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ABSTRACT 

This dissertation addresses two aspects of the theory and simulation of stress-

diffusion coupling in semiconductors. The first part is a study of the role of kinetics in 

the formation of pits in stressed thin films. The second part describes how atomic-scale 

calculations can be used to extract the thermodynamic and elastic properties of point-

defects. 

Recently, pit nucleation has been observed in a variety of semiconductor thin films. 

We present a model for pit nucleation in which the adatom concentration plays a central 

role in controlling the morphological development of the surface. Although pits relieve 

elastic energy more efficiently than islands, pit nucleation can be prevented by a high 

adatom concentration. Three-dimensional islands act as adatom sinks and the lower 

adatom density in their vicinity promotes pit nucleation. Thermodynamic considerations 

predict several different growth regimes in which pits may nucleate at different stages of 

growth depending on the growth conditions and materials system. When kinetics are 

taken into account, the model predicts a wide range of possible morphologies: planar 

films, islands alone, island nucleation followed by pit nucleation, and pits alone. The 

model shows good agreement with experimental observations in III-V systems given the 

uncertainties in quantifying experimental parameters such as the surface energy. 

The same stresses which lead to the nucleation of surface features can have a 

significant effect on the stability of dopant profiles by altering diffusivities and by 



 xiv

inducing chemical potential gradients. We perform an extensive set of empirical 

calculations regarding a simple model point-defect, a vacancy in the Stillinger Weber 

model of silicon. In the context of these calculations we devise a method to extract the 

strength of the elastic relaxation in the vicinity of the defect. This quantity is extracted 

from the leading order term which must be evaluated sufficiently far from the defect and 

the boundaries. It is also directly related to the formation volume, the thermodynamic 

quantity that couples the defect free energy to the externally applied stress. We propose 

that this method of extracting the formation volume is more accurate than a direct 

measurement of the surface relaxation for large system sizes. 
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 CHAPTER 1 — INTRODUCTION 

1) Stress and diffusion in semiconductors 

Semiconductors were the basis of a technological revolution in the 20th century. 

Electronic and optoelectronic devices are ubiquitous nowadays. They are found in 

computers, cell phones, lasers and solar cells. In the 21st century new devices are 

expected to play a central role in technological progress, e.g. to develop alternative 

energy sources or enable totally new technologies, such as nanomachines for biomedical 

applications. Such technologies are very demanding and the need for further 

miniaturization and integration of electronic and micromechanical systems necessitates 

very high-quality synthesis and control on the nanometer scale. The presence of defects 

such as dislocations and grain boundaries often results in the degradation of the 

electronic properties of devices [Ohring 1992]. Nanometer-scale defects can cause 

major reliability issues for MEMS (Micro Electro-Mechanical Systems) and NEMS 

(Nano Electro-Mechanical Systems). Such next-generation technology will exploit 

physics at a length scale where continuum predictions break down. While lithography 

can be used to create patterns on the micron-scale, on the nano-scale self-assembly is 

seen as a more suitable solution for patterning. Features spontaneously form patterns for 

physical reasons, related to stress or surface energy, not because patterns are directly 

imposed by man. Self-assembly is very promising but it requires a thorough 

understanding of the physics at this small scale. The work presented in this dissertation 

contributes to the understanding of one important aspect of the physics relevant to 

nanoscale features: the interaction of stress and diffusion. 
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FIG. 1.1: Semiconductor band gap and lattice constant for elemental and compound 

semiconductors. 

The primary processing technologies that enabled the technological revolution in 

semiconductor electronics were techniques to grow single crystal films, also called 

epitaxy. The word “epitaxy” comes from the Greek επι, “on”, and ταξισ, “in order” 

[Markov 1995], meaning “ordered on”. The basic principle of epitaxy — whether by 

molecular beam epitaxy (MBE), chemical vapor deposition (CVD) or any other 

technique — is to deposit atoms on a crystalline substrate. Since the substrate is a 

perfect crystal, the lowest energy state occurs when atoms occupy lattice sites and a 

crystallographically perfect flat film results.  

For electron confinement, a low band gap material must be deposited on a high band 

gap material. Hence to produce (opto)electronic devices, different materials must be 

grown next to each other. Figure 1.1 shows the band gaps and lattice parameters of 

group IV, III-V and II-VI semiconductors. It shows that materials with different band 
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gaps also have different lattice parameters. In this case — unless prevented by wetting 

issues — the film will adopt the lattice constant of the substrate rather than its natural 

lattice parameter, as shown in Fig. 1.2. This difference in lattice parameters is quantified 

by the lattice mismatch (also called misfit) defined as 

 
s

fs

a
aaf −=  (1.1) 

where as and af are the natural lattice parameters of the substrate and of the film 

respectively.  

This dissertation focuses on two important consequences of the misfit strain. The first 

consequence arises because the strain energy is proportional to the thickness. As growth 

proceeds the energy of the system increases and the crystallographically-perfect film 

becomes less and less stable. One possible mechanism to release elastic energy is the 

creation of misfit dislocations [Matthews and Blakeslee 1974, Matthews 1975]. These 

dislocations are located at the interface between the substrate and the film. If the film is 

tensile for instance, the addition of extra half planes can reduce the tension and thus the 

elastic energy. Strain energy can also be released by surface features such as islands 

[Orr et al. 1992] or by the Asaro-Tiller mechanism [Asaro and Tiller 1972, Grinfel’d 

1986, Srolovitz 1989]. As Fig. 1.3 shows, the strain is lower at the top of the feature, 

hence the elastic energy is lower there. This mechanism is detailed in the second section 

FIG. 1.2: Illustration of misfit strain (from Gao and Nix 1999) 
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of this chapter. These strain relaxation mechanisms have important consequences for 

devices: dislocations can destroy the electronic properties of the devices [Ohring 1992] 

and surface features can make the surface very rough which is detrimental to electron 

mobility [Roblin et al. 1996, Kitabayashi et al. 1997, Lew et al. 1998, Yang et al. 

1998]. On the other hand nanometer scale surface features can potentially be used as 

quantum dots or wires in future quantum devices, but accomplishing this will require us 

to understand and control the formation of nanometer-scale structures on the surface. 

While the first consequence of the stress described above pertains to the surface, 

strain is also important sub-surface. In the bulk, stress arising from the misfit or other 

origins can influence the energetics of the formation and migration of point defects. For 

instance the relative populations of vacancies and interstitials are different under tension 

and under compression. Also stress gradients can drive the diffusion of dopants 

resulting in inhomogeneities in their concentration and poor electronic properties. This 

is described in more detail in chapter 3. 

Equally important to the stress and strain arising during epitaxy is the way the 

material responds to stress via diffusion. Diffusion is of importance in semiconductors 

FIG. 1.3: Stress is relieved at the top of islands/ripples due to lattice 

relaxation (from Gao and Nix 1999) 
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both during growth and post-processing. During epitaxial growth, atoms are deposited 

on the surface at random locations. If these adatoms cannot diffuse, the growth is 

essentially stochastic and the end result is not governed by thermodynamics. When 

adatoms can diffuse they are able to reach lower energy states and growth takes place 

closer to equilibrium. Since, for a given materials system, surface diffusion is governed 

mainly by the growth temperature low-temperature films are rough with a high point 

defect concentration while higher-temperature films are smoother. There have been 

extensive studies of growth morphology as a function of the ratio of temperature to 

deposition flux. Figure 1.4 shows the effect of the ratio of the diffusivity to the 

deposition rate. If the ratio is low atoms form small diffusion-limited aggregates (DLA) 

close to where they landed, while for a higher diffusivity they can diffuse longer 

distance to form larger aggregates. At higher diffusivities and where edge diffusion is 

important compact islands would be expected rather than DLA clusters. 

After the film is grown it must be doped. Controlling the dopant concentration profile 

requires controlling dopant diffusion. Point defects — vacancies, interstitial and 

FIG 1.4: Surface morphology studied by Monte Carlo as a function of the 

ratio of the diffusivity, D, to the deposition rate, F, for three cases: D/F = 105 

(a), 107 (b) and 109 (c). From Amar et al. 1994. 

(a) (c)(b)
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substitutional atoms — play a central role in diffusion. Thus an understanding of the 

formation of these defects is a first step towards controlling dopant diffusion.  

2) Surface features in heteroepitaxy 

A flat crystallographically-perfect film minimizes the surface area (and hence the 

surface energy) and has no energy associated with defects such as dislocations. 

However in the presence of misfit it may have a large strain energy. Since the strain 

energy is proportional to the thickness, the thicker the film the higher its energy. When 

the film is thick enough, it is not energetically favorable that the film remain flat. Figure 

1.3 shows a rippled film: at the top of the ripple, the system is less constrained and some 

relaxation is possible, decreasing the strain energy. This happens at the cost of surface 

energy. 

Asaro and Tiller (1972), Grinfel’d (1986) and Srolovitz (1989) independently showed 

that the strain energy can lead to a surface instability with a critical wavelength 

controlled by the surface energy (Fig. 1.5). As an instability this process does not 

involve any energetic barrier. This model has been successful in predicting the 

periodicity of features at low misfit. Several studies have used an instability formalism 

FIG. 1.5: A flat film (a) can form ripples (b) through an instability. The 

arrows show the direction of mass transfer. From Gao & Nix 1999. 
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to study thin film growth. Golovin and coworkers (2003) analytically studied the 

dynamics of island formation through a time-evolution equation for the height of the 

film. Island formation has also been studied by computer simulations [Liu et al. 2003, 

Zhang et al. 2003]. Numerical treatments have the possibility to account for anisotropy 

while the original papers and most analytical studies assume that the surface energy is 

isotropic. Eggleston and Voorhees studied the growth of self-assembled islands on 

patterned substrates using a phase field model [Eggleston and Voorhees 2002]. The 

optimal shape of isolated islands has been studied using an instability model [Shanahan 

and Spencer 2002]. 

These models do not take into account the inherent discreteness of the surface: when 

the instability starts growing, the amplitude is small compared to the size of the atoms, 

and the continuum assumption is not strictly applicable. More importantly, they predict 

smooth undulations on the surface, inconsistent with experimental observations in 

systems where pitting occurs which do not show ripple patterns in the early stages of 

growth. Instead they show isolated features which we interpret as indicative of 

nucleation (Fig. 1.6). 

An alternate picture to the instability model for releasing strain energy is that of the 

nucleation of 3D islands. Nucleated islands and pits are distinct from features formed 

due to instabilities in that they are localized features which arise isolated on the surface. 

Islands can nucleate if fluctuations of the island size due to the motion of atoms on the 

surface are sufficient to overcome the energetic barrier caused by surface energy.  

Figure 1.6 shows islands (white dots) in a In0.27Ga0.73As film on GaAs. Islands such as 

these have been seen experimentally [Guha et al. 1990, Eaglesham and Cerrullo 1990] 

and studied theoretically [Frankl and Venables 1970, Venables 1973, Venables 1984, 
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Tersoff et al. 1994]. Elastic calculations [Vanderbilt and Wickham 1991] indicate that 

pits can also release strain energy. However pit nucleation is experimentally much less 

commonly observed. 

The formation of surface features is dependent upon the quantity of adatoms which 

are available to form them. The effect of adatom concentration is therefore central to the 

work presented in chapter 2. Experimental observations [Johnson et al. 1997] and 

Monte Carlo simulations [Zhang and Orr 2003] have revealed adatom concentrations in 

GaAs significantly higher than was generally expected. This has been shown to be due 

to the role of As overpressure on the surface thermodynamics [Tersoff et al. 1997]. 

Experiments in SiGe found that, although the adatom concentration was almost uniform 

across the surface, small inhomogeneities could lead to localization of the nucleation of 

islands [Theis and Tromp 1996]. 

Commonly pits that form during thin film epitaxy arise due to heterogeneous 

nucleation [Chen et al. 1995, Weil et al. 1998, Li et al. 2001]. For example, SiC or SiO2 

FIG. 1.6: 2 µm x 2 µm AFM image of a 25 ML thick In0.27Ga0.73As film grown 

on GaAs at 490°C and an AsBEP of 10x10-6 torr. Courtesy of A. Riposan. 
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impurities have been identified as nucleation sites for pits during growth on silicon 

substrates. These pits are of interest to thin film growers because of the effect they can 

have on the film properties, but the mechanism of nucleation is sensitive to the 

concentration and chemistry of the contaminants. Heterogeneously nucleated pits are 

not considered in this work. Rather this work will focus on a number of experimental 

investigations in silicon-germanium on silicon and in III-V semiconductors that revealed 

that pits can arise in the absence of contaminants (Table 1.1). In these cases pit 

nucleation appears to be homogeneous. The mismatch in these systems ranges from 1.2 

% [Gray et al. 2001, 2002, Vandervelde et al. 2003] to 4 % [Jesson et al. 2000] to 7 % 

[Seshadri and Millunchick 2000] and growth conditions vary greatly; for example 

temperatures range from 300°C to 600°C. 

reference system misfit T islands and pits? 

Jesson 1996 Si0.5Ge0.5/Si 2% “low”* islands and pits form 

ripples 

Jesson 2000 Ge/Si 4% 300°C pits far from islands 

Gray 2001, 2002; 

Vandervelde 2003 

Si0.7Ge0.3 /Si 1.2% 550°C pits without islands 

Chokshi. 2002 ; 

Riposan 2003 

In0.27Ga0.73As/GaAs 1.9% 500°C pits close to islands 

Lacombe 1999 In0.8Ga0.2As/InP 1.8% 540°C pits without islands 

Seshadri 2000 InSb/InAs 7% 400°C pits far from islands 

Table 1.1: Observations of pits in semiconductors. *: the samples were annealed 5 

minutes at 590°C 
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Elastic calculations indicate that pits can release strain energy and can therefore 

participate to the strain relaxation process [Vanderbilt and Wickham 1991]. But, in the 

systems studied here, pits are generally seen only after islands nucleated and close to 

islands. Gray et al. have observed pits in the absence of islands in Si0.7Ge0.3 films grown 

on Si at 550°C, as can be seen in Fig. 1.7(a). Jesson et al. have observed pits appearing 

simultaneously with islands in Si0.5Ge0.5 films grown on Si and annealed at 570°C for 5 

min, as shown in Fig. 1.7(b). 

3) Defects in silicon 

This dissertation will also explore some studies related to point defects in 

semiconductors. Point defects — vacancies, interstitial and substitutional atoms — play 

an important role in dopant diffusion in semiconductors. The formation and migration of 

defects are stress-dependent. The stress field resulting from the contraction of the crystal 

FIG. 1.7: 2 µm x 2 µm AFM image of (a) a 15 nm thick Si0.7Ge0.3 film grown on 

Si at 550°C [Gray et al. 2001], (b) a 5 nm thick Si0.5Ge0.5 film grown on Si and 

annealed at 570°C for 5 min [Jesson et al. 1996] (islands (A) and pits (B) 

nucleate next to each other.) 
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around a vacancy interacts with the stress fields of other vacancies and with the 

externally applied stress. If the stress is not uniform (due to manufacturing for instance), 

defects are more likely to form in regions of high/low stress or to migrate to these 

regions. Whether they are attracted to high or low stress regions depends on their 

formation volume which will be defined and discussed in chapter 3. 

Semiconductors have to be doped to be of technological use and the dopant profile 

must be controlled. In SiGe wafers, for instance, the widely disparate diffusive 

behaviors of boron and arsenic result in very complex process steps to create the desired 

dopant profiles. Exploiting stress-mediated diffusion in SiGe will hopefully lead to 

simpler process steps, more reliable profiles and higher yield. Another consequence of 

stress inhomogeneities is that they can result in inhomogeneities of the formation energy 

of vacancies. Vacancies can cluster and form voids or they may favor the initiation of 

cracks. This is an important issue for the reliability of devices. What is true of dopants 

can also be applied to contaminants. Metallic impurities are considered a major issue in 

silicon wafers [International technology roadmap for semiconductors 2002]. Transition 

metals (mostly Fe, Cu and Ni) generally reside on interstitial sites in silicon [Graff 

2000]. The fabrication and processing of Si wafers can result in metal concentrations up 

to 1013 atoms/cm3. Since they can diffuse fairly fast, even at low temperature, these 

impurities can gather and form metal silicides since their solubility in Si is very low at 

room temperature. As the solubility of these contaminants depends on stress the location 

of the precipitation can be stress dependent if the stress field is inhomogeneous. 

Precipitation near contacts, for example, can have consequences for the reliability of 

devices. 
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The stress field in the crystal arises due to external stress plus the superposition of 

the individual stress fields due to the defects. The resulting stress gradients can in turn 

drive the diffusion of the defects leading to two-way coupling of stress and defect 

populations [Garikipati et al. 2001, Garikipati et al. 2004]. Although the analytical form 

of the stress field around a center of contraction can be calculated by linear elasticity, 

atomic-scale information is needed to calculate the strength of the contraction/dilation.  

To predict diffusion it is important to connect the diffusive process to atomic 

mechanisms. Figure 1.8 shows the atomistic mechanism for vacancy-assisted diffusion. 

The intermediate step is the saddle point: it is the highest free energy state along the 

minimum energy diffusion path. The difference in free energy between the intermediate 

step and the initial step is called the migration energy. In transition state theory, this is 

the free energy fluctuation necessary for the vacancy to migrate. The excess free energy 

of a crystal with a vacancy compared to a perfect crystal is called the formation energy 

of the vacancy. Diffusion depends on both energies since diffusion requires that there be 

a vacancy (formation) and that the vacancy migrate (migration). Therefore the activation 

energy for diffusion is the sum of the formation energy and the migration energy. 

 

FIG. 1.8: Vacancy-assisted diffusion. The circled atom exchanges place with the 

vacancy. 
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The energy of formation of dopants is dependent upon the local stress state. Stress 

gradients can therefore drive their diffusion. As the formation energy of point defects is 

stress-dependent, the number of vacancies changes with stress. Since vacancies 

participate in diffusion, the mobility of dopants can be affected by stress through a 

change in vacancy concentration. 

The diffusivity can be expressed as a function of G*, the Gibbs free energy of 

activation [Vineyard 1957, Aziz 2001] 

 







−=

kT
Gexp

6
d ν fD

*2

 (1.2) 

where ν is an attempt frequency, d is the hop distance, f is a correlation factor, k is 

Boltzmann’s constant, T is the temperature and the factor of 6 arises from the 

dimensionality of the system. As discussed above, G* can be split into two 

contributions: a free energy to create the defect, Gf, and a migration free energy, Gm, 

such that 

 mf* GGG += . (1.3) 

These three energies depend upon stress through three quantities with units of volume: 

an activation volume, V*, a formation volume, Vf, and a migration volume, Vm, 

                  
f m

f m * f m
ij ij ij ij ij

G GV , V , V =V +V
ij ijσ σ

   ∂ ∂= − = −      ∂ ∂   
. (1.4) 

The volumes are in boldface because they are tensors. If the defect is isotropic and the 

stress field is hydrostatic, these tensors can be expected to be proportional to identity, 

i.e. they can be treated as scalars. A di-vacancy, for example, has an orientation and is 

therefore intrinsically anisotropic; in this case, the activation, formation and migration 

volumes must be considered as tensors.  
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Equation (1.2) is sufficient for instances in which a single atomic mechanism 

dominates diffusion and acts isotropically in the crystal. However, if multiple atomic 

mechanisms operate, if diffusion is anisotropic, and in instances where externally 

applied stress breaks crystalline symmetry, more complex descriptions are required to 

incorporate the anisotropy of the atomic level processes. An early theory by Dederichs 

and Schroeder (1978) elucidated this relationship for simple defects and a more detailed 

theory has been worked out recently by Daw and coworkers (2001). Using this 

formalism it is possible, at least in principle, to extract the isotropic or anisotropic 

diffusivity and the dependence of the diffusivity on stress by a careful enumeration and 

calculation of energetic barriers associated with formation and migration of defects.  

Due to its technological importance, dopant diffusion in silicon has received most of 

the attention of experimentalists. The most studied dopants in silicon are boron (B), 

phosphorous (P) and antimony (Sb). Two mechanisms exist for the diffusion of these 

atoms: Sb diffuses by a vacancy mechanism while B and P use an interstitial mechanism 

[Fahey et al. 1989, Ahn et al. 1988, Osada et al. 1995, Zaitsu et al. 1998, Chaudhary 

and Law 1997, Shimizu et al. 1998, Rao and Wosik 1996]. Figure 1.9 sketches vacancy 

(top) and interstitial (bottom) formation and migration.  

At the time of this writing there are only two cases in which the trace of the 

activation volume tensor has been measured experimentally, for the diffusion in Si of B 

[Zhao et al. 1999A] and of Sb [Zhao et al. 1999B]. The diffusivities were measured at 

constant temperature (810ºC for B and 860ºC for Sb) and various hydrostatic pressures 

and the activation volume was extracted. In the case of boron the activation volume is 

negative and it is positive in the case of antimony. 
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VACANCY  FORMATION VACANCY  MIGRATION

INTERSTITIAL FORMATION INTERSTITIAL MIGRATION  

FIG. 1.9: Lattice distortion due to vacancy (top) and interstitial (bottom) formation and 

migration. From Aziz 2001. 

The tensile/compressive biaxial stress in strained Si and Si1-xGex has been used to 

study the effect of stress on dopant diffusivity as a function of mechanism by exploiting 

the fact that P and B diffuse primarily by an interstitial mechanism and Sb by a vacancy 

mechanism in both Si and Si1-xGex [Kringhøj et al. 1996, Larsen and Kringhøj 1997, 

Kuznetsov et al. 1999, Fedina et al. 2000, Kuznetsov et al. 2001]. Kringhøj and 

coworkers studied the diffusivity of Sb in tensile Si compared to unstrained Si and in 

compressive Si0.91Ge0.09 compared to unstrained Si0.91Ge0.09. In both materials systems 

they found that the diffusivity is higher at higher stress. Using the relationship between 

the activation volume under hydrostatic and biaxial loadings [Aziz 1997], the results by 

Zhao et al. are in agreement with those of Kringhøj et al. These results are in qualitative 

agreement with retardation of B diffusion by compressive biaxial stress and 
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enhancement by both compressive hydrostatic stress and tensile biaxial stress, and 

retardation of Sb diffusion by tensile biaxial stress and compressive hydrostatic stress 

[Kuo et al. 1995, Moriya et al. 1993, Cowern et al. 1994]. 

It is also possible to experimentally measure the formation volume instead of the 

activation volume. Simmons and Balluffi have measured the concentration of vacancies 

in aluminum [Simmons and Balluffi 1960]. They measured simultaneously and 

independently the change in length, ∆L, and the change in lattice parameter, ∆a, of the 

samples as a function of temperature, from 229ºC to 415ºC. If the vacancy concentration 

is constant, ∆L/L = ∆a/a. A deviation from this equality is indicative of a change in 

vacancy concentration. Performing this kind of experiment for various pressures would 

give a measurement of the formation volume of vacancies. However this has not been 

done yet due to the difficulty in obtaining precise enough concentrations for the pressure 

dependence to overcome the noise. 

Since experimental studies like those described above are difficult there has been 

significant interest in using simulations to calculate Vf and Vm. Formation energies have 

been computed by ab initio simulations [Sugino and Oshiyama 1992, Antonelli and 

Bernholc 1989, Tang et al. 1997, Antonelli et al. 1998, Puska et al. 1998, Zywietz et al. 

1998]. The purpose of these studies has been to calculate the formation energy of 

neutral vacancies. Little work has been concerned with the stress dependence of the 

energy. Antonelli and coworkers (1998) found two possible geometries for the neutral 

Si vacancy with similar formation energies but different formation volumes. An 

apparent consequence of this result is that the concentration of vacancies should 

increase both under tension and compression, the concentration would be at its lowest in 
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a stress-free crystal. This lack of monotonicity is not intuitive but it cannot be discarded 

since no experiment has been carried with enough accuracy to measure this subtle 

change. Table 1.2 presents the results of several computational investigations along with 

an experimental result. It shows that results vary greatly and that there is no agreement 

upon the values of the activation, formation and migration volumes. 

One issue with such numerical simulations of defects is the system size. Quantum 

mechanics calculations provide good accuracy but they are limited to small systems, 

typically smaller than 256 atoms per super cell. Probert and Payne (2003) studied their 

convergence and found that the speed of the convergence depends on the organization of 

the supercells — they can be on a simple cubic lattice, face-centered cubic or body-

centered cubic. Mercer and coworkers (1998) showed that the volume converges more 

slowly with supercell size than the energy. This is an indication that elastic interactions 

have a strong influence upon the formation volume. Because periodic boundaries are 

generally used in atomistic simulations the vacancy interacts with its periodic images. 

technique reference tr( )*V  tr( )fV  tr( )mV  

ab initio Sugino and Oshiyama 1992 0.06 Ω 0.468 Ω 0.534 Ω 

ab initio Antonelli and Bernholc 1989   0.75 Ω - 0.68 Ω 

MD/TB Tang et al. 1997   0.03 Ω 0.04 Ω 

ab initio Antonelli et al. 1998  - 0.09 Ω 0.16 Ω 

experiment Zhao et al. 1999  0.07 Ω   

Table 1.2: Theoretical and experimental results for activation, 

formation and migration volumes. Ω is the atomic volume. 
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Thus a simulation with few atoms is equivalent to a high concentration of defects and 

the properties obtained are not those of an isolated vacancy but of a dense network of 

vacancies. Ab initio calculations for instance compute the formation energy and the 

structure of the vacancy under a stress state partly due to the periodic images of the 

defect, i.e. the stress state is in part an artifact coming from the small system size. Since 

the elastic interaction between a point defect and its periodic images is long-ranged, 

even the largest of these ab initio calculations is too small. One goal of this dissertation 

is to present new methodologies using continuum mechanics to handle the long-ranged 

elastic interactions. 

The marriage of the atomic and macroscopic simulation and theory can potentially 

result in new numerical tools for the design of production processes of semiconductors. 

This will make it possible to use results on the atomic scale to provide data to link 

stresses calculated via continuum elasticity to changes in material composition 

calculated through continuum diffusion. In the long-term, this will enable the accurate 

simulation of stress-induced changes in semiconductor growth and failure processes. 
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 CHAPTER 2 — PIT NUCLEATION IN HETEROEPITAXIAL GROWTH 

1) Introduction 

Morphological features such as three-dimensional islands and strain-induced ripples 

[Guha et al. 1990, Cullis et al. 1992] arise spontaneously during the heteroepitaxial 

growth of III-V compound semiconductor alloys. While models exist that can explain 

nucleation of 3D islands or development of surface instabilities during growth [Frankl 

1970, Venables 1973, Venables et al. 1984, Tersoff et al. 1994], the spontaneous 

formation of more complex morphologies is a matter of current investigation. Better 

prediction and control of such structures could improve the performance of devices and 

provide processing routes for the manufacture of new devices that exploit the unique 

physics of features near the atomic scale. It has been shown, for instance, that pits may 

act as nucleation sites for quantum dots resulting in quantum dots (QD) distributions 

and densities suitable for cellular automata applications [Gray et al. 2001, 2002, 

Vandervelde et al. 2003]. 

Previous work [Chokshi et al. 2000, 2002, Riposan et al. 2002, 2003] revealed the 

onset of pits subsequent to the nucleation of 3D islands during the heteroepitaxial 

growth of InGaAs on GaAs. Pits have also been observed to play an important role in 

morphological development in silicon-germanium on silicon [Jesson et al. 1996, 2000, 

Gray et al. 2002, Vandervelde et al. 2003], InGaAs on InP [Lacombe 1999, Lacombe et 

al. 1999] and InSb on InAs [Seshadri et al. 2000]. In these systems, the process of 

island and pit nucleation leads to surface patterning in which features on the surface are 

correlated to approximately 150 nm. It has been shown that pits may act as nucleation 

sites for islands [Gray et al. 2001, 2002, Vandervelde et al. 2003, Songmuang et al. 
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2003], resulting in island distributions and densities suitable for application such as 

cellular automata [Lent et al. 1993]. 

These experimental observations form the basis of the theoretical analysis presented 

here, in which a secondary feature, in this case a pit, nucleates on a surface upon which 

primary features, 3D islands, have already nucleated. A nucleation model may be more 

appropriate for this material system than a linear instability model because the initial 3D 

island features are observed to emerge isolated on an otherwise nearly flat substrate 

(Fig. 1.6). However it is, in part, this conjecture that will be evaluated by providing a 

detailed account of the logical consequences of such an assumption.  

To that end this chapter details a model in which pit nucleation in thin films is 

considered to arise from a near-equilibrium nucleation process. Central to this model is 

the assumption that the adatom concentration plays a critical role in controlling the 

morphological development of the surface. One consequence of this is that although pits 

relieve elastic energy more efficiently than islands, pit nucleation can be prevented by a 

high adatom concentration. However three-dimensional islands act as adatom sinks and 

the lower adatom density in their vicinity promotes pit nucleation. Thermodynamic 

considerations predict several different growth regimes in which pits may nucleate at 

different stages of growth depending on the growth conditions and materials system. 

However direct comparisons to experimental observations require that kinetics be taken 

into account as well. The model predicts a wide range of possible morphologies: planar 

films, islands alone, islands nucleation followed by pit nucleation, and pits alone. The 

model shows good agreement with experimental observations in III-V systems given the 

uncertainties in quantifying experimental parameters such as the surface energy.  
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The central question addressed here is why and how pits nucleate only at later stages 

of growth and near islands. A stress concentration near three-dimensional islands is 

more often considered as the origin for this effect. This has been studied using the finite 

element method [Benabbas et al. 1999, Meixner et al. 2001], but no analytical form of 

the strain in the film exists, which makes the integration of these results into the 

adatom-based model difficult. The effect of adatom concentrations has not been 

addressed in detail and provides the subject of this analysis. Therefore in what follows a 

supposition is made of a uniform strain across the surface. As will be discussed in 

section 2 one of the motivations for focusing on the role of adatom concentration is that 

direct experimental observations of adatoms on GaAs surfaces have revealed adatom 

concentrations significantly higher than was generally expected [Johnson et al. 1997]. 

Monte Carlo simulations also found high Ga densities in GaAs [Zhang and Orr 2003]. It 

has been theorized that this occurs due to the role of As overpressure on the surface 

thermodynamics [Tersoff et al. 1997]. Other experiments in SiGe found the adatom 

concentration to be almost uniform across the surface, yet small inhomogeneities in the 

adatom concentration were observed to lead to localization of the nucleation of islands 

[Theis and Tromp 1996]. Using a nucleation model, we show that under a variety of 

conditions such small inhomogeneities could account for pit nucleation, particularly in 

the presence of 3D islands.  

2) The energetics of island and pit nucleation 

a) Analogy with classical nucleation theory 

Classical nucleation theory was originally devised to describe solidification and other 

first order phase transitions. An analogy is often drawn between nucleation during a first 
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order phase transition and the nucleation of islands and pits. When a cluster (or island or 

pit) is large enough, i.e. when finite size effects can be neglected, its energy can be 

expressed as the energy released per unit volume plus an energetic cost associated with 

the surface energy [Volmer and Weber 1925, Volmer 1929, Becker and Döring 1935]:  

 En = - E n + γ n 2/3 (2.1) 

where E is an energy released per volume, γ is a surface energy, and n is the number of 

atoms in the cluster (or the number of cation-anion pairs in the case of compound 

semiconductors). n is proportional to the volume and n2/3 to the surface area (Fig. 2.1). 

For the sake of simplicity (to avoid carrying atomic volume factors), E and γ have units 

of energy. E and γ depend on the shape of the feature. Even though the functional form 

is the same for islands and for pits, the values of E isl and E pit and the values of γisl and 

γpit may differ due to differences in geometry between islands and pits. In general E is a 

function of the strain, and near islands the strain is enhanced [Benabbas et al. 1999, 

FIG. 2.1: surface, volume and total energies as a function of 

size n. n* is defined in equation (2.2) 

surface energy 

total energy 

volume energy
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Meixner et al. 2001]. However, as discussed previously, the analysis presented here will 

focus on the effect of adatom concentrations. Therefore, the value of E used here will 

taken to be uniform and will be determined from the nominal mismatch of the film only.  

The maximum energy in equation (2.1) occurs at n*, the critical cluster size: 
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For a subcritical cluster, i.e. a cluster of size n < n*, an increase in the size of the cluster 

results in an increase in energy, and the cluster tends to shrink. If n > n* (supercritical 

cluster), an increase in the size of the cluster results in a decrease of the energy, and the 

cluster tends to grow. However adatoms always have finite probability to reach the 

island and atoms in the island have a finite probability to leave the island. Such 

fluctuations may cause a subcritical cluster to grow or a supercritical cluster to shrink. 

The energy barrier is the energy at the critical size, E* = E(n*):  
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The difference in energy between a cluster of size n and a cluster of size n+1 will be 

called ∆Εn. For a large enough cluster, a continuum approximation can be used: 
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b) Molecular dynamics simulations of islands 

Islands of sizes ranging from fewer than 10 atoms to around 500 atoms were 

simulated for silicon using molecular dynamics to determine their critical size n* and 

energy barrier E*. In the work that follows, i will be used to denote the size of an island 

(in atoms), p the size of a pit and n the size of any feature when writing general 

equations applying to both islands and pits. 

The potential used is the one published by Stillinger and Weber [Stillinger and 

Weber 1985]. Simulations were run at 10 K, the temperature was kept constant using a 

Nosé-Hoover thermostat [Nosé 1984, 1986, Hoover 1985, 1986]. Using higher 

temperatures would result in more thermal fluctuations which would require longer 

simulation times. Periodic boundaries were imposed in the x-y plane, the surface 

perpendicular to the z axis was free and the atoms at the bottom were immobile. Each 

island was constructed by keeping all atoms inside a hemisphere of a given radius. Then 

atoms of coordination one were removed; such atoms would have had to diffuse to reach 

a stable state, increasing the simulation time and decreasing the reproducibility of the 

results. A typical island is shown in Fig. 2.2; it looks somewhat faceted because of finite 

size effects. A (2x1) reconstruction was imposed on the free surface around the island. 

Two series of simulations were run simulating a matched film and a film under 5 % 

compression. This choice of the strain is arbitrary — experiments generally take place 

anywhere between 2 % and 7 % — but results for other mismatches can be extrapolated 

using equations (2.1) through (2.4). In each simulation, the difference in energy between 

an island of size i and i bulk atoms (see Fig. 2.3) was calculated. 
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FIG. 2.2: Example of an island of 477 atoms used in the simulations. The island looks 

somewhat faceted due to finite size effects.  

For the case where there is no mismatch, ε = 0, the continuum expression for the 

energy reduces to Ei = γ i2/3. So the plot of Ei i-2/3 as a function of island size i should be 

constant and give the surface energy γ. Figure 2.4 is a plot of γ obtained from the 

simulations as a function of the island size. For island sizes greater than 150 atoms, γ is 

indeed approximately constant with a value of 1.5 eV/atom. For sizes less than 150 

atoms the continuum assumption does not apply and γ is strongly influenced by finite 

size effects. This value of γ appears to be meaningful as it gives a surface energy for the 

lateral surface of the island within 15 % of published values for the (001) surface 

[Guyer and Voorhees 1996]. 

FIG. 2.3: the energies of a flat film (a) and that of an island (b) having 

the same volume are compared using molecular dynamics. 

a) b)
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This surface energy γ is assumed to be independent of the strain, so the difference in 

energy between an unstrained island Eunstrained and an island under 5 % compressive 

strain E5% provides a measure of the volume energy: 

 i i i γi γEE 3
2

3
2

5%unstrained EE =








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Plotting 
i

EE 5%unstrained −
 as a function of the island size, as done in Fig. 2.5, therefore 

FIG. 2.4: surface energy (in eV/atom) as a function of the island size in Stillinger-

Weber silicon. The dashed line is the average over islands larger than 150 atoms. 

FIG. 2.5: E, the volumetric contribution to the energy released per atom, at 

5% strain as a function of the island size in Stillinger-Weber silicon. The 

dashed line is the average. 

(meV) E
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gives the strain energy prefactor E. Again, for small islands the continuum assumption 

does not apply. For larger islands, the volume energy is 50 meV/atom. This is within 10 

% of the elastic energy as given by continuum elasticity. This does not mean that the 

strain is entirely relieved in the island, a part of the energy released comes from the 

atoms in the substrate underneath the island that are also allowed to relax.  

Knowing the two parameters for Eq. (2.1), it is possible to plot Eq. (2.1) and 

simulation data on the same graph. This is done in Fig. 2.6, where the difference in 

energy between the feature and a flat film is shown as a function of feature size. The 

form of Eq. (2.1) provides a reasonable fit for the data. 

Critical sizes and energy barriers for 5 % compression can now be extrapolated when 

the reference state is taken to be the bulk energy. It is found that the barrier Ei
* ≈ 210 eV 

and the critical size i* ≈ 8 700 atoms. The order of magnitude of these critical sizes and 

energies seems to make it impossible to nucleate an island in a reasonable amount of 

time.  

FIG. 2.6: Energy as a function of island size. The filled diamonds and continuous 

lines are simulation results without strain and interpolation using Eq. (2.1) 

respectively. Open triangles and dotted lines are the same at 5 % compression. 
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c) Molecular dynamics simulations of pits 

Simulations show that pit energy obeys Eq. (2.1) as islands do but with slightly 

different values for the critical size and energy barrier. These values have been obtained 

by repeating the analysis in the previous section for pits. For the case where there is no 

mismatch, the continuum expression for the energy reduces to Ep = γ p2/3. So the plot of 

Ep p-2/3 as a function of pit size p should be constant and give the surface energy γ. 

Figure 2.7 is a plot of γ obtained from the simulations as a function of the pit size. The 

surface energy of a pit is constant for large enough pits with a value of 2.1 eV per atom, 

slightly higher than the surface energy of islands1. 

                                                 

1 This difference between islands and pits is most likely a curvature effect that will diminish at very 

large island/pit size. 

FIG. 2.7: surface energy (in eV/atom) as a function of pit size in Stillinger-

Weber silicon. The dashed line is the average over pits larger than 150 atoms. 
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The plot of 
p

EE 5%unstrained −
 as a function of the pit size p, as shown in Fig. 2.8, gives 

the strain energy prefactor E. As for islands, for sizes less than around 100 atoms the 

continuum assumption does not apply. And for large pits, the strain energy relieved by 

pits is slightly higher than that of islands, 90 meV/atom vs. 50 meV/atom. This is 

consistent with elastic calculations by Vanderbilt and Wickham (1991) who found that 

pits could relieve more elastic energy per unit volume than islands.  

Figure 2.9 shows the difference in energy between the pit and a flat film is shown as 

a function of pit size p from Eq. (2.1) and from simulation data. This gives an energy 

barrier Ep
* ≈ 160 eV and the critical size p* ≈ 3 500 atoms. These values are on the same 

order as those calculated for islands. 

d) Difficulties with the analogy to classical nucleation 

The values of the critical sizes and barrier energies found in the previous sections 

appear to preclude the nucleation of islands and pits, inconsistent with experimental 

results. It is therefore necessary to find an alternative nucleation model providing more 

reasonable critical size and barrier energy. 

(meV) E

FIG. 2.8: volume energy as a function of pit size in Stillinger-Weber 

silicon. The dashed line is the average over pits larger than 150 atoms. 
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FIG. 2.9: Energy as a function of pit size. The filled diamonds and continuous lines are 

simulation results without strain and interpolation using Eq. (2.1) respectively. Open 

triangles and dotted lines are the same at 5 % compression. 

This apparent discrepancy in the barrier energy and critical size arises due to the 

implicit assumption that there exists an equilibrium between the island or the pit and the 

bulk. However when the surface is held in contact with a reservoir, e.g. arsenic 

overpressure during the growth of arsenides, the underlying thermodynamics of the 

system must reflect the exchange of adatoms with this reservoir through the chemical 

potential of the adatoms µ. Τhe formation energy of an island is then expressed as 

 Vi = Ei – i µ. (2.7) 

In the case of III-V semiconductors the chemical potential of a group-III adatom in the 

presence of an arsenic overpressure – assuming an equilibrium between island, adatoms 

and vapor – can be expressed as [Tersoff et al. 1997] 

 ( )/mP/Pln kTEµ 0x += , (2.8) 
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where P is the pressure of the Asm vapor; P0 is a reference pressure, and Ex = 2.7 ± 0.6 

eV is the formation energy of GaAs when the arsenic is initially in the vapor and Ga is 

an adatom. 

The effective critical size for island nucleation icrit is determined by the maximum of 

Vi, 

 ( )3

*

crit µ1
ii
E+

= . (2.9) 

If µ is larger than E the effective critical size can be much lower than i*, which could 

account for the nucleation of islands on observable time scales. The critical size, icrit, 

given by Eq. (2.9) and i* are apparent in Fig. 2.7 which shows the energy of an island as 

a function of the island size. In Fig. 2.7, the continuous line does not take the chemical 

potential into account and the dotted line does. The parameters used to draw Fig. 2.10 

are slightly different from the ones found in the simulations to make the curves appear 

more clearly. Indeed the maximum of the dotted curve should occur at a value of i/i* so 

FIG. 2.10: Energy of an island as a function of the island size. 

The continuous line is for Ei, the dotted line is for Vi = Ei - iµ. 

Drawn with i* = 1000 atoms, E* = 100 eV and µ = 0.2 eV. 



 32

small that the dotted line would appear as a straight line from the origin. Although the 

value of µ is not known, µ can be expected to be larger than E since it involves the 

creation of bonds while E includes only the stretching of the bonds. The critical size as 

defined in Eq. (2.9) is then much smaller than i*. On its face this would mean that as 

soon as an island becomes a few atoms big, the system can decrease its energy by an 

adatom joining this island. But because the equations we use are all continuous, this 

result must be considered with care. Indeed for very small features finite size effects can 

be large enough to make the continuum picture inapplicable. All we can say is that the 

critical size is on the order of a few atoms, without being able to say more precisely how 

many. Also, these results for the energy barrier and the critical size were obtained using 

Stillinger-Weber potential which is only an approximate representation of silicon. The 

finite substrate used in simulations too may have an effect on the energies obtained. 

This result is closer to published experimental values of critical sizes [Venables et al. 

1984] than the thousands of atoms obtained from Stillinger-Weber and Eq. (2.1). This 

does not mean that this new picture contains all the physics necessary to explain island 

nucleation. It simply shows that the critical size and energy may not be very large if the 

local adatom density is not in equilibrium with the bulk crystal. One should also keep in 

mind that this is obtained using a continuum approximation. Any quantitative match 

between these numbers and experimental critical sizes is fortuitous, but these results 

seem to indicate that the system either produces these features through a non-nucleation 

process or the chemical potential (and hence the adatoms) plays a central role in 

determining island nucleation. We will explore the latter possibility.  
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As with islands the chemical potential must be taken into account. In the case of pits, 

bonds are broken, not created, when atoms leave a pit; Eq. (2.3) becomes 

 Vp = Ep + p µ. (2.10) 

This leads to an effective critical size of 

 ( )3

*

crit µ1
pp
E−

= . (2.11) 

Thus while the critical island size decreases when the chemical potential is taken into 

account the critical size for pit nucleation increases with the chemical potential. If µ is 

larger than E pits cannot nucleate as Eq. (2.11) has no solution. This difference in 

behavior between islands and pits can be seen by comparing Fig. 2.7 and 2.11. 

Nevertheless, pits are experimentally observed indicating that other factors come into 

play in the nucleation and growth of pits. In particular, this result does not take the 

adatom concentration and the related entropic effects into account. 

FIG. 2.11: Energy of a pit as a function of the feature size. 

The continuous line is for Ep, the dotted line is for Vp = Ep + 

pµ. Drawn with p* = 1000 atoms, E* = 100 eV and µ = 0.2 
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3) Rate equations for islands and pits 

a) Rate equations for islands 

A mean-field kinetic model will be developed for the nucleation of islands on a 

surface with a reservoir upon which the adatom concentration may vary. The purpose is 

to use the adatom density as a relevant local thermodynamic variable and characterize 

the growth of islands as a function of this parameter. 

In order to extend the picture of island and pit nucleation and growth beyond the 

near-equilibrium version presented above some simple kinetic models will be discussed 

that are often used to describe the nucleation process. These models, by explicitly 

including the adatom-island and adatom-pit kinetics capture some of the entropic 

contributions to the nucleation process that are ignored by only considering island and 

pit energetics. In these models the growth or decay of an island will result from the 

fluxes of atoms to and from the island as illustrated in Fig. 2.12. The first flux in Fig. 

2.12 is the flux of adatoms going from the surface to the island, the second is the flux of 

atoms leaving the island and going to the surface and the third flux is the direct 

impingement of atoms of the beam onto the island. 

  

FIG. 2.12: Fluxes from the film to an island (1), to the film (2) and from the beam (3). 

di(2)/dt 

di(3)/dt 

di(1)/dt 
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In a mean-field treatment of these processes applicable to a single supercritical 

hemispherical island, the expressions for the three fluxes are [Frankl and Venables 

1970, Venables 1973, Venables et al. 1984]:  

 






 −
=

kT
E

exp η σ D
dt

di i
Sch

(1)

 (2.12 a) 

 ( ) 






 +−
−−=

kT
µ∆EE

exp η-1  ν
dt

di i
i
Sch

(2)

 (2.12 b) 

 ( )2
i

(3)

r πF
dt

di
=  (2.12 c) 

The above expressions use the following definitions: i is the number of atoms in the 

island (atom), η is the density of adatoms (atom/site), ν is an attempt frequency (s-1), σ 

is a capture number (dimensionless), D is the diffusivity (sites/s), ri is the radius of the 

island (Å) and F is the deposition rate (atom/Å2/s). 

As the island is supercritical, the only barrier energy for an adatom to join the island 

— process 1 in Fig. 2.12 and Eq. (2.12 a) — is a local Schwoebel-like [Schwoebel 

1969] barrier ESch shown in Fig. 2.13. µ –∆Ei is the difference between the energy of an 

island of size i+1 and the energy of an island of size i plus one adatom.  

∆Vi 

ESch 

energy 

island film 

FIG. 2.13: ∆Vi and the Schwoebel barrier, ESch. 
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In the dilute limit (η << 1), the summation of the three terms above leads to:  

 2
i

ikT
E
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σ D
νη e σ D  

dt
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. (2.13) 

If we focus on η we see that this equation is affine and can be rewritten in the form:  

 
i

i

τ
ηη

dt
di −

=  (2.14 a) 

where 

 i
2
i

kT∆E
ei Fτ r  πe η

σD
νη i −=  (2.15) 

and 

 kTE
i

i
Sche σ D 1/τ −= . (2.16) 

ηe is the equilibrium adatom concentration in the absence of islands and pits  

 





−=

kT
µexpηe . (2.17) 

Previous reports [Johnson et al. 1997] indicated that at 590ºC and an arsenic 

overpressure of 10-6 torr the equilibrium adatom concentration on GaAs(001) in the 

absence of 3D features and of deposition flux, ηe, is close to 0.1 atom per site.  

We can notice that if the adatom density η is smaller than ηi, islands can decay (even 

islands which appear to be supercritical from a solely energetic analysis.) This 

phenomenon of islands existing only when the adatom density η is higher than ηi can be 

understood in analogy to the equilibrium between a gas and a condensed phase where 

the latter exists only when the pressure is higher than some saturation pressure Psat. If η 

is higher than ηi, the island can be in equilibrium with the sea of adatoms as will be seen 

now. 
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b) Equilibrium 

From the rate equations of the previous section we can calculate the equilibrium size 

of an island as a function of experimental conditions. For simplification we restrict 

ourselves to the case in which the flux of adatoms directly to the islands via the beam is 

negligible. At the equilibrium, given by 0
dt
di = , η = ηi and 

 ei ηln
σD
νlnkT∆Eηln ++=  (2.18) 

Using Eq. (2.5), the equilibrium can be written as 

 e
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This finally gives an expression for the supercritical island size in terms of the value of 

i* and the adatom density 

 
)ηη(ln

'  γi floor3

3
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−=  (2.20) 

where 

 
kT3
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and 
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e
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We can notice that 0  )ηηln( lim floor

ηη floor
=

→
 which implies that +∞=

→
crit

ηη
i lim

floor
. So ηfloor is 

the adatom concentration below which no stable island can exist (Fig. 2.14). 

c) Subcritical islands vs. supercritical islands 

Equations (2.12) is given for a supercritical island, that is when the island is at a 

lower energy than the surface. In this case there is an energy cost to leave the island but 

not to go to the island. For subcritical islands the opposite is true and, in the dilute limit 

and without deposition, Eqs. (2.12) become 

 
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Equation (2.14) becomes 

 
i

i

τ
ηη

dt
di −

=  (2.24) 

where 

FIG. 2.14: equilibrium size as a function of the adatom density. The 

vertical asymptote shows that no island can be stable if η < ηfloor 
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 kT∆E
ei

ie η
σD
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and 

 kT∆EkTE
i

i
i
Sch e e  σ D 1/τ −−= . (2.26) 

The rate equations used for the supercritical island — equations (2.14) — are almost the 

same as the ones for a subcritical island shown above. Moreover ηi is the same in both 

cases and only the time scale τ changes. 

d) Statistical thermodynamics 

The equilibrium island size calculated through rate equations in the previous sections, 

Eq. (2.15), can also be obtained using statistical thermodynamics. The two approaches 

should give the same results for the equilibrium. In this section we calculate the internal 

energy and the entropy of a system constituted by N – i adatoms and an island made of i 

atoms. From these it is possible to find the minimum of the free energy which gives an 

equilibrium value for the island size of the kind of equation (2.15) obtained from rate 

equations. 

The entropy of the island will be neglected compared to the one of the adatoms 

which, to a first approximation, is  

 ( )! aNa!
!Nlnk lnΩk S

0

0

−
==  (2.27) 

where Ω is the number of ways one can put a adatoms on N0 sites. We implicitly 

assume that the number of sites is independent of the size of the island, i.e. the surface 

of the island is small compared to the total surface (we are in the dilute limit N << N0). 

Using that N0, a and N0-a are large numbers and Stirling approximation, one obtains  
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The free energy of the system is then  
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At the equilibrium one has 
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which is of the same kind as equation (2.15) obtained from kinetics, however a term is 

different. The two equations are equivalent if Dσ/ν is 1. σ is qualitatively the number of 

sites around the island from which adatoms can hop to the island. ν is the frequency at 

which adatoms hop from the island. Both are proportional to the perimeter of the island, 

therefore the perimeter dependence cancels out and Dσ/ν is independent of the island 

size. The process of hopping from the island is diffusion-like; it will be thermally 

activated with an activation barrier that should be the same as that which controls the 

diffusivity. So the temperature dependence should cancel out and Dσ/ν be independent 

of T. Then Dσ/ν = 1 is possible. However, if σ also depends on diffusion on the surface 

through Bessel functions [Venables 1973], it is impossible for Dσ/ν to be equal to 1 as ν 

is purely local and does not depend on what happens on the surface. But in such a case 

the adatom concentration will not be homogeneous as required in steady-state and the 

statistical thermodynamics treatment does not apply.  

Using both kinetics and statistical thermodynamics we found that the equilibrium 

size of an island depends on the adatom concentration η. This size is small at high η and 
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increases as the adatom concentration decreases. The most striking feature of this result 

is that when η < ηfloor, no island can be stable. 

e) The case of pits 

Equations for the kinetics of pits can be derived from those for the island kinetics 

considering the pit as an island of vacancies as shown in Fig. 2.15, i.e. the density of 

adatoms η has been replaced by the density of advacancies 1- η. In what follows, we 

assume that Dσ/ν = 1. This leads to: 
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The above expressions use the following notations (equivalent to those for islands): p 

is the number of atoms in pit (atom), η is thre density of adatoms (atom/site), ν is an 

FIG. 2.15: a pit is shown as an island of 

vacancies (atoms are white, vacancies are gray). 
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attempt frequency (s-1), ESch is the Schwoebel barrier (eV), rp is the radius of the pit (Å) 

and F is the deposition rate (atom/Å2/s) 

The complete equation in the dilute limit (η <<1) is the sum of Eq. (2.31): 
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∆Ep, the difference in energy between a pit of size p and a pit of size p+1, can be 

approximated as the derivative of the energy with respect to p: 

 1/3p
p p 

3
2γ 

dp
dE

∆E −+−=≈ E . (2.33) 

Here, and in subsequent expressions, the elastic energy relieved per atom removed from 

a pit is labeled E instead of Epit to simplify the notation.  

In order to show the affine dependence on η, equation (2.32) can be rewritten as:  
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Neglecting direct impingement into the pit, the concentration of adatoms in equilibrium 

with a pit of size p, ηp, is determined by the chemical potential and the energetics of the 

pit  
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This equation is of the same form as equations (2.25) for islands. The equivalent of Eq. 

(2.20) for pits is 



 43

 
)ηη(ln

'  γp
ceil

3

3

crit
−=  (2.37) 

where ηceil is defined as 

 
kT
 exp ηη eceil
E= . (2.38) 

When η approaches ηceil, the critical size goes to infinity. Thus pits cannot nucleate or 

grow at adatom concentrations above ηceil. Similarly no islands can nucleate or grow 

below a minimal value of the adatom concentration, ηfloor. This dependence of the 

nucleation of islands and pits on the adatom concentration accounts for the rarity of 

homogeneously-nucleated pits. As long as η is above ηfloor and ηceil, only islands can 

nucleate. Once islands form, however, they can act as sinks of adatoms, lowering the 

adatom density and, in some cases, allowing pits to nucleate and grow. 

As in the case of islands, Eq. (2.37) can be obtained from statistical thermodynamics. 

The free energy is of the same form as for islands:  
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The equilibrium is given by 0
p

G p =
∂

∂
. Which again agrees with the results from 

kinetics. 

4) Island-induced inhomogeneities in adatom concentration 

Our observations of pits [Chokshi et al. 2000, 2002, Riposan et al. 2002, 2003] 

indicate that they often nucleate close to islands or even surrounded by islands. This 

section considers the effect of the proximity of islands on pit nucleation, particularly the 

case of two islands with separation much smaller than their radii. In this case the islands 
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are treated as two infinitely long parallel absorbing boundaries a distance 2 ℓ apart. The 

deposition rate F acts as a source of adatoms, and steps on the surface capture adatoms 

at a rate proportional to the difference between the local adatom concentration η and the 

equilibrium adatom concentration ηe. The proportionality constant 1/τ is an indication 

of the time it takes to incorporate adatoms into steps. Fick’s second law for this one-

dimensional problem is 

 F
τ
ηη
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η e
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∂
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∂
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where x is the position between the islands and D is the diffusivity. In steady state, the 

adatom concentration at position x, η(x), is given by 
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where DτL =  is a diffusion length, ηedge is the adatom concentration at the island 

edge and Fτηη e +=∞  is the adatom concentration in the absence of islands. All 

distances are expressed in terms of distance between two surface sites, areas are in 

number of surface sites. Figure 2.16 shows how η varies between two islands separated 

by 2 ℓ as a function of position as given by Eq. (2.41). The adatom concentration is 

minimum at the edge of the island where η = ηedge and reaches its maximum value 

midway between the islands, ηmid, which is given by  
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If ηceil < ηedge, the adatom concentration is greater than ηceil everywhere on the surface 

and pitting is precluded. When ηedge < ηceil < ηmid, pitting is localized near the islands. 
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When ηceil > ηmid, the adatom concentration is lower than ηceil everywhere between the 

islands and pit nucleation is delocalized. Finally when ηceil > η∞, the adatom 

concentration is lower than ηceil even in the absence of islands and pits can nucleate. 

Whether or not pits may nucleate thus depends on the value of ηedge, which can be 

derived by considering the conservation of mass on the surface. As expressed in the 

following balance equation, the material from the beam (left hand side) will be 

exchanged with steps (first term of the right hand side) or with islands (second and third 

terms of the right hand side) 

 outedgein- 

e Φ2η2νdx 
τ
ηη(x)

 2 F −+
−

−= ∫
l

l
l . (2.43) 

 

FIG. 2.16: The variation of the adatom concentration η between two islands separated 

by a distance 2ℓ, as a function of position, as given by equation (2.41). 
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Here, the product νin ηedge is the rate of attachment to the island per boundary site and 

Φout is the rate of detachment from the island per boundary site. Equations (2.41) and 

(2.43) determine the functional form of ηedge 
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The diffusivity D can be related to atomic phenomena through Einstein’s formula: D 

= ν0/4, where ν0 is the hop frequency associated with diffusion. The frequency for an 

adatom to attach to an island νin depends on the Schwoebel barrier at the island edge, 

ESch, such that /kTEexp νν Sch0in −= . Also, in steady state, the detachment rate from 

the islands outΦ  equals the detachment rate /kT∆E exp η ν iein . From these η edge can be 

rewritten 
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where /kTE-exp L 4Λ Sch= . 

5) The thermodynamics of pit nucleation in the presence of islands 

The results detailed in the previous two sections allow us to present a detailed picture 

of when pitting is thermodynamically favored subsequent to three-dimensional islanding 

for a particular material system under given growth conditions. When pit nucleation is 

thermodynamically allowed pits may only be thermodynamically possible in the vicinity 

of islands or they may arise anywhere between the islands. The question of the kinetics 

of pit nucleation will be set aside until the next section. 
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The first step is to determine whether pitting is possible for a given materials system 

under a given set of growth conditions and at a stage of growth characterized by a 

particular island-island separation. This is accomplished by comparing the adatom 

concentration above which pits cannot nucleate, ηceil, with the lowest adatom 

concentration on the surface that occurs next to the islands, ηedge. When ηedge is greater 

than ηceil pitting is precluded. From Eq. (2.38) and (2.45) this condition is equivalent to 
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The next step is to distinguish between instances in which pits can form at any 

arbitrary location between islands or only adjacent to the islands. When ηceil is greater 

than even the highest adatom concentration on the surface pitting is delocalized. Since 

the maximum adatom concentration is always smaller than η∞, pitting can occur 

irrespective of the presence of islands when η∞ is below ηceil. From Eq. (2.38) and our 

definition of η∞ this condition is equivalent to Fτ/ηe < eE/kT-1. Note that Fτ/ηe is the 

supersaturation, i.e. the relative increase of the adatom concentration due to deposition. 

When η∞ is higher than ηceil, islands in proximity to each other may still decrease the 

maximum adatom concentration in the region between them below ηceil. Using Eq. 

(2.42) and (2.45) the condition for delocalized pitting is then equivalent to  
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Thus when ηceil < η∞, the transition between delocalized and localized pitting depends 

on the distance between islands, ℓ.  

Figure 2.17 illustrates the transition from absence of pitting to localized and then 

delocalized pitting as a function of ηceil/η∞ and of ℓ/L. ηceil depends on the growth rate 

and η∞ on the mismatch and temperature. Therefore the x-axis of Fig. 2.17 depends on 

the material system under certain growth conditions, which will be defined as an 

“experimental regime”. The y-axis depends on the distance between two islands, i.e. the 

stage of growth. Assuming that islands have already nucleated, ℓ decreases as they 

approach each other due to further growth. In Fig. 2.17 the growth process subsequent 

to 3D islanding can be conceived as a downward-pointing vertical arrow indicative of 

∞η
η0

ceil 1 

no pitting 
delocalized 

pitting 
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FIG. 2.17: Transitions between no pitting, localized pitting and 

delocalized pitting as a function of both the ratio of the critical adatom 

concentration for pit formation to the adatom concentration on a 

nominally flat film, ηceil/η∞ and of the ratio of the island separation to the 

diffusion length, ℓ/L. Drawn for Λ = 1. The dashed lines are asymptotes. 
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the time evolution of the system due to the decrease of ℓ. Therefore, from Fig. 2.17 one 

can infer the morphological evolution for a given experimental regime. If ηceil is always 

greater than η∞ pitting is delocalized. This experimental regime will be called 

delocalized pitting, or “ID” for islands followed by delocalized pits. If ηceil is less than 

η∞ but greater than a second transition value, η0
ceil pitting is initially possible only near 

islands until the islands reach a critical separation. This is the adjacent pitting 

experimental regime which will be called “IA”. If ηceil is lower than η0
ceil pitting is 

precluded until islands are within a critical separation distance. Thus the systems with 

the lowest values of ηceil/η∞ are designated as exhibiting pits between islands and are 

denoted “IB”. 

Figure 2.18 shows these three experimental regimes as a function of E/kT, the elastic 

energy as compared to the thermal energy, and Fτ/ηe, the supersaturation. The transition 

between experimental regimes IB and IA corresponds to the transition between pitting 

in between islands and pitting adjacent to islands. If Λ is small, this transition is close to 

the IA-ID transition, the region of phase space associated with experimental regimes of 

type IA is small. If Λ is large on the other hand, Fτ/ηe must be much larger than E/kT; 

limiting the phase space of experimental regimes of type IB. Note that Fig. 2.18 

assumes that islands have already nucleated. This criterion will be relaxed when kinetic 

effects are taken into account to determine if islands nucleate prior to pits, if at all. 
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6) The kinetics of island and pit nucleation 

The previous section detailed the thermodynamics of pit nucleation. However, the 

epitaxial growth process occurs on experimentally-determined time scales. Pits will not 

be experimentally observed unless they nucleate on time scales that are comparable to 

or faster than this time. In order to predict the experimental observation of pits or lack 

thereof, it is necessary to incorporate the effect of kinetics into our theoretical analysis. 

The rate at which pits nucleate is proportional to the rate at which pits of critical size 

are generated. The statistics of pit populations on the surface ― in particular the number 

of pits of critical size ― can be obtained using the formalism introduced by Walton 

IA 
IB 

ID eη
Fτ  

kT/E
FIG. 2.18: Equilibrium phase diagram showing the domains of the 

experimental regimes where pits nucleate adjacent to islands (IA), pits 

nucleate between islands (IB) and pits are delocalized (ID) as a function 

of the ratio of the elastic energy to the thermal energy, E pit/kT, and of 

the supersaturation induced by the beam, Fτ/ηe. Drawn for Λ = 1. 
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(1962). Assuming detailed balance, an expression for the number of pits of size p can be 

derived 

 
1p

ekT
E-E
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where N1 is the number of pits of size 1 and E1 is the energy of a pit of size 1. The 

nucleation rate is proportional to the number of pits of critical size. Because 








 +−=
kT

µE exp N 1
1 , the rate at which pits nucleate is  

 







−=

ceil
2

3

0 ηηln 2
γ'exp η RR  (2.49) 

where 
kT 3

 γ2γ'
pit

=  and R0 is a rate constant related to the attempt frequency. The 

nucleation rate is high at low η/ηceil and decreases rapidly with increasing η/ηceil. The 

nucleation rate decreases when the surface energy increases and, for large values of γ’, 

only at low adatom concentrations can pits nucleate at a non-negligible rate. Moreover 

the maximum nucleation rate is lower at larger γ’. When η/ηceil is less than e-γ’, pcrit 

would be less than 1 and the model breaks down. 

The previous section showed that when islands are arbitrarily far apart experimental 

regimes of type ID show pitting regardless of the presence of islands whereas those of 

type IA can nucleate pits only adjacent to the islands. An experimental regime that is 

thermodynamically of type ID would appear to be kinetically of type IA if the 

probability for a pit to nucleate far from an island is small compared to the probability 

that it nucleate close to an island. Therefore the ratio of the nucleation rate close to the 

island to the nucleation rate far from the island will be used to kinetically discriminate 
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experimental regimes of types IA and ID. The pit nucleation rate given by Eq. (2.49) is 

highest at the islands, where the adatom concentration is the lowest, 
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and it is lowest at the mid-point between the islands, where η is the highest, 

 







−=

ceilmid
2

3

mid0mid ηηln 2
γ'exp η R R . (2.51) 

If the ratio of these two rates Redge / Rmid is high, pits nucleate primarily adjacent to the 

islands as in IA. If this ratio is close to one, pits can nucleate everywhere at almost the 

same rate and the experimental regime is kinetically of type ID. The kinetic IA-ID 

transition is therefore defined as Redge/Rmid much greater than one, which will be 100 for 

our purposes. 

While some experiments showing pits were described in the previous section, most 

systems do not exhibit any pitting. This implies that there is an important experimental 

regime for which pitting is precluded for any value of ℓ. In that case, the maximum 

nucleation rate on the surface which occurs next to the islands must be negligible 

regardless of island-island separation. The experimental regimes where pits are never 

observed to nucleate, i.e. where there are only islands, will be denoted as being of type 

“I0”. The adatom density at the island, ηedge, is at its lowest when ℓ = 0. The condition 

for the I0-IB transition can be found by setting ηedge to 







kT
∆Eexp η i

e in Eq. (2.50). 

In Eq. (2.50), Redge gives the nucleation rate in number of pits per site per second. To 

compare our predictions to experiments, it is more convenient to express this condition 

in number of pits per sample. The cut-off value is again arbitrary; experimental regimes 
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will be considered to be kinetically of type IB, in which pits nucleate only between 

islands, when fewer than 1 pit nucleates per minute per 100 µm2; this gives  

Redge (ℓ→∞)/R0 < 10-23 as a criterion. Experimental regimes are kinetically of type IA 

when pits can nucleate only close to islands when the latter are far apart. This 

corresponds to the condition that Redge (ℓ→∞)/R0 > 10-23 and Redge/Rmid > 102. 

Experimental regimes are kinetically of type ID when pits can nucleate everywhere even 

if islands are far apart. This corresponds to the condition that Redge/Rmid < 102. 

Experimental regimes are kinetically of type I0 when pits cannot nucleate even when 

islands are close together; it is defined as Redge (ℓ = 0)/R0 < 10-23. Figure 2.19 shows the 

kinetic phase diagram obtained from these conditions. The dashed lines represent the 

thermodynamics results for the IB-IA and IA-ID transitions from Fig. 2.18 for 

comparison. When the surface energy γ’ is small, the kinetic phase diagram is very close 

to that from thermodynamics. But when γ’ is larger, as in Fig. 2.19, the boundaries shift 

to higher values of E/kT. This is because when the surface energy is larger, the 

nucleation process is slower. Experimental regimes of type ID which dominated in Fig. 

2.18 may not exist at all on the observable time scale when γ’ is large and the 

discrepancy between thermodynamics and kinetics is most significant. Regimes of type 

I0 on the other hand, which have no analog when kinetics are not considered, account 

for most low-misfit material systems. 
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FIG. 2.19: Kinetic phase diagram showing the domains of experimental regimes where 

only islands nucleate (I0), pits nucleate adjacent to islands (IA), pits nucleate between 

islands (IB) and pits are delocalized (ID) as a function of the ratio of the elastic energy 

to the thermal energy, E pit/kT, and of the supersaturation induced by the beam Fτ/ηe. 

The dashed lines correspond to the thermodynamic results shown in Fig. 2.17. In this 

graph, we have assumed Λ = 1 and γ’ = 2. 

The four experimental regimes defined so far assume that islands have already 

nucleated. To account for the possible absence of island nucleation and the fact that pit 

may nucleate before islands, two more experimental regimes are added: “P” when pits 

nucleate before islands and “0” when both islands and pits are kinetically prevented. 

The nucleation rate of islands is similar to that of pits, Eq. (2.49), 
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If Risl/R0 > 10-23, islands can nucleate on a flat film. If Rpit/R0 > 10-23, pits can nucleate 

on a flat film. If both rates are small, then neither islands nor pits nucleate and the film 

remains planar, i.e. regime “0”. If both can nucleate, it is necessary to determine which 

one nucleates at a higher rate to discriminate between “I” and “P” regimes. To this end, 

their nucleation rates on a flat film at η = η∞ are compared. 

7) Discussion 

Experimental observations show a wide range of morphologies: planar films, islands 

alone, islands nucleation followed by pit nucleation, pits alone. Materials systems and 

experimental procedures also are very diverse; the mismatch, surface energy, 

temperature can all vary. This section discusses the effects of the changes of such 

parameters on the surface morphology. 

a) The effect of materials system  

Figure 2.20 shows the experimental regimes as a function of the surface and strain 

energies. The two diagrams are for two different values of the supersaturation, Fτ/ηe. At 

low mismatch and high surface energy, neither islands nor pits can nucleate and the film 

remains planar (regime 0). At the highest strain energies, pits can nucleate before 

islands (regime P). If both surface and strain energy are low, islands nucleate (regime I). 

There are four sub-regimes in regime I. At very low surface and strain energies only 

islands nucleate (regime I0). For higher strain energies, pits can nucleate but are limited 

to nucleation between islands (regime IB). For even higher strain energies, they nucleate 

adjacent to islands (regime IA) or pit nucleation is delocalized between the islands 

(regime ID). 
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FIG. 2.20: Domains of the various experimental regimes as a function of strain and 

surface energies, drawn assuming ηe = 0.1 and Λ = 1, for two different values of the 

supersaturation (a) Fτ/ηe = 0.02, (b) Fτ/ηe = 0.07. Two experimental systems are 

denoted for comparison, In0.27Ga0.73As/GaAs7-10 (♦) and InSb/InAs15 (□). Note: the 

geometry of pits is accounted for in the evaluation of the surface energy. 

These six experimental regimes exist at all supersaturations, but which regime 

dominates depends on the value of the supersaturation. Equation (2.11) predicts that low 
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adatom concentrations promote pit formation. As a result, at lower supersaturations, Fig. 

2.20(a) for instance, there are essentially two cases: either pits nucleate before islands or 

neither islands nor pits nucleate. At high supersaturations, Fig. 2.20(b), the islanding 

regions dominate regions where pits nucleate first. Previous sections have shown that a 

high adatom concentration promotes islands formation and prevents the formation of 

pits; Fig. 2.20 indeed shows that the islanding regions expand at high supersaturations, 

while pitting regions shrink. 

b) The effect of deposition rate and temperature  

In addition to studying pit nucleation for different strain and surface energies, we 

have examined the effect of parameters such as deposition rate and temperature for a 

single materials system. Figure 2.21 shows the predicted experimental regimes as a 

function of temperature and deposition flux for a film where E/kT = 0.13 and γ’ = 1.10. 
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ID  
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0 

T (ºC) 
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FIG. 2.21: Domains of the various experimental regimes as a 

function of temperature and deposition rate (in arbitrary units), 

assuming that at 500ºC, E/kT = 0.13, Λ = 1 and γ’ = 1.10. 
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The model predicts several different possible morphologies for a given set of growth 

conditions. For the lowest growth rates and temperatures, the film is predicted to remain 

planar, with neither islands nor pits able to nucleate on the surface. With increasing 

growth temperatures, pit nucleation alone is expected at low growth rates. As the growth 

rate increases, islands are expected to nucleate. However, the model invariably predicts 

that pitting occurs subsequent to islanding. As we will discuss in the next section, this is 

consistent with experimental observations in III-V systems.  

8) Comparison to experiments 

The predictions of the model agree well with experimental observations. However, an 

important caveat should be noted in that there exist significant uncertainties in the 

values of the materials parameters due to the lack of experimental data. The strain 

energy relieved by the pits, E, should depend on the pit geometry. The surface energy is 

not well known for all of the materials systems. In our model, the nucleation of pits 

depends on γ p2/3, the increase of energy due to the surface created when a pit nucleates 

and grows. This is the net change in surface energy of the pit minus that of a flat film. In 

the case of growth on (001) surfaces, this gives 

 (001)(001)pp
2/3 A  γ- A   γ p γ =  (2.53) 

where Ap is the surface area of the pit and A(001) is its basal area in the (001) plane. γp 

and γ(001) are the surface energies per unit area on the surface of the pit and (001) 

respectively. As surface energies for planes other than (001) are generally not known, 

we will assume that γp ≈ γ(001) in order to provide an estimate of γ. This gives  
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Here Ap / A(001) and A(001)/p2/3 come from the geometry of the pits, which are obtained 

from experimental observations. Analytical shape optimization has been studied for 

islands [e.g. Tersoff and Tromp 1993] but not for pits and is beyond the scope of this 

study. For the purposes of our analysis, we will use the empirically observed pit shapes 

to determine these factors. 

a) The effect of materials system  

At intermediate mismatch, there is a small region of phase space where pits can 

nucleate adjacent to islands, as shown in Fig. 2.20(a). Figure 2.22(a) shows a 20 

monolayers-thick In0.27Ga0.73As/GaAs film grown at T = 500ºC and F = 2.2 Å/s the 

surface of which is covered with islands. Next to the islands pits are also observed. 

These pits form over a large range of growth conditions, but only after a significant 

number of islands have nucleated [Chokshi et al. 2000, 2002, Riposan et al. 2002, 

2003]. For these growth conditions, E/kT ≈ 0.13, and the geometry of the pits indicates 

γ ≈ γ(001)/6. Using the value for γ(001) calculated by ab initio methods [Pelke et al. 1997, 

Moll et al. 1996], γ’ ≈ 1.9. Assuming that ηe = 0.1 and Λ = 1, this film is expected to 

reside in the type 0 region, where neither islands nor pits can nucleate and grow, very 

near the boundary of type IB, where pits may nucleate between islands, as shown by the 

diamond in Fig. 2.20(b). This small discrepancy may come from the uncertainty in the 

elastic and surface energies. It may also arise due to the fact that the stress 

inhomogeneities induced by the islands lead to a local increase in the strain at the island 

edge. In fact, finite element calculations show that the strain close to an island 

[Benabbas et al. 1999, Meixner et al. 2001] can be twice as high as the nominal 
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mismatch. This strain concentration at the island edge would increase E, pushing the 

system into regime IB. 

At higher mismatch the model predicts that pit nucleation may occur more readily, 

which has been observed experimentally. Figure 2.22(b) shows a 7 monolayers-thick 

InSb/InAs film grown at T = 400ºC and F ≈ 1.3 Å/s the surface of which is covered with 

large rectangular islands, with small pits visible between them [Seshadri et al. 2000, 

2002]. For these growth conditions, E/kT ≈ 1.35. Surface energies are not known for 
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FIG. 2.22: AFM images of (a) a 22 ML thick In.27Ga.73As film grown on 

GaAs at 500ºC and (b) a 7 ML thick InSb/InAs film grown at 400ºC. 
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InSb but we estimate that the value of γ’ for InSb/InAs is around 3.5 based upon the 

lower melting temperature of antimonides compared to arsenides. Thus, we predict that 

this film should reside in regime IA close to the IA-ID border, as denoted by the open 

square in Fig. 2.20(b), while experimentally the morphology is observed to be of type 

ID. This discrepancy is small considering the uncertainty on some of the parameters. 

Furthermore, the observed trend is correct, pitting is more favorable in InSb/InAs than 

in InGaAs/GaAs. 

   
The model predicts that material systems with a high mismatch are more likely to 

form pits as the driving force (elastic energy relaxation) is higher. However, a high 

mismatch also implies a very low critical thickness. Pitting may thus be prevented by 

the lack of material to support a pit [Jesson et al. 2000]. As the growth mode in these 

films is Stransky-Krastanov, denuding the substrate is not energetically favorable. For 

this reason, a system such as InAs/GaAs would not show any pitting in spite of its high 

misfit, because the critical thickness is on the order of 1 or 2 monolayers. InSb/InAs can 

support pit nucleation despite its high mismatch because the film and substrate differ in 

their group-V species. When the InAs substrate is exposed as a pit grows, the volatile 

arsenic atoms have a high probability of desorbing. Since the overpressure consists of 

Sb vapor, the layer is converted to InSb. This results in an effective wetting layer that is 

infinitely thick, thus allowing for unhampered pit nucleation and growth [Seshadri et al. 

2000, 2002]. 

b) The effect of deposition rate and temperature  

In addition to studying pit nucleation in different materials systems, we can also 

choose one materials system and study the effect of parameters such as deposition rate, 
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temperature and arsenic overpressure. Figure 2.23 shows the expected experimental 

regimes as a function of growth rate and deposition temperature for γ’ = 1.9 and E/kT = 

0.13, which are close to the nominal values for In0.27Ga0.73As/GaAs. For this set of 

parameters, planar films are expected at low growth rates over a typical range of growth 

temperatures. At higher growth rates the nucleation of pits between islands is observed 

at lower temperatures (IB), while pit nucleation adjacent to islands is seen at higher 
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FIG. 2.23: (a) Domains of the various experimental regimes as a function 

of temperature and growth rate in arbitrary units for γ’ = 1.9, E/kT = 

0.13, ηe = 0.1 and Λ = 1. AFM micrographs of In0.27Ga0.73As/GaAs grown 

at T = 505ºC and As overpressure = 12.10-6 torr at (b) F = 1.75 ML/s, h = 

15 ML and (c) F = 0.25 ML/s, h = 21 ML [Chokshi et al. 2002]. The arrow 

in (b) points to a pit that has nucleated inside a cluster of islands. 
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temperatures (IA). These predictions are consistent with experimental results for 

In0.27Ga0.73As/GaAs [Chokshi et al. 2000, 2002, Riposan et al. 2002, 2003]. Figures 

2.23(b) and (c) show a pair of atomic force micrographs of In0.27Ga0.73As/GaAs. The 

sample in Fig. 2.23(b) is 15 ML thick and was deposited at T = 505°C, F = 5 Å/s, and an 

As4 overpressure of 12x10-6 torr. The sample in Fig. 2.23(c) is 21 ML thick and was 

grown at T = 505°C, F = 0.7Å/s, and an As4 overpressure of 16x10-6 torr. For the high 

growth rate sample, pits are observed to nucleate between the islands. When the growth 

rate is decreased at the same temperature, pits are observed to nucleate adjacent to 

islands, consistent with the predictions of Fig. 2.23(a). 

Experimentally, it has also been reported that island and pit nucleation depends on 

the arsenic overpressure such that at high arsenic overpressure, island and pit nucleation 

is delayed [Chokshi et al. 2000, 2002, Riposan et al. 2002, 2003]. The arsenic 

overpressure is known to have an effect on the chemical potential µ, the surface energy 

and the diffusivity, however, the dependence of the diffusivity on As overpressure is not 

well established. It is therefore not possible to compare our model to experiments in 

terms of the effect of arsenic overpressure as changes in diffusivity cannot be taken into 

account with any precision. The fact that high arsenic overpressure delays island and pit 

nucleation suggests that changes in the diffusivity are the primary effect of arsenic 

overpressure. 

c) Summary 

This model agrees well with the observations in compound semiconductors, but pits 

have also been observed in SiGe systems. Jesson et al. for example observe cooperative 

nucleation of islands and pits in Si0.5Ge0.5 grown on Si(001) substrates at low 
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temperature and annealed for 5 min at a T = 590ºC [Jesson et al. 1996]. Our model 

predicts that for these conditions the film should remain planar, in apparent 

contradiction with the experimental results. However, in our theoretical treatment the 

assumption was made that pits and islands nucleate independently. Jesson suggested a 

cooperative nucleation mechanism, i.e. a simultaneous nucleation of an island-pit pair. 

Such a mechanism is not taken into account in our model. Gray et al. show that for Si1-

xGex grown on Si(001) at T = 550°C, F = 1Å/s and 25 % < x < 50 %, shallow pits are 

observed to nucleate prior to the nucleation of islands [Gray et al. 2001, 2002, 

Vandervelde et al. 2003]. In contrast, our model predicts that islands should nucleate 

prior to pit nucleation assuming a symmetry in the aspect ratio of these features. The 

observations of Gray et al. is consistent with a morphology that may arise as a result of 

a localized surface instability [Shanahan and Spencer 2002] as opposed to a nucleation 

event. In neither of these systems does our model predict the observed morphologies, 

suggesting that the mechanisms which dominate in SiGe systems are different from 

those in compound semiconductors. 

9) Morphological correlations in III-V thin films 

In regimes IA and IB, where pits nucleate is related to islands, the nucleate adjacent 

to islands and between islands respectively. The data analysis in this section 

characterizes the emergence of a length scale in experiments by analyzing surface 

correlations in AFM images.  

If we call h(r) the height of the film at a position r on the surface, then the 

correlation function C(r) is defined as 

 rrrrr ′+′′= ∫ d )h( )h(
A
1)C(

surface 
  (2.55) 
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where A is the surface area. For a given vector r, the height at r’ and r’ + r are 

compared. These points are “r apart” from each other. If both r’ and r’ + r are high or 

both r’ and r’ + r are low, they are correlated, in this case C is positive. If one is high 

and the other is low, they are anti-correlated (which is not synonymous with being 

uncorrelated), in this case C is negative. Plots of C will be referred to as correlation 

maps below. From AFM micrographs of In.27Ga.73As grown on GaAs(001) films, we 

250 nm 

(a) 

(b) 

FIG. 2.24: (a) AFM image and(b) correlation map of 

a 22 ML thick In.27Ga.73As/GaAs film grown at 

505ºC, As BEP = 7.9 10-6 torr. 
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can plot C(x, y) as a function of the position (x, y). For each (x, y) point, blue is 

negative and red is positive. Figure 2.24(b) gives an example of correlation map for an 

In.27Ga.73AsGaAs film. 

The correlation map in Fig. 2.24(b) shows a large correlated region at the center. This 

is a self-correlation which is indicative of the roughness of the film. Indeed at r = 0, 

 ∫ ′′=
surface 

2  d )(h
A
1)C( rr0   (2.56) 

which is the square of the RMS roughness. The four blue regions around it are 

anticorrelated: they correspond to island-pit pairs and therefore show the presence of 

pits next to or between islands or vice-versa. Around them, forming a diamond are eight 

red regions; they are island-island or pit-pit correlations. This correlation map clearly 

shows a number of patterns: along directions close to <110> (the axes of both pictures 

in Fig. 2.24), red and blue alternate. This ordering is visible up to about 100-200 nm. 

Fig. 2.24(b) is anisotropic, with patterns aligned along the <110> directions (axes of the 

graph.) This is related to the anisotropy of surface diffusion. 

Figure 2.25 shows AFM micrographs and correlation maps of 22 ML thick 

In.27Ga.73As/GaAs films grown at 505ºC for 3 different arsenic overpressures: 12x10-6 

torr (a), 10x10-6 torr (b) and 7.9x10-6 torr (c). At high arsenic overpressure, Fig. 2.25 (a), 

the micrograph shows only isolated decorrelated islands and, apart from the central 

maximum, the correlation map shows little contrast. At lower arsenic overpressure, Fig. 

2.25 (b), the micrograph shows a higher island density and some pits. Consistent with 

this, the correlation map shows more contrast and correlated and anticorrelated features 

alternate at a short scale. In the case of the lowest arsenic overpressure, Fig. 2.25 (c), the 

AFM picture shows closely packed islands and pits. In the correlation map, one can see 
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patterns appearing as already seen in Fig. 2.24: alternating correlated and anticorrelated 

features. The contrast is stronger than in (b) and the extent of the pattern is greater. The 

AFM images, Fig. 2.25 (b) and (c), show that features are more organized at lower 

arsenic overpressure. 

 

 

 

FIG. 2.25: AFM images and correlation maps of 22 ML thick In.27Ga.73As/GaAs films 

grown at 505ºC. As BEP = 12x10-6 torr (a), 10x10-6 torr (b), 7.9x10-6 torr (c). 
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The two small blue regions in the correlation map of figure 2.25 (a) come from the 

definition of the 0 height. The average height is taken as a reference. This can be 

problematic because when there are islands and no pits, the average height is above the 

height of the flat areas. Thus the light blue regions in the correlation map correspond to 

the absence of correlation: next to an island there is not another island. Further away, 

heights are uncorrelated leading to a constant value of the correlation function. 

Figure 2.26 shows linescans of the correlation maps of Fig. 2.25. It indicates how the 

surface changes as a function of arsenic overpressure. At low arsenic there is a deep 

minimum around 25-30 nm, indicative of pits, which is confirmed by the AFM 

FIG. 2.26: Linescans of the correlation maps of Fig. 2.25 showing 

the evolution of the surface of 22 ML thick In.27Ga.73As/GaAs 

films grown at 505ºC as a function of arsenic overpressure. The 

minimum around 30 nm is indicative of the presence of pits. 
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micrographs of Fig. 2.25. There is no such minimum for the sample grown at 12x10-6 

torr and we can see that indeed there are no pits in Fig. 2.25 (a). We predicted that the 

island-pit distance should be proportional to the diffusion length. Arsenic overpressure 

can change the diffusivity and thus the diffusion length, but this dependence is not well 

known quantitatively. If the diffusivity at lower arsenic is higher, then the island-pit 

distance at low arsenic should also be higher. It is not possible to say if this result 

supports or contradicts the model since no quantitative theory exists that relates 

diffusivity and arsenic overpressure.  

The comparison of this model with experiment shows qualitative agreement upon the 

role of E/kT, the ratio of the volume energy to kT. When E/kT is low pits nucleate only 

at high island density — Fig. 2.22(a) — whereas at higher E/kT pits can nucleate even 

far from islands — Fig. 2.22(b). The correlation function has then been used to study 

In.27Ga.73As/GaAs. The presence or absence of minima in the correlation maps agrees 

with the presence or absence of pits in the AFM micrographs.  

10) Summary 

We have studied the nucleation of islands and pits during heteroepitaxial growth of 

semiconductors. In this model pit nucleation arises from a near-equilibrium nucleation 

process where the adatom concentration plays a major role. Elastic calculations show 

that pits can relieve elastic energy more efficiently than islands. However their 

nucleation is sensitive to the adatom concentration and can be altogether prevented by a 

high adatom concentration. Also the inhomogeneity of the adatom concentration due to 

diffusion favors pit nucleation close to the islands where the adatom concentration is 

lower. We found that while energetic arguments indicate that pits should dominate, they 
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are typically kinetically prevented. Taking kinetics into account, we identified six 

experimental regimes depending on the growth rate and the elastic energy due to the 

misfit: pits can nucleate far from islands, adjacent to isolated islands, in between 

islands, or in the absence of islands. The film can also remain planar or islands alone 

can nucleate. There is reasonable agreement of the theory with experiments in III-V 

systems given the uncertainties in quantifying experimental parameters. Correlation 

functions show the emergence of ripple patterns due to the nucleation of pits close to 

islands. 
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 CHAPTER 3 — AN ATOMISTIC-CONTINUUM STUDY OF POINT DEFECTS 

IN SILICON 

1) Introduction 

Accurate modeling of coupled stress-diffusion problems requires that the effect of 

stress on the diffusivity and chemical potential of defects and dopants be quantified. 

Although the aggregate effects of stress on diffusion are readily observable, it is 

difficult to experimentally measure stress-induced changes in diffusivity and chemical 

potential. Despite these difficulties a number of careful measurements have been made 

regarding the effect of stress on diffusivities in model semiconductor systems [Zhao et 

al. 1999A, Zhao et al. 1999B], and the formation energies of vacancies have been 

measured in metals [Simmons and Balluffy 1960]. Due to the experimental challenges, 

an extensive literature has emerged regarding the numerical calculation of the formation 

energies of these defects using atomistic simulation [Antonelli et al. 1998, Antonelli and 

Bernholc 1989, Puska et al. 1998, Zywietz et al. 1998, Song et al. 1993, Tang et al. 

1997]. Although early work used empirical potentials, more recent work has focused on 

the application of tight-binding and ab initio methods which are more accurate in 

modeling the alterations in bonding that occur at the defect. These calculations have 

been limited to a few hundred atoms due to the computational requirements of these 

methods.  

This chapter addresses a number of unresolved issues in the application of atomistic 

simulations to accurately extract formation volumes and stress fields of point defects. In 

order to illustrate the methods that can be used to calculate the appropriate 

thermodynamic and elastic parameters from atomistic data we have performed an 
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extensive set of calculations regarding a simple model point-defect, a vacancy in the 

Stillinger Weber [Stillinger and Weber 1985] model of silicon. An empirical model of 

silicon bonding was employed because it allows to explore a much larger range of 

system sizes than would have been possible using a more accurate model. Using an 

empirical potential precludes a quantitatively accurate measure of, for example, the 

formation volume of a vacancy in silicon since this model does not properly model the 

change in bonding that occurs at the vacancy. However the larger system sizes 

accessible via such a method are necessary to demonstrate a new technique for 

accurately calculating the prediction that does arise from the Stillinger Weber model of 

silicon and, by extension, in other atomistic potentials. This is critical since our goal is 

to make firm connections between the atomistic data and continuum concepts that, as 

we shall demonstrate, are not yet convergent on the scale of current ab initio 

calculations. This work paves the way for a multiscale modeling technique in which ab 

intio, atomistic and continuum concepts are used together to extract such quantities with 

predictive accuracy. 

2) Formation volume 

Chapter 1 introduced the free energy of activation which quantifies the effect of an 

external stress on the formation and migration of a defect in a crystal. This section 

focuses on the formation energy which is a part of the activation energy. The formation 

free energy determines the number of defects in the crystal. It comes from a change in 

internal energy Ef, a change in entropy Sf (usually small) and a work term,  

 ext
ffffff WTSE:TSEG −−=−−= Vσ , (3.1) 
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where Vf is a tensor describing the change in volume and shape of the system and Wext 

is the work done by σ on the system. The derivative of the free energy with respect to 

the externally applied stress provides the fundamental definition of this volume term.  

Equation (3.1) shows that the free energy depends on the pressure through the work. 

However it may also be indirectly pressure-dependent if the internal energy depends on 

the pressure. The internal energy of formation can be split into two parts, an elastic part, 

Ef
LE, accounting for the elastic energy related to the crystal relaxation around the 

vacancy and a core energy, Ef
core, arising from broken bonds.  

 ff
core

f
LE

f :EEH Vσ−+=  (3.2) 

While the elastic part can be treated using linear elasticity, the core energy part must be 

treated atomistically. In linear elasticity, there is no interaction between internal and 

external stresses [Eshelby 1961] therefore ELE does not depend on σ. The core energy 

comes from the broken bonds and is therefore expected to be independent of the 

pressure. Therefore the only dependence of H upon σ is from the σV term. 

The formation volume is the change of volume of a system upon introduction of a 

defect. Let system 1 be a perfect crystal under some external stress σ and system 2 the 

same crystal under the same external stress σ to which a defect was added. The 

formation volume Vf is the difference of volumes of the two systems. Similarly Ef is the 

difference in internal energy between the two systems. The external stress contributes to 

the internal energy through the elastic energy Ef
LE, but since these two systems are 

under the same stress these contributions cancel out.  

As described in chapter 1, the stress dependence of the formation of defects is of 

technological importance. This dependence is captured by the formation volume. If, for 
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a given defect, Vf is 0 the concentration of this defect does not depend on the external 

stress. If a defect A has a positive formation volume and a defect B has a negative 

formation volume, under compression, the number of B defects increases and the 

number of A defects decreases. Under tension the number of A defects increases and the 

number of B defects decreases. If part of a film or of a device is under tension and 

another part is compressive, a segregation of species A and B can result. Therefore the 

behavior of the dopants/defects under stress depends upon the sign and magnitude of Vf. 

Although the origin of the formation volume is atomistic in nature, a formulation in 

the context of continuum elasticity has also been adapted to interpret Vf in terms of an 

internal transformation of the material. This picture assumes the existence of a 

continuum defect that has a reference state independent of the surrounding crystal. 

Figure 3.1 shows the theoretical construction that would create such an “Eshelby 

inclusion” [Eshelby 1961]: material is removed from a continuous medium, the removed 

material undergoes a transformation described by a tensor Vt, then it is reinserted into 

(1) 

(2) 

(3) 

FIG. 3.1: Vacancy as an Eshelby inclusion. Part of the medium is removed (1). 

Its volume is decreased by Vt (2). It is reinserted into the medium (3). 
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the medium. Upon reinsertion into the medium there will be elastic distortions both of 

the inclusion and of the crystal around it. It is worth noting that the change in volume 

(and potentially of shape) described by Vt is the change in shape and volume of the 

inclusion when not interacting elastically with the surrounding material. Thus Vt is not 

equal to the distortion of the inclusion because this distortion is affected by the elasticity 

of the medium. If the volume of the part of the medium which is removed decreases in 

step 2, upon reinsertion it will make the medium shrink. It is therefore called a center of 

contraction. If an external stress is applied, there will be an interaction between the 

center of contraction and the crystal.  

The tensor, Vt, is calculated by assuming a homogeneous strain over the transformed 

material, and multiplying this strain by the initial, scalar volume of this region. When a 

vacancy is to be represented by this continuum analogue, the scalar volume is often 

assumed to be the atomic volume, Ω. In this interpretation the external work is exactly 

balanced by the work done to transform the inclusion against the external stress, σ, and 

can be shown to result in an external work Wext = σ : Vt. When evaluated at the 

boundary the strain field results in the change in volume and shape, Vt, that must be 

equivalent to Vf to be consistent with the thermodynamic formulation. However, the 

arguments leading to Wext = σ : Vt are meaningful only within continuum elasticity 

[Eshelby 1961], a theory that loses validity in the neighborhood of the defect. While the 

interpretation of Vt as a continuum transformation is not physically relevant for a point 

defect, this transformation can be used to calculate the elastic strain and stress fields in 

the vicinity of the transformation if Vf is known. 
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It is possible to extend the Eshelby inclusion model to point defects such as 

vacancies by shrinking the inclusion to a point. The elastic field of a vacancy is then 

modeled using a force dipole. This dipole is similar to an electric dipole. It is composed 

of forces an infinitesimally small distance apart. Since forces can act in any direction 

and be separated by a displacement in any direction the dipole is most generally 

represented by a tensor. This model can work even for a defect with an anisotropic 

stress field. When the dipole is proportional to the identity matrix it represents an 

isotropic center of contraction or expansion. 

If three force pairs f1, f2 and f3 are applied at three points d1, d2 and d3 away from the 

vacancy (Fig. 3.2), the dipole is defined as [de Graeve 2002] 

 ∑ ⊗=
i

dfD ii . (3.3) 

These three vectors do not have to be orthogonal, they only have to be a basis of 3D 

space. Far away, when r >> d, the force field is  

 ( ) ( )[ ]rDrF r δ.∇−= . (3.4) 

For the sake of simplicity, the origin of r is taken to be at the defect. The analytical form 

of Eq. (3.4) ensures that the sum of forces is 0. The sum of moments is 

 ( ) ( ) ( ) ( ) 312212311312332 DDDDDD e e e rFr −+−+−=×∫  (3.5) 

d1 
d2 

d3 

f3 

-f3 

-f1 

f1 

f2 

-f2 

FIG. 3.2: Dipole representation of the point defect. 
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where Dij is the (i, j) component of the tensor D and (ei) are unit vectors. Equilibrium 

requires that Eq. (3.5) be equal to 0 and thus that D be symmetric. The eigenvalues of a 

symmetric matrix are real and its eigenvectors can be chosen to be orthonormal. The 

dipole tensor can thus be written as 

 1-

33

22

11
1- . 

d f00
0d f0
00d f

 ... RRRDRD


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











′′
′′

′′
=′=  (3.6) 

where R is a rotation matrix. 

Having characterized the force distribution associated with the defect the 

displacement field can be derived from the elastic solution in a generalized elastic 

medium. The most general derivation of this kind is to compose the solution from the 

Green’s function that satisfies the equation 

 0)δ( δ
xx

)(GC im
ij

km
2

ijkl =+
∂∂

∂ rr . (3.7) 

Here Cijkl is the elastic modulus tensor of the solid and Gkm is the tensorial elastic 

Green’s function. Once the Green’s function is derived from Eq. (3.7), the displacement 

field can be expressed  

 ( ) ( )[ ]DrGru r .∇−= . (3.8) 

The resulting solution can be calculated from the expression [Barnett 1972, de Graeve 

2002] 

 ( ) ( ) ( )[ ]∫ +−=
  π

0 

1-
22

dψ ....
4π

1 zDJTDM
r

ru . (3.9) 

Here M-1 is the inverse of the matrix M, where M is defined by 

 ( ) sjijrsir z z CM =z , (3.10) 
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r̂  is given by 

 
r
rr =ˆ , (3.11) 

J is such that2 

 ( )pnnp
-1
j

-1
iknkpij r̂zr̂zM M CJ += ll  (3.12) 

and z is 
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where θ and ϕ are the polar and azimuthal angles of r. The strain is 

( ) ( ) ( ) ( )[ ]∫ ⊗+⊗+⊗−⊗=
  π

0 

sss1-
32
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4π
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rε  

 (3.14) 

where the “s” stands for symmetric, i.e. 

 
2

t
s AAA +=  (3.15) 

If the medium is isotropic, Eq. (3.9) can be written in a closed form [Hirth and Lothe 

1982]  

 ( ) 2
11C 4π

ˆ.
r

rDru −=  (3.16) 

and the strains are 
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2 J is used here instead of F (notation used by Barnett) to avoid confusion with forces. 
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and 
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The stresses then are 
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and 
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As we assume isotropy, 
2

CC 1211 −  is equal to C44. So (keeping in mind that C44 actually 

means “isotropic C44”, i.e. 
2

CC 1211 − ), we can write 
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and 
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The radial force on an area A a distance r from the defect is then 

 ( )
3
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rrD==  (3.23) 

where A is the surface of the atom on which the force applies.  

A priori, the dipole may not be enough to represent any point defect and higher order 

terms, such as a quadrupole, may be necessary. However, results for the vacancy show 

that the dipole is a good description of this point defect. It is possible that more 
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complicated defects or clusters require a quadrupole term. In any case, the contribution 

of higher order terms to the stress field should die off faster than the dipole and may be 

noticeable only close to the defect. 

3) Calculating the formation volume 

a) Change of volume of the simulation cell 

The most common method used to extract the formation volumes of defects has been 

the direct measurement of the change in volume of the relaxed supercell upon the 

introduction of the defect [Zhao et al. 1999A, Zhao et al. 1999B]. This is a rigorously 

correct method of calculating the formation volume given two assumptions: that the 

core energy is not pressure dependent and that the supercell size is sufficiently large 

such that defect-defect interactions have a negligible effect on the elastic relaxation of 

the cell. The former is typically a good assumption. The latter, as we will demonstrate 

below, is not a good assumption for the small supercell sizes typically simulated by ab 

initio calculation. In addition, another problem arises when this method is employed for 

large supercells. There is a practical numerical limit on the accuracy with which 

displacements can be calculated using, for example, conjugate gradient minimization. 

We will denote this uncertainty in calculating the displacement of the atoms at the 

surface of the supercell by the standard deviation of the measurement δr. The net 

uncertainty in the measurement of the surface displacement is that of an average taken 

over (V/Ω)2/3 surface atoms where V is the volume of the cell and Ω is the atomic 

volume. This quantity will have a smaller uncertainty given by the standard error, 

δr/(V/Ω)1/3. The resulting uncertainty in the formation volume measurement is found by 

multiplying this uncertainty by the surface area and, therefore, must be proportional to 
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δr (VΩ)1/3. Thus the uncertainty in the formation volume measurement is proportional to 

the size (linear dimension) of the super cell. As a consequence any attempt to use this 

method to measure the formation volume encounters an accuracy limit both at small 

scales due to defect-defect interactions across periodic images and at large scales 

because measuring increasingly small displacements over increasingly large surface 

areas requires increasingly accurate displacement measurements. 

b) Obtaining the dipole from positions and forces 

Although the above elastic analysis provides a means to calculate the displacement 

and stress fields around a defect of elastic dipole D, it does not provide a means to 

extract this dipole value. The dipole value can however be extracted from the forces on 

the atoms surrounding the defect. In an isotropic medium, the radial force expected on 

atom n from the dipole is 

 4n

n

11

44nn

π

 .
C
CA

r

r DF =′  (3.24) 

where rn is the position of atom n relative to the center of the defect. This provides the 

forces as a function of the dipole. In fact the dipole is unknown and the forces can be 

obtained form atomistics. Equation (3.24) must be somehow inverted to have the dipole 

as a function of the forces. We define the vector ∆n as the difference between the actual 

force on atom n, Fn (obtained from atomistic simulations) and the radial force expected 

from the dipole in an isotropic medium, F’n, 
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We then define the scalar ∆ by  
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If the representation of a vacancy (as a center of contraction) in elasticity and its 

atomistic counterpart were in perfect correspondence, ∆ would be 0. But since D has 6 

components, while there are 3n forces and 3n positions it is not generally possible to 

find a D that satisfies the condition ∆ = 0. We therefore pick the tensor D which 

minimizes ∆2. To this end, we calculate the derivatives of ∆2 with respect to the 

components of D  
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This gives 
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Letting 
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Eq. (3.28) can be rewritten as [de Graeve 2002] 

 D = X.Y-1. (3.31) 
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Equation (3.31) provides a means to calculate the value of the dipole using the 

positions of and the forces on the atoms from atomistics. It is a closed form solution for 

a generalized defect in an isotropic medium. We will take the sum in Eqs. (3.29) and 

(3.30) to be over atoms on a cubic shell, as shown in Fig. 3.3. 

From Eqs. (3.29) and (3.30) the forces on atoms are needed to calculate the dipole. 

However, at equilibrium the net force on any atom is zero. Figure 3.4 shows, in black, 

an atom belonging to the shell. If all atoms within the shell (white atoms) were removed 

the only force remaining would be the force from the atoms outside the shell (gray 

FIG. 3.3: Cubic shells used to 

calculate the dipole. 

vacancy 

FIG. 3.4: Force on an atom belonging to the shell (black 

atom) from the atoms outside the shell (gray atoms) and 

“force from the vacancy” (wide arrow). 
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atoms). For the black atom to be at equilibrium, the traction due to atoms inside the 

shell (wide arrow) must cancel out the traction from the atoms outside the shell. Thus 

the traction across the surface of the shell due to the vacancy is negative the force on 

this atom from atoms outside the shell. 

c) Simulation techniques 

So far an expression was obtained for the dipole as a function of positions and forces 

extracted from atomic simulations. The question of the choice of the technique to use in 

atomic simulations to obtain forces remains. We now introduce several atomic 

simulation techniques and compare their strengths and weaknesses. 

The families of representations of materials are ab initio, tight-binding and empirical 

potentials. In ab initio simulations, the Schrödinger equation is solved (under some 

assumptions) [Kohn and Sham 1965, Kohn 1999].  These calculations are intrinsically 

quantum mechanical, which makes them very accurate. However they are 

computationally intensive which prevents the simulation of large systems. Empirical 

potentials eliminate the electronic degrees of freedom. The force from one atom on 

another atom is calculated as a function of their separation distance and the location of 

surrounding atoms. The expression for this potential is not theoretically derived but 

some insight from quantum mechanics may be used in motivating these expressions. 

Empirical potentials have parameters which are fitted to the established properties of the 

material of interest (known experimentally or from ab initio calculations). As a result, 

while the lattice parameters and cohesive energies are outputs of ab initio calculations, 

they are inputs for empirical potentials. Empirical potentials can be considered to be 

mostly interpolations between known properties of the material in question (relative 
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energies of crystal structures, elastic properties, etc.) Therefore predictions which rely 

on aspects of the potential far from the fitting regime are not quantitatively reliable. 

Tight-binding [Slater and Koster 1954, Goodwin et al. 1989] is another simulation 

technique, it uses a very simplified quantum mechanical description of the atoms. This 

makes these simulations simpler to implement, less computationally-intensive but also 

less accurate than ab initio calculations. Their relative simplicity also allows for larger 

systems than ab initio. Therefore, both in terms of system size and of accuracy, tight-

binding (TB) is intermediate between empirical potentials and ab initio. 

Stillinger and Weber [Stillinger and Weber 1985] designed an empirical potential to 

study the melting of silicon. Due to the covalent nature of silicon bonds, a mere two-

body term does not suffice because the energy would then be proportional to the number 

of bonds which would drive the system to a close-packed structure. Stillinger Weber 

(SW) potential uses both two-body and three body terms: 

 ∑∑
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The first summation is over pairs of atoms and the second is over triples. For a given 

pair of atoms, the two-body term depends only on the distance r between the atoms, 

 







−










−






=

−

aσ/r
1exp 1

σ
rBA ε(r)v

4

2  (3.33) 

where ε, A, B and σ are positive constants. The exponential term drives v2 to 0 when r/σ 

approaches the constant a from below. σa is therefore a cut-off distance. Equation (3.33) 

applies when r/σ < a and v2 is set to 0 when r/σ > a. The value of a is chosen such that 

the cut-off occurs between first and second nearest neighbors, as a consequence there is 

no two-body interaction between second nearest neighbors. Whereas, physically, atoms 
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further apart contribute to the energy limiting two-body interactions to first nearest-

neighbors simplifies the relationship between the model parameters and many properties 

such as lattice parameters and bond lengths for various crystal structures, elastic 

constants. This greatly simplifies the routine to optimize the parameters.  

The three-body term models aspects of the sp3 bonding that cannot be adequately 

described by two-body interactions. In this term the energy depends both on distances 

and angles, as shown in Fig. 3.5, 
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and λ and γ are positive constants. Again the exponential plays the role of a cut-off and 

h is zero when r1 or r2 is greater than σa. Notice that in the case of a perfect diamond 

cubic crystal, cos θ = -1/3 due to the tetrahedral symmetry and the three-body terms do 

not contribute to the energy. 
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FIG. 3.5: The two-body terms only depend on the 

interatomic distance while the three-body terms also 

account for the angle between the bonds. 
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Table 3.1: Formation energy of a vacancy and displacement of the first nearest 

neighbors from experiment, ab initio, tight binding, Stillinger Weber and other 

empirical potentials. *: there exist a few reports of Td symmetry. 

When an atom is removed to form a vacancy, its first nearest-neighbors can relax 

(generally inward). Different simulation techniques predict different amounts of 

relaxation and different formation energy. Table 3.1 shows the range of formation 

energy of a vacancy and of the radial component of the displacement of the first nearest 

neighbors from experiment, ab initio, tight binding, Stillinger Weber and other 

empirical potentials. Space group Td corresponds to a radial displacement of the first 

nearest-neighbors while in D2d there is a pairing of nearest-neighbors which form two 

dimers with the distance between the two atoms of a dimer smaller than the distance 

from atoms of the other dimer. The formation energy obtained by ab initio calculations 

is not very wide-ranged and is consistent with experimental results. The displacement of 

technique references space 

group 

energy (eV) displacement (Å)

experiment Watkins 1964; Dannefaer 

1986 

 3.6 ± 0.2  

ab initio Antonelli 1989, 1998; Puska 

1998; Zywietz 1998 

D2d
* 3.3 → 3.65  -0.48 → -0.22  

tight binding Song 1993; Tang 1997 D2d 3.97 → 5.24  -0.50 → -0.42  

SW Stillinger and Weber 1985 Td 2.82  - 0.56  

other 

potentials 

Balamane 1992 Td 2.82 → 3.70  -0.51 → +0.24  
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the first nearest neighbors, on the other hand, can vary greatly (by a factor of two.) In ab 

initio simulations for instance it varies between -0.48 Å and -0.22 Å. Pushka and 

coworkers also found the symmetry to be either D2d or Td depending on the size of their 

system [Pushka et al. 1998]. This indicates that energy converges faster than geometry 

and that geometric data, such as formation volumes, cannot be obtained with small 

systems. According to empirical potentials, the first nearest neighbors may move 

inwards or outwards. These simulations are the least reliable because the potential are 

fitted to perfect crystals and therefore poorly model the changes in bonding near a 

defect. 

Any technique, be it experimental or computational, has limitations. It is therefore 

not always possible to use only one technique. Simulation techniques can be limited in 

two ways: accuracy and computational cost. The most accurate techniques being the 

most computationally intensive, they are limited to small systems. Computationally less 

intensive techniques on the other hand are not efficient far from equilibrium, in 

particular where the lattice is distorted (defects, surfaces.) Multiscale modeling of 

materials aims to bring two (or more) different techniques together, each providing its 

specific strength(s) and compensating for the weakness(es) of the other technique. One 

possibility is to use several techniques within the same simulation: ab initio is used 

where accuracy is needed and an empirical potential is used where structural changes 

are not expected to occur. This provides a means to increase the system size without 

increasing the computational cost significantly. A slightly different kind of simulation 

uses atomistics close to a singularity (crack tip, defect, indenter) and continuum 

mechanics for the rest of the system [Shilkrot et al. 2002].   
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4) Results 

a) Atomistic results 

The dipole tensor, D, gives the magnitude and anisotropy of the center of contraction 

and cannot be obtained by elasticity, but must be determined by the microscopic 

structure of the point defect. A number of different techniques have been used to 

characterize the relaxation around a point defect. One typical method is to note the 

relaxation of the nearest neighbor atoms. However this method is not effective for 

describing the asymptotic elastic relaxation in the vicinity of the defect, which is 

important for accurately calculating the relaxation volume, i.e. the quantity necessary to 

predict the thermodynamic response of the defect to stress. We detail here a systematic 

method for extracting the relaxation around the vacancy. One method to obtain D would 

be to fit the displacement curve as a whole to the asymptotic elastic solution. While this 

is feasible it is not an efficient way to proceed and involves fitting the curve in regions 

close to the defect and close to the periodic boundary where the solution in an infinite 

medium  cannot be expected to apply. Rather we obtain D from Eq. (3.31), i.e. we find 

the value of the dipole that provides a best fit to the forces obtained form atomistics. 

b) Isotropy of the vacancy in silicon 

Equations (3.9) to (3.31) make no assumptions as to the isotropy of the dipole 

although (3.16) to (3.31) do assume an isotropic elastic medium. Equilibrium only 

requires that the tensor be symmetric to ensure that there is no net moment. However, 

conjugate gradient (CG) calculations show that the actual dipole of a vacancy, as may 

be expected, is nearly isotropic. Figure 3.6(a) shows the ratio of off-diagonal term of D 

to diagonal terms of D. Far from both the vacancy and the boundaries the dipole is very 
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close to being diagonal. At any shell the non-diagonal terms are never more than a few 

percent of the diagonal terms. Figure 3.6(b) shows the standard deviation for the 

diagonal terms of D normalized by the trace of D as a function of the shell where D is 

calculated. When D is calculated far from the vacancy the standard deviation is less than 

(a) 

(b) 

FIG. 3.6: The ratio of off-diagonal terms of D to diagonal terms (a) 

and the standard deviation for the diagonal terms of D (b) as a 

function of the shell where D is calculated. Plotted for 512, 1 728, 

4 096, 8 000, 13 824 and 32 768 atoms. 



 91

0.1 % of the trace and the three diagonal terms are essentially equal. Thus for shells far 

enough from the vacancy, the dipole is nearly proportional to the identity tensor. An 

example of such a tensor (in eV) is 
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Therefore, we can write the dipole as 

 ID  D=  (3.37) 

where D is a scalar and I is the identity tensor. In what follows, when we refer to the 

dipole, we will be referring to the scalar D.   

c) Displacement field and formation volume 

Once extracted the value of the dipole can be used to calculate the formation volume. 

The simplest case to calculate is an isotropic elastic sphere of radius R, where the radial 

displacement is given by the expression: 
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While the first term arises directly from the asymptotic elastic field from Eq. (3.16), the 

second term is imposed by the free boundary at R. From Eq. (3.38) it follows that the 

measured formation volume is related directly to the displacement at the outer boundary 

 ( )
1211

r
2f

2CC
3DRu R 4πV
+

== . (3.39) 

Note that Vf is independent of R. For a large system, where continuum elasticity applies, 

the formation volume is independent of the size of the system. Since a large cube should 
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not be different from a large sphere, Eq. (3.39) is expected to hold for any isotropic 

system where finite size effects can be neglected, independent of geometry. 

The dipole values that were obtained from a series of conjugate gradient calculations 

using the Stillinger-Weber model ranging in size from 512 atoms to 32 768 atoms. The 

value of D was calculated on concentric shells around the defect. The shell of first 

nearest neighbors of the vacancy is not used: since there is nothing strictly inside this 

shell, the external force is 0 at equilibrium. Shells too close to the vacancy show 

evidence of discreteness effects. This is to be expected since continuum elasticity does 

not apply down to the atomic scale. Ten samples were used for each system size except 

the larger ones since they were more computationally-intensive. In some cases the 

simulations converge to distinct vacancy structures with different formation energies, 

different formation volumes and different dipole values. Figure 3.7 shows the value of 

the dipole as a function of the shell where it is calculated for 30 samples made of 4 096 

atoms. There are two kinds of curves corresponding to two structures of the vacancy. 

FIG. 3.7: Dipole values as a function of the cubic shell at which 

the force data is extracted for 30 samples made of 4 096 atoms. 
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Within each structure there exists some variation of the properties. Only simulations 

leading to the lowest energy structure were considered to plot the figures (other than 

Fig. 3.7) in this chapter. In all figures bearing error bars, the error bars are sample-to-

sample variations among the samples of the lowest-energy structure. Therefore they do 

not account for systematic errors due to system size effects. Table 3.2 shows the number 

of lowest energy samples obtained for each system size. 

Figure 3.8(a) shows the dipole values as a function of the shell at which it is 

calculated. Figure 3.8(b) shows the dipole as a function of the shell over shellmax, where 

shellmax is half the vacancy-vacancy distance. Thus shell/shellmax varies between 0 at the 

vacancy and 1 at the boundary of the simulation cell. The fact, shown in Fig. 3.8(b), that 

the curves for different systems sizes are close together far from the vacancy is an 

indication that linear elasticity applies there. The error bars correspond to sample-to-

sample standard deviation. The shell of the first nearest neighbors was not plotted as 

indicated above and the shell of second nearest neighbors gives a very high dipole due 

to finite size effects. The third to fifth shells give a fairly low dipole value, again a finite 

size effect. The sixth shell and above form a plateau where the dipole is almost constant. 

For shells further out, the boundary has an increasingly important influence and the 

dipole decreases. The sixth and seventh shells will be used to extract the dipole because 

they are the smaller shells without finite size effects. For small systems, 512 and 1 728 

system size 512 1 728 4 096 8 000 13 824 32 768

number of samples 10 10 10 10 3 4 

 

Table 3.2: Number of sample used for each system size. 
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atoms, there is no evident plateau since there is no region far enough from both the 

defect and the boundary. 

(b) 

(a) 

FIG. 3.8: (a) Dipole values as a function of the cubic shell at which the 

force data is extracted. Each shell is numbered by the distance that 

separates the closest atom in the shell from the vacancy. (b) The same 

data plotted as a function of the ratio of the shell number to the supercell 

size. Plotted for 512, 1 728, 4 096, 8 000, 13 824 and 32 768 atoms. The 

error bars correspond to sample-to-sample standard deviation. 
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 We can now use the dipole extracted from the atomistic simulations to obtain the 

formation volume from Eq. (3.39) and Stillinger Weber elastic constants. This volume is 

plotted in Fig. 3.9 along with the direct measurements of the change of volume of the 

simulation supercell. The calculated formation volume does not match the relaxation of 

the simulation cell. The reason for this discrepancy is that the calculated formation 

volume assumes that the system is isotropic. Since there is no closed-form expression 

for the stress field in the anisotropic case a fully anisotropic calculation would be much 

more complicated. In the next sections a method will be discussed to correct for 

anisotropy when calculating the dipole value from isotropic equations. 

 

FIG. 3.9: The formation volume versus the system size measured both using Eq. (3.39) 

(solid line) and from direct measurements of the change of volume of the simulation 

supercell (dashed line). The error bars correspond to sample-to-sample standard 

deviation; they do not account for systematic errors.  



 96

d) Finite element calculations 

In order to coorect for the assumption of isotropy made in Eqs. (3.29) and (3.30) it is 

necessary to calculate a value of D/Vf appropriate for determining the formation volume 

in the anisotropic medium given the dipole extracted assuming an isotropic medium. 

This has been addressed by a series of finite element (FE) calculations in which the 

stress field around the defect was obtained and related to the volumetric relaxation of 

the box [Bouville et al. 2004D]. Obtaining the relationship between the extracted dipole 

and the formation volume required a convergence study of the solution with respect to 

the refinement of the discretization. The constitutive behavior of the mesh was taken 

from the anisotropic (cubic) elastic moduli of the Stilinger Weber potential [Balamane 

et al. 1992].  

The vacancy was modeled by a cube-shaped hollow region of dimensions 1/48 x 1/48 

x 1/48 of the system size located at the centroid of the mesh. The dipole was represented 

by point forces, directed toward the origin, applied at the centers of the inner faces of 

this cube. With the points of application of these forces being known, their magnitudes 

were specified such that the dipole strength was 1 nN.Å (= 0.624 eV). For the dipole to 

be equivalent to forces applied at the first nearest neighbors of the vacancy, this 

corresponds to a system of dimensions 12 x 12 x 12 unit cells. The outer surfaces of the 

cube were allowed to relax inward while maintaining the planarity of the surfaces. The 

extent of this relaxation was varied until corresponding normal force on each outer face 

vanished. These boundary conditions were easier to implement than periodic ones, and 

were therefore preferred. They resulted in displacement fields for which the relaxation 

volume differed by less than 10-2 Å3 from the fields for periodic boundary conditions.  
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FIG. 3.10: Relaxation volume as a function of the number of elements. 

Since the dipole is an elastic singularity and the cubic shape introduces further stress 

concentrations, the finite element solutions were slow to converge with mesh 

refinement. This necessitated considerably fine meshes. Figure 3.10 shows the 

relaxation volume as a function of the number of elements. If the number of elements is 

6N3, the number of nodes is 6(N+1)3 - 12(N+1)2. 

The three-dimensional stress tensor obtained at element quadrature points with each 

mesh was projected to the nodes of the mesh using a least-squares formulation. The 

radial stress component at each node was then obtained. The slow convergence rate 

applies to these stresses also. Finite element error analysis predicts that the stress 

projected to the nodes converges at the rate 

 |σnode - σexact| ≤ C h2, (3.40) 

where h is the element size and C is a constant [Hughes 2000]. The same is true of the 

volume. Thus using the results from two mesh sizes the asymptotic value can be 

extrapolated: 
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Figure 3.11 shows the volume obtained from Eq. (3.41) where the size of mesh 2 is 

constant (6x563 elements) and the size of mesh 1 is on the x axis. This shows that, 

unexpectedly, Eq. (3.41) does not provide an asymptotic value independent of the 

choice of the meshes. This is because convergence is very slow for finite element 

calculations with a singularity. The stresses have the same problem. 

Figure 3.12(a) shows the output dipole per unit input dipole as a function of the shell 

where it is calculated for five finite element meshes. The curves for the finer meshes 

have similar shapes and they are also similar to that which was observed atomistically 

(Fig. 3.8). However the magnitude of the dipole is different for the different meshes due 

to the lack of convergence. The high dipole values close to the defect are due to finite 

FIG. 3.11: The volume obtained from Eq. (3.41) where the size 

of mesh 1 is the x axis and the size of mesh 2 is 6x563. 
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size effects arising from the mesh and the fact that the dipole was implemented as force 

pairs a finite distance apart. 

 

 

FIG. 3.12: Ratio of the output dipole to the input dipole (a) and to the relaxation volume 

in eV/Å3 (b) as a function of the cubic shell at which the data is extracted from finite 

element calculations. Closed circles: 6x63 elements, open triangles: 6x123, closed 

diamonds: 6x243 elements, crosses: 6x363 elements and open squares: 6x483 elements. 

The thick solid line in (b) is an extrapolation.  

(b) 

(a) 
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Equation (3.39) provides a relationship between the formation volume and the dipole 

for a sphere of radius R made of an isotropic material. However the proportionality 

constant applies only to an isotropic medium. In an anisotropic medium the formation 

volume is also of the form Vf = K D but in this case the proportionality constant K is 

unknown. Since both atomistic and finite elements results follow this relationship,  

 
at

f
at

FE

f
FE

D
V

D
V

= . (3.42) 

In order to obtain f
atV  from Dat, only the ratio FE

f
FE D/V  is needed. Although f

FEV  and 

DFE converge slowly their ratio may not. Figure 3.12(b) shows the ratio of the output 

dipole to the volume, f
FEFE V/D , as a function of the shell. Unlike the volume and the 

dipole taken separately, the ratio is nearly converged. The two curves are closer together 

FIG. 3.13: DFE (calculated at the shell situated at 0.45) in 

eV as a function of f
FEV  in Å3 for five different mesh sizes: 

6x63, 6x123, 6x243, 6x323 and 6x483. The dotted line 

shows that f
FEFE /VD  is almost constant for the larger shells 

6x243, 6x323 and 6x483 (filled symbols). 
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than those in Fig. 3.12(a). Figure 3.13 shows DFE as a function of f
FEV  for five different 

mesh sizes. f
FEFE V/D  is almost independent of the mesh although f

FEV  and DFE are not 

converged yet.  

The medium used in the FE calculations is anisotropic. The dipole was extracted 

from the FE calculations using Eqs. (2.29) through (3.31). Thus the error introduced in 

the results shown in Fig. 3.8 by the use of Eqs. (2.29) through (3.31), which assume an 

isotropic medium, also exists in the results relating the dipole value to the formation 

volume shown in Fig. 3.10. Since the FE results are used to derive a formation volume 

from the dipole extracted in this way it is reasonable to expect that the errors cancel out 

and the formation volume obtained no longer includes a systematic error arising from an 

assumption of isotropy. 

Since f
FEFE V/D  is close to convergence, Eq. (3.41) can be applied to it. Figure 3.14 

shows the result for f
FEFE V/D  (in eV/Å3) thus obtained. The dotted line is a power law 

FIG. 3.14: f
FEFE V/D  (in eV/Å3) from finite elements as a 

function of the shell at which the data is extracted. The dotted 

line is a power law fitted to the data far from the vacancy. 
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fit to the part of the data far enough from the vacancy for finite size effects to be 

neglected. Its equation is 
73.2

max

f
FEFE shell

shell59.047.0V/D 







−= . At the defect, f

FEFE V/D  

≈ 0.47 eV/Å3, as opposed to 0.67 eV/Å3 in the isotropic case.  

e) Extraction procedure 

If the change in volume is obtained by multiplying the displacement at the boundary 

of the simulation cell by the surface area A of the cell, for larger systems the 

displacement at the boundary becomes smaller and smaller while the surface area 

increases. Therefore as discussed in section 3a the volume change of the cell scales as 

 1/3f n
A
δuA δV ∝∝  (3.43) 

where δu is a constant numerical error on the displacement and n is the number of atoms 

in the system. The error on the formation volume thus increases when the system size 

increases. While using the dipole extraction method and Eq. (3.39) gives poor results 

because it assumes isotropy, the previous section showed that the formation volume 

could be obtained by dividing the dipole obtained from atomistics by 

3f
FEFE eV/Å 0.47V/D ≈ . Thus if the dipole is known atomistically the formation volume 

can now be obtained by a measurement close to the defect. However, the dipole can 

only be extracted in the domain where the leading order term in the elastic solution 

dominates.  

f) System size effects 

Figure 3.15 shows as a function of the system size the values of the formation 

volume obtained from the dipole and of the formation volume calculated by directly 
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measuring the change in volume of the supercell upon the introduction of the defect to a 

system held at zero pressure. The volumes measured in the latter way do not converge 

as the system size is increased, unlike the results calculated via the dipole method.  

The direct measurement of the change in volume of the atomistic simulation cell does 

not converge for large systems. By extracting the dipole, on the other hand, the 

formation volume is obtained by a measurement at the beginning of the asymptotic 

elastic region, the position of which does not change with system size. Therefore the 

error using this method does not vary with system size. Figure 3.16 shows the formation 

volume as a function of 10 000 over the system size. If there is convergence, the 

formation volume for an infinitely large system can be read at the intersection between 

the curve and the y-axis. Figure 3.16 clearly shows that the volume extracted from 

measuring boundary relaxations in atomistic simulations does not converge, as 

FIG. 3.15: The formation volume versus the system size measured both using the 

dipole method (solid line) and from direct measurements of the displacement of 

the simulation supercell (dashed line). The error bars correspond to sample-to-

sample standard deviation; they do not account for systematic errors. 
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expected. The volume obtained through the dipole, on the other hand, does converge to 

a value of 15 Å3. 

5) Summary 

Accurate calculation of formation volumes from atomistic models is important for 

modeling stress-defect interactions during diffusive processes. The Stillinger Weber 

potential was used because it allows for the simulation of larger systems than quantum 

mechanical methods. We have shown that the most commonly employed methods for 

calculating these quantities, measuring the relaxations of near neighbor atoms and the 

change in volume of the simulation cell, introduce substantial errors. The latter method, 

while rigorously correct in the limit of large supercells, is not yet converged in 

simulations of fewer than a few thousand atoms, much larger than most ab initio results 

FIG. 3.16: Formation volume as a function of 10 000 over the 

system size. Solid line: volume calculated using the dipole; dotted 

line: direct extraction from atomistic simulations. The error bars 

correspond to sample-to-sample standard deviation. 
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published in the literature. In addition, this method cannot effectively be applied at 

larger supercells because of the difficulty of measuring vanishingly small displacements 

at the surface of the cell. We presented a new method which calculates the formation 

volume by matching stresses near the defect to the asymptotic elastic prediction. This 

method has been shown to converge effectively with system size. 

As shown in table 3.1, the Stillinger Weber description of the vacancy is not 

quantitatively accurate. In order to obtain quantitatively accurate results a better 

description of silicon is necessary close to the vacancy. However, as illustrated here, 

this improvement in model accuracy should not happen at the cost of a dramatic 

shrinkage of the system otherwise systematic errors will be introduced by system size 

effects. Two possibilities are available. One could use tight-binding which is more 

accurate than empirical potentials but not as computationally intensive as ab initio, the 

description of the vacancy is fair and the system can be simulated using thousands of 

atoms. This approach is not efficient because tight-binding is used far from the vacancy 

where an empirical potential would be good enough since only the correct elastic 

properties are needed. Another solution is then to use ab initio (or tight-binding) 

methods close to the vacancy, where the system is far from the equilibrium structure, 

and an empirical potential further away where computationally-intensive methods are 

not necessary. 

A full-scale simulation of diffusion in semiconductors would require data on other 

point defects, interstitials, substitutionals and vacancy-interstitial pairs since all of these 

defects can exist and interact in the devices. The methodology we developed can be 

applied to these defects, with some modification. These methods may also be applicable 

to other kinds of crystal defects, such as dislocations [Shilkrot et al. 2002] or more 
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generally to any material inhomogeneity leading to a singularity in the stress field. We 

applied this methodology to silicon, but it is general enough to be applied to other 

materials. 
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 CHAPTER 4 — CONCLUSIONS 

Elastic calculations predict that pits can relieve elastic energy more efficiently than 

islands. Pits have commonly been observed only in the presence of impurities, but 

recently new evidence has arisen that pits can form during heteroepitaxial growth in the 

absence of contamination. To understand this phenomenon the nucleation of islands and 

pits was studied assuming a near-equilibrium nucleation process where the adatom 

concentration plays a major role. This analysis predicts that pit nucleation can be 

prevented by a high adatom concentration, but that inhomogeneities of the adatom 

concentration arising from diffusion favor pit nucleation close to the islands where the 

adatom concentration is lower. While energetic arguments indicate that pits should 

dominate, their nucleation is usually kinetically prevented. Accounting for kinetics, six 

experimental regimes are predicted to exist depending on the growth rate and the elastic 

energy arising from misfit: pits can nucleate far from islands, adjacent to isolated 

islands, in between islands, or in the absence of islands. The film can also remain planar 

or islands alone can nucleate. The theoretical arguments presented here lead to 

predictions for the circumstances under which these various regimes should arise. These 

have been mapped on to a non-equilibrium “phase diagram” that predicts the 

morphology as a function of surface energy, temperature, deposition rate, lattice 

mismatch and surface diffusivity. 

These findings are in reasonable agreement with experiments in III-V semi-

conductors. More precise predictions would require that surface energies be better 

known and that the effect of the shape of the features be accounted for. In addition, 

strain inhomogeneities could be incorporated into the model in order to study whether 
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strain and adatom concentration inhomogeneities tend to reinforce each other. Since no 

analytical form is known for the strain field around an island, these effects could be only 

addressed qualitatively.  

In III-V systems, pits have been observed to nucleate after islands [Chokshi et al. 

2000, 2002, Riposan et al. 2002, 2003, Seshadri et al. 2000, Lacombe 1999]. However 

pits have also been observed before islands in SiGe/Si systems [Gray et al. 2001, 2002, 

Vandervelde et al. 2003]. Pits could then be used as nucleation sites for quantum dots, 

which leads to a high density and even spatial distribution of the dots [Deng and 

Krishnamurthy 1998, Songmuang et al. 2003]. They can also give birth to more 

complex structures where a “wall” surrounds a pit [Gray et al. 2001, 2002, Vandervelde 

et al. 2003]. The study of pit nucleation presented here provides a means of 

understanding the nucleation of islands subsequent to that of pits in addition to the 

nucleation of pits subsequent to islanding. This makes possible a complete study of 

island and pit nucleation which would include the cooperative kinetics of these 

processes. Chapter 2 also included a preliminary investigation of the late stages of the 

growth morphology by analyzing ripple arrays which appear to arise from such 

processes. 

Chapter 3 focused on the effect of stress on the formation of point defects. Accurate 

calculation of formation volumes is important for modeling stress-defect interactions in 

diffusive processes. The most common methods for calculating these quantities are to 

measure the relaxations of the first nearest neighbors and the change in volume of the 

simulation cell. This work has demonstrated that the latter method cannot effectively be 

applied at larger supercells because of the difficulty of measuring vanishingly small 

displacements at the surface of the cell. In the new method presented in this dissertation 
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the formation volume is calculated by matching stresses near the defect to the 

asymptotic elastic prediction. This method has been shown to converge effectively with 

system size. 

The methodology presented in this dissertation was applied to vacancies but it could 

be adapted for other defects. The stress field in a crystal arises due to external stress 

plus the superposition of the individual stress fields due to the defects. A full-scale 

simulation of diffusion in semiconductors would therefore require data on vacancies, 

interstitials, substitutionals and vacancy-interstitial pairs since all of these defects can 

exist and interact in devices. A natural follow-up work is thus to obtain the dipole 

tensors for these defects. Then the stress at any point in the system could be known and 

incorporated into, for example, a kinetic Monte Carlo simulation of the defect kinetics. 

Although chapter 3 described a methodology which can be applied to other defects, 

some modifications would be necessary. In the case of defects involving several atoms 

for instance the “position” of the defect is not obvious, there is an additional degree of 

freedom in the determination of the dipole value.  

Shilkrot and coworkers (2002) studied indentation and dislocation dynamics on a 

multiscale: close to the indenter the system was modeled atomistically while a discrete 

dislocation model was used further out. A similar study is possible for point defects if 

their stress fields are known. The boundary conditions of the atomistic zone must 

account for the stress fields of defects in the continuum zone. Also if the relationship 

between stress and formation free energy is known, a chemical potential gradient can be 

inferred from a stress gradient; this will drive the diffusion of the defects. The diffusion 

of the defects would lead to a change in the stress state leading to a feedback loop 

between stress field and local defect concentration. Such simulations could have a 
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significant impact in the semiconductor industry. If the desired dopant profile could be 

obtained as an equilibrium profile the manufacturing of semiconductors would be eased 

and would not require as many steps. 

The method introduced in chapter 3 was applied to silicon defects. However it is 

more general and could theoretically be applied to other materials. As the scale of 

materials science decreases the fact that the properties of small systems such as thin 

films can be different from the bulk properties continues to grow in importance. For 

devices on smaller and smaller scales, voids of smaller and smaller sizes will have 

increasingly dramatic effects. Although large-scale defects are due to synthesis and are 

not very likely to arise from diffusion (at least at low temperature), nano-scale voids can 

form if vacancies diffuse and merge. Electronic properties are very sensitive to defects, 

thus they are impaired by such mechanisms faster than mechanical properties. However 

the shrinkage of the scale of mechanical devices will soon result in similar reliability 

issues. The mechanical and electronic properties of carbon nanotubes are exceptional 

[Ajayan 1999, Dresselhaus and Dai 2004], which makes them good candidates for 

future devices [Liu et al. 1999, Baughman et al. 2002], but they may be very sensitive 

to the presence of defects. The model developed in 3D could be adapted to 2D and the 

stress field around a defect in a graphite sheet, or a single-walled carbon nanotube, 

could be analyzed similarly.  



 111

APPENDIX — POTENTIALS FOR III-V SEMICONDUCTORS 

1) Introduction 

Molecular dynamics (MD) and Monte Carlo (MC) simulations require to know the 

energy of each atom to calculate forces (MD) or the difference in energy between two 

configurations (MC). This expression of the energy as a function of the position of the 

atoms is given by inter-atomic potentials. Many potentials have been proposed, for 

noble gases, metals, semiconductors, etc. The choice of the potential is critical as the 

results obtained from simulations are not results for GaAs but for the material described 

by the potential (which hopefully is close enough to GaAs): one gets out what one puts 

in. Therefore it is important to put in the best possible representation of the material.  

These potentials try to reproduce the physics of the material as well as possible: its 

stable structure (FCC or BCC for metals, diamond cubic or ZnS for semiconductors, 

etc.), its elastic properties, its liquid phase, its phonon spectra, its surfaces, etc. However 

it is impossible to fully represent a material without using quantum mechanics. Thus, 

since the potentials do not include any explicit quantum mechanics, they have a number 

of parameters which must be fitted. One can think of many properties that should be 

properly described by the potential. Thus the set of properties to which the potential can 

be fitted is much larger than the set of parameters. One then has to decide which 

properties are important and which are not. This choice depends in part on the purpose 

of the study where the potential will be used. To study the growth of thin films, for 

instance, surfaces are important while the properties of the liquid phase or defect 

formation energies may be secondary. The opposite is true for studies of ion 

implantation. Also, not all properties are easy to calculate: while the cohesive energy of 
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a given crystal structure can be readily obtained from the (known) position of the atoms, 

surface reconstruction require that atoms be allowed to relax, fitting the potential to 

surface reconstruction is more computationally intensive because of the need for 

relaxation. It is always possible to get a better accuracy using a more complicated 

potential (with more parameters) but it may not be necessary. More complicated 

potentials are harder to implement and to debug, more computationally intensive and 

more likely to have spurious local minima. A consequence is that energy minimization 

methods may not be reliable if the energy is not a well-behaved function of the position. 

This appendix first reviews the available potentials for III-V semiconductors. 

Compound semiconductors are covalent but there is also some ionicity associated with 

partial charges on the anions and cations. Section 3 is a study of the effects of ionicity 

that should help decide whether the semiconductors are to be simulated as purely 

covalent materials or partly ionic materials. Adding ionicity adds accuracy and 

complication. The purpose is to find a trade-off: simple but accurate. 

2) Review of potentials for III-V semiconductors 

The simplest potentials, such as Lennard-Jones potential, only take into account the 

distance between atoms (not the coordination number nor angles). In this case, the 

energy is directly proportional to the number of bonds, such potentials can only find a 

close-packed structure as the ground state. Therefore they are not suitable for 

semiconductors. The diamond cubic (DC) and zinc-blende (ZnS) structures are open 

structures with a coordination number Z of 4. Their stability comes from the fact that, 

although less numerous, the bonds are stronger. The energy of an atom is Z Ebond, so a 

lower Z can lead to a lower energy as long as this strengthens the bonds (it is the choice 
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of quality against quantity). Close-packed structures would have much weaker bonds 

and therefore a higher energy. Thus, it is not possible to study covalently-bonded 

materials with a simple potential. 

The two main categories of potentials for semiconductors are bond-order potentials 

(Tersoff [Tersoff 1986, Tersoff 1988a, Tersoff 1988b, Tersoff 1989] and Brenner 

[Brenner 1990] developed potentials with a similar form for Si and C respectively) and 

potentials with an explicit three-body term [Stillinger and Weber 1985]. Since there are 

few works giving parameters for III-V semiconductors under the analytical form of 

Stillinger and Weber, this appendix will focus on GaAs potentials based on Tersoff 

potential. Papers generally present their potential and results of the simulations where 

they used it (often implantation damage) but few of them tested basic properties that the 

potential does or does not reproduce (or at least such data were not published.) As 

mentioned above simulation results are not for a given materials systems but for its 

representation. If the potential reproduces the properties of the material poorly, the 

simulations make little sense. In order to choose the better published potential, we 

analytically tested (at 0 K) five Tersoff-based potentials for GaAs [Smith 1992, Sayed at 

al. 1995, Albe et al. 2002, Nakamura et al. 2000, Murugan and Ramachandran 1999], 

two for InAs [Ashu et al. 1995, Nordlund 2000] and one for AlAs [Sayed at al. 1995]. 

Table A.1 summarizes the interdependence between these works. The need for this table 

comes from the fact that people fit Tersoff potential themselves for one material system 

and use published parameters for some other material systems. Nordlund for instance 

simulated GaAs, InAs and AlAs but fitted new parameters for In-As bonds only. Even if 

everybody simulated GaAs, until Albe’s work, all authors used Smith’s parameters for 

pure As and Ga.  
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 Smith Sayed Ashu Nordlund Murugan Nakamura Albe 

Ga-As   Sayed Sayed  Sayed*  

Ga-Ga  Smith Smith Smith ?? Smith  

As-As  Smith Smith Smith ?? Smith  

In-As      Ashu  

In-In    Ashu  ??  

In-Ga   average Ashu  ??  

Al-As    Sayed  ??  

Al-Al    Sayed  Sayed  

Al-Ga    average  ??  

Al-In        

Table A.1: Potentials for III-V semiconductors and the parameters they use. White cells 

correspond to new parameters and dark gray cells correspond to parameters which were 

not used. The light gray cells are for parameters which were used in the paper but which 

were not original: the name of another author means that the parameters from this author 

were used and “average” means that the III-III’ parameters were obtained as an average 

of the III and III’ parameters. Murugan and Ramachandran did not publish parameters 

for the Ga-Ga and As-As bonds and did not cite any other work. Although Nakamura 

and coworkers cite the works of Smith, Sayed and Ashu, they do not explicitly state 

what was drawn from these works and what they fitted themselves. “Sayed*” means that 

some of the parameters were taken from Sayed. 
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a) Analytical form of Tersoff potential 

Unlike in Stillinger Weber potential, there is no three-body term in the analytical 

form designed by Tersoff. Instead the two-body energy depends on the environment of 

the atom. The energy is given by 

 ∑
≠

=
ji

ijV
2
1E  (A.1) 

with 

 [ ])(rf)(rf)(rfV ijAijRijcij −=  (A.2) 

where fR is the repulsive part and fA is the attractive part of the potential. fc is a smooth 

cut-off function defined by 

 













>

<<










−
−

+

<

=

ij

ijij
ijij

ij

ij

c

Sr                                    0,

SrR   ,
RS

Rr
πcos

2
1

2
1

Rr                                    1,

(r)f  (A.3) 

with R and S constants. Thus when the distance between the atoms is less that R, fc = 1 

and the cut-off does not play a role while for r > S, fc = 0 and there is no interaction 

between the atoms. This accounts for the short-ranged nature of the bonds and reduces 

the number of bonds for which an energy must be computed, making the simulations 

more efficient. Between R and S, fc goes from 1 to 0; due to the analytical form of fc, fc 

and its derivatives are continuous at R and S. Although the cut-off is an efficient way of 

speeding up simulations, it can introduce artifacts. When the distance between two 

atoms is between R and S, the energy of the bonds is due in part to fc which has no 

physical meaning. In Tersoff potential (and most other potentials) the cut-off is set 

between first and second nearest neighbors. This minimizes the number of  bonds for 
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which an energy or forces must be computed and it also simplifies the fitting procedure 

by decreasing the number of degrees of freedom and by making the properties of bulk 

III-V semiconductors independent of III-III and V-V bonds (second nearest neighbors 

are of the same species.) 

fR, the repulsive part, is given by  

 r λ
ijR

ije A(r)f −=  (A.4) 

where A and λ are positive constants. The attractive part is of the same kind 

 r µ
ijijA

ije bB(r)f −=  (A.5) 

with B and µ positive constants. R, S, A, B, λ and µ depend on the species involved, e.g.  

AGa-As may be different from AGa-Ga and AAs-As. While the repulsive part depends on the 

interatomic distance only, the attractive part also depends on the function b defined as 
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where ζ is a “pseudo” coordination number:  

 ∑
≠

=
ji,k

ijkikcij )g(θ )(rfζ  (A.7) 

with 

 ( ) 2
i

2
i

2
i

2
i

2
i

)hθ (cosd
c

d
c1θg

−+
−+= . (A.8) 

If c = 0 (or c2 << d2), g(θ) = 1 and then ζ = Z, the coordination number. As a 

consequence b is constant and the energy depends only on bond lengths and 

coordination number, not on angles. Therefore a potential where c2 << d2 can reproduce 

the lattice constant, the cohesive energy and the bulk modulus of the ZnS structure and 

give the ZnS structure as the ground state but Young’s modulus and c44 are almost 0 
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because of the lack of angular dependence of the energy. Tersoff designed such a simple 

potential [Tersoff 1988a] for pedagogical reasons and Smith [Smith 1992] and Ashu 

[Ashu et al. 1995] did the same kind of thing (not on purpose). 

There are 9 parameters (A, B, λ, µ, β, n, c, d, h) plus two for the cut-off R and S (the 

two cut-off parameters are not systematically optimized). They are generally fitted to 

the lattice parameter, the cohesive energy and the bulk modulus of the zinc-blende bulk, 

sometimes c11, c12 and c44
0 (see below for the definition of c44

0). They were not fully 

fitted to other phases, it was just checked that ZnS was the ground state. 

The eight sets of parameters are presented in Table A.2. Parameters are summarized 

in this table along with Tersoff 2 [Tersoff 1988a] and Tersoff 3 [Tersoff 1988b] for Si 

as a comparison. One can see that very different sets of parameters are used. Some use 

large values for c along with small γ (T3 and Murugan and Ramachandran). 

Si GaAs InAs AlAs

T2 T3 Smith Sayed Albe Naka-
mura Murugan Ashu Nord-

lund Sayed

A 3264.7 1830.8 3088.5 2543.3 3306.2 13287.6 1702.2 2246.6 1968.3 2307.9
B 95.37 471.18 469.97 314.46 1929.30 13.19 381.50 417.67 266.57 219.14
A/B 34.231 3.886 6.572 8.088 1.714 1007.6 4.462 5.379 7.384 10.532
λ1 3.239 2.480 2.828 2.828 2.301 4.599 1.540 2.530 2.598 2.809
λ2 1.326 1.732 1.842 1.723 2.015 0.249 0.770 1.671 1.422 1.558
De 2.624 2.666 2.180 2.180 2.100 7.100 21.376 2.398 5.173 2.493
Re 2.313 2.295 2.345 2.340 2.350 2.260 2.842 2.441 2.214 2.353
S = λ1/λ2 2.443 1.432 1.535 1.641 1.142 18.447 2.000 1.514 1.826 1.803
β 1.465 1.466 1.614 1.561 1.523 0.757 0.770 1.454 1.359 1.479
c 4.838 100390 0.078 1.226 1.290 1.226 18223 1.307 5.172 1.450
d 2.042 16.622 4.505 0.790 0.560 0.790 12.384 91.553 1.666 0.829
(c/d)^2 5.615 4E+07 3.0E-04 2.407 5.306 2.407 2E+06 2E-04 9.640 3.060
h 0.000 -0.598 -3.411 -0.518 -0.237 -0.518 -0.500 -0.570 -0.541 -0.521
arccos h 90.0 126.7 ---- 121.2 103.7 121.2 120.0 124.7 122.8 121.4
n 22.956 0.787 5.504 6.317 1.000 6.317 0.310 6.332 0.756 4.048
γ 0.337 1.1E-06 0.381 0.357 0.017 0.357 4E-07 0.387 0.319 0.331
γ * (c/d)^2 1.891 40.122 1.2E-04 0.860 0.088 0.860 0.805 8E-05 3.072 1.013

0.727 0.153 1.000 0.975 0.959 0.975 0.345 1.000 0.451 0.915
2.8 2.7 3.4 3.4 3 3.4 2.34 3.4 3.5 3.4
3.2 3 3.6 3.6 3.2 3.6 2.65 3.6 3.7 3.6

cut-off
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Table A.2: Parameters for the III-V potentials along with Tersoff 2 and Tersoff 3 for Si 

as a comparison. 

b) Elastic constants 

Cubic crystals have 3 independent elastic constants c11, c12 and c44; the stiffness 

matrix is of the form 
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Bulk modulus B, Young’s modulus along (001), E(001), and Poisson’s ratio ν are 

functions of c11 and c12. Thus only two of these five constants plus c44 are necessary. We 

directly calculated c11, c44 and B. From those three numbers we also calculate E(110) (that 

is along the direction of surface dimers), the anisotropy ratio and Cauchy ratio. We also 

separately calculated c44
0 and ζ3 (and also the pressure derivative of the bulk modulus). 

When the unit cell is sheared in the x-z plane by an amount γ all atoms move along x 

by γ z. Once they have moved they can relax to decrease their energy: instead of moving 

by (γ z, 0, 0) they move by (γ z + δx, δy, δz). In the first case (no relaxation), the energy 

of the crystal under the shear strain γ will be overestimated, therefore the stiffness will 

also be overestimated: the constant obtained this way is not c44, it is another constant 

                                                 

3 This ζ is completely different from the ζij used in the expression of the potential. ζ is the usual letter 

to refer to this relaxation and the ζij is the notation used by Tersoff. 
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called c44
0. When atoms are allowed to relax the real elastic constant c44 is obtained. In 

such a case there is a shift of the group III sublattice along y by ζ γ (this is the definition 

of ζ). c44
0 is easier to determine, since there is no degree of freedom there is no 

optimization and search of a root. However it is not of great use for having the correct 

c44
0 does not mean that c44 will be correct too: Smith and Ashu have the right magnitude 

for c44
0 but their c44 is 0. 

Results for GaAs are presented in Table A.3 and results for InAs are in Table A.4. 

Results for AlAs are not presented because the lack of competition implies that no 

choice of potential can exist in this case. Bond lengths and cohesive energies for dimer, 

“graphite”, zinc-blende (ZnS), rock-salt (NaCl) and CsCl structures are given. Bulk 

modulus B and its first derivative with respect to pressure, B’, are also given for ZnS, 

NaCl and CsCl strutures. For ZnS, the elastic properties and the melting point are also 

presented. The two “experimental/ab initio” columns give a lower and an upper bound 

as found in the literature. For each potential the first column is the value of the property 

as calculated with the potential, the second column gives the relative error (valuepotential 

– valueexp)/valueexp. The last column gives (bad) points when this error is too large. In 

the case of GaAs, Smith does poorly because c11 = c12 (leading to a Young’s modulus of 

0) and c44 = 0. Sayed finds the “graphitic” structure (sheet of GaAs were each atom has 

bonds with three atoms of the other species) barely higher in energy than the ZnS 

ground state. Since only one sheet was used, inter-sheet bonds may decrease the energy 

even more. Albe’s main weakness is that c44 is a bit too low. For InAs, Ashu’s potential 

has the same problems as Smith’s GaAs (E = 0 and c44 = 0). Nordlund’s “graphite” is 

low in energy (similar to Sayed.) 
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GaAs Exp/ab initio Smith Sayed Albe
Dimer Bond length (A) 2.510 2.550 2.35 -6.57% 0.0 2.35 -6.57% 0.0 2.35 -6.37% 0.0

∆ Bond length (A) 0.062 0.102 -0.096 -194% 9.0 -0.104 -202% 9.4 -0.098 -196% 9.1
1 Cohesive energy (eV/at) -1.055 -1.005 -1.09 3.32% 0.0 -1.09 3.32% 0.0 -1.05 0.00% 0.0

∆ Cohesive energy (eV/at) 2.299 2.349 2.229 -3.03% 0.0 2.161 -6.01% 0.1 2.304 0.00% 0.0
ω (cm-1) 215 215 215 0.00% 0.0 215 0.00% 0.0 278 29.30% 0.0
Total 4% 9.1 12% 9.5 19% 9.1

Graph. Bond length (A) 2.342 2.342 2.35 0.13% 0.0 2.353 0.48% 0.0 2.460 5.05% 0.0
3 ∆ Bond length (A) -0.106 -0.106 -0.096 -8.94% 0.0 -0.096 -9.68% 0.0 0.013 -112% 3.8

Cohesive energy (eV/at) -2.785 -2.785 -3.150 13.10% 0.0 -3.196 14.74% 0.0 -2.444 -12.25% 0.0
∆ Cohesive energy (eV/at) 0.569 0.569 0.169 -70.22% 21.5 0.055 -90.30% 35.3 0.911 60.02% 1.3
Total 10% 21.5 44% 35.3 11% 5.1

ZnS Bond length (A) 2.448 2.448 2.441 -0.26% 1.7 2.449 0.04% 0.0 2.448 -0.01% 0.0
4 Lattice parameter (A) 5.6532 5.6533 5.638 -0.26% 0.0 5.655 0.04% 0.0 5.653 -0.01% 0.0

Cohesive energy (eV/at) -3.354 -3.354 -3.319 -1.04% 0.0 -3.251 -3.08% 0.0 -3.354 0.01% 0.0
T m (K) 1513 1513 1250 -17.38% 0.7 1050 -30.60% 2.2 1900 25.58% 1.6
C 11 (GPa) 120.7 121.5 81.8 -32.27% 9.1 117.9 -2.31% 0.1 123.7 1.87% 0.0
C 12 (GPa) 53.3 56.42 81.8 44.91% 15.9 53.0 -0.65% 0.0 48.2 -9.60% 0.9
ν 0.305 0.318 0.500 56.99% 26.7 0.310 0.00% 0.0 0.280 -8.10% 0.7
E (001) (GPa) 83.9 89.8 0.0 -99.99% 60.0 85.1 0.00% 0.0 96.7 7.65% 0.6
E (110) (GPa) 114.6 133.5 0.0 -100% 60.0 129.9 0.00% 0.0 98.9 -13.66% 1.8
anisotropy ratio 0.53 0.57 2.69 372.75% 104.8 0.47 -10.82% 0.3 0.96 69.67% 11.2
C 44 (GPa) 60.2 60.6 0.0 -100% 60.0 68.6 13.24% 1.7 39.1 -34.97% 11.3
C 44 0 (GPa) 72.6 75.0 81.8 9.02% 0.2 95.2 26.96% 1.7 73.2 0.00% 0.0
ζ 0.76 0.76 0.99 30.26% 0.6 0.54 -29.47% 0.5 0.55 -27.89% 0.5
Cauchy ratio 0.87 0.94 87895 9350460% 37.5 0.77 -11.57% 0.3 1.23 31.05% 2.3
Born ratio 1.02 1.09 1.00 -1.50% 0.0 1.25 15.03% 0.6 0.71 -30.44% 2.2
B (GPa) 75.7 78.1 81.8 4.69% 0.2 74.6 -1.40% 0.0 73.4 -3.05% 0.1
B' 4.00 5.00 4.80 0.00% 0.0 4.71 0.00% 0.0 4.50 0.00% 0.0
sub-total 80% 176.5 7% 5.3 66% 31.2
Total 81% 179.0 9% 7.5 70% 32.8

NaCl Bond length (A) 2.625 2.639 2.673 1.30% 0.0 2.850 8.00% 0.0 2.660 0.80% 0.0
6 ∆ Bond length (A) 0.177 0.191 0.232 21.29% 0.2 0.401 110.03% 3.7 0.212 11.14% 0.0

Cohesive energy (eV/at) -3.084 -3.078 -2.585 -16.00% 0.0 -1.567 -49.08% 0.0 -3.086 0.08% 0.0
∆ Cohesive energy (eV/at) 0.270 0.276 0.734 165.88% 6.3 1.683 509.93% 13.1 0.268 -0.78% 0.0
B (GPa) 77.6 77.6 89.6 15.39% 0.0 47.6 -38.62% 0.0 95.6 23.22% 0.0
B' 5.1 5.1 5.16 1.50% 0.0 5.32 4.70% 0.0 4.77 -6.19% 0.0
Total 3% 6.5 21% 16.8 0% 0.1

CsCl Bond length (A) 2.837 2.837 2.843 0.20% 0.0 3.000 5.75% 0.0 2.830 -0.24% 0.0
8 ∆ Bond length (A) 0.389 0.389 0.401 3.13% 0.0 0.551 41.68% 0.7 0.382 -1.69% 0.0

Cohesive energy (eV/at) -2.864 -2.864 -2.219 -22.51% 0.0 -1.368 -52.25% 0.0 -2.782 -2.86% 0.0
∆ Cohesive energy (eV/at) 0.490 0.490 1.100 124.49% 4.4 1.883 284.31% 10.2 0.572 16.76% 0.1
B (GPa) 82.2 82.2 90.3 9.92% 0.0 51.3 -37.57% 0.0 104.9 27.65% 0.0
B' 5.3 5.3 5.42 2.12% 0.0 5.55 4.50% 0.0 4.96 -6.63% 0.0
Total 2% 4.4 14% 10.9 0% 0.1
GRAND TOTAL 220 80 47

Table A.3: Results for GaAs 
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InAs Exp./ ab initio Ashu Nordlund
Dimer Bond length (A) 2.500 2.500 2.44 -2.35% 0.0 2.21 -11.60% 0.0

∆ Bond length (A) -0.123 -0.123 -0.117 -4.88% 0.0 -0.414 236.01% 9.0
1 Cohesive energy (eV/at) -1.200 -1.200 -1.20 -0.08% 0.0 -2.59 115.83% 0.0

∆ Cohesive energy (eV/at) 2.350 2.350 2.366 0.70% 0.0 0.975 -58.49% 8.1
Total 0% 0.0 23% 17.1

Graph. Bond length (A) 2.502 2.502 2.46 -1.76% 0.0 2.517 0.61% 0.0
3 ∆ Bond length (A) -0.121 -0.121 -0.100 -17.16% 0.1 -0.107 -11.88% 0.1

Cohesive energy (eV/at) -3.040 -3.040 -3.449 13.46% 0.0 -3.529 16.08% 0.0
∆ Cohesive energy (eV/at) 0.510 0.510 0.116 -77.20% 25.8 0.036 -92.84% 37.0
Total 8% 25.9 50% 37.1

ZnS Bond length (A) 2.623 2.623 2.558 -2.47% 116.9 2.624 0.03% 0.0
4 Lattice parameter (A) 6.058 6.058 5.908 -2.47% 0.0 6.060 0.03% 0.0

Cohesive energy (eV/at) -3.550 -3.550 -3.565 0.43% 0.0 -3.565 0.43% 0.0
T m (K) 1215 1215 1200 -1.23% 0.0 1100 -9.47% 0.2
C 11 (GPa) 83.3 83.3 68.0 -18.31% 3.1 83.5 0.23% 0.0
C 12 (GPa) 45.3 45.3 68.0 50.22% 16.8 45.2 -0.19% 0.0
ν 0.352 0.352 0.500 41.94% 15.0 0.351 -0.28% 0.0
E (001) (GPa) 51.4 51.4 0.0 -100% 50.0 51.7 0.67% 0.0
E (110) (GPa) 79.3 79.3 0.0 -100% 50.0 79.4 0.16% 0.0
anisotropy ratio 0.48 0.48 5.00 942.11% 95.7 0.48 0.95% 0.0
C 44 (GPa) 39.6 39.6 0.00001 -100% 50.0 39.5185 -0.21% 0.0
C 44 0 (GPa) 49.5 49.5 68.05 37% 0.0 42.6 -13.94% 0.0
ζ 0.65 0.65 0.99 52.31% 0.0 0.65 0.00% 0.0
Cauchy ratio 1.14 1.14 6804950 594869701% 25.0 1.14 0.01% 0.0
Born ratio 1.14 1.14 1.00 -11.96% 0.4 1.13 -0.70% 0.0
B (GPa) 58.0 58.0 68.0 17.39% 2.9 58.0 0.01% 0.0
B' 4.5 4.5 4.58 0.74% 0.0 4.52 -0.74% 0.0
sub-total 50% 167.9 0% 0.2
Total 85.2% 284.8 0.6% 0.5

NaCl Bond length (A) 2.812 2.812 2.827 0.54% 0.0 2.883 2.53% 0.0
6 ∆ Bond length (A) 0.189 0.189 0.269 42.32% 0.7 0.259 37.31% 0.6

Cohesive energy (eV/at) -3.280 -3.280 -2.711 -17.36% 0.0 -2.728 -16.82% 0.0
∆ Cohesive energy (eV/at) 0.270 0.270 0.855 216.59% 18.8 0.837 210.08% 17.7
B (GPa) 67.1 67.1 72.1 7.39% 0.0 62.2 -7.39% 0.0
B' 4.9 4.9 4.96 0.98% 0.0 4.86 -0.98% 0.0
Total 5.8% 19.5 24.7% 18.2

CsCl Bond length (A) 3.029 3.029 3.022 -0.25% 0.0 3.016 -0.43% 0.0
8 ∆ Bond length (A) 0.406 0.406 0.463 14.13% 0.1 0.392 -3.41% 0.0

Cohesive energy (eV/at) -2.880 -2.880 -2.209 -23.31% 0.0 -2.576 -10.56% 0.0
∆ Cohesive energy (eV/at) 0.670 0.670 1.357 102.48% 4.2 0.989 47.68% 0.9
B (GPa) 72.1 72.1 71.4 -1.03% 0.0 72.9 1.03% 0.0
B' 5.1 5.1 5.23 1.85% 0.0 5.04 -1.85% 0.0
Total 1.3% 4.3 1.2% 0.9
GRAND TOTAL 334 74  

Table A.4: Results for InAs 

Elastic properties are the main problem of all potentials (surfaces may be a bigger 

issue but very little data are available). Smith (GaAs) and Ashu (InAs) have almost no 

angular dependence of the energy (c2 << d2). This implies that the energy of an atom 

with four nearest-neighbors at a given distance will be the same whether these four 
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atoms are on ZnS lattice sites or not: a lot of degenerated states topologically close to 

ZnS have the same energy. Under some conditions (for instance shear or tension) the 

crystal will be almost infinitely soft: E = 0 and c44 = 0. In these two cases the bulk 

modulus B = (c11 + 2 c12)/3 is correct but c11 = c12, which leads to a Young’s modulus 

(proportional to c11 – c12) of 0. Clearly the potential cannot be fitted to one elastic 

constant only. B is simple to calculate but it is hydrostatic and therefore it totally 

ignores the stiffness coming from the angles. The use of B alone as a representative of 

elastic properties may be why Smith and Ashu did not notice the problem their 

potentials had with the angular dependence. Sayed et al., Albe et al. (GaAs) and 

Nordlund et al. (InAs) have reasonable results for c11 and c12. The GaAs potential from 

Albe and coworkers has a low c44 (40 GPa instead of 60 GPa) because c44
0 was used in 

the fitting process instead of c44. c44 was also an issue in Tersoff 2; c44 and surfaces 

seem to be properties empirical potentials do not reproduce well [Balamane et al. 1992]. 

c) Dimers 

Experiments [Lemire 1990] and ab initio calculations [see for instance Al-Laham and 

Raghavachari 1991, Song et al. 1994] agree: the GaAs dimer is longer (2.53 Å) than the 

GaAs bond length in the ZnS structure (2.44 Å). Figure A.1(a) shows the bond length in 

several structures over the ZnS (or DC) bond length for Si, GaAs, InAs and AlAs. The 

only problem comes from the GaAs and Si dimers which have an opposite behavior. 

Figure A.1(b) shows that the normalized energy does not seem to depend on the 

material system either. There is a discrepancy for AlAs for highly coordinated 

structures. Whether this is due to poor (or poorly understood) ab initio results or 

whether this is real is unclear. 
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FIG. A.1: Normalized bond length (a) and cohesive energy (b) for Si and III-V. 

Diamonds: silicon, crosses: GaAs, open triangles: AlAs, squares: InAs. 

The silicon dimer is shorter than the bond length in the diamond cubic structure (see 

Fig. A.1) and no data could be found for C or Ge nor for InAs or AlAs. It is therefore 

not possible to tell whether there is a global difference between groups IV and III-V or 

if this applies only to the particular case of Si and GaAs. All potentials give a dimer 

shorter than the bulk (2.35 Å vs. 2.44 Å for GaAs) but they generally get the right 

energy anyway, except for Nordlund’s InAs which describes the dimer very poorly (the 

dimer properties were not used in the fitting process). This comes from the analytical 

(a) 

(b) 
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form given by Tersoff itself: it cannot find a dimer longer than the bulk bond length 

whatever parameters are used (keep in mind that this potential was developed for Si for 

which this is no problem). 

d) Surfaces 

Isolated dimers are not very interesting per se for the study of thin film growth. 

Unlike isolated dimers, dimers on surfaces are three-fold coordinated which may make a 

big difference as the coordination number is taken into account in the potential. Hence 

surface dimers may be correctly described even if isolated ones are not.  

Only Albe’s potential for GaAs has been tested for surfaces [Albe et al. 2002]. 

Testing surfaces requires a MD simulation or a conjugate gradient as the number of 

degrees of freedom (relaxation of several atoms) is too high to allow for an analytical 

treatment. It was found that As-rich structures, γ(2x4) and c(4x4), were poorly described 

mainly because the arsenic dimers were too long or even not stable at all. Albe and 

coworkers did not want to change the As potential too much to avoid destroying the 

properties of pure As [Nordlund, private communication]. Their interest is in 

implantation damage, where melting and antisite defects are more important than in thin 

film growth.  

Tersoff modified his potential (nicknamed Tersoff 2 or T2) because its angular 

dependence was too weak and c44 was too low by an order of magnitude [Tersoff 

1988a]. The new potential (nicknamed Tersoff 3 or T3) was better at describing 

elasticity but had relatively poor results on the surface [Tersoff 1988b]. Using the 

criteria we used (nothing concerning surfaces) T3 would have been found much better 
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than T2. It is possible that Sayed potential give better results on surfaces than Albe even 

if the latter looks better for the criteria used here. 

e) Melting point and high temperature behavior 

Tm is very well described for InAs (Ashu gives 1200 K and Nordlund 1100 K both 

close to the experimental value of 1215 K). For GaAs, Tm ranges from 1050 K for Sayed 

to 1900 K for Albe (experimental: 1513 K).  

All properties presented in this chapter were calculated at 0 K. Therefore the melting 

temperature may matter because the fact that elasticity is well described at 0 K does not 

imply that it is well described at growth temperatures. Figure A.2 shows the elastic 

constants c11, c12 and c44 as a function of temperature [Burenkov 1973] along with trend 

lines. For instance a growth temperature of 800 K would be .75 Tm according to Sayed 

but only .4 Tm for Albe. However it is hard to get quantitative results at high 

temperature without MD simulations, and the implementation of the potential to run MD 

simulations is beyond the scope of this work. The elastic properties change linearly with 

temperature (see Fig. A.2) but in the case of GaAs the (experimental) slope is small so 

the (real) elastic properties at 800 K are not much different from those at 0 K. However 

it is not possible to know if the slope will be small for the potentials too. 
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FIG. A.2: Change in the elastic constants with temperature. Diamonds: c11, squares: c12 

and open triangles: c44. 

f) Summary 

First of all, two sets of parameters [Nakamura et al. 2000, Murugan and 

Ramachandran 1999] do not get the right bond length and cohesive energy for the ZnS 

structure. Therefore they were not included in our study. 

In the 6 remaining potentials, Smith and Ashu committed the same error: c is much 

smaller than d, which leads to almost no angular dependence and c44 and Young’s 

modulus are 0. This makes them useless: they get an elastic behavior closer to rubber 

than to III-V semiconductors. For GaAs, Sayed gives the best results for elasticity 

against Albe as the latter has a too weak c44. They give the same results for dimers but 

Sayed does not describe other structures very well, the “graphitic” structure for instance 

in very close in energy to the ZnS ground state. No comparison being possible for 

surfaces it is not really possible to decide which potential is best. For InAs, once Ashu is 

removed only one potential (Nordlund) remains. There are two “useable” potentials for 

GaAs and one only for InAs and AlAs. 
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Limitations of this work 

One issue is to find out how relevant Sayed potentials for GaAs and AlAs and 

Nordlund potential for InAs are for surfaces as results for surfaces are available for Albe 

potential (GaAs) only. Tersoff potentials for silicon did not reproduce both elasticity 

and surfaces well: T2 was good at surfaces but the bulk was too soft and for T3 the 

elasticity was correct but not surfaces. For surfaces, bonds need to be soft enough which 

correlates to a bad description of bulk elasticity. It is quite possible that a potential 

thought to be rather good (when judged on results for elasticity as done so far) describe 

surfaces poorly.  

Another issue is that in the bulk there are only III-V bonds while on surfaces there 

are also III-III and V-V bonds. As surfaces do not take only the III-V parameters into 

account, they also need pure III and pure V parameters. This implies that surfaces could 

be improved by modifying the pure III and/or pure V parameters without changing the 

III-V bonds. Albe and coworkers claim that their parametrization for pure gallium and 

pure arsenic give the right ground states for pure materials (which are rather exotic 

structures) but their description of surfaces is not very good. Surfaces could be 

improved by changing the Ga and As potentials but this may lead to a less accurate 

description of the pure phases. To people concerned with crystal growth (as opposed to 

Albe, Nordlund and their coworkers who study ion implantation), surface 

reconstructions should be more important than pure Ga or As so epitaxy people may be 

interested in modifying their parameters for pure materials. 
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3) Ionicity of III-V semiconductors 

a) Why ionicity in a covalent material? 

III-V semiconductors are mostly covalent but not only: their bonds are partly ionic. 

Even if in the bulk perfect crystal the ionicity is not very important (which remains to be 

checked), it can matter for surfaces and defects, that is when there can be III-III or V-V 

bonds. The potentials studied in the previous section do not take into account the ionic 

character of III-V semiconductors. We only found one potential taking this into account 

[Nakamura et al. 2000] but it is not thought through. Indeed they used the parameters 

from Smith, Sayed and Ashu and added ionicity to that. Potentials which do not 

explicitly account for ionicity fit covalent bonds to the real material, which includes 

ionicity. If explicit ionicity is added, it will get the bond length and cohesive energy 

wrong because the contribution of ionicity is double-counted (once implicitly in the fit 

to the total energy and once explicitly in the fit to the Coulombic energy). Also they do 

not clearly state how their parameters where obtained. Some of them where directly 

taken from Smith, Sayed or Ashu but this is not explicitly stated. Sometimes they used 

some of the parameters published by others but not all parameters. This near-plagiarism 

is another reason for not considering this work any further. 

b) Implementation of ionicity: the problem of long-range interactions 

Coulombic interactions die off as one over the distance, whereas covalent bonds are 

essentially local. A consequence is that the force on an atom has contributions from very 

remote atoms. Let a spherical shell of radius r and thickness δr. Its volume is 4 π r2 δr, 

hence the number of atoms in this shell scales as r2. Each of these atoms has a 

contribution to the ionic energy scaling as 1/r. Hence the total contribution of the shell 
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scales as r. This implies that the further away the shell, the larger its contribution. This 

is the opposite of covalent bonds for which only nearby atoms are bonded. 

In a simulation with periodic boundaries, the simulation cell is repeated infinitely. 

Therefore the system being simulated is infinite. Since the further away the shell is the 

larger its contribution, there cannot be a cut-off, i.e. it is not possible to take only atoms 

within some radius into account. All atoms must contribute to the energy of a given 

atoms, and calculating the energy of a given atom may take an infinite amount of time. 

Schemes have been designed to make the implementation of long-range interactions 

more efficient, the most famous of them is known as the Ewald sphere [Ewald 1921]. 

The ionicity contribution comes on top of the covalent bonding, which increases the 

computational cost of the simulation. Therefore ionicity should be included only if it 

appears that one cannot do without. 

c) Change in bond length due to ionicity 

The silicon dimer is shorter than the bond length of the bulk diamond cubic structure 

(2.24 Å vs. 2.35 Å) but it is the opposite for GaAs (2.53 Å vs. 2.44 Å) (see also the 

paragraph “dimers” in the previous section). Why is there such a difference between 

silicon and GaAs? A possible explanation is that GaAs is partly ionic and Si is purely 

covalent.  

The total internal energy, U, of an atom is given by 

 (r)U(r)UU(r) c0 +=  (A.10) 

where U0 is the covalent part of the energy and Uc the coulombic part:  

 
r 

Q
r ε  π4

q α(r)U
0

2

c −=−=  (A.11) 
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where α is the Madelung constant (see Table A.5). At equilibrium, 

 0
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Let r0 the value of the bond length at the minimum of the covalent energy (i.e. the bond 

length the crystal would adopt if it were purely covalent). We can write that for a mostly 

covalent material,  

 r = r0 + δr (A.13) 

with δr << r0. Expanding the derivative of U at r0 we get  
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Expression (A.14) is equal to 0 at equilibrium, leading to 
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structure dimer ZnS NaCl CsCl 

Madelung constant 1 1.638 1.7476 1.763 

k — 54.13
9
8 ≈  1 77.03

9
4 ≈  

BGaAs (GPa) — 76.5 90* 100* 

Table A.5: Madelung constant, geometric constant k and bulk modulus B for various 

structures. *: from Albe et al. 2002 

The atomic volume of a crystal 3krΩ =  where k is a geometric constant which 

depends on the structure only (see Table A.5 for numerical values). Hence 

2422 drr9kdΩ = . From the definition of the bulk modulus, 
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Inserting this in equation (A.15) leads to 

 
B rk  9
)(rUδr 2

0

0c= . (A.17) 

Equation (A.17) shows that δr is always negative (Uc is negative) and that its magnitude 

is larger for softer materials or structures. Therefore we expect the dimer to contract 

more than the bulk crystals.  

d) Summary 

The partial charge on Ga and As atoms in Ga+q As-q is q = 0.2 e or q = 0.4 e where e 

is the charge of the electron. The literature [Blakemore 1982 and references therein] is 

not clear about this: it is hard to know if 0.4 e is the charge or the difference of charges 

(q = 0.4 e or 2q = 0.4 e). For GaAs (assuming a charge of 0.2 e for both ZnS and 

dimers), the dimer would be shortened by less than 0.02 Å. Thus ionicity cannot explain 

why the dimer is longer than the bond length of the bulk ZnS structure (2.53 Å vs. 2.44 

Å).  

It is worth noticing that ionicity may matter for the electron-counting rule i.e. for 

reconstructions. However surfaces are generally not well described even for silicon 

[Balamane et al. 1992] for which there is no ionicity at all (this seems to be due to the 

inaccurate angular dependence). 

The issue of ionicity is two-fold: is it important and is it complicated? Only the first 

question was dealt with above. The second question is related to techniques to 

implement coulombic interactions, the most famous being the Ewald summation [Ewald 

1921]. The Ewald summation is time consuming, so nobody would want to implement it 
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if ionicity is not really needed. If other techniques can make the CPU consumption drop, 

it could be implemented even if we are not sure ionicity is absolutely necessary (when 

something is cheap you can buy it even if you are not sure you will ever use it). 

However one big problem would remain: no potential is fitted taking ionicity into 

account. Therefore whoever wants to simulate III-V semiconductor accounting for 

ionicity will have to fit the parameters. 

4) Summary 

For GaAs, only two potentials have fair values for bond length, cohesive energy and 

elasticity in the ZnS structure. Sayed gives the best results for elasticity against Albe as 

the latter has a too weak c44. No comparison being possible for surfaces it is not really 

possible to decide which potential is best. For InAs and AlAs, only Nordlund’s potential 

gives good enough results. There are two “useable” potentials for GaAs and one only 

for InAs and AlAs. 

There has not been any decent attempt at incorporating coulombic interactions into 

the potential. It is not clear whether ionicity would be an improvement worth the 

computational cost of long-range interactions. 
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