direction, improving direction
sequence, see [Stu97]). Let us now illustrate these four situations with an example.

2 In the following, we'll mark with a ( z) the cases which never happen in the case of linear optimization.
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Example 3.1. Let us choose

C = S2
+ and x =

µ
x1 x3

x3 x2

¶
:

We have that x 2 C , x1 ¸ 0; x2 ¸ 0 and x1x2 ¸ x2
3.

If we add the linear constraint x3 = 1, the feasible set becomes the epigraph of the
positive branch of the hyperbola x1x2 = 1, i.e. F+ = f (x1; x2) j x1 ¸ 0 and x1x2 ¸ 1g as
depicted on Figure 3.1.
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Infeasible region

x
1

x
2

Figure 3.1: Epigraph of the positive branch of the hyperbolax1x2 = 1

This problem is strongly feasible.

¦ If we add another linear constraint x1 = ¡ 1, we get a strongly infeasible problem (since
x1 must be positive).

¦ If we add x1 = 0, we get a weakly infeasible problem (since the distance between the
axis x1 = 0 and the hyperbola is zero but x1 still must be positive).

¦ Finally, adding x1 + x2 = 2 leads to a weakly feasible problem (because the only feasible
point, x1 = x2 = x3 = 1, does not belong to the interior of C).

3.3.2 Attainability

Let us denote byF ¤ the set of optimal solutions, i.e. feasible solutions with an objective equal
to p¤

F ¤ = F+ \ f x 2 Rn j cT x = p¤g

We have the following distinction regarding attainability of the optimum

¦ A conic program is solvableif F ¤ 6= ; .
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¦ A conic program is unsolvableif F ¤ = ; , but we have two subcases

{ If p¤ = ¡1 , the program is unbounded(this is the only possibility in the case of
linear optimization).

{ If p¤ is ¯nite, we have a feasible unsolvable bounded program (z). This situation
happens when the in¯mum de¯ning p¤ is not attained, i.e. there exists feasible
solution with objective value arbitrarily close to p¤ but no optimal solution.

Let us examine a little further the second situation. In this case, we have a sequence of feasible
solutions whose objective value tends top¤, but no optimal solution. This implies that at
least one of the variables in this sequence of feasible solutions tends to in¯nity. Indeed, if it
was not the case, that sequence would be bounded, and since the feasible setF is closed (it
is the intersection of a closed cone and a a±ne subspace, which is also closed), its limit would
also belong to the feasible set, hence would be a feasible solution with objective valuep¤, i.e.
an optimal solution, which is a contradiction.

Example 3.2. Let us consider the same strongly feasible problem as in Example 3.1 (epigraph
of an hyperbola).

¦ If we choose a linear objective equal tox1 + x2,, F ¤ is reduced to the unique point
(x1; x2; x3) = (1 ; 1; 1), and the problem is solvable (p¤ = 2).

¦ If we choose another objective equal to¡ x1 ¡ x2, F ¤ = ; becausep¤ = ¡1 , and the
problem is unbounded.

¦ Finally, choosing x1 as objective function leads to an unsolvable bounded problem:p¤

is easily seen to be equal to zero butF ¤ = ; because there is no feasible solution with
x1 = 0 since the product x1x2 has to be greater than 1.

3.3.3 Optimal duality gap

Finally, we state the various possibilities about the optimal duality gap, which is equal to
p¤ ¡ d¤:

¦ The optimal duality gap is strictly positive ( z)

¦ The optimal duality gap is zero but there is no optimal solution pair. In this case, there
exists pairs (x; y) with an arbitrarily small duality gap (which means that the optimum
is not attained for at least one of the two programs (LP) and (LD)) ( z)

¦ An optimal solution pair ( x; y) has a zero duality gap, as for linear optimization

Of course, the ¯rst two cases can be avoided if we require our problem to satisfy the Slater
condition. We can alternatively work with the subvalue p¡ , for which there is no duality gap
except when both problems are infeasible.
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Example 3.3. The ¯rst problem described in Example 3.2 has its optimal value equal to
p¤ = 2. Its data can be described as

c =
µ

1 0
0 1

¶
; A : S2 7! R :

µ
x1 x3

x3 x2

¶
7! x3 and b = 1 :

Using the fact that the adjoint of A can be written as3

AT : R 7! S2 : y1 7!
µ

0 y1=2
y1=2 0

¶

and the dual formulation (CD), we can state the dual as

supy1 s.t.
µ

0 y1=2
y1=2 0

¶
+

µ
s1 s3

s3 s2

¶
=

µ
1 0
0 1

¶
and

µ
s1 s3

s3 s2

¶
2 S2

+

or equivalently, after eliminating the s variables,

supy1 s.t.
µ

1 ¡ y1=2
¡ y1=2 1

¶
2 S2

+ :

The optimal value d¤ of this problem is equal to 2, because the semide¯nite constraint is
equivalent to y2

1 · 4), and the optimal duality gap p¤ ¡ d¤ is zero as expected.

Changing the primal objective to c =
µ

1 0
0 0

¶
, we get an unsolvable bounded problem

inf x1 s.t. x3 = 1 and x1x2 ¸ 1

whose optimal value isp¤ = 0 but is not attained. The dual becomes

supy1 s.t.
µ

1 ¡ y1=2
¡ y1=2 0

¶
2 S2

+

which admits only one feasible solution, namelyy1 = 0, and has thus an optimal value d¤ = 0.
In this case, the optimal duality gap is zero but is not attained (because the primal problem
is unsolvable).

Finally, we give here an example where the optimal duality gap is nonzero. Choosing a
nonnegative parameter¸ and

C = S3
+ ; c =

0

@
0 ¡ 1 0

¡ 1 0 0
0 0 ¸

1

A ; A : S3 7! R2 :

0

@
x1 x4 x5

x4 x2 x6

x5 x6 x3

1

A 7!
µ

x3 + x4

x2

¶
and b =

µ
1
0

¶
;

we have for the primal

inf ¸x 3 ¡ 2x4 s.t. x3 + x4 = 1 ; x2 = 0 and

0

@
x1 x4 x5

x4 x2 x6

x5 x6 x3

1

A 2 S3
+ :

3To check this, simply write hAx; y i = hx; A T yi , where the ¯rst inner product is the usual dot product on
Rn but the second inner product is the trace inner product on Sn .
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The fact that x2 = 0 implies x4 = x6 = 0, which in turn implies x3 = 1. We have thus that
all solutions have the form 0

@
x1 0 x5

0 0 0
x5 0 1

1

A

which is feasible as soon asx1 ¸ x2
5. All these feasible solutions have an objective value equal

¸ , and hence are all optimal: we havep¤ = ¸ . Using the fact that the adjoint of A is

AT : R2 7! S3 :
µ

y1

y2

¶
7!

0

@
0 y1=2 0

y1=2 y2 0
0 0 y1

1

A

we can write the dual (after eliminating the s variables with the linear equality constraints)
as

supy1 s.t.

0

@
0 ¡ 1 ¡ y1=2 0

¡ 1 ¡ y1=2 ¡ y2 0
0 0 ¸ ¡ y1

1

A 2 S3
+

The above matrix can only be positive semide¯nite if y1 = ¡ 2. In that case, any nonnegative
value for y2 will lead to a feasible solution with an objective equal to¡ 2, i.e. all these solutions
are optimal and d¤ = ¡ 2. The optimal duality gap is equal to p¤ ¡ d¤ = ¸ +2, which is strictly
positive fear all values of¸ . Note that in this case, as expected from the theory, none of the
two problems satis¯es the Slater condition since every feasible primal or dual solution has at
least a zero on its diagonal, which implies a zero eigenvalue and hence that it does not belong
to the interior of S3

+ .





CHAPTER4

lp-norm optimization

In this chapter, we formulate the lp-norm optimization problem as a conic op-
timization problem, derive its standard duality properties and show it can be
solved in polynomial time.

We �rst de�ne an ad hoc closed convex cone L p, study its properties and derive
its dual. This allows us to express the standard lp-norm optimization primal
problem as a conic problem involving L p. Using the theory of conic duality de-
scribed in Chapter 3 and our knowledge about L p, we proceed to derive the dual
of this problem and prove the well-known regularity properties of this primal-
dual pair, i.e. zero duality gap and primal attainment. Finally, we prove that
the class of lp-norm optimization problems can be solved up to a given accu-
racy in polynomial time, using the framework of interior-point algorithms and
self-concordant barriers.

4.1 Introduction

lp-norm optimization problems form an important class of convex problems, which includes
as special cases linear optimization, quadratically constrained convex quadratic optimization
and lp-norm approximation problems.

A few interesting duality results are known for lp-norm optimization. Namely, a pair of
feasible primal-dual lp-norm optimization problems satis¯es the weak duality property, which
is a mere consequence of convexity, but can also be shown to satisfy two additional properties
that cannot be guaranteed in the general convex case: the optimum duality gap is equal to
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zero and at least one feasible solution attains the optimum primal objective. These results
were ¯rst presented by Peterson and Ecker [PE70a, PE67, PE70b] and later greatly simpli¯ed
by Terlaky [Ter85], using standard convex duality theory (e.g. the convex Farkas theorem).

The aim of this chapter is to derive these results in a completely di®erent setting, using
the machinery of conic convex duality described in Chapter 3. This new approach has the
advantage of further simplifying the proofs and giving some insight about the reasons why
this class of problems has better properties than a general convex problem. We also show that
this class of optimization problems can be solved up to a given accuracy in polynomial time,
using the theory of self-concordant barriers in the framework of interior-point algorithms (see
Chapter 2).

4.1.1 Problem de¯nition

Let us start by introducing the primal lp-norm optimization problem [PE70a, Ter85], which
is basically a slight modi¯cation of a linear optimization problem where the use oflp-norms
applied to linear terms is allowed within the constraints. In order to state its formulation
in the most general setting, we need to introduce the following sets: letK = f 1; 2; : : : ; r g,
I = f 1; 2; : : : ; ng and let f I kgk2 K be a partition of I into r classes, i.e. satisfying

[ k2 K I k = I and I k \ I l = ; for all k 6= l :

The problem data is given by two matrices A 2 Rm£ n and F 2 Rm£ r (whose columns will
be denoted byai ; i 2 I and f k ; k 2 K ) and four column vectors b 2 Rm , c 2 Rn , d 2 Rr and
p 2 Rn such that pi > 1 8i 2 I . Our primal problem consists in optimizing a linear function
of a column vector y 2 Rm under a set of constraints involving lp-norms of linear forms, and
can be written as

sup bT y s.t.
X

i 2 I k

1
pi

¯
¯ci ¡ aT

i y
¯
¯pi · dk ¡ f T

k y 8k 2 K : (Plp)

It is readily seen that this formulation is quite general. Indeed,

¦ linear optimization problems can be modelled by takingn = 0 (and thus I k = ; 8 k 2 K ),
which gives

sup bT y s.t. F T y · d ;

¦ problems of approximation in lp-norm correspond to the casef k = 0 8k 2 K , described
in [PE70a, Ter85] and [NN94, Section 6.3.2],

¦ a convex quadratic constraint can be modelled with a constraint involving anl2-norm.
Indeed, 1

2yT Qy + f T y + g · 0 (where Q is positive semide¯nite) is equivalent to
1
2

°
° H T y

°
° 2 · ¡ f T y ¡ g, where H is a m £ s matrix such that Q = HH T (whose

columns will be denoted byhi ), and can be modelled as

sX

i =1

1
2

¯
¯hT

i y
¯
¯2

· ¡ g ¡ f T y ;
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which has the same form as one constraint of problem (Plp) with pi = 2 and ci = 0.
This implies that linearly and quadratically constrained convex quadratic optimization
problems can be modelled aslp-norm optimization problems (since a convex quadratic
objective can be modelled using an additional variable, a linear objective and a convex
quadratic constraint).

De¯ning a vector q 2 Rn such that 1
pi

+ 1
qi

= 1 for all i 2 I , the dual problem for (Plp)
can be de¯ned as (see e.g. [Ter85])

inf Ã(x; z) = cT x + dT z +
X

k2 K jzk > 0

zk

X

i 2 I k

1
qi

¯
¯
¯
¯
x i

zk

¯
¯
¯
¯

qi

s.t.
½

Ax + Fz = b and z ¸ 0 ;
zk = 0 ) x i = 0 8i 2 I k :

(Dlp)

We note that a special convention has been taken to handle the case when one or more
components ofz are equal to zero: the associated terms are left out of the ¯rst sum (to avoid
a zero denominator) and the corresponding components ofx have to be equal to zero. When
compared with the primal problem (Plp), this problem has a simpler feasible region (mostly
de¯ned by linear equalities and nonnegativity constraints) at the price of a highly nonlinear
(but convex) objective.

4.1.2 Organization of the chapter

The rest of this chapter is organized as follows. In order to use the setting of conic optimiza-
tion, we de¯ne in Section 4.2 an appropriate convex cone that will allow us to expresslp-norm
optimization problems as conic programs. We also study some aspects of this cone (closed-
ness, interior, dual). We are then in position to formulate the primal-dual pair (P lp){(D lp)
using a conic formulation and apply in Section 4.3 the general duality theory for conic opti-
mization, in order to prove the above-mentioned duality results about lp-norm optimization.
Section 4.4 deals with algorithmic complexity issues and presents a self-concordant barrier
construction for our problem. We conclude with some remarks in Section 4.5.

4.2 Cones for lp-norm optimization

Let us now introduce the L p cone, which will allow us to give a conic formulation oflp-norm
optimization problems.

4.2.1 The primal cone

De¯nition 4.1. Let n 2 N and p 2 Rn with pi > 1. We de¯ne the following set

L p =
n

(x; µ; · ) 2 Rn £ R+ £ R+ j
nX

i =1

jx i j
pi

pi µpi ¡ 1 · ·
o
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using in the case of a zero denominator the following convention:

jx i j
0

=

(
+ 1 if x i 6= 0 ;

0 if x i = 0 :

This convention means that if (x; µ; · ) 2 L p, µ = 0 implies x = 0 n . We start by proving that
L p is a convex cone.

Theorem 4.1. L p is a convex cone.

Proof. Let us ¯rst introduce the following function

f p : Rn £ R+ 7! R+ [ f + 1g : (x; µ) 7!
nX

i =1

jx i j
pi

pi µpi ¡ 1 :

With the convention mentioned above, its e®ective domain isRn £ R++ [ 0n £ 0. It is
straightforward to check that f p is positively homogeneous, i.e.f p(¸x; ¸µ ) = ¸f p(x; µ) for
¸ ¸ 0. Moreover, f p is subadditive, i.e. f p(x + x0; µ + µ0) · f p(x; µ) + f p(x0; µ0). In order to
show it, we only need to prove the following inequality for all x; x 0 2 R and µ; µ0 2 R+ :

jxjpi

µpi ¡ 1 +
jx0jpi

µ0pi ¡ 1 ¸
jx + x0jpi

(µ + µ0)pi ¡ 1 :

First observe that this inequality is obviously true if µ or µ0 is equal to 0. When µ and µ0

are both di®erent from 0, we use the well known fact thatxpi is a convex function onR+ for
pi ¸ 1, implying that ¸a pi + ¸ 0a0pi ¸ (¸a + ¸ 0a0)pi for any nonnegativea; a0; ¸ and ¸ 0satisfying
¸ + ¸ 0 = 1. Choosing a = 1

µ jxj, a0 = 1
µ0 jx0j, ¸ = µ

µ+ µ0 and ¸ 0 = µ0

µ+ µ0, we ¯nd that

µ
µ + µ0

³ jxj
µ

´ pi
+

µ0

µ + µ0

³ jx0j
µ0

´ pi
¸

µ
µ

µ + µ0

jxj
µ

+
µ0

µ + µ0

jx0j
µ0

¶ pi

1
µ + µ0

µ
jxjpi

µpi ¡ 1 +
jx0jpi

µ0pi ¡ 1

¶
¸

µ
jxj + jx0j

µ + µ0

¶ pi

jxjpi

µpi ¡ 1 +
jx0jpi

µ0pi ¡ 1 ¸
(jxj + jx0j)pi

(µ + µ0)pi ¡ 1 ¸
jx + x0jpi

(µ + µ0)pi ¡ 1 :

Positive homogeneity and subadditivity imply that f p is a convex function. Sincef p(x; µ) ¸ 0
for all x and µ, we notice that L p is the epigraph of f p, i.e.

epi f p =
n

(x; µ; · ) 2 Rn £ R+ £ R j f p(x; µ) · ·
o

= L p :

L p is thus the epigraph of a convex positively homogeneous function, hence a convex cone.

In order to characterize strictly feasible points, we would like to identify the interior of
this cone.

Theorem 4.2. The interior of L p is given by

int L p =
n

(x; µ; · ) 2 Rn £ R++ £ R++ j
nX

i =1

jx i j
pi

pi µpi ¡ 1 < ·
o

:
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Proof. According to Lemma 7.3 in [Roc70a] we have

int L p = int epi f p = f (x; µ; · ) j (x; µ) 2 int dom f p and f p(x; µ) < · g :

The stated result then simply follows from the fact that int dom f p = Rn £ R++ .

Corollary 4.1. The cone L p is solid.

Proof. It su±ces to prove that there exists at least one point that belongs to int L p, for
example by taking the point (e;1; n), where e stands for the n-dimensional all-one vector.

Indeed, we have
P n

i =1
j1j1

pi 1pi ¡ 1 =
P n

i =1
1
pi

<
P n

i =1 1 = n.

Note 4.1. When n = 0, our cone L p is readily seen to be equivalent to the two-dimensional
positive orthant R2

+ . We also notice that in the special case wherepi = 2 for all i , our cone
L p becomes

L (2;¢¢¢;2) =
n

(x; µ; · ) 2 Rn £ R+ £ R+ j
nX

i =1

x2
i · 2µ·

o
;

which is usually called the hyperbolic or rotated second-order cone [LVBL98, Stu99a](it is a
simple linear transformation of the usual second-order cone, see Chapter 9).

To illustrate our purpose, we provide in Figure 4.1 the three-dimensional graphs of the
boundary surfaces ofL (5) and L (2) (corresponding to the casen = 1).
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Figure 4.1: The boundary surfaces ofL (5) and L (2) (in the casen = 1).

4.2.2 The dual cone

We are now going to determine the dual cone ofL p. Let us ¯rst recall the following well-known
result, known as the weighted arithmetic-geometric inequality.

Lemma 4.1. Let x 2 Rn
++ and ± 2 Rn

++ such that
P n

i =1 ±i = 1 . We have

nY

i =1

x±i
i ·

nX

i =1

±i x i ;



78 4. lp-norm optimization

equality occurring if and only if all x i 's are equal.

This result is easily proved, applying for example Jensen's inequality [Roc70a, Theorem
4.3] to the convex function x 7! ex .

We now introduce a useful inequality, which lies at the heart of duality for L p cones
[Ter85, NN94]. In order to keep our exposition self-contained, we also include its proof.

Lemma 4.2. Let a; b2 R+ and ®; ¯ 2 R++ such that 1
® + 1

¯ = 1 . We have the inequality

a®

®
+

b̄
¯

¸ ab ;

with equality holding if and only if a® = b̄ .

Proof. The cases wherea = 0 or b = 0 are obvious. When a; b 2 R++ , we can simply apply
Lemma 4.1 ona® and b̄ with weights 1

® and 1
¯ (whose sum is equal to one), which gives

a®

®
+

b̄
¯

¸ (a®)1=®(b̄ )1=¯ = ab ;

with equality if and only if a® = b̄ .

For ease of notation, we also introduce theswitched coneL p
s as the L p cone with its last

two components exchanged, i.e.

(x; µ; · ) 2 L p
s , (x; ·; µ ) 2 L p :

We are now ready to describe the dual ofL p.

Theorem 4.3 (Dual of L p). Let p; q 2 Rn
++ such that 1

pi
+ 1

qi
= 1 for each i . The dual of

L p is L q
s.

Proof. By de¯nition of the dual cone, we have

(L p)¤ =
©

v¤ 2 Rn £ R £ R j vT v¤ ¸ 0 for all v 2 L pª
:

We start by showing that L q
s µ (L p)¤.

Let v¤ = ( x¤; µ¤; · ¤) 2 L q
s and v = ( x; µ; · ) 2 L p. We are going to prove that vT v¤ ¸ 0,

which will imply the desired inclusion. The case whenµ = 0 is easily handled: we have then
x = 0 implying vT v¤ = ·· ¤ ¸ 0. Similarly we can eliminate the case where· ¤ = 0. In the
remaining cases, we use the de¯nitions ofL p and L q

s to get

f p(x; µ) =
nX

i =1

jx i j
pi

pi µpi ¡ 1 · · and f q(x¤; · ¤) =
nX

i =1

jx¤
i jqi

qi · ¤qi ¡ 1 · µ¤ :
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Dividing respectively by µ and · ¤ and adding the resulting inequalities we ¯nd
nX

i =1

³ jx i j
pi

pi µpi
+

jx¤
i jqi

qi · ¤qi

´
·

·
µ

+
µ¤

· ¤ : (4.1)

Applying now Lemma 4.2 to each pair
jx i j
µ

;
jx¤

i j
· ¤ we get

nX

i =1

jx i j
µ

jx¤
i j

· ¤ ·
·
µ

+
µ¤

· ¤ ; (4.2)

which is equivalent to

nX

i =1

jx i j j x¤
i j · ·· ¤ + µµ¤ :

Finally, noting that x i x¤
i ¸ ¡ j x i j j x¤

i j we conclude that

vT v¤ = xT x¤ + ·· ¤ + µµ¤ =
nX

i =1

x i x¤
i + ·· ¤ + µµ¤ ¸

nX

i =1

¡ j x i j j x¤
i j + ·· ¤ + µµ¤ ¸ 0 ; (4.3)

showing that L q
s µ (L p)¤.

Let us prove now the reverse inclusion, i.e. (L p)¤ µ L q
s.

Let v¤ = ( x¤; µ¤; · ¤) 2 (L p)¤. We have to show that v¤ 2 L q
s, using that vT v¤ ¸ 0 for

every v = ( x; µ; · ) 2 L p. Choosing v = (0 ; 0; 1), we ¯rst ensure that vT v¤ = · ¤ ¸ 0. We
distinguish the cases· ¤ = 0 and · ¤ > 0. If · ¤ = 0, we have that vT v¤ = xT x¤ + µµ¤ ¸ 0
for every v = ( x; µ; · ) 2 L p. Choosing µ = 1 and · ¸ f p(x; 1) for any x 2 Rn , we ¯nd that
xT x¤ + µ¤ ¸ 0 for all x 2 Rn , which implies x¤ = 0 and µ¤ ¸ 0 and thus v¤ 2 L q

s. When
· ¤ > 0, we can always choose av 2 L p such that

jx i j
pi

µpi
=

jx¤
i jqi

· ¤qi
; x i x¤

i · 0 and f p(x; µ) =
nX

i =1

jx i j
pi

pi µpi ¡ 1 = · : (4.4)

Writing

0 ·
vT v¤

µ· ¤ =
³ x

µ

´ T ³ x¤

· ¤

´ T
+

µ¤

· ¤ +
·
µ

=
nX

i =1

x i

µ
x¤

i

· ¤ +
µ¤

· ¤ +
·
µ

=
nX

i =1

¡
jx i j
µ

jx¤
i j

· ¤ +
µ¤

· ¤ +
·
µ

;

using the case of equality of Lemma 4.2 on the pairs
jx i j
µ

;
jx¤

i j
· ¤ and the choice ofv in (4.4),

= ¡
nX

i =1

³ jx i j
pi

pi µpi
+

jx¤
i jqi

qi · ¤qi

´
+

µ¤

· ¤ +
·
µ

=
µ¤

· ¤ ¡
nX

i =1

jx¤
i jqi

qi · ¤qi
;
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and ¯nally multiplying by · ¤ leads to

nX

i =1

jx¤
i jqi

qi · ¤qi ¡ 1 · µ¤ ;

i.e. v¤ 2 L q
s, showing that (L p)¤ µ L q

s and thus (L p)¤ = L q
s.

The dual of a L p cone is thus equal, up to a permutation of two variables, to anotherL p

cone with a dual vector of exponents.

Corollary 4.2. We also have(L p
s)¤ = L q, (L q)¤ = L p

s and (L q
s)¤ = L p.

Proof. Obvious considering both the symmetry betweenL p and L q
s and the symmetry between

p and q.

Corollary 4.3. L p and L q
s are solid and pointed.

Proof. We have already proved thatL p is solid which, for obvious symmetry reasons, implies
that its switched counterpart L q

s is also solid. Since pointedness is the property that is dual
to solidness (Theorem 3.3), noting that L p = ( L q

s)¤ and L q
s = ( L p)¤ is enough to prove that

L p and L q
s are also pointed.

Corollary 4.4. L p and L q
s are closed.

Proof. Starting with ( L p)¤ = L q
s and taking the dual of both sides, we ¯nd ((L p)¤)¤ = ( L q

s)¤.
Since (L q

s)¤ = L p by Corollary 4.2 and ((L p)¤)¤ = cl L p [Roc70a, page 121], we have clL p = L p,
henceL p is closed. The switched coneL q

s is obviously closed as well.

We can also provide a direct proof of the closedness ofL p: using the fact that it is
the epigraph of f p, it is enough to show that f p is a lower semicontinuous function [Roc70a,
Theorem 7.1]. Being convex,f p is continuous on the interior of its e®ective domain, i.e. when
µ > 0. When µ = 0, we have to prove that

lim
(x;µ)! (x0 ;0+ )

f p(x; µ) ¸ f p(x0; 0) :

On the one hand, if x0
i 6= 0 for some index i , we have that f p(x0; 0) = + 1 but also that

lim (x;µ)! (x0 ;0+ ) f p(x; µ) = + 1 , since the term jx i j
pi

pi µpi ¡ 1 tends to + 1 when (x i ; µ) tends to

(x0
i ; 0), hence the inequality is true. On the other hand, if x0 = 0, we have to check that

lim (x;µ)! (0;0+ ) f p(x; µ) ¸ f p(0; 0) = 0, which is obviously also true. From this we can conclude
that f p is lower semicontinuous and henceL p is closed.

Note however that f p is not continuous in (0; 0). Choosing an arbitrary positive constant
M and de¯ning for example x i (µ) = ( Mp i )1=pi µ1=qi , so that x(µ) ! 0 when µ ! 0+ , we have
that lim µ! 0+ f (x(µ); µ) = nM 6= f (0; 0) = 0. The limit of f p at (0; 0) can indeed take any
positive value1.

1However, taking x(µ) proportional to µ, namely x i (µ) = L i µ, we have limµ! 0+ f (x(µ); µ) = f (0; 0) = 0, i.e.
f p is continuous on its restrictions to lines passing through the origin.
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Note 4.2. As special cases, we note that whenn = 0, ( L p)¤ is equivalent to R2
+ , which is the

usual dual for L p = R2
+ . In the case ofpi = 2 8i , we ¯nd

(L (2;¢¢¢;2))¤ = L (2;¢¢¢;2)
s =

n
(x; µ; · ) 2 Rn £ R+ £ R+ j

nX

i =1

x2
i · 2µ·

o
;

which is the expected result. Note that apart from these two special cases,L p is in general
not self-dual.

Note 4.3 (Self-duality of L p cones with n = 1 ). Let us examine the special case of three-
dimensional L p cones, i.e. assumen = 1. Figure 4.2, representingL ( 5

4 ) , illustrates our point:
up to a permutation of variables, it is equal to (L (5) )¤ (since 1=5 + 1=5

4 = 1) and is di®erent
from L (5) , and hence these cones are not self-dual. However, in the particular case where
n = 1, this di®erence is not as great as it could be. Namely, one can show easily thatL (p)

and its dual are equal up to a simple scaling of some of the variables. Indeed, we have

(x; µ; · ) 2 L (p) , j xjp · p·µ p¡ 1

, j xjq · p
q
p ·

q
p µ(p¡ 1) q

p

using q
p = q1

p = q(1 ¡ 1
q) = q ¡ 1 and (p ¡ 1)q

p = (1 ¡ 1
p)q = 1

qq = 1

, j xjq · pq¡ 1· q¡ 1µ

, j xjq · q(p· )q¡ 1 µ
q

, (x; µ
q; p· ) 2 L (q)

s = ( L (p) )¤ :

From another point of view, we could also state that these two cones are self-dual with respect
to a modi¯ed inner product that takes this scaling of the variables into account.
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Figure 4.2: The boundary surfaces ofL ( 5
4 ) and L (5) (in the casen = 1).

Our last theorem in this section describes the cases where two vectors fromL p and L q
s

are orthogonal to each other, which will be used in the study of the duality properties.
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Theorem 4.4 (orthogonality conditions). Let v = ( x; µ; · ) 2 L p and v¤ = ( x¤; µ¤; · ¤) 2
L q

s. We havevT v¤ = 0 if and only if the following set of conditions holds

· ¤(f p(x; µ) ¡ · ) = 0 (4.5a)

µ(f q(x¤; · ¤) ¡ µ¤) = 0 (4.5b)

· ¤ jx i j
pi

µpi ¡ 1 = µ
jx¤

i jqi

· ¤qi ¡ 1 (4.5c)

x i x¤
i · 0 for all i : (4.5d)

Proof. When µ > 0 and · ¤ > 0, a careful reading of the ¯rst part of the proof of Theorem 4.3
shows that equality occurs if and only if all conditions in (4.5) are ful¯lled. Namely, (4.5a) and
(4.5b) are responsible for equality in (4.1), (4.5c) ensures that we are in the case of equality
of Lemma 4.2 for inequality (4.2) and the last condition (4.5d) is necessary for equality in
(4.3).

When µ = 0 but · ¤ > 0, we havex = 0 and thus vT v¤ = ·· ¤. This quantity is zero if
and only if · = 0, which is equivalent in this case to f p(x; µ) = · and occurs if and only if
(4.5a) is satis¯ed (all the other conditions being trivially ful¯lled). A similar reasoning takes
care of the caseµ > 0; · ¤ = 0.

Finally, when µ = · ¤ = 0, we have x = x¤ = 0 and vT v¤ = 0, while the set of conditions
(4.5) is also always satis¯ed.

4.3 Duality for lp-norm optimization

This is the main section , where we show how a primal-dual pair oflp-norm optimization
problems can be modelled using theL p and L q

s cones and how this allows us to derive the
relevant duality properties.

4.3.1 Conic formulation

Let us restate here for convenience the de¯nition of the standard primallp-norm optimization
problem (Plp).

sup bT y s.t.
X

i 2 I k

1
pi

¯
¯ci ¡ aT

i y
¯
¯pi · dk ¡ f T

k y 8k 2 K (Plp)

(where K = f 1; 2; : : : ; r g, I = f 1; 2; : : : ; ng, f I kgk2 K is a partition of I into r classes,A 2
Rm£ n and F 2 Rm£ r (whose columns will be denoted byai ; i 2 I and f k ; k 2 K ), y 2 Rm ,
b 2 Rm , c 2 Rn , d 2 Rr and p 2 Rn such that pi > 1 8i 2 I ).

Let us now model problem (Plp) with a conic formulation. The following notation will be
useful in this context: vS (resp. M S) denotes the restriction of column vectorv (resp. matrix
M ) to the components (resp. rows) whose indices belong to setS.
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We start by introducing an auxiliary vector of variables x¤ 2 Rn to represent the argu-
ment of the power functions, namely we let

x¤
i = ci ¡ aT

i y for all i 2 I or, in matrix form, x¤ = c ¡ AT y ;

and we also need additional variablesz¤ 2 Rr for the linear term forming the right-hand side
of the inequalities

z¤
k = dk ¡ f T

k y for all k 2 K or, in matrix form, z¤ = d ¡ F T y :

Our problem is now equivalent to

sup bT y s.t. AT y + x¤ = c; FT y + z¤ = d and
X

i 2 I k

1
pi

jx¤
i jpi · z¤

k 8k 2 K ;

where we can easily plug our de¯nition of theL p cone, provided we ¯x variablesµ to 1

sup bT y s.t. AT y + x¤ = c; FT y + z¤ = d and (x¤
I k

; 1; z¤
k ) 2 L pk

8k 2 K

(where for convenience we de¯ned vectorspk = ( pi j i 2 I k ) for k 2 K ). We ¯nally introduce
an additional vector of ¯ctitious variables v¤ 2 Rr whose components are ¯xed to 1 by linear
constraints to ¯nd

sup bT y s.t. AT y + x¤ = c; FT y + z¤ = d; v¤ = e and (x¤
I k

; v¤
k ; z¤

k ) 2 L pk
8k 2 K

(where e stands again for the all-one vector). Rewriting the linear constraints with a single
matrix equality, we end up with

sup bT y s.t.

0

@
AT

F T

0

1

A y +

0

@
x¤

z¤

v¤

1

A =

0

@
c
d
e

1

A and (x¤
I k

; v¤
k ; z¤

k ) 2 L pk
8k 2 K ; (CPlp)

which is exactly a conic optimization problem in the dual2 form (CD), using variables (~y; ~s),
data ( ~A; ~b;~c) and a coneC¤ such that

~y = y; ~s =

0

@
x¤

z¤

v¤

1

A ; ~A =
¡
A F 0

¢
; ~b = b; ~c =

0

@
c
d
e

1

A and C¤ = L p1
£ L p2

£ ¢ ¢ ¢ £ Lp
r

;

where C¤ has been de¯ned according to Note 3.1, since we have to deal with multiple conic
constraints involving disjoint sets of variables.

Using properties ofL p proved in the previous section, it is straightforward to show that
C¤ is a solid, pointed, closed convex cone whose dual is

(C¤)¤ = C = L q1

s £ L q2

s £ ¢ ¢ ¢ £ Lq
r

s ;

another solid, pointed, closed convex cone (where we have de¯ned a vectorq 2 Rn such that
1
pi

+ 1
qi

= 1 for all i 2 I and vectors qk such that qk = ( qi j i 2 I k ) for k 2 K ). This allows

2This is the reason why we added a ¤ superscript to the notation of our additional variables, in order to
emphasize the fact that the primal lp -norm optimization problem (P lp ) is in fact in the dual conic form (CD).



84 4. lp-norm optimization

us to derive a dual problem to (CPlp) in a completely mechanical way and ¯nd the following
conic optimization problem, expressed in the primal form (CP) (since the dual of a problem
in dual form is a problem in primal form):

inf
¡
cT dT eT

¢
0

@
x
z
v

1

A s.t.
¡
A F 0

¢
0

@
x
z
v

1

A = b and (x I k ; vk ; zk ) 2 L qk

s for all k 2 K ;

which is equivalent to

inf cT x + dT z + eT v s.t. Ax + Fz = b and (x I k ; vk ; zk ) 2 L qk

s for all k 2 K ; (CDlp)

where x 2 Rn , z 2 Rr and v 2 Rr are the dual variables we optimize. This problem can be
simpli¯ed: making the conic constraints explicit, we ¯nd

inf cT x + dT z + eT v s.t. Ax + Fz = b;
X

i 2 I k

jx i j
qi

qi z
qi ¡ 1
k

· vk 8k 2 K and z ¸ 0 ;

keeping in mind the convention on zero denominators that in e®ect implieszk = 0 ) x I k = 0.
Finally, we can remove thev variables from the formulation since they are only constrained
by the sum inequalities, which have to be tight at any optimal solution. We can thus directly
incorporate these sums into the objective function, which leads to

inf Ã(x; z) = cT x + dT z +
X

k2 K jzk > 0

zk

X

i 2 I k

1
qi

¯
¯
¯
¯
x i

zk

¯
¯
¯
¯

qi

s.t.
½

Ax + Fz = b and z ¸ 0 ;
zk = 0 ) x i = 0 8i 2 I k :

(Dlp)

Unsurprisingly, the dual formulation (D lp) we have just found without much e®ort is exactly
the standard form for a dual lp-norm optimization problem [Ter85].

4.3.2 Duality properties

We are now able to prove the weak duality property for the lp-norm optimization problem.

Theorem 4.5 (Weak duality). If y is feasible for (Plp) and (x; z) is feasible for (Dlp), we
haveÃ(x; z) ¸ bT y. Equality occurs if and only if for all k 2 K and i 2 I k

zk (
X

i 2 I k

1
pi

¯
¯ci ¡ aT

i y
¯
¯pi + f T

k y ¡ dk ) = 0 ; x i (ci ¡ aT
i y) · 0; zk

¯
¯ci ¡ aT

i y
¯
¯pi =

jx i j
qi

zqi ¡ 1
k

: (4.6)

Proof. Let y and (x; z) be feasible for (Plp) and (Dlp). Choosing vk = f qk (x I k ; zk ) for all
k 2 K , we have that (x; z; v) is feasible for (CDlp) with the same objective function, i.e. with
cT x + dT z + eT v = Ã(x; z). Moreover, computing (x¤; z¤; v¤) from y in order to satisfy the
linear constraints in (CPlp), i.e. according to

x¤
i = ci ¡ aT

i y; z¤
k = dk ¡ f T

k y; v¤
k = 1 ; (4.7)

we have that (x¤; z¤; v¤; y) is feasible for (CPlp). The standard weak duality property for the
conic pair (CPlp){(CD lp) from Theorem 3.4 then states that cT x + dT z + eT v ¸ bT y, which
in turn implies Ã(x; z) ¸ bT y.



4.3 { Duality for lp-norm optimization 85

We proceed now to investigate the equality conditions. At the optimum, variables vk

must assume their lower bounds so that we can still assume thatvk = f qk (x I k ; zk ) holds
for all k 2 K . We also keep variables (x¤; z¤; v¤) de¯ned by (4.7). From the weak duality
Theorem 3.4, we know that equality can only occur if the primal and dual vectors of variables
are orthogonal to each other for each conic constraint, i.e. (x¤

I k
; z¤

k ; v¤
k )T (x I k ; zk ; vk ) = 0 for all

k 2 K .

Having (x¤
I k

; v¤
k ; z¤

k )T 2 L pk
and (x I k ; vk ; zk ) 2 L qk

s , Theorem 4.4 gives us the necessary
and su±cient conditions for equality to happen

zk (f pk (x¤
I k

; v¤
k ) ¡ z¤

k ) = 0 ; v¤
k (f qk (x I k ; zk ) ¡ vk ) = 0 ; zk

jx¤
i jpi

v¤
k

pi ¡ 1 = v¤
k

jx i j
qi

zqi ¡ 1
k

; x i x¤
i · 0 (4.8)

for all i 2 I k and k 2 K . The second condition is always satis¯ed while the other three
conditions can be readily simpli¯ed using (4.7) to give the announced inequalities (4.6).

The weak duality property is a rather straightforward consequence of the convexity of
the problems, and in fact can be proved without too many di±culties without sophisticated
tools from duality theory. However, this is not the case with the next theorem, which deals
with a strong duality property.

In the case of a general pair of primal and dual conic problems, the duality gap at the
optimum is not always equal to zero, neither are the primal or dual optimum objective values
always attained by feasible solutions (see the examples in Section3.3). However, it is well-
known that in the special case of linear optimization, we always have a zero duality gap
and attainment of both optimum objective values. The status of lp-norm optimization lies
somewhere between these two situations: the duality gap is always equal zero but attainment
of the optimum objective value can only be guaranteed for the primal problem.

In the course of our proof, we will need to use the well-known Goldman-Tucker theorem
[GT56] for linear optimization, which we state here for reference.

Theorem 4.6 (Goldman-Tucker). Let us consider the following primal-dual pair of linear
optimization problems in standard form:

min cT x s.t. Ax = b and x ¸ 0 and maxbT y s.t. AT y + s = c and s ¸ 0 :

If both problems are feasible, there exists a unique partition(B; N ) of the index set common
to vectors x and s such that

¦ every optimal solution x̂ to the primal problem satis¯es x̂N = 0 .

¦ every optimal solution (ŷ; ŝ) to the dual problem satis¯esŝB = 0 .

This partition is called the optimal partition . Moreover, there exists at least an optimal
primal-dual solution (x̂; ŷ; ŝ) such that x̂ + ŝ > 0, hence satisfyingx̂B > 0 and ŝN > 0. Such
a pair is called a strictly complementary pair3.

3This optimal partition can be computed in polynomial time by interior-point methods. Indeed, it is
possible to prove for example that the short-step algorithm presented in Chapter 2 converges to a strictly
complementary solution, and thus allows us to identify the optimal partition unequivocally.
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This theorem is central to the theory of duality for linear optimization. Its most impor-
tant consequence is the fact that any pair of primal-dual optimal solutionsx̂ and (ŷ; ŝ) must
have a zero duality gap. Indeed, the duality gap is equal to ^xT ŝ (see Theorem 3.4) and the
theorem implies that x̂N = 0 and ŝB = 0, which leads to

x̂T ŝ =
X

i 2B

x̂ i ŝi +
X

i 2N

x̂ i ŝi = 0

since (B; N ) is a partition of the index set of the variables. One can also consider this theorem
as a version of the strong duality Theorem 3.5 specialized for linear optimization, with the
important di®erence that it is valid even when no Slater point exists.

The strong duality theorem for lp-norm optimization we are about to prove is the follow-
ing:

Theorem 4.7 (Strong duality). If both problems (Plp) and (Dlp) are feasible, the primal
optimal objective value is attained with a zero duality gap, i.e.

p¤ = max bT y s.t.
X

i 2 I k

1
pi

¯
¯ci ¡ aT

i y
¯
¯pi · dk ¡ f T

k y 8k 2 K

= inf Ã(x; z) s.t.
½

Ax + Fz = b and z ¸ 0
zk = 0 ) x i = 0 8i 2 I k

= d¤ :

Proof. The strong duality Theorem 3.5 tells us that zero duality gap and primal attainment
are guaranteed by the existence of a strictly interior dual feasible solution (excluding the
case of an unbounded dual). Let (x; z) be a feasible solution for (Dlp). We would like to
complement it with a vector v such that the corresponding solution (x; z; v) is strictly feasible
for the conic formulation (CD lp).

Since coneC is the cartesian products of the set of conesL qk

s for k 2 K , we need in fact
for (x; z; v) to be a strictly feasible solution of (CDlp) that ( x I k ; zk ; vk ) 2 int L qk

s holds for all
k 2 K . Using now Theorem 4.2 to identify the interior of the L q

s cones, we see that both
conditions vk > f pk (x I k ; zk ) and zk > 0 have to be valid for all k 2 K .

Since vectorv contains only free variables and is not constrained by the linear constraints,
it is always possible to choose it such thatvk > f pk (x I k ; zk ) for all k 2 K . However, the
situation is much di®erent for z: it is unfortunately not always possible to ¯nd a strictly
positive z, since it may happen that the linear constraints combined with the nonnegativity
constraint on z force one or more of the componentszk to be equal to zero for all primal
feasible solutions. Here is an outline of the three-step strategy we are going to follow:

a. Since some components ofz may prevent the existence of a strictly feasible solution to
(CDlp), we are going to de¯ne arestricted version of (CDlp) where those problematic
components of z and the associated variablesx have been removed. Hopefully, this
restricted problem (RDlp) will not behave too di®erently from the original because the
zero components ofz and x did not play a crucial role in it.
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b. Since this restricted problem will now admit a strictly feasible solution, its dual problem
(RPlp) (which is a problem in primal form) has a duality gap equal to zero with its
optimal objective value attained by some solution.

c. The last step of our proof will be to convert this optimal solution with a zero duality
gap for the restricted primal problem (RPlp) into an optimal solution for the original
primal problem (CP lp).

The whole procedure can be summarized with the following diagram:

(Plp) ´ (CPlp) WeakÃ! (CDlp) ´ (Dlp)
c. l l a.

(RPlp)
Strong (zero gap)

Ã! (RDlp)
#

(Attainment) b.
"

(Strictly feasible)

Let us ¯rst identify the problematic zk 's that are identically equal to zero for all feasible
solutions. This can be done by solving the following linear optimization problem:

min 0 s.t. Ax + Fz = b and z ¸ 0 : (ALP)

This problem has the same feasible region as our dual problem (Dlp) (actually, its feasible
region can be slightly larger from the point of view of the x variables, since the special
constraints zk = 0 ) x I k = 0 have been omitted, but this does not have any e®ect on our
reasoning). We are thus looking for components ofz that are equal to zero on the whole
feasible region of (ALP).

Since this problem has a zero objective function, all its feasible solutions are optimal
and we can therefore deduce that if a variablezk is zero for all feasible solutions to problem
(ALP), it is zero for all optimal solution to problem (ALP). In order to use the Goldman-
Tucker theorem, we also write the dual4 of problem (ALP):

max bT y s.t. AT y = 0 ; F T y + z¤ = 0 and z¤ ¸ 0 : (ALD)

Both (ALP) and (ALD) are feasible (the former because (Dlp) is assumed to be feasible, the
latter because (y; z¤) = (0 ; 0) is always a feasible solution), which means that the Goldman-
Tucker theorem is applicable. Having now the optimal partition (B; N ) at hand, we observe
that the index set N de¯nes exactly the set of variableszi that are identically zero on the
feasible regions of problems (ALP) and (Dlp). We are thus now ready the apply the strategy
outlined above.

a. Let us introduce the reduced primal-dual pair of lp-norm optimization problems where
variables zk and x I k with k 2 N have been removed. We start with the dual problem

inf cT
I B

x I B + dT
BzB + eT

BvB s.t. A I B x I B + FBzB = b; (x I k ; vk ; zk ) 2 L qk

s 8k 2 B ; (RDlp)

4Although problem (ALP) is not exactly formulated in the standard form used to state Theorem 4.6, the
same results hold in the case of a general linear optimization problem.
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where I B stands for [ k2B I k . It is straightforward to check that this problem is com-
pletely equivalent to problem (CDlp), since the variableszN and x I N we removed, being
forced to zero for all feasible solutions, had no contribution to the objective or to the
linear constraints in (CDlp).

The corresponding conic constraints become (0; vk ; 0) 2 L qk

s , vk ¸ 0 8k 2 N , which
imply at the optimum that vk = 0 8k 2 N , showing that variables vN can also be safely
removed without changing the optimum objective value. We can thus conclude that
inf (RD lp) = inf (CD lp) = inf (D lp).

b. Because of the second part of the Goldman-Tucker theorem, there is at least one feasible
solution to (ALP) such that zB > 0. Combining the (x I B ; zB) part of this solution with
a vector vB with su±ciently large components gives us a strictly feasible solution for
(RDlp) (zk > 0 and vk > f qk (x I k ; zk ) for all k 2 B), which is exactly what we need
to apply our strong duality Theorem 3.5. Let us ¯rst write down the dual problem of
(RDlp), the restricted primal:

sup bT y s.t.

(
AT

I B
y + x¤

I B
= cI B ; F T

B y + z¤
B = dB ; v¤

B = e;
(x¤

I k
; v¤

k ; z¤
k ) 2 L pk

8k 2 B :
(RPlp)

We cannot be in the ¯rst case of the strong duality Theorem 3.5, since unboundedness of
(RDlp) would imply unboundedness of the original problem (Dlp) which in turn would
prevent the existence of a feasible primal solution (simple consequence of the weak
duality theorem). We can thus conclude that there exists an optimal solution to (RPlp)
(x̂¤

I B
; ẑ¤

B ; v̂¤
B ; ŷ) such that bT ŷ = max (RP lp) = inf (RD lp).

c. Combining the results obtained so far, we have proved that max (RPlp) = inf (D lp).
The last step we need to perform is to prove that max (Plp) = max (RP lp), i.e. that
the optimum objective of (Plp) is attained and that it is equal to the optimal objective
value of (RPlp). Unfortunately, the apparently most straightforward way to do this,
namely using the optimal solution ŷ we have at hand for problem (RPlp), does not
work since it is not necessarily feasible for problem (CPlp). The reason is that (CPlp)
contains additional conic constraints (the ones corresponding tok 2 N ) which are not
guaranteed to be satis¯ed by the optimal solution ŷ of the restricted problem. We can
however overcome this di±culty by perturbing this solution by a suitably chosen vector
such that

¦ feasibility for the constraints k 2 B is not lost,

¦ feasibility for the constraints k 2 N can be gained.

Let us consider (¹x; ¹z; ¹y; ¹z¤), a strictly complementary solution to the primal-dual pair
(ALP){(ALD) whose existence is guaranteed by the Goldman-Tucker theorem. We have
thus ¹z¤

N > 0 and ¹z¤
B = 0. Since all primal solutions have a zero objective, the optimal

dual objective value also satis¯esbT ¹y = 0. Summarizing the properties of ¹y obtained
so far, we can write

bT ¹y = 0 ; AT ¹y = 0 ; F T
B ¹y = ¡ ¹z¤

B = 0 and F T
N ¹y = ¡ ¹z¤

N < 0 :
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Let us now considery = ŷ + ¸ ¹y with ¸ ¸ 0 as a solution of (CPlp) and compute the
value of x¤ and z¤ given by (4.7), distinguishing the B and N parts (we already know
that v¤ = e):

x¤
I B

= cI B ¡ AT
I B

y = cI B ¡ AT
I B

ŷ = x̂¤
I B

(using AT
I B

¹y = 0)
z¤

B = dB ¡ F T
B y = dB ¡ F T

B ŷ = ẑ¤
B (using F T

B ¹y = 0)
x¤

I N
= cI N ¡ AT

I N
y = cI N ¡ AT

I N
ŷ = x̂¤

I N
(using AT

I N
¹y = 0)

z¤
N = dN ¡ F T

N y = dN ¡ F T
N ŷ + ¸ ¹z¤

N (using ¡ F T
N ¹y = ¹z¤

N ) :

The conic constraints corresponding tok 2 B remain valid for all ¸ , since the associated
variables do not vary with ¸ . Considering now the constraints fork 2 N , we see that
x¤

I N
does not depend oņ , while z¤

N can be made arbitrarily large by increasing¸ , due

to the fact that ¹z¤
N > 0. Choosing a su±ciently large¸ , we can force (x¤

I k
; 1; z¤

k ) 2 L qk

s

for k 2 N and thus make (x¤; v¤; z¤; y) feasible for (CPlp). Obviously, we also have that
y is feasible for (Plp) with the same objective value.

Evaluating this objective value, we ¯nd that bT y = bT ŷ + ¸b T ¹y = bT ŷ = max (RP lp), i.e.
the feasible solutiony we constructed has the same objective value for (CPlp) and (Plp)
as ŷ for (RPlp). This proves that max (RP lp) · sup (Plp), which combined with our
previous results givesd¤ = inf (D lp) = bT ŷ = max (RP lp) · sup (Plp) = p¤. Finally,
using the weak duality of Theorem 4.5, i.e.p¤ · d¤, we obtain d¤ = inf (D lp) = bT ŷ =
sup (Plp) = p¤, which implies that ŷ is optimum for (P lp), sup (Plp) = max (P lp) and
¯nally the desired result p¤ = max (P lp) = inf (D lp) = d¤.

4.3.3 Examples

We conclude this section by providing a few examples of the possible situations that can arise
for a couple of primal-dual lp-norm optimization problems. Let us consider the following
problem data:

r = 1 ; K = f 1g; n = 1 ; I 1 = f 1g; m = 1 ; A = 1 ; F = 0 ; c = 5 ; d 2 R; b = 1 ; p = 3

(d1 is left unspeci¯ed), which translates into the following primal problem:

sup y1 s.t.
1
3

j5 ¡ y1j3 · d1 : (Plp)

Noting q = 3
2 , we can also write down the dual

inf 5x1 + d1z1 + z1
1

3=2

¯
¯
¯
¯
x1

z1

¯
¯
¯
¯

3=2

s.t. x1 = 1 ; z1 ¸ 0; z1 = 0 ) x1 = 0 : (Dlp)

This pair of problems can readily be simpli¯ed to

sup y1 s.t. j5 ¡ y1j · 3
p

3d1 and inf 5 + d1z1 +
2

3
p

z1
s.t. z1 > 0
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¦ When d = 9, our primal constraint becomes j5 ¡ y1j · 3, which gives a primal optimum
equal to y1 = 8. Looking at the dual, we have

9z1 +
2

3
p

z1
=

1
3

(27z1) +
2
3

(
1

p
z1

) · (27z1)
1
3 (

1
p

z1
)

2
3 = 3

(using the weighted arithmetic-geometric mean), which shows that the dual optimum is
also equal to 8, and is attained for (x; z) = (1 ; 1

9). This is the most common situation:
both optimum values are ¯nite and attained, with a zero duality gap.

¦ When d = 0, our primal constraint becomes j5 ¡ y1j · 0, which implies that the only
feasible solution isy1 = 5, giving a primal optimum equal to 5. The dual optimum
value is then inf 5 + 2

3
p

z1
= 5, equal to the primal but not attained ( z1 ! + 1 ). This

shows that there are problems for which the dual optimum is not attained, i.e. we do
not have the perfect duality of linear optimization (one can observe that in this case
the primal had no strict interior).

¦ Finally, when d = ¡ 1, the primal becomes infeasible while the dual is unbounded (take
again z ! + 1 ).

4.4 Complexity

The goal of this section is to prove it is possible to solve anlp-norm optimization problem up
to a given accuracy in polynomial time. According to the theoretical framework of Nesterov
and Nemirovski [NN94], which was presented in Chapter 2, in order to solve the conic problem
described in Chapter 3

inf
x

cT x s.t. Ax = b and x 2 C ; (CP)

we only need to ¯nd a computable self-concordant barrier function for the coneC, according
to De¯nition 2.2. Indeed, we can apply for example the following variant of Theorem 2.5.

Theorem 4.8. Given a (·; º )-self-concordant barrier for the cone C µ Rn and a feasible
interior starting point x0 2 int C satisfying ±(x0; ¹ 0) < 1

13:42· , a short-step interior-point
algorithm can solve problem(CP) up to ² accuracy within

O
µ

·
p

µlog
¹ 0·

p
º

²

¶
iterations,

such that at each iteration the self-concordant barrier and its ¯rst and second derivatives have
to be evaluated and a linear system has to be solved inRn (i.e. the Newton step for the barrier
problem has to be computed).

We are now going to describe a self-concordant barrier that allows us to solve conic
problems involving our L p cone (we follow an approach similar to the one used in [XY00]).
The following convex cone ©

(x; y) 2 R £ R+ j j xjp · y
ª
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(with p > 1) admits the well-known self-concordant barrier

f p : R £ R++ 7! R : (x; y) 7! ¡ 2 logy ¡ log(y2=p ¡ x2)

with parameters (1; 4) (see [NN94, Propostion 5.3.1], note we are using here the convention
· = 1). Let n 2 N, p 2 Rn and I = f 1; 2; : : : ; ng. We have that

©
(x; y) 2 Rn £ Rn

+ j j x i j
pi · yi 8i 2 I

ª

admits

f p : Rn £ Rn
++ 7! R : (x; y) 7!

nX

i =1

³
¡ 2 logyi ¡ log(y2=pi

i ¡ x2
i )

´

with parameters (1; 4n) (using [NN94, Propostion 5.1.2]). This also implies that the set

Sp =
n

(x; y; · ) 2 Rn £ Rn
+ £ R j jx i j

pi · yi 8i 2 I and · =
nX

i =1

yi

pi

o

admits a self-concordant barrier f 0
p(x; y; · ) = f p(x; y) with parameters (1; 4n) (taking the

cartesian product with R essentially leaves the self-concordant barrier unchanged, taking the
intersection with an a±ne subspace does not in°uence self-concordancy). Finally, we use
another result from Nesterov and Nemirovski to ¯nd a self-concordant barrier for the conic
hull of Sp, which is de¯ned by

H p = cl
n

(x; t ) 2 Sp £ R++ j
x
t

2 Sp

o

= cl
n

(x; y; ·; µ ) 2 Sp £ R++ j (
x
µ

;
y
µ

;
·
µ

) 2 Sp

o

= cl
n

(x; y; ·; µ ) 2 Rn £ Rn
+ £ R £ R++ j

¯
¯
¯
x i

µ

¯
¯
¯
pi

·
yi

µ
8i 2 I and

·
µ

=
nX

i =1

yi

pi µ

o

= cl
n

(x; y; ·; µ ) 2 Rn £ Rn
+ £ R £ R++ j

jx i j
pi

µpi ¡ 1 · yi 8i 2 I and · =
nX

i =1

yi

pi

o

=
n

(x; y; ·; µ ) 2 Rn £ Rn
+ £ R £ R+ j

jx i j
pi

µpi ¡ 1 · yi 8i 2 I and · =
nX

i =1

yi

pi

o

(to ¯nd the last equality, you have to consider accumulation points with µ = 0, which in fact
must satisfy x = 0, which in turn can be seen to match exactly the convention about zero
denominators we chose in De¯nition 4.1), and ¯nd that

hp : Rn £ Rn
++ £ R £ R++ 7! R : (x; y; ·; µ ) 7!

³
f p(

x
µ

;
y
µ

) ¡ 8n logµ
´

is a self-concordant barrier forH p with parameter (20; 8n) (see [NN94, Proposition 5.1.4]).
We now make the following interesting observation linkingH p to our cone L p.

Theorem 4.9. The L p cone is equal to the projection ofH p on the space of(x; ·; µ ), i.e.

(x; µ; · ) 2 L p , 9 y 2 Rn
+ j (x; y; ·; µ ) 2 H p :
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Proof. This proof is straightforward. First note that both sets take the same convention in
case of a zero denominator. Let (x; µ; · ) 2 L p. Choosingy such that yi = jx i j

pi

µpi ¡ 1 for all i 2 I
ensures that

nX

i =1

yi

pi
=

nX

i =1

jx i j
pi

pi µpi ¡ 1 · ·

(this last inequality because of the de¯nition of L p). It is now possible to increasey1 until
the equality · =

P n
i =1

yi
pi

is satis¯ed, which shows (x; y; ·; µ ) 2 H p. For the reverse inclusion,
suppose (x; y; ·; µ ) 2 H p. This implies that

· =
nX

i =1

yi

pi
¸

nX

i =1

jx i j
pi

pi µpi ¡ 1 ;

which is exactly the de¯ning inequality of L p.

Suppose now we have now to solve

inf
x

cT x s.t. Ax = b and x 2 L p : (4.9)

In light of the previous theorem, it is equivalent to solve

inf
(x;y )

cT x s.t. Ax = b and (x; y) 2 H p ;

for which we know a self-concordant barrier with parameter (20; 8n). This implies that it
is possible to ¯nd an approximate solution to problem (4.9) with accuracy ² in O

¡p
n log 1

²

¢

iterations. Moreover, since it is possible to compute in polynomial time the value ofhp and
of its ¯rst two derivatives, we can conclude that problem (4.9) is solvable in polynomial time.

This argument is rather easy to generalize to the case of the cartesian product of sev-
eral L p cones or dualL q

s cones, which shows eventually that any primal or dual lp-norm
optimization can be solved up to a given accuracy in polynomial time.

4.5 Concluding remarks

In this chapter, we have formulated lp-norm optimization problems in a conic way and applied
results from the standard conic duality theory to derive their special duality properties.

This leads in our opinion to clearer proofs, the speci¯city of the class of problems under
study being con¯ned to the convex cone used in the formulation. Moreover, the fundamental
reason why this class of optimization problems has better duality properties than a general
convex problem becomes clear: this is essentially due to the existence of a strictly interior
dual solution (even if a reduction procedure involving an equivalent regularized problem has
to be introduced when the original dual lacks a strictly feasible point).

It is also worthy to note that this is an example of nonsymmetric conic duality, i.e.
involving cones that are not self-dual, unlike the very well-studied cases of linear, second-
order and semide¯nite optimization.
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Another advantage of this approach is the ease to prove polynomial complexity for our
problems: ¯nding a suitable self-concordant barrier is essentially all that is needed.

In the special case where allpi 's are equal, one might think it is possible to derive those
duality results with a simpler formulation relying on the standard cone involving p-norms,
i.e. the p-cone de¯ned as

Ln
p =

n
(x; · ) 2 Rn £ R+ j kxkp · ·

o
=

n
(x; · ) 2 Rn £ R+ j

nX

i =1

jx i j
p · · p

o
:

However, we were note able to reach that goal, the reason being that the homogenizing
variables µ and · ¤ appear to play a signi¯cant role in our approach and cannot be avoided.

Finally, we mention that this framework is general enough to be applied to other classes
of structured convex problems. Chapter 5 will indeed deal with the class of problems known
as geometric optimization.





CHAPTER5

Geometric optimization

Geometric optimization is an important class of problems that has many ap-
plications, especially in engineering design. In this chapter, we provide new
simpli�ed proofs for the well-known associated duality theory, using conic opti-
mization. After introducing suitable convex cones and studying their properties,
we model geometric optimization problems with a conic formulation, which al-
lows us to apply the powerful duality theory of conic optimization and derive the
duality results valid for geometric optimization.

5.1 Introduction

Geometric optimization forms an important class of problems that enables practitioners to
model a large variety of real-world applications, mostly in the ¯eld of engineering design. We
refer the reader to [DPZ67, Chapter V] for two detailed case studies in mechanical engineering
(use of sea power) and electrical engineering (design of a transformer).

Although not convex itself, a geometric optimization problem can be easily transformed
into a convex problem, for which a Lagrangean dual can be explicitly written. Several duality
results are known for this pair of problems, some being mere consequences of convexity (e.g.
weak duality), others being speci¯c to this particular class of problems (e.g. the absence of a
duality gap).

These properties were ¯rst studied in the sixties, and can be found for example in the
reference book of Du±n, Peterson and Zener [DPZ67]. The aim of this chapter is to derive
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these results using the machinery of duality for conic optimization of Chapter 3, which has
in our opinion the advantage of simplifying and clarifying the proofs.

In order to use this setting, we start by de¯ning an appropriate convex cone that allows
us to express geometric optimization problems as conic programs. The ¯rst step we take
consists in studying some properties of this cone (e.g. closedness) and determine its dual. We
are then in position to apply the general duality theory for conic optimization described in
Chapter 3 to our problems and ¯nd in a rather seamless way the various well-known duality
theorems of geometric optimization.

This chapter is organized as follows: we de¯ne and study in Section 5.2 the convex
cones needed to model geometric optimization. Section 5.3 constitutes the main part of this
chapter and presents new proofs of several duality theorems based on conic duality. Finally,
we provide in Section 5.4 some hints on how to establish the link between our results and the
classical theorems found in the literature, as well as some concluding remarks.

The approach we follow here is quite similar to the one we used in Chapter 4. However,
geometric optimization di®ers fromlp-norm optimization in some important respects, which
will be detailed later in this chapter.

5.2 Cones for geometric optimization

Let us introduce the geometric coneGn , which will allow us to give a conic formulation of
geometric optimization problems.

5.2.1 The geometric cone

De¯nition 5.1. Let n 2 N. The geometric coneGn is de¯ned by

Gn =
n

(x; µ) 2 Rn
+ £ R+ j

nX

i =1

e¡ x i
µ · 1

o

using in the case of a zero denominator the following convention:

e¡ x i
0 = 0 :

We observe that this convention results in (x; 0) 2 Gn for all x 2 Rn
+ . As special cases,

we mention that G0 is the nonnegative real lineR+ , while G1 is easily shown to be equal to
the 2-dimensional nonnegative orthantR2

+ .

In order to use the powerful duality theory outlined in Chapter 3, we ¯rst have to prove
that Gn is a convex cone.

Theorem 5.1. Gn is a convex cone.
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Proof. To prove that a set is a convex cone, it su±ces to show that it is closed under addition
and nonnegative scalar multiplication (De¯nition 3.1 and Theorem 3.1). Indeed, if (x; µ) 2 Gn ,
(x0; µ0) 2 Gn and ¸ ¸ 0, we have

nX

i =1

e¡ ¸x i
¸µ =

( P n
i =1 e¡ x i

µ · 1 if ¸ > 0

0 · 1 if ¸ = 0

which shows that ¸ (x; µ) 2 Gn . Looking now at (x; µ) + ( x0; µ0), we ¯rst consider the case
µ > 0 and µ0 > 0 and write

nX

i =1

e¡
x i + x 0

i
µ+ µ0 =

nX

i =1

³
e¡ x i

µ

´ µ
µ+ µ0

µ
e¡

x 0
i

µ0

¶ µ0

µ+ µ0

:

We can now apply Lemma 4.1 on each term of the sum, using vector (e¡ x i
µ ; e¡

x 0
i

µ0 ) and weights
( µ

µ+ µ0; µ0

µ+ µ0), satisfying µ
µ+ µ0 + µ0

µ+ µ0 = 1, to obtain

nX

i =1

e¡
x i + x 0

i
µ+ µ0 ·

nX

i =1

µ
µ + µ0(e

¡ x i
µ ) +

µ0

µ + µ0(e
¡

x 0
i

µ0 )

=
µ

µ + µ0

nX

i =1

e¡ x i
µ +

µ0

µ + µ0

nX

i =1

e¡
x 0

i
µ0

·
µ

µ + µ01 +
µ0

µ + µ01 = 1 ;

while in the case ofµ0 = 0 we have
nX

i =1

e¡
x i + x 0

i
µ+ µ0 =

nX

i =1

e¡
x i + x 0

i
µ ·

nX

i =1

e¡ x i
µ · 1

(the caseµ = 0 is similar). We have thus shown that (x + x0; µ + µ0) 2 Gn in all cases, and
therefore that Gn is a convex cone.

We now proceed to prove some properties of the geometric coneGn .

Theorem 5.2. Gn is closed.

Proof. Let
©

(xk ; µk )
ª

a sequence of points inRn+1 such that (xk ; µk ) 2 Gn for all k and
lim k!1 (xk ; µk ) = ( x1 ; µ1 ). In order to prove that Gn is closed, it su±ces to show that
(x1 ; µ1 ) 2 Gn . Let us distinguish two cases:

¦ µ1 > 0. Using the easily proven fact that functions (x i ; µ) 7! e¡ x i
µ are continuous on

R+ £ R++ , we have that

nX

i =1

e¡
x 1

i
µ1 =

nX

i =1

lim
k!1

e¡
x k

i
µk = lim

k!1

nX

i =1

e¡
x k

i
µk · 1 ;

which implies (x1 ; µ1 ) 2 Gn .
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¦ µ1 = 0. Since (xk ; µk ) 2 Gn , we have xk ¸ 0 and thus x1 ¸ 0, which implies that
(x1 ; 0) 2 Gn .

In both cases, (x1 ; µ1 ) is shown to belong toGn , which proves the claim.

In order to use the strong duality theorem, we now proceed to identify the interior of the
geometric cone.

Theorem 5.3. The interior of Gn is given by

int Gn =
n

(x; µ) 2 Rn
++ £ R++ j

nX

i =1

e¡ x i
µ < 1

o
:

Proof. A point x belongs to the interior of a set S if and only if there exists an open ball
centered at x entirely included in S. Let (x; µ) 2 Gn . We ¯rst note that ( x; 0) cannot
belong to int Gn , because every open ball centered at (x; 0) contains a point with a negative
µ component, which does not belong to the coneGn . Supposeµ > 0 and the inequality in the
de¯nition of Gn is satis¯ed with equality, i.e.

nX

i =1

e¡ x i
µ = 1 :

Every open ball centered at (x; µ) contains a point (x0; µ0) with x0 < x and µ0 > µ , which
satis¯es then

nX

i =1

e¡
x 0

i
µ0 >

nX

i =1

e¡ x i
µ = 1

and is thus outside of Gn , implying ( x; µ) =2 int Gn . We now show that all the remaining
points that do not satisfy one of the two conditions mentioned above, i.e. the points with
µ > 0 satisfying the strict inequality, belong to the interior of Gn . Let (x; µ) one of these
points, and B(²) the open ball centered at (x; µ) with radius ². Restricting ² to su±ciently
small values (i.e. choosing² < µ ), we have for all points (x0; µ0) 2 B(²)

x i ¡ ² · x0
i · x i + ² and 0 < µ ¡ ² · µ0 · µ + ² ;

which implies

x0
i

µ0 ¸
x ¡ ²
µ + ²

and thus
nX

i =1

e¡
x 0

i
µ0 ·

nX

i =1

e¡ x i ¡ ²
µ+ ² for all ( x0; µ0) 2 B(²) : (5.1)

Taking the limit of the last right-hand side when ² ! 0, we ¯nd

lim
² ! 0

nX

i =1

e¡ x i ¡ ²
µ+ ² =

nX

i =1

e¡ x i
µ < 1

(because of the continuity of functions (x i ; µ) 7! e¡ x i
µ on R+ £ R++ ). Therefore we can assume

the existence of a value²¤ such that
nX

i =1

e¡ x i ¡ ² ¤

µ+ ² ¤ < 1 ;
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which because of (5.1) will imply that

nX

i =1

e¡
x 0

i
µ0 < 1

for all ( x0; µ0) 2 B(²¤). This inequality, combined with µ0 > 0, is su±cient to prove that the
open ball B(²¤) is entirely included in Gn , hence that (x; µ) 2 int Gn .

Theorem 5.4. Gn is solid and pointed.

Proof. The fact that 0 2 Gn µ Rn+1
+ implies that Gn \ ¡G n = f 0g, i.e. Gn is pointed (De¯-

nition 3.2). To prove it is solid (De¯nition 3.3), we simply provide a point belonging to its
interior, for example (e; 1

n ) (where e stands for the all-one vector). We have then

nX

i =1

e¡ x i
µ = ne¡ n < 1 ;

becauseen > n for all n 2 N, and therefore (e; 1
n ) 2 int Gn .

To summarize,Gn is a solid pointed close convex cone, hence suitable for conic optimiza-
tion.

5.2.2 The dual geometric cone

In order to express the dual of a conic problem involving the geometric coneGn , we need to
¯nd an explicit description of its dual.

Theorem 5.5. The dual of Gn is given by

(Gn )¤ =

(

(x¤; µ¤) 2 Rn
+ £ R j µ¤ ¸

X

i jx¤
i > 0

x¤
i log

x¤
iP n

i =1 x¤
i

)

:

Proof. Using De¯nition 3.4 for the dual cone, we have

(Gn )¤ =
©

(x¤; µ¤) 2 Rn £ R j (x; µ)T (x¤; µ¤) ¸ 0 for all (x; µ) 2 Gnª

(the ¤ superscript on variablesx¤ and µ¤ is a reminder of their dual nature). This condition
on (x¤; µ¤) is equivalent to saying that the following in¯mum

±(x¤; µ¤) = inf xT x¤ + µµ¤ s.t. (x; µ) 2 Gn :

has to be nonnegative. Let us distinguish the casesµ = 0 and µ > 0: we have that

±(x¤; µ¤) = min f ±1(x¤; µ¤); ±2(x¤; µ¤)g

with ½
±1(x¤; µ¤) = inf xT x¤ + µµ¤ s.t. (x; µ) 2 Gn and µ = 0
±2(x¤; µ¤) = inf xT x¤ + µµ¤ s.t. (x; µ) 2 Gn and µ > 0

:
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The ¯rst of these in¯ma can be rewritten as

inf xT x¤ s.t. x ¸ 0 ;

since (x; 0) 2 Gn , x ¸ 0. It is easy to see that this in¯mum is equal to 0 if x¤ ¸ 0 and
to ¡1 when x¤ � 0. Since we are looking for points with a nonnegative in¯mum±(x¤; µ¤),
we will require in the rest of this proof x¤ to be nonnegative and only consider the second
in¯mum, which is equal to

inf µ
·

xT x¤

µ
+ µ¤

¸
s.t.

nX

i =1

e¡ x i
µ · 1 and (x; µ) 2 Rn

+ £ R++ : (5.2)

Let us again distinguish two cases. Whenx¤ = 0, this in¯mum becomes

inf µµ¤ s.t.
nX

i =1

e¡ x i
µ · 1 and (x; µ) 2 Rn

+ £ R++ ;

which is nonnegative if and only if µ¤ ¸ 0, sinceµ can take any value in the open positive
interval ]0 + 1 [. On the other hand, if x¤ 6= 0, we have

P n
i =1 x¤

i > 0 and can de¯ne the
auxiliary variables w¤

i by

w¤
i =

x¤
iP n

i =1 x¤
i

(in order to simplify notations). We write the following chain of inequalities

1 ¸
nX

i =1

e¡ x i
µ ¸

X

i jw¤
i > 0

e¡ x i
µ =

X

i jw¤
i > 0

w¤
i

Ã
e¡ x i

µ

w¤
i

!

¸
Y

i jw¤
i > 0

Ã
e¡ x i

µ

w¤
i

! w¤
i

(5.3)

The second inequality comes from the fact that each term of the sum is positive (we remove
some terms), and the third one uses Lemma 4.1 with weightsw¤

i , noting that
P

i jw¤
i > 0 w¤

i =
P n

i =1 w¤
i = 1. From this last inequality we derive successively

Y

i jw¤
i > 0

e¡
x i w ¤

i
µ ·

Y

i jw¤
i > 0

w¤
i

w¤
i ;

¡
X

i jw¤
i > 0

x i w¤
i

µ
·

X

i jw¤
i > 0

w¤
i logw¤

i (taking the logarithms) ;

nX

i =1

x i x¤
i

µ
¸ ¡

X

i jx¤
i > 0

x¤
i logw¤

i (multiplying by ¡
P n

i =1 x¤
i ) ;

xT x¤

µ
+ µ¤ ¸ µ¤ ¡

X

i jx¤
i > 0

x¤
i logw¤

i ; and ¯nally

inf
(x;µ)2Gn jµ> 0

xT x¤

µ
+ µ¤ ¸ µ¤ ¡

X

i jx¤
i > 0

x¤
i logw¤

i :

Examining carefully the chain of inequalities in (5.3), we observe that a suitable choice
of (x; µ) can lead to attainment of this last in¯mum: namely, we need to have
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¦
P n

i =1 e¡ x i
µ = 1, for the ¯rst inequality in (5.3),

¦ x i ! + 1 for all indices i such that w¤
i = 0, in order to have e¡ x i

µ ! 0 whenw¤
i = 0 for

the second inequality in (5.3),

¦ all terms ( e¡
x i
µ

w¤
i

) with indices such that w¤
i > 0 equal to each other, for the third

inequality in (5.3).

These conditions are compatible: summing up the constant terms, we ¯nd

e¡ x i
µ

w¤
i

(when w¤
i > 0) =

P
i jw¤

i > 0 e¡ x i
µ

P
i jw¤

i > 0 w¤
i

=
X

i jw¤
i > 0

e¡ x i
µ !

nX

i =1

e¡ x i
µ = 1 ;

which gives e¡ x i
µ = w¤

i for all i such that w¤
i > 0. Summarizing, we can choosex according

to (
x i = ¡ µlogw¤

i when w¤
i > 0

x i ! + 1 when w¤
i = 0

;

which proves that

inf
(x;µ)2Gn jµ> 0

xT x¤

µ
+ µ¤ = µ¤ ¡

X

i jx¤
i > 0

x¤
i logw¤

i : (5.4)

Since the additional multiplicative µ in (5.2) doesn't change the sign of this in¯mum (because
µ > 0), we may conclude that it is nonnegative if and only if

µ¤ ¡
X

i jx¤
i > 0

x¤
i logw¤

i ¸ 0 :

Combining with the special casex¤ = 0 and the constraint x¤ ¸ 0 implied by the ¯rst in¯mum,
we conclude that the dual cone is given by

(Gn )¤ =
n

(x¤; µ¤) 2 Rn
+ £ R j µ¤ ¸

X

i jx¤
i > 0

x¤
i logw¤

i

o
;

as announced.

As special cases, sinceG0 = R+ and G1 = R2
+ , we may check that (G0)¤ = ( R+ )¤ = R+

and (G1)¤ = ( R2
+ )¤ = R2

+ , as expected. These two cones are thus self-dual, but it is easy to
see that geometric cones of higher dimension are not self-dual any more. To illustrate our
purpose, we provide in Figure 5.1 the three-dimensional graphs of the boundary surfaces of
G2 and (G2)¤.

Note 5.1. Since we have 0· w¤
i · 1 for all indices i , each logarithmic term appearing in

this de¯nition is nonpositive, as well as their sum, which means that (x¤; µ¤) 2 (Gn )¤ as soon
as x¤ and µ¤ are nonnegative. This fact could have been guessed prior to any computation:
noticing that Gn µ Rn+1

+ and (Rn+1
+ )¤ = Rn+1

+ , we immediately have that (Gn )¤ ¶ Rn+1
+ ,

because taking the dual of a set inclusion reverses its direction.












































































































































































































































