C. Figure, Pic Gaussien et fonction d'autocorrrlation correspondante temps t en unitt de On ddcoupe les donnnes en paquets de taille xe N = 2 p (le choix d'une puissance de 2 est nncessaire pour utiliser une FFT) s(t) et que l'on compllte par un nombre gal N de zzros. Ce proccdd s'appelle le zero-padding et a pour but d

O. Finalement and F. F. Revient-dans-l-'espace-direct-par, inverse pour obtenir simultannment les N corrrlations correspondant au paquet de donnnes tudii (t) A cause des eeets de bords particuliirement importants lorsque la taille du paquet est rrduite, ce qui est le cas pour les bursts qui durent quelques millisecondes chantillonnes f s = 2 0 kHz , seule la zone centrale du ltrage est prise en compte (entre N=4 et 3N=4) La sortie du ltre correspondant cette fenntre est notte max

. En-conssquence and . La-distribution-probabilitt-de-max, comme le montre par exemple la gure C.3. Dans la partie suprieure sont comparres les deux distributions de probabilitt obtenues pour une taille de fenntre d'analyse N = 4096, La courbe en trait plein max (t 0 ) est ddcalle vers les valeurs suprieures du rapport S/B par rapport celle correspondant t (t) (en pointillls)

A. Einstein and A. Physik, Traduction frannaise dans F, pp.17-891, 1905.

S. Weinberg, Gravitation and Cosmology : Principles and Applications of the General Theory of Relativity, 1972.

Y. Su, B. R. Heckel, E. G. Adelberger, J. H. Gundlach, M. Harris et al., New tests of the universality of free fall, Physical Review D, vol.50, issue.6, p.3614, 1994.
DOI : 10.1103/PhysRevD.50.3614

G. L. Smith, C. D. Hoyle, J. H. Gundlach, E. G. Adelberger, B. R. Heckel et al., Short-range tests of the equivalence principle, Physical Review D, vol.61, issue.2, p.22001, 2000.
DOI : 10.1103/PhysRevD.61.022001

D. Hilbert, Die Grundlagen der Physik (Les Fondements de la Physique) Conffrence devant la Sociitt royale des Sciences Gttingen le 16 novembre 1915... soit 9 jours avant Einstein, p.395, 1915.

A. V. Filippenko, Einstein's Biggest Blunder? High-Redshift Supernovae and the Accelerating Universe, preprint astro-ph, 109399.

A. S. Eddington, The Observatory, V ol, pp.119-122, 1919.

A. S. Eddington, The Observatory, V ol, pp.228-229, 1920.

A. Einstein, Preussiche Akademie der Wissenschaften Traduction frannaise dans F. Balibar et al. Albert Einstein, Oeuvres Choisies, pp.154-167, 1918.

F. A. Pirani, Invariant Formulation of Gravitational Radiation Theory, Physical Review, vol.105, issue.3, pp.1089-1099, 1957.
DOI : 10.1103/PhysRev.105.1089

R. A. Isaacson, Gravitational Radiation in the Limit of High Frequency. I. The Linear Approximation and Geometrical Optics, Physical Review, vol.166, issue.5, pp.1263-1271, 1968.
DOI : 10.1103/PhysRev.166.1263

R. A. Isaacson, Gravitational Radiation in the Limit of High Frequency. II. Nonlinear Terms and the Effective Stress Tensor, Physical Review, vol.166, issue.5, pp.1272-1280, 1968.
DOI : 10.1103/PhysRev.166.1272

T. Damour, Gravitational Radiation Reaction in the Binary Pulsar and the Quadrupole-Formula Controversy, Physical Review Letters, vol.51, issue.12, p.1019, 1983.
DOI : 10.1103/PhysRevLett.51.1019

S. V. Babak and L. P. Grishchuk, Energy-momentum tensor for the gravitational field, Physical Review D, vol.61, issue.2, p.24038, 2000.
DOI : 10.1103/PhysRevD.61.024038

P. C. Peters and J. Mathews, Gravitational Radiation from Point Masses in a Keplerian Orbit, Physical Review, vol.131, issue.1, pp.435-440, 1963.
DOI : 10.1103/PhysRev.131.435

J. H. Taylor, Binary pulsars and relativistic gravity, Reviews of Modern Physics, vol.66, issue.3, p.711, 1994.
DOI : 10.1103/RevModPhys.66.711

URL : http://cds.cern.ch/record/1974220/files/45-1994-p002.pdf

A. Wolszczan, A nearby 37.9-ms radio pulsar in a relativistic binary system, Nature, vol.350, issue.6320, p.688, 1991.
DOI : 10.1038/350688a0

I. H. Stairs, Measurement of Relativistic Orbital Decay in the PSR 1534+12 Binary System, 1997.

S. Bonazzola, E. Gourgoulhon, and M. Barone, Physics of sources of gravitationnal waves, International Summer School on Experimental Physics of Gravitational Waves, pp.62-105, 2000.

B. F. Schutz, Low-Frequency Sources of Gravitational waves: a tutorial Proceedings of the 1997 Alpbach Summer School on Fundamental Physics in Space

. Ph and . Canitrot, DDtection des ondes gravitationnelles mises par des toiles binaires compactes spiralantes avec l'interffrommtre Virgo, Thhse de l, 2001.

L. Blanchet, Gravitational Radiation from Relativistic Sources, Proceedings of the Les Houches School, p.9607025, 1996.

L. Blanchet, T. Damour, and B. R. Iyer, Gravitational waves from inspiralling compact binaries: Energy loss and waveform to second-post-Newtonian order, Physical Review D, vol.51, issue.10, p.5360, 1995.
DOI : 10.1103/PhysRevD.51.5360

L. Blanchet, G. Faye, and B. Ponsot, post-Newtonian order, Physical Review D, vol.58, issue.12, p.124002, 1998.
DOI : 10.1103/PhysRevD.58.124002

L. Blanchet, G. Faye, B. R. Iyer, and B. Joguet, Gravitational-Wave Inspiral of Compact Binary Systems to 7/2 Post-Newtonian Order, submitted to, Phys. Rev. Lett

T. Damour, B. R. Iyer, and B. S. Sathyaprakash, -approximant filters for time-truncated inspiral gravitational wave signals from compact binaries, Physical Review D, vol.62, issue.8, p.84036, 2000.
DOI : 10.1103/PhysRevD.62.084036

URL : https://hal.archives-ouvertes.fr/hal-00313316

E. Cuoco, On-line power spectra identification and whitening for the noise in interferometric gravitational wave detectors, Classical and Quantum Gravity, vol.18, issue.9, pp.1727-1752, 2001.
DOI : 10.1088/0264-9381/18/9/309

P. Canitrot, L. Milano, and A. Vicere, Computational costs for coalescing binaries detection in VIRGO, Note Virgo VIR-NOT-PIS, pp.1390-149, 2000.

B. J. Owen, Search templates for gravitational waves from inspiraling binaries: Choice of template spacing, Physical Review D, vol.53, issue.12, p.6749, 1996.
DOI : 10.1103/PhysRevD.53.6749

B. J. Owen and B. S. Sathyaprakash, Matched filtering of gravitational waves from inspiraling compact binaries: Computational cost and template placement, Physical Review D, vol.60, issue.2, p.22002, 1999.
DOI : 10.1103/PhysRevD.60.022002

T. Tanaka and H. Tagoshi, Use of new coordinates for the template space in a hierarchical search for gravitational waves from inspiraling binaries, Physical Review D, vol.62, issue.8, p.82001, 2000.
DOI : 10.1103/PhysRevD.62.082001

A. Buonanno and T. Damour, Transition from inspiral to plunge in binary black hole coalescences, Physical Review D, vol.62, issue.6, p.64015, 2000.
DOI : 10.1103/PhysRevD.62.064015

W. H. Press, . Astrophys, and . Jour, Long Wave Trains of Gravitational Waves from a Vibrating Black Hole, The Astrophysical Journal, vol.170, p.105, 1971.
DOI : 10.1086/180849

A. Teukolsky and W. H. Press, Perturbations of a rotating black hole. III - Interaction of the hole with gravitational and electromagnetic radiation, The Astrophysical Journal, vol.193, p.443, 1974.
DOI : 10.1086/153180

F. Echevarria, Gravitational-wave measurements of the mass and angular momentum of a black hole, Physical Review D, vol.40, issue.10, p.3194, 1989.
DOI : 10.1103/PhysRevD.40.3194

N. Panagia and S. M. Barone, International Summer School on Experimental Physics of Gravitational Waves, pp.106-119, 2000.

K. S. Hirata, Observation in the Kamiokande-II detector of the neutrino burst from supernova SN1987A, Physical Review D, vol.38, issue.2, p.448, 1998.
DOI : 10.1103/PhysRevD.38.448

R. B. Tully, Nearby Galaxies Catalog, 1988.

B. Owen, Gravitational waves from hot young rapidly rotating neutron stars, Physical Review D, vol.58, issue.8, p.84020, 1998.
DOI : 10.1103/PhysRevD.58.084020

URL : http://arxiv.org/abs/gr-qc/9804044

M. Zimmermann and E. S. Jr, Gravitational waves from rotating and precessing rigid bodies: Simple models and applications to pulsars, Physical Review D, vol.20, issue.2, pp.351-355, 1979.
DOI : 10.1103/PhysRevD.20.351

M. Zimmermann, Gravitational waves from rotating and precessing rigid bodies. II. General solutions and computationally useful formulas, Physical Review D, vol.21, issue.4, pp.891-898, 1980.
DOI : 10.1103/PhysRevD.21.891

K. S. Thorne, Gravitational Radiation, dans 300 Years of Gravitation, 1987.

P. R. Brady, T. Creighton, C. Cutler, and B. F. Schutz, Searching for periodic sources with LIGO, Physical Review D, vol.57, issue.4, pp.2101-2116, 1998.
DOI : 10.1103/PhysRevD.57.2101

K. S. Thorne, Probing Black Holes and Relativistic Stars with Gravitational Waves, soumis pour publication dans le livre Black Holes and Relativistic Stars, Proceedings of a Conference in Memory of, p.9706079

P. R. Brady and T. Creighton, Searching for periodic sources with LIGO. II. Hierarchical searches, Physical Review D, vol.61, issue.8, p.82001, 2000.
DOI : 10.1103/PhysRevD.61.082001

M. A. Papa, Searching for continuous gravitational wave signals The hierarchical Hough transform algorithm , communication donnne au Workshop Gravitational Waves: A Challenge to Theoretical Astrophysics, pp.5-9, 2000.

T. Regimbau, J. A. De-freitas, and . Pacheco, Gravitational Wave Emission from Radio Pulsars Revisited, soumis A&A preprint astro-ph/0005043 T. Regimbau, Model of pulsar population and consequences for VIRGO, communication GWDAW 4 , Baton Rouge, Lousiane 14-16 ddcembre 2000 transparents disponibles l'adresse http

V. Ferrari, Stochastic background of gravitational waves generated by a cosmological population of young, rapidly rotating neutron stars, Monthly Notices of the Royal Astronomical Society, vol.303, issue.2, pp.258-264, 1999.
DOI : 10.1046/j.1365-8711.1999.02207.x

B. Allen and J. Romano, Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities, Physical Review D, vol.59, issue.10, p.102001, 1999.
DOI : 10.1103/PhysRevD.59.102001

C. Fabry and A. Perot, On a New Form of Interferometer, The Astrophysical Journal, vol.13, p.265, 1901.
DOI : 10.1086/140817

V. Loriette and M. Barone, Optics Manufacturing and Testing for interferometric gravitational-wave detectors , International Summer School on Experimental Physics of Gravitational Waves, pp.258-287, 2000.

H. Kogelnik and T. Li, Laser Beams and Resonators, Applied Optics, vol.5, issue.10, p.1550, 1966.
DOI : 10.1364/AO.5.001550

L. Matone, tude du Contrrle Global de l'Interffrommtre Central de Virgo, Thhse de l, pp.99-57, 1999.

J. Vinet, B. Meers, C. N. Man, and A. Brillet, Optimization of long-baseline optical interferometers for gravitational-wave detection, Physical Review D, vol.38, issue.2, pp.433-447, 1988.
DOI : 10.1103/PhysRevD.38.433

L. Derome, Le systtme de ddtection de l'exprience Virgo dddiie la recherche d'ondes gravitationnelles, Thhse de l, 1999.

P. Hello, Couplings in Interferometric Gravitational-Wave Detectors, Thhse d'Habilitation diriger des Recherches, pp.96-93, 1996.

J. Weber, Detection and Generation of Gravitational Waves, Physical Review, vol.117, issue.1, pp.306-313, 1960.
DOI : 10.1103/PhysRev.117.306

M. Visco, L. Votano, and M. Barone, Resonant bar gravitational wave detector, International Summer School on Experimental Physics of Gravitational Waves, pp.288-305, 2000.

L. Hannibal and J. Warkall, Response of massive bodies to gravitational waves, gr-qc, p.4053, 2000.

M. Punturo, The VIRGO sensitivity curve, Note Virgo VIR-NOT-PER-1390-51 issue 5, 2001.

S. Braccini, Design of the Superattenuators for VIRGO construction, Note Virgo VIR-TRE-PIS, pp.4600-134, 1997.

G. Losurdo, Ultra-Low F requency Inverted Pendulum for the VIRGO Test Mass Suspension, Thhse de la Scuola Normale Superiore di Pisa non publiie, 1998.

G. Losurdo, Inertial control of the mirror suspensions of the VIRGO interferometer for gravitational wave detection, Review of Scientific Instruments, vol.72, issue.9, p.3653, 2001.
DOI : 10.1063/1.1394189

G. Losurdo, Active controls in the interferometric detectors of gravitational waves: inertial damping of the Virgo superattenuator, International Summer School on Experimental Physics of Gravitational Waves, pp.379-389, 2000.

H. B. Callen and T. A. Welton, Irreversibility and Generalized Noise, Physical Review, vol.83, issue.1, pp.34-40, 1951.
DOI : 10.1103/PhysRev.83.34

M. Barsuglia, Stabilisation en frrquence du laser et contrrle de cavitts optiques miroirs suspendus pour le ddtecteur interffrommtrique d'ondes gravitationnelles Virgo, LAL 99-25 Thhse de l, 1999.

T. Pradier, tude d'algorithmes pour la ddtection de signaux impulsifs d'ondes gravitationnelles Contrrle de la cavitt mode cleaner de Virgo, Thhse de l, pp.1-15, 2001.

P. S. Saulson, Fundamentals of Interferometric Gravitational Wave Detectors, 1994.

R. Flaminio and H. Heitmann, Longitudinal control of an interferometer for the detection of gravitational waves, Physics Letters A, vol.214, issue.3-4, pp.112-122, 1996.
DOI : 10.1016/0375-9601(96)00136-3

URL : https://hal.archives-ouvertes.fr/in2p3-00022712

G. Giordano, CITF Optical Parameters, Note Virgo VIR-NOT-FRA, pp.1390-131, 1999.

P. Puppo, Mirrors mounted on CITF Suspensions, Note Virgo VIR-SPE-ROM, pp.4700-106, 2001.

P. Hello, Ondes gravitationnelles: mmthodes de ddtection, pp.13-17, 1993.

R. J. Sandeman, The Australian Consortium for Gravitational wave Astronomy (ACIGA) Present and future p r ojects and prospects, Second Workshop on Gravitational Wave Data Analysis, 1998.

K. Danzmann, The GEO???project a long-baseline laser interferometer for the detection of gravitational waves, Lectures Notes in Physics, vol.410, p.184, 1992.
DOI : 10.1007/3-540-56180-3_9

B. Meers, Recycling in laser-interferometric gravitational-wave detectors, Physical Review D, vol.38, issue.8, pp.2317-2326, 1988.
DOI : 10.1103/PhysRevD.38.2317

M. Ando, Stable Operation of a 300-m Laser Interferometer with Sufficient Sensitivity to Detect Gravitational-Wave Events within Our Galaxy, Physical Review Letters, vol.86, issue.18, pp.3950-3954, 2001.
DOI : 10.1103/PhysRevLett.86.3950

C. Drezen, Utilisation de cammras CCD pour le contrrle du ddtecteur d'ondes gravitationnelles VIRGO : Elaboration d'une interface VME et analyse d'images, Thhse de l, 1997.

G. Ballardin, S. Braccini, and D. Passuello, THE GUARDIAN : a safety software to avoid payload oscillations, Note Virgo VIR-TRE-PIS, pp.4900-108, 2001.

L. Benvenuti, M. D. Di, and . Benedetto, AN INTRODUCTION TO FEEDBACK CONTROL SYSTEMS, Experimental Physics of Gravitational Waves
DOI : 10.1142/9789812792846_0012

D. Z. Anderson, Alignment of resonant optical cavities, Applied Optics, vol.23, issue.17, p.2944, 1984.
DOI : 10.1364/AO.23.002944

L. Holloway, G. Losurdo, and D. Passuello, Feedback o f I n terferometer Error Signal to Upper Suspension, Note Virgo VIR-NOT-PIS, pp.1390-182, 2001.

R. Flaminion, B. Mours, and D. , Verkindt Signals names list Note Virgo VIR-MAN-LAPP, pp.5400-114, 2001.

C. Eder, Carte mesure de temps, 1999.

/. Db and /. Db, Les logiciels ddvelopps au LAL sont accessibles aux adresses suivantes : CMT httphtml Cm http: //www.lal.in2p3.fr/SI/Cm/Cm

F. Barone, Digital error-signal extraction technique for real-time automatic control of optical interferometers, Applied Optics, vol.34, issue.35, p.8100, 1995.
DOI : 10.1364/AO.34.008100

O. Veziant, La calibration de l'interfromtreVirgo, Actes de conffrence des journnes Jeunes Chercheurs, 2001.

B. Caron, SIESTA, a time domain, general purpose simulation program for the VIRGO experiment, Astroparticle Physics, vol.10, issue.4, pp.369-386, 1999.
DOI : 10.1016/S0927-6505(98)00059-0

URL : https://hal.archives-ouvertes.fr/in2p3-00001165

N. Arnaud, CITF Lock A cquisition: Tests of the 'Pulses Method', Note Virgo VIR-NOT-LAL, pp.1390-156, 2000.

F. Bondu, e n trres sur le Logbook de Virgo en ddcembre, 2001.

W. G. Anderson and R. Balasubramanian, Time-frequency detection of gravitational waves, Physical Review D, vol.60, issue.10, p.102001, 1999.
DOI : 10.1103/PhysRevD.60.102001

S. D. Mohanty, Robust test for detecting nonstationarity in data from gravitational wave detectors, Physical Review D, vol.61, issue.12, p.122002, 2000.
DOI : 10.1103/PhysRevD.61.122002

L. Fabbroni and M. Vannucci, Wavelet test for the detection of transients, Note Virgo VIR-NOT-FIR, pp.1390-151, 2000.

J. M. Innocent and B. Torrrsani, Wavelet Transforms and Binary Coalescence Detection , Mathematical Aspects of Gravitation, 1997.

J. M. Innocent and B. Torrrsani, Wavelets and Binary Coalescences Detection, Applied and Computational Harmonic Analysis, vol.4, issue.1, 1997.
DOI : 10.1006/acha.1996.0204

URL : https://hal.archives-ouvertes.fr/hal-01221494

A. M. Sintes and B. F. Schutz, Coherent line removal: Filtering out harmonically related line interference from experimental data, with application to gravitational wave detectors, Physical Review D, vol.58, issue.12, pp.122003-062001, 1998.
DOI : 10.1103/PhysRevD.58.122003

L. S. Finn and S. Mukherjee, Data conditioning for gravitational wave detectors: A Kalman filter for regressing suspension violin modes, Physical Review D, vol.63, issue.6, p.62004, 2001.
DOI : 10.1103/PhysRevD.63.062004

E. Chassande-mottin and S. V. Dhurandhar, Adaptive filtering techniques for gravitational wave interferometric data: Removing long-term sinusoidal disturbances and oscillatory transients, Physical Review D, vol.63, issue.4, p.42004, 2001.
DOI : 10.1103/PhysRevD.63.042004

N. Arnaud, Detection of gravitational wave bursts by interferometric detectors, Physical Review D, vol.59, issue.8, p.82002, 1999.
DOI : 10.1103/PhysRevD.59.082002

URL : https://hal.archives-ouvertes.fr/in2p3-00005166

W. G. Anderson, Excess power statistic for detection of burst sources of gravitational radiation, Physical Review D, vol.63, issue.4, p.42003, 2000.
DOI : 10.1103/PhysRevD.63.042003

N. Arnaud, The Mean Filter for detecting gravitationnal wave bursts, Note Virgo VIR-NOT-LAL, pp.1390-177, 2001.

T. Pradier, Efficient filter for detecting gravitational wave bursts in interferometric detectors, Physical Review D, vol.63, issue.4, p.42002, 2001.
DOI : 10.1103/PhysRevD.63.042002

E. E. Flanagan and S. A. Hughes, Measuring gravitational waves from binary black hole coalescences. I. Signal to noise for inspiral, merger, and ringdown, Physical Review D, vol.57, issue.8, pp.4535-4565, 1998.
DOI : 10.1103/PhysRevD.57.4535

URL : http://arxiv.org/abs/gr-qc/9701039

R. F. Stark and T. Piran, Gravitational-Wave Emission from Rotating Gravitational Collapse, Physical Review Letters, vol.55, issue.8, p.891, 1985.
DOI : 10.1103/PhysRevLett.55.891

V. Ferrari and C. Palomba, GRAVITATIONAL SIGNALS EMITTED IN CORE COLLAPSES LEADING TO BLACK HOLE FORMATION, International Journal of Modern Physics D, vol.07, issue.06, pp.825-848, 1998.
DOI : 10.1142/S0218271898000553

N. Arnaud, Study of a three dimensional set of lters, Note Virgo VIR-NOT- LAL, pp.1390-125, 1998.

J. D. Creighton, Search techniques for gravitational waves from black-hole ringdowns, Physical Review D, vol.60, issue.2, pp.22001-022009, 1999.
DOI : 10.1103/PhysRevD.60.022001

E. K. Porter and S. V. Babak, The Curvature of the Binary Inspiral Gravitational Wave Search Manifold, en prparation, 2002.

E. K. Porter, The Modelling and Detection of Gravitational Wave from Compact Binary Sources, Thhse de l'universitt du Pays de Galles, 2001.

W. H. Press, Numerical Recipes in FORTRAN : The Art of Scientiic Computing

N. Arnaud, Comparison of lters for detecting gravitational wave burts in interferometric detectors en prparation, 2002.

Y. Ggrsel and M. Tinto, Near optimal solution to the inverse problem for gravitational-wave bursts, Physical Review D, vol.40, issue.12, p.3884, 1989.
DOI : 10.1103/PhysRevD.40.3884

P. Jaranowski and A. Krolak, Optimal solution to the inverse problem for the gravitational wave signal of a coalescing compact binary, Physical Review D, vol.49, issue.4, p.1723, 1994.
DOI : 10.1103/PhysRevD.49.1723

A. Pai, S. Dhurandhar, and S. Bose, Data-analysis strategy for detecting gravitational-wave signals from inspiraling compact binaries with a network of laser-interferometric detectors, Physical Review D, vol.64, issue.4, p.42004, 2001.
DOI : 10.1103/PhysRevD.64.042004

L. S. Finn, Aperture synthesis for gravitational-wave data analysis: Deterministic sources, Physical Review D, vol.63, issue.10, p.102001, 2001.
DOI : 10.1103/PhysRevD.63.102001

B. Bhawal and S. V. Dhurandhar, Coincidence detection of broadband signals by networks of the planned interferometric gravitational wave detectors gr-qc, p.9509042, 1995.

F. Derue, Observation of microlensing toward the galactic spiral arms. EROS II 3 year survey, Astronomy & Astrophysics, vol.373, issue.1, pp.126-138, 2001.
DOI : 10.1051/0004-6361:20010422

R. M. Bionta, Observation of a neutrino burst in coincidence with supernova 1987A in the Large Magellanic Cloud, Physical Review Letters, vol.58, issue.14, pp.1494-1531, 1987.
DOI : 10.1103/PhysRevLett.58.1494

L. A. Wainstein and V. D. Zubakov, Extraction of Signals from Noise, American Journal of Physics, vol.31, issue.1, 1962.
DOI : 10.1119/1.1969250

P. Jaranowski, A. Krolak, and B. F. Schutz, Data analysis of gravitational-wave signals from spinning neutron stars: The signal and its detection, Physical Review D, vol.58, issue.6, p.63001, 1998.
DOI : 10.1103/PhysRevD.58.063001

H. Goldstein, Classical Mechanics 2nd edition, ( A ddison-Wesley Series in Physics, 1980.

P. Marin, Proposal for a vacuum system of a, 2001.

P. Amico, Monolithic fused silica suspension for Gravitational Waves detectors soumis, Physics Letter A, 2001.