Skip to Main content Skip to Navigation
Habilitation à diriger des recherches

Application de la méthode de Vojta à des résultats de finitude sur les variétés abéliennes et semi-abéliennes

Abstract : A celebrated theorem by Faltings asserts that rational points on a subvariety of an abelian variety can form a Zariski-dense subset only when the subvariety is itself abelian. In view of the Mordell-Weil theorem, this statement deals with the intersection of the subvariety under consideration with a finitely generated subgroup. We show how the method introduced by Vojta and developped by Faltings allows to tackle problems related to more general intersections.
Document type :
Habilitation à diriger des recherches
Complete list of metadatas

Cited literature [40 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-00006386
Contributor : Arlette Guttin-Lombard <>
Submitted on : Tuesday, July 6, 2004 - 3:41:12 PM
Last modification on : Wednesday, November 4, 2020 - 2:04:05 PM
Long-term archiving on: : Tuesday, September 7, 2010 - 5:12:15 PM

Identifiers

  • HAL Id : tel-00006386, version 1

Collections

Citation

Gaël Rémond. Application de la méthode de Vojta à des résultats de finitude sur les variétés abéliennes et semi-abéliennes. Mathématiques [math]. Université Joseph-Fourier - Grenoble I, 2004. ⟨tel-00006386⟩

Share

Metrics

Record views

234

Files downloads

229