L. Modélisation-de, 65 4.2.1 Quelques notations préalables, p.68

A. Sommaire and .. Anatomie-générale-du-système-nerveux-central, 153 A.2 Le système ventriculaire 156 A.3 Le cortex, p.158

. La-quantité-m, A) s'interprète comme la croyance placée strictement dans la proposition A à un instant t donné. On ne pourrait quantifier la croyance des sous-parties de A que par l

. B. Fig, 1: Représentation ensembliste de la notion de crédibilité B.1.3 Plausibilité La plausibilité (Plausibility function) est une notion duale de la crédibilité. Elle se définit par, p.13

C. Sommaire and .. Gibbs, 1 Champs de Markov et distribution de, p.176

]. G. Bibliographie1, B. M. Aboutanos, and . Dawant, Automatic brain segmentation and validation: Imagebased versus atlas-based deformable models, In SPIE Medical Imaging, vol.3034, pp.299-310, 1997.

. Ambroise, Introduction à la reconnaissance statistique des formes, 1997.

A. H. Andersen, Z. Zhang, M. J. Avison, and D. M. Gash, Automated segmentation of multispectral brain MR images, Journal of Neuroscience Methods, vol.122, issue.1, pp.13-23, 2002.
DOI : 10.1016/S0165-0270(02)00273-X

A. Appriou, Probabilités et incertitudes en fusion de données multi-senseurs, Revue Scientifique et Technique de la Défense, vol.11, pp.27-40, 1991.

M. S. Atkins and B. T. Mackiewich, Fully automatic segmentation of the brain in MRI, IEEE Transactions on Medical Imaging, vol.17, issue.1, pp.98-107, 1998.
DOI : 10.1109/42.668699

L. Axel, J. Contatini, and J. Listerud, Intensity correction in surface-coil MR imaging, American Journal of Roentgenology, vol.148, issue.2
DOI : 10.2214/ajr.148.2.418

C. Baillard, C. Barrillot, and P. Bouthemy, Robust Adaptative Segmentation of 3D Medical images with Level Sets, 2000.

C. Baillard, P. Hellier, and C. Barillot, Segmentation of brain 3D MR images using level sets and dense registration, Medical Image Analysis, vol.5, issue.3, pp.185-194, 2001.
DOI : 10.1016/S1361-8415(01)00039-1

URL : https://hal.archives-ouvertes.fr/inria-00536389

V. Barra and J. Y. Boire, Automatic segmentation of subcortical brain structures in MR images using information fusion, IEEE Transactions on Medical Imaging, vol.20, issue.7, pp.549-558, 2001.
DOI : 10.1109/42.932740

A. M. Bensaid, L. O. Hall, J. C. Bezdek, and L. P. Clarke, Partially supervised clustering for image segmentation, Pattern Recognition, vol.29, issue.5, pp.859-871, 1996.
DOI : 10.1016/0031-3203(95)00120-4

J. Besag, Spatial interaction and the statistical analysis of lattice systems, Journal of the Royal Statistical Society, vol.36, pp.192-236, 1974.

J. Besag, Statistical analysis of dirty pictures*, Journal of Applied Statistics, vol.6, issue.5-6, pp.259-302, 1986.
DOI : 10.1016/0031-3203(83)90012-2

J. C. Bezdek, Pattern Recognition with Fuzzy Objective Functions Algorithms, 1981.
DOI : 10.1007/978-1-4757-0450-1

J. C. Bezdek, L. O. Hall, and L. P. Clarke, Review of MR image segmentation techniques using pattern recognition, Medical Physics, vol.20, issue.4, pp.1033-1048, 1993.
DOI : 10.1118/1.597000

A. Blake and A. Zisserman, Visual reconstruction, 1987.

F. Bloch, Nuclear induction, Physical Review, pp.460-474, 1946.

I. Bloch, Some aspects of Dempster-Shafer evidence theory for classification of multi-modality medical images taking partial volume effect into account, Pattern Recognition Letters, vol.17, issue.8, pp.905-919, 1996.
DOI : 10.1016/0167-8655(96)00039-6

I. Bloch, Fuzzy relative position between objects in image processing: a morphological approach, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.21, issue.7, 1997.
DOI : 10.1109/34.777378

M. Bomans, K. H. Höhne, U. Tiede, and M. Riemer, 3-D segmentation of MR images of the head for 3-D display, IEEE Transactions on Medical Imaging, vol.9, issue.2, pp.177-183, 1990.
DOI : 10.1109/42.56342

B. Bouchon-meunier, La logique floue. Que sais-je, 1999.
URL : https://hal.archives-ouvertes.fr/hal-01336440

P. Bouthemy, F. Heitz, P. Lalande, and E. François, Analyse du mouvement et modélisation par champs markoviens, XXIIe Journées de Statistiques, 1990.

B. H. Brinkmann, A. Manduca, and R. A. Robb, Optimized homomorphic unsharp masking for MR grayscale inhomogeneity correction, IEEE Transactions on Medical Imaging, vol.17, issue.2, pp.161-171, 1998.
DOI : 10.1109/42.700729

M. E. Brummer, R. M. Mersereau, R. L. Eisner, and R. J. Lewine, Automatic detection of brain contours in MRI data sets, IEEE Transactions on Medical Imaging, vol.12, issue.2, pp.153-166, 1993.
DOI : 10.1109/42.232244

M. C. Clark, L. O. Hall, D. Goldgof, R. Velthuizen, F. Murtagh et al., Automatic tumor segmentation using knowledge-based techniques, IEEE Transactions on Medical Imaging, vol.17, issue.2, pp.187-201, 1998.
DOI : 10.1109/42.700731

L. P. Clarke, R. P. Velthuizen, S. Phuphanich, J. D. Schellenberg, J. A. Arrington et al., MRI: Stability of three supervised segmentation techniques, Magnetic Resonance Imaging, vol.11, issue.1, pp.95-106, 1993.
DOI : 10.1016/0730-725X(93)90417-C

J. Cocquerez and S. Philipp, Analyse d'images : filtrage et segmentation, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00706168

T. M. Cover and P. E. Hart, Nearest neighbor pattern classification, IEEE Transactions on Information Theory, vol.13, issue.1, pp.21-27, 1967.
DOI : 10.1109/TIT.1967.1053964

B. M. Dawant, A. Zijdenbos, and R. A. Margolin, Correction of intensity variations in MR images for computer-aided tissue classification, IEEE Transactions on Medical Imaging, vol.12, issue.4, pp.770-781, 1993.
DOI : 10.1109/42.251128

S. Dellepiane, Image Segmentation: Errors, sensitivity, and uncertainty, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society Volume 13: 1991, pp.253-254, 1991.
DOI : 10.1109/IEMBS.1991.683923

A. Dempster, Upper and Lower Probabilities Induced by a Multivalued Mapping, The Annals of Mathematical Statistics, vol.38, issue.2, pp.325-339, 1967.
DOI : 10.1214/aoms/1177698950

A. Dempster, N. Laird, and D. Rubin, Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society, vol.39, pp.1-38, 1977.

T. Denoeux, An evidence-theoretic neural network classifier, 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century, pp.712-717, 1995.
DOI : 10.1109/ICSMC.1995.537848

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.34.6539

T. Denoeux, A k-nearest neighbor classification rule based on Dempster-Shafer theory, IEEE Transactions on Systems, Man, and Cybernetics, vol.25, issue.5, pp.804-813, 1995.
DOI : 10.1109/21.376493

T. Denoeux, Analysis of evidence-theoretic decision rules for pattern classification, Pattern Recognition, vol.30, issue.7, pp.1095-1107, 1997.
DOI : 10.1016/S0031-3203(96)00137-9

T. Denoeux, Application de Modèles des Croyances Transférables en Reconnaissance de Formes, Traitement du Signal, vol.14, issue.5, pp.443-451, 1998.

T. Denoeux, A neural network classifier based on Dempster-Shafer theory, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol.30, issue.2, pp.131-150, 2000.
DOI : 10.1109/3468.833094

H. Derin and H. Elliott, Modeling and Segmentation of Noisy and Textured Images Using Gibbs Random Fields, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.9, issue.1, pp.39-55, 1997.
DOI : 10.1109/TPAMI.1987.4767871

D. Derou, Optimisation neuronale et régularisation multiéchelle auto-organisée pour la trajectographie de particules, 1995.

L. R. Dice, Measures of the Amount of Ecologic Association Between Species, Ecology, vol.26, issue.3, pp.297-303, 1945.
DOI : 10.2307/1932409

J. Dinten, Tomography reconstruction of axially symetric objects: regularization by a Markovian modelization, International Conference on Pattern Recognition, 1990.

D. Dubois and H. Prade, Representation and combination of uncertainty with belief functions and possibility measures, Computational Intelligence, vol.5, issue.1, 1988.
DOI : 10.1016/0165-0114(78)90029-5

D. Dubois and H. Prade, Consonant approximations of belief functions, International Journal of Approximate Reasoning, vol.4, issue.5-6, pp.419-449, 1990.
DOI : 10.1016/0888-613X(90)90015-T

R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis, 1973.

A. Edwards and L. C. Sforza, A Method for Cluster Analysis, Biometrics, vol.21, issue.2, pp.362-376, 1965.
DOI : 10.2307/2528096

E. Fix and J. Hodges, Discriminatory analysis, non parametric discrimination : consistency properties, 1951.
DOI : 10.2307/1403797

URL : http://www.dtic.mil/get-tr-doc/pdf?AD=ADA800276

J. François, Fusion de connaissances expérimentales et expertes : une approche évolutive du diagnostic, 2000.

D. Geiger and F. Girosi, Parallel and deterministic algorithms from MRFs: surface reconstruction, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.13, issue.5, pp.401-412, 1991.
DOI : 10.1109/34.134040

S. Geman and D. Geman, Stochastic relaxation, Gibbs distribution, and the Bayesian restauration of images, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.6, pp.721-741, 1984.

S. Geman, D. Geman, and C. Graffigne, Locating Texture and Object Boundaries, 1987.
DOI : 10.1007/978-3-642-83069-3_14

S. Geman, D. Geman, C. Graffigne, and P. Dong, Boundary detection by constrained optimization, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.12, issue.7, pp.609-628, 1990.
DOI : 10.1109/34.56204

T. Géraud, Segmentation des structures internes du cerveau en imagerie par résonance magnétique tridimensionnelle, 1998.

G. Gerig, J. Martin, R. Kikinis, O. Kübler, M. Shenton et al., Automated segmentation of dual-echo MR head data, Colchester ACF and Hawkes DJ, pp.175-197, 1991.

G. Gerig, J. Martin, R. Kikinis, O. Kübler, M. Shenton et al., Unsupervised tissue type segmentation of 3D dual-echo MR head data, Image and Vision Computing, vol.10, issue.6, pp.349-360, 1992.
DOI : 10.1016/0262-8856(92)90021-T

A. Ghanei, H. Soltanian-zadeh, and J. P. Windham, Segmentation of the hippocampus from brain MRI using deformable contours, Computerized Medical Imaging and Graphics, vol.22, issue.3, pp.203-216, 1998.
DOI : 10.1016/S0895-6111(98)00026-3

A. F. Goldszal, C. Davatzikos, D. L. Pham, M. X. Yan, R. N. Bryan et al., An Image-Processing System for Qualitative and Quantitative Volumetric Analysis of Brain Images, Journal of Computer Assisted Tomography, vol.22, issue.5, pp.827-837, 1998.
DOI : 10.1097/00004728-199809000-00030

R. Guillemaud and M. Brady, Estimating the bias field of MR images, IEEE Transactions on Medical Imaging, vol.16, issue.3, pp.238-251, 1997.
DOI : 10.1109/42.585758

C. Guinet and J. Grellet, Introduction à l'IRM : de la théorie à la pratique. Abrégés d'imagerie radiologique, 1992.

G. J. Harris, E. H. Noga, and G. D. Pearlson, User-friendly method for rapid brain and CSF volume calculation using transaxial MRI images, Psychiatry Research: Neuroimaging, vol.40, issue.1, pp.61-68, 1991.
DOI : 10.1016/0925-4927(91)90029-P

K. Held, E. Kops, B. Krause, W. Wells, R. Kikinis et al., Markov random field segmentation of brain MR images, IEEE Transactions on Medical Imaging, vol.16, issue.6, pp.878-886, 1997.
DOI : 10.1109/42.650883

G. R. Hillman, C. Chang, H. Hing, T. A. Kent, and J. Yen, <title>Automatic system for brain MRI analysis using a novel combination of fuzzy rule-based and automatic clustering techniques</title>, Medical Imaging 1995: Image Processing, pp.16-25, 1995.
DOI : 10.1117/12.208723

S. Ho, E. Bullitt, and G. Gerig, Level-set evolution with region competition: automatic 3-D segmentation of brain tumors, Object recognition supported by user interaction for service robots, pp.532-535, 2002.
DOI : 10.1109/ICPR.2002.1044788

A. Hojjatoleslami and F. Kruggel, Segmentation of large brain lesions, IEEE Transactions on Medical Imaging, vol.20, issue.7, pp.660-669, 2001.
DOI : 10.1109/42.932750

C. Jaggi, Segmentation par méthode markovienne de l'encéphale humain en imagerie par résonance magnétique : théorie, mise en oeuvre et évaluation, 1998.

B. Johnston, M. S. Atkins, B. Mackiewich, and M. Anderson, Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI, IEEE Transactions on Medical Imaging, vol.15, issue.2, pp.154-169, 1996.
DOI : 10.1109/42.491417

M. Kamber, R. Shingal, D. Collins, D. Francis, and A. Evans, Model-based 3-D segmentation of multiple sclerosis lesions in magnetic resonance brain images, IEEE Transactions on Medical Imaging, vol.14, issue.3, pp.442-453, 1995.
DOI : 10.1109/42.414608

I. Kapouleas, Automatic detection of white matter lesions in magnetic resonance brain images, Computer Methods and Programs in Biomedicine, vol.32, issue.1, pp.17-35, 1990.
DOI : 10.1016/0169-2607(90)90082-K

M. Kass, D. Witkin, and . Terzopoulos, Snakes: Active contour models, International Journal of Computer Vision, vol.5, issue.6035, pp.321-331, 1988.
DOI : 10.1007/BF00133570

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.124.5318

R. Kennes, Computational aspects of the Mobius transformation of graphs, IEEE Transactions on Systems, Man, and Cybernetics, vol.22, issue.2, pp.201-223, 1992.
DOI : 10.1109/21.148425

R. Kennes and P. Smets, Computational Aspects of the Möbius Transformation

R. Kikinis, M. Shenton, G. Gerig, J. Martin, M. Anderson et al., Routine quantitative analysis of brain and cerebrospinal fluid spaces with MR imaging, Journal of Magnetic Resonance Imaging, vol.327, issue.6, pp.619-629, 1992.
DOI : 10.1002/jmri.1880020603

P. Kleihues, P. C. Burger, and B. W. Scheithauer, Histological typing of tumours of the central nervous system, 1993.
DOI : 10.1007/978-3-642-84988-6

M. I. Kohn, N. K. Tanna, G. T. Herman, S. M. Resnick, P. D. Mozley et al., Analysis of brain and cerebrospinal fluid volumes with MR imaging. Part I. Methods, reliability, and validation., Radiology, vol.178, issue.1, pp.115-122, 1991.
DOI : 10.1148/radiology.178.1.1984289

S. Langlois, Imagerie par résonance magnétique : du signal à l'image. Cahier du GREYC 10, Groupe de Recherche en Informatique, 1997.

R. H. Lee and R. Leahy, Multi-Spectral Classification of MR Images Using Sensor Fusion Approaches, SPIE Medical Imaging IV: Image Processing 1233, pp.149-157, 1990.

K. Van-leemput, F. Maes, D. Vandermeulen, A. Colchester, and P. Suetens, Automated segmentation of multiple sclerosis lesions by model outlier detection, IEEE Transactions on Medical Imaging, vol.20, issue.8, 2000.
DOI : 10.1109/42.938237

K. Van-leemput, F. Maes, D. Vandermeulen, and P. Suetens, Automated model-based tissue classification of MR images of the brain, IEEE Transactions on Medical Imaging, vol.18, issue.10, 1999.
DOI : 10.1109/42.811270

E. Lefevre, Fusion adaptée d'informations conflictuelles dans le cadre de la théorie de l'évidence -Application au diagnostic médical, 2001.

E. Lefevre, O. Colot, and P. Vannoorenberghe, Belief function combination and conflict management. Information Fusion, pp.149-162, 2002.

E. Lefevre, O. Colot, P. Vannoorenberghe, and D. De-brucq, Contribution des mesures d'information à la modélisation crédibiliste de connaissances, pp.1-11, 2000.

C. Li, L. Hall, and D. B. Godlgof, <title>Knowledge-based classification and tissue labeling of magnetic resonance images of human brain</title>, Biomedical Image Processing and Biomedical Visualization, pp.554-565, 1905.
DOI : 10.1117/12.148667

K. O. Lim and A. J. Pfefferbaum, Segmentation of MR Brain Images into Cerebrospinal Fluid Spaces, White and Gray Matter, Journal of Computer Assisted Tomography, vol.13, issue.4, pp.588-593, 1989.
DOI : 10.1097/00004728-198907000-00006

S. Lloyd, Least squares quantization in pcm's, 1957.

S. Luo, R. Li, and S. Ourselin, A New Deformable Model Using Dynamic Gradient Vector Flow and Adaptive Balloon Forces, APRS Workshop on Digital Image Computing, pp.9-14, 2003.

D. Macdonald, N. Kabani, D. Avis, and A. C. Evans, Automated 3-D Extraction of Inner and Outer Surfaces of Cerebral Cortex from MRI, NeuroImage, vol.12, issue.3, pp.340-356, 2000.
DOI : 10.1006/nimg.1999.0534

D. Mahr and E. Hildreth, Theory of Edge Detection, Proceedings of the Royal Society of London, pp.197-217, 1980.
DOI : 10.1098/rspb.1980.0020

J. Mangin, Mise en correspondance d'images médicales 3D multi-modalités multiindividus pour la corrélation anatomo-fonctionnnelle, 1995.

J. Mangin, O. Coulon, and V. Frouin, Robust brain segmentation using histogram scale-space analysis and mathematical morphology, MICCAI'98, First International Conference on Medical Image Computing and Computer Assisted Intervention, pp.1230-1241, 1998.
DOI : 10.1109/34.19041

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.8898

P. Marais and J. M. Brady, Detecting the brain surface in sparse MRI using boundary models, Medical Image Analysis, vol.4, issue.3, pp.283-302, 2000.
DOI : 10.1016/S1361-8415(00)00020-7

G. Matheron, Random Sets and Integral Geometry, 1965.

S. Mathevet, L. Trassoudaine, P. Checchin, and J. Alizon, Application de la théorie de l'évidence à la combinaison de segmentations en région, GRETSI, pp.635-639, 1999.

T. Mcinerney and D. Terzopoulos, Deformable models in medical image analysis: a survey, Medical Image Analysis, vol.1, issue.2, pp.91-108, 1996.
DOI : 10.1016/S1361-8415(96)80007-7

C. R. Meyer, P. H. Bland, and J. Pipe, Retrospective Correction of MRI Amplitude Inhomogeneities, Computer Vision, pp.513-522
DOI : 10.1007/978-3-540-49197-2_68

J. R. Mitchell, S. J. Kalik, D. H. Lee, and A. Fenster, Computer-assisted identification and quantification of multiple sclerosis lesions in MR imaging volumes in the brain, Journal of Magnetic Resonance Imaging, vol.40, issue.2, pp.197-208, 1994.
DOI : 10.1002/jmri.1880040218

A. Nifle and R. Reynaud, Un argument pour le choix entre décision pignistique et maximum de plausibilité en théorie de l'évidence, 16eme colloque GRETSI, 1997.

F. Pannizzo, M. J. Stallmeyer, J. Friedman, R. J. Jennis, J. Zabriskie et al., Quantitative MRI studies for assessment of multiple sclerosis, Magnetic Resonance in Medicine, vol.11, issue.1, pp.90-99, 1992.
DOI : 10.1002/mrm.1910240110

P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.12, issue.7, pp.662-667, 1990.
DOI : 10.1109/34.56205

D. L. Pham and J. Prince, An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities, Pattern Recognition Letters, vol.20, issue.1, pp.57-68, 1999.
DOI : 10.1016/S0167-8655(98)00121-4

D. L. Pham and J. Prince, Adaptative Fuzzy Segmentation of Magnetic Resonance Images, IEEE Transactions on Medical Imaging, vol.19, pp.737-752, 1999.

J. M. Prewitt, Picture Processing and Psychophysics, chapter Object enhancement and extraction, pp.75-149, 1970.

J. C. Rajapakse, J. N. Giedd, and J. Rapoport, Statistical approach to segmentation of single-channel cerebral MR images, IEEE Transactions on Medical Imaging, vol.16, issue.2, pp.176-186, 1997.
DOI : 10.1109/42.563663

H. Rifai, I. Bloch, S. Hutchinson, J. Wiart, and L. Garnero, Segmentation of the skull in MRI volumes using deformable model and taking the partial volume effect into account, Medical Image Analysis, vol.4, issue.3, pp.219-233, 2000.
DOI : 10.1016/S1361-8415(00)00016-5

L. G. Roberts, Machine perception of three-dimensional solids, chapter Optical and Electrooptical Information Processing, pp.159-197, 1965.

M. Rombaut and Y. Zhu, Study of Dempster???Shafer theory for image segmentation applications, Image and Vision Computing, vol.20, issue.1, pp.15-23, 2002.
DOI : 10.1016/S0262-8856(01)00070-1

S. Ruan, C. Jaggi, J. Xue, J. Fadili, and D. Bloyet, Brain tissue classification of magnetic resonance images using partial volume modeling, IEEE Transactions on Medical Imaging, vol.19, issue.12, pp.1179-1187, 2000.
DOI : 10.1109/42.897810

URL : https://hal.archives-ouvertes.fr/hal-01121144

S. Ruan, B. Moretti, J. Fadili, and D. Bloyet, Fuzzy Markovian Segmentation in Application of Magnetic Resonance Images, Computer Vision and Image Understanding, vol.85, issue.1, pp.54-69, 2002.
DOI : 10.1006/cviu.2002.0957

URL : https://hal.archives-ouvertes.fr/hal-01018167

A. Saffiotti, An AI view of the treatment of uncertainty. The Knowledge Engineering Review, 1988.

F. Salzenstein and W. Pieczynski, Parameter Estimation in Hidden Fuzzy Markov Random Fields and Image Segmentation, Graphical Models and Image Processing, vol.59, issue.4, pp.205-220, 1997.
DOI : 10.1006/gmip.1997.0431

S. Sandor and R. Leahy, Surface-based labeling of cortical anatomy using a deformable atlas, IEEE Transactions on Medical Imaging, vol.16, issue.1, pp.41-54, 1997.
DOI : 10.1109/42.552054

J. Schürmann, Pattern classification. A unified view of statistical and neural approaches

G. Shafer, A Mathematical Theory of Evidence, 1976.

Z. Y. Shan, G. H. Yue, and J. Z. Liu, Automated Histogram-Based Brain Segmentation in T1-Weighted Three-Dimensional Magnetic Resonance Head Images, NeuroImage, vol.17, issue.3, pp.1587-1598, 2002.
DOI : 10.1006/nimg.2002.1287

P. Smets, Combining non distinct pieces of evidence, Proceedings of NAFIP86, pp.544-548, 1986.

P. Smets, Belief functions, Non Standard Logics for Automated Reasoning, pp.253-281, 1988.

P. Smets, The combination of evidence in the transferable belief model, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.12, issue.5, pp.447-458, 1990.
DOI : 10.1109/34.55104

P. Smets, Constructing the Pignistic Probability Function in a Context of Uncertainty
DOI : 10.1016/B978-0-444-88738-2.50010-5

P. Smets, The Nature of the unnormalized Beliefs encountered in the Transferable Belief Model, Uncertainty in AI92, pp.292-297, 1992.
DOI : 10.1016/B978-1-4832-8287-9.50044-X

P. Smets, Resolving misunderstandings about belief functions, International Journal of Approximate Reasoning, vol.6, issue.3, pp.321-344, 1992.
DOI : 10.1016/0888-613X(92)90028-X

URL : http://doi.org/10.1016/0888-613x(92)90028-x

P. Smets, Belief functions: The disjunctive rule of combination and the Generalized Bayesian Theorem, International Journal of Approximate Reasoning, vol.9, pp.598-603, 1993.

P. Smets, Quantifying beliefs by belief function: An axiomatic justification, Proceedings of the 13th International Joint Conference on Artificial Intelligence, IJCAI'93, 1993.

P. Smets, Data fusion in the transferable belief model, Proceedings of the Third International Conference on Information Fusion, pp.21-33, 2000.
DOI : 10.1109/IFIC.2000.862713

P. Smets and R. Kennes, The transferable belief model, Artificial Intelligence, vol.66, issue.2, pp.191-234, 1994.
DOI : 10.1016/0004-3702(94)90026-4

URL : https://hal.archives-ouvertes.fr/hal-01185821

P. Smets and R. Kruse, The Transferable Belief Model for Belief Representation Uncertainty Management in information systems: from needs to solutions, 1997.

I. Sobel, Neighborhood coding of binary images for fast contour following and general binary array processing, Computer Graphics and Image Processing, vol.8, issue.1, pp.127-135, 1978.
DOI : 10.1016/S0146-664X(78)80020-3

D. W. Stattuck, S. R. Sandor-leahy, K. A. Schaper, D. A. Rottenberg, and R. M. Leahy, Magnetic Resonance Image Tissue Classification Using a Partial Volume Model, NeuroImage, pp.856-876, 2001.

H. Suzuku and J. Toriwaki, Automatic segmentation of head mri images by knowledge guided thresholding, Computerized Medical Imaging and Graphics, vol.15, issue.4, pp.233-240, 1991.
DOI : 10.1016/0895-6111(91)90081-6

J. P. Thiran, V. Warscott, and B. Macq, A queue-based region growing algorithm for accurate segmentation of multi-dimensional digital images, Signal Processing, vol.60, issue.1, pp.1-10, 1997.
DOI : 10.1016/S0165-1684(97)00060-1

C. Tsai, B. Manjunath, and R. Jagadeesan, Automated segmentation of brain MR images, Pattern Recognition, vol.28, issue.12, pp.1825-1837, 1995.
DOI : 10.1016/0031-3203(95)00047-X

M. Vaidyanathan, L. P. Clarke, R. P. Velthuizen, S. Phuphanich, A. M. Bensaid et al., Comparison of supervised MRI segmentation methods for tumor volume determination during therapy, Magnetic Resonance Imaging, vol.13, issue.5, pp.719-725, 1995.
DOI : 10.1016/0730-725X(95)00012-6

M. Vannier, T. Pilgram, C. Speidel, L. Neumann, D. Rickman et al., Validation of Magnetic Resonance Imaging (MRI) multispectral tissue classification, Computerized Medical Imaging and Graphics, vol.15, issue.4, pp.217-223, 1991.
DOI : 10.1016/0895-6111(91)90079-B

M. Vannier, C. Speidel, and D. Rickman, Magnetic resonance imaging multispectral tissue classification, News of Physiological Science, vol.3, pp.148-154, 1988.

P. Vannoorenberghe and T. Denoeux, Likelihood-based vs. distance-based evidential classifiers, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297), pp.320-323, 2001.
DOI : 10.1109/FUZZ.2001.1007313

P. Vannoorenbergue, E. Lefevre, and O. Colot, Traitement d'images et théorie des fonctions de croyance, LFA, Rencontres francophones sur la logique floue, pp.1-4, 2003.

R. P. Velthuizen, L. P. Clarke, S. Phuphanich, L. O. Hall, A. M. Bensaid et al., Unsupervised Measurement of Brain Tumor Volume on MR Images, Journal of Magnetic Resonance Imaging, vol.17, issue.5, pp.594-605, 1995.
DOI : 10.1002/jmri.1880050520

F. Voorbraak, On the justification of Dempster's rule of combination, Artificial Intelligence, vol.48, issue.2, pp.171-197, 1991.
DOI : 10.1016/0004-3702(91)90060-W

S. Warfield, J. Dengler, J. Zaers, C. Guttmann, W. Wells et al., Automatic identification of gray matter structures from MRI to improve the segmentation of white matter lesions, Journal of Image Guided Surgery, vol.1, issue.6, pp.326-338, 1995.
DOI : 10.1002/(SICI)1522-712X(1995)1:6<326::AID-IGS4>3.0.CO;2-C

W. Wells, M. S. Atkins, B. Mackiewich, and M. Anderson, Adaptive segmentation of MRI data, IEEE Transactions on Medical Imaging, vol.15, issue.4, pp.429-442, 1996.
DOI : 10.1109/42.511747

W. Wells, W. E. Grimson, R. Kikinis, and F. A. Jolesz, Adaptive segmentation of MRI data, IEEE Transactions on Medical Imaging, vol.15, issue.4, pp.429-442, 1996.
DOI : 10.1109/42.511747

W. Wells, R. Kikinis, and F. A. Jolesz, Statistical intensity correction and segmentation of magnetic resonance image data, Proceedings of the 3rd Conference on Visualization in Biomedical Computing VBC'94, pp.13-24, 1994.

D. A. Wicks, G. J. Barker, and P. S. Tofts, Correction of intensity nonuniformity in MR images of any orientation, Magnetic Resonance Imaging, vol.11, issue.2, pp.183-196, 1993.
DOI : 10.1016/0730-725X(93)90023-7

G. Wilms, MRI of Cerebral Tumors, European Society of Neuroradiology (ESNR) CD-ROM, 1997.

C. Xu and J. Prince, Snakes, shapes, and gradient vector flow, IEEE Transactions on Images Processing, pp.359-369, 1998.

R. R. Yager, On the dempster-shafer framework and new combination rules, Information Sciences, vol.41, issue.2, pp.93-137, 1987.
DOI : 10.1016/0020-0255(87)90007-7

M. X. Yan and J. S. Karp, An Adaptative Bayesian Approach to Three-Dimensional MR Brain Segmentation. Information processing in Medical Imaging, pp.201-222, 1995.

L. A. Zadeh, Fuzzy sets, Information and Control, vol.8, issue.3, pp.338-353, 1965.
DOI : 10.1016/S0019-9958(65)90241-X

L. A. Zadeh, On the validity of Dempster's rule of Combination of Evidence, 1979.

A. Zijdenbos and B. M. Dawant, Brain Segmentation and White Matter Lesion Detection in MR Images, Critical reviews in Biomedical Engineering, vol.22, issue.56, pp.401-465, 1994.

A. Zijdenbos, B. M. Dawant, R. A. Margolin, and A. C. Palmer, Morphometric analysis of white matter lesions in MR images: method and validation, IEEE Transactions on Medical Imaging, vol.13, issue.4, pp.716-724, 1994.
DOI : 10.1109/42.363096

A. Zijdenbos, R. Forghani, and A. Evans, Automatic quantification of MS lesions in 3D MRI brain data sets: Validation of INSECT, pp.439-448, 1998.
DOI : 10.1109/42.363096

L. M. Zouhal and T. Denoeux, An adaptative k-NN rule based on Dempster-Shafer theory, 6th International Conference on Computer Analysis of Images and Pattern, pp.310-317, 1995.
DOI : 10.1007/3-540-60268-2_311

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.2361

L. M. Zouhal and T. Denoeux, An evidence-theoretic k-NN rule with parameter optimization, IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), vol.28, issue.2, pp.263-271, 1998.
DOI : 10.1109/5326.669565

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.46.1899