Skip to Main content Skip to Navigation
Theses

Approximation de Born-Oppenheimer en présence de (presque) croisement de surfaces d'énergie

Abstract : The Born-Oppenheimer approximation consists in treating semi-classically the Schrödinger equation associated to a molecule making use of the smallness of the mass ratio between electrons and nuclei. We show that for a generic codimension 1 avoided crossing of two energy levels, the propagation of a Gaussian nuclear wave packet associated to one of the levels is governed by a Landau-Zener formula. Moreover, in the framework of unidimensional stationary Schrödinger equation with generic crossing of two energy levels, we build quasimodes by integration of a Gaussian wave packet propagated along a periodic classical trajectory associated to one of the two energy levels.
Document type :
Theses
Complete list of metadata

https://tel.archives-ouvertes.fr/tel-00006345
Contributor : Arlette Guttin-Lombard <>
Submitted on : Wednesday, June 30, 2004 - 2:49:36 PM
Last modification on : Wednesday, November 4, 2020 - 2:04:02 PM
Long-term archiving on: : Wednesday, September 12, 2012 - 4:25:14 PM

Identifiers

  • HAL Id : tel-00006345, version 1

Collections

Citation

Vidian Rousse. Approximation de Born-Oppenheimer en présence de (presque) croisement de surfaces d'énergie. Mathématiques [math]. Université Joseph-Fourier - Grenoble I, 2004. Français. ⟨tel-00006345⟩

Share

Metrics

Record views

1315

Files downloads

289