LA VOLATILITE STOCHASTIQUE DES MARCHES FINANCIERS : UNE APPLICATION AUX MODELES D’ÉVALUATION D’INSTRUMENTS OPTIONNELS EN TEMPS CONTINU

Alex Sy

To cite this version:

HAL Id: tel-00006151
https://tel.archives-ouvertes.fr/tel-00006151
Submitted on 27 May 2004

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
THÈSE DE DOCTORAT EN SCIENCES DE GESTION

présentée par

Alex Soukprasong SY

LA VOLATILITÉ STOCHASTIQUE DES MARCHÉS FINANCIERS : UNE APPLICATION AUX MODÈLES D’ÉVALUATION D’INSTRUMENTS OPTIONNELS EN TEMPS CONTINU

Effet d’une fréquence aléatoire de sauts de rentabilité dans un modèle analytique avec sauts, volatilité et taux stochastiques

Soutenue publiquement le 11 décembre 2003 devant le jury composé de :

Professeur Pierre BATTEAU
Université Aix-Marseille III, Suffragant

Professeur Pierre CHOLLET
Université Aix-Marseille II, Suffragant

Professeur Roland GILLET
Université Paris I, Rapporteur

Professeur François QUITTARD-PINON
Université Lyon I, Rapporteur

Professeur Patrick ROUSSEAU
Université Aix-Marseille III, Directeur de thèse
LA VOLATILITÉ STOCHASTIQUE DES MARCHÉS FINANCIERS : UNE APPLICATION AUX MODÈLES D’ÉVALUATION D’INSTRUMENTS OPTIONNELS EN TEMPS CONTINU†

Effet d’une fréquence aléatoire de sauts de rentabilité dans un modèle analytique avec sauts, volatilité et taux stochastiques

Alex Soukprasong SY*

† L’Université n’entend donner aucune approbation, ni improbation aux opinions émises dans cette publication : ces opinions doivent être considérées comme propres à leur auteur.
* Toute correspondance peut être adressée par e-mail à alex.sy@engineer.com
À ma famille, pour leur soutien sans faille et leur orgueil
dans mes détours fréquents dans des directions inexplicables.
Tout particulièrement, à mes parents [...]

À la mémoire de ma grand-mère [...]

À Sylvette et à Guy [...]

Remerciements

Terrible exercice que celui des remerciements !
Je vais essayer de m’en acquitter avec sincérité et justesse.

Ce mémoire est l’aboutissement de trois années de thèse. Je tiens, avant toute chose, à exprimer mes vifs remerciements à celles et ceux qui en ont permis la progression ou l’aboutissement, directement ou indirectement.

Mes pensées vont tout d’abord à mes grands-parents, qui m’ont permis de connaître leurs enfants, à mes parents, qui ont tant contribué à ce que je puisse poursuivre des études et qui m’ont soutenu tout au long de celles-ci. Je leur adresse toute mon affection et leur dédie ce travail.

Je tiens à remercier vivement Monsieur le Professeur Patrick ROUSSEAU. Après m’avoir fait l’honneur d’accepter la direction de cette thèse, il m’a accordé sa confiance en me laissant une grande liberté de pensée et d’action, tout en me faisant part de ses avis, conseils et suggestions. Je lui dois notamment le titre de la thèse.

Messeurs les Professeurs Roland GILLET et François QUITTARD-PINON ont gracieusement accepté d’être rapporteurs, lourde tâche s’il en est... Messieurs les Professeurs Pierre BATTEAU et Pierre CHOLLET se sont associés au jury. Je les remercie tous vivement de s’intéresser à mon travail en acceptant de le juger.

Mon cheminement avant et pendant la thèse s’est déroulé sous l’influence de nombreuses personnes que je ne pourrais toutes citer. L’ombre de Monsieur Gérard SALUT, Directeur de Recherche au CNRS (LAAS-UPR 8001) plane sur cette thèse : j’ai eu le privilège de l’avoir comme maître et sa rigueur intellectuelle, son don à imaginer des solutions inédites et son côté perfectionniste insatisfait ont profondément marqué l’étudiant en DEA que j’étais. Si j’arrive à m’approcher un peu de son talent, c’est que j’aurais réussi à faire le métier de chercheur proprement.

Je remercie Monsieur le Professeur Gurpid BAKSHI pour les discussions intrucives qui m’ont donné une base de réflexion sur les modèles à sauts et à volatilité stochastique et sur leur implémentation.

Monsieur le Professeur Robert ENGLE m’a fourni de précieux conseils concernant les stratégies de couverture des portefeuilles d’options. Que ces quelques mots soient pour
lui un témoignage de ma gratitude.

L’idée de certaines simulations du chapitre 5 m’a été soufflée par Monsieur le Professeur Pierre CHOLLET, qui m’a accompagné lors de mes premiers contacts avec les modèles d’évaluation des options à volatilité stochastique. Qu’il en soit remercié.

Je remercie Monsieur Stanimir IAKOV de la Société Générale, qui m’a éclairé au sujet des approches empiriques, en me rappelant sans cesse le point de vue des praticiens, et notre collaboration a été fructueuse.

J’adresse mes vifs remerciements à Monsieur Stan LEIMER du CBOE, pour avoir autorisé mon accès à une partie des données qui ont servi aux études empiriques.

Les avis et critiques des références anonymes des revues auxquelles j’ai soumis différents résultats de la thèse ont permis d’améliorer significativement la rédaction des chapitres 2, 4 et 6.

Sans la contribution de Mesdames Catherine BERNARDO et Michelle COMBE, je n’aurais certes pas pu obtenir toute la documentation souhaitée. Je pense tout particulièrement à l’article de Heston (1993), qui m’a donné l’idée du modèle SVSISJ.

Mesdemoiselles Marie-Laure BUSSON, Sokha CHAU et Sarah MACHAT m’ont offert une relecture attentionnée et critique du manuscrit : je leur suis reconnaissant de ce travail ingrat dont elles se sont acquittées avec sourire et bonne humeur.

Je veux remercier très amicalement Madame Edith MARTIN, qui a été un soutien moral sans faille depuis le premier jour où elle m’a accueilli dans les locaux de l’institut ainsi que mes collègues et amis thésards, qu’ils soient au centre de recherche ou dans d’autres laboratoires. Je pense en particulier à Rébiha MEYSSONNIER, Géraldine RIPERT, Bellacem BERRAHAL, Robert HATEGKIMANA et Frédéric MOSER. Bon vent, chers Thélémites, qui êtes, doctorants, la quintessence de l’état d’étudiant et merci pour vos conseils pratiques, vos impulsions périodiques de "remotivation", et autres,…

et encore, cette liste n’est pas close, puisque la soutenance n’est prévue que dans deux mois. Qu’ils se le disent...

Enfin, last but not least et dans un tout autre registre, je ne saurais oublier Monsieur Guy MAYNARD DE LAVALETTE, ICT au Centre Technique des Systèmes Navals, DGA, envers qui j’ai accumulé une dette inestimable : après m’avoir accordé sa confiance totale, il m’a poussé à m’ouvrir à la recherche scientifique. Mon estime pour lui reste intacte. Je lui dédie cette thèse qu’il aurait préféré, je le sais, dans le domaine du traitement de signal RADAR. Mais qui sait (...) ? J’espère sincèrement que les propos de cette thèse l’intéresseront.

Alex Soukprasong SY
Octobre 2003
Résumé

L'excès de kurtosis, l'effet smile de la volatilité sont devenus des faits d'expérience omniprésents dans la finance de marché et sont clairement acquis, au sens d'une connaissance commune, pour la communauté académique. Cette thèse de doctorat propose un modèle d'évaluation des options avec sauts, volatilité et taux d'intérêt stochastiques, dont la solution analytique généralise les formules de Black & Scholes (1973), Heston (1993), Bates (1996) et Bakshi, Cao & Chen (1997). Après avoir exploré empiriquement la capacité des schémas déterministes autorégressifs GARCH à modéliser la structure par terme de la volatilité de l'indice S&P 500 sur le CBOE, la volatilité stochastique devient le cœur probabiliste du paradigme d'incomplétude des marchés. Mais faire de la volatilité stochastique ne permet pas encore de capturer les grandes valeurs de kurtosis pour les options à échéance courte. Le problème leptokurtique est alors résolu par l'adoption d'une classe de distributions générées par des processus de diffusion à sauts, faisant apparaître la pertinence d'une fréquence aléatoire des sauts poissonnien dans le processus des rentabilités, à travers l'évaluation et la couverture d'options européennes négociables sur le CBOE. Par ailleurs, une extension académique du modèle au cas où les dividendes sont constants ou stochastiques est proposée.

Mot-clés : évaluation analytique des options, marché incomplet, leptokurticité, smile de volatilité, processus d'Ito, processus markoviens, volatilité GARCH, volatilité stochastique, taux d'intérêt stochastiques, sauts poissonnien à fréquence et amplitude stochastiques, dividendes stochastiques, transformée de Fourier.

Abstract

The excess kurtosis, the volatility smile have become the so-called "stylized facts" of the market finance and are included in the "common knowledge" of academic community. This PhD thesis proposes an option valuation model allowing for stochastic volatility and stochastic interest rate, whose closed-form solution generalizes the formulas of Black & Scholes (1973), Heston (1993), Bates (1996) and Bakshi, Cao & Chen (1997). After having explored the relevancy of the GARCH deterministic autoregressive schemes in modeling the volatility term structure of the CBOE S&P 500 index, the stochastic volatility arises as the probabilistic core of the incomplete markets paradigm. But, making volatility stochastic is not enough to explain the excess kurtosis of the short-term options. The "leptokurtic issue" is solved by adopting a class of distributions generated by processes allowing for brownian as well as point increments, pointing out on the relevancy of a stochastic jump rate in the return process, using an approach consisting of pricing and hedging european options traded on the CBOE. Moreover, an academic extension of the model, allowing for constant or stochastic dividends is also developed.

Key-words : analytic option pricing, incomplet market, leptokurtosis, volatility smile, Itô process, markovian process, GARCH volatility, stochastic volatility, stochastic interest rate, poissonian jumps with stochastic rate and stochastic magnitude, stochastic dividends, Fourier transform.
Sommaire

INTRODUCTION GÉNÉRALE

partie I LA VOLATILITÉ : ÉLÉMENT CLÉ DANS DANS LA PROBLÉMATIQUE DE L’ÉVALUATION DES OPTIONS 27

1. Problématique et enjeux de la théorie de l’évaluation des options ... 28
 1.1 Introduction : fondements historiques et modèle de Black & Scholes ... 29
 1.2 Quelques faits stylisés du comportement des rentabilités empiriques ... 31
 1.2.1 L’excès de kurtosis ... 31
 1.2.2 Le "phénomène de clustering" de la volatilité ... 33
 1.2.3 L’effet de levier ... 34
 1.3 "Vivre avec la formule de Black & Scholes" dans la pratique : les tricks of trade ... 35
 1.3.1 Le taux de rentabilité d’une obligation zéro-coupon comme approximation du taux d’intérêt ... 36
 1.3.2 La volatilité implicite comme approximation de la volatilité ... 37
 1.4 L’effet smile de la volatilité implicite ... 40
 1.4.1 L’intégration pratique du smile dans l’évaluation des options ... 43
 1.4.2 Les approches théoriques ... 53
 1.5 La quête de la leptokurticité dans le processus des rentabilités ... 56
 1.5.1 L’approche des processus de Lévy ... 56
 1.5.2 L’approche de la volatilité GARCH ... 64
 1.5.3 L’approche de la volatilité stochastique ... 66
 1.6 Conclusion ... 71

2. La volatilité par les modèles GARCH : examen empirique sur le CBOE 73
 2.1 Introduction : objectifs de l’étude empirique ... 74
 2.2 La volatilité par les modèles GARCH ... 76
 2.2.1 Le modèle GARCH(1,1) ... 76
2.2.2 Le modèle GARCH de Glosten, Jagannathan & Runkle 77
2.2.3 Le modèle GARCH à composantes de Engle & Lee 77
2.3 Structure par terme de la volatilité au sens de la classe GARCH 79
2.3.1 La structure par terme de la volatilité GARCH(1,1) 81
2.3.2 La structure par terme de la volatilité GJR 82
2.3.3 La structure par terme de la volatilité GCOMP 82
2.4 Paramètres de couverture dans un environnement de volatilité GARCH 82
2.5 Application à la gestion de portefeuille de straddles 88
2.5.1 Données et méthodologie de l'étude empirique 88
2.5.2 Résultats et interprétations 91
2.6 Conclusion ... 101

3. Analyse critique des modèles d'évaluation en temps continu à volatilité stochastique de la littérature 103
3.1 Introduction : volatilité stochastique et incomplétude des marchés 104
3.2 Les modèles à "pure volatilité stochastique" 105
3.2.1 Les modèles de Hull & White 105
3.2.2 Le modèle de Heston .. 111
3.2.3 Le modèle de Schöbel & Zhu 114
3.3 Le modèle à sauts et à volatilité stochastique de Bates 117
3.4 Le modèle à sauts, à volatilité et taux d'intérêt stochastiques de Bakshi,
Cao & Chen ... 120
3.5 Synthèse : relations entre les modèles d'évaluation à temps continu 130
3.5.1 Des modèles d'équilibre fondés sur la consommation 132
3.5.2 Une approche "Equivalent Martingale Measure" commune 133
3.6 Conclusion ... 134

partie II ÉVALUATION ET COUVERTURE DES OPTIONS A QUATRE FACTEURS STOCHASTIQUES 136

4. Proposition du modèle SVSISJ à sauts, volatilité et taux stochastiques 137
4.1 Introduction : raison d'être du modèle SVSISJ 138
4.2 Le cas sans dividende ... 141
4.2.1 Spécification du modèle d'équilibre SVSISJ et cadre mathématique 141
4.2.2 Le premium solution du modèle d'équilibre 150
4.2.3 Le modèle SVSISJ comme généralisation des modèles en temps continu de la littérature ... 162
4.3 Extension au cas avec dividendes 167
4.3.1 Spécification du modèle d'équilibre SVISISDSJ et cadre mathématique 168
4.3.2 Le premium solution du modèle d'équilibre 175
4.3.3 Étude de cas particuliers 179
4.4 Dérivation des paramètres de sensibilité 179
CONCLUSION GÉNÉRALE ET PERSPECTIVES

RÉFÉRENCES BIBLIOGRAPHIQUES

ANNEXES

A. Résolution des modèles SVSISJ et SSVSIDSJ
B. Méthodes numériques d’optimisation statique et non linéaire 275
 B.1 Algorithme du gradient ... 275
 B.2 Algorithme des moments simulés 277

C. La transformée de Fourier d’un premium d’option 281
 C.1 Simplification de la transformée de Fourier d’un premium d’option 281
 C.2 Considérations algorithmiques : optimisation par FFT 284
Liste des simulations et illustrations

<table>
<thead>
<tr>
<th>Section</th>
<th>Titre</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>Problématique du concept de volatilité</td>
<td>22</td>
</tr>
<tr>
<td>0.2</td>
<td>Problématique de la thèse</td>
<td>22</td>
</tr>
<tr>
<td>0.3</td>
<td>Enjeux de la thèse</td>
<td>23</td>
</tr>
<tr>
<td>1.1</td>
<td>Distribution empirique des rentabilités du S&P500 (02/03/1970-29/12/2000)</td>
<td>33</td>
</tr>
<tr>
<td>1.2</td>
<td>Evolution des rentabilités du S&P500 (02/03/1970-29/12/2000)</td>
<td>34</td>
</tr>
<tr>
<td>1.4</td>
<td>Effet smile de la volatilité implicite du S&P500 observé sur le CBOE</td>
<td>41</td>
</tr>
<tr>
<td>1.5</td>
<td>Gestion du smile de la volatilité - modèle conceptuel de Natenberg (1994)</td>
<td>43</td>
</tr>
<tr>
<td>1.6</td>
<td>Exemple de niveau de la volatilité implicite d’un call en fonction du prix d’exercice</td>
<td>45</td>
</tr>
<tr>
<td>1.7</td>
<td>Exemples de smile de la volatilité corrigée en fonction des variations du sous-jacent</td>
<td>46</td>
</tr>
<tr>
<td>1.8</td>
<td>Exemples de smile de la volatilité corrigée en fonction des variations du sous-jacent et de la maturité</td>
<td>47</td>
</tr>
<tr>
<td>1.9</td>
<td>Exemples de smile de la volatilité corrigée en input du Black & Scholes</td>
<td>48</td>
</tr>
<tr>
<td>1.10</td>
<td>Gestion du smile de la volatilité par la matrice des volatilités</td>
<td>49</td>
</tr>
<tr>
<td>1.11</td>
<td>Effet de l’exposant caractéristique sur la densité de probabilité d’une loi stable</td>
<td>61</td>
</tr>
<tr>
<td>1.12</td>
<td>Simulation numérique d’un mouvement brownien</td>
<td>68</td>
</tr>
<tr>
<td>2.1</td>
<td>Exemple de profil de gain d’un straddle</td>
<td>89</td>
</tr>
<tr>
<td>2.2</td>
<td>Cours et rentabilités de l’indice S&P500 (02/01/1996-22/06/2001)</td>
<td>93</td>
</tr>
<tr>
<td>2.3</td>
<td>Diagramme QQ "detrended" des rentabilités inter-journalières de l’indice S&P500 (02/01/96-22/06/01)</td>
<td>94</td>
</tr>
<tr>
<td>2.4</td>
<td>Structure par terme de la volatilité estimée (GARCH(1,1) vs GJR vs GCOMP)</td>
<td>97</td>
</tr>
<tr>
<td>2.5</td>
<td>Evolution temporelle des paramètres de couverture (GARCH(1,1) vs GJR vs GCOMP)</td>
<td>98</td>
</tr>
<tr>
<td>3.1</td>
<td>Corrélation entre rentabilités et volatilité du S&P500 (03/02/1970-25/06/2001)</td>
<td>109</td>
</tr>
<tr>
<td>3.2</td>
<td>Relations entre les modèles d’évaluation en temps continu</td>
<td>131</td>
</tr>
<tr>
<td>5.1</td>
<td>Exemple de trois trajectoires suivies par un mouvement brownien géométrique</td>
<td>185</td>
</tr>
<tr>
<td>5.2</td>
<td>Exemple de trois trajectoires suivies par un processus de diffusion "OU"</td>
<td>186</td>
</tr>
</tbody>
</table>
5.3 Exemple de trois trajectoires suivies par un processus à retour vers la moyenne "racine-carrée" ... 188
5.4 Exemple de trois trajectoires suivies par un processus ponctuel marqué .. 190
5.5 Densité de probabilité qu’un saut survienne au cours de l’intervalle \([0,t]\) (Variations sur la fréquence des sauts) .. 192
5.6 Exemple de trois trajectoires suivies par un processus mixte à diffusion "racine-carrée" et à sauts d’occurrence déterministe (basse fréquence) ... 194
5.7 Exemple de trois trajectoires suivies par un processus mixte à diffusion "racine-carrée" et à sauts d’occurrence déterministe (haute fréquence) ... 194
5.8 Exemple de trois trajectoires suivies par un processus mixte à diffusion "racine-carrée" et à sauts d’occurrence aléatoire ... 195
5.9 Exemple de rentabilités générées par un processus mixte à diffusion "racine-carrée"/ponctuel ... 196
5.10 Exemple de distributions de rentabilités générées par un processus mixte ... 197
5.11 Différence de *premia des calls* entre les modèles *S* et Black & Scholes (variations sur la dérive de la variance) ... 199
5.12 Différence de *premia des calls* entre les modèles *S* et Black & Scholes \((\mu_v = 10^{-1})\) .. 200
5.13 Différence de *premia des calls* entre les modèles *S* et Black & Scholes \((\mu_v = 0.5)\) .. 200
5.14 Différence de *premia des calls* entre les modèles *S* et Black & Scholes (variations sur la volatilité de la variance) ... 202
5.15 Différence de *premia des calls* entre les modèles *S* et Black & Scholes \((\sigma_v = 2)\) .. 203
5.16 Différence de *premia des calls* entre les modèles *S* et Black & Scholes \((\sigma_v = 3)\) .. 203
5.17 Différence de *premia des calls* entre les modèles *S* et Black & Scholes (variations sur la maturité) .. 205
5.18 Différence de *premia des calls* entre les modèles *S* et Black & Scholes (variations sur la corrélation) .. 206
5.19 Structure par terme typique de la volatilité implicite au modèle *SVSISJ* \((\rho_{s,v} = -0.5)\) .. 208
5.20 Structure par terme typique de la volatilité implicite au modèle *SVSISJ* \((\rho_{s,v} = 0.5)\) .. 209
5.21 Comparaison entre *premia de call* de Black & Scholes et *call SVSISJ* .. 211
5.22 Allure typique d’un *call* évalué au sens du modèle *SVSISJ* .. 211

6.1 Cotations intra-journalières de l’indice S&P500 \((06/08/01-10/08/01)\) .. 221
6.2 Diagrammes QQ et QQ "detrended" des rentabilités intra-journalières de l’indice S&P500 \((06/08/01-10/08/01)\) .. 222
6.3 Variance implicite dans les *premia des calls* et variance "reconstituée" de *SVSISJ* 227
6.4 Variance implicite dans les *premia des calls* et variance "reconstituée" de BCC . 228
6.5 Evolution des *premia* théoriques et observées des *calls* \((\tau < 30)\) .. 230
6.6 Evolution des *premia* théoriques et observées des *calls* \((30 \leq \tau \leq 60)\) .. 231
6.7 Evolution des *premia* théoriques et observées des *calls* \((60 < \tau \leq 180)\) .. 231
6.8 Erreur relative en % d’évaluation des *premia des calls* de BS .. 232
6.9 Erreur relative en % d'évaluation des *premium* des *calls* de BCC 233
6.10 Erreur relative en % d'évaluation des *premium* des *calls* de SVSISJ 233
6.11 Ecarts types des valeurs de portefeuille de couverture *delta*- neutre ($\tau < 30$) . . 240
6.12 Ecarts types des valeurs de portefeuille de couverture *delta*- neutre ($30 \leq \tau \leq 60$) 241
6.13 Ecarts types des valeurs de portefeuille de couverture *delta*- neutre ($60 \leq \tau \leq 180$) 241

B.1 Algorithme de l’approximation de $\mathbb{E}(C(V_t, \Phi^Q))$ 279
Liste des tableaux

1.1 Exemple d’une matrice des volatilités (source : Hull (2002) [135], p. 336) 50
1.2 Exemples de modèles à volatilité GARCH 66

2.1 Facteur d’ajustement des modèles GARCH(1,1), GJR et GCOMP 87
2.2 Statistiques descriptives des rentabilités inter-journalières du S&P500 (02/01/1996-22/06/2001) ... 92
2.3 Statistiques comparatives des modèles GARCH(1,1), GJR et GCOMP 95
2.4 Réduction de la variance des valeurs de portefeuilles de couverture 99
2.5 Significativité statistique des tests de couverture (GARCH(1,1) vs GJR vs GCOMP) 99
2.6 Erreur de couverture (GARCH(1,1) vs GJR vs GCOMP) 100

3.1 Exemples de modèles stochastiques de la dynamique des taux d’intérêt 123
3.2 Exemples de modèles stochastiques de la dynamique des taux d’intérêt (suite et fin) ... 124
3.3 Exemples de modèles en temps continu à volatilité stochastique 132

6.1 Statistiques des rentabilités intra-journalières du S&P500 (06/08/01-10/08/01) .. 221
6.2 Procédure in-sample - Estimation des paramètres structurels 224
6.3 Cohérence interne des paramètres de corrélation et variance 226
6.4 Procédure out-of-sample- erreurs d’évaluation 229
6.5 Performance dynamique en couverture - Critère du minimum de variance ... 240
6.6 Significativité statistique des tests de couverture (SV/SJ vs BS) 243
6.7 Significativité statistique des tests de couverture (SV/SJ vs BCC) 243
Liste des notations & conventions

<table>
<thead>
<tr>
<th>Symbole</th>
<th>Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{N})</td>
<td>Corps des entiers naturels</td>
</tr>
<tr>
<td>(\mathbb{R})</td>
<td>Corps des réels</td>
</tr>
<tr>
<td>(\mathbb{C})</td>
<td>Corps des complexes</td>
</tr>
<tr>
<td>(\mathcal{M}_{n,p}(\mathbb{R}))</td>
<td>Espace vectoriel des matrices à (n) lignes et (p) colonnes sur (\mathbb{R})</td>
</tr>
<tr>
<td>(\mathbb{L}^2(\mathbb{R}))</td>
<td>Espace de Hilbert des fonctions réelles et de carré intégrable</td>
</tr>
<tr>
<td>((\mathbb{R}, T, \mathbb{P}))</td>
<td>Espace probabilisé muni de la mesure de probabilité (\mathbb{P})</td>
</tr>
<tr>
<td>(i)</td>
<td>Unité imaginaire solution de (x^2 + 1 = 0) dans (\mathbb{C})</td>
</tr>
<tr>
<td>(\text{Re}(X))</td>
<td>Partie réelle de (X)</td>
</tr>
<tr>
<td>(f_X(t))</td>
<td>Transformée de Fourier de (X) ou fonction caractéristique de (X)</td>
</tr>
<tr>
<td>(W_t, z_t)</td>
<td>Processus de Wiener standard</td>
</tr>
<tr>
<td>(N_t)</td>
<td>Processus de Poisson</td>
</tr>
<tr>
<td>(\pi_t)</td>
<td>Processus ponctuel ou processus de Poisson hybride</td>
</tr>
<tr>
<td>(\mathcal{N}(x, y^2))</td>
<td>Loi normale à moyenne (x) et à variance (y^2)</td>
</tr>
<tr>
<td>(\mathcal{S}_{\nu,\beta}(\gamma, \delta))</td>
<td>Loi (\nu)-stable de Lévy à exposant caractéristique (\nu), à paramètre d’asymétrie (\beta), à paramètre de localisation (\delta) et à paramètre d’échelle (\gamma)</td>
</tr>
<tr>
<td>(\mathcal{P}(\lambda))</td>
<td>Loi de Poisson à paramètre (\lambda)</td>
</tr>
<tr>
<td>(G_{\xi,\sigma})</td>
<td>Distribution de Pareto généralisée à paramètre de forme (\xi) et à paramètre d’échelle (\sigma)</td>
</tr>
<tr>
<td>(\Pr(X))</td>
<td>Probabilité que l’événement (X) survienne</td>
</tr>
<tr>
<td>(\mathbb{E}^X)</td>
<td>Opérateur espérance sous la mesure de probabilité (X)</td>
</tr>
<tr>
<td>(\mathbb{V}_{ar}^X)</td>
<td>Opérateur variance sous la mesure de probabilité (X)</td>
</tr>
<tr>
<td>(tr)</td>
<td>Opérateur trace</td>
</tr>
<tr>
<td>(\text{diag}(X))</td>
<td>Matrice diagonale de diagonale (X)</td>
</tr>
<tr>
<td>(\text{rg}(X))</td>
<td>Rang de la matrice (X)</td>
</tr>
<tr>
<td>(X')</td>
<td>Transposée de (X)</td>
</tr>
<tr>
<td>(\bar{X})</td>
<td>Valeur moyenne de (X)</td>
</tr>
<tr>
<td>(\sinh(.))</td>
<td>Fonction sinus hyperbolique</td>
</tr>
<tr>
<td>(\cosh(.))</td>
<td>Fonction cosinus hyperbolique</td>
</tr>
</tbody>
</table>
\(\hat{C} \) Cours observé du call sur le marché
\(C^X \) Premium du call calculé par le modèle \(X \)
\(r_t(\cdot) \) Fonction rentabilité
\(S \) Cours de l’actif sous-jacent
\(V \) Variance instantanée
\(\sigma \) Volatilité instantanée
\(R \) Taux d’intérêt
\(\lambda_S \) Fréquence des sauts de rentabilités du sous-jacent
\(K \) Prix d’exercice de l’option
\(T \) Date d’échéance de l’option
\(\tau \) Maturité (durée de vie restante jusqu’à expiration) de l’option

\(l_X \) Prime de risque rémunérée pour le risque de variable aléatoire \(X \)
\(\mu_X \) Niveau moyen à long terme de \(X \)
\(\gamma_X \) Vitesse de return vers la moyenne de \(X \)
\(\sigma_X \) Coefficient de variation de \(X \)
\(\rho_{XY} \) Coefficient de corrélation entre \(X \) et \(Y \)
\(\Delta^X \delta \)
\(\Delta^X \psi \)
\(\Delta^X \theta \)
\(\Gamma^X \gamma \)

Notes :
- J’indique par \(t \) toute entité fonction du temps. À l’inverse, toute entité non indiquée par \(t \) désigne une constante.
- J’explicité les arguments des fonctionnelles à chaque fois que leur écriture n’est pas trop "lourde".
INTRODUCTION GÉNÉRALE

Fortes de ce constat, plusieurs directions de recherche sont avancées pour résoudre ces problèmes : les lois -stables de Lévy [159], les modèles autorégressifs ARCH (*Auto Regressive Conditional Heteroskedasticity*) de type paramétrique, introduits par Engle (1982) [87] et la modélisation non déterministe de la volatilité qui s’appuie sur les travaux de Bachelier (1900) [12]. Cependant, les loi -stables sont incapables de fournir directement une équation régissant l’évolution des cours et peuvent présenter un coefficient de *kurtosis* non stable. Quant aux modèles ARCH, les objections que l’on peut formuler à leur rencontre sont, d’une part, leur schéma déterministe, d’autre part et surtout, le fait qu’ils ne sont que des représentations statistiques. L’approche alternative naturelle conduit à faire de la volatilité une variable aléatoire. De plus, la modélisation stochastique de la volatilité permet d’expliquer les traditionnels effets "smile" et "smirk" présents dans les marchés financiers (Renault (1997) [196]).

Plusieurs modèles d’évaluation des options s’attachent à intégrer le caractère stochastique de cette volatilité. Celle-ci n’étant pas une entité directement observable sur le marché, tous ces modèles nécessitent l’estimation des divers paramètres rentrant en jeu dans la modélisation des processus du cours boursier de l’actif sous-jacent et de sa volatilité. Par ailleurs, parce qu’il n’existe pas d’actif négociable avec lequel le risque de volatilité pourrait être diversifié, la volatilité stochastique crée une situation d’incomplé-
tude des marchés, avec notamment, comme conséquence, des *premia* non uniques pour une option donnée. Ce double problème, estimation de la volatilité et incomplétude des marchés, constitue la problématique de tous les modèles d'évaluation des options à volatilité stochastique.

Parmi tous les modèles à volatilité stochastique, le plus populaire reste celui de Hull & White (1987) [132] : il est possible d'approcher analytiquement le *premium* des options européennes sur actions ne distribuant aucun dividende, comme l'espérance mathématique de la formule de Black & Scholes (1973). Cependant, les deux hypothèses maîtresses qui fondent le modèle de Hull & White, à savoir l'hypothèse de non corrélation entre le cours et la volatilité de l'actif support et l'hypothèse de nullité de la prime de risque de la volatilité, sont difficilement crédibles. L'inconfort généré par ces deux hypothèses conduit à l'émergence d'une classe de modèles avec volatilité stochastique, à *premia* analytiques, tenant compte d'une corrélation entre cours et volatilité du support et de la rémunération d'une prime de risque pour la volatilité. Cette classe de modèles comprend, entre autres, les modèles de Heston (1993) [126], Bates (1996) [24], Bakshi, Cao & Chen (1997) [16].

Il est indiscutable que les modèles à volatilité stochastique aboutissent à une meilleure description de la dynamique suivie par le cours de l'actif sous-jacent sur lequel repose l'option d'achat ou de vente, que les modèles "conventionnels" à volatilité constante ou déterministe de Black & Scholes (1973) ou Merton (1976) [175]. De ce fait, les modèles alternatifs à ces modèles de référence peuvent prétendre à une évaluation plus fidèle des *premia* et conduire à une efficacité accrue en termes de couverture de positions d'options... En effet, cette suprématie revendiquée provient principalement de leur capacité à relier la dynamique de la volatilité à des facteurs externes ou internes du processus gouvernant les cours des actifs. De surcroît, dans leur écriture la plus évoluée, les modèles alternatifs tiennent compte de la prime de risque rémunérée par le marché aux actifs en raison de leur variabilité, ladite prime de risque remplissant le rôle d'indicateur de l'attitude des agents face au risque. Ainsi, ces modèles s'avèrent-ils aptes à maîtriser un grand nombre de facteurs reflétant la réalité des marchés. Par exemple, l'étude empirique menée par Bakshi, Cao & Chen (1997) sur la base d'options sur indice S&P 500 cotées sur le CBOE, a permis de montrer que l'introduction d'un processus stochastique à retour vers la moyenne de type racine-carrée améliore la qualité d'évaluation des options à maturité longue, tandis que l'introduction d'une composante à sauts poissonniers à occurrence déterministe dans le processus de diffusion des rentabilités du sous-jacent, améliore la qualité d'évaluation des options à maturité courte.

Cependant, l'effet escompté par l'introduction de cette composante discontinue disparaît lorsque la maturité de l'option à évaluer augmente. Autrement dit, lorsque la maturité de l'option est suffisamment grande, le processus mixte qu'ont adopté Bakshi, Cao & Chen (1997) pour modéliser les rentabilités du support, se comporte comme un processus de diffusion pure ne générant pas l'excès de kurtosis attendu. Selon Das & Sundaram (1999) [72], cet avatar concerne les options dont la maturité excède trois mois. Par ailleurs, Ball

& Torous (1985) [22] avaient laissé à penser que la présence de sauts dans le processus n’influencait que faiblement les premia des calls portant sur les trente actions examinées par les auteurs. Cette pierre, jetée en défaveur de la thèse des processus mixtes de diffusion à sauts, n’invalidait en rien la pertinence de la composante poissonienne. Au contraire, elle appelle à reconsidérer de plus près la nature des sauts, notamment à réfléchir sur la nature des variations dans le temps de l’amplitude des sauts, ou encore sur l’hypothèse de constance, et plus généralement de déterminisme de l’occurrence des sauts : peut-on supposer que la fréquence des sauts est déterministe ? Cette question jette les bases de mon travail.

D’un autre côté, les modèles alternatifs présentés par Bakshi, Cao & Chen (1997), à volatilité stochastique (SV), à volatilité et à taux d’intérêt stochastiques (SVSI), à volatilité stochastique et à sauts poissonniers dans le processus des rentabilités (SVJ) "...systematically overprice OTM\(^1\) calls while they underprice ITM\(^2\) calls. But the magnitude of such mispricing varies dramatically across the models, with the Black and Scholes producing the highest and the SVJ the lowest errors", reconnaissent les auteurs. L’existence de biais systématiques dans l’évaluation des options d’achat "en dehors de la monnaie" et des options d’achat "dans la monnaie" est rapportée par Duffie, Pan & Singleton (2000) [79] : "Bakshi, Cao & Chen (1997) found that their SVJ model (jumps in returns) systematically overprice OTM calls".

En réalité, concernant les options "à la monnaie" (ATM), ni Duffie, Pan & Singleton (2000), ni Bakshi, Cao & Chen (1997), n’ont rapporté explicitement leur analyse, mais en regardant leurs résultats empiriques\(^3\), on s’aperçoit que le biais systématique concerne également les options "à la monnaie", puisque lorsque le cours du support est compris entre 97% et 103% du prix d’exercice, les modèles ont tendance à donner des erreurs relatives négatives, signifiant que les modèles SV, SVSI, SVJ tendent à surévaluer les options ATM.

\(^{1}\) out-of-the-money.

\(^{2}\) in-the-money.

\(^{3}\) Cf. le tableau V page 2029 de l’article de Bakshi, Cao & Chen (1997) [16].
Le noyau de cette recherche est la compréhension des enjeux présents dans le domaine de la gestion du risque des portefeuilles optionnels que porte l'existence d'un phénomène récurrent dans les marchés financiers : l'occurrence de changements importants et soudains des rentabilités des actifs. Cela nécessite la meilleure compréhension possible de la dynamique des prix des actifs et a fortiori de leur volatilité, dont la figure ci-après en synthétise la problématique. Je cherche en particulier à appréhender le concept de volatilité à travers trois dimensions. La première concerne l'aspect éconомétrique du concept et naît du caractère inobservable de la volatilité sur les marchés. La seconde renvoie à des aspects essentiellement techniques qui interdisent tout recours à des algorithmes d'estimation linéaire (filtre de Kalman classique⁴ par exemple). La troisième, certainement la plus difficile à appréhender puisqu'elle est de nature économique, est celle de l'incomplétude des marchés : il s'agit de la situation où le marché comporte un nombre d'âles trop important pour que les actifs financiers existants puissent permettre aux agents de s'assurer contre la survenue de ces âles. La conséquence principale de cette dimension est une gestion du risque résidant dans les portefeuilles optionnels qui n'est plus parfaite.

\[
\text{Volatilité} = \begin{cases}
\text{estimation (aspect éconомétrique)} \\
\text{dynamique non-linéaire (aspect technique)} \\
\text{incomplétude des marchés (aspect éconомique)}
\end{cases}
\]

Fig. 0.1: Problématique du concept de volatilité

De la problématique liée au concept de volatilité est induite celle de la thèse :

\[
\text{Dynamique des actifs} = \begin{cases}
\text{sauts discontinus} = \begin{cases}
\text{amplitude} \\
\text{fréquence} \\
\text{incomplétude des marchés}
\end{cases} \\
\text{volatilité} = \begin{cases}
\text{estimation} \\
\text{dynamique non-linéaire} \\
\text{incomplétude des marchés} \\
\text{taux d'intérêt}
\end{cases}
\end{cases}
\]

Fig. 0.2: Problématique de la thèse

Posant la problématique de cette façon, je cherche à appréhender, en particulier, deux phénomènes auxquels sont confrontés les modèles d'évaluation des options : le phénomène leptokurtique des rentabilités du sous-jacent dont dérive l'actif contingent et l'effet smile de la volatilité implicite aux modèles. Le modèle d'évaluation qui en découlerait serait alors susceptible de fournir des prix d'options les plus réalistes possible :

⁴ Par opposition au filtre de Kalman étendu.
Modèle d’évaluation

\begin{itemize}
 \item phénomène \textit{leptokurtique} (aspect économétrique)
 \item effet \textit{smile} de la volatilité implicite (aspect économique)
 \item \textit{premium} d’options réalistes
\end{itemize}

\textbf{Fig. 0.3: Enjeux de la thèse}

La thèse propose également une extension du modèle \textit{SVSISJ} dans le cas purement académique où les dividendes sont versés de façon continue dans le temps.

La confrontation empirique du modèle \textit{SVSISJ} avec le modèle de Bakshi, Cao & Chen (1997) sur le \textit{Chicago Board Options Exchange}, met en évidence l’effet d’une fréquence aléatoire de sauts de rentabilité de l’actif support, sur l’évaluation et la couverture des options sur indice \textit{Standard & Poor’s 500}.

\footnotesize
\begin{itemize}
 \item Modèles dans lesquels le sous-jacent suit un processus mixte (de diffusion et à sauts) et ne faisant pas intervenir de volatilité stochastique.
 \item Modèles à un facteur stochastique unique, en l’occurrence la volatilité, et ne faisant pas intervenir de composante à sauts, ni dans le processus du sous-jacent, ni dans celui de la volatilité.
 \item Maturité inférieure à trois mois. Lorsque la maturité dépasse trois mois, Das & Sundaram (1999) [72] montrent que le processus mixte mis en œuvre se comporte comme un processus de diffusion pure, ne générant plus l’excès de \textit{kurtosis} attendu.
\end{itemize}
Ainsi, l’intérêt majeur de cette thèse pourra t-il concerner la gestion de portefeuille. En effet, s’il est possible de fournir un outil d’aide à la décision, capable de donner des prix se rapprochant le plus possible des prix observés sur le marché, il serait, par conséquent, possible d’élaborer des stratégies de vente ou d’achat, et plus généralement des opérations de couverture, de spéculation ou encore d’arbitrage. Or, les paramètres de sensibilité jouent un rôle critique dans la performance de couverture de positions d’options. "Apprécier pour l’orgueil de choisir" disait Eugène Grindel Ehuard. En outre, le modèle proposé permet de dériver des paramètres de sensibilité sous une forme analytique. Ces derniers, qui généralisent ceux issus du modèle de Bakshi, Cao & Chen (1997), sont susceptibles d’améliorer la couverture des positions d’options. Plus généralement, la démarche de la thèse est liée à la problématique de la volatilité, dont elle étudie la variabilité.

Cependant, la thèse ne cherche pas à expliquer le phénomène leptokurtique. En effet, elle place le débat dans la perspective de modéliser au mieux les variations des rentabilités empiriques, en postulant des classes de processus capables de refléter la non-normalité sans chercher auparavant à expliquer les causes de ces variations.

Par ailleurs, la quête de modèles toujours plus réalistes, peut engendrer un certain nombre d’inconvénients et de difficultés dans leur mise en œuvre en pratique. Ces limitations ne sont pas propres au seul modèle SVSISJ, mais sont la réalité de tous les modèles d’évaluation où il est nécessaire d’estimer un nombre déjà conséquent de paramètres. On peut distinguer à ce niveau, deux sources principales de difficultés qui limitent l’adoption de ces modèles en pratique :

- les problèmes techniques ;
- les problèmes opérationnels.

Parmi les difficultés d’ordre technique, la procédure d’estimation des paramètres peut être coûteuse en temps de calcul, sous réserve de convergence de l’algorithme d’estimation retenue parmi toutes celles qui sont admissibles. Il faut également rappeler qu’aucun algorithme de minimisation (resp. de maximisation) n’est en mesure d’assurer que le minimum (resp. le maximum) relatif (ou local) atteint, est bien un optimum absolu (ou global). En outre, il est trivial que la dimension élevée du vecteur des paramètres accroit d’autant plus ces difficultés d’ordre purement techniques.

S’agissant de la seconde source de limites, en l’occurrence des problèmes opérationnels, il n’est pas suffisant d’élaborer des modèles efficaces d’un point de vue théorique, dans la description de la dynamique des cours des actifs, ou dans la prise en compte de l’effet

\(^8\) dans "Les nécessités de la vie et les conséquences des rêves".
smile de la volatilité, notamment. Faut-il encore s’efforcer de rendre les modèles qui se veulent plus élaborés, compréhensibles et surtout, faciles à manier en pratique par les opérateurs de marché. En effet, dans la perspective d’une mise en œuvre pratique des modèles qui nécessitent l’estimation de paramètres structurés, il incombe à l’opérateur d’avoir une intuition et une prise de conscience de la signification "physique" ainsi que du rôle de chacun de ces paramètres. Ainsi, que signifie une prime de risque égale à 0,5, ou une vitesse de retour à la moyenne égale à 0,6, ou encore un taux de retour vers la moyenne de 0,2 ? Les opérateurs ne disposent pas de références qui leur permettraient de saisir la signification concrète de ces valeurs. Or, le manque d’intuition risque, à terme, de conduire à des erreurs dans l’utilisation des modèles qui s’appuient sur des processus relativement complexes.

Face à ces problèmes inhérents que posent les modèles dont la mise en œuvre n’est pas immédiate, il est naturel de s’interroger sur le rapport entre leurs forces et faiblesses : si l’on veut pouvoir justifier pleinement leur recours dans la pratique quotidienne en salles des marchés, les avantages liés à une précision accrue revendiquée dans l’évaluation doivent dominer les difficultés de mise en œuvre dues à la complexité des modèles et qui sont, quant à eux, bien réels.

Enfin, il est important de signaler que la formule de valorisation dérivée du modèle, ne s’applique qu’aux options de type européen.

La thèse comprend deux parties. La première comporte trois chapitres qui ont pour objectif de mettre en évidence l’importance de la volatilité dans la problématique de l’évaluation des options. Cette partie situe le débat, en définissant le cadre conceptuel de la recherche et en exploitant la motivation de la thèse. Plusieurs directions de recherche sont présentées (approche des processus de Lévy, de la volatilité GARCH et de la volatilité stochastique).

Le premier chapitre de cette partie rappelle la problématique et les enjeux de la théorie de l’évaluation des options. Il aborde le concept de volatilité, ainsi que la problématique des smiles. Des approches cherchant à capturer cet effet smile sont présentées, sous l’angle à la fois des praticiens et des théoriciens. Le chapitre présente également le phénomène leptokurtique, les aspects liés à la distribution des séries : distributions parétiennes stables, processus mixtes, modélisation statistique des variances non constantes (GARCH) et leur incidence sur la distribution résultante.

Le deuxième chapitre est un peu à part en ce sens qu’il traite des modèles GARCH sous la problématique de la gestion de portefeuille. Plus particulièrement, il discute de la pertinence, au regard du critère de la performance en couverture de positions d’options, des schémas autorégressifs GARCH comme candidats parmi les modèles déterministes de la volatilité. La question posée est : en supposant que la volatilité puisse être capturée par un modèle déterministe à schéma autorégressif, quelle efficacité dans la couverture
de positions d'options contre les variations temporelles de la volatilité, peut-on espérer ?
La réponse à cette question est nourrie essentiellement de résultats issus d’un examen empirique mené sur la couverture de portefeuilles de *straddles* portant sur l’indice S&P500 coté sur le CBOE.

Le chapitre suivant place le débat au cœur de l’évaluation des options lorsque la volatilité ne peut pas être considérée comme une variable déterministe. Il dresse une revue commentée des principaux modèles en temps continu et à volatilité stochastique fournis par la littérature académique. En ce sens, la lecture de ce chapitre n’est pas indispensable à la compréhension de la thèse mais sert à situer la contribution réelle de celle-ci.

La deuxième partie fait entrer en scène un processus de diffusion avec sauts de fréquence stochastique. Ce processus mixte est appliqué à un modèle d’évaluation des options avec volatilité et taux d’intérêt stochastiques.

Le premier chapitre de cette partie présente la contribution essentielle de la thèse, la proposition du modèle *SVISJ*, et de son extension académique prenant en compte la distribution des dividendes. Il développe également les paramètres de sensibilité associés au modèle.

Le chapitre cinq présente différentes propriétés théoriques du modèle *SVISJ* en étudiant par simulations de Monte Carlo, l’influence des paramètres dudit modèle sur l’évaluation des *premium* d’options, sur son pouvoir descriptif du phénomène *leptokurtique* des rentabilités et sur son pouvoir explicatif de l’effet *smile* de la volatilité implicite.

Le dernier chapitre contient des tests et résultats de nature empirique du modèle *SVISJ* obtenus sur le CBOE. Plus précisément, il discute de la pertinence, au regard des critères de l’évaluation et de la couverture d’options sur indice S&P500, d’une fréquence aléatoire de sauts de nature poissonnière dans le processus des rentabilités de l’indice.
Première partie

LA VOLATILITÉ : ÉLÉMENT CLÉ DANS
DANS LA PROBLÉMATIQUE DE
L’ÉVALUATION DES OPTIONS
Problématique et enjeux de la théorie de l’évaluation des options

"Options have two primary uses: speculation and hedging. An investor who believes that a particular stock is going to rise can purchase some shares in that company. If he is correct, he makes money, if he is wrong he loses money."

Paul Wilmott, Quantitative Finance.

Sommaire

1.1 Introduction : fondements historiques et modèle de Black & Scholes ... 29
1.2 Quelques faits stylisés du comportement des rentabilités empiriques ... 31
 1.2.1 L’excès de kurtosis .. 31
 1.2.2 Le "phénomène de clustering" de la volatilité ... 33
 1.2.3 L’effet de levier ... 34
1.3 "Vivre avec la formule de Black & Scholes" dans la pratique : les tricks of trade 35
 1.3.1 Le taux de rentabilité d’une obligation zéro-coupon comme approximation du taux d’intérêt ... 36
 1.3.2 La volatilité implicite comme approximation de la volatilité ... 37
1.4 L’effet smile de la volatilité implicite ... 40
 1.4.1 L’intégration pratique du smile dans l’évaluation des options .. 43
 1.4.2 Les approches théoriques ... 53
1.5 La quête de la leptokurticité dans le processus des rentabilités ... 56
 1.5.1 L’approche des processus de Lévy ... 56
 1.5.2 L’approche de la volatilité GARCH ... 64
 1.5.3 L’approche de la volatilité stochastique .. 66
1.6 Conclusion .. 71
1.1 Introduction : fondements historiques et modèle de Black & Scholes

Soit un actif financier et une option\(^1\) (d'achat ou de vente) sur cet actif support négociable en bourse. A chaque instant et pendant toute la durée de vie du contrat d'option, si le marché fonctionne correctement, si le volume des transactions est suffisant, s'il n'existe pas de distorsions dues à des coûts de transaction ou des taxes non négligeables, est-il possible de déterminer le premium théorique de cette option vers lequel doit tendre le prix réalisé en bourse ? Telle pourrait être la question fondamentale posée par la problématique de l'évaluation des options. Qu'il s'agisse d'élaborer des stratégies de gestion "active" de portefeuilles optionnels\(^2\), par exemple en vue d'éliminer (sinon de réduire) le risque de marché du portefeuille\(^3\) ou des stratégies de gestion financière des entreprises\(^4\), il est nécessaire de connaître aussi précisément que possible la valeur - le *premium* - ou plus simplement la somme que consent à verser, au moment de la transaction, l'acheteur du contrat d'option au vendeur pour jouir des avantages futurs que ce contrat va lui procurer. La théorie de l'évaluation des options trouve ses fondements dans les travaux de Bachelier (1900) [12] qui s'appuient sur l'hypothèse selon laquelle les cours des actifs suivaient un processus Wienerien standard à drift mu\(^5\), hypothèse encore souvent invoquée dans nombre de recherches contemporaines. Depuis ces travaux visionnaires, la théorie de l'évaluation des options, et plus généralement la théorie des options a connu durant ces quarante dernières années des développements considérables, grâce aux travaux précurseurs de Spathle (1961) [214], Ayres (1963) [11], Boness (1964) [41], Samuelson (1965) [204] entre autres. Plus récemment, de nombreux chercheurs contribuent, directement ou indirectement, à la théorie de l'évaluation des options\(^6\). Leurs conclusions permettent d'afﬁrmer, d'une manière très générale et en première approche, que la valeur d'une option

\(^1\) Au sens large, une option est un contrat qui confère à son détenteur le droit - et non l'obligation - d'acheter (option d'achat ou *call*) ou de vendre (option de vente ou *put*) une certaine quantité de l'actif sous-jacent, à un prix fixé à priori (prix d'exercice), et ce pendant une période de temps donnée. Une option qui peut être exercée à tout moment pendant cette période donnée est dite de type américain et une option qui peut être exercée uniquement le jour où le contrat arrive à échéance est dite de type européen.

\(^2\) Par opposition à une gestion qualifiée de "passive" qui consiste à gérer des portefeuilles en acceptant avec fatalisme le risque systématique de marché de ce dernier, une gestion "active" de portefeuilles optionnels consiste à gérer une position combinant entre eux, des options d'achat et des options de vente de prix d'exercice différents mais d'échéance commune, en vue d'une stratégie de couverture préalablement définie et ne nécessitant aucune révision ultérieure jusqu'à la date d'échéance des options.

\(^3\) Le risque systématique au sens de Sharpe (1964) [209] ou *beta*.

\(^4\) Lorsqu'il s'agit d'évaluer la "valeur" d'un projet d'investissement par exemple.

\(^5\) Ce qui revient à supposer une distribution log-normale de ces derniers.

\(^6\) Se rapporter à Bernstein (1992) [28] pour une revue de cette littérature.
dépend de cinq déterminants essentiels : le cours de l'actif sous-jacent et le prix d'exercice de l'option qui fixent sa valeur intrinsèque\(^7\), la volatilité de l'actif support, la maturité de l'option et le taux d'intérêt en vigueur qui "fixent" sa valeur temps\(^8\). Toutefois, ce n'est qu'à partir de 1973 que la théorie de l'évaluation des options est devenue un domaine riche en modélisations, depuis le célèbre modèle fondateur de Black & Scholes (1973) où les auteurs, en collaboration avec Merton, délivrent une formule d'évaluation donnant le *premium* d'une option européenne sur action ne versant pas de dividende. Jouissant d'un caractère analytique d'une simplicité notable lui conférant une praticabilité certaine mais également d'une précision convenable sous certaines conditions, cette formule reste très largement usitée par les praticiens des marchés d'options. En outre, l'article de Black & Scholes ne pouvait trouver "meilleure" date de parution qu'en 1973, puisque pendant la même année nait le *Chicago Board Options Exchange*, avec lui le premier marché des options. Pour la première fois étaient réunis la liquidité, la solvabilité et un volume important de transactions, c'est-à-dire les conditions nécessaires au bon fonctionnement d'un marché d'options efficient...

Le "monde de Black & Scholes"

Bien que le modèle ait été inscrit à l'actif de Black & Scholes (1973), il conviendrait de reconnaître la contribution fructueuse de Merton qui a fourni la version textuelle du modèle parue dans *Journal of Political Economy* n°81, 1973\(^9\). Ce modèle, qui s'inspire du cadre d'analyse général élaboré par Merton (1970, 1973) [173] [174], postule les hypothèses suivantes :

- i) il existe au minimum un agent non satisfait sur le marché;
- ii) la vente à découvert est autorisée sans restriction aucune;
- iii) les actifs financiers ne versent aucun dividende pendant toute la vie du contrat de l'option;
- iv) les coûts de transaction sont nuls. De plus, tout titre est divisible;
- v) la cotation des actifs s'effectue en temps continu;
- vi) le taux d'intérêt est constant;
- vii) le cours \(S_t \), de l'actif sous-jacent suit un mouvement brownien géométrique\(^10\) sous la mesure de probabilité historique \(P \):

\[
dS_t/S_t = \mu S_t dt + \sigma S_t dW_t, \quad t \in [0, T],
\]

\(^7\)max[0, \(S - K \)] si \(S \) désigne le cours du support et \(K \) le prix d'exercice de l'option.

\(^8\)La valeur temps d'une option peut être alors définie comme la différence entre le cours de l'option et sa valeur intrinsèque. Notons, toutefois, que cette définition ne s'applique en toute rigueur qu'aux options américaines qui peuvent être exercées avant leur échéance.

\(^9\)C'est ainsi que l'ouvrage de Hull (2002) [135] parle de la formule de Black-Sholes-Merton.

\(^10\)Ce mouvement a été originellement introduit par Samuelson (1965) [204] pour évaluer les warrants.
où T représente la date d'échéance du contrat d'option, $W_{t,S}$ un processus de Wiener standard (processus à incrément de moyenne $\mathbb{E}(dW_{t,S}) = 0$ et de variance $\text{Var}(dW_{t,S}) = dt$), μ_S et σ_S, constantes réelles, désignent respectivement l'espérance mathématique et l'écart type de la rentabilité instantanée de l'actif sous-jacent.

La première hypothèse (i) assure l'absence d'opportunité d'arbitrage sur le marché et de ce fait, constitue la pierre angulaire de la théorie de l'évaluation des options, car elle introduit le concept d'équilibre sur lequel repose cette dernière. La deuxième hypothèse (ii) est invoquée tout simplement pour des raisons de commodité. La troisième hypothèse (iii) est relaxée en partie dans le modèle de Merton (1973) [174] qui suppose une distribution continue des dividendes à un taux constant11. Les quatrième et cinquième hypothèses (iv, v) sont invoquées pour réconcilier la théorie et la pratique : en effet, puisque la théorie de l'évaluation est généralement fondée sur des schémas en temps continu, l'inclusion de coûts de transaction dans un modèle rendrait impropre l'application de ce dernier en pratique. L'hypothèse (vi) permet de supposer que la structure par terme des taux d'intérêt est plate. Il faut noter, par ailleurs, que dans le cadre de ce modèle, aucune hypothèse sur l'attitude des investisseurs à l'égard du risque n'est formulée. Le modèle s'applique donc quelque soit la préférence des agents dans l'économie considérée.

Dans ce chapitre, je me propose de discuter de la pertinence, en particulier, des deux dernières hypothèses dans une première section où je ne chercherai pas à fournir un compte-rendu exhaustif des critiques et/ou propriétés de ce modèle12 : je souhaite surtout mettre en évidence l'idée que les déviations de prix entre ce que prédit le modèle et la réalité des marchés, trouvent leur essence dans ces deux hypothèses. Pour réajuster et "vivre" avec le modèle de Black & Scholes, plusieurs astuces ("tricks of trade") sont proposées dans la section suivante. Enfin, je dresse, dans une dernière section, plusieurs directions de recherche théoriques alternatives au modèle de Black & Scholes (1973).

1.2 Quelques faits stylisés du comportement des rentabilités empiriques

1.2.1 L'excès de *kurtosis*

Dans le modèle de Black & Scholes, l'hypothèse (vii) de mouvement brownien géométrique pour le processus des cours est équivalente à l'hypothèse gaussienne pour la distribution

11 Il est possible d'étendre la formulation de Merton (1973) [174] dans le cas d'une distribution discrète.

12 Ces critiques sont passées en revue dans nombre d'articles issus de la littérature financière.
des rentabilités13. Ainsi, la rentabilité cumulée pendant une période finie τ, définie formellement comme :

$$\Delta r_t(\tau) \equiv r(t) - r(t - \tau) \equiv \ln S_t - \ln S_{t-\tau},$$

est traduite par une distribution de moment statistique d’ordre un égal à $(\mu_S - \sigma_S^2/2)\tau$, d’ordre deux égal à $\sigma_S^2\tau$, d’ordre trois (ou skewness14) nul et d’ordre quatre (ou kurtosis15) égal à 3 (ou si l’on préfère de coefficient de Fisher égal à 0). Cette normalité des distributions des rentabilités est aujourd’hui clairement rejetée au niveau institutionnel, quarante ans après que les travaux précurseurs d’Osborne (1959) \cite{189}, Alexander (1961) \cite{3} ou encore Mandelbrot (1962) \cite{165} font remarquer que les queues de distribution des rentabilités empiriques contenaient trop de points pour que ces derniers puissent être considérés comme des points "aberrants", sans message informationnel de nature financière du moins. Au contraire, selon ces auteurs, l’information importante se réfugierait justement dans les queues de distribution et de ce fait, il n’est pas convenable de négliger purement et simplement, comme il était alors d’usage, les valeurs "aberrantes" devant les "grandes" valeurs des distributions observées. En effet, une comparaison faite par Mandelbrot (1963) \cite{167},\cite{166} entre les propriétés théoriques du processus de Wiener standard16, sur lequel se fonde le mouvement brownien géométrique, et les propriétés de la distribution empirique des variations des prix, montre une divergence significative :

- par rapport à une distribution gaussienne, la distribution empirique présente des pics typiquement plus prononcés et des queues de distribution tellement longues ("fat tails") que la variance semble varier dans le temps d’une manière totalement erratique. Ces deux constatations plaident pour une distribution empirique de nature leptokurtique ;
- par ailleurs, l’évolution temporelle de la variance de la distribution empirique ne semble se diriger vers aucun "chemin asymptotique" (variance infinie).

Le phénomène de distribution leptokurtique peut être facilement observé sur des cotations à haute fréquence d’observation, comme le suggère la figure 1.1 :

\begin{flushleft}
\footnotesize
13 L’application directe du lemme d’Itô à (1.1) conduit à $d\ln S_t = (\mu_S - \sigma_S^2/2)dt + \sigma_S dW_t$. \\
14 ou coefficient d’asymétrie. \\
15 ou encore coefficient de Pearson d’aplatissement. \\
16 Tel que ce dernier a été présenté par Bachelier (1900) \cite{12}.
\end{flushleft}
1. Problématique et enjeux de la théorie de l'évaluation des options

Fig. 1.1: Distribution empirique des rentabilités du S&P500 (02/03/1970-29/12/2000)

Note : La distribution 1.1 empirique et non paramétrique est obtenue sur la période du 02/03/1970-29/12/2000, sur 7794 cours journaliers de clôture. Les coefficients de skewness et kurtosis estimés sont respectivement de -1.798 et 43.998.

Pour décrire les distributions à queues épaisses, cette série de constats conduit Mandelbrot à suggérer une classe de distributions plus générale que la distribution gaussienne : la classe des lois-stables, proposée par ailleurs par Lévy [159] dès 1925. D’autres travaux plus récents de Lo & Mackinlay (1988) [153], qui mettent en évidence des rentabilités observées à distribution leptokurtique, confirment la pertinence des travaux de Mandelbrot17.

1.2.2 Le "phénomène de clustering" de la volatilité

Mandelbrot (1963) fait observer une caractéristique importante de la volatilité qu’il résume par une remarque célèbre : "...large changes tend to be followed by large changes - of either sign - and small changes tend to be followed by small changes". Ce phénomène connu sous le nom de "regroupement de la volatilité" ("volatility clustering") ne saurait être traduit correctement par un seul processus de Wiener standard. Ce phénomène peut être illustré à travers les rentabilités historiques de l’indice S&P500, par exemple, avec la figure 1.2, où l’on peut observer que des périodes de volatilité faible succèdent à des périodes de volatilité élevée, et vice-versa. Une explication possible à ce phénomène a été donnée par Fama (1965) [98] : l’information aurait tendance à heurter les marchés d’une manière

17 Plus tard dans la thèse, je reviendrai sur la classe des lois-stables dans une section consacrée à présenter des classes de distributions ou modèles capables de rendre compte du caractère fortement kurtique des rentabilités empiriques.
1. Problématique et enjeux de la théorie de l'évaluation des options

Fig. 1.2: Evolution des rentabilités du S&P500 (02/03/1970-29/12/2000)

regroupée, ce qui expliquerait un comportement similaire de la volatilité. Ce phénomène de clustering, qui est en réalité étroitement lié à la leptokurticité des distributions signalée dans le paragraphe précédent, justifie le recours aux modèles régressifs de la classe ARCH (Auto Regressive Conditional Heteroskedasticity) ou encore le recours à la classe des lois-stables, évoquée plus haut.

1.2.3 L'effet de levier

Black (1975) [32] fait remarquer que la baisse du cours d’un titre conduit à un effet de levier sur la valeur de la firme, signifiant de ce fait, l’existence d’une corrélation négative entre la volatilité et les variations du cours de l’actif sous-jacent. En effet, suite à une variation négative du cours d’un titre, le rapport de leverage (capitaux/endettement) de l’entreprise diminue, ce qui entraîne une augmentation du risque d’investissement dans ce titre et donc de la volatilité future de ses rentabilités. Il semblerait, cependant, qu’il soit imprudent d’attribuer en totalité cette caractéristique de la corrélation rentabilités/volatilité à l’effet de levier. Ainsi, les operateurs sur le marché des options estiment qu’une corrélation négative serait la résultante d’un effet de panique se traduisant par des actions moins rationnelles en cas de baisse du cours de l’actif sous-jacent. La figure 1.3 décèle un phénomène intéressant qui se trouve à la base du modèle EGARCH (Exponential Auto Regressive Conditional Heteroskedasticity) dévoilé dans Nelson (1991) [186], se manifestant par une "coïncidence" entre les périodes de volatilité élevée et les périodes de
baisse du cours du S&P500. Ce phénomène est lié au caractère asymétrique (skewness) de la distribution des rentabilités de l’actif support.

Fig. 1.3: Effet de levier du S&P500 (02/03/1970-29/12/2000)

Note : La volatilité historique est calculée sur la période du 02/03/1970-29/12/2000 comme l’écart type annuelisé des rentabilités du S&P500, estimé à partir des cours de clôture, par la formule

\[\left(\frac{1}{n} \sum_{t=1}^{n} (r_t - m)^2 \right)^{1/2} \]

où \(r_t = \ln \frac{S_t}{S_{t-1}} \), \(m \) désigne la moyenne de \(r_t \) et \(n \) le nombre d’observations.

1.3 "Vivre avec la formule de Black & Scholes" dans la pratique : les *tricks of trade*

Le modèle de Black & Scholes (1973) fondé sur les hypothèses, citées en introduction du chapitre, aboutit à la célèbre formule du même nom :

Formule 1.3.1 (Formule de Black & Scholes (1973)). Soit \(\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} du \)

et \(\Phi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \). Le premium au sens de Black & Scholes (1973), noté \(C_t^{BS} \), d’une option européenne sur action ne versant pas de dividende pendant toute la durée de vie du contrat, est donné par :

\[C_t^{BS}(\tau, S_t, \sigma, R, K) = S_t \Phi(d_1) - K e^{-R \tau} \Phi(d_2), \]

où \(d_1 = \frac{1}{\sigma \sqrt{\tau}} \left(\ln \left(\frac{S_t}{K} \right) + (R + \frac{\sigma^2}{2}) \right) \), \(d_2 = d_1 - \sigma \sqrt{\tau} \); \(R \) désigne le taux d’intérêt (supposé constant), \(\sigma \) la volatilité (supposée constante) des rentabilités de l’action support, \(\tau = T - t \) la maturité de l’option et \(K \) le prix d’exercice de l’option. Les divers paramètres de sensibilité ou "grecques" du modèle de Black & Scholes peuvent être dérivées analytiquement,
ainsi par exemple les variations premières par rapport aux déterminants s’écrivent-elles :

\[
\Delta^{RS}_{t,S}(\tau, S_t, \sigma, R, K) \equiv \frac{\partial C^{RS}_{t}(\tau, S_t, \sigma, R, K)}{\partial S_t} = \Phi(d_1) > 0,
\]

\[
\Delta^{RS}_{t,\sigma}(\tau, S_t, \sigma, R, K) \equiv \frac{\partial C^{RS}_{t}(\tau, S_t, \sigma, R, K)}{\partial \sigma} = S_t \sqrt{\tau} \Phi'(d_1) > 0,
\]

\[
\Delta^{RS}_{t,K}(\tau, S_t, \sigma, R, K) \equiv \frac{\partial C^{RS}_{t}(\tau, S_t, \sigma, R, K)}{\partial K} = -e^{-\tau r} \Phi(d_2) < 0,
\]

\[
\Delta^{RS}_{t,R}(\tau, S_t, \sigma, R, K) \equiv \frac{\partial C^{RS}_{t}(\tau, S_t, \sigma, R, K)}{\partial R} = \tau Ke^{-\tau r} \Phi(d_2) > 0,
\]

\[
\Delta^{RS}_{t,R}(\tau, S_t, \sigma, R, K) \equiv \frac{\partial C^{RS}_{t}(\tau, S_t, \sigma, R, K)}{\partial \tau} = \frac{S_t \sigma \theta}{2} \Phi'(d_1) + Ke^{-\tau r} R \Phi(d_2) > 0.
\]

Cette formule est l’objet de nombreuses critiques dans la littérature. En effet, comme la section 1.2 a pu le souligner, les caractéristiques empiriques des rentabilités rejettent tout particulièrement l’hypothèse (vii) du mouvement brownien géométrique suivi par le cours de l’actif support, et orientent vers une variance non stationnaire capable de rendre compte d’un coefficient de kurtosis supérieure à trois, valeur pour la distribution gaussienne. De plus, le taux d’intérêt n’est certainement ni constant, ni le même pour chaque maturité d’options, comme le suppose l’hypothèse (vi). Toutefois, bien que les insuffisances du modèle de Black & Scholes (1973) soient empiriquement démontrées, force est de reconnaître que ce modèle reste, en pratique, très largement usité du fait de sa simplicité d’implémentation, au regard de son expression analytique. Les sous-sections suivantes se proposent de montrer comment il est possible d’utiliser la formule de Black & Scholes, en utilisant par exemple des ajustements (ou "tricks of trade"), portant pour l’essentiel sur le choix du taux d’intérêt et de la volatilité.

1.3.1 Le taux de rentabilité d’une obligation zéro-coupon comme approximation du taux d’intérêt

Merton (1973) [174] propose une généralisation du modèle de Black & Scholes (1973), en supposant que le taux d’intérêt est stochastique et que la volatilité est non stationnaire, et exprimée comme une fonction déterministe du temps (\(\sigma_S \equiv \sigma_{t,S} \)). Pour cela, il fait intervenir une deuxième variable d’état qui est le prix d’une obligation zéro-coupon, dont les incréments sont corrélés avec ceux du cours du sous-jacent. Le modèle de Merton (1973) peut être résumé par :

\[
C^M_t = \begin{cases}
\frac{dS_t}{S_t} = \mu_S dt + \sigma_{t,S} dW^{P}_{t,S} \\
\frac{dB_t}{B_t} = \mu_B dt + \sigma_B dW^{P}_{t,B} \\
\forall t, dW^{P}_{t,S} dW^{P}_{t,B} = \rho dt,
\end{cases}
\]

où \(B_t \) désigne le prix d’une obligation zéro-coupon de flux final unitaire à la date d’échéance \(T \).
Formule 1.3.2 (Formule de Merton (1973)). Soit \(\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} du \). Le premium, au sens de Merton (1973), noté \(C_{t}^{M} \), d’une option européenne sur action ne versant pas de dividende pendant toute la durée de vie du contrat, est donné par :

\[
C_{t}^{M}(\tau, S_t, V, R, K) = S_t \Phi(d_1) - KB_t(\tau) \Phi(d_2),
\]

où
\[
d_1 = \frac{1}{\sigma \sqrt{T}} \left(\ln \left(\frac{S_t}{K} \right) - B_t(\tau) + \frac{\sigma^2}{2} \right),
\]
\[
d_2 = d_1 - \sigma \sqrt{T} \text{ et } \sigma^2 = \frac{1}{T} \int_{0}^{T} \left(\sigma_u^2 + \sigma_B^2 - 2 \rho \sigma_u \sigma_B \right) du.
\]

Il apparaît que les formules de Black & Scholes (1973) et Merton (1973) coïncident si le paramètre du taux d’intérêt peut être remplacé par le taux de rentabilité aléatoire d’une obligation zéro-coupon à flux final unitaire (le facteur d’actualisation constant \(e^{-K \tau} \) de la formule 1.3.1 est remplacé par un facteur d’actualisation aléatoire \(B_t \) dans la formule 1.3.2). De plus, dans la formule de Merton (1973), le paramètre de la volatilité est ajusté de façon à tenir compte de la variance des rentabilités de l’obligation (\(\sigma_B^2 \)) ainsi que de la covariances entre les rentabilités du support et les rentabilités de l’obligation zéro-coupon (\(\rho \)). Et pour cause, car dans la pratique, c’est souvent ce taux qui est pris comme approximation du taux d’intérêt sans risque. S’inspirant de ce résultat, il est possible d’utiliser la formule 1.3.1 de Black & Scholes en prenant comme valeur d’entrée pour le taux d’intérêt, le taux de rentabilité d’une obligation zéro-coupon.

Il reste maintenant la question du choix de la volatilité qui reste ouverte : c’est l’objet de la sous-section qui suit.

1.3.2 La volatilité implicite comme approximation de la volatilité

Différentes significations de la volatilité

Le concept de volatilité revêt une importance capitale au sein des marchés financiers. L’attention des investisseurs portée sur la volatilité s’est considérablement accrue depuis le krach boursier d’Octobre 1987, qui l’ont vu passer de 25 % à 100 % en l’espace de deux semaines\(^{18}\). Très intuitivement, le terme de volatilité "mesure" l’incertitude sur l’avenir et renvoie à la notion de risque. Pour Galai (1991) [111], la volatilité mesure l’écart type de la distribution du cours d’un actif financier et ne serait pas équivalente au risque de perte d’une somme d’argent. Ce serait plutôt à partir de l’écart type que le risque d’être au-dessous d’un certain seuil peut être "mesuré"; une volatilité élevée fait naître dans l’esprit du spectateur, l’idée que le marché fonctionne de façon anormale, réclamant

\(^{18}\) Cf. figure 1.3.
alors une correction. En revanche, pour ceux qui sont quotidiennement confrontés au phénomène de volatilité (market makers, traders,...), la volatilité représente l’indicateur "vital" sur laquelle repose toute décision d’investissement, d’allocation de ressources ou tout simplement de constitution de portefeuille.

En vérité, le terme de "volatilité" ne saurait se définir par un seul paramètre, mais plutôt par un ensemble de concepts, liés plus ou moins entre eux et subordonnés au contexte dans lequel ils sont évoqués. Par exemple, dans le langage d’une institution financière qui estime sur exposition au risque de défaut de l’emprunteur, le terme de "volatilité" peut être utilisé pour désigner la distribution de la valeur d’un prêt à la date d’échéance.

Dans le contexte de la théorie de l’évaluation des options, la volatilité prend deux formes principales et bien distinctes :
- la volatilité réelle qui mesure la dispersion effective des rentabilités d’un actif financier,
 soit sur une période antérieure (volatilité historique), soit à l’instant courant (volatilité instantanée) ou bien encore sur une période postérieure (volatilité future);
- la volatilité implicite (appelée aussi "volatilité du marché"), quantité qui est entrée par les opérateurs dans un modèle d’évaluation d’options.

Les tricks of trade, nécessaires pour appliquer la formule de Black & Scholes (1973) en pratique, impliquent de choisir parmi l’une au l’autre des deux formes de volatilité.

La volatilité implicite, dont le concept a été introduit par Latane & Rendleman (1976) [150], est la conséquence immédiate de l’impossibilité d’observer directement la volatilité sur le marché. Elle peut être définie formellement comme suit19 :

Définition 1.3.1 (Volatilité implicite). La volatilité implicite relative à un modèle d’évaluation est la valeur de σ qui égalise le cours de l’option évalué par le modèle au cours observé sur le marché,

\[\hat{\sigma} : \mathbb{R}_+^n \longrightarrow \mathbb{R}_+ / C_I(\tau, S_I, ..., K, \hat{\sigma}) = \hat{C}_I, \]

19 Bien qu’il n’ existe pas véritablement de formules pour calculer la volatilité implicite, deux méthodes numériques courantes peuvent être appliquées :

- l’algorithme de Newton-Raphson qui nécessite la connaissance a priori de la dérivée du premium de l’option par rapport à la volatilité : \(\sigma_{t+1} = \sigma_t + a(C_t(\sigma_t) - \hat{C}_t)(\frac{\partial C_t(\sigma)}{\partial \sigma})^{-1} \), où \(0 < a \leq 1 \) à répéter jusqu’à l’obtention de la précision voulue. L’efficacité de cet algorithme est discutable puisque chaque itération nécessite le calcul d’une dérivée en input. Pour plus de détails, on peut voir Manaster & Koehler (1982) [164] ;

- la méthode d’interpolation linéaire (ou method of bisection) qui repose sur le choix de deux volatilités, l’une faible \(\sigma_f \) et l’autre élevée \(\sigma_e \) correspondant respectivement aux premiers \(C^f_I \) et \(C^e_I \) telles que \(C^1_I < C_I < C^2_I \) : \(\sigma^* = \sigma_f + (C_I - C^1_I)(\sigma_e - \sigma_f)/(C^2_I - C^1_I) \). Pour plus de détails, on peut voir l’ouvrage de Brent (1973), chapitres 3 & 4, [49].
où C_t représente le premium théorique calculé à l'aide du modèle et \hat{C}_t le premium du call observé sur le marché.

C'est souvent cette dernière définition qui revient dans l'esprit du market maker lorsqu'il évoque le terme de "volatilité". En effet, le concept de volatilité implicite jouit d'une popularité telle que dans les milieux professionnels, les opérateurs sur le marché affichent leurs cotations en termes de volatilité implicite extraite à partir du modèle de Black & Scholes (1973). Son attrait peut s'expliquer par le fait que cette volatilité est directement reliée aux premia des options cotées sur le marché. En ce sens, la volatilité implicite comporte un contenu informatif de nature double : 1) l'anticipation des agents ; 2) l'information révélée par les données passées. Le flux d'informations arrivant sur le marché serait en mesure d'affecter fortement le niveau de la volatilité. Cette dernière hypothèse aide, en tout cas, à comprendre et/ou à interpréter les analyses de Fama (1965) [98] ou encore celles de French (1980) [108]. En effet, sur la base des cours journaliers de clôture d'actions, ces auteurs ont calculé :

- la variance des rentabilités de ces actifs depuis la clôture d'un jour ouvré à la clôture du jour ouvré suivant, sans qu'il n'y ait de jour non ouvré entre ces deux jours;
- la variance des rentabilités de ces actifs depuis la clôture d'un vendredi ouvré à la clôture d'un lundi ouvré.

Si les jours ouvrés et les jours non ouvrés étaient équivalents, le niveau de la variance dans le second cas serait trois fois plus grand que dans le premier cas. Or, Fama (1965) a trouvé que celui-ci était 22% plus élevé et French (1980) 19%. Les résultats de cet effet weekend laisse suggérer que le niveau de la volatilité est plus élevé pendant les jours de transaction, avec l'arrivée d'informations fraîches. Prise en ce sens, la volatilité implicite, appelée aussi pour cette raison "volatilité du marché", a les faveurs des théoriciens qui lui confèrent une meilleure prévision de la volatilité future par rapport aux autres estimateurs de volatilité, car elle reflète directement les attentes des agents dans un marché où règne l'efficience informationnelle.

Néanmoins, il convient de garder à l'esprit que le concept de volatilité implicite n'a de sens qu'au sein d'un modèle théorique d'évaluation duquel il est extrait : tout modèle théorique requiert la spécification d'une classe de processus (ou plus généralement d'une dynamique) régissant l'évolution temporelle du cours de l'option, si cette dernière n'est pas suffisamment réaliste (ou plus grave est entachée de dysfonctionnements), alors il est difficile d'interpréter en ce cas la volatilité implicite. En effet, σ, en tant que paramètre libre, contient la "correction" nécessaire au modèle théorique par rapport à la réalité du marché, parce qu'il contient non seulement la volatilité réelle de l'actif support (celle dont on cherche une estimation non biaisée) mais également, et surtout les imperfections du modèle. De plus, il est trivial que ces imperfections diffèrent en fonction du type de l'option : ainsi, par exemple, les options dont la couverture est ardue sont-elles négociées avec une prime supplémentaire, exigée par les opérateurs en compensation du risque encouru. Autre exemple : il serait hasardeux d'utiliser la volatilité implicite extraite à partir des options plain vanilla comme volatilité dans une formule d'évaluation de certains
types d'options exotiques telles que les options *lookback*\(^{20}\) et options à barrière\(^{21}\), dont la couverture est certainement plus difficile à appréhender que celle des options *plain vanilla* par exemple. Compte tenu de l'importance de la volatilité implicite, la prochaine section se propose d'expliquer quelques faits stylisés concernant son comportement observé empiriquement sur les marchés.

1.4 L'effet *smile* de la volatilité implicite

\(^{20}\) Les options *lookback* jouissent de la propriété de procurer à leur détenteur le niveau le plus favorable atteint par le cours de l’actif support pendant une période de temps définie à priori.

\(^{21}\) La famille des options à barrière regroupe une très grande variété d’options fréquemment utilisées dans la pratique en raison d’une part de leur prix très attractif par rapport aux options "standards" de caractéristiques comparables et d’autre part, de leur grande flexibilité répondant aux besoins divers des investisseurs. Un contrat d’option à barrière autorise un ajustement sur mesure de l’exposition du portefeuille au risque de variation du cours de l’actif sous-jacent. Il donne lieu à l’échéance d’un remboursement qui dépend de la différence entre le cours de l’actif sous-jacent et le niveau de prix d’exercice défini à l’avance. Cependant, en plus des caractéristiques des options standards, le contrat d’option à barrière inclut une clause précisant un niveau du cours de l’actif support (*instrike* ou *outstrike*) qui, une fois atteint, active ou au contraire désactive l’option.

\(^{22}\) La *moneyness forward* est définie pour un *call* par \(m^f = \ln \frac{S}{K e^{r(T)}}\). Si \(m^f < 0\), le *call* est dit "en dehors de la monnaie" (*out-of-the-money*) ou "hors-jeu", si \(m^f = 0\), le *call* est dit "à la monnaie" (*at-the-money*) ou "au jeu" et si \(m^f > 0\), le *call* est dit "dans la monnaie" (*in-the-money*) ou "en jeu".

\(^{23}\) La courbe de la volatilité implicite au modèle de Black & Scholes correspond à un coefficient d’asymétrie égal à 0 et une *kurtosis* égale à 3. On parle alors de *volatility frown*.\n
Options Exchange. D’une manière générale, au moins trois types de caractéristiques sur la forme de la structure par terme des smiles de la volatilité implicite peuvent être observés.

L’effet "vanishing smile" de la volatilité implicite

L’effet smile de la volatilité implicite serait plus accentué pour les options à maturité courte, tendrait à décroître de façon monotone pour les options à maturité longue et disparaîtrait avec l’allongement de l’horizon temporel des options ("vanishing smile").

L’effet smirk, skew ou sneer de la volatilité implicite

tend à décroître de façon monotone en fonction du prix d’exercice24 (ou ce qui revient au même tend à croître de façon monotone avec la moneyness forward), se transformant depuis 1987, en "smirk" ou "skew" ou encore "sneer."25 Cette courbe signifie que la volatilité implicite des calls (puts) dans la monnaie (en dehors) est plus élevée que celles des calls (puts) à la monnaie et en dehors (en dedans). L’existence d’une telle allure est souvent attribuée dans la littérature à l’hypothèse selon laquelle les investisseurs craignent davantage un fort mouvement de baisse qu’un mouvement de hausse26, donnant un premium plus élevé aux puts en dehors et aux calls dans la monnaie, c’est-à-dire aux options de faible prix d’exercice (ou ce qui revient au même de fort moneyness forward).

La surface de la volatilité implicite

Si l’on combine les deux effets précédents, on obtient une représentation appelée surface de la volatilité, dont les opérateurs se servent pour extraire la volatilité implicite des options traitées sur le marché. Un exemple est donné dans la prochaine sous-section.

Aucun des effets précédents, et donc en particulier l’effet smile, ne peut être expliqué par le modèle de Black & Scholes. En effet, si l’on reprend la formule 1.3 et si la formule de Black & Scholes était vraie, alors σ_K, serait indépendante des prix d’exercice K_i se référant aux différentes options. On obtient alors une volatilité constante quelque soit le prix d’exercice. En d’autres termes, la formule de Black & Scholes (1973) tend, de façon systématique :

- jusqu’au krach de 1987, à sous-évaluer les options éloignées de la monnaie (en dehors et en dedans de la monnaie) ;
- à partir du krach de 1987, à sous-évaluer les puts en dehors de la monnaie et à surévaluer les calls en dehors de la monnaie.

En réalité, l’effet smile de la volatilité n’est pas étranger aux observations empiriques faites par Mandelbrot, puisque justement, la présence d’un smile de la volatilité peut être rapprochée de la présence de leptokurticité conditionnelle et des queues épaisses dans la distribution des rentabilités de l’actif support. L’effet "smirk" de la volatilité implicite, quant à lui, suggère une distribution des rentabilités du sous-jacent de forme asymétrique, à queue à gauche (skewness négative). En effet, comme nous l’avons exposé, les coefficients d’asymétrie et de kurtosis permettent de caractériser différentes formes de smiles. C’est pourquoi certaines approches qui cherchent à décrire l’effet smile et celles qui cherchent à traduire des distributions leptokurtiques pour les rentabilités, sont les mêmes.

24 Ce qui correspond à une valeur négative pour le coefficient d’asymétrie.
26 attitude dite "crash-of-phobia" dans la littérature.
1. **Problématique et enjeux de la théorie de l’évaluation des options**

Avant de discuter des approches théoriques permettant de capturer l’effet *smile* de la volatilité, il est important de rappeler comment il est possible de gérer cet effet en pratique. C’est l’objet de la sous-section qui suit.

1.4.1 L’intégration pratique du *smile* dans l’évaluation des options

Ces approches directement inspirées de la pratique des marchés, sont le fait d’une gestion intuitive, appuyée sur l’expérience du *trader*. Comme il a été vu antérieurement, si la formule de Black & Scholes tient, alors la courbe du niveau de la volatilité implicite en fonction du prix d’exercice de l’option décrit une droite parallèle à l’axe des abscisses. Autrement dit, dans la formule de Black & Scholes, il ne peut y avoir qu’une seule valeur pour la volatilité, quel que soit le prix d’exercice. Ainsi, selon Natenberg (1994) [183], pour intégrer l’effet *smile* de la volatilité au sein d’un modèle théorique d’évaluation, il convient de considérer que le *premium* d’un *call* dépend (en plus de la maturité et prix d’exercice de l’option, du cours du sous-jacent, du taux d’intérêt et de la volatilité) de la courbe de la volatilité en fonction du prix d’exercice, ainsi que l’illustre la figure suivante :

\[
\text{premium théorique d'un } \textit{call} \begin{cases}
\text{maturité de l'option} \\
\text{prix d'exercice de l'option} \\
\text{cours du sous-jacent} \\
\text{taux d'intérêt} \\
\text{volatilité implicite} \\
\textit{smile} \text{ de la volatilité}
\end{cases}
\]

![Fig. 1.5: Gestion du *smile* de la volatilité - modèle conceptuel de Natenberg (1994)](#)

Exemple 1. (Adaptation du *smile* de la volatilité au marché) Considérons le scénario suivant : un *trader* souhaite intégrer une courbe en "U" de la volatilité dans un modèle théorique d’évaluation. Il cherche plus précisément à "rendre" le modèle compatible avec l’effet *smile* tout en ayant sa propre opinion sur le niveau de la volatilité. Disposant de données du marché jusqu’à l’instant courant, le *trader* peut commencer par tracer la courbe de la volatilité implicite en fonction du prix d’exercice. Un exemple de courbe obtenue est illustré dans la figure 1.6 : la volatilité implicite est minimale pour un prix d’exercice égal à 88.5, valeur proche du cours du sous-jacent (87.86) et elle croît lorsque le prix d’exercice s’éloigne de part et d’autre du cours du sous-jacent. Par conséquent, cette courbe "en forme de sourire" traduit le fait que le prix des options très en dedans ou au contraire très en dehors de la monnaie, est plus...
1. Problématique et enjeux de la théorie de l'évaluation des options

élevé que le prix des options à la monnaie. D’autre part, il semble que certaines options soient surévaluées ou, au contraire, sous-évaluées par rapport à leurs voisines : par exemple, l’option de prix d’exercice 88.50 est clairement peu chère par rapport à celles de prix d’exercice 88 et 89. Or, il "devrait" y avoir une progression plus lissée entre des volatilités implicites de prix d’exercice proches. Si le trader souhaite continuer à utiliser un modèle théorique d’évaluation, par exemple la formule de Black & Scholes (1973), il doit alors "choisir" comme valeur d’entrée pour σ, la valeur de la volatilité correspondante à un prix d’exercice donné, qu’il "devine" être en mesure de refléter les réalités du marché, compte tenu de toute l’information disponible. Cette valeur de la volatilité, d’abord directement inspirée de la courbe de la figure 1.6, pourrait si nécessaire, être corrigée selon sa propre intuition, s’il pense par exemple, que les prix des options ont pu être surévalués ou sous-évalués, ou encore que la courbe est susceptible de donner la valeur relative des prix. Ainsi, le trader qui estime que le niveau de volatilité est sous-évalué et qu’un niveau plus réaliste est de 0.2 point plus élevé, devrait faire subir à la courbe de la figure 1.6 une translation de +0.2 point suivant l’axe des ordonnées. De la même manière, le trader devrait judicieusement appliquer à la courbe originale une translation suivant l’axe des abscisses s’il pressent un changement (à la hausse ou à la baisse) du cours du sous-jacent.
Fig. 1.6: Exemple de niveau de la volatilité implicite d’un call en fonction du prix d’exercice

Note : La figure 1.6 illustre un exemple de niveau de la volatilité implicite relevée pour un call en fonction du prix d’exercice avec un cours du sous-jacent de 87.86 ; le nombre de jours avant expiration est 119 et le taux d’intérêt vaut 0 %.
La figure 1.7 illustre une baisse anticipée par le *trader* de 3 points du cours de l’actif sous-jacent, se traduisant par une translation suivant l’axe des abscisses de -3 points appliquée au *smile* original. Une hausse du niveau général de la volatilité de 0.2 point et une baisse du cours du sous-jacent de 3 points conduisent à faire subir à la courbe originale, deux translations successives : une translation de +0.2 point suivant l’axe des ordonnées, puis une translation de -3 points suivant l’axe des abscisses. En appliquant des translations, l’allure générale de la courbe originale est conservée. Ces isométtries ne sauraient toutefois être satisfaisantes lorsque par exemple la maturité et le cours du sous-jacent varient simultanément : en effet, si le *trader* anticipe une probabilité élevée (proche de 1) qu’un mouvement inhabituel de hausse (resp. de baisse) du cours du sous-jacent puisse survenir lorsque la maturité de l’option décroît, la courbe corrigée devrait être plus (resp. moins) évasée que la courbe originale, et même différer de cette dernière de par son allure générale (cf. figure 1.8).

![Graphique de smile corrigé](image)

*Fig. 1.7: Exemples de *smile* de la volatilité corrigée en fonction des variations du sous-jacent*
Fig. 1.8: Exemples de smile de la volatilité corrigée en fonction des variations du sous-jacent et de la maturité
Avant d’appliquer la formule de Black & Scholes (1973), il convient néanmoins de former la courbe de la volatilité, suivant le changement de variables :

\[
\begin{align*}
X & \equiv \ln(K/S_0) / \sqrt{T} \\
Y & \equiv \% (\sigma_{ATM})
\end{align*}
\]

(1.4)

En effet, dans le modèle de Black & Scholes (1973), les variations de cours du sous-jacent sont exprimées dans une échelle logarithmique, et la relation entre le prix d’exercice de l’option et le cours de l’actif support est exprimée en fonction du logarithme népérien du quotient du prix d’exercice sur le cours du sous-jacent, tandis que les variations temporelles sont gouvernées par la racine carrée de l’intervalle de temps pendant lequel elles se produisent (propriété du processus de Wiener). D’un autre côté, pour généraliser l’échelle des ordonnées (volatilité implicite), il est intéressant d’exprimer le niveau de la volatilité implicite en fonction d’une volatilité de référence, par exemple la valeur théorique de la volatilité implicite de l’option à la monnaie (notée \(\sigma_{ATM}\)).

Sur l’exemple de la figure 1.6, la volatilité implicite ATM vaut approximativement 3.57 % (pour un cours du sous-jacent égal à 87.86 points, c’est la valeur de la volatilité implicite correspondant au prix d’exercice de 87.86 points). La valeur de la volatilité implicite pour un prix d’exercice donné peut alors être exprimée en termes de pourcentage de la valeur ATM. Par exemple, la volatilité implicite correspondant au prix d’exercice de 90 devient : 3.69/3.57 \(\approx\) 103.36%.

![Fig. 1.9: Exemples de smile de la volatilité corrigée en input du Black & Scholes](image)

La figure 1.9 illustre des smiles de volatilité correspondant à une maturité unique de 119 jours, après le changement d’échelle, prêts à être entrés dans le modèle de Black & Scholes.
(1973) suivant le schéma conceptuel 1.5 (il s’agit de la figure 1.7 après le changement d’échelle spécifié en (1.4)) : pour un prix d’exercice donné, la valeur de σ à renseigner dans la formule de Black & Scholes (1973) est celle indiquée par la courbe de la volatilité implicite qui semblera la plus réaliste pour le trader. Il convient d’insister qu’à ce niveau, aucune loi ne saurait dire si les ajustements sont judicieux, ni même légitimes, sinon l’intuition et l’expérience propres du trader. Par exemple, rien n’oblige à penser que la courbe devrait être symétrique.27

En plus du prix d’exercice, pour s’affranchir de l’hypothèse de stationnarité de la volatilité invoquée dans le monde de Black & Scholes (1973), il est convenable d’introduire dans leur formule, une volatilité différente selon la maturité de l’option.28 C’est une approche directement fondée sur l’observation empirique selon laquelle la volatilité tend vers une valeur moyenne. En effet, si la volatilité courante présente un niveau historiquement élevé, il est probable que celui-ci va baisser, et par conséquent, la valeur de la volatilité à utiliser dans la formule d’évaluation théorique, devra être une fonction croissante de la maturité de l’option. Inversement, si la volatilité courante présente un niveau historiquement bas, il est probable que celui-ci va augmenter, et par conséquent, la valeur de la volatilité à utiliser dans la formule, devra être une fonction décroissante de la maturité. La combinaison de l’effet smile et de la structure par terme de la volatilité conduit à la configuration d’une matrice des volatilités de dimension deux, dont la première est le prix d’exercice et la seconde, la maturité de l’option. Cette matrice designe plus précisément une matrice des smiles de volatilité et représente le véritable input dans la formule théorique d’évaluation. Conceptuellement, le modèle de gestion du smile de Natenberg (1994) illustré dans la figure 1.5 devient le suivant :

\[
\text{premium théorique d’un call} = \begin{cases}
\text{maturité de l’option} \\
\text{prix d’exercice de l’option} \\
\text{cours du sous-jacent} \\
\text{taux d’intérêt} \\
\text{volatilité implicite} \\
\text{structure par terme des smiles de volatilité}
\end{cases}
\]

Fig. 1.10: Gestion du smile de la volatilité par la matrice des volatilités

L’exemple qui suit donne l’illustration d’une gestion pratique du smile et de la structure par terme de la volatilité par la matrice des volatilités, lorsque la problématique concerne l’évaluation d’options.

27 Celle-ci est typiquement symétrique pour les options sur obligations.
28 Cette volatilité reste toutefois unique par échéance d’options.
Exemple 2. (Evaluation empirique des options avec un smile de volatilité) Considérons le scénario suivant : un trader cherche comment intégrer le smile de la volatilité dans un modèle théorique d'évaluation, tout en prenant en compte l'effet de la maturité de l'option sur ce smile. Il peut commencer par extraire la volatilité implicite au modèle à partir des cours d'options directement issus du marché et disponibles à l'instant courant, et écrire la matrice des volatilités implicites. Un exemple de matrice des volatilités est donné dans le tableau 1.1.

<table>
<thead>
<tr>
<th>K</th>
<th>0.90</th>
<th>0.95</th>
<th>1.00</th>
<th>1.05</th>
<th>1.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mois</td>
<td>14.2</td>
<td>13.0</td>
<td>12.0</td>
<td>13.1</td>
<td>14.5</td>
</tr>
<tr>
<td>3 mois</td>
<td>14.0</td>
<td>13.0</td>
<td>12.0</td>
<td>13.1</td>
<td>14.2</td>
</tr>
<tr>
<td>6 mois</td>
<td>14.1</td>
<td>13.3</td>
<td>12.5</td>
<td>13.4</td>
<td>14.3</td>
</tr>
<tr>
<td>1 ans</td>
<td>14.7</td>
<td>14.0</td>
<td>13.5</td>
<td>14.0</td>
<td>14.8</td>
</tr>
<tr>
<td>2 ans</td>
<td>15.0</td>
<td>14.4</td>
<td>14.0</td>
<td>14.5</td>
<td>15.1</td>
</tr>
<tr>
<td>5 ans</td>
<td>14.8</td>
<td>14.6</td>
<td>14.4</td>
<td>14.7</td>
<td>15.0</td>
</tr>
</tbody>
</table>

Tab. 1.1: Exemple d'une matrice des volatilités (source : Hull (2002) [135], p. 336)

Pour valoriser une nouvelle option de prix d'exercice et de maturité donnés, le trader peut alors estimer par interpolation, à partir de la matrice des volatilités, la valeur de la volatilité à entrer dans la formule d'évaluation.

- Ainsi, pour évaluer le premium d'une option de prix d'exercice égal à 1.075 et de maturité égale à 1 mois, il devrait estimer entre 13.1% et 14.5% la valeur de la volatilité et obtenir 13.8% dans le cas d'une interpolation linéaire.

- De même, pour évaluer le premium d'une option de prix d'exercice égal à 1 et de maturité égale à 9 mois, il devrait estimer entre 12.5% et 13.5% la valeur de la volatilité et obtenir 13.0% dans le cas d'une interpolation linéaire. Une autre interpolation possible est de faire intervenir toutes les volatilités disponibles des options de prix d'exercice égal à 1 (toutes les volatilités de la colonne K = 1), en signifiant, toutefois, que les volatilités associées aux maturités de 6 mois et 1 an jouent un rôle prépondérant. Une estimation pourrait être alors :

\[
\begin{align*}
(10\% \times 12.0\%) + (10\% \times 12.0\%) + (30\% \times 12.5\%) \\
+ (30\% \times 13.5\%) + (10\% \times 14.0\%) + (10\% \times 14.4\%) &= 13.04\%,
\end{align*}
\]

dans laquelle les volatilités de maturité de 6 mois et 1 an interviennent à hauteur de 30% dans le calcul, et toutes les autres volatilités, à hauteur de 10%. En effet, on peut penser que les données qui couvrent la période la plus proche de l'option à évaluer sont plus importantes que celles correspondant à une période plus éloignée.

Une autre possibilité intéressante est de considérer qu'au fur et à mesure que la maturité s'éloigne de 9 mois (en deçà et au-delà), la volatilité associée joue un rôle de moins en
moins important. L’estimation de la volatilité d’une option de prix d’exercice égal à 1 et de maturité égale à 9 mois deviendrait alors du type :

\[
(5\% \times 12.0\%) + (15\% \times 12.0\%) + (30\% \times 12.5\%) \\
+ (30\% \times 13.5\%) + (15\% \times 14.0\%) + (5\% \times 14.4\%) = 13.02\% ,
\]

où l’on a affecté le même poids aux volatilités à 6 mois et à 1 an (30\%), le même poids aux volatilités à 3 mois et 2 ans (15\%) et le même poids aux volatilités à 1 mois et 5 ans (5\%).

Par ailleurs, la matrice des volatilités permet également d’extrapoler la valeur de la volatilité des options qui arrivent à échéance. Ainsi, pour évaluer le premium d’une option de prix d’exercice égal à 0.90 et de maturité inférieure à 1 mois, le trader peut prendre comme valeur d’entrée pour la formule d’évaluation, la volatilité moyenne sur toute la durée de vie de l’option et obtenir :

\[
(14.2\% + 14.0\% + 14.1\% + 14.7\% + 15.0\% + 14.8\%)/6 \cong 14.47\% .
\]

En retenant cette valeur, il fait l’hypothèse selon laquelle toutes les données sont d’égale importance. Le trader peut également souhaiter attribuer une importance plus grande aux données les plus récentes, en signifiant par exemple, que la volatilité de 14.2\% des 30 derniers jours, joue un rôle deux fois plus important que les autres volatilités. En ce cas, il peut affecter à la volatilité des 30 derniers jours un poids deux fois plus élevé que pour les autres volatilités. Une estimation de la volatilité pourrait être alors :

\[
(28.571\% \times 14.2\%) + (14.286\% \times 14.0\%) + (14.286\% \times 14.1\%) \\
+ (14.286\% \times 14.7\%) + (14.286\% \times 15.0\%) + (14.286.0\% \times 14.8\%) \cong 14.429\% .
\]

Dans le calcul précédent, les volatilités associées aux maturités de 3 mois, 6 mois, 1 an, 2 ans et 5 ans jouent un rôle d’égale importance. Une autre pondération envisageable est d’attribuer un poids régressif signifiant que la volatilité de 14.2\% des 30 derniers jours joue un rôle plus important que la volatilité de 14.0\% des 3 derniers mois, que celle-ci joue, elle-même, un rôle plus important que la volatilité de 14.1\% des 6 derniers mois, et ainsi de suite. Dans ce cas, la valeur de la volatilité est :

\[
(28.571\% \times 14.2\%) + (23.809\% \times 14.0\%) + (19.048\% \times 14.1\%) \\
+ (14.286\% \times 14.7\%) + (9.524\% \times 15.0\%) + (4.762\% \times 14.8\%) \cong 14.31\% .
\]

Dans cette extrapolation, le poids affecté à la volatilité associée à la maturité de 5 ans est le sixième du poids affecté à la volatilité associée à la maturité de 1 mois, le cinquième du poids affecté à la volatilité associée à la maturité de 3 mois, le quatrième du poids affecté à la volatilité associée à la maturité de 6 mois, le quart du poids affecté à la volatilité associée
1. Problématique et enjeux de la théorie de l'évaluation des options

à la maturité de 1 an, et la moitié du poids affecté à la volatilité associée à la maturité de 2 ans. Enfin, le trader peut encore décider arbitrairement d’accélérer la régression en attribuant un poids qui diminue, par exemple, de moitié à chaque fois que l’on "remonte" dans le temps. En ce cas, l’extrapolation serait donnée par :

\[(50.794\% \times 14.2\%) + (25.397\% \times 14.0\%) + (12.698\% \times 14.1\%)\]
\[+(6.349\% \times 14.7\%) + (3.174\% \times 15.0\%) + (1.587\% \times 14.8\%) \cong 14.20\%.

Ainsi, dans cette dernière extrapolation, la volatilité à 1 mois intervient pour plus de la moitié dans le calcul.

Des exemples 1 et 2 illustrent des méthodes empiriques de gestion du smile de la volatilité sans avoir à définir formellement le phénomène. Au contraire, les ajustements, corrections, interpolations ou extrapolations utilisés au sein de ces approches minimalistes se fondent en grande partie sur l’expérience, l’intuition du trader et la connaissance qu’il retient du concept de la volatilité. Par exemple, de nombreuses pratiques mettent en avant que le caractère de retour à une valeur moyenne qu’elles retiennent comme valeur de la volatilité à entrer dans la formule pour évaluer les options à maturité très longue. Pour les échéances courtes, au contraire, certains traders attribuent une importance capitale aux données les plus récentes, tandis que d’autres préfèrent pondérer de façon équitable toutes les données disponibles jusqu’à l’instant courant. Quoiqu’il en soit, lorsqu’il s’agit d’estimer une volatilité, il peut y avoir autant d’estimations différentes que de traders à partir d’une base de données identique, et rien ne peut permettre de dire a priori, avant la date d’expiration de l’option, si une estimation est meilleure qu’une autre. Bien sûr, il existe des techniques d’estimation beaucoup plus fines que celles présentées dans ces exemples, mais leur mise en œuvre entrave considérablement la simplicité des modèles, ce dont les traders cherchent justement à se préserver. En effet, il reste certain que ces méthodes de gestion permettent d’utiliser très facilement un modèle théoriquement incompatible avec l’effet smile mais d’application aisée, tel que le modèle de Black & Scholes, en cotant une volatilité plus élevée en dehors et dans la monnaie, par rapport à la volatilité à la monnaie, de façon à créer une courbe de volatilité théorique incurvée.

Par ailleurs, la présence d’un smile de volatilité constitue une opportunité pour les traders de tirer profit des différences dans les niveaux de la volatilité implicite lorsque le prix d’exercice de l’option varie. Cependant, pour qu’il y ait effectivement profit, faut-il encore en pratique que les coûts de transaction soient plus faibles que ces différences de niveaux qui sont, en général, de faible amplitude. L’exemple illustre une gestion speculative de positions d’options en exploitant la présence d’un smile de volatilité.

Exemple 3. (Gestion speculative de positions d’options avec un smile de volatilité)

Considérons à nouveau la courbe de la volatilité implicite en fonction du prix d’exercice de la figure 1.6. Comme il a été dit dans l’exemple 1, la volatilité implicite atteint ses niveaux.
les plus faibles lorsque l’option se trouve proche de la monnaie. Le niveau minimum de 3.56 est atteint lorsque le prix d’exercice vaut 88.5 (pour un cours du sous-jacent de 87.86). Le maximum de 3.87 est atteint lorsque le prix d’exercice vaut 91.50, c’est-à-dire lorsque l’option est très en dehors de la monnaie. En d’autres termes, puisque le *premium* d’une option est fonction croissante de la volatilité, les options qui sont largement en dehors de la monnaie sont surévaluées par rapport aux options proches de la monnaie. La gestion spéculative classique est la suivante : en vendant les options qui sont le plus en dehors de la monnaie et en achetant celles qui sont proches de la monnaie, le *trader* peut espérer faire profit si les différences entre les niveaux de volatilité implicite disparaissent, c’est-à-dire si la courbe de la volatilité en fonction du prix d’exercice s’aplatis. Concrètement, dans cet exemple, pour espérer faire profit, il devrait acheter une option de prix d’exercice 88.5 et vendre deux options de prix d’exercice 87.86, et ensuite ajuster sa position en vendant ou en achetant une certaine quantité de sous-jacents de façon à neutraliser le *delta*. En effet, une position à *delta* neutre permet, entre autres, de l’assurer contre toute sensibilité à la variation du cours du support et de spéculer sur les variations de niveaux enregistrées par la volatilité implicite. Ainsi, la stratégie peut être profitable même si le cours du sous-jacent ne fluctue pas.

1.4.2 Les approches théoriques

L’approche fonctionnelle de la volatilité implicite

Parallèlement à ces méthodes empiriques, plusieurs approches théoriques cherchent à capturer les effets *smile* ou *smirk*, en suggérant leur prise en compte formelle. Dans ces approches théoriques, on cherche à modéliser directement la volatilité implicite sous forme de fonctionnelles :

- l’approche des fonctions déterministes de la volatilité implicite (FDV) : pour prendre en compte les *smiles* et *smirks* de la volatilité, l’approche FDV exploite la simplicité de la formule de Black & Scholes dans un cadre où la volatilité n’est plus constante mais une fonction déterministe\(^\text{29}\), par exemple du temps et du cours de l’actif sous-jacent :

\[
\sigma_t = \sigma(t, S_t).
\]

Selon Dumas, Fleming & Whaley (1998), la FDV représente "an important new way to identify the underlying process of financial market prices and for setting hedge ratios and valuing exotic options". Des approches semblables sont explorées dans les travaux

\(^{29}\) appelée alors *deterministic volatility function* ou *DVF* par Dumas, Fleming & Whaley (1998) [81].

L'originalité de cette approche réside dans le fait que la forme structurelle de la fonction de la volatilité est totalement absente31. Cependant, si son principal avantage tient au fait qu'elle permet de préserver le cadre d'un marché complet et la simplicité de la formule de Black & Scholes, un certain nombre de travaux empiriques rejettent l'approche \textit{deterministic volatility function}, ainsi que ses implications en couverture de positions d'options : c'est le cas par exemple de Buraschi & Jackwerth (1998) \cite{52}, Art-Sahalia, Wang & Yared (2001) \cite{7}, Andersen, Benzoni & Lund (2002) \cite{6}, qui montrent que la \textit{skew} de la volatilité implicite a tendance à s'estomper trop rapidement dans le temps (cf. "l'effet \textit{vanishing}" de la volatilité implicite, section 1.4). De plus, pour Jackwerth & Rubinstein (1996) \cite{141} ou encore Dumas, Fleming & Whaley (1998) \cite{81}, la FDV ne serait pas stable dans le temps32. D'un autre côté, cette approche est l'objet de vives critiques car elle ne fait pas intervenir explicitement une relation entre le processus risque-neutre et la fonction de volatilité implicite.

- l'approche des Fonctions Dynamiques de la Volatilité Implicite (FDVI). Cette approche généralise l'approche précédente de la fonction déterministe de la volatilité. Rosenberg (1999) [200] propose de considérer le problème de la modélisation de la fonction de volatilité implicite en distinguant paramètres statiques et variables du temps dans la dynamique de la volatilité. Ainsi, la forme générale de la volatilité implicite extraite

30 Selon ses travaux, la fonction de la volatilité est fonction de dérivées du \textit{call} :

\[
\sigma^2(K, \tau) = 2 \frac{r K \frac{\partial \tilde{C}}{\partial K}(K, \tau) + \frac{\partial C}{\partial K}(K, \tau)}{K^2 \frac{\partial^2 C}{\partial K^2}(K, \tau)}.
\]

31 Par exemple dans Rubinstein (1994) [203], la FDV est remplacée par une expression binomiale ou trinomiale qui correspond exactement aux différentes catégories des cours des options observés sur le marché, chaque nœud de l'arborescence de l'\textit{implied binomial tree} reflétant (en fonction de la probabilité de hausse ou de baisse et de l'amplitude du mouvement correspondant) la variation temporelle de la volatilité.

32 Plus justement, les arguments de la fonction ne seraient pas stables dans le temps.
1. **Problématique et enjeux de la théorie de l'évaluation des options**

D'une option \(i \) à prix d'exercice \(K_i \), peut s'écrire :

\[
\sigma_{i,t} = f(T - t, S_t, \sigma_{i,ATM}, K_i),
\]

où \(\sigma_{i,ATM} \), la volatilité implicite extraite à partir des options à la monnaie à la date \(t \), joue le rôle de la variable fluctuant dans le temps et régissant la dynamique de la fonction de volatilité implicite.

La fonction dynamique de volatilité implicite est définie de façon à ce que les volatilités implicites des options dépendent d'une volatilité de référence, représentée par le niveau de \(\sigma_{i,ATM} \). Il est intéressant de noter que, dans cette approche, le niveau de référence, pris comme le niveau de la volatilité implicite des options à la monnaie, est également celui qu'avait adopté Natenberg (1994), dont l'approche pratique a été illustrée dans l'exemple 1, sous-section 1.4.1\(^{33}\).

De plus, dans cette approche, les facteurs stylisés observés sur les marchés peuvent également être intégrés dans la fonction de la volatilité implicite. Par exemple, le phénomène de retour vers la valeur moyenne de la volatilité implicite et l'effet asymétrique exercé par les rentabilités sur cette volatilité sont intégrés dans la structure fonctionnelle, en écrivant la volatilité implicite extraite à partir des options à la monnaie comme une fonction de son retard d'ordre un et du retard d'ordre un des rentabilités de l'actif support, comme le suggère l'équation suivante :

\[
\sigma_{i,ATM} = g(\sigma_{i-1,ATM}, r_{t-1}).
\]

Une variante de la FDVI consiste à exprimer la volatilité implicite en fonction de celle extraite des options à la monnaie, et de la volatilité implicite relative, \(\sigma_{i,i,rel} = \sigma_{i,i}/\sigma_{i,ATM} - 1 \) :

\[
\sigma_{i,i} = \sigma_{i,ATM}(\sigma_{i,i,rel} + 1).
\]

Ainsi, l'approche FDVI consiste à introduire, dans le processus de la volatilité implicite, une variable d'état dépendant au moins du temps, qui "dynamise" le niveau de la fonction de volatilité implicite.

- L'approche de la volatilité stochastique : c'est l'approche inspirée de Hull & White (1987) [132], Stein & Stein (1991) [215], ou encore Heston (1993), qui consiste à introduire un processus stochastique propre à la volatilité dont la corrélation avec les rentabilités de l'actif support permettrait, selon Andersen, Benzoni & Lund (2002), de décrire une variété de smiles et/ou smirks conformes aux courbes observées sur les marchés. Je reviens plus en détail sur ce point dans la suite de la thèse\(^{34}\).

\(^{33}\) Cf. changement de variables (1.4).

\(^{34}\) Cf. sous-section 1.5.3.
L’approche des processus mixtes (de diffusion et à sauts poissonniens) des rentabilités

1.5 La quête de la leptokurticité dans le processus des rentabilités

La prise de conscience des valeurs extrêmes et/ou aberrantes, initiée par Mandelbrot (1962) [165], incite à chercher des processus alternatifs au mouvement brownien. À ce niveau de la thèse, je me dois de rappeler qu’une valeur supérieure à trois pour la kurtosis d’une distribution ne saurait garantir la présence de queues épaisses, dans la mesure où une distribution à queue fine peut très bien engendrer une kurtosis supérieure à trois. Autrement dit, la condition d’une kurtosis supérieure à trois n’est pas suffisante pour affirmer l’existence de queues épaisses dans les distributions. En vérité, il existe une véritable dichotomie entre le terme de leptokurticité et le concept qui s’y rattache : en effet, par leptokurticité, "on" convient de signifier simplement l’existence des "grandes" variations, par opposition aux variations normales attendues par une distribution gaussienne, en laissant de coté les multiples aspects du concept de leptokurticité.

1.5.1 L’approche des processus de Lévy

La prise en compte des valeurs extrêmes et la volonté de décrire des queues de distributions de rentabilités épaisses conformes aux observations empiriques de Mandelbrot (1962, 1963) [165] [167] donnent à la théorie des valeurs extrêmes tout son sens. Selon cette théorie, introduite dans le contexte des marchés financiers par Longin (1993, 1995, 1996) [154], [155], [156], les valeurs extrêmes se réfugient dans les queues de distribution. La fonction de répartition correspondante est modélisée par la distribution de Pareto généralisée, définie comme suit :
Définition 1.5.1 (Distribution de Pareto généralisée).

\[G_{\xi,\sigma}(x) = \begin{cases}
1 - (1 + \frac{x}{\sigma})^{-1/\xi} & \xi \neq 0 \\
1 - \exp(-x/\sigma) & \xi = 0,
\end{cases} \tag{1.5} \]

où

\[\begin{cases}
x \geq 0 & \xi \geq 0 \\
0 \leq x \leq -\sigma/\xi & \xi < 0,
\end{cases} \]

Dans cette définition, \(\sigma \) constitue un paramètre d’échelle, mais c’est surtout le paramètre \(\xi \) qui est important. En effet, \(\xi \) est un indice quantifiant le poids des queues de distribution : une grande valeur pour \(\xi \) décrit des queues de distribution épaisses. Une valeur négative ou nulle pour \(\xi \) correspond à des distributions à queue fine. Lorsque \(\xi \to 0 \), la distribution de Pareto généralisée présente des queues exponentielles et tend vers la distribution gaussienne dont elle constitue une généralisation. Lorsque \(\xi > 0 \), autrement dit lorsque \(x \geq 0 \), la distribution présente des queues épaisses.

Formalisée comme dans la définition 1.5.1, la distribution de Pareto généralisée permet de définir des probabilités non nulles qu’une variable aléatoire \(X \) se trouve au-delà d’un seuil \(a \) donné, \(\Pr(X|X > a) \), en définissant formellement la notion d’espérance de seuil comme suit :

Proposition 1.5.1 (Espérance de dépassement de seuil). L’espérance de l’excédent de \(X \) au-delà du seuil \(a \), appelé espérance de dépassement de seuil et noté \(e(a) \), est une fonction affine de la forme :

\[e(a) = \mathbb{E}[X - a|X > a] = \frac{\xi}{1 - \xi} a + \frac{\sigma}{1 - \xi}, \tag{1.6} \]

où \(\xi < 1 \) et \(\sigma + a \xi > 0 \).

Parce que la distribution de Pareto généralisée permet de capturer les valeurs extrêmes dans les queues, on peut chercher à modéliser les rentabilités par des processus dont la loi marginale présente un comportement asymptotique parétique. C’est ainsi que Mandelbrot (1962) [165] introduit pour la première fois en finance les lois-stables de Lévy.

Les lois-stables de Lévy

Définition 1.5.2 (Processus de Lévy). Soit \(X_t \) une variable aléatoire. Le processus stochastique défini par

\[\begin{cases}
X_0 = 0 \\
X_t, \quad 0 \leq t \leq \infty
\end{cases} \tag{1.7} \]

est un processus de Lévy si et seulement si ses increments sont indépendants et stationnaires.
Par "incréments stationnaires", il est signifié que pour tout $s > 0$ la variable aléatoire $X_{t+s} - X_t$ présente la même distribution que la variable aléatoire $X_{t' + s} - X_{t'}$ pour tout t et tout $t' \geq 0$. Ainsi, processus gaussien et processus poissonien appartiennent-ils à la classe des processus de Lévy.

Théorème 1.5.1 (Représentation de Lévy-Khintchine). Soit X_t un processus de Lévy. Le logarithme népérien de la fonction caractéristique de X_t peut s'écrire

$$
\ln \mathbb{E}[e^{itX_t}] = ait\theta - \frac{1}{2}\sigma^2 t^2 + t \int_{\{t \geq 1\}} (1 - e^{itx}) W(dx) + \int_{\{|t| < 1\}} (1 - e^{itx} + itx) W(dx),
$$

où $a \in \mathbb{R}$, $\sigma \geq 0$ et W la mesure de Lévy satisfaisant

$$
\int_{\mathbb{R}} \min_{1, x^2} W(dx) < \infty
$$

et à masse nulle à 0.

Le théorème 1.5.1 montre simplement qu’un processus de Lévy peut être une combinaison d’un incrément absolument continu (composante tendance ou drift), d’un incrément brownien (composante gaussienne) et d’un incrément poissonien (composante à saut). Ces trois composantes sont complètement définies par le triplet de Lévy-Khintchine (a, σ^2, W), où le paramètre a modélise le drift qui contient la partie tendance du processus, le paramètre σ^2 définit la variance de la composante gaussienne du processus et W une mesure de Lévy qui imprime au processus un comportement discontinu à saut.

Définition 1.5.3 (Stabilité d’une distribution d’une variable aléatoire). Soit X une variable aléatoire. On dit que X est à distribution stable si, pour tout $n \geq 2$, il existe un réel positif C_n et un réel D_n tels que

$$
X_1 + X_2 + \ldots + X_n \overset{d}{=} C_n X + D_n,
$$

où d désigne l’opérateur égalité au sens des distributions, et où X_1, X_2, \ldots, X_n représentent des copies indépendantes de X.

Définition 1.5.4 (Loi stable de Lévy). Soit X_t une variable aléatoire. Le processus défini par

$$
\begin{cases}
X_0 = 0 \\
X_t, & 0 \leq t \leq \infty
\end{cases}
$$

est une loi stable de Lévy si la distribution de X_t est stable.
En général, les lois α-stables sont définies par leur représentation spectrale, c'est-à-dire leur fonction caractéristique ou la transformée de Fourier de leur mesure de probabilité. En effet, bien que les lois α-stables soient absolument continues sur leur domaine de définition, leur densité de probabilité ne peut s'exprimer que sous des fonctions spéciales compliquées35. Leur fonction caractéristique est par contre facile à manier.

Proposition 1.5.2 (Représentation spectrale d'une loi ν-stable de Lévy). Une distribution ν-stable, notée $S_{\nu,\beta}(\gamma, \delta)$, a une fonction caractéristique $\mathbb{E}[\exp\{iXt\}], t \in \mathbb{R}$, de la forme :

$$
\mathbb{E}[\exp\{iXt\}] = \begin{cases}
\exp\{i\beta t - \gamma |t|^{\nu} \sec(\theta) \sin(\beta \theta) \}, & \nu \neq 1, \\
\exp\{i\beta t - \gamma |t|^{\nu} \ln |t| \}, & \nu = 1,
\end{cases}
$$

(1.11)

avec :

$$
sign(t) = \begin{cases}
-1 & t < 0, \\
0 & t = 0, \\
1 & t > 0,
\end{cases}
$$

s'il existe un quadruplet élément de \mathbb{R}^4, $(\nu \in [0, 2], \beta \in [-1, 1], \delta \in (-\infty, +\infty], \gamma \in [0, +\infty])$.

Preuve. Le logarithme népérien de la fonction caractéristique d'une variable aléatoire X à loi α-stable de Lévy peut être entièrement déterminé par la représentation de Lévy-Khintchine suivante

$$
\mathbb{E}[\exp\{iXt\}] = \int_{-\infty}^{\infty} [e^{itx} - 1 - it\tau_\nu(x)]W(dx),
$$

associée au triplet $(0, 0, W)$, où

$$
W(x) = \begin{cases}
Cq|x|^{-1-\nu} & x < 0, \\
Cp|x|^{-1-\nu} & x > 0, \\
1 & t > 0,
\end{cases}
$$

avec $C > 0, p \geq 0$ et $q \geq 0$ tels que $p + q = 1$ et

$$
\tau_\nu(x) = \begin{cases}
0 & \nu < 1, \\
\sin(x) & \nu = 1, \\
x & \nu > 1.
\end{cases}
$$

En portant l'intégration, on retrouve la proposition 1.5.2. \qed

En rapprochant la propriété 1.5.2 à la définition 1.5.1, on met en évidence que cette dernière définit une classe particulière de processus de Lévy à composante gaussienne nulle entièrement déterminée par le choix d’une mesure de Lévy W. Dans la représentation spectrale 1.5.2, l’interprétation statistique des paramètres \(\nu, \beta, \delta \) et \(\gamma \) peut être la suivante :
- la quantité \(\nu \), appelée exposant caractéristique, décrit le "degré de leptokurticité" de la loi : aux valeurs faibles de \(\nu \) correspond une leptokurticité aigüe.
- \(-1 \leq \beta \leq 1 \) traduit la skew de la loi : si \(\beta < 0 \) alors la loi est dite "asymétrique à gauche", si \(\beta = 0 \) alors la loi est symétrique et si \(\beta > 0 \) alors la loi est dite "asymétrique à droite";
- \(\delta \) est un paramètre de "localisation" ou de "centrage" : si \(\nu > 1 \) alors \(\delta \) est égal à la valeur moyenne de la loi ;
- \(\gamma \) est un paramètre fixant l’échelle : si \(\nu = 2, \gamma = \sigma / \sqrt{2} \) où \(\sigma \) désigne l’écart type de la loi. Si \(\nu \neq 2 \), ce paramètre ne peut pas être interprété comme l’écart type de la loi. A une valeur élevée du paramètre \(\gamma \) correspond une densité de probabilité "large" pour la variable aléatoire \(X \).

Cas particuliers :

- 1) Le cas \((\nu, \delta) = (2, 0)\) coïncide avec la distribution gaussienne, et en ce cas, la fonction caractéristique se simplifie comme :
 \[
 \mathbb{E}[\exp\{itX\}] = \exp\{-\gamma^2 t^2\}. \tag{1.12}
 \]

- 2) Le cas \((\nu, \delta) = (1, 0)\) correspond aux lois de Cauchy à fonction caractéristique de la forme :
 \[
 \mathbb{E}[\exp\{itX\}] = \exp\{-\gamma|t|\left[1 + i\beta \frac{2}{\pi} \text{sign}(t) \ln |t|\right]\}. \tag{1.13}
 \]

- 3) Le cas \((\beta, \delta) = (0, 0)\) concerne une variable aléatoire \(X \) symétrique à loi \(\nu \)-stable noté \(S_{\nu}S \) et à fonction caractéristique à valeurs strictement réelles :
 \[
 \mathbb{E}[\exp\{itX\}] = \exp\{-\gamma|t|^\nu\}, \tag{1.14}
 \]

En fixant \((\beta, \gamma, \delta) \equiv (0, 1, 0)\), la figure 1.11 met en évidence quatre densités de probabilité symétriques célèbres, associées à quatre valeurs de l’exposant caractéristique : lorsque \(\nu = 1/2 \), la densité de probabilité correspond à la distribution de Lévy-Smirnov, lorsque \(\nu = 1 \), la densité de probabilité coïncide avec la distribution de Cauchy et lorsque \(\nu = 2 \), on retrouve la distribution gaussienne.
Ainsi, si l’on veut comparer sommairement ces distributions avec la distribution gaussienne, on peut formuler au moins deux remarques :
- la distribution gaussienne présente des queues qui décroissent beaucoup plus rapidement que les autres distributions ;
- la kurtosis pour toutes ces distributions est plus élevée par rapport à la distribution gaussienne qui revendique la plus petite valeur.
Fig. 1.11: Effet de l’exposant caractéristique sur la densité de probabilité d’une loi ν-stable.

Note : Les densités de probabilité sont obtenues en fixant le jeu de paramètres numériques (β, γ, δ) à $(0,1,0)$ et pour différentes valeurs d’exposant caractéristique ν.

Parce qu’elles présentent des queues de distributions qui décroissent selon une distribution parétiennne, (cf. propriété 1.5.1), les lois ν-stables de Lévy exhibent un comportement asymptotique parétienn.

Propriété 1.5.1 (Propriété asymptotique des lois ν-stables). Soit $\nu \in]0, 2]$, si $X \sim \mathcal{S}_{\nu, \beta}(\gamma, \delta)$, alors :

$$
\begin{align*}
\lim_{x \to \infty} x^\nu \Pr(X > x) &= C_\nu \frac{1 + \beta}{\gamma^\nu}, \\
\lim_{x \to \infty} x^\nu \Pr(X < -x) &= C_\nu \frac{1 - \beta}{\gamma^\nu},
\end{align*}
$$

où

$$
C_\nu = \left(\int_0^\infty x^{-\nu} \sin x \, dx \right)^{-1} = \begin{cases}
\frac{1 - \nu}{2\pi} & \nu \neq 1 \\
\frac{1}{2} & \nu = 1.
\end{cases}
$$

Cependant, les lois ν-stables souffrent de trois inconvénients majeurs :

- Elles sont difficiles à appliquer et en particulier, elles sont difficiles à simuler selon les pages 74, 81, 96, 521, 540 de Janicki & Weron (1993) [142]. En effet, comme je l’ai rappelé plus haut, il est difficile d’obtenir des expressions simples pour les fonctions de densité de probabilité des lois ν-stables. Certes, on peut trouver des développements des
fonctions de densité de probabilité au voisinage de l'origine ou de l'infini dans Ibragimov & Linnik (1971) [137] (pp. 74-85) ou encore Zolotarev (1994) [230], mais force est de constater qu'il n'existe que trois cas où les lois ν-stables $S_{\nu,\beta}(\gamma, \delta)$ peuvent s'exprimer explicitement sous la forme de fonctions élémentaires : le cas gaussien $S_{0,0}(\gamma, 0)$, le cas de Cauchy symétrique $S_{1,0}(\gamma, 0)$ et enfin le cas gaussien inverse $S_{1/2,1}(\gamma, 0)$.

- En outre, un rapide calcul peut même démontrer que sous des conditions techniques particulières, la moyenne d'une distribution de Pareto n'existe même pas. En effet, comme il a été vu plus haut dans ce même chapitre, si l'on veut prendre en considération des queues de distribution épaisses, il faut prendre $\xi > 0$, c'est-à-dire $x \geq 0$ et en ce cas, la distribution de Pareto généralisée s'écrit :

$$G_{\xi,\sigma}(x) = \begin{cases} 1 - (1 + \xi x / \sigma)^{-1/\xi} & x \geq 0 \\ 0 & x < 0. \end{cases}$$

Sa dérivée, la fonction de densité de probabilité, s'écrit alors :

$$g_{\xi,\sigma}(x) = \begin{cases} \frac{1}{\sigma} (1 + \xi x / \sigma)^{-(1/\xi)-1} & x \geq 0 \\ 0 & x < 0. \end{cases}$$

Lorsque x est suffisamment grand, 1 devient négligeable devant la quantité $\xi x / \sigma$, et on obtient alors :

$$g_{\xi,\sigma}(x) \propto x^{-\frac{1}{\xi}-1}.$$

Dans le calcul des moments d'ordre k,

$$\mathbb{E}[x^k] = \int_0^\infty x^k g_{\xi,\sigma}(x) dx,$$

la quantité à intégrer se comporte donc à l'infini comme

$$x^{k-\frac{1}{\xi}-1}.$$

Pour que l'intégrale converge, il est nécessaire que

$$k < \frac{1}{\xi}.$$

Ainsi, dès que $\xi \geq 1/2$, la moyenne de la fonction de densité de probabilité n'existe pas!
Presque toutes les études statistiques conduites suite aux travaux précurseurs sur la leptokurticité de Mandelbrot (1962, 1963) et Fama (1965), ont révélé que l'exposant caractéristique ν n'est pas stable lorsque la fréquence d'observation est modifiée : par exemple, Walter (1994) [223] rapporte que lorsque la fréquence d'observation diminue, ν croît, et par voie de conséquence, la kurtosis diminue. Ce dernier avatar en défavorable des lois -stables incite à poursuivre d'autres voies de recherche, par exemple avec des processus de Lévy à sauts purs. C'est l'objet des propos qui suivent.

Les processus de Lévy à "purs" sauts

La distribution hyperbolique. Initialement introduite dans le contexte financier par Eberlein & Keller (1995) [84], la distribution hyperbolique, régissant l'évolution temporelle du cours S_t du sous-jacent, s'écrit dans un espace probilisé risque-neutre ($\mathbb{R}, \mathcal{T}, Q$) :

$$dS_t = S_t(\mu dt + dY_t + e^{\sigma Y_t} - 1 - \sigma Y_t),$$

où Y_t désigne une variable aléatoire distribuée suivant une fonction de densité hyperbolique :

$$g_{\alpha, \beta, \delta, \mu}(y) = \frac{\sqrt{\alpha^2 - \beta^2}}{2\alpha \delta K_1(\delta \sqrt{\alpha^2 - \beta^2})} e^{-\alpha \sqrt{\delta^2 + (y - \mu)^2 + \beta (y - \mu)}},$$

où $K_1(.)$ représente la fonction de Bessel de troisième ordre et d'indice unitaire, et où

$$\mu = R - \ln\left(\frac{K_1(\delta \sqrt{\alpha^2 - (\beta + 1)^2})}{K_1(\delta \sqrt{\alpha^2 - \beta^2})}\right) + \frac{1}{2} \ln\left(\frac{\alpha^2 - (\beta + 1)^2}{\alpha^2 - \beta^2}\right).$$

Dans le cadre des modèles hyperboliques à la Eberlein & Keller (1995) [84], le processus du cours de l'actif support à distribution hyperbolique est purement discontinu, avec un nombre infini de sauts pendant chaque intervalle de temps fini. La pertinence d'un tel processus a été examinée par Eberlein, Keller & Prause (1998) [85], sur des options sur actions cotées sur le marché allemand.

La distribution variance-gamma. Une autre distribution de la classe des processus de Lévy, conforme aux distributions leptokurtiques et à skewness non nulle, est la distribution variance-gamma, caractérisée par un jeu de deux paramètres (θ et ν) qui représentent respectivement les moments d'ordre trois et quatre, en plus du paramètre décrivant la volatilité (σ) du modèle de Black & Scholes (1973). Cette sous-classe de processus de Lévy est exploitée, par exemple dans le modèle de Madan & Seneta (1990) [163], qui décrit sous une mesure de probabilité risque-neutre Q, le processus du prix de l'action sous-jacente :
\[S(T) = S(t) \exp(r(T - t)) + g_{\sigma, \theta}(x) + \frac{1}{\nu} \ln(1 - \theta \nu - \frac{\sigma^2 \nu}{2}), \]
\[g_{\sigma, \theta}(x) = \int_0^\infty \frac{1}{\sigma \sqrt{2\pi} u} \frac{u^{\nu - \frac{3}{2} - 1} \exp(-\frac{x^2}{2u}) \exp(-\frac{(x - \theta u)^2}{2\sigma^2 u})}{\nu^{\frac{1}{2}} \Gamma(\frac{\nu - 1}{2})} du, \]

où \(g_{\sigma, \theta}(\cdot) \) représente la distribution variance-gamma :

1.5.2 L’approche de la volatilité GARCH

Définition 1.5.5 (Volatilité ARCH). Soit \(\{ \epsilon_t \}, t \in \mathbb{N} \) une suite d’innovations issue d’un modèle d’observation et \(p, q \in \mathbb{N} \times \mathbb{N} \), une volatilité \(ARCH(p,q) \) notée \(\sigma \) est définie par :

\[
\begin{align*}
\epsilon_t &= u_t \sigma_t, u_t \xrightarrow{i.i.d.} \mathcal{N}(0,1) \\
\sigma_t^2 &= f(\epsilon_{t-1}^2, \ldots, \epsilon_{t-p}^2, \sigma_{t-1}^2, \ldots, \sigma_{t-q}^2),
\end{align*}
\]

où \(f(.) \) est déterministe en ses arguments.

Sous-classe particulière : la classe \(GARCH(p,q) \). Soit \(w, \alpha_i (i = 1, \ldots, q), \beta_j (j = 1, \ldots, p) \) des paramètres réels et non stochastiques, avec \(w \in \mathbb{R}_+ \) et \((\alpha_i, \beta_i) \in \mathbb{R}_+^{q \times p} \). Si \(f(.) \) est linéaire :

\[
\sigma_t^2 = w + \sum_{i=1}^q \alpha_i \epsilon_{t-i}^2 + \sum_{j=1}^p \beta_j \sigma_{t-j}^2,
\]

alors la volatilité \(ARCH(p,q) \) est appelée \(GARCH(p,q) \) (Generalized Auto Regressive Conditional Heteroskedasticity).

Le schéma \(GARCH(p,q) \) fut introduit par Bollerslev (1986) [37] afin de généraliser le modèle \(ARCH(q) \) de Engle (1982) [87], dans lequel les \(\beta_j \) sont tous nuls. Dans ce modèle, l’évolution de la volatilité est expliquée par deux variables :

- \(\epsilon_{t-i} \) : l’innovation passée traduisant les effets de haute fréquence sur la volatilité ;
- \(\sigma_{t-j}^2 \) : la volatilité passée captant les effets de persistance sur la volatilité.

Ce modèle est susceptible de générer une distribution non conditionnelle des résidus de type leptokurtique. Par exemple, le coefficient de kurtosis du modèle \(GARCH(1,1) \) est
Donné par\(^{36}\):

\[
\lim_{j \to \infty} \frac{\mathbb{E}_t [\epsilon_{t+j}^4]}{(\mathbb{E}_t [\epsilon_{t+j}^2])^2} = 3 \frac{1 - (\alpha + \beta)^2}{1 - 3\alpha^2 - \beta^2 - 2\alpha\beta} > 3.
\]

De plus, puisque la variance de l’erreur de prévision du modèle dépend de l’ampleur des erreurs passées mesurées par leur carré, le modèle GARCH(p,q) est parfaitement compatible avec le "phénomène de clustering" de la volatilité, évoqué au sein de la sous-section 1.2.2.

La classe des modèles ARCH, comme modèles de volatilité non stationnaire, a fait l’objet de nombreuses études : Bollerslev, Chou & Kroner (1992) \(^{38}\), Bollerslev, Nelson & Engle (1994) \(^{40}\), Ghysels, Harvey & Renault (1996) \(^{116}\) ou encore Shephard (1996) \(^{211}\). Akgiray (1989) \(^{2}\), Pagan & Schwert (1990) \(^{190}\) montrent que parmi les modèles ARCH, le modèle GARCH(1,1) serait le plus apte à traduire correctement le comportement de la volatilité. Dans un tel modèle, la variance des rentabilités est modélisée par \(\sigma_t^2 = w + \alpha \sigma_{t-1}^2 + \beta \sigma_{t-1}^2 \) et le drift à long terme de la variance s’écrit :

\[
\sigma^2_{\infty} = \frac{w}{1 - (\alpha + \beta)}.
\]

Le fait que cette quantité ne soit pas affectée par le signe des innovations \(\epsilon_{t-1} \), pour tout \(t \) élément de \(\mathbb{N} \), soulève une critique légitime à l’encontre du modèle GARCH(1,1) : la relation inverse entre les rentabilités mise en évidence dans Black (1976) \(^{33}\) ou Christie (1982) \(^{64}\) grève la pertinence de ce modèle. En réponse à cette faiblesse, Nelson (1991) \(^{186}\) propose un modèle EGARCH (Exponential Auto Regressive Conditional Heteroskedasticity) dans lequel la variance est présentée sous forme logarithmique, permettant ainsi aux variables explicatives de la régression de prendre des valeurs négatives. La non stationnarité de la volatilité peut également être modélisée par un processus GCOMP (Generalized Auto Regressive Conditional Heteroskedasticity Components with leverage) à la Engle & Lee (1993) \(^{91}\) (Cf. tableau 1.2), qui sépare la volatilité en deux composantes :

- une composante permanente, qui fait office de drift de la dynamique (de la volatilité) ;
- une composante transitoire, dont l’effet diminue avec le temps pour rendre compte des mouvements de la volatilité, alors totalement dominés par l’espérance de la composante permanente.

Le souci d’affinement et de gain en précision dans l’analyse, et la description du comportement de la volatilité, conduit à l’émergence d’une panoplie de modèles généralisant la

\(^{36}\) Cf. Bollerslev (1986) \(^{37}\) pour les conditions d’existence de cette limite.
1. Problématique et enjeux de la théorie de l'évaluation des options

<table>
<thead>
<tr>
<th>Auteur(s)</th>
<th>Modèle</th>
<th>Paramètres</th>
</tr>
</thead>
<tbody>
<tr>
<td>GARCH(1,1)</td>
<td>$\ln \frac{S_t}{S_{t-1}} = R + \mu + \epsilon_t, \epsilon_t \sim \mathcal{N}(0, \sigma_t^2)$</td>
<td>w_0, α, β</td>
</tr>
<tr>
<td>GJR</td>
<td>$\ln \frac{S_t}{S_{t-1}} = R + \mu + \epsilon_t, \epsilon_t \sim \mathcal{N}(0, \sigma_t^2)$</td>
<td>w_0, α, β</td>
</tr>
<tr>
<td>Glosten, Runkle & Jagannathan (1993) [118]</td>
<td>$\ln \frac{S_t}{S_{t-1}} = R + \mu + \epsilon_t, \epsilon_t \sim \mathcal{N}(0, \sigma_t^2)$</td>
<td>w_0, α, β</td>
</tr>
<tr>
<td>Engle & Lee (1993) [91]</td>
<td>$\ln \frac{S_t}{S_{t-1}} = R + \mu + \epsilon_t, \epsilon_t \sim \mathcal{N}(0, \sigma_t^2)$</td>
<td>w_0, α, β</td>
</tr>
</tbody>
</table>

Tab. 1.2: Exemples de modèles à volatilité GARCH

Note : Dans ces modèles, μ désigne la prime de risque (paramètre constant) et w un paramètre réel strictement positif et non stochastique. Dans le modèle GARCH(1,1), α et β reflètent l’effet du retard de la rentabilité et de la variance conditionnelle d’un jour sur la variance conditionnelle instantanée, tels que $\alpha + \beta < 1$. Dans le modèle GJR, α et β s’interprètent de la même façon que dans le modèle GARCH(1,1) ; l’effet de levier est mesuré par le coefficient γ qui caractérise l’effet d’un choc négatif de la rentabilité sur la variance conditionnelle. Dans le modèle GCOMP, α caractérise l’effet du choc des rentabilités sur la composante à court terme de la volatilité σ ; γ traduit l’impact des “mauvaises nouvelles” sur la composante à court terme ; β reflète l’incidence du retard de la volatilité sur la volatilité conditionnelle ; $\rho \geq 1 + \gamma$ témoigne de l’effet de la persistance sur la composante à long terme ; ϕ modèle l’incidence des chocs des rentabilités sur la composante à long terme de la volatilité.

classes ARCH, avec le modèle IGARCH (Integrated GARCH) de Engle & Bollerslev (1986) [90], le modèle NARCH (Nonlinear ARCH) de Milhøj (1987) [179], le modèle AARCH (Asymmetric ARCH) de Engle (1990) [88], le modèle AARCH (Augmented ARCH) de Bera & Lee (1989) [26], le modèle MARC (Modified ARCH) de Friedman & Liabson (1989) [110], le modèle SP ARCH (Semi Parametric ARCH) de Engle & Gonzales (1991) [97], le modèle PNP ARCH (Partially Nonparametric ARCH) de Engle & Ng (1993) [94], ou encore le modèle TARCH (Threshold ARCH) de Zakoian (1994) [229], par exemple. Certains de ces modèles sont créés dans le but de donner une meilleure description des dépendances de la volatilité à long terme. C’est le cas, par exemple, du modèle FIGARCH (Fractionally Integrated ARCH) proposé par Baillie, Bollerslev & Mikkelsen (1996) [13] ou encore dans Bollerslev & Mikkelsen (1996) [39].

1.5.3 L’approche de la volatilité stochastique

La recherche empirique dans le domaine des marchés financiers repose, depuis les années 50, sur une base théorique d’efficience des marchés où les prix sont supposés évoluer
de façon totalement erratique, exactement comme pourraient le faire les fines particules organiques en suspension dans un gaz ou un fluide, tel que l’a observé dès 1827, le botaniste Brown, examinant au microscope des graines de pollen dispersées dans une goutte liquide. Ce mouvement, emprunté à la botanique pour décrire l’évolution des marchés financiers en général, bien que ne reflétant pas de façon fidèle la réalité, a été adopté dans le contexte financier pour modéliser les mouvements, supposés alors erratiques, du cours des actifs.
1. PROBLÉMATIQUE ET ENJEUX DE LA THÉORIE DE L’ÉVALUATION DES OPTIONS 68

Fig. 1.12: Simulation numérique d’un mouvement brownien

Note : L’exemple de simulation 1.12 du mouvement brownien est obtenu dans un réseau carré, avec 300 itérations : à chaque itération, la particule effectue un déplacement d’une unité, par exemple dans l’un ou l’autre sens, avec des probabilités égales. En ce sens, le mouvement brownien est bien adapté pour modéliser le mouvement erratique d’une particule qui se choque aux autres particules d’un milieu, par exemple celui d’une particule en suspension dans un liquide qui reçoit, de la part des molécules de ce liquide, des millions de chocs par seconde. D’après l’hypothèse statistique de l’équipartition des vitesses moléculaires, la particule subit sensiblement le même nombre de chocs de chaque côté. Si elle est trop grosse, elle ne se déplace pas. Mais si elle est suffisamment petite, les fluctuations dans la répartition des chocs ne sont plus négligeables. La particule est soumise à une série d’impulsions et, étant de faible inertie, elle effectue des déplacements désordonnés qui fournissent en quelque sorte "le ralentit" des mouvements moléculaires. La trajectoire résultante est naturellement continue, mais extrêmement perturbée du fait du nombre de chocs très important qu’elle subit à chaque instant. À l’échelle microscopique, la trajectoire est continue, mais presque partout non dérivable.
L'argument principal d'une modélisation stochastique de la volatilité tient dans sa capacité à expliquer le phénomène du *smile*, et donc implicitement les observations empiriques de Mandelbrot (1963) sur les distributions de rentabilités. En effet, les modèles d'évaluation des options de Black & Scholes (1973) et de Merton (1973) reposent sur l'hypothèse d'une distribution normale des rentabilités de l'actif support - hypothèse traduite par un processus de Wiener représentant l'élément d'incertitude dans le cours de l'actif sous-jacent. La prise en compte de l'excès de la *kurtosis* (larges queues de distribution) dans la distribution des rentabilités, implique la recherche d'un autre processus approprié, remplaçant celui de Wiener dans la spécification du modèle. Cependant, on sait déjà qu'il ne peut s'agir d'un processus continu à incrément indépendants, d'après le théorème de Breiman (1968) [46] :

Théorème 1.5.2 (Breiman (1968)). Si W est un processus continu à incrément stationnaires indépendants, alors W est un processus de Wiener.

En effet, d'après ce théorème, un processus de Wiener pourrait être défini comme un processus à incrément stationnaires indépendants, suivant une trajectoire continue, et impliquant une distribution normale.37

Une autre alternative pour décrire cet excès de *kurtosis*, conforme à l'empirique, consiste à autoriser la volatilité à suivre un processus stochastique, ou autoriser des sauts brusques de volatilité (l'excès de *kurtosis* attendu peut être expliqué intuitivement : en présence de forte volatilité, les valeurs extrêmes sont favorisées, tandis qu'en présence de faible volatilité, les faibles valeurs ont tendance à décrire une queue plus épaissie que la distribution gaussienne). Il est alors possible de définir une structure par terme de la volatilité réelle, par analogie à la structure par terme des taux d'intérêt. D'un autre côté, la *skewness* (effet d'asymétrie) observée dans la distribution des rentabilités peut être expliquée par la corrélation non nulle entre les rentabilités et les variations de la volatilité.

En effet, l'idée des modèles à volatilité stochastique est la suivante : la variation des *premia* des *alls* étant incertaine dans une période future, cette quantité doit pouvoir être modélisée au travers d'une distribution de probabilités. Partant de cette idée, la définition du terme "volatilité" s'impose naturellement : la volatilité peut être considérée comme la dispersion d'une distribution des probabilités des variations des *premia*. Par "volatilité stochastique", il doit alors être entendu que la grandeur "volatilité" évolue dans le temps, de façon totalement erratique. Dans un environnement de volatilité stochastique, la spécification du processus de *premia* C_t peut s'écrire comme suit :

$$
C_t \begin{cases}
 dS_t = F_S(\tau, S_t, \ldots)dt + G_S(\tau, S_t, \sigma_t, \ldots)dW_{t, S} \\
 d\sigma_t = F_\sigma(\tau, \sigma_t, \ldots)dt + G_\sigma(\tau, \sigma_t, \ldots)dW_{t, \sigma}.
\end{cases} \quad (1.19)
$$

Dans le cadre de cette spécification, il convient de donner à la deuxième équation différentielle de (1.19) la définition formelle suivante:\footnote{Cette définition est très restrictive : elle n’autorise pas la volatilité à "sauter", et elle ne tient pas compte que la volatilité pourrait éventuellement ne pas être un processus de diffusion.}:

Définition 1.5.6 (VOLATILITÉ STOCHASTIQUE). Soit \((\mathcal{F}_t)_{t \in \mathbb{R}_+}\) une filtration. Soit \(W_t\) un \(\mathcal{F}_t\)-mouvement brownien dans \(\mathbb{R}\). Soit \(m\) un entier naturel. Le processus des premières actifs du modèle (1.19) est un processus à volatilité stochastique s’il existe une unique solution à l’équation différentielle stochastique d’Itô\footnote{Cf. Itô (1951) [130].} suivante :
\[d\sigma_t = F_\sigma(\tau, \sigma_t, \ldots) d\tau + G_\sigma(\tau, \sigma_t, \ldots) dW_t, \]
ou \(F_\sigma\) et \(G_\sigma\) sont des fonctions de \(\mathbb{R}_+ \times \mathbb{R}^m \to \mathbb{R}\) et \(\mathbb{R}_+ \times \mathbb{R}^m \to \mathbb{R}\) respectivement, c.a.d. s’il existe \(\sigma_t\) tel que \(\sigma_t = \sigma_0 + \int_0^t F_\sigma(\tau, \sigma_\tau, \ldots) d\tau + \int_0^t G_\sigma(\tau, \sigma_\tau, \ldots) dW_{\tau, \sigma} \).

En ajoutant un processus de Wiener supplémentaire, il devient possible de "libérer" la valeur de la kurtosis au-delà de la valeur normale de trois, et en retenant une corrélation non nulle, négative, entre les deux processus de Wiener (celui du cours et celui de la volatilité), le modèle devient conforme avec une skewness négative. Ainsi présentée, la volatilité apparaît comme une variable aléatoire régie par un processus qui lui est propre. Une telle formulation du problème de volatilité a servi de soubassement à un grand nombre de travaux de recherche, portant sur l’élaboration de modèles alternatifs d’évaluation des options, compatibles avec les observations empiriques de la dynamique du marché. En fait, les travaux de Merton (1976)\footnote{Les travaux de Merton (1976) [175], de Cox & Ross (1976) [68], ou encore Geske (1979) [114] peuvent être considérés comme les initiateurs de la modélisation stochastique de la volatilité : Merton (1976) suggère un processus mixte (de diffusion et à sauts). Geske (1979) examine le cas d’une volatilité constante de la valeur d’une firme, de façon à ce que la volatilité des rentabilités de l’action varie de manière systématique lorsque le cours lui-même augmente ou baisse. Garman (1976) [112] délivre une équation aux dérivées partielles que doit satisfaire le premium d’une option en présence de volatilité stochastique, libre de toute préférence des investisseurs, si les deux conditions suivantes se trouvent réunies : d’abord, la volatilité est un actif négocié ; deuxièmement, la prime de risque associée à la volatilité est nulle. Johnson (1979) [145] examine le problème de l’évaluation des options en présence d’une volatilité stochastique de façon spécifique, en supposant l’existence d’un actif, dont la valeur est parfaitement et instantanément corrélée avec la volatilité stochastique. Cependant, l’équation différentielle à laquelle l’auteur aboutit s’avère sans solution, et le prix de l’option ne peut pas être déduit.} et de Cox & Ross (1976)\footnote{Cf. Itô (1951) [130].} ont montré que, dans le cas d’un modèle avec volatilité stochastique, l’utilisation de la formule de Black & Scholes (1973) pour l’estimation de la volatilité implicite conduit effectivement...
à un effet *smile*. L’effet *smile* de la volatilité justifie pleinement les travaux de Hull & White (1987) [132] qui, pour pouvoir proposer une première solution à l’incomplétude des marchés, doivent supposer que la prime de risque due au caractère aléatoire de la volatilité est nulle. En outre, pour que cette solution puisse être analytique (approchée), Hull & White doivent postuler une hypothèse supplémentaire, selon laquelle la corrélation entre les cours et la volatilité de l’actif sous-jacent est nulle à tout instant. Or, pour rendre compte d’une skewness négative, il faut que cette corrélation existe et soit négative...

Le modèle de Hull & White (1987) [132] est généralisé par Heston (1993) [126] ou Bates (1996) [24], qui lèvent l’hypothèse fausse d’une prime de risque associée à la volatilité nulle à chaque instant et pendant toute la durée de vie du contrat d’option, ainsi que celle qui postule une corrélation nulle entre cours et volatilité de l’actif support, tout ceci dans une résolution entièrement analytique. Ces deux derniers modèles sont susceptibles d’extraire des distributions des rentabilités à moment statistique d’ordre quatre supérieur à trois, en supposant que la volatilité des cours est erratique, mais également un moment statistique d’ordre trois négatif, à travers une corrélation négative entre volatilité et cours des actifs.

1.6 Conclusion

Au sein de la théorie de l’évaluation des options, le modèle de Black et Scholes (1973) occupe une place de choix. En effet, à défaut d’être un modèle idéal, il se révèle un compromis "acceptable", entre simplicité d’utilisation en pratique et précision obtenue des *premiums*, et reste très certainement le modèle le plus plébiscité par les praticiens. Néanmoins, plusieurs axes d’extension de ce modèle vers un modèle plus réaliste doivent être envisagés, chacun correspondant à une généralisation des hypothèses sur lesquelles se fonde le modèle de Black & Scholes (1973).

*En effet, est-il raisonnable de postuler que les rentabilités boursières sont distribuées suivant une loi normale? Assurément non d’un point de vue économétrique, avec l’observation *leptokurtique*, la présence non anodine de valeurs extrêmes dans les queues de distributions empiriques des rentabilités, ou encore, beaucoup plus simplement, la non symétrie de ces mêmes distributions empiriques. Par ailleurs, d’un point de vue économique, l’effet *smile* de volatilité observable sur les marchés est incompatible avec l’hypothèse de normalité des rentabilités de l’actif sous-jacent. Mais répondre par la négative à cette*

40 Cette prime n’est pas nulle en référence aux travaux de Lamoureux & Lastrapes (1993) [149].
question en appelle une autre : quelle est la distribution réelle des rentabilités boursières ? L’abandon de l’hypothèse gaussienne conduit à chercher des distributions théoriques alternatives au mouvement brownien géométrique pour modéliser la dynamique du cours de l’actif support. Plusieurs voies de recherche ont été proposées dans la littérature : les lois-stables de Lévy, qui exhibent un comportement asymptotique parétdien, constituent une alternative intéressante, mais peuvent présenter un coefficient de kurtosis non stable. Dans la continuité de cet axe de recherche, on trouve les processus de Lévy à sauts "purs" (distributions hyperboliques, distributions variance-gamma,...) mais ces derniers ajoutent une complexité non négligeable dans la pratique des modèles d’évaluation. Une autre possibilité est de considérer que l’écart type des rentabilités instantanées de l’actif support est une variable à part entière. Cela ouvre la porte d’une part, aux modèles déterministes à schéma autorégressif de la volatilité avec les modèles GARCH et d’autre part, aux modèles avec volatilité stochastique. Dans ce dernier cas, la prise en compte d’une volatilité stochastique constitue une réponse à l’effet smile de la volatilité. Mais, en considérant cette grandeur comme une variable aléatoire, le marché devient incomplet à cause de la présence d’une source de risque non diversifiable, et le modèle d’évaluation des options devient un modèle d’équilibre.

Toute la problématique de la théorie des options est là : quelles variables d’état faut-il introduire pour obtenir un gain significatif de réalisme (et donc de précision) par rapport au modèle de Black & Scholes (1973) ? Quelle(s) classe(s) de processus adopter pour chacune d’entre elles pour qu’il soit encore possible d’obtenir une formule d’évaluation suffisamment simple pour être applicable ? Comment estimer les paramètres qui entrent en jeu dans ces différents processus sans devoir consentir à résoudre des problèmes d’ordre technique trop lourds ? Autant de questions qui appellent des réponses dont l’enjeu, outre la description du phénomène leptokurtique des rentabilités, est la prise en compte formelle du smile dans l’évaluation et la gestion des portefeuilles optionnels.
Chapitre Deux

La volatilité par les modèles GARCH : examen empirique sur le CBOE

"Volatility forecasting is vital for derivatives trading, but it remains very much an art than a science, particularly among derivatives traders."

Stephan Figlewski, *Forecasting volatility.*

Sommaire

2.1	Introduction : objectifs de l’étude empirique	74
2.2	La volatilité par les modèles GARCH	76
2.2.1	Le modèle GARCH(1,1)	76
2.2.2	Le modèle GARCH de Glosten, Jagannathan & Runkle	77
2.2.3	Le modèle GARCH à composantes de Engle & Lee	77
2.3	Structure par terme de la volatilité au sens de la classe GARCH	79
2.3.1	La structure par terme de la volatilité GARCH(1,1)	81
2.3.2	La structure par terme de la volatilité GJR	82
2.3.3	La structure par terme de la volatilité GCOMP	82
2.4	Paramètres de couverture dans un environnement de volatilité GARCH	82
2.5	Application à la gestion de portefeuille de *straddles*	88
2.5.1	Données et méthodologie de l’étude empirique	88
2.5.2	Résultats et interprétations	91
2.6	Conclusion	101
2.1 Introduction : objectifs de l'étude empirique

Le chapitre précédent a souligné l'importance de la volatilité en tant qu'input dans les formules d'évaluation des produits dérivés : de la qualité de son estimation dépendent les stratégies de couverture des portefeuilles optionnels. En ce sens, la modélisation de la volatilité reste l'un des domaines privilégiés de la Recherche dans le domaine de la finance de marché. Dans cette perspective, on trouve deux courants de pensée qui s'opposent :
- 1) le courant de pensée qui considère la volatilité comme une fonctionnelle déterministe ;
- 2) le courant de pensée qui considère la volatilité comme une fonctionnelle stochastique.

Je consacre l'essentiel des propos de ce chapitre à la première tendance.

Il existe plusieurs façons de tester la pertinence des modèles de la volatilité. La première façon, et sans doute la plus naturelle, consiste à comparer la volatilité issue des modèles avec la volatilité historique, sur leurs statistiques descriptives respectives et sur les caractéristiques de leur structure par terme. Une autre façon de faire s'inscrit directement dans la perspective des praticiens en salle de marché, conformément à l'activité de trading. Elle consiste à comparer les modèles de volatilité en "mesurant" la performance de couverture à laquelle ils permettent d'aboutir. En ce sens, et plus concrètement, le "meilleur" modèle est celui qui permet de développer des paramètres de sensibilité conduisant à la meilleure couverture du risque de volatilité attaché aux portefeuilles d'options. C'est cette démarche que je choisis pour tester la pertinence de modèles GARCH comme candidats à la modélisation de la volatilité.

Dans ce chapitre, je pose donc la question suivante : en supposant que la volatilité puisse être capturée par un modèle déterministe à schéma autorégressif, quelle efficacité dans la couverture de positions d'options contre les variations temporelles de la volatilité, peut-on espérer ? Je ne cherche donc pas ici à "mesurer" la précision, dans l'évaluation des premia d'options, à laquelle aboutiraient les modèles déterministes à schéma autorégressif de la volatilité. Pour répondre à la question posée, je cherche à examiner l'efficacité d'une couverture avec des facteurs d'ajustement propres à chaque modèle de volatilité, issus d'une formule d'évaluation commune et donnée a priori. J'emprunte pour ce faire la démarche dévoilée dans Engle & Rosenberg (2000) [96], cherchant à bénéficier des deux acquis suivants :
- 1) les tests de couverture s'avèrent pertinents lorsqu'il s'agit de comparer des modèles alternatifs de même niveau de volatilité inconditionnelle, mais de structures par terme différentes ;
- 2) les tests de couverture permettent de faire la distinction entre des modèles de même

1. Je précise la formule plus tard dans l'exposé.
taux de retour à la moyenne et de variables explicatives différentes. En effet, deux modèles de volatilité incluant des variables explicatives différentes peuvent aboutir à une efficacité identique dans l'évaluation des options et à une efficacité clairement différente dans la couverture des portefeuilles d'options. Enfin, les tests de couverture fournissent une représentation dynamique de la structure par terme de la volatilité et de ce fait, peuvent contribuer à l'identification de variables omises ou des interrelations entre les différents modèles.

Les modèles dont je cherche à faire l'étude empirique comparative sont :
- le modèle GARCH(1,1);
- le modèle GARCH de Glosten, Jagannathan & Runkle (1993) [118] (ou modèle GJR);
- le modèle GARCH à composantes de Engle & Lee (1993) [91] (ou modèle GCOMP);

En effet, les deux derniers modèles tiennent compte de l'effet d'asymétrie (notamment de l'effet de levier\(^2\)) et leur confrontation avec un modèle GARCH(1,1) permet d'étudier l'effet disproportionné des chocs négatifs des rentabilités sur la volatilité (modèle GJR versus modèle GARCH(1,1)) et d'affiner cette étude en distinguant les effets des chocs à long et à court terme (modèle GCOMP versus GARCH(1,1)). D'autre part, d'après Engle & Ng (1993) [94], le modèle GJR serait le "meilleur" modèle ARCH capable de refléter l'effet d'asymétrie de la volatilité des rentabilités journalières japonaises des quinze dernières années. Enfin, le chapitre précédent ayant mis en exergue l'effet de levier comme fait stylisé du comportement des rentabilités empiriques, je n'ai pas retenu les modèles ARCH. On pourrait faire la même remarque concernant le modèle GARCH(1,1) que je conserve toutefois comme le modèle de référence auquel doivent se confronter les modèles GJR et GCOMP. Cela est susceptible de mettre - éventuellement - en évidence la pertinence des modèles tenant compte de l'effet d'asymétrie.

Ce chapitre s'organise comme suit : dans une première section, je rappelle brièvement les différents modèles de volatilité GARCH dont je cherche à tester la pertinence. J'expose ensuite la structure par terme de la volatilité à laquelle ils aboutissent. Dans une troisième section, j'identifie, pour chacun des trois modèles, les paramètres de couverture contre le risque de volatilité. Enfin, j'applique, dans une dernière section, les tests de couverture aux straddles sur indice S&P500 négociables sur le Chicago Board Options Exchange.

\(^2\) reflétant la hausse du ratio dettes/actif consécutive à la réduction de la capitalisation boursière des entreprises. Cf. chapitre 1 sous-section 1.2.3.
2.2 La volatilité par les modèles GARCH

2.2.1 Le modèle GARCH(1,1)

Le schéma autorégressif GARCH(1,1) a déjà été défini dans le premier chapitre\(^3\). En utilisant la volatilité GARCH (1,1), introduite dans le contexte financier par Bollerslev (1986), afin de traduire la non-stationnarité de la volatilité, et en faisant l’hypothèse d’une prime de risque constante et de taux d’intérêt constant, le modèle GARCH(1,1) qui intervient dans mon étude, peut s’écrire :

$$\begin{align*}
\ln \frac{\sigma_t^2}{\sigma_{t-1}^2} &= R + \mu + \epsilon_t, \epsilon_t \sim N(0, \sigma_f^2) \\
\sigma_t^2 &= w + \alpha \epsilon_{t-1}^2 + \beta \sigma_{t-1}^2,
\end{align*}$$

(2.1)

dans lequel \(R \) désigne le taux d’intérêt (supposé constant) ; \(\mu - R \) la prime de risque (supposée constante) ; \(\sigma_t^2 \) la variance conditionnelle à la date \(t \) des rentabilités du sous-jacent ; \(w \) est un paramètre réel et non stochastique ; \(\alpha \) et \(\beta \) reflètent l’effet du retard de la rentabilité et de la variance conditionnelle d’un jour sur la variance conditionnelle instantanée, tels que \(\alpha + \beta < 1 \). L’expression (2.1) exprime la volatilité conditionnelle comme une fonction du retard d’ordre \(1 \) de la volatilité conditionnelle et du retard d’ordre un des chocs (ou innovations). Par conséquent, ce modèle permet de capturer le phénomène de "volatility clustering".

\(^3\) Cf. section 1.2.
2.2.2 Le modèle GARCH de Glosten, Jagannathan & Runkle

En postulant les mêmes hypothèses que dans le modèle GARCH(1,1), le modèle GJR s’écrit :

\[
\begin{align*}
\ln \frac{\sigma_t}{\sigma_{t-1}} &= R + \mu + \varepsilon_t, \\
\sigma_t^2 &= w + \alpha \varepsilon_{t-1}^2 + \gamma \max\{0, -\varepsilon_{t-1}\}^2 + \beta \sigma_{t-1}^2,
\end{align*}
\]
\tag{2.2}

(dans lequel \(\alpha\) et \(\beta\) s’interprètent de la même façon que dans le modèle GARCH(1,1) ; l’effet de levier est mesuré par le coefficient \(\gamma\) qui caractérise l’effet d’un choc négatif de la rentabilité sur la variance conditionnelle.)

Le modèle de GARCH de Glosten, Jagannathan & Runkle (1993) (GJR) appartient à la classe des modèles dits "asymétriques" qui rend compte d’une relation disproportionnée entre les rentabilités et la volatilité d’un actif. Le développement de ce modèle a pour origine une certaine contradiction dans les résultats des travaux de recherche qui ont examiné, de façon empirique, la relation intertemporelle entre la moyenne conditionnelle et la variance conditionnelle des rentabilités boursières. S’agissant du signe de la relation entre la moyenne conditionnelle et la variance conditionnelle des rentabilités, French, Schwert & Stambaugh (1987) [109] et Campbell & Hentschel (1992) [55] ont trouvé qu’elle était positive, contrairement à Fama & Schwert (1977) [101], Campbell (1987) [34], Pagan & Hong (1991) [131], Breen, Glosten & Jagannathan (1989) [45], Turner, Startz & Nelson (1991) [221] et Nelson (1991) [186]. L’explication de cette contradiction est donnée par Harvey & Campbell (1989) [123] qui suggèrent tout simplement que la relation entre le risque et les rentabilités est instable dans le temps, et donc que cette relation peut être positive ou négative. Cette idée est à rapprocher de la remarque de Glosten, Jagannathan & Runkle (1993) : "At first blush, it may appear that rational risk-averse investors would require a relatively larger risk premium during times when the payoff from security is more risky. A larger risk premium may not be required, however, because time periods which are more risky could coincide with time periods when investors are better able to bear particular types of risk. Further, a larger risk premium may not be required because investors may want to save relatively more during periods when the future is more risky." Pour Engle & Ng (1993) [94], qui s’appuient sur les analyses de Ross (1989) [202] selon lesquelles la volatilité peut être considérée comme une "mesure" des flux d’informations, l’instabilité dans la relation entre le risque et les rentabilités fait intervenir un autre concept fondamental dans la modélisation de la variance conditionnelle - l’information. Dans ce même article, les auteurs montrent que le modèle GJR constitue le "meilleur" modèle ARCH de type paramétrique susceptible de rendre compte du phénomène d’asymétrie de la volatilité des rentabilités.

2.2.3 Le modèle GARCH à composantes de Engle & Lee

Le cadre d’analyse du modèle GARCH à composantes (GCOMPC) de Engle & Lee (1993) [91] est élaboré sur la base des observations selon lesquelles la volatilité est non station-
2. LA VOLATILITÉ PAR LES MODÈLES GARCH : EXAMEN EMPIRIQUE SUR LE CBOE

naire. Pour Engle & Bollerslev (1986) [90], l’effet de cette non stationnarité se manifeste au niveau de son comportement par une persistance de la volatilité, phénomène dit de "mémoire longue des chocs passés des rentabilités". Le modèle GARCH de Engle & Lee (1993) suggère de décomposer la composante de la non stationnarité de la volatilité en deux :
- 1) une composante permanente qui décrit la tendance de la volatilité ;
- 2) une composante transitoire.

Dans ces conditions, le modèle peut être présenté de la façon suivante : soient \(h_t \) la variance conditionnelle de \(\epsilon_t \) compte tenu de la filtration \(\mathcal{F}_{t-1} \) et \(h_{p,t} \) la composante permanente de \(h_t \). La dynamique de la variance conditionnelle peut s’exprimer comme

\[
\begin{align*}
\{ h_t &= h_{p,t} + \alpha(\epsilon^2_{t-1} - h_{p,t}) + \gamma(h_{t-1} - h_{p,t}) \\
\hat{h}_{p,t} &= w + h_{p,t-1} + \phi(\epsilon^2_{t-1} - \hat{h}_{t-1}). \}
\end{align*}
\]

(2.3)

Il est intéressant de remarquer que la décomposition 2.3 de la volatilité en deux est conforme à la démarche Beveridge & Nelson (1981) [29]. La composante permanente \(h_{p,t} \) est un processus de martingale où \(\epsilon^2_{t-1} - h_{t-1} \) est l’erreur de prévision de \(\epsilon^2_{t-1} \) dont la moyenne est nulle. Cette erreur fait office de facteur ajustant l’évolution de la volatilité à long terme et peut être interprétée comme un choc que subit l’espérance de la volatilité. Par conséquent, la prévision de la composante permanente future est tout simplement la composante permanente à l’instant courant, à laquelle on ajoute une tendance constante. La différence entre \(h_t \) et \(h_{p,t} \) représente alors la composante transitoire à condition que \(\alpha + \gamma < 1 \). L’effet de la composante transitoire diminue avec le temps de façon à ce que les mouvements de la volatilité soient totalement dominés par l’espérance de la composante permanente, puisque :

\[
\mathbb{E}[\epsilon^2_{t+k} | \mathcal{F}_{t-1}] = \hat{h}_{p,t} + \left(\frac{k - (\alpha + \gamma)}{1 - \alpha - \gamma} \right) w, \quad (2.4)
\]

en signifiant par \(k \) l’horizon de prévision.

Afin de tester l’hypothèse de la non stationnarité de la variance conditionnelle, on peut généraliser la modélisation GCOMP selon les termes suivants :

\[
\begin{align*}
\{ h_t &= \rho h_{p,t} + \alpha(\epsilon^2_{t-1} - \rho h_{p,t}) + \gamma(h_{t-1} - \rho h_{p,t}) \\
\hat{h}_{p,t} &= w + \rho h_{p,t-1} + \phi(\epsilon^2_{t-1} - \hat{h}_{t-1}). \}
\end{align*}
\]

(2.5)

Lorsque la racine de l’équation (2.5) est égale à l’unité, la variance conditionnelle est intégrée. Les travaux de Engle & Lee (1993) montrent que tester l’hypothèse de la non stationnarité de la variance conditionnelle revient à tester l’hypothèse de la présence d’une racine unitaire dans l’équation de la composante permanente. En revanche, lorsque \(\rho \neq 1 \) et \(\rho > \alpha + \gamma \), le modèle GCOMP permet de distinguer la composante de la mémoire longue de la composante de la mémoire courte. La première composante détermine la dynamique
de la variance conditionnelle à long terme lorsque l'incidence de la composante transitoire fléchit. La spécification du modèle GCOMP dans mon étude empirique inclut ces deux composantes et admet également un taux de retour à la moyenne différent selon l'horizon temporel. Finalement, sous les hypothèses de constance du taux d'intérêt et de la prime de risque, le modèle GCOMP peut s'écrire :

\[
\begin{align*}
\ln \frac{s_t}{s_{t-1}} &= R + \mu + \epsilon_t, \quad \epsilon_t \sim \mathcal{N}(0, \sigma_t^2) \\
\sigma_t^2 &= q_t^2 + \alpha(\epsilon_{t-1}^2 - q_{t-1}^2) + \gamma(\max\{0, -\epsilon_{t-1}\})^2 - 0.5q_{t-1}^2 + \beta(\sigma_{t-1}^2 - q_{t-1}^2) \\
q_t^2 &= w + \rho q_{t-1}^2 + \phi(\epsilon_{t-1}^2 - \sigma_{t-1}^2).
\end{align*}
\]

Dans le système d'équation (2.6), \(\alpha \) reflète l'effet du choc des rentabilités sur la composante à court terme de la volatilité, \(\gamma \) traduit l'impact des "mauvaises nouvelles" sur la composante à court terme, \(\beta \) reflète l'incidence du retard de la volatilité sur la volatilité conditionnelle, \(\rho \) témoigne de l'effet de la persistance sur la composante à long terme et enfin \(\phi \) reflète l'incidence des chocs des rentabilités sur la composante à long terme de la dynamique de la volatilité.

2.3 Structure par terme de la volatilité au sens de la classe GARCH

Le caractère non stationnaire de la volatilité conduit à examiner son comportement dans le temps, en fonction de la maturité de l'option. On sait, par exemple, que les prix réels des options permettent de calculer une volatilité implicite qui dépend du temps. Cette approche relativement nouvelle, puisqu'elle s'est développée dans les quinze dernières années, n'est pas sans rappeler la structure par terme des taux d'intérêt. À l'origine du concept de la structure par terme de la volatilité, se trouve l'idée essentielle selon laquelle les premia des options observés sur le marché reflètent les attentes des agents du marché quant à la volatilité espérée future de l'actif sous-jacent. Intuitivement, on peut définir la structure par terme de la volatilité comme la relation existant entre la volatilité régie par un processus particulier et l'horizon temporel des options. Des éléments de discussion, depuis la simple description de la structure par terme de la volatilité jusqu'à la mise en évidence d'outils permettant la couverture du risque de variation de la volatilité, peuvent être trouvés dans les travaux de Poterba & Summers (1986) [194], ou encore ceux de Stein (1989) [216]. D'autres travaux de recherche propres à l'estimation de la structure par terme de la volatilité sont réalisés par Diz & Finucane (1993) [77], Heynen, Kenna &
Vorst (1994) [128] ou encore Xu & Taylor (1994) [220]. D’un autre côté, les observations à maintes reprises d’un *smile* ou d’un *smirk* empirique, désormais reconnus par le monde académique, montrent que la volatilité implicite dépend du prix d’exercice de l’option. Cette volatilité, comme fonctionnelle de la maturité \(\tau \) et du prix d’exercice \(K \) des options dont elle est extraite, est à l’origine du concept de surface de volatilité *forward* permettant la construction d’une matrice dans laquelle les volatilités implicites \(\sigma_{ij} \) sont rangées en lignes en fonction de \(\tau \) et en colonnes en fonction de \(K \), les lignes dessinant la structure par terme de la volatilité pour une maturité donnée et les colonnes pour un prix d’exercice donné:

\[
\sigma = \sigma(\tau, K) = \sigma_{\tau, K_j} = \\
\begin{pmatrix}
\sigma_{\tau_1, K_1} & \sigma_{\tau_1, K_2} & \cdots & \sigma_{\tau_1, K_j} & \cdots & \sigma_{\tau_1, K_m} \\
\sigma_{\tau_2, K_1} & \sigma_{\tau_2, K_2} & \cdots & \sigma_{\tau_2, K_j} & \cdots & \sigma_{\tau_2, K_m} \\
\vdots & \cdots & \cdots & \cdots & \cdots & \vdots \\
\sigma_{\tau_i, K_1} & \sigma_{\tau_i, K_2} & \cdots & \sigma_{\tau_i, K_j} & \cdots & \sigma_{\tau_i, K_m} \\
\vdots & \cdots & \cdots & \cdots & \cdots & \vdots \\
\sigma_{\tau_n, K_1} & \sigma_{\tau_n, K_2} & \cdots & \sigma_{\tau_n, K_j} & \cdots & \sigma_{\tau_n, K_m}
\end{pmatrix}
\]

En définissant la volatilité d’un actif comme l’écart type annulé des changements du logarithme népérien de son cours sur une période donnée, les attentes des agents du marché concernant la volatilité future peuvent s’écrit:

\[
\sqrt{\text{Var}(\ln \frac{S_{t+k}}{S_{t+k-1}}), \; k = 1, 2, ..., \tau},
\]

où \(S \) désigne le cours de l’actif sous-jacent et \(\tau \) la maturité de l’option. La variance espérée \(\sigma^2(k) \) sur une période \([t, t+k]\) peut alors être obtenue en multipliant la quantité précédente par le nombre \(n \) de périodes de cotation:

\[
\sigma^2(k) = n \times \text{Var}(\ln \frac{S_{t+k}}{S_{t+k-1}} | I_t), \; k = 1, 2, ..., \tau, \tag{2.7}
\]

où \(I_t \) représente l’information disponible sur le marché à la date \(t \). De (2.7), il est possible de définir trois variances espérées :

- la variance espérée à l’instant courant ou par approximation, la volatilité à l’instant \(t + 1 : \sigma^2_{t+1} \);
- la variance espérée à long terme, sous réserve de convergence des attentes des agents du marché : \(\bar{\sigma}^2 \equiv \lim_{k \to \infty} \sigma^2_{t+k} \);

\footnote{Ces auteurs ont estimé directement la structure par terme de la volatilité en utilisant la volatilité implicite des options cotées sur le marché.}

\footnote{Cf chapitre 1 section 1.4.}
2. LA VOLATILITÉ PAR LES MODÈLES GARCH : EXAMEN EMPIRIQUE SUR LE CBOE

– la variance espérée moyenne : \(\sigma_t^2(\tau) \equiv \frac{1}{r} \sum_{k=1}^{r} \mathbb{E}_t[\sigma_{t+k}^2] \).

Cette définition de la variance espérée moyenne permet de définir explicitement la structure par terme de la volatilité. Appliquée à chacun des modèles à schéma autorégressif GARCH dont je cherche à comparer l’efficacité en couverture de position d’options, on peut développer les structures par terme de la volatilité suivantes :

2.3.1 La structure par terme de la volatilité GARCH(1,1)

Proposition 2.3.1 (Structure par terme de la volatilité GARCH(1,1)). Soit le modèle à volatilité GARCH (1,1) :

\[
\begin{align*}
\ln \frac{S_t}{S_{t-1}} & = R + \mu + \epsilon_t, \epsilon_t \sim \mathcal{N}(0, \sigma_t^2) \\
\sigma_t^2 & = w + \alpha \sigma_{t-1}^2 + \beta \sigma_{t-1}^2.
\end{align*}
\]

On peut montrer que la structure par terme de la volatilité GARCH(1,1) s’écrit :

\[
\sigma_t^2(\tau) \equiv \frac{1}{r} \sum_{k=1}^{r} \mathbb{E}_t[\sigma_{t+k}^2] = \tilde{\sigma}^2 + \frac{1}{r} \times \frac{1 - (\alpha + \beta)^{\tau}}{1 - (\alpha + \beta)} (\sigma_{t+1}^2 - \tilde{\sigma}^2),
\]

où

\[
\tilde{\sigma}^2 = \frac{w}{1 - (\alpha + \beta)}.
\]

Preuve. Par définition, la volatilité GARCH(1,1) s’écrit :

\[
\sigma_t^2 = w + (\alpha \sigma_{t+k-1}^2 + \beta) \sigma_{t+k-1}^2,
\]

qui peut encore s’écrit par récurrence :

\[
\sigma_{t+k}^2 = w + \sum_{m=1}^{k-1} \prod_{n=1}^{m} (\alpha \sigma_{t+k-n}^2 + \beta) + \sigma_t^2 \prod_{n=1}^{k} (\alpha \sigma_{t+k-n}^2 + \beta).
\]

En exploitant l’indépendance des \(\epsilon_t \) et en prenant l’espérance conditionnelle à la date \(t \), il vient :

\[
\mathbb{E}_t[\sigma_{t+k}^2] = w + \sum_{m=1}^{k-1} (\alpha + \beta)^m + (\alpha + \beta)^{k-1}(\alpha \sigma_t^2 + \beta)\sigma_t^2,
\]

soit encore :

\[
\mathbb{E}_t[\sigma_{t+k}^2] = w + \frac{(\alpha + \beta) - (\alpha + \beta)^k}{1 - (\alpha + \beta)} + (\alpha + \beta)^{k-1}(\alpha \sigma_t^2 + \beta)\sigma_t^2,
\]

et en évaluant la sommation, on retrouve l’expression de la volatilité espérée moyenne (2.8).

En adoptant la même démarche et un calcul analogue, on aboutit aux propositions 2.3.2 et 2.3.3 :
2.3.2 La structure par terme de la volatilité GJR

Proposition 2.3.2 (Structure par terme de la volatilité GJR). Soit le modèle de volatilité GARCH GJR de Glosten, Jagannathan & Runkle (1993) [118] :

\[
\begin{align*}
\ln \frac{s_t}{s_{t-1}} &= R + \mu + \epsilon_t, \epsilon_t \sim \mathcal{N}(0, \sigma_t^2) \\
\sigma_t^2 &= w + \alpha \epsilon_{t-1}^2 + \gamma \max\{0, -\epsilon_{t-1}\}^2 + \beta \sigma_{t-1}^2,
\end{align*}
\]

Il est possible de montrer que la structure par terme de la volatilité GJR s’écrit :

\[
\tilde{\sigma}_t^2(\tau) \equiv \frac{1}{\tau} \sum_{k=1}^{\tau} \mathbb{E}[\sigma_{t+k}^2] = \sigma^2 + \frac{1}{\tau} \times \frac{1 - (\alpha + \beta + 0.5\gamma)^\tau}{1 - (\alpha + \beta + 0.5\gamma)} (\sigma_{t+1}^2 - \sigma^2),
\]

où

\[
\sigma^2 = \frac{w}{1 - (\alpha + \beta + 0.5\gamma)}.
\]

2.3.3 La structure par terme de la volatilité GCOMP

Proposition 2.3.3 (Structure par terme de la volatilité GCOMP). Soit le modèle de volatilité GARCH à composantes GCOMP de Engle & Lee (1993) [91] :

\[
\begin{align*}
\ln \frac{s_t}{s_{t-1}} &= R + \mu + \epsilon_t, \epsilon_t \sim \mathcal{N}(0, \sigma_t^2) \\
\sigma_t^2 &= q_t^2 + \alpha(\epsilon_{t-1}^2 - q_{t-1}^2) + \gamma(\max\{0, -\epsilon_{t-1}\}^2 - 0.5q_{t-1}^2) + \beta(q_{t-1}^2 - q_{t-1}^2) \\
q_t^2 &= w + \rho q_{t-1}^2 + \phi(\epsilon_{t-1}^2 - \sigma_{t-1}^2),
\end{align*}
\]

Il est possible d’expliciter la structure par terme de la volatilité GCOMP comme :

\[
\tilde{\sigma}_t^2(\tau) \equiv \frac{1}{\tau} \sum_{k=1}^{\tau} \mathbb{E}[\sigma_{t+k}^2]
= \sigma^2 + \frac{1}{\tau} \times \frac{1 - (\alpha + \beta + 0.5\gamma)^\tau}{1 - (\alpha + \beta + 0.5\gamma)} (\sigma_{t+1}^2 - q_{t+1}^2) + \frac{1}{\tau} \times \frac{1 - \rho^\tau}{1 - \rho} (q_{t+1}^2 - \sigma^2),
\]

où

\[
\sigma^2 = \frac{w}{1 - \rho}.
\]

2.4 Paramètres de couverture dans un environnement de volatilité GARCH

Les paramètres de couverture mesurent la sensibilité du *premium* de l’option aux variations des variables d’état, et n’ont de sens que dans le cadre d’un modèle d’évaluation. Par conséquent, avant de pouvoir dériver les paramètres de couverture, il faut spécifier
2. La volatilité par les modèles GARCH : examen empirique sur le CBOE

un modèle d’évaluation. Dans le but de faciliter la dérivation des paramètres de couverture pour les différents modèles de volatilité, et en m’inspirant des travaux de Engle & Rosenberg (2000) [96], j’opte pour la formule analytique approchée suivante :

\[C_t \equiv C_t(\tau, S_t, \tilde{\sigma}_t) \equiv C_t^{R\text{SS}}(\tau, S_t, \tilde{\sigma}_t) \] (2.9)

où \(\tilde{\sigma}_t = \tilde{\sigma}(\tau) = \frac{1}{\tau} \sum_{k=1}^{\tau} \sigma_{t+k} \) et où \(C_t^{R\text{SS}} \) désigne le *premium* au sens de Black & Scholes (1973) donné dans la formule6 de Hull & White (1987) [132], dont la validité et la précision ont été examinées par Heynen, Kenna & Vorst (1994) [128].

Cette formule n’est rien d’autre que le premier terme du développement en série de Taylor dans la formule6 de Hull & White (1987) [132], dont la validité et la précision ont été examinées par Heynen, Kenna & Vorst (1994) [128].

Une telle formule d’évaluation permet de conserver la simplicité de la formule de Black & Scholes (1973) en prenant comme valeur d’entrée pour la volatilité, la volatilité espérée moyenne \(\tilde{\sigma}_t \) pendant la durée de vie de l’option. Mais cette simplicité a un coût non négligeable. En effet, la formule ne fait intervenir ni le prix d’exercice, ni le taux d’intérêt et de ce fait, elle ne peut être appliquée qu’aux options à la monnaie.

Enfin, il faut noter que, du fait de la présence de \(\tilde{\sigma}_t \), les outils de couverture des positions d’options vont tenir compte, en plus des variations de la volatilité courante à la date \(t \), des variations de la volatilité espérée moyenne reflétées dans la structure par terme.

Dans les modèles à volatilité GARCH, GJR et GCOMP, les variations de la volatilité dépendent de l’amplitude des rentabilités de l’actif support. Par conséquent, les paramètres de couverture contre le risque de volatilité s’appuient sur les paramètres de sensibilité du *premium* de l’option à la variation du cours du sous-jacent. Je dérive ci-dessous leurs expressions dans les propositions 2.4.1, 2.4.2 et 2.4.3, où l’argument "\(\cdot \)" représente le triplet (\(\tau, S_t, \tilde{\sigma}_t \)) élément de \(\mathbb{R}^3 \).

Proposition 2.4.1 (Sensibilités d’un modèle à volatilité GARCH(1,1)). Les paramètres de sensibilité à la variation du cours du sous-jacent du *premium* d’une option à volatilité GARCH(1,1) évalué au sens de la formule (2.9), sont donnés par :

\[\Delta_{t,S}^{GARCH}(\cdot) \equiv \frac{\partial C_t(\cdot)}{\partial S_t} \equiv \frac{\partial C_t^{R\text{SS}}(\cdot)}{\partial S_t} \equiv \Delta_{t,S}^{R\text{SS}}(\cdot), \]

6 Cf. formule 3.2.1.
2. LA VOLATILITÉ PAR LES MODÈLES GARCH : EXAMEN EMPIRIQUE SUR LE CBOE

\[\Gamma^{GARCH}_{t,s}(.) \equiv \frac{\partial C_i(.)}{\partial S_t^2} \]

\[\approx \frac{\partial C_i^{RS}(.)}{\partial S_t^2} + \frac{\partial C_i^{RS}(.)}{\partial \sigma} \times \frac{\alpha}{\tau \bar{\sigma}_t S_t^2} \frac{1 - (\alpha + \beta)^\tau}{1 - (\alpha + \beta)} \]

\[\approx \Gamma^{RS}_{t,s}(.) + \Delta_{t,\sigma}^{RS}(.) \times \frac{\alpha}{\tau \bar{\sigma}_t S_t^2} \frac{1 - (\alpha + \beta)^\tau}{1 - (\alpha + \beta)} \].

Preuve. Dans le cadre des modèles GARCH, puisque la volatilité espérée moyenne \(\bar{\sigma}_t(\tau) \equiv \frac{1}{\tau} \sum_{k=1}^{\tau} \mathbb{E}_t[\sigma_{t+k}] \) est une fonction du cours du sous-jacent (à travers les rentabilités du sous-jacent), les sensibilités du *premium* aux variations du cours du support dépendent de :

- la sensibilité dudit *premium* aux variations de la volatilité \(\Delta_{t,\sigma} \equiv \frac{\partial C_i}{\partial \sigma} \);
- la sensibilité de la volatilité espérée moyenne aux variations du cours du sous-jacent \(\Gamma_{t,s} \equiv \frac{\partial C_i}{\partial S_t^2} \).

Je développe ci-après l’expression de ces paramètres au sens de la formule d’évaluation 2.9.

\[\Delta^{GARCH}_{t,s}(\tau, S_t, \bar{\sigma}_t) \equiv \frac{\partial C_i(.)}{\partial S_t} \]

\[\approx \frac{\partial C_i^{RS}(.)}{\partial S_t} + \frac{\partial C_i^{RS}(.)}{\partial \sigma} \frac{\partial \bar{\sigma}_t}{\partial S_t} \]

\[\approx \Delta_{t,s}^{RS}(.) + \Delta_{t,\sigma}^{RS}(.) \frac{\partial \bar{\sigma}_t}{\partial S_t} \]

\[\approx \Delta_{t,s}^{RS}(.) \].
\[\Gamma_{t,s}^{GARCH}(\tau, S_t, \sigma_t) = \frac{\partial G(.)}{\partial S_t^2} \]

\[= \frac{\partial \Delta_{t,s}(.)}{\partial S_t} \]

\[\cong \frac{\partial}{\partial S_t} \left\{ \Delta_{t,s}^{BS}(.) + \Delta_{t,s}^{RS}(.) \frac{\partial \sigma_t}{\partial S_t} \right\} \]

\[\cong \Gamma_{t,s}^{BS}(.) \]

\[+ \frac{\partial \Delta_{t,s}^{BS}(.)}{\partial \sigma_t} \frac{\partial \sigma_t}{\partial S_t} + \frac{\partial \Delta_{t,s}^{RS}(.)}{\partial \sigma_t} \frac{\partial \sigma_t}{\partial S_t} + \frac{\partial \Delta_{t,s}^{RS}(.)}{\partial \sigma_t} \left(\frac{\partial \sigma_t}{\partial S_t} \right)^2 + \Delta_{t,s}^{RS}(.) \frac{\partial^2 \sigma_t}{\partial S_t^2} \]

\[\cong \Gamma_{t,s}^{BS}(.) + \Delta_{t,s}^{BS}(.) \frac{\partial^2 \sigma_t}{\partial S_t^2} \]

\[I_1 = \frac{\partial}{\partial S_t} \left[\frac{\sqrt{\sigma_t^2}}{\partial S_t} \right] = \frac{\partial}{\partial S_t} \left[\frac{1}{2 \sigma_t} \frac{\partial \sigma_t^2}{\partial S_t} \right] \]

\[= \frac{1}{4 \sigma_t} \left(\frac{\partial \sigma_t^2}{\partial S_t} \right)^2 + \frac{1}{2 \sigma_t} \frac{\partial \sigma_t^2}{\partial S_t^2} \]

\[\cong \frac{1}{2 \sigma_t} \frac{\partial^2 \sigma_t^2}{\partial S_t^2} \]

Dans un modèle GARCH, l'effet d'une variation de premier ordre du cours de l'actif support sur la volatilité est nul. Ainsi, le choc de volatilité est-il relié à l'amplitude de la variation du cours de l'actif sous-jacent, et s'exprime en fonction de la dérivée seconde de la volatilité espérée moyenne par rapport au cours du sous-jacent :

\[I_2 = \frac{\partial}{\partial S_t} \left[\frac{\partial \sigma_t^2}{\partial \sigma_t+1} \frac{\partial \sigma_t+1}{\partial S_t} \right] \]

\[= \frac{\partial}{\partial S_t} \left[\frac{\partial \sigma_t^2}{\partial \sigma_t+1} \frac{\partial \sigma_t+1}{\partial S_t} \right] + \frac{\partial \sigma_t^2}{\partial \sigma_t+1} \frac{\partial^2 \sigma_t+1}{\partial S_t^2} \]

\[\cong \frac{\partial \sigma_t^2}{\partial \sigma_t+1} \frac{\partial^2 \sigma_t+1}{\partial S_t^2} \]
\[I_3 = \frac{\partial}{\partial S_t} \left[\frac{\partial \sqrt{\sigma_{t+1}^2}}{\partial S_t} \right] = \frac{\partial}{\partial S_t} \left[\frac{1}{2\sigma_{t+1}} \frac{\partial \sigma_{t+1}^2}{\partial S_t} \right] \]
\[= \frac{\partial}{\partial S_t} \left[\frac{1}{2\sigma_{t+1}} \frac{\partial \sigma_{t+1}^2}{\partial S_t} \right] + \frac{1}{2\sigma_{t+1}} \frac{\partial^2 \sigma_{t+1}^2}{\partial S_t^2} \]
\[\approx \frac{1}{2\sigma_{t+1}} \frac{\partial^2 \sigma_{t+1}^2}{\partial S_t^2}. \]

En injectant \(I_3 \) dans \(I_2 \) puis \(I_2 \) dans \(I_1 \), il vient :
\[I_1 \approx \frac{1}{2\bar{\sigma}_t} \left[\frac{\partial \bar{\sigma}_t^2}{\partial \bar{\sigma}_t} \right] \left[\frac{1}{2\tau_1+1} \frac{\partial^2 \sigma_{t+1}^2}{\partial S_t^2} \right]. \]

(2.15)

En raison du caractère déterministe de la fonction de la variance, (2.15) montre que la dérivée seconde de la volatilité espérée moyenne par rapport au cours du sous-jacent est fonction de la dérivée de la variance espérée moyenne par rapport à la prévision de la volatilité du jour suivant et de la dérivée seconde de cette dernière par rapport au cours de l’actif support.

De
\[\bar{\sigma}_t^2(\tau) = \sigma^2 + \frac{\tau}{\tau} \left[1 - (\alpha + \beta)^\tau \right] (\sigma_{t+1}^2 - \bar{\sigma}_t^2), \]
on déduit la dérivée de la variance espérée moyenne par rapport à la prévision de la volatilité du jour suivant :
\[I_4 = \frac{2\sigma_{t+1}}{\tau} \left[1 - (\alpha + \beta)^\tau \right]. \]

La dérivée seconde de la prévision journalière de la volatilité par rapport au cours de l’actif sous-jacent est donnée par :
\[I_5 = \frac{\partial}{\partial S_t} \left[\frac{2\alpha \epsilon_t}{S_t} \right] \]
\[= \frac{2\alpha}{S_t} \frac{\partial \epsilon_t}{\partial S_t} - \frac{2\alpha \epsilon_t}{S_t^2} \]
\[\approx \frac{2\alpha}{S_t^2}. \]

En substituant maintenant \(I_4 \) et \(I_5 \) dans (2.15), il vient finalement :
\[I_1 \approx \frac{\alpha}{\tau \sigma_t S_t^2} \left[1 - (\alpha + \beta)^\tau \right]. \]
et on retrouve l’expression de $\Gamma^{GARCH}_{t,S}()$.

Le même type de calcul (laborieux) permet d’écrire les propositions 2.4.2 et 2.4.3 pour les modèles à volatilité GJR et GCOMP :

Proposition 2.4.2 (Sensibilités d’un modèle à volatilité GJR). Les paramètres de sensibilité à la variation du cours du sous-jacent du premium d’une option à volatilité GJR évalué au sens de la formule (2.9), sont donnés par :

$$\Delta^{GJR}_{t,S}() \equiv \Delta^{RS}_{t,S}(),$$

$$\Gamma^{GJR}_{t,S}() \equiv \Gamma^{RS}_{t,S}() + \Delta^{RS}_{t,S}(\alpha + 0.5\gamma) \frac{1 - (\alpha + \beta + 0.5\gamma)^\tau}{\gamma S_t^2 \left[1 - (\alpha + \beta + 0.5\gamma)^\tau\right]}.$$

Proposition 2.4.3 (Sensibilités d’un modèle à volatilité GCOMP). Les paramètres de sensibilité à la variation du cours du sous-jacent du premium d’une option à volatilité GCOMP évalué au sens de la formule (2.9), sont donnés par :

$$\Delta^{GCOMP}_{t,S}() \equiv \Delta^{RS}_{t,S}(),$$

$$\Gamma^{GCOMP}_{t,S}() \equiv \Gamma^{RS}_{t,S}() + \Delta^{RS}_{t,S}(\alpha + 0.5\gamma) \frac{1 - (\alpha + \beta + 0.5\gamma)^\tau}{\gamma S_t^2 \left[1 - (\alpha + \beta + 0.5\gamma)^\tau\right]} + \phi \frac{1 - \rho^\tau}{1 - \rho}.$$

Les propositions 2.4.1, 2.4.2 et 2.4.3 montrent que le paramètre de couverture contre les variations premières du cours de l’actif support ($\Delta_{t,S}(.)$) ne permet pas de distinguer les modèles de volatilité GARCH(1,1), GJR et GCOMP, puisque celui-ci adopte une expression identique. Par contre, le paramètre de couverture $\Gamma_{t,S}(.)$ contre les variations de second ordre du cours de l’actif sous-jacent, est susceptible de capturer les spécificités des différents modèles. On peut aller encore plus loin dans cette idée en remarquant que ces paramètres ne se distinguent finalement que par un facteur d’ajustement que je résume dans le tableau ci-après :

<table>
<thead>
<tr>
<th></th>
<th>$\alpha \frac{1 - (\alpha + \beta)^\tau}{1 - (\alpha + \beta)}$</th>
<th>$(\alpha + 0.5\gamma) \frac{1 - (\alpha + \beta + 0.5\gamma)^\tau}{1 - (\alpha + \beta + 0.5\gamma)^\tau} + \phi \frac{1 - \rho^\tau}{1 - \rho}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>GARCH(1,1)</td>
<td>$(\alpha + 0.5\gamma) \frac{1 - (\alpha + \beta + 0.5\gamma)^\tau}{1 - (\alpha + \beta + 0.5\gamma)^\tau}$</td>
<td>$(\alpha + 0.5\gamma) \frac{1 - (\alpha + \beta + 0.5\gamma)^\tau}{1 - (\alpha + \beta + 0.5\gamma)^\tau} + \phi \frac{1 - \rho^\tau}{1 - \rho}$</td>
</tr>
<tr>
<td>GJR</td>
<td>$(\alpha + 0.5\gamma) \frac{1 - (\alpha + \beta + 0.5\gamma)^\tau}{1 - (\alpha + \beta + 0.5\gamma)^\tau}$</td>
<td>$(\alpha + 0.5\gamma) \frac{1 - (\alpha + \beta + 0.5\gamma)^\tau}{1 - (\alpha + \beta + 0.5\gamma)^\tau} + \phi \frac{1 - \rho^\tau}{1 - \rho}$</td>
</tr>
<tr>
<td>GCOMP</td>
<td>$(\alpha + 0.5\gamma) \frac{1 - (\alpha + \beta + 0.5\gamma)^\tau}{1 - (\alpha + \beta + 0.5\gamma)^\tau}$</td>
<td>$(\alpha + 0.5\gamma) \frac{1 - (\alpha + \beta + 0.5\gamma)^\tau}{1 - (\alpha + \beta + 0.5\gamma)^\tau} + \phi \frac{1 - \rho^\tau}{1 - \rho}$</td>
</tr>
</tbody>
</table>

Tab. 2.1: Facteur d’ajustement des modèles GARCH(1,1), GJR et GCOMP

En conclusion, il est important de remarquer que pour les trois modèles, ce paramètre fait intervenir deux types de sensibilités :
– sensibilités aux variations secondes du cours du support \((\Gamma_{t,s}^R(.)\)) ;
– sensibilités aux variations premières de la volatilité \(\Delta_{t,s}^R(.)\),
et un facteur d’ajustement propre à chaque modèle de volatilité.

2.5 Application à la gestion de portefeuille de straddles

La section précédente a fourni les paramètres de couverture dans le cadre d’analyse des modèles de volatilité GARCH(1,1), GJR et GCOMP. Ces paramètres permettent de faire des tests empiriques en vue d’examiner leur efficacité respective dans la couverture de positions d’options.
Les tests de couverture sont effectués sur les straddles\(^7\) portant sur l’indice S&P500. En effet, le profil de gain illustré dans la figure 2.1 montre qu’un straddle est une position insensible au sens dans lequel le cours du sous-jacent évolue, et très sensible à la variation de la volatilité. De ce fait, les straddles sont tout à fait appropriés aux tests de couverture contre le risque de volatilité.
En outre, il faut rappeler que, dans le cadre de la formule d’évaluation 2.9 retenue pour cette étude, les tests de couverture ne peuvent être appliqués qu’aux straddles à la monnaie\(^8\) (ATM).
La présentation de l’étude empirique est organisée de la façon suivante : je présente dans un premier temps la méthodologie adoptée pour identifier les ratios de couverture propres aux modèles de volatilité, qui vont permettre de mettre en place des tests de couverture. Je propose, ensuite, une discussion et une interprétation des résultats obtenus.

2.5.1 Données et méthodologie de l’étude empirique

\(^7\) Le straddle est une position consistant en une combinaison d’un call et d’un put de même prix d’exercice et de même échéance. Cette stratégie se retrouve également sous le nom de "bottom straddle" ou bien encore de "straddle purchase".
\(^8\) Cf. section 2.4.
\(^9\) tenant compte des éventuels splits et dividendes.
Fig. 2.1: Exemple de profil de gain d’un straddle

Note : Si le cours du sous-jacent est proche du prix d’exercice à la date d’expiration (compris entre S_1 et S_2), alors le straddle engendre une perte nette. En revanche, si le cours du sous-jacent est assez loin du prix d’exercice à l’échéance (inférieur à S_1 ou supérieur à S_2), le profit est positif et peut être très important, voire illimité en théorie. L’achat du straddle est motivé lorsque le trader s’attend à un brusque mouvement du cours du sous-jacent mais ne sait pas dans quel sens se fera le mouvement. Il faut noter que cette stratégie est plutôt coûteuse, puisqu’il faut payer deux premia, celui du call et celui du put. La perte potentielle est toujours limitée, mais elle est plus importante que pour une stratégie d’achat d’un call ou d’un put seul.

L’objectif des tests de couverture est le suivant : à l’aide du paramètre de sensibilité $\Gamma_{t,S}(.)$ issu d’un modèle de volatilité, je cherche à couvrir les straddles ATM10 à moyen terme sur S&P500 par des straddles à court terme portant sur la même valeur, en convenant d’appeler "straddles à court terme" ceux dont la maturité est comprise entre 2 et 25 jours et "straddles à moyen terme" ceux dont la maturité est comprise entre 26 et 42 jours. Afin de mettre en place des tests de couverture, il convient de définir, au préalable, les ratios de couverture pour les différents modèles de volatilité confrontés. En l’occurrence, les ratios de couverture signalent le changement relatif du rapport entre le straddle ATM

10 rigoureusement proches de la monnaie de telle sorte que $(S_t/K - 1 < 1\%)$.
à moyen terme et le straddle ATM à court terme, changement consécutif à l’arrivée d’un flux d’informations concernant la volatilité.

Définition 2.5.1 (Ratios de couverture). L’objectif de couverture étant ici de neutraliser la sensibilité des straddles à la monnaie à moyen terme contre la variation de la volatilité par les straddles à la monnaie à court terme, le ratio de couverture peut être défini comme le rapport entre le paramètre de sensibilité correspondant au straddle ATM à moyen terme et le paramètre de sensibilité correspondant au straddle ATM à court terme :

\[
\frac{\Gamma_{t,S}(\tau_m, S_t, \sigma_t)}{\Gamma_{t,S}(\tau_c, S_t, \sigma_t)} = \frac{\partial^2 C_t(\tau_m, S_t, \sigma_t)}{\partial S_t^2} / \frac{\partial C_t(\tau_c, S_t, \sigma_t)}{\partial S_t^2},
\]

où \(\tau_m = T - t \) et \(\tau_c = T - t \) désignent la maturité des options respectivement à moyen et à court terme.

Les ratios de couverture sont calculs à l’aide des propositions 2.4.1, 2.4.2 et 2.4.3, conformément à la définition 2.5.1. Ces ratios de couverture indiquent tout simplement le nombre de straddles ATM à court terme qu’il faut détenir pour un straddle ATM à moyen terme vendu si l’on veut couvrir le portefeuille d’options contre le risque de volatilité.

Stratégie de couverture

Critère du minimum de variance du portefeuille de couverture

Il faut maintenant définir un critère de performance dans la couverture des modèles. En l’occurrence, j’adopte le critère du minimum de variance du portefeuille de couverture. Ce dernier peut être défini comme la réduction maximale en pourcentage de la variance du portefeuille couvert par rapport au portefeuille non couvert. Cependant, dans cette démarche, la couverture n’est pas pratiquée de façon continue dans le temps. De ce fait, il en résulte un terme d’erreur rendant les changements de la valeur du portefeuille hétéros-
cédastiques et autocorrélés11. Pour pallier ce problème, j’adopte la démarche proposée par Nandi (1996) [182], qui consiste à comparer les changements normalisés des portefeuilles couverts de deux modèles à l’aide de la méthode des moments généralisés (GMM, \textit{General Method of Moments}). Soient \(r_{t,A} \) et \(r_{t,B} \) les changements de la valeur de deux portefeuilles couverts au sens de deux modèles alternatifs A et B :

\[
\begin{align*}
 r_{t,A} &= \frac{\Pi_{t,A} - \Pi_{t-1,A}}{\Pi_{t-1,A}} - m_A \\
 r_{t,B} &= \frac{\Pi_{t,B} - \Pi_{t-1,B}}{\Pi_{t-1,B}} - m_B,
\end{align*}
\]

où \(\Pi_{t,A} \) et \(\Pi_{t,B} \) désignent la valeur à la date \(t \) du portefeuille de couverture, respectivement des modèles A et B, \(m_i \) (\(i = A, B \)) la moyenne des populations (estimée par la moyenne des échantillons) des portefeuilles couverts A et B. S’agissant plus précisément de tester l’hypothèse \(\mathbb{E}[r_{t,A}^2 - r_{t,B}^2] = 0 \), je pose \(Z_t = r_{t,A}^2 - r_{t,B}^2 \). La statistique \(NW \) de la méthode des moments généralisés au sens de Newey & West (1987) [188] s’écrit :

\[
NW = \sqrt{t + \tau} \frac{\sum_{t=1}^{t+\tau} (Z_t - m_z)}{\sqrt{\sum_{t=1}^{t+\tau} (Z_t - m_z)^2 + 2 \sum_{j=1}^{m} \sum_{j+1}^{t+\tau} (Z_t - m_z)(Z_{t-j} - m_z)}}
\] \hspace{1cm} (2.17)

où \(m_z \) représente la moyenne de \(Z_t \) et la loi \(NW \) est distribuée asymptotiquement selon une loi normale standard.

2.5.2 Résultats et interprétations

Analyse statistique des rentabilités de l’indice S&P500

Le tableau 2.2 donne les principales statistiques descriptives des rentabilités observées de l’indice S&P500 sur la période de l’étude.

11 Cf. Boyle & Emmanuel (1980) [43].
Les valeurs obtenues pour la skewness et la kurtosis mettent en évidence des rentabilités distribuées suivant une loi leptokurtique et à queue à gauche. Ce résultat est parfaitement conforme aux faits stylisés mentionnés dans le chapitre précédent12, et est confirmé par le diagramme de la figure 2.3, où la courbe représente l’écart entre la distribution des rentabilités observées sur la période et la distribution gaussienne représentée par la droite horizontale. Par conséquent, cette distribution empirique des rentabilités ne peut pas être correctement approximée par une distribution théorique normale.

La valeur de la statistique $Q^2(15)$ de Ljung-Box13, supérieure à 25, témoigne de la persistance du carré des rentabilités. Ce résultat oriente clairement vers l’hypothèse d’une volatilité non-stationnaire. Ceci est parfaitement conforme aux observations qui ont servi de soubassement au développement du modèle GCOMP14.

12 Cf. sous-section 1.2.1.

13 La statistique Q de Ljung-Box est défini comme

$$ Q = N(N + 2) \sum_{k=1}^{s} \frac{r_k^2}{(N - k)}, $$

où N désigne le nombre d’opérations, r_k est la valeur estimée de l’autocorrélation d’ordre k et s est le degré d’autocorrélation qu’on veut tester. Cette statistique teste la présence d’autocorrélation d’ordre s, et est distribuée comme une $\chi^2(s)$. Si Q est supérieure à une valeur limite de la table, il y a de l’autocorrélation d’un ordre compris entre 1 et s. Je n’ai pas retenu le test de Durbin-Watson qui est un test plus simple, mais qui ne peut détecter que l’autocorrélation d’ordre 1. J’aurai pu, par contre, utiliser le test de Fisher ou sa variante, le test \textbf{LM} (multiplicateurs de Lagrange).

14 Cf. sous-section 2.2.3.
Fig. 2.2: Cours et rentabilités de l’indice S&P500 (02/01/1996-22/06/2001)

Note : Les rentabilités de l’indice S&P500 sont obtenues sur la période du 02/01/1996-22/06/2001 inclus, à partir des cours journaliers de clôture (cours ajustés).
Fig. 2.3: Diagramme QQ "detrended" des rentabilités inter-journalières de l’indice S&P500 (02/01/96-22/06/01)

Note : Comme son nom l’indique, le diagramme "QQ-detrended" correspond au diagramme QQ où la partie tendance a été supprimée.

Estimation des paramètres

La mise en place d’une stratégie de couverture ne peut être envisagée sans la connaissance des valeurs numériques des paramètres entrant en jeu dans chaque modèle de volatilité considéré. J’estime ainsi les valeurs numériques des paramètres entrant en jeu dans chacun de ces trois modèles au sens du maximum de log-vraisemblance, à l’aide de l’algorithme de Berndt, Hall, Hall & Hausman (1974) [27], et en supposant que les résidus suivent une loi de t-Student. Dans ces conditions, la log-vraisemblance est donnée par :

\[
\log L = -\frac{\tau}{2} \log 2\pi - \frac{1}{2} \sum_{k=1}^{\tau} \left(\log \sigma^2_{t+k} + \frac{Q_{t+k}}{\sigma^2_{t+k}} \right).
\]

Les paramètres estimés des trois modèles GARCH(1,1), GJR et GCOMP ainsi que les statistiques caractérisant les résidus, sont rapportés dans le tableau 2.3 :

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>GARCH(1,1)</th>
<th>GJR</th>
<th>GCOMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu)</td>
<td>0.0054 (6.34)</td>
<td>0.0062 (3.56)</td>
<td>0.00057 (7.64)</td>
</tr>
<tr>
<td>(w)</td>
<td>2.34E-06 (8.46)</td>
<td>6.91E-06 (5.61)</td>
<td>4.69E-06 (6.15)</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>0.0058 (26.72)</td>
<td>0.0037 (6.84)</td>
<td>0.0005 (3.78)</td>
</tr>
<tr>
<td>(\beta)</td>
<td>0.8605 (204.74)</td>
<td>0.7362 (169.09)</td>
<td>0.8512 (34.84)</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>- (10.72)</td>
<td>0.0856 (19.76)</td>
<td>0.1543 (19.76)</td>
</tr>
<tr>
<td>(\rho)</td>
<td>- (-)</td>
<td>- (-)</td>
<td>0.9882 (234.53)</td>
</tr>
<tr>
<td>(\phi)</td>
<td>- (-)</td>
<td>- (-)</td>
<td>0.1689 (10.52)</td>
</tr>
<tr>
<td>(\max \log L)</td>
<td>4791.6915</td>
<td>4804.8423</td>
<td>4827.3858</td>
</tr>
<tr>
<td>(Q^2(15))</td>
<td>7.941</td>
<td>4.6538</td>
<td>4.2391</td>
</tr>
<tr>
<td>(S/K)</td>
<td>653</td>
<td>673</td>
<td>645</td>
</tr>
</tbody>
</table>

Tab. 2.3: Statistiques comparatives des modèles GARCH(1,1), GJR et GCOMP

Note : Le tableau montre les valeurs des paramètres estimés et leur t-statistique respective entre parenthèses. \(Q^2(15)\) représente la statistique de Ljung-Box, distribuée selon une \(\chi^2(15)\), testant l’hypothèse nulle d’absence d’autocorrelation dans la série du carré des rentabilités standardisées. \(S/K\) représente la statistique de Bera-Jarque testant l’hypothèse nulle d’une distribution normale des résidus.
D’après ce tableau, la persistance de la volatilité est de 86.63% dans le modèle GARCH(1,1) (mesurée par la somme des coefficients α et β), et de 73.99% dans le modèle GJR. Le modèle GCOMP exhibe une persistance de la volatilité à long terme (reflétée par le coefficient ρ) de 98.82% et une persistance de la volatilité à court terme (β) de 85.12%. Ainsi, dans le modèle GCOMP, tandis que la persistance de la volatilité à long terme est la plus élevée dans les trois modèles examinés, la persistance de la volatilité à court terme est moins élevée que dans le modèle GARCH(1,1). Parmi les modèles "asymétriques", l’effet asymétrique de la volatilité des rentabilités, traduit par le coefficient γ, est mieux expliqué par le modèle GCOMP (15.43% contre 8.56%). Ces résultats sont statistiquement significatifs au regard du t de Student. Une autre valeur numérique intéressante est celle obtenue par le maximum du log-vraisemblance : d’après le tableau, et parmi les trois modèles considérés, le modèle GCOMP serait le plus approprié pour traduire l’évolution de la volatilité conditionnelle, le moins approprié étant le modèle GARCH(1,1). Enfin, au vu de la statistique $Q^2(15)$ de Ljung-Box, les trois modèles GARCH(1,1), GJR et GCOMP arrivent à éliminer la persistance dans la série du carré des rentabilités standardisées de l’indice S&P500 sur la période concernée. Enfin, pour chacun des trois modèles de volatilité confrontés, la statistique de Bera-Jarque (S/K) rejette l’hypothèse nulle des résidus normalement distribués.

Structure par terme et évolution temporelle de la volatilité (GARCH(1,1) vs GJR vs GCOMP)

La structure par terme des volatilités GARCH(1,1), GJR et GCOMP estimée peut être tracée selon la figure 2.4.

Les graphes obtenus pour les trois modèles de volatilité mettent en évidence des courbes croissantes dont la pente est "fixée" par le niveau de persistance dans chacun des schémas autorégressifs. La courbe de la volatilité GCOMP semble être non monotone.

15 D’après Heynen, Kemna & Veroost (1994) [128], la statistique du test de log vraisemblance vaut $-2 \times (L_A - L_B)$ où L_A et L_B sont les valeurs du maximum de log-vraisemblance obtenues par deux modèles A et B. Cette statistique est distribuée asymptotiquement selon une χ^2 à degré de liberté égal à la différence entre les nombres de paramètres des deux modèles.
Fig. 2.4: Structure par terme de la volatilité estimée (GARCH(1,1) vs GJR vs GCOMP)

Note : Les courbes sont tracées à l’aide des propositions 2.3.1, 2.3.2 et 2.3.3 et des valeurs des paramètres indiquées dans le tableau 2.3.
Paramètres de couverture (GARCH(1,1) vs GJR vs GCOMP) versus maturité

Ayant estimé les valeurs numériques des paramètres structurels pour les modèles de volatilité en confrontation, je trace dans la figure 2.5 l’évolution de leur paramètre de couverture \(\Gamma_{t,s}(\tau, S_t, \sigma_t) \).

![Graphique](image.png)

Fig. 2.5: Evolution temporelle des paramètres de couverture (GARCH(1,1) vs GJR vs GCOMP)

Note : Les courbes sont tracées à l'aide des propositions 2.4.1, 2.4.2 et 2.4.3 et des valeurs des paramètres indiquées dans le tableau 2.3.

Réduction de la variance des valeurs de portefeuilles de couverture

Le tableau 2.4 résume les résultats de la réduction de la variance des valeurs du portefeuille de couverture des trois modèles, réduction consécutive à l’application du paramètre de couverture \(\Gamma_{t,s} \) selon la stratégie explicitée dans la sous-section 2.5.1. Au vu du tableau 2.4, sur le plan d’une couverture contre le risque de volatilité, et parmi les modèles confrontés, le modèle GCOMP réussit à conduire à la réduction la plus importante de la variance des valeurs du portefeuille. Cette réduction est plus de quatre fois celle revendiquée par le modèle GARCH(1,1), modèle qui s’avère être le moins performant dans cette couverture, avec une réduction de la variance de 11.69 %. La différence entre le portefeuille couvert avec le paramètre de couverture issu du modèle GARCH et celui couvert avec sa contrepartie issue du modèle GJR, est plus grande que la différence entre le portefeuille couvert avec
2. La volatilité par les modèles GARCH : examen empirique sur le CBOE

<table>
<thead>
<tr>
<th></th>
<th>Couverture GARCH(1,1)</th>
<th>Couverture GJR</th>
<th>Couverture GCOMP</th>
<th>Portefeuille non couvert</th>
</tr>
</thead>
<tbody>
<tr>
<td>% de variance réduite</td>
<td>11.681</td>
<td>45.819</td>
<td>47.056</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Tab. 2.4: Réduction de la variance des valeurs de portefeuilles de couverture

Note : La réduction de la variance, exprimée en pourcentage, mesure la différence entre la variance des valeurs du portefeuille non couvert et la variance des valeurs du portefeuille couvert en appliquant le paramètre de couverture issu d’un modèle, rapportée à la variance du portefeuille non couvert.

le paramètre de couverture issu du modèle GJR et celui couvert avec sa contrepartie issue du modèle GCOMP.

La significativité statistique des résultats du tableau 2.4 est examinée grâce à la statistique de la méthode des moments généralisés de Newey & West (1987)\(^{16}\) qui permet de tester l’hypothèse nulle d’égalité, deux à deux, des variances des valeurs des portefeuilles couverts en appliquant respectivement les paramètres de couverture \(\Gamma_{GARCH}^{GARCH}, \Gamma_{GJR}^{GJR}\) et \(\Gamma_{GCOMP}^{GCOMP}\).

<table>
<thead>
<tr>
<th></th>
<th>GARCH(1,1)</th>
<th>GJR</th>
<th>GCOMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>GARCH(1,1)</td>
<td>0.0000*</td>
<td>23.6589*</td>
<td>35.5874*</td>
</tr>
<tr>
<td>GJR</td>
<td>23.6589*</td>
<td>0.0000*</td>
<td>31.6754*</td>
</tr>
<tr>
<td>GCOMP</td>
<td>35.5874*</td>
<td>31.6754*</td>
<td>0.0000*</td>
</tr>
</tbody>
</table>

Tab. 2.5: Significativité statistique des tests de couverture (GARCH(1,1) vs GJR vs GCOMP)

Note : NW est asymptotiquement distribuée selon une loi normale standardisée. Les valeurs étoilées sont statistiquement significatives.

Les résultats sont regroupés dans le tableau 2.5. Les résultats obtenus pour les valeurs de la statistique \(NW\) permettent de rejeter l’hypothèse nulle d’égalité, deux à deux, des variances des valeurs de portefeuilles. En effet, lorsqu’on prend en compte l’hétéroscédasticité des variations dans les valeurs des portefeuilles couverts, on aboutit à des résultats montrant que la différence dans les variances des portefeuilles couverts est significative au seuil de 0.05. Par conséquent, l’ensemble des résultats du tableau 2.4 est significatif.

\(^{16}\) Cf. sous-section 2.5.1.
Erreur relative de couverture des portefeuilles

Jusqu’ici, j’ai comparé la performance des portefeuilles de couverture contre le risque de volatilité, en appliquant le paramètre de couverture $\Gamma_{t,s}$ des modèles GARCH(1,1), GJR et GCOMP par rapport un portefeuille non couvert. Il est également possible de confronter deux à deux les modèles sur le critère de l’erreur de couverture relative. En effet, on peut convenir de définir par "erreur de couverture d’un modèle A (mis en colonne) par rapport à un modèle B (mis en ligne)", la différence moyenne entre les variations absolues normalisées des valeurs du portefeuille couvert en appliquant le paramètre de couverture $\Gamma^A_{t,s}$ dérivé du modèle A, et celles correspondant aux valeurs du portefeuille couvert en appliquant le paramètre de couverture $\Gamma^B_{t,s}$ dérivé du modèle B. Ainsi, une erreur de couverture négative signifie simplement que le modèle A est plus efficace, sur le critère de la performance de couverture, que le modèle B. Les résultats sont donnés dans le tableau 2.6.

<table>
<thead>
<tr>
<th></th>
<th>Erreur de couverture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GARCH(1,1)</td>
</tr>
<tr>
<td>GARCH(1,1)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(-)</td>
</tr>
<tr>
<td>GJR</td>
<td>0.9843</td>
</tr>
<tr>
<td></td>
<td>(2.1)</td>
</tr>
<tr>
<td>GCOMP</td>
<td>1.1672</td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
</tr>
</tbody>
</table>

Tab. 2.6: Erreur de couverture (GARCH(1,1) vs GJR vs GCOMP)

Note : Je rapporte entre parenthèses la statistique t de Student, modifiée par White (1980) [225], afin d’intégrer l’hétéroscélasticité des erreurs de couverture qui teste la validité de l’hypothèse nulle d’équivalence deux à deux des modèles au regard de la performance de couverture.

On constate que l’erreur de couverture relative est toujours négative pour tous les modèles alternatifs au modèle GCOMP. Ce résultat, significatif d’après les valeurs obtenues pour la statistique t modifiée par White (1980) [225], signifie que le modèle GCOMP conduit à la meilleure couverture, comparativement aux modèles GARCH(1,1) et GJR. Par exemple, si on utilise le paramètre de couverture relatif au modèle GARCH(1,1) en lieu et place du paramètre de couverture dérivé du modèle GCOMP, on commet une erreur de couverture signifiée par une perte nette de $\$ 1.1672$. De la même façon, le paramètre de couverture issu du modèle GCOMP permet de gagner $\$ 0.0573 par rapport à sa contrepartie dérivée du modèle GJR. Ces conclusions sont statistiquement significatives au regard de la statistique t de Student modifiée par White (1980). À l’opposé, le modèle GARCH(1,1), commettant une erreur relative toujours positive par rapport aux autres modèles, est le modèle le moins performant. Ce dernier résultat n’est pas tout le temps significatif au seuil de 0.05. Enfin, la différence entre les modèles GARCH(1,1) et le modèle GJR est plus grande que
la différence entre les deux modèles asymétriques. Le rapport de cette différence est de 17.18. On confirme ainsi les conclusions données par la réduction de la variance des valeurs du portefeuille de couverture.

Cependant, l’ensemble de ces résultats est à considérer avec précaution : si l’on se réfère à Engle & Rosenberg (2000) [96], les résultats des tests de couverture peuvent être affectés par un biais de sélection au niveau de l’échantillon, qui proviendrait de cotations quotidiennes manquantes.

2.6 Conclusion

Les résultats des tests de couverture montrent clairement que la couverture la plus performante (en termes de réduction de la variance des valeurs de portefeuilles et d’erreur relative de couverture) est réalisée lorsque le modèle de volatilité intègre l’effet de levier et lorsque la caractéristique de la non stationnarité de la volatilité est décomposée en deux composantes : selon une composante permanente et une composante transitoire (modèle GARCH GCOMP de Engle & Lee (1993)). Lorsque la problématique porte sur la gestion de portefeuille, s’il n’est pas faux de penser que le modèle de volatilité le plus "performant" est celui qui permet de développer les paramètres de couverture conduisant à la couverture la plus efficace contre le risque de volatilité, alors le modèle GCOMP est le plus "performant" parmi les modèles déterministes de volatilité à schéma autorégressif confrontés.

Néanmoins, il convient de garder à l’esprit deux points : 1) les résultats théoriques et empiriques ne concernent que les options à la monnaie ; 2) les résultats empiriques obtenus restent valides dans la limite de biais qui pourraient se trouver dans le recueil des cotations, comme l’explicitent Engle & Rosenberg (2000) [96].

17 qui proviennent pour l’essentiel des valeurs manquantes dans l’échantillon.
Pour approfondir les résultats de ce chapitre, un prolongement naturel pourrait concerner la levée de l’hypothèse de constance, soit du taux sans risque, soit de la prime de risque en recourant, notamment, aux modèles à la GARCH-in-mean élaborés par Engle, Lilien & Robins (1987) [92]. Il reste toutefois fort probable que dans ce cas, le développement des paramètres de couverture ne soit guère envisageable que par voie numérique. Je laisse ce débat en suspens et reviens à l’objectif majeur que poursuit la thèse, à savoir la proposition d’un modèle d’évaluation des options avec volatilité stochastique.
Analyse critique des modèles d’évaluation en temps continu à volatilité stochastique de la littérature

"Suppose we use the standard deviation ... of possible future returns on a stock ... as a measure of its volatility. Is it reasonable to take that volatility as constant over time? I think not."

Fisher Black, *The pricing of commodity contracts.*

"...large changes tend to be followed by large changes - of either sign - and small changes tend to be followed by small changes."

Benoît Mandelbrot, *The variation of certain speculative prices.*

Sommaire

3.1 *Introduction : volatilité stochastique et incomplétude des marchés* .. 104
3.2 *Les modèles à "pure volatilité stochastique"* 105
 3.2.1 Les modèles de Hull & White 105
 3.2.2 Le modèle de Heston 111
 3.2.3 Le modèle de Schöbel & Zhu 114
3.3 *Le modèle à sauts et à volatilité stochastique de Bates* 117
3.4 *Le modèle à sauts, à volatilité et taux d’intérêt stochastiques de Bakshi, Cao & Chen* 120
3.5 *Synthèse : relations entre les modèles d’évaluation à temps continu* 130
 3.5.1 Des modèles d'équilibre fondés sur la consommation 132
 3.5.2 Une approche "Equivalent Martingale Measure" commune ... 133
3.6 *Conclusion* .. 134
3.1 Introduction : volatilité stochastique et incomplétude des marchés

Comme réponse aux effets *smile* et *smirk* rapportés par l’observation empirique, le premier chapitre a donné une orientation possible de la modélisation de la volatilité avec la classe des processus stochastiques susceptibles de conduire par ailleurs aux propriétés statistiques et économétriques qu’un modèle d’évaluation réaliste doit satisfaire. Mais d’un autre coté, l’adoption de cette classe de processus génère trois principaux types de difficultés : 1) difficulté d’ordre économétrique d’estimation de la volatilité comme grandeur inobservable ; 2) difficulté d’ordre technique due aux non linéarités présentes dans les dynamiques de la volatilité ; 3) et enfin, mais sans doute le plus important, difficulté d’ordre économique de non complétude qu’imposent les marchés en présence de volatilité stochastique. Cette incomplétude des marchés implique que le principe d’absence d’opportunité d’arbitrage ne permet pas d’identifier un système de *premium* unique, mais un ensemble de *premiums* admissibles associés à une infinité de primes rémunérant le risque de volatilité stochastique. En outre, puisque le risque de volatilité ne peut pas être couvert par un actif négociable, le *premium* d’une option, en présence de volatilité stochastique, exige la formulation d’une hypothèse sur la préférence des investisseurs[^1].

L’enjeu que pose le caractère erratique de la volatilité des rentabilités boursières conduit à la recherche de différents modèles, se distinguant essentiellement par la nature du processus qu’ils mettent en œuvre : quelle(s) classe(s) de processus permettrait(eraient) d’aboutir à une formule de valorisation réalisant le meilleur compromis possible entre praticabilité et réalisme/précision ?

[^1]: Divers travaux de recherche ont tenté de "completer" le marché, sans devoir faire d’hypothèses sur le degré d’aversión au risque des investisseurs. C’est le cas, par exemple, de Bajeux & Rochet (1996) [15] mais ces auteurs n’ont pas abouti à une formule de valorisation.
aux modèles mixtes ou hybrides2 de Bates (1996) [24] et Bakshi, Cao & Chen (1997) [16], qui permettent d’observer des sauts de fréquence déterministe dans le processus des rentabilités du support. Enfin, dans une dernière section, une synthèse des modèles présentés est proposée.

3.2 Les modèles à "pure volatilité stochastique"3

3.2.1 Les modèles de Hull & White

Le premier modèle de Hull & White (1987) reprend les mêmes postulats que le modèle de Black & Scholes (1973)4, à l’exception de la dernière hypothèse du mouvement brownien géométrique pour le cours du sous-jacent5. En effet, Hull & White (1987) lèvent l’hypothèse de constance de la volatilité du cours du support, et suggèrent d’adopter pour le processus de la variance, un mouvement brownien géométrique à incréments non corrélés, à tout instant, avec ceux du sous-jacent. Leur modèle, qui devient un modèle à deux variables d’état (\(S\) et \(\sigma^2\)), peut s’écrire :

\[
C_t^{HullWhite} \begin{cases}
 dS_t = S_t(\phi dt + \sqrt{V_t} dw_t^P) \\
 d\sigma_t^2 = V_t(\mu dt + \xi dz_t^P) \\
 \forall t, dw_t^P dz_t^P = 0,
\end{cases}
\]

où \(\phi\) peut dépendre de \(S\), \(\sigma\) et \(t\); \(\mu\) et \(\xi\), paramètres constants, désignent respectivement, l’espérance mathématique et la volatilité de la variance des rentabilités instantanées du sous-jacent. Le modèle ainsi spécifié ne permet pas à la variance instantanée de prendre des valeurs négatives. Par contre, celle-ci tend vers zéro lorsque \(\sigma^2\) tend vers zéro. L’inexistence sur le marché d’actif parfaitement corrélaté avec la volatilité, empêche la constitution d’un portefeuille de couverture contre les risques de cours et de volatilité du sous-jacent. Cependant, Hull & White invoquent la propriété d’un actif, dont la valeur \(f\), dépendante de variables d’état \(\theta_i\), doit satisfaire l’équation différentielle dérivée par Garman (1976) [112] :

\[
\frac{\partial f}{\partial t} + \sum_{i,j} \rho_{i,j} \sigma_i \sigma_j \frac{\partial^2 f}{\partial \theta_i \partial \theta_j} - Rf = \sum_i \theta_i \frac{\partial f}{\partial \theta_i} [\mu_i + \beta_i (\mu^* - R)],
\]

2 modèles dans lesquels le support suit un processus mixte ou hybride (de diffusion et à sauts).

3 J’entends par modèles à "pure volatilité stochastique", les modèles à un facteur stochastique unique, en l’occurrence la volatilité, et ne faisant pas intervenir de composante(s) à sauts, ni dans le processus du sous-jacent, ni dans celui de la volatilité.

4 En particulier, le taux d’intérêt sans risque doit être constant, ou tout au moins déterministe.

5 Il s’agit de l’hypothèse vii (cf. chapitre 1, section 1.1). En vérité, comme la suite de l’exposé va l’expliquer, deux nouvelles hypothèses viendront s’ajouter.
où σ_i est l’écart type instantané de θ_i, ρ_{ij} est la corrélation instantanée entre θ_i et θ_j, μ_i est la tendance de θ_i, β_i est le vecteur des *betas* de la régression multiple des rentabilités espérées $d\theta_i/\theta_i$ de la variable d’état θ_i sur le portefeuille du marché et les portefeuilles ayant la plus forte corrélation avec les variables d’état, μ^s est le vecteur des rentabilités espérées instantanées du portefeuille du marché et les portefeuilles ayant la plus forte corrélation avec les variables d’état, enfin R est le vecteur des taux d’intérêt sans risque.

L’application directe de l’équation différentielle de Garman (1976) permet d’aboutir à l’EDP que doit satisfaire un prix f, fonctionnelle de S et V, non corrélées entre elles :

$$\frac{\partial f}{\partial t} + \frac{1}{2} \sigma_i^2 S_i^2 \frac{\partial^2 f}{\partial S_i^2} + \xi^2 V_i^2 \frac{\partial^2 f}{\partial V_i^2} - Rf = -RS_i \frac{\partial f}{\partial S_i} - [\mu - \beta V(\mu^s - R)s \frac{\partial f}{\partial V_i}],$$

où βV est le vecteur des coefficients *betas* de la régression de la rentabilité espérée dV/V sur le portefeuille du marché et les portefeuilles ayant la corrélation la plus forte avec les variables d’état.

La modélisation stochastique de la volatilité conduit à l’incomplétude du marché. En effet, alors qu’en volatilité déterministe, à un seul support correspond un seul processus de Wiener, dans un environnement de volatilité stochastique, à un support donné correspond deux processus de Wiener, soit une source d’aléa supplémentaire. De ce fait, les deux sources d’incertitude, si elles ne sont pas parfaitement corrélées, ne permettent pas aux investisseurs de s’assurer contre la survenue de ces aléas. Par conséquent, le principe d’absence d’opportunité d’arbitrage, qui a servi à fondre le modèle de Black & Scholes (1973), ne permet pas d’aboutir à un *premium* unique pour une option donnée, mais à un ensemble de *premiums* correspondant chacun à une prime de risque rémunérée par l’aléa de volatilité. Se pose alors le problème de la détermination de la prime de risque, qui dépend à l’évidence de l’attitude à l’égard du risque des investisseurs. Hull & White (1987) tiennent alors le raisonnement suivant : l’incomplétude du marché est due au caractère stochastique de la volatilité. Si l’on veut minimiser le risque résiduel du à cette incomplétude du marché, il n’est pas incorrect de considérer que, seul le risque observable est évalué, et tout risque orthogonal à celui-ci est nul (la prime de risque du à la volatilité est nulle)\(^6\). Le problème posé par la caractérisation de l’attitude des agents à l’égard du risque est ainsi résolu, ou plutôt contourné par le recours à l’hypothèse selon laquelle le *beta* (c’est-à-dire le risque systémique) de la volatilité est nul. Sous l’hypothèse d’une prime nulle pour le risque de volatilité, l’EDP (3.1) à résoudre se simplifie comme suit :

$$\frac{\partial f}{\partial t} + \frac{1}{2} \sigma_i^2 S_i^2 \frac{\partial^2 f}{\partial S_i^2} + \xi^2 V_i^2 \frac{\partial^2 f}{\partial V_i^2} - Rf = -RS_i \frac{\partial f}{\partial S_i} - \mu \sigma^2 \frac{\partial f}{\partial V_i}.$$

Ainsi, compte tenu de l’indépendance a priori des préférences des agents concernant le risque, une solution analytique peut être dérivée en utilisant l’approche de la mesure

\(^6\)Le risque du à l’aléa dz_i^P est nul, seul subsiste le risque du à dw_i^P.

3. **Analyse critique des modèles d’évaluation en temps continu à volatilité...** 106
marquage équivalente. Cette indépendance de l’attitude des agents face au risque permet
d’admettre le caractère risque-neutre de l’environnement du marché. Par conséquent, la
valeur de l’option, notée \(f(S, \sigma^2, t) \), doit être égale à la valeur de son flux final (c’est-à-dire
sa valeur intrinsèque) actualisée au taux d’intérêt sans risque, soit :

\[
f(S, \sigma^2, t) = e^{-RT-t} \int_0^\infty f(S_T, \sigma_T^2, T)Q(S_T|S_t, \sigma_t^2) dS_T,
\]

où \(T \) désigne la date d’échéance de l’option, \(Q(S_T|S_t, \sigma_t^2) \) la distribution conditionnelle
de \(S_T \) dans l’univers risque-neutre\(^7\). La difficulté majeure de l’expression analytique vient
du problème posé par la définition de la distribution conditionnelle de \(S_T \) qui dépend des
processus du cours de l’actif support et de la volatilité. L’invocation de la propriété des
fonctions conditionnelles de densité des variables aléatoires liées, permet de définir une
nouvelle variable qui représente la variance moyenne pendant la durée de vie de l’option,
et qui s’écrit comme l’intégrale stochastique suivante :

\[
\bar{V} = \frac{1}{T-t} \int_t^T \sigma_t^2 d\tau.
\]

Cette définition de \(\bar{V} \) permet d’exprimer la distribution de \(S_T \) de la façon suivante :

\[
Q(S_T|S_t, \sigma_t^2) = \int_0^\infty g(S_T|\bar{V}) h(\bar{V}) d\bar{V}.
\]

En remplaçant (3.3) dans (3.2), et en appliquant le théorème de Fubini, il vient

\[
f(S, \sigma^2, t) = \int_0^\infty \{e^{-RT-t} \int_0^\infty f(S_T) g(S_T|\bar{V}) dS_T \} h(\bar{V}) d\bar{V}.
\]

Montrant maintenant que \(g(\ln(S_T/S_0)|\bar{V}) \sim \mathcal{N}(RT - \bar{V}/2, \bar{V}T) \), Hull & White (1987)
aboutissent à la formule de valorisation 3.2.1. Il faut insister sur le fait que cette formule
n’a pu être obtenue qu’au prix de deux hypothèses : 1) la prime de risque due à la volatilité
stochastique est nulle (le risque systématique ou \textit{beta} de la volatilité est nul) ; 2) à tout
instant, le cours et la volatilité du cours ne sont pas corrélés.

\(^7\) La mesure de probabilité risque-neutre \(Q \) est alors appelée "mesure de probabilité minimale", le
qualificatif "minimale" provenant du fait que l’approche de Hull & White (1987) cherche à minimiser le
risque résiduel du à l’incomplétude du marché.
3. Analyse critique des modèles d'évaluation en temps continu à volatilité...

Formule 3.2.1 (Formule de Hull & White (1987)). Soit \(C^{RSS}_t \) le premium, calculé à l’aide de la formule 1.3.1, d'une option d’achat de type européen sur action ne versant pas de dividende. Soit \(\tilde{V} \) la variance moyenne sur la période \([0, T]\), c’est-à-dire \(\tilde{V} = \frac{1}{T} \int_0^T V_{d\tau} \). Le premium de Hull & White (1987), noté \(C^{HYW87}_t \), s’exprime comme l’espérance mathématique du premium de Black & Scholes, conditionnelle à la variance instantanée des rentabilités du sous-jacent :

\[
C^{HYW87}_t(\tau, S_t, V_t, R, K) = \mathbb{E}[C^{RSS}_t(\tau, S_t, \tilde{V}, R, K)|V_t],
\]

où \(R \) désigne le taux d’intérêt (supposé constant) et \(V_t \) la variance instantanée (supposée stochastique) des rentabilités de l’actif support.

Cette formule montre que le calcul de \(C^{HYW87}_t(\cdot) \) nécessite la connaissance analytique de \(h(\tilde{V}|V) \), ce qui n’est pas trivial, à moins d’approcher la forme de la distribution de la variance moyenne conditionnelle à la variance instantanée, en calculant ses moments. Un développement en série de Taylor de \(C^{RSS}_t(\cdot) \) autour de la variance espérée moyenne \(\tilde{V}_m \equiv \mathbb{E}(\tilde{V}|V_t) \) est possible, et s’écrit :

\[
C^{RSS}_t(\tau, S_t, \tilde{V}, R, K) \approx C^{RSS}_t(\tau, S_t, \tilde{V}_m, R, K) + \sum_{n=1}^{\infty} \frac{1}{n!} (\tilde{V} - \tilde{V}_m)^n \frac{\partial^n C^{RSS}_t(\tau, S_t, \tilde{V}, R, K)}{\partial \tilde{V}^n} |_{\tilde{V}_m} \int_{\tilde{V}_m}^{\tilde{V}} (\tilde{V} - \tilde{V}_m)^n h(\tilde{V}|V)d\tilde{V}.
\]

Finalement,

\[
C^{HYW87}_t(\tau, S_t, V_t, R, K) = C^{RSS}_t(\tau, S_t, \tilde{V}_m, R, K) \\
+ \sum_{n=1}^{\infty} \frac{1}{n!} \frac{\partial^n C^{RSS}_t(\tau, S_t, \tilde{V}, R, K)}{\partial \tilde{V}^n} |_{\tilde{V}_m} \int_{\tilde{V}_m}^{\tilde{V}} (\tilde{V} - \tilde{V}_m)^n h(\tilde{V}|V)d\tilde{V}.
\]

Cependant, comme il a été montré dans Hull & White (1988) (résultat confirmé par Ball & Rom a (1994) [21]), en l’absence de corrélation entre la volatilité et le cours du sous-jacent, une approximation précise du prix d’une option peut être obtenue en remplaçant, dans la formule de Black & Scholes (1973), la variance par :

\[
\tilde{V}_m = \mathbb{E}[\frac{1}{T-t} \int_t^T \sigma^2_{\tilde{V}}d\tau].
\]

Mais cette substitution - qui nécessite encore de postuler que la distribution conditionnelle du prix de l’option à la date d’expiration, connaissant la variance moyenne espérée \(\tilde{V}_m \), est lognormale - ne tient plus si la volatilité et le cours du sous-jacent sont corrélés. C’est par exemple le cas de l’indice S&P500, ainsi que le montre la figure 3.1.

En effet, cette dernière montre bien l’existence d’une corrélation entre les rentabilités et la volatilité de l’indice S&P500 sur une période de trente ans. L’ampleur de la période est à l’origine de la "dispersion" de la corrélation et de son niveau relativement faible. Ce fait signale un effet fréquent de la corrélation, qui devient très faible à partir du 25ème ordre, comme l’indique le tableau de corrélations associé.
FIG. 3.1: Corrélation entre rentabilités et volatilité du S&P500 (03/02/1970-25/06/2001)

Note : La corrélation 3.1 empirique entre rentabilités et volatilité est obtenue sur la période du 03/02/1970 au 25/06/2001, sur 7932 cours journaliers de clôture.

Daily(5) Data From 1970:02:03 To 2001:06:25
0: -0.1140206 -0.1100677 -0.1060777 -0.1057610 -0.0973223 -0.0886072
6: -0.0836485 -0.0804474 -0.0774046 -0.0746419 -0.0724414 -0.0721053
12: -0.0718495 -0.0703796 -0.0694953 -0.0663347 -0.0656026 -0.0669609
18: -0.0662401 -0.0621626 -0.0585063 -0.0564324 -0.0527967 -0.0483066
24: -0.0437800 -0.0400532

Toutefois, cette corrélation, bien que faible, demeure statistiquement significative, d’après
la statistique \(Q \) de Ljung-Box\(^8\).

Dans un travail s’inscrivant dans la progression naturelle de leur premier modèle, Hull & White (1988) [133] proposent une version modifiée du modèle, autorisant cette fois la présence d’une corrélation non nulle entre la volatilité et le cours de l’actif support. L’hypothèse postulant une prime nulle de risque associée à la volatilité, quant à elle, est maintenue. En recourant au développement en séries d’ordre deux de Taylor, les auteurs montrent que le biais lié au caractère stochastique de la volatilité, auquel seconde de l’application de la formule de Black & Scholes (1973), peut être approximé par l’expression suivante :

\[
\text{Biais} = Q_1 \rho \xi + (Q_2 + Q_3\rho^2)\xi^2 + o(\xi^2),
\]

où \(\rho \) est la corrélation non nulle entre la volatilité et le cours du sous-jacent, et \(\xi \) l’écart type instantané de \(dV/V \). Hull & White (1988) aboutissent ainsi à la formule 3.2.2 :

Formule 3.2.2 (Formule de Hull & White (1988)). Soit \(C_{it}^{RS} \) le premium, calculé à l’aide de la formule 1.3.1, d’une option d’achat de type européen sur action ne versant pas de dividende. Soit \(\delta = br \). Le premium de Hull & White (1988), noté \(C_{it}^{LOVSS} \), est donné par

\[
C_{it}^{LOVSS}(\tau, S_t, V_t, R, K) = C_{it}^{RS}(\tau, S_t, \bar{V}_m, R, K) + Q_1 \rho \xi + (Q_2 + Q_3\rho^2)\xi^2 + o(\xi^2),
\]

avec :

\[
Q_1 = -\frac{1}{b^2\tau}V_t(1 + \delta - e^\delta)S_t \frac{\partial^2 C_{it}^{RS}}{\partial S_t \partial V_t},
\]

\[
Q_2 = \frac{1}{4b^2\tau^2}V_t(e^{2\delta} - 4e^\delta + 2\delta + 3) \frac{\partial^2 C_{it}^{RS}}{\partial V_t^2},
\]

\[
Q_3 = -\frac{1}{b^2\tau}V_t[e^{\delta}(2 - \delta) - (2 + \delta)]S_t \frac{\partial^2 C_{it}^{RS}}{\partial S_t \partial V_t} + \frac{2}{b^2\tau}V_t[e^{\delta}(2 - \delta) - (2 + \delta)] \frac{\partial^2 C_{it}^{RS}}{\partial V_t^2}
\]

\[
+ \frac{1}{2b^2\tau}V_t^2(1 + \delta - e^\delta)^2S_t \frac{\partial^2 C_{it}^{RS}}{\partial S_t \partial V_t^2} + \frac{1}{b^3\tau^3}V_t^2(1 + \delta - e^\delta)^2 \frac{\partial^3 C_{it}^{RS}}{\partial V_t^3}.
\]

où \(R \) désigne le taux d’intérêt (supposé constant), \(V_t \) la variance instantanée (supposée stochastique) des rentabilités de l’actif support.

Si l’on fait tendre vers zéro l’écart type instantané \(\xi \) de \(dV/V \), alors la formule 3.2.2 coïncide avec la formule 1.3.1 de Black & Scholes. Si l’on suppose que \(\xi > 0 \), alors celle-ci représente la somme de la valeur de l’option issue de l’application de la formule de Black & Scholes et des termes d’ajustements tenant compte du caractère aléatoire de la volatilité.

\(^8\) La valeur trouvée pour cette statistique est de 91.928, qui est supérieure à 25.
Malgré tout, d’un point de vue économique, l’hypothèse selon laquelle les agents financiers n’exigeraient aucune compensation pour faire face au risque de volatilité, et par conséquent, ne verriraient aucune justification à couvrir le risque de volatilité attaché à leurs positions d’options, est tout à fait irréaliste.

3.2.2 Le modèle de Heston

L’hypothèse de non-corrélation entre les chocs de volatilité et le cours du sous-jacent, non conforme avec la réalité des marchés, est dépassée par Heston (1993) qui suggère de modéliser la variance par un processus de diffusion à retour vers la moyenne de type racine-carrée à chocs corrélés avec le cours :

\[dV_t = \kappa(\theta - V_t)dt + \sigma \sqrt{V_t}dz^{P}_{t,2} \quad (3.5) \]

où \(z^{P}_{t,2} \) désigne un processus de Wiener.

Ce processus *mean reverting*, qui a déjà été utilisé par Baily & Stulz (1989) [14], fait référence à un mouvement de la variance instantanée vers un niveau moyen à long terme \(\theta \), à la vitesse réglée par \(\kappa > 0 \). Ce phénomène est caractérisé généralement par un facteur de persistance de variance qui se traduit par un degré d’autocorrelation à un niveau élevé. L’équation (3.5) admet comme solution :

\[V_t = V_0 + \int_0^t \kappa(\theta - V_u)du + \sigma \int_0^t \sqrt{V_u}dz^{P}_{u,2} \quad (3.6) \]

Par rapport au mouvement brownien géométrique adopté par Hull & White (1987, 1989), ce processus racine-carrée présente au moins deux avantages :

- 1) D’un point de vue économique, il permet de prendre en compte le risque systématique de volatilité, contrairement aux deux modèles de Hull & White (1987, 1988). En effet, la nature du processus permet de considérer intuitivement que la prime de risque de la variance stochastique est proportionnelle à la variance conditionnelle \(V_t \). La conséquence immédiate de cette modélisation est que le processus risque-neutre (sous la mesure de probabilité risque-neutre \(Q \)) de la variance, conserve la même nature que le processus réel (sous la mesure de probabilité objective \(P \)). Autrement dit,

9 Une forme strictement linéaire de la prime de risque peut être envisagée sous une fonction d’utilité logarithmique, si la volatilité de l’actif support et le risque du marché partagent une composante commune de forme particulière. Cette linéarité n’est cependant pas triviale et doit souvent être interprétée comme une approximation de la véritable fonction de la prime de risque.
le processus de la variance reste un processus racine-carré dans l’univers risque-neutre. En effet, si l’on convient de noter par \(l_{i,V} \) la prime de risque de la volatilité, et si l’on prend \(l_{i,V} = l(T - t, S_t, V_t) \propto V_t = \lambda \times V_t \), on aboutit (sous les conditions classiques de régularité nécessaires à l’invocation du théorème de Girsanov), à :

\[
dV_i = \kappa(\theta - V_i) dt + \sigma \sqrt{V_i} \, dZ_i^P
\]

\[
\kappa' = \kappa + \lambda \text{ et } \theta' = \kappa \theta / (\kappa + \lambda).
\]

- 2) Le deuxième avantage du processus racine-carré réside dans sa capacité à conduire à une solution analytique du problème de dévaloration sans perte de précision, et surtout sans avoir recours à des hypothèses contraignantes, comme par exemple \(\forall t, dz_{i,1}^Q dz_{i,2}^Q = 0 \).

De plus, ce processus constitue une garantie contre toute anomalie se manifestant par des situations où la volatilité prend des valeurs négatives.

Sous la mesure de probabilité risque-neutre \(Q \), le modèle de Heston (1993) s’écrit donc :

\[
C_t^H \left\{ \begin{array}{l}
\frac{dS_t}{S_t} = (R dt + \sqrt{V_t} dZ_{i,1}^Q) \\
\frac{dV_t}{V_t} = \kappa' (\theta' - V_t) dt + \sigma \sqrt{V_t} \, dZ_{i,2}^Q \\
\frac{dZ_{i,1}^Q}{\kappa^2, i, 1} \frac{dZ_{i,2}^Q}{\kappa^2, i, 2} = \rho dt,
\end{array} \right.
\]

où le taux d’intérêt \(R \) est supposé constant. Comme dans le modèle à volatilité constante de Black & Scholes (1973), cette hypothèse donne la possibilité d’obtenir un prix constant pour le prix d’une obligation zéro-coupon arrivant à échéance à \(T \) :

\[
B_t(T - t) = e^{-R(T-t)}.
\]

Cette condition, bien qu’indispensable n’est pas suffisante pour mener à l’évaluation d’un actif contingent, car elle ne renseigne pas sur l’expression de la prime de risque. Heston fonde son raisonnement sur le principe d’absence d’opportunité d’arbitrage qui implique que la valeur du all européen, \(C_t^H = C_t^H(T - t, S_t, V_t) \), doit satisfaire l’équation aux dérivées partielles suivante :

\[
\frac{1}{2} (\frac{\partial^2 C_t^H}{\partial S_t^2}) + \rho \sigma V_t S_t \frac{\partial^2 C_t^H}{\partial S_t \partial V_t} + \frac{1}{2} \sigma^2 V_t \frac{\partial^2 C_t^H}{\partial V_t^2} + RS_t \frac{\partial C_t^H}{\partial S_t} + \frac{\partial C_t^H}{\partial V_t} - R C_t^H - \frac{\partial C_t^H}{\partial T} = 0.
\]

(3.7)

La quantité \(l_{i,V} \) représente la prime de risque de la variance, qui doit être indépendante de tout actif particulier. Cette prime n’est pas nulle si on se rapporte aux travaux de Lamoureux & Lastrapes (1993) [149], portant sur les options sur actions. Le choix de l’expression de \(l_{i,V} \) peut être effectué dans le cadre du modèle de Breeden (1979) [44], dans lequel \(l_{i,V} \) est exprimé de la façon suivante :

\[
l_{i,V}(T - t, S_t, V_t) = \gamma Cov(dV_t, dC_t/C),
\]
où C désigne le taux de consommation et γ le degré d‘aversion au risque des investisseurs. Le problème consiste à aboutir à l'expression de la prime de risque $b_{t,V}$. À cette étape, un rapprochement entre le processus de prix et le processus de consommation peut être réalisé. En particulier, ce dernier peut s‘écrire dans le contexte du modèle d’équilibre général de Cox, Ingersoll & Ross (1985), de la façon suivante :

$$dC_t = \mu_t V_t C_t dt + \sigma_t \sqrt{V_t} C_t dW_{t,t}^P.$$

La corrélation entre la variation de la consommation et les rentabilités de l’actif sous-jacent est constante. Cette formulation conduit à une prime de risque proportionnelle à V_t. C’est la forme de $b_{t,V}$ choisie par Heston (1993). En théorie, l‘expression de $b_{t,V}$ peut être dérivée à partir d’un actif, dont la valeur dépend de la volatilité, et ensuite insérée dans le processus d‘évaluation d’un autre actif, dont la valeur dépend de la volatilité. Cette démarche n‘est pas sans rappeler le rôle joué par la volatilité implicite dans le modèle de Black & Scholes (1973).

Les conditions aux bornes de la valeur d’un call européen de prix d’exercice K et de maturité $\tau = T - t$, sont les suivantes :

$$C_t^H(0, S_t, V_t) = (0, S_T - K)^+, \quad C_t^H(\tau, 0, V_t) = 0,$$

$$\frac{\partial C_t^H(\tau, \infty, V_t)}{\partial S_t} = 1,$$

$$\left[R S_t \frac{\partial C_t^H(\tau, S_t, 0)}{\partial S_t} + \kappa \theta \frac{\partial C_t^H(\tau, S_t, 0)}{\partial V_t} - R C_t^H(\tau, S_t, 0) + C_t^H(\tau, S_t, 0) = 0, \right.$$

$$(3.8)$$

$$C_t^H(\tau, S_t, \infty) = S_t.$$

En résolvant (3.7) associée à (3.8), Heston aboutit à la formule 3.2.3 :

Formule 3.2.3 (Formule de Heston (1993)). Soit $u_1 = 1/2$, $u_2 = -1/2$, $a = \kappa \theta$, $b_1 = \kappa + \lambda - \rho \sigma$ et $b_2 = \kappa + \lambda$ où λ, constante réelle, désigne la prime de risque rémunérée par la volatilité stochastique. Le premium de Heston (1993), noté C_t^H, d'une option d'achat de type européen sur action ne versant pas de dividende pendant toute la durée de vie du contrat, est donné par :

$$C_t^H(\tau, S_t, V_t, R, K) = S_t P_1(\tau, S_t, V_t, R, K) - K e^{-R \tau} P_2(\tau, S_t, V_t, R, K),$$

où R désigne le taux d'intérêt (supposé constant), V_t la variance instantanée (supposée stochastique) des rentabilités de l’actif support, et où

$$\forall j = 1, 2, P_j = \frac{1}{2} + \frac{1}{\pi} \int_0^\infty \text{Re}[\frac{e^{-i\phi \ln K} f_j(\tau, S_t, V_t, R, \phi)}{i \phi}] d\phi,$$
3. Analyse critique des modèles d’évaluation en temps continu à volatilité...

avec :

\[f_j(t, S_t, V_t, R, \phi) = \exp\{C(\tau, \phi) + D(\tau, \phi)V_t + i\phi \ln S_t\}, \]

\[C(\tau, \phi) = R\phi \tau + \frac{a}{\sigma^2}\left\{ (b_j - \rho \sigma \phi \bar{i} + d)\tau - 2 \ln \frac{1 - e^{d\tau}}{1 - g} \right\}, \]

\[D(\tau, \phi) = \frac{b_j - \rho \sigma \phi \bar{i} + d}{\sigma^2} \left[1 - e^{d\tau} \right] \]

\[g \equiv \frac{b_j - \rho \sigma \phi \bar{i} + d}{b_j - \rho \sigma \phi \bar{i} - d}, \]

\[d \equiv \sqrt{(\rho \sigma \phi i - b_j)^2 - \sigma^2(2u_j \phi i - \phi^2)}. \]

Ainsi, par rapport au modèle de Black & Scholes (1973), la formule 3.2.3 nécessite l’estimation des paramètres de vitesse de retour \(\kappa + \lambda \) de la variance, de niveau moyen de la variance à long terme \(\kappa \theta \), compte tenu du processus risque-neutre, \(\sigma \) d’écart type de la variance et de corrélation \(\rho \) entre la variance et le cours du support.

Le modèle de Heston apporte une double contribution à la recherche sur les modèles à volatilité stochastique : d’abord, techniquement, il dévoile une méthode nouvelle d’intégration et de résolution du caractère stochastique de la volatilité dans le processus d’évaluation des options. En effet, il conduit non seulement à l’obtention d’une solution analytique exacte du prix d’une option européenne, mais en outre, fournit les outils nécessaires à la dérivation des paramètres de sensibilité, élargissant ainsi la pertinence du modèle. Ensuite, d’un point de vue économétrique, il montre que la corrélation entre la volatilité et les rentabilités du support est nécessaire pour générer la skewness négative et l’excès de kurtosis attendus dans une distribution des rentabilités.

3.2.3 Le modèle de Schöbel & Zhu

A l’instar du modèle de Heston (1993), la littérature académique a proposé des extensions au modèle de référence de Black & Scholes (1973), parmi lesquelles le modèle de Schöbel & Zhu (1999) [206]. Mais, à la grande différence des modèles précédents (Hull & White (1987, 1988), Heston (1993)), le modèle de Schöbel & Zhu suggère de modéliser directement la volatilité, plutôt que la variance. Pour le processus de la volatilité du cours du sous-jacent, \(v_t = \sqrt{V_t} \), ils adoptent le processus de diffusion à retour vers la moyenne de Ornstein-Uhlenbeck "OU" :

\[dv_t = \kappa(\theta - v_t)dt + \sigma dw_{t,v}, \quad (3.10) \]

où \(\kappa, \sigma \) et \(\theta \) sont des constantes et \(w_{t,v} \) un processus de Wiener standard. En ce sens, le modèle de Schöbel & Zhu peut être vu comme une extension du modèle de Stein & Stein (1991) [215], faisant intervenir une corrélation non nulle entre la volatilité et le cours. D’un autre coté, le modèle de Schöbel & Zhu peut être considéré comme une alternative au modèle de Heston, proposant un processus stochastique pour la variance différend du
processus racine-carrée. On peut comparer directement le processus de la variance adopté par Schöbel & Zhu (1999) et celui retenu par Heston (1993). En effet, par application directe du lemme d’Itô à (3.10), il vient en posant $V_t = v_t^2$:

$$dV_t = [\sigma^2 + 2\kappa\theta \sqrt{V_t} - 2\kappa V_t]dt + 2\sigma \sqrt{V_t}dw_{t,v},$$

(3.11)

où $w_{t,v}$ est un processus de Wiener standard. Ainsi, dans le modèle de Schöbel & Zhu (1999), la variance est supposée régie par un processus avec retour à la moyenne "double racine-carrée", avec un terme de tendance additif $2\kappa\theta \sqrt{V_t}$ par rapport au processus à retour vers la moyenne "simple racine carrée".

La caractéristique de retour vers la valeur moyenne dont jouit le processus d’Ornstein-Uhlenbeck permet, tout comme le processus racine-carrée, de faire l’hypothèse d’une prime de risque de la volatilité proportionnelle à la volatilité $\lambda V_t = l(T-t, S_t, V_t) \propto v_t = \lambda \times v_t$ de telle sorte que, sous une mesure de probabilité risque-neutre, la volatilité est encore décrite par un processus d’Ornstein-Uhlenbeck. En effet, sous les conditions de régularité évoquées par le théorème de Girsanov,

$$dv_t = [\kappa(\theta - v_t) - \lambda v_t]dt + \sigma d\tilde{z}_{t,v}^P,$$

$$Q \equiv \kappa^* (\theta^* - v_t)dt + \sigma d\tilde{z}_{t,v}^Q,$$

où $\kappa^* \equiv \kappa + \lambda$ et $\theta^* \equiv \kappa\theta / (\kappa + \lambda)$.

Sous la mesure de probabilité risque-neutre Q, le modèle de Schöbel & Zhu (1999) s’écrit

$$C_t^{S,Q} \left\{
\begin{align*}
 dS_t &= S_t(Rdt + v_tdw_{t,S}) \\
 dv_t &= \kappa(\theta - v_t)dt + \sigma dw_{t,v} \\
 dw_{t,S,dt,v} &= \rho dt.
\end{align*}
\right.$$

La résolution de ce modèle est entièrement analytique et permet d’aboutir à la formule 3.2.4 :

Formule 3.2.4 (Formule de Schöbel & Zhu (1999)). Le premium de Schöbel & Zhu (1999), noté $C_t^{S,Z}$, d’une option de type européen sur action ne versant pas de dividende pendant toute la durée de vie du contrat, est donné par

$$C_t^{S,Z}(\tau, S_t, v_t, R, K) = S_tP_1(\tau, S_t, v_t, R, K) - Ke^{-R\tau}P_2(\tau, S_t, v_t, R, K),$$

où R désigne le taux d’intérêt (supposé constant), v_t la volatilité instantanée (supposée stochastique) des rentabilités de l’actif support, et où

$$\forall j = 1, 2, P_j = \frac{1}{2} + \frac{1}{\pi} \int_{0}^{\infty} \text{Re} \left[\frac{e^{-i\phi \ln K} f_j(\tau, S_t, v_t, R, \phi)}{i\phi} \right] d\phi,$$
avec

\[
f_1(\tau, S_t, v_t, R, \phi) = \exp \{ i \phi (R \tau + \ln S_t) - \frac{1}{2} (1 + i \phi) \rho [\sigma^{-1} v_t^2 + \sigma \tau] \}
\times \exp \{ \frac{1}{2} D(\tau, s_1, s_3) v_t^2 + B(\tau, s_1, s_2, s_3) v_t + C(\tau, s_1, s_2, s_3) \},
\]

\[
s_1 = -\frac{1}{2} (1 + i \phi)^2 (1 - \rho^2) + \frac{1}{2} (1 + i \phi) (1 - 2 \kappa \rho \sigma^{-1}),
\]

\[
s_2 = (1 + i \phi) \kappa \theta \rho \sigma^{-1},
\]

\[
s_3 = \frac{1}{2} (1 + i \phi) \rho \sigma^{-1},
\]

et

\[
f_2(\tau, S_t, v_t, R, \phi) = \exp \{ i \phi (R \tau + \ln S_t) - \frac{1}{2} i \phi \rho [\sigma^{-1} v_t^2 + \sigma \tau] \}
\times \exp \{ \frac{1}{2} D(\tau, \dot{s}_1, \dot{s}_3) v_t^2 + B(\tau, \dot{s}_1, \dot{s}_2, \dot{s}_3) v_t + C(\tau, \dot{s}_1, \dot{s}_2, \dot{s}_3) \},
\]

\[
\dot{s}_1 = \frac{1}{2} \theta^2 (1 - \rho^2) + \frac{1}{2} i \phi (1 - 2 \kappa \rho \sigma^{-1}),
\]

\[
\dot{s}_2 = i \phi \kappa \theta \rho \sigma^{-1},
\]

\[
\dot{s}_3 = \frac{1}{2} i \phi \rho \sigma^{-1},
\]

dans lesquelles

\[
D(\tau) = \frac{1}{\sigma^2} \left[\kappa - \gamma_1 \frac{\sinh(\gamma_1 \tau)}{\cosh(\gamma_1 \tau)} + \gamma_2 \cosh(\gamma_1 \tau) \right],
\]

\[
B(\tau) = \frac{1}{\sigma^2 \gamma_1} \left[\frac{(\kappa \theta \gamma_1 - \gamma_2 \gamma_3) + \gamma_3 [\sinh(\gamma_1 \tau) + \gamma_2 \cosh(\gamma_1 \tau)]}{\cosh(\gamma_1 \tau) + \gamma_2 \sinh(\gamma_1 \tau)} - \kappa \theta \gamma_1 \right],
\]

\[
C(\tau) = -\frac{1}{2} \ln \left[\cosh(\gamma_1 \tau) + \gamma_2 \sinh(\gamma_1 \tau) \right] + \frac{1}{2} \kappa \tau
\]

\[
+ \frac{\kappa^2 \theta^2 \gamma_1^2 - \gamma_3^2}{2 \sigma^2 \gamma_1^3} \left[\frac{\sinh(\gamma_1 \tau)}{\cosh(\gamma_1 \tau) + \gamma_2 \sinh(\gamma_1 \tau)} - \gamma_1 \right]
\]

\[
+ \frac{(\kappa \theta \gamma_1 - \gamma_2 \gamma_3) \gamma_3}{\sigma^2 \gamma_1^3} \left[\frac{\cosh(\gamma_1 \tau) - 1}{\cosh(\gamma_1 \tau) + \gamma_2 \sinh(\gamma_1 \tau)} \right].
\]

où

\[
\gamma_1 \equiv \sqrt{2 \sigma^2 s_1 + \kappa^2},
\]

\[
\gamma_2 \equiv \frac{1}{\gamma_1} (\kappa - 2 \sigma^2 s_3),
\]

\[
\gamma_3 \equiv \kappa^2 \theta - s \sigma \rho^2.
\]

Il est incontestable que les modèles de Heston (1993) et Schöbel & Zhu (1999) offrent des formules performantes pour l'évaluation des options dans un environnement de volatilité...
3. Analyse critique des modèles d'évaluation en temps continu à volatilité...

stochastique. Cependant, l'efficacité de ces modèles est, a priori, grévé du fait qu'ils ne tiennent pas compte de toutes les causes de la skewness négative et de l'excès de kurtosis dans la distribution des rentabilités de l'actif sous-jacent. En effet, comme le fait remarquer Bates (1996), une distribution affichant une skewness négative peut provenir, non seulement d'une corrélation négative entre les chocs de volatilité et les rentabilités de l'actif support, mais également de la présence de sauts non reflétée dans le processus de prix. De même, l'excès de kurtosis peut très bien résulter, non seulement d'une volatilité stochastique, mais aussi de l'existence de sauts dans le processus du cours de l'actif sous-jacent. L'importance de l'intégration du caractère aléatoire de la volatilité et de la présence de sauts aléatoires, est inversement proportionnelle à la période de détention de l'option : plus la période de détention est courte, plus la nécessité de prendre en considération les deux effets (volatilité stochastique et sauts de rentabilité), s'impose. La section suivante présente un modèle mettant en œuvre, à la fois, un processus stochastique pour la volatilité et un processus mixte (à diffusion et à sauts) pour le processus du cours du sous-jacent.

3.3 Le modèle à sauts et à volatilité stochastique de Bates

Ne serait-ce que dans une optique purement économique, si un processus de diffusion peut traduire correctement un ensemble de variations "habituelles" dues à des causes marginales (inadéquation temporaire entre l'offre et la demande, modification de taux de capitalisation des titres...), modélisées par les accroissements d'un mouvement brownien standard \(\{W_t\}_{t \in [0,T]} \), raison est de reconnaître que celui-ci ne peut expliquer des variations "majeures" relatives à la vie économique (krach boursier,...). Relâchant l'hypothèse de continuité pure du processus des rentabilités du sous-jacent, dans un contexte d'environnement à volatilité non stochastique, Merton (1976) [175] avait introduit des sauts de nature poissonnière traduisant les variations "majeures", et orientait déjà vers un processus mixte, en assumant toutefois que ces derniers étaient non-systématiques (au sens de Fama (1965) [98]). De fait, le risque résultant de ces sauts pourrait être réduit, voire éliminé par diversification. D'autres articles vont dans le sens d'un modèle à processus mixte (processus de diffusion et à sauts) à la Merton, tels Bates (1991) [23], ou encore Madan & Chang (1996) [162]. Le modèle de Bates (1996) généralise ces modèles à "purs sauts"\(^{10}\) dans l'hypothèse où la volatilité est stochastique. Dans le cadre de ce modèle, tout comme dans celui de Heston (1993), la volatilité des rentabilités du support...
est modélisée au travers de la variance des rentabilités, à l’aide d’un processus de diffusion de type racine-carrée :

\[dV_t = (\alpha - \beta V_t)dt + \sigma_V \sqrt{V_t} dz_{t,V}, \]

où \(\alpha, \beta \) sont des constantes réelles, et \(z_{t,V} \) un mouvement brownien standard à incréments corrélés (de corrélation \(\rho \)) avec ceux du processus mixte (processus de diffusion et à sauts) du support :

\[dS_t = S_t[(R - \lambda \bar{k})dt + \sqrt{V_t} dz_t + k dq], \]

où \(dq \) désigne un incrément poissonnien à paramètre \(\lambda \) tel que

\[\begin{aligned}
\Pr(dq = 1) &= \lambda dt \\
\Pr(dq = 0) &= 1 - \lambda dt.
\end{aligned} \]

L’amplitude de saut, lorsque celui survient, est telle que \(\ln[1 + k] \) est à loi normale de paramètres \(\ln[1 + \bar{k}] - \delta^2/2 \) et \(\delta^2 \) :

\[\ln[1 + k] \sim \mathcal{N}(\ln[1 + \bar{k}] - \delta^2/2, \delta^2). \]

Un changement de mesure de probabilité vers la mesure de probabilité risque-neutre \(Q \) donne le modèle dans un environnement risque-neutre :

\[C_t^Q \begin{cases}
 dS_t = S_t[(R - \lambda^* \bar{k}^*)dt + \sqrt{V_t} dz_t^* + k^* dq^*] \\
 dV_t = (\alpha - \beta^* V_t)dt + \sigma_V \sqrt{V_t} dz_{t,V}^* \\
 dz_{t,V}^* = \rho dt,
\end{cases} \]

où les variables étoilées correspondent aux versions risque-neutres dans \(Q \) des variables réelles observées sous \(P \). En particulier,

\[\begin{aligned}
\lambda^* &= \lambda \mathbb{E}^P \left[1 + \frac{\Delta J_w}{J_w} \right] \\
\bar{k}^* &= \bar{k} + \frac{\operatorname{Cov}(k, \Delta J_w/J_w)}{\mathbb{E}^P_0 \left[1 + \Delta J_w/J_w \right]} \\
\beta^* &= \beta - \xi,
\end{aligned} \]

où \(J_w \) représente l’utilité marginale d’un investisseur type, \(\Delta J_w/J_w \) le taux de saut (lorsque celui survient), et \(\xi \), constante réelle, la prime de risque allouée à la variance stochastique. En effet, pour résoudre le problème de l’incomplétude de marché en présence de volatilité stochastique, Bates (1996) doit fixer la prime de risque due au caractère aléatoire de la volatilité. Cette prime est fixée de telle sorte que la prime de risque de la variance soit proportionnelle à la variance, de coefficient de proportionnalité \(\xi \), d’après les notations précédemment adoptées (pour mémoire, Hull & White (1987) avait fixé cette même prime de risque à zéro).
3. Analyse critique des modèles d’évaluation en temps continu à volatilité...

Un raisonnement par arbitrage, similaire au raisonnement adopté par Heston (1993) et explicité précédemment, permet de dériver l’équation intégro-différentielle satisfaite par le call européen, $C_t^B = C_t^B(t, S_t, V_t, R, K)$, évalué au sens de Bates (1996) :

$$
\frac{1}{2} V_t S_t^2 \frac{\partial^2 C_t^B}{\partial S_t^2} + \rho \sigma_V V_t S_t \frac{\partial C_t^B}{\partial S_t \partial V_t} + \frac{1}{2} \sigma_V^2 V_t \frac{\partial^2 C_t^B}{\partial V_t^2} + [R - \lambda_t \tilde{k}_t] S_t \frac{\partial C_t^B}{\partial S_t} + \frac{\partial C_t^B}{\partial V_t} - R C_t^B - \frac{\partial C_t^B}{\partial (T - t)} + \lambda_t \mathbb{E}[C_t^B(\tau, S_t(1 + k^+), V_t, R, K) - C_t^B(\tau, S_t, V_t, R, K)] = 0.
$$

(3.17)

La condition aux bornes associée s’écrit :

$$
C_t^B(t, S_t, V_t, R, K)|_{(0, S_t, V_t, R, K)} = (S_T - K)^+.
$$

Par rapport à l’EDP obtenue par Heston (1993), l’addition de sauts dans le processus de diffusion du sous-jacent génère la quantité I. La résolution de (3.17) aboutit à la formule 3.3.1

Formule 3.3.1 (Formule de Bates (1996)). Soit $u_1 = 1/2$, $u_2 = -1/2$, $\beta_1 = \beta^* - \rho \sigma_V$, $\beta_2 = \beta^*$. Le premium de Bates (1996), noté C_t^B, d’une option d’achat de type européen sur action ne versant pas de dividende pendant toute la durée de vie du contrat, est donné par :

$$
C_t^B(t, S_t, V_t, R, K) = S_t P_1(t, S_t, V_t, R, K) - K e^{-R(T-t)} P_2(t, S_t, V_t, R, K),
$$

où R désigne le taux d’intérêt (supposé constant), V_t la variance instantanée (supposée stochastique) des rentabilités de l’actif support, et où

$$
\forall j = 1, 2, P_j = \frac{1}{2} + \frac{1}{\pi} \int_{0}^{\infty} \text{Re}[\frac{e^{-i\phi \ln K} f_j(t, S_t, V_t, R, \phi)}{i\phi}] d\phi,
$$

avec

$$
f_j(t, S_t, V_t, R, \phi) = \exp\{C_j(t, \phi) + D_j(t, \phi) V_t + \lambda_t \tau (1 + \tilde{k}_t)^{1/2} (1 + \tilde{k}_t)^{1/2} e^{\delta (\mu_j + \phi^2/2)} - 1\} + i \phi \ln S_t\},
$$

$$
C_j(t, \phi) = (R - \lambda_t \tilde{k}_t) \phi \tau - \frac{\alpha \tau}{\sigma_V^2} (\rho \sigma_V \phi - \beta_j - \gamma_j),
$$

$$
- \frac{2 \alpha}{\sigma_V^2} \ln[1 + \frac{1}{2} (\rho \sigma_V \phi - \beta_j - \gamma_j)] - \frac{e^{\gamma_j}}{\gamma_j},
$$

$$
D_j(t, \phi) = -2 \frac{\mu_j \phi + \frac{1}{2} \phi^2}{\rho \sigma_V \phi - \beta_j + \gamma_j \frac{1 + e^{\gamma_j}}{1 - e^{\gamma_j}}},
$$

$$
\gamma_j \equiv \sqrt{(\rho \sigma_V \phi - \beta_j)^2 - 2 \sigma_V^2 (\mu_j \phi + \frac{1}{2} \phi^2)}.
$$
3.4 Le modèle à sauts, à volatilité et taux d’intérêt stochastiques de Bakshi, Cao & Chen

Tous les modèles précédents supposent que le taux d’intérêt est constant. C’est à l’extrême une hypothèse extrêmement forte, car en pratique, la structure par terme des taux d’intérêt peut adopter n’importe quelle forme, surtout lorsque l’on cherche à valoriser des options à maturité longue. En outre, émettre l’hypothèse que le taux d’intérêt est déterministe, est également très contraignant, car les variations non anticipées du taux d’intérêt constituent la principale source d’incertitude sur les marchés obligataires. Ainsi, en convenant que le taux d’intérêt évolue de façon erratique, il est nécessaire de considérer cette entité comme une variable d’état à part entière.

Quel modèle retenir pour la dynamique des taux d’intérêt ?

La littérature financière relative à la structure par terme des taux d’intérêt est particulièrement riche. L’objectif que je poursuis dans ma thèse n’est pas de faire une présentation exhaustive et détaillée\(^\text{11}\), mais simplement de montrer différentes modélisations possibles de la structure par terme des taux d’intérêt. Cela aura au moins le mérite de montrer les nombreuses possibilités d’intégration d’un taux d’intérêt stochastique au sein d’un modèle d’évaluation des options.

Avant toute tentative de modélisation des taux d’intérêt, il convient de rappeler le gabarit type de la courbe des taux que l’on cherche à modéliser.

Des études empiriques ont mis en évidence que :
- les taux sont positifs ;
- des valeurs élevées de taux ont tendance à être suivies par des valeurs basses, et vice-versa (comme s’il existait une force de rappel vers la valeur moyenne).

L’hypothèse restrictive d’un taux d’intérêt déterministe avait déjà été relaxée dans le modèle de Merton (1970) \(^\text{173}\) qui suppose que la dynamique des taux d’intérêt est assimilée à la dynamique du taux court, lequel est modélisé par un mouvement brownien géométrique :

\[
dR_t = \theta dt + \sigma dz_t,
\]

où \(\theta, \sigma\) désignent des constantes réelles et \(z\) un processus de Wiener standard.

Cette dernière hypothèse est incompatible avec le modèle de taux suggéré par Vasicek (1977) \(^\text{222}\). En effet, ce modèle, spécifié en temps continu et basé sur un raisonnement

\(^{11}\) Cf. par exemple l’(excellent) ouvrage de Chen (1996) \(^\text{59}\).
d’arbitrage analogue à celui de Black & Scholes (1973), utilise le processus de diffusion d’Ornstein-Uhlenbeck pour modéliser la dynamique du taux court :

\[dR_t = k(\theta - R_t)dt + \sigma dz_t, \]

où \(k, \theta, \sigma \) désignent des constantes réelles et \(z_t \) un processus de Wiener standard. Parce qu’il est caractérisé par un effet de retour vers la valeur moyenne, ce processus est approprié pour modéliser la dynamique des taux d’intérêt. Lorsque \(R_t \) est éloigné de sa valeur moyenne à long terme, \(\theta \), l’espérance de variation instantanée, égale à \(k(\theta - R_t) \), est positive si \(R_t < \theta \). Dans ce cas, le taux court tend à croître, se rapprochant de la valeur moyenne d’autant plus qu’il s’en est éloigné et que la vitesse de retour \(k \) est élevée. Si \(\theta < R_t \), l’espérance de variation instantanée de \(R_t \) est négative et \(R_t \) diminue vers son niveau moyen à long terme.

Le fait que le processus d’Ornstein-Uhlenbeck n’interdisse pas a priori d’observer des taux d’intérêt négatifs, est le principal écueil face à la simplicité et la robustesse du modèle de Vasicek (1977). Cet avatar conduit Cox, Ingersoll & Ross (1985) à adopter un processus de diffusion à retour vers la moyenne raciné-carreé :

\[dR_t = k(\theta - R_t)dt + \sigma \sqrt{R_t} dz_t, \]

où \(k, \sigma, \theta \) sont des constantes réelles et \(z_t \) un processus de Wiener standard. Ces derniers supposent donc que le taux d’intérêt suit un processus autorégressif d’ordre un. Cependant, dès lors que le taux devient nul, sa variance instantanée devient également nulle, ce qui interdit toute valeur négative du taux. De plus, d’un point de vue purement économique, la formulation du processus racine-carreé semble se conformer davantage à la réalité, puisqu’en considérant une variance du taux d’intérêt proportionnelle au niveau des taux, le taux d’intérêt varie plus fortement quand leur niveau est plus élevé.

Finalement, tous les modèles précédents, faisant intervenir une seule variable d’état qui est le taux court, peuvent être résumés par la formule générique suivante :

\[dR_t = (\alpha + \beta R_t)dt + (\gamma + \delta R_t)\zeta dz_t, \]

où \(\alpha, \beta, \gamma, \delta, 0.5 \leq \zeta \leq 1 \) sont des constantes réelles et \(z_t \) un processus de Wiener standard. Tous souffrent de la même faiblesse car ils doivent supposer que les variations des prix d’obligations de différentes maturités sont parfaitement corrélées lorsque le taux court varie. Cet inconvénient conduit à l’émergence de modèles multi-factoriels :
3. Analyse critique des modèles d’évaluation en temps continu à volatilité... 122

- à taux court et à taux long (les deux variables stochastiques) avec, par exemple, Brennan & Schwartz (1979) [47];
- à taux court et à variance de taux court (les deux variables stochastiques) avec, entre autres, les modèles de Fong & Vasicek (1991) [106] et Longstaff & Schwartz (1992) [158];
- à taux court, à moyenne de taux court et à variance de taux court (les trois variables stochastiques) avec les modèles de Chen (1996) [59] et Balduzzi, Das, Foresi & Sundaram (1996) [20].

Je récapitule dans le tableau 3.1 les dynamiques des variables d’état pour les modèles de taux d’intérêt précédemment cités. Du fait que ces modèles multi-factoriels atteignent rapidement une grande complexité numérique, raison de les réserver à l’évaluation du prix des produits dérivés, où la variance du taux court joue un rôle crucial, ou encore pour la couverture de ces produits contre le risque de taux (produits de taux par exemple). En effet, introduire des variables d’état supplémentaires, qui ne sont pas des actifs négociables, se justifie uniquement lorsque le risque de taux d’intérêt influe fortement sur les premia des options. Par contre, la valeur des modèles multi-factoriels est bien plus facilement justifiable, et mise à contribution lorsqu’il s’agit d’évaluer des options portant sur des actifs ayant une maturité longue (indices, warrants,...), et notamment les options sur obligations.
Tab. 3.1: Exemples de modèles stochastiques de la dynamique des taux d'intérêt

<table>
<thead>
<tr>
<th>Auteur(s)</th>
<th>Modèle</th>
<th>Paramètres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merton (1970) [173]</td>
<td>Taux court</td>
<td>σ, θ constants</td>
</tr>
<tr>
<td></td>
<td>$dR_t = \theta dt + \sigma d\varepsilon_t$</td>
<td></td>
</tr>
<tr>
<td>Vasicek (1977) [222]</td>
<td>Taux court</td>
<td>k, σ, θ constants</td>
</tr>
<tr>
<td></td>
<td>$dR_t = k(\theta - R_t)dt + \sigma d\varepsilon_t$</td>
<td></td>
</tr>
<tr>
<td>Dothan (1978) [78]</td>
<td>Taux court</td>
<td>σ constant</td>
</tr>
<tr>
<td></td>
<td>$dR_t = \sigma R_t d\varepsilon_t$</td>
<td></td>
</tr>
<tr>
<td>Brennan & Schwartz (1979) [47]</td>
<td>Taux court</td>
<td>$\theta_R, \theta_l, \sigma_R, \sigma_l, \sigma_1, \sigma_2$ constants</td>
</tr>
<tr>
<td></td>
<td>$dR_t = \theta_R dt + \sigma_R d\varepsilon_{t,1} + \sigma_{R,2} d\varepsilon_{t,2}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$d\varepsilon_t = \theta_l dt + \sigma_1 d\varepsilon_{t,1} + \sigma_2 d\varepsilon_{t,2}$</td>
<td></td>
</tr>
<tr>
<td>Brennan & Schwartz (1980) [48]</td>
<td>Taux court</td>
<td>μ_1, μ_2</td>
</tr>
<tr>
<td></td>
<td>$dR_t = (\mu_1 + \mu_2 R_t)dt + \sigma_1 R_t d\varepsilon_t$</td>
<td>σ_1 constants</td>
</tr>
<tr>
<td>Constantinides & Ingersoll (1984) [65]</td>
<td>Taux court</td>
<td>σ constant</td>
</tr>
<tr>
<td></td>
<td>$dR_t = \sigma R_t^{3/2} d\varepsilon_t$</td>
<td></td>
</tr>
<tr>
<td>Nelson & Schaefer (1983) [187]</td>
<td>Taux court</td>
<td>$\alpha, \beta, \mu_1, \sigma_1, \sigma_2$ constants</td>
</tr>
<tr>
<td></td>
<td>$d\varepsilon_t = \alpha(\beta - s_t) dt + \sigma_2 d\varepsilon_{t,2}$</td>
<td></td>
</tr>
<tr>
<td>Schaefer & Schwartz (1984) [205]</td>
<td>Taux court</td>
<td>m, η, μ, σ constants</td>
</tr>
<tr>
<td></td>
<td>$d\varepsilon_t = \sigma_2 \sqrt{d\varepsilon_{t,1}} dt$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$d\varepsilon_t = m(\mu - s_t) dt + \eta d\varepsilon_{t,2}$</td>
<td></td>
</tr>
<tr>
<td>Cox, Ingersoll & Ross (1985) [66]</td>
<td>Taux court</td>
<td>k, σ, θ constants</td>
</tr>
<tr>
<td></td>
<td>$dR_t = k(\theta - R_t)dt + \sigma \sqrt{R_t} d\varepsilon_t$</td>
<td></td>
</tr>
<tr>
<td>Ho & Lee (1986) [129]</td>
<td>Taux court</td>
<td>σ constant</td>
</tr>
<tr>
<td></td>
<td>$dR_t = \theta dt + \sigma d\varepsilon_t$</td>
<td></td>
</tr>
<tr>
<td>Black, Derman & Toy (1990) [34]</td>
<td>Taux court</td>
<td>θ fonction du temps</td>
</tr>
<tr>
<td></td>
<td>$d\ln R_t = \left[\theta_t - \frac{\sigma(t)}{\sigma(t)} \ln R_t\right] dt + \sigma_t d\varepsilon_t$</td>
<td></td>
</tr>
</tbody>
</table>
Tab. 3.2: Exemples de modèles stochastiques de la dynamique des taux d’intérêt (suite et fin)

Le modèle de Bakshi, Cao & Chen (1997)

Dans l’objectif de jouir des avantages que laissent présager la levée de l’hypothèse d’une volatilité déterministe d’une part, et la levée de l’hypothèse d’un taux d’intérêt déterministe d’autre part, à l’instar de certains auteurs comme Baily & Stulz (1989) [14], Amin & Ng (1993) [4], par exemple, naissent des modèles mixtes ou hybrides, à plusieurs variables d’état, toutes stochastiques.

Dans la classe de modèles hybrides à trois facteurs stochastiques (cours du support, volatilité et taux d’intérêt), Bakshi, Cao & Chen (1997, 2000) [16], [17] développent un cadre d’analyse général, permettant la réunification de plusieurs modèles d’évaluation des options. En effet, on y trouve le modèle de Black & Scholes (1973), le modèle à volatilité stochastique, le modèle à volatilité et taux d’intérêt stochastiques, le modèle à sauts et à volatilité stochastique. L’ensemble de ces différents modèles revêt la dénomination
3. Analyse critique des modèles d’évaluation en temps continu à volatilité...

commune de SVJI, *(Stochastic Volatility, Stochastic Interest Rates and Random Jumps Models)*. Les auteurs s’attachent à déduire une solution analytique d’un modèle général, intégrant les différentes spécifications citées ci-dessus. Le cadre de réflexion qu’ils dressent s’avère être un terrain propice à la comparaison de l’efficacité des modèles, non seulement dans le domaine de l’évaluation des options, mais aussi dans celui de la couverture des positions d’options. Ils adoptent de manière désormais "classique" consistant à élaborer une structure stochastique sous la mesure de probabilité équivalente, qui leur permet d’estimer les flux futurs d’un actif risqué comme si le marché était neutre au risque. Ainsi, sous la mesure de probabilité risque-neutre, le processus régissant la dynamique du prix de l’actif sous-jacent et la forme de ses différentes composantes, s’écrit de la façon suivante :

\[dS_t = S_t \{ [R_t - \lambda \mu_J] dt + \sqrt{V_t} dW_{t,S} + J_t dq_t \}, \]

avec

\[\ln[1 + J_t] \sim \mathcal{N}(\ln[1 + \mu_J] - \frac{1}{2} \sigma_J^2, \sigma_J^2), \]

où \(dq_t \) représente un processus à incréments poissonniers d’intensité \(\lambda \). \(dW_{t,S} \) est un processus à accroissements browniens, tel qu’à tout instant, \(dq_t dW_{t,S} = 0 \). \(R_t \) désigne le taux d’intérêt instantané. Il faut noter que le modèle de Bakshi, Cao & Chen (1997, 2000) ne modélise pas directement la volatilité mais la variance avec le processus racine-carrée, qui s’écrit dans l’univers risque-neutre,

\[dV_t = \left[\theta_V - \kappa_V V_t \right] dt + \sigma_V \sqrt{V_t} dW_{t,V}, \]

où \(dW_{t,V} \) est un processus à accroissements browniens, tel que \(dW_{t,V} dq_t = 0 \) et \(dW_{t,V} dW_{t,S} = \rho dt \). Les paramètres structurels \(\theta_V, \kappa_V, \sigma_V \) modélisent respectivement le niveau moyen à long terme, la vitesse de retour vers le niveau moyen, le coefficient de variation de la variance instantanée. Le cadre d’analyse, ainsi défini, permet de décomposer la variance en deux :

\[\frac{1}{dt} \text{Var}_t(\frac{dS_t}{S_t}) = V_t + V_{Jt}, \]

où \(V_{Jt} \) désigne la variance instantanée du saut, telle que

\[V_{Jt} \equiv \frac{1}{dt} \text{Var}_t [J_t dq_t] = \lambda [\mu_J^2 + (e^{\sigma_J^2} - 1)(1 + \mu_J)^2]. \]

Les hypothèses de la distribution des rentabilités de l’actif sous-jacent que les auteurs introduisent, sont similaires à celles sous-tendant le modèle de Bates (1996) [24]. Ainsi formulées, elles offrent une structure flexible au modèle, le rendant susceptible de traduire les différentes caractéristiques empiriques de la distribution des rentabilités du sous-jacent. Ainsi, par exemple la skewness (l’effet d’asymétrie de la distribution des rentabilités) est réglée par le coefficient de corrélation entre cours et variance du support (\(\rho \)) ou la moyenne.
du saut \(\mu_J \), tandis que l’excès de kurtosis est traduit, soit par le paramètre de la volatilité de la variance (\(\sigma_V \)), soit par les paramètres caractérisant les sauts poissonnien présents dans le processus mixte du cours du sous-jacent (\(\mu_J \) et \(\sigma_J \)). Cependant, il faut noter que la capacité du processus stochastique de \(V_t \) à générer une skewness négative et à refléter l’excès de kurtosis est limitée, et ce particulièrement à court terme, par le fait que ce dernier ne peut évoluer qu’en suivant une marche aléatoire purement continue (c’est-à-dire, sans "sauter" de temps en temps). D’autre part, un processus discontinu à sauts est susceptible d’exhiber différents niveaux de skewness et de kurtosis à court terme, notamment lorsque \(\lambda \) et \(\mu_J \) affichent des valeurs importantes. Par conséquent, la conjugaision de ces deux spécifications permet de rendre compte des différents aspects de la distribution des rentabilités de l’actif. Ces observations ont été mises en avant par Bates (1996), et constituent le point de départ de l’analyse de Bakshi, Cao & Chen (1997). À la différence de tous les modèles précédents (Hull & White (1987, 1988), Heston (1993), Bates (1996), ...), les modèles de Bakshi, Cao & Chen rejetten l’hypothèse d’une courbe des taux plate. Sous la mesure de probabilité risque-neutre, leur procédure d’actualisation des taux futurs est implémentée grâce à l’approche proposée par Cox, Ingersoll & Ross (1985):

\[
dR_t = \left[\theta_R - \kappa_R R_t \right] dt + \sigma_R \sqrt{R_t} dW_{t,R},
\]

où \(dW_{t,V} \) est un processus à accroissements browniens, tel que \(dW_{t,R} dq_t = 0, dW_{t,R} dW_{t,S} = 0, dW_{t,R} dW_{t,V} = 0 \). Les paramètres structurels \(\theta_R / \kappa_R, \kappa_R, \sigma_R \) règlent respectivement le niveau moyen à long terme, la vitesse de retour vers le niveau moyen, le coefficient de variation du taux d’intérêt instantané. Dans le contexte de Cox, Ingersoll & Ross (1985), le taux d’intérêt à court terme, appelé également taux spot, est ainsi caractérisé par les propriétés suivantes :

- tous les taux varient dans une même direction, déterminée par le taux spot ;
- le taux a tendance à converger vers sa valeur moyenne à long terme \(\theta_R \) ;
- les rentabilités du taux sont à distribution normale ;
- le taux lui-même suit une loi de \(\chi^2 \) non centrée à \(2q + 2 \) degrés de liberté et à paramètre \(2u \), tel que \(R_t \sim \chi^2(2cR_t, 2q + 2, 2u) \), où \(c = 2\kappa_R / \sigma_R(1 - e^{-\kappa_R(T-t)}) \), \(u = cR_t e^{-\kappa_R(T-t)} \), et \(q = (2\kappa_R \theta_R / \sigma_R) - 1 \).

Cependant, d’après Chan, Karolyi, Longstaff & Sanders (1992) [58], le phénomène de retour à la moyenne, souvent évoqué dans la littérature, ne semble pas être très important en ce qui concerne le processus suivi par le taux. Toutefois, les propriétés ainsi spécifiées, confèrent au modèle de taux de Cox, Ingersoll & Ross (1985), un avantage non négligeable par rapport au modèle de taux développé par Vasicek (1977). En effet, la modélisation de la dynamique des taux d’intérêt selon (3.19) interdit à celui-ci de prendre des valeurs...
négatives (sous quelques légères conditions techniques12).
Ayant défini le processus du taux \textit{spot}, le prix d’une obligation zéro-coupon \(B_t(\tau, R_t) \) est calculé en actualisant sa valeur espérée sous la mesure martingale équivalente :

\[
B_t(\tau, R_t) = \mathbb{E}\{ \exp\left(- \int_0^{t+\tau} R_u \, du \right) \}
\]

ou plus explicitement :

\[
B_t(\tau, R_t) = \exp\left\{ - \frac{\theta R}{\sigma^2} \left[(\eta - \kappa R)\tau + 2 \ln\left(1 - \frac{1 - e^{-\eta R}}{2\eta} \right) \right] \right. \\
\left. - \frac{2(1 - e^{-\eta R})}{2\eta} - \frac{\left[(\eta - \kappa R)[1 - e^{-\eta R}] \right]}{R_t} \right\},
\]

avec

\[
\eta = \sqrt{\kappa^2 + 2\sigma^2}.
\]

Il convient de remarquer que l’adoption d’un processus à retour vers la moyenne pour le taux, permet d’épouser plusieurs formes de structures par terme13, notamment :

- une structure normale, qui signifie que la structure par terme décrit une courbe croissante et sans point d’inflexion ;
- une structure inversée, qui indique que la structure par terme est une courbe décroissante et sans point d’inflexion ;
- une structure "bosselée", qui traduit une structure par terme initialement croissante, puis décroissante à partir d’un point d’inflexion.

Dans ces conditions, l’équation intégro-différentielle, que doit satisfaire la valeur d’un \textit{call} européen au sens du modèle de Bakshi, Cao & Chen (1997), s’écrit sous la mesure de probabilité risque-neutre :

12 Si, par exemple, \(R_t \) est supérieur à \(\theta R \) alors le drift est négatif et conditionne une valeur négative de rentabilité espérée du taux.

(3.20) est associée à la condition aux bornes :
\[C_t^{\text{BCC}}(\tau, S_t, V_t, R_t, K)|_{0, S_0, V_0, R_0, K} = (S_T - K)^+, \] (3.21)

où \(C_t^{\text{BCC}} = C_t^{\text{BCC}}(\tau, S_t, V_t, R_t, K) \) désigne le premium de Bakshi, Cao & Chen (1997). Par rapport aux modèles à "pure volatilité stochastique", l’équation intégro-différentielle fait apparaître un terme \(I_2 \) explicitant la présence de sauts dans le processus de volatilité, ainsi qu’un terme \(I_1 \) tenant compte d’un taux d’intérêt stochastique.

La résolution de (3.20) associée à (3.21) permet d’aboutir à la formule 3.4.1 :

Formule 3.4.1 (Formule de Bakshi, Cao & Chen (1997)). Soit

\[B_t(\tau, R_t) = \exp\left\{ -\frac{\theta_R}{\sigma_R^2} \left[(\eta - \kappa_R) \tau + 2 \ln \left(1 - \frac{1 - e^{-\eta \tau}}{2 \eta} \right) \right] - \frac{2(1 - e^{-\eta \tau})}{2 \eta - [\eta - \kappa_R] [1 - e^{-\eta \tau}]} R_t \right\}, \]

où

\[\eta \equiv \sqrt{\kappa_R^2 + 2 \sigma_R^2}. \]

Le premium de Bakshi, Cao & Chen (1997), noté \(C_t^{\text{BCC}} \), d’une option d’achat de type européen sur action ne versant pas de dividende pendant toute la durée de vie du contrat, est donné par :

\[C_t^{\text{BCC}}(\tau, S_t, V_t, R_t, K) = S_t \Pi_1(\tau, S_t, V_t, R_t, K) - K B_t(\tau, R_t) \Pi_2(\tau, S_t, V_t, R_t, K), \]

où \(R_t \) désigne le taux d’intérêt (supposé stochastique), \(V_t \) la variance instantanée (supposée stochastique) des rentabilités de l’actif support, et où

\[\forall j = 1, 2, \Pi_j = \frac{1}{2} + \frac{1}{\pi} \int_0^\infty \text{Re} \left[\frac{e^{-i \phi \ln K} f_j(\tau, S_t, V_t, R_t, \phi)}{i \phi} \right] d\phi, \]
avec

\[
f_1(\tau, S_t, V_t, R_t, \phi) = \exp\{-\frac{\theta_R}{\sigma_R^2}[2 \ln(1 - \frac{[\xi_R - \kappa_R](1 - e^{-\xi_R \tau})}{2 \xi_R})] + [\xi_R - \kappa_R]\tau\]
- \frac{\theta_V}{\sigma_V^2}[2 \ln(1 - \frac{[\xi_V - \kappa_V + (1 + i\phi)\rho\sigma_V](1 - e^{-\xi_V \tau})}{2 \xi_V})]
- \frac{\theta_V}{\sigma_V^2}[\xi_V - \kappa_V + (1 + i\phi)\rho\sigma_V]\tau + i\phi \ln S_t
+ \frac{2i\phi(1 - e^{-\xi_R \tau})}{2 \xi_R - [\xi_R - \kappa_R](1 - e^{-\xi_R \tau})} R_t
+ \lambda(1 + \mu_J)\tau[(1 + \mu_J)^{\frac{i\phi}{2}}(1 + i\phi)\sigma_J^2 - 1] - \lambda i\phi \mu_J \tau
+ \frac{2i\phi(i\phi - 1)(1 - e^{-\xi_V \tau})}{2 \xi_V - [\xi_V - \kappa_V + (1 + i\phi)\rho\sigma_V](1 - e^{-\xi_V \tau})} V_t\},
\]

et

\[
f_2(\tau, S_t, V_t, R_t, \phi) = \exp\{-\frac{\theta_R}{\sigma_R^2}[2 \ln(1 - \frac{[\xi^*_R - \kappa_R](1 - e^{-\xi^*_R \tau})}{2 \xi^*_R})] + [\xi^*_R - \kappa_R]\tau\]
- \frac{\theta_V}{\sigma_V^2}[2 \ln(1 - \frac{[\xi^*_V - \kappa_V + i\phi\rho\sigma_V](1 - e^{-\xi^*_V \tau})}{2 \xi^*_V})]
- \frac{\theta_V}{\sigma_V^2}[\xi^*_V - \kappa_V + i\phi\rho\sigma_V]\tau + i\phi \ln S_t - \ln B_t(\tau, R_t)
+ \frac{2(i\phi - 1)(1 - e^{-\xi^*_R \tau})}{2 \xi^*_R - [\xi^*_R - \kappa_R](1 - e^{-\xi^*_R \tau})} R_t
+ \lambda\tau[(1 + \mu_J)^{\frac{i\phi}{2}}(1 + i\phi - 1)\sigma_J^2 - 1] - \lambda i\phi \mu_J \tau
+ \frac{2i\phi(i\phi - 1)(1 - e^{-\xi^*_V \tau})}{2 \xi^*_V - [\xi^*_V - \kappa_V + i\phi\rho\sigma_V](1 - e^{-\xi^*_V \tau})} V_t\},
\]

dans lesquelles

\[
\xi_R = \sqrt{\kappa_R^2 - 2\sigma_R^2 i\phi},
\xi_V = \sqrt{[\kappa_V - (1 + i\phi)\rho\sigma_V]^2 - i\phi(i\phi + 1)\sigma_V^2},
\xi^*_R = \sqrt{\kappa^*_R - 2\sigma^*_R (i\phi - 1)},
\xi^*_V = \sqrt{[\kappa^*_V - i\phi\rho\sigma_V]^2 - i\phi(i\phi - 1)\sigma^*_V}.
\]

Comme l’exposé a pu le souligner plus haut, le modèle de Bakshi, Cao & Chen (1997) a comme principal intérêt, celui d’inclure plusieurs aspects de l’approche de l’évaluation des options, généralisant différents modèles qui peuvent donc être considérés comme autant de
cas particuliers. Par exemple, on aboutit au modèle de Black & Scholes (1973) en posant \(\lambda = \theta_R = \kappa_R = \sigma_R = \theta_V = \kappa_V = \sigma_V \equiv 0 \). Il est également possible de se ramener au modèle à volatilité stochastique de Heston (1993) en écrivant \(\lambda = \theta_R = \kappa_R = \sigma_R \equiv 0 \). Il est possible de simplifier la formule d’évaluation 3.4.1 dans un environnement à volatilité et taux d’intérêt stochastiques, où il suffit de poser \(\lambda \equiv 0 \). Enfin, en posant \(\theta_R = \kappa_R = \sigma_R \equiv 0 \), le modèle de Bakshi, Cao & Chen (1997) coïncide avec le modèle à sauts et à volatilité stochastique de Bates (1996).

Les avantages d’une telle approche résident dans la flexibilité à laquelle elle conduit, dans l’expression de la corrélation entre les variations de la volatilité et les rentabilités de l’actif support. Certes, le modèle de Heston (1993), avait levé l’hypothèse restrictive d’une corrélation nulle, mais ne permettait pas d’observer d’éventuels sauts dans les rentabilités du sous-jacent. Par ailleurs, comparé au modèle développé par Scott (1997), le modèle SVSI-J de Bakshi, Cao & Chen (1997) utilise un nombre moins important de paramètres structurels. De plus, la présentation de ces derniers, comme fonctions de variables qui sont plus facilement identifiables, rend la procédure d’estimation plus aisé.

3.5 Synthèse : relations entre les modèles d’évaluation à temps continu

La figure 3.2 illustre les relations entre les divers modèles en temps continu et à volatilité stochastique, à solution analytique (approchée ou exacte).
Fig. 3.2: Relations entre les modèles d'évaluation en temps continu
3. Analyse critique des modèles d'évaluation en temps continu à volatilité...

<table>
<thead>
<tr>
<th>Auteur(s)</th>
<th>Modèle</th>
<th>Paramètres</th>
</tr>
</thead>
</table>
| Hull & White (1987) | \[dS_t = S_t (\phi dt + \sqrt{V_t} dw_t)\] \[dV_t = V_t (\mu dt + \xi d\tilde{z}_t)\] \[\forall t, dw_t d\tilde{z}_t = 0\] | \(\mu, \phi, \xi\) constants |}
| Hull & White (1988) | \[dS_t = S_t (\phi dt + \sqrt{V_t} dw_t)\] \[dV_t = (a + bV_t) dt + \xi \sqrt{V_t} d\tilde{z}_t\] \[d\tilde{z}_t = \rho dt\] | \(a > 0, b < 0, \phi, \rho, \xi\) constants |}
| Heston (1993) | \[dS_t = S_t (R dt + \sqrt{V_t} d\tilde{z}_{t,1})\] \[dV_t = \kappa (\theta - V_t) dt + \sigma \sqrt{V_t} d\tilde{z}_{t,2}\] \[d\tilde{z}_{t,1} d\tilde{z}_{t,2} = \rho dt\] | \(\kappa, \mu, \rho, \sigma, \theta\) constants |}
| Bates (1996) | \[dS_t = S_t [(R - \lambda^2 k^2) dt + \sqrt{V_t} d\tilde{z}_{t,V}^* + k^* dq^*]\] \[dV_t = (\alpha - \beta^* V_t) dt + \sigma \sqrt{V_t} d\tilde{z}_{t,V}^*\] \[d\tilde{z}_{t,V}^* d\tilde{z}_{t,V}^* = \rho dt\] | \(k^*, \alpha, \beta^*, \lambda^*, \rho, \sigma, \theta\) constants |}
| Schöbel & Zhu (1999) | \[dS_t = S_t (R dt + \nu_t dw_{t,S})\] \[d\nu_t = \kappa (\theta - \nu_t) dt + \sigma dw_{t,v}\] \[d\nu_{t,S} dw_{t,v} = \rho dt\] | \(\kappa, \mu, \rho, \sigma, \theta\) constants |}
| Bakshi, Cao & Chen (1997) | \[dS_t = S_t \left\{ [R_t - \lambda_1 \mu_1] dt + \sqrt{V_t} dW_{t,S} + J_t dq_T \right\}\] \[dV_t = [\theta_v - \kappa V_t] dt + \sigma \sqrt{V_t} dW_{t,V}\] \[dR_t = [\theta R_t - \kappa R_t] dt + \sigma \sqrt{R_t} dW_{t,R}\] \[dW_{t,S} dW_{t,V} = \rho dt\] | \(\lambda, \mu_1, \kappa, \kappa_v, \sigma, \theta, \theta_v\) constants |}

Tab. 3.3: Exemples de modèles en temps continu à volatilité stochastique

Note : Tous ces modèles, excepté celui de Schöbel & Zhu (1999), modélisent la variance \(V = \sigma^2\). Cependant, la terminologie "volatilité stochastique" tient toujours, puisqu’une application du lemme d’Itô (1951) montre que si la variance suit un processus stochastique, la volatilité suit également un processus stochastique.

Le tableau 3.3 récapitule les modèles de dynamiques en temps continu du cours de l’actif sous-jacent avec volatilité stochastique. Parmi tous ces modèles d’évaluation à volatilité stochastique, seul celui de Bakshi, Cao & Chen (1997) suppose que le taux d’intérêt n’est pas constant, ni même déterministe.

3.5.1 Des modèles d’équilibre fondés sur la consommation

Tous les modèles présentés dans le tableau 3.3 appartiennent à la catégorie des modèles fondés sur la consommation, par opposition à la catégorie de modèles qui repose sur la théorie de l’arbitrage.

Cette dernière repose sur la théorie de l’arbitrage et se révèle être indépendante de toute attitude vis-à-vis du risque. Appliquée au prix des actifs (ou APT pour Arbitrage Pricing Theory), qui a été proposée par Ross (1976) [201], elle repose sur les concepts de diversification et d’absence d’arbitrage en situation d’équilibre. L’argument de l’absence d’arbitrage au sein d’un marché complet permet surtout d’aboutir à l’unicité des prix à l’égard d’un titre donné. On pourrait alors trouver une objection immédiate à cette
catégorie de modèles, car après tout, puisque les attitudes des investisseurs à l’égard du risque sont différentes, comment ces derniers peuvent-ils porter un jugement unique sur le prix d’une possibilité de gain donnée ? En vérité, il n’y a aucune contradiction à cela : les préférences des investisseurs sont déjà incorporées aux prix des titres sous-jacents. En d’autres termes, l’évaluation par arbitrage est un exercice d’établissement de prix relatifs, qui est parfaitement indépendant du degré d’aversion au risque.

3.5.2 Une approche "Equivalent Martingale Measure" commune

Par ailleurs, il faut insister sur le fait que l’approche des modèles en temps continu et à volatilité stochastique est commune, et se fonde sur l’existence d’une mesure martingale équivalente. En fait, cette approche "Equivalent Martingale Measure" représente une généralisation du concept d’évaluation risque-neutre déjà introduit par Cox & Ross (1976) [68]. Le principe de cette approche consiste en la transformation de la mesure de probabilité réelle P, de façon à ce que la moyenne du processus aléatoire suivi par le cours du sous-jacent change. Les mesures de probabilité ainsi transformées sont appelées équivalentes, car elles assignent des probabilités positives aux mêmes événements. Autrement dit, la mesure de probabilité Q est dite équivalente à la mesure de probabilité réelle P,

\[14 \text{ Cf. Harrison & Kreps (1979) [121] et Harrison & Pliska (1981) [122].} \]
pourvu que la condition $\forall A, Q(A) > 0 \Leftrightarrow P(A) > 0$, soit satisfaite. Le changement de la mesure de probabilité de P vers Q, permet de traiter les actifs risqués qui recèlent "une prime de risque", comme s'ils étaient sans risque. En fait, il est très pratique de traiter le problème d'évaluation en supposant que les rentabilités espérées sont égales au taux d'intérêt sans risque, car ce faisant, l'évaluation est ramenée au calcul d'une simple espérance.

Finalement, l'approche "EMM" se résume à l'exécution de trois opérations successives :
- définition d'un processus d'actualisation ;
- changement de la mesure de probabilité réelle P en mesure de probabilité martingale équivalente Q (théorème de Girsanov) ;
- calcul des flux espérés de l'actif sous Q.

Un raisonnement par arbitrage sous hypothèse d'efficience du marché, similaire à celui adopté par Black & Scholes (1973), permet de dériver une équation satisfaite par le *call* dont on cherche à évaluer le *premium*. A l'exception des modèles de Hull & White (1987, 1989), où la formule est analytiquement approchée (approximation de Taylor-Young), les modèles ci-dessous aboutissent à une formulation analytique exacte. Cette dernière classe de modèles ont en commun leur méthode de résolution : la résolution d'un système d'équations différentielles ordinaires du premier ordre de type Riccati, puis l'inversion d'une transformée de Fourier de fonctions caractéristiques.

D'un point de vue pratique, les problèmes techniques relatifs au caractère non linéaire de la dynamique des variables d'état et à l'estimation des paramètres structurels, ainsi que la difficulté liée à la non-observabilité de la volatilité, peuvent être contournés en utilisant des techniques de filtrage non-linéaire (filtre de Kalman étendu\(^{15}\) ou de Volterra, classe des filtres polynomiaux pour citer quelques exemples\(^{16}\)). On peut également recourir à la méthode des moments simulés (*Method of Simulated Moments*), que j'explicite en annexe B.2.

3.6 Conclusion

Le caractère aléatoire de la volatilité du cours a été mis en évidence dans plusieurs travaux de nature empirique. Plusieurs modèles d'évaluation des options avec volatilité stochastique ont été proposés. Le plus facile à mettre en œuvre, et sans doute le plus populaire, reste celui de Hull & White (1987), qui fournit des *premium* analytiques au prix de deux hy-

\(^{15}\) Un tel filtre n'est cependant pas optimal dans le cas où les aléas (aléa lié au cours du sous-jacent et aléa lié à la volatilité) ne sont pas régis par des processus de Wiener.

\(^{16}\) Pour une discussion plus approfondie sur le filtrage non-linéaire, on peut voir Sy (1999) [217] par exemple.
pothèsas aussi restrictives l'une que l'autre : la première postule que la volatilité et cours du support ne doivent pas être corrélés, la seconde formule que le risque systématique de la volatilité est nul.

En vérité, parmi tous les modèles présentés dans ce chapitre, à l'exception de celui de Schöbel & Zhu (1999), aucun ne modélise directement la volatilité, mais la variance. Bien sûr, il n'est pas question ici de faire un procès qui n'aurait d'ailleurs aucune légitimité, puisque si la variance est stochastique, la volatilité l'est également. Ainsi, à partir des travaux de Hull & White (1987), les modèles à volatilité stochastique cherchent à traduire une corrélation non nulle entre la volatilité et le cours du support de l'actif dérivé, et adoptent majoritairement un processus à retour vers la moyenne de type "racine-carrée" pour traduire l'évolution de la variance. Sans doute, la raison est que ce processus permet d'aboutir à des formules de valorisation entièrement analytiques, que les praticiens et gestionnaires en règle générale, préfèrent aux méthodes numériques fondées sur des algorithmes, certes plus performants, mais moins immédiats à mettre en œuvre.

Finalement, si l'on cherche à faire une synthèse, il convient de remarquer que tous les modèles d'évaluation, passés en revue au cours de ce chapitre, qui sont en temps continu et à volatilité stochastique, se fondent sur une approche commune de raisonnement, faisant l'hypothèse de l'existence d'une mesure martingale équivalente, dont l'unicité n'est pas assurée en marché incomplet. Néanmoins, la non-unicité des premia qui en résulte peut être contournée par la formulation d'une hypothèse sur l'attitude des investisseurs à l'égard du risque fixant la prime de risque associée à l'âléa de volatilité. Dans le contexte d'un environnement où le taux d'intérêt est aussi aléatoire, il est également nécessaire d'expliciter une hypothèse sur la préférence des investisseurs qui détermine alors la prime de risque associée. Lorsque la variance emprunte la trajectoire particulière d'un processus de diffusion à retour vers la moyenne de type racine-carrée, et en optant pour une fonction d'utilité isoélastique qui conduit à une prime de risque associée dépendant uniquement de la variance, le problème de l'incomplétude des marchés peut être résolu analytiquement. Certes, outre la problématique que pose les marchés incomplets à l'évaluation des actifs dérivés, l'utilisation de ces modèles reste encore et toujours subordonnée à une phase d'estimation des paramètres structurels qui entrent en jeu dans les processus état, mais cette dernière interrogation n'est finalement qu'une question d'ordre technique.
Deuxième partie

ÉVALUATION ET COUVERTURE DES OPTIONS À QUATRE FACTEURS STOCHASTIQUES
Chapitre Quatre

Proposition du modèle SVSISJ à sauts, volatilité et taux stochastiques

"Tout ce qui est simple est faux, mais tout ce qui ne l’est pas est inutilisable."
Paul Valery.

"Everything should be made as simple as possible, but not one bit simpler."
[attributed to Albert Einstein].

Sommaire

4.1 Introduction : raison d’être du modèle SVSISJ 138
4.2 Le cas sans dividende ... 141
 4.2.1 Spécification du modèle d’équilibre SVSISJ et cadre mathématique 141
 4.2.2 Le \textit{premium} solution du modèle d’équilibre 150
 4.2.3 Le modèle SVSISJ comme généralisation des modèles en temps continu de la littérature 162
4.3 Extension au cas avec dividendes 167
 4.3.1 Spécification du modèle d’équilibre SVSISDSJ et cadre mathématique 168
 4.3.2 Le \textit{premium} solution du modèle d’équilibre 175
 4.3.3 Étude de cas particuliers .. 179
4.4 Dérivation des paramètres de sensibilité 179
 4.4.1 Les variations premières : les \textit{deltas} 179
 4.4.2 Les variations secondes : les \textit{gammas} 181
4.5 Conclusion .. 182
4.1 Introduction : raison d’être du modèle SVSISJ

Approche dite "statique"

Les modèles à "purs sauts"1 et les modèles à "pure volatilité stochastique"2 ont chacun leurs "forces" et leurs "faiblesses". S’ils peuvent facilement capturer la valeur négative de la skewness et l’excès de kurtosis pour les options à maturité courte (moins de trois mois), les premiers peuvent difficilement expliquer le smile de volatilité des options à maturité moyenne (trois à six mois). D’un autre côté, les modèles à volatilité stochastique sont incapables de générer de grandes valeurs de kurtosis pour les options à échéance courte, sous peine de surparamétrisation. Dans l’objectif de bénéficier des avantages des deux types de modèles, Bates (1991, 1996) propose un modèle hybride à volatilité stochastique et à sauts. Le modèle, le plus général à l’heure actuelle, est sans doute celui de Bakshi, Cao & Chen (1997, 2000) qui proposent une combinaison de plusieurs types de modélisation du comportement des rentabilités de l’actif support au sein d’une même et unique entité de valorisation des options - SVSI-J (Stochastic Volatility, Stochastic Interest Rate, Random Jumps Models). La grande particularité de ce modèle composite est de faire asseoir le processus de diffusion des rentabilités sur l’occurrence discontinue et déterministe de sauts, tout en traduisant un taux d’intérêt idéalement stochastique.

Ainsi, les auteurs espèrent-ils aboutir à une meilleure description de la distribution réelle des rentabilités de l’actif support, caractérisée par des valeurs de skewness négative et de kurtosis très élevée par rapport aux valeurs d’une distribution normale. Dans leur étude, Bakshi, Cao & Chen optent pour une segmentation de leur modèle original en plusieurs "sous-modèles" : modèle à volatilité constante ; modèle à volatilité stochastique ; modèle à volatilité et à taux d’intérêt stochastiques ; et modèle à volatilité stochastique et à sauts

1 modèles dans lesquels le sous-jacent suit un processus mixte (de diffusion et à sauts) et ne faisant pas intervenir de volatilité stochastique.
2 Cf. chapitre 3, note 3.
d’occurrence déterministe et d’amplitude log-normale, et testent leur efficacité relative sur la base des options sur indice S&P500 négociées sur le *Chicago Board Options Exchange*. Les résultats de leur étude montrent que l’introduction d’un processus stochastique décrivant l’évolution du taux d’intérêt améliore la qualité d’évaluation des options d’échéance relativement longue, tandis que l’introduction d’une composante reflétant la présence de sauts poissonniers à occurrence déterministe dans le processus de diffusion des rentabilités améliore la qualité d’évaluation des options d’échéance courte. Cependant, cette composante poissonnière à occurrence déterministe converge vers la distribution normale lorsque la maturité de l’option augmente et de fait, est incapable de générer l’excès de *kurtosis* attendu pour les options à maturité moyenne et longue (à partir de trois mois, selon Das & Sundaram (1999) [72]).

Approche dite "dynamique"

Cependant, la volonté d’élaborer des approches alternatives d’évaluation des options susceptibles de décrire, avec davantage de fidélité, les caractéristiques de la distribution réelle des rentabilités de l’actif support, n’est pas encore suffisante. Faut-il encore rendre ces approches capables de fournir des paramètres de couverture qui permettent une neutralisation efficace des risques attachés aux portefeuilles d’options. En effet, la section 1.3 du premier chapitre rappelle que les "grecques" du modèle de Black & Scholes (1973) n’ont finalement qu’une signification statique3 (en particulier les sensibilités par rapport à la volatilité (le Δ_{BS}^V) et au taux d’intérêt (le Δ_{BS}^R)) et par conséquent, ne peuvent prétendre constituer de véritables mesures du risque relatif à toute détention d’un portefeuille optionnel. Ce fait est souvent attribué à un manque d’adéquation entre le fondement du modèle et la réalité du marché. La mise en place de certains "tricks of trade" par les opérateurs de marché permet au modèle de dépasser le handicap initial du à l’irréalisme de certaines de ses hypothèses. Dans ce "lissage" des imperfections du modèle, intervient le concept de volatilité implicite qui, en association avec l’intégration d’un taux d’intérêt approprié, rend possible l’équivalence entre le prix de l’option observé sur le marché et sa valeur théorique, calculée par le modèle4. Cependant, il n’y a aucune raison pour que cette équivalence se transmette sur les paramètres de couverture. Autrement dit, les "market-greeks" (noté Δ_{BS}^{BS}) risquent a priori de différer sensiblement des "model-greeks" issues du modèle (noté Δ_{BS}^{BS}). En effet, formellement, rien n’indique a priori la correspondance entre variations premières du *premium* de Black & Scholes (1973), C_i^{BS}, et variations premières

3 En effet, la volatilité et le taux d’intérêt étant supposés stationnaires, le modèle de Black & Scholes (1973) n’offre pas de réels paramètres de couverture, mais seulement des comparaisons statistiques sur ces variables.

4 Cf. chapitre 1, section 1.3.
du cours observé $\hat{C}_t : \forall g = \sigma, R, \tau,$
\[
\Delta_{t,g}^{RS}(\tau, S_t, K) \equiv \frac{\partial C_t^{RS}(\tau, S_t, K)}{\partial g} \equiv \frac{\partial \hat{C}_t(\tau, S_t, K)}{\partial g} \equiv \Delta_{t,g}^{RS}(\tau, S_t, K).
\]
Or, ces paramètres de sensibilité jouent un rôle capital dans la performance de couverture des positions d'options...
Ces deux approches, qui se situent dans un cadre d'analyse tantôt statique, tantôt dynamique, ouvrent la porte à des modèles alternatifs plus élaborés, ou du moins, qui se veulent potentiellement plus efficaces. Dans ce chapitre, je me propose d'apporter une modification essentielle au modèle original et global SVISI-J de Bakshi, Cao & Chen, en vue d'étudier l'influence de celle-ci sur la qualité d'évaluation des options. Cette modification se traduit par la modélisation de la fréquence des sauts par un processus à retour vers la moyenne (processus à retour vers la moyenne "racine-carrée"). En effet, Ball & Torous (1985) [22] avaient montré que les discontinuités dans l'évolution des prix de trente actions examinées, cotées au New York Stock Exchange du 1er janvier 1981 au 31 décembre 1982, n'exerçaient qu'une influence minime sur les premia des calls portant sur ces actions. Au lieu de rejeter hâtivement toute modélisation de la dynamique du sous-jacent par un processus mixte de diffusion avec sauts, il convient d'étudier de plus près la nature des sauts, notamment à réfléchir sur l'hypothèse de constance, et plus généralement de déterminisme de l'occurrence des sauts. Je suggère donc de considérer que la fréquence des sauts est stochastique. Ce faisant, je cherche à "ralentir" la convergence de la distribution des rentabilités de l'actif vers une distribution normale, peu réaliste, en autorisant des valeurs du troisième et du quatrième moment plus vraisemblables, surtout pour les options à maturité moyenne et longue. Enfin, l'autre raison qui me pousse à modéliser l'intensité de sauts par un processus stochastique est d'ordre économique : s'il est possible d'interpréter les sauts comme des flux d'informations arrivant sur le marché, n'est-il pas, a priori, trop simpliste, voire problématique en marché réel, de considérer qu'un changement brusque dans les rentabilités du cours de l'actif support ne puisse survenir que sous une intensité déterministe ?

Un premium solution de nature analytique comme but du modèle

Je me fixe la contrainte de rester dans la classe des modèles à solution entièrement analytique. En faisant ce choix du "tout analytique", je privilégie la recherche d'une formule de valorisation qui se veut applicable directement en pratique, au détriment d'un niveau de réalisme et/ou de précision naturellement moins poussé que le permettraient, par exemple, les formules de valorisation issues de modèles numériques, dont la précision peut être sans cesse améliorée avec l'arrivée de calculateurs toujours plus puissants. Je m'oriente donc a priori vers une modélisation en temps continu, qui permet d'éviter au moins deux difficultés techniques inhérentes aux modèles en temps discret (au sens où il existe toujours un intervalle de temps non nul entre deux observations) :
- d'une part, il est rarement réaliste de définir un intervalle de temps minimum en deçà duquel il est impossible de descendre ;
– d’autre part, on dispose de techniques mathématiques moins puissantes qu’en temps continu.

Ce chapitre s’organise de la façon suivante : dans une première section, je présente le cadre mathématique du modèle SVSISJ, qui aboutit à la résolution analytique d’une équation intégro-différentielle. Je propose ensuite une extension de ce modèle au cas académique où le support donne lieu à l’encaissement continu de dividendes, dont le montant peut être stochastique ou déterministe. Enfin, la forme analytique de la solution permet de dériver immédiatement les paramètres de sensibilité ("grecques") du modèle.

4.2 Le cas sans dividende

4.2.1 Spécification du modèle d’équilibre SVSISJ et cadre mathématique

Hypothèse 4.2.1 (Marché parfait en temps continu). Je considère une économie de marché à vente à découvert possible, à coûts de transaction nuls, à temps \(t \) continu et à horizon infini\(^5\). L’incertitude est caractérisée par un espace probabilisé \((\mathbb{R}, \mathcal{T}, P)\) où \(\mathbb{R} \) est le corps des réels, \(\mathcal{T} \) désigne la tribu (ou ensemble des événements) de Borel et \(P \) une mesure de probabilité historique (ou objective). L’information est contenue dans la filtration \((\mathcal{F}_t)_{t \in \mathbb{R}^+}\) générée par un mouvement brownien \(n \)-dimension \(\{W^P_t, t \in \mathbb{R}^+_+\} \), \(n \in \mathbb{N} \).

Je cherche à valoriser un call européen, de prix d’exercice \(K \) et de durée de vie \(\tau = T - t \), portant sur un actif sous-jectif (support) ne versant pas de dividende, et dont le premium est supposé fonction de variables d’état, tous éléments de \(\mathbb{R}^+_+ \):

Hypothèse 4.2.2 (Variables d’état). Les variables d’état dont dépend le premium du call européen sur un support ne versant pas de dividende sont :
- le cours de l’actif sous-jectif \(S_t \),
- la variance \(V_t \) (ou la volatilité \(\sigma_t = \sqrt{V_t} \)) des rentabilités de l’actif sous-jectif,
- le taux d’intérêt\(^6\) \(R_t \),

\(^5\) Les deux dernières hypothèses sont invoquées simplement pour réconcilier théorie et pratique : puisque la théorie de l’évaluation est généralement fondée sur des schémas en temps continu, l’inclusion de coûts de transaction rendrait impossible l’application de ce dernier en pratique.

\(^6\) Dans le cadre du modèle SVSISJ, dans lequel je fais l’hypothèse que le premium du call est fonction d’autres du taux d’intérêt \((R_t) \), se pose le problème de la connaissance de la courbe des taux et par suite celui de la modélisation des taux ("quelle modélisation pour la dynamique des taux d’intérêts ?"). En première approche, et dans un souci de simplicité, il peut être suffisant de retenir un modèle des taux à un facteur. L’idée qui sous-tend cette simplification est de considérer la courbe des taux dans sa totalité
la fréquence (ou intensité ou encore occurrence) des sauts dans le processus du cours de l’actif sous-jacent.

Autrement dit, si je désigne par $C_t : (\tau, x_t, K) \in \mathbb{R}^n \rightarrow C_t(\tau, x_t, K) \in \mathbb{R}_+$, le premium du call européen, je cherche à résoudre une équation du type :

$$C_t = f(\tau, x_t, K),$$

où x_t, élément de \mathbb{R}^4, désigne le vecteur des variables d’état.

Il apparaît très clairement que la connaissance de C_t est étroitement liée à celle de x_t, et C_t sera d’autant plus vraisemblable que x_t le sera. Afin de revenir à l’essence de ce qui gouverne le processus d’évolution dans le temps de chacune des variables d’état, je m’oriente vers les processus stochastiques en temps continu de classe markovienne, assurant que toute connaissance passée et présente a été exploitée. Dans cette classe de processus, les valeurs futures prises par les variables d’état, étant donnée leur valeur présente, sont indépendantes des valeurs anciennes prises par ces variables. Ce faisant, puisque toutes les variables d’état sont markoviennes, je suppose que l’efficacité du marché est sous sa forme forte. En effet, les processus markoviens peuvent être représentés par une équation d’état du type :

$$dx_t = f(\tau, x_t, K, u_t), \tau \in \mathbb{R}_+, K \in \mathbb{R}_+, x_t \in \mathbb{R}^n, u_t \in \mathbb{R}^m,$$

dont les entrées u_t, par opposition au cas déterministe, sont des aléas qui gouvernent l’évolution future. Tels des bruits blancs continus, il est possible de considérer ces entrées u_t comme des variables complètement non prévisibles, et donc sans mémoire. L’équation d’état de x_t prend donc la forme suivante, sous la mesure de probabilité historique P :

$$dx_t = f(\tau, x_t, K, \tilde{u}_t^{P_{t,x}}), \tau \in \mathbb{R}_+, K \in \mathbb{R}_+, x_t \in \mathbb{R}^n, \tilde{u}_t^{P_{t,x}} \in \mathbb{R}^m.$$
4. Proposition du modèle SVSISJ à sauts, volatilité et taux stochastiques

Poissonnien. Plus formellement, le processus ponctuel est un vecteur de processus ponctuels scalaires dont la définition est la suivante :

Définition 4.2.1 (Processus ponctuels scalaires). Un processus stochastique à espace d’état discret et en temps continu π_t^P est un processus ponctuel (ou ponctuel marqué) de fréquence λ_i et distribution d’amplitudes $P(k_i)$ s’il possède les propriétés suivantes :
- $\Pr(\pi_0^P = 0) = 1$;
- les instants d’occurrence des sauts de π_t^P sont réglés par un processus de Poisson N_t^P de paramètre λ_i, tel que :

$$
\begin{align*}
\Pr(\pi_t^P = 1) &= \lambda_i \, dt \\
\Pr(\pi_t^P = 0) &= 1 - \lambda_i \, dt ;
\end{align*}
$$

- les amplitudes $(k_i \in \mathbb{K} \subseteq \mathbb{R})$ des sauts sont mutuellement indépendantes et de même loi de probabilité $P(k_i)$, laquelle est indépendante de N_t^P.

Cette classe de processus est plus générale que le "pur" processus de Poisson puisque l’amplitude du saut, à son occurrence, est différente de l’unité et devient elle-même une variable aléatoire. Un tel processus ponctuel peut être construit à partir d’un "pur" processus de Poisson qui déterminera les occurrences de sauts, associé à une variable aléatoire $k_i \in \mathbb{K}$, appelée *marque*, qui détermine l’amplitude des sauts du processus. Sous la condition que cette amplitude soit une variable aléatoire indépendante du temps et distribuée selon la loi de probabilité $P(k_i)$, le processus ainsi construit sera à accroissements indépendants. Puisque ce processus à accroissements indépendants est purement discontinu, contrairement au mouvement brownien en ce sens où il est constant la plupart du temps et qu’il "saute" à certains instants donnés, il est bien adapté à la modélisation de tous les phénomènes à occurrence discrète dans le temps, par exemple le changement brusque (ou saut) des rentabilités boursières. De plus, si l’on veut modéliser une amplitude des sauts à valeur réelle, l’espace d’état de la variable "amplitude des sauts" sera pris non dénombrable, et la représentation prendra alors la forme suivante sous la probabilité P :

$$
\pi_t^P = \int_{\mathbb{K}} k_i N_t^P(dk_i),
$$

où $N_t^P(dk_i)$ désigne formellement le nombre de sauts survenus dans l’intervalle $[k_i, k_i + dk_i]$. D’autre part, il est clair que le processus N_t^P peut également être vu comme un processus de comptage défini par ses incrément dN_t^P indépendamment distribués. Autrement dit encore, le processus N_t^P peut être vu comme somme de ses incrément :

$$
N_t^P = \sum_{z=1}^{t} dN_z^P.
$$
Sous ces conditions, \(\mathbb{E}(dN^n_P) = \lambda_n dt, \forall n \geq 1 \), en particulier la moyenne de l’incrémentation \(dN^n_P \) vaut \(\lambda dt \). Le processus ponctuel peut être vu comme un processus poissonnien hybride pouvant décrire à la fois la présence éventuelle de sauts discontinus d’un pur processus poissonnien, mais aussi la nature complètement erratique de l’amplitude de ces sauts. Ces sauts discontinus, absents dans un pur processus gaussien (de type brownien géométrique par exemple), peuvent décrire les mouvements soudains susceptibles de survenir dans la série des rentabilités de l’actif sous-jacent.

Dans le cadre du modèle SVSISJ, dans lequel je fais intervenir les deux classes fondamentales de bruits blancs, selon qu’ils sont issus de processus à accroissements indépendants continus (bruits blancs gaussiens que je note par la suite \(dW^P_{t,x} \)) ou purement discontinus (bruits blancs ponctuels que je représente par \(d\pi^P_{t,x} \)), l’équation d’état de \(x_t \) peut s’écrire sous la mesure de probabilité historique \(P \):

\[
dx_t = F^P_x(\tau, x_t)dt + G^P_x(\tau, x_t)dW^P_{t,x} + J^P_x(\tau, x_t)d\pi^P_{t,x},
\]

- où \(F^P_x(\tau, x_t) \), processus \(\mathcal{F}_t \)-adaptés de \(\mathbb{R}^4 \), modélise la dérive (ou drift ou encore tendance) de \(x_t \),
- \(G^P_x(\tau, x_t) \) et \(J^P_x(\tau, x_t) \) sont des processus \(\mathcal{F}_t \)-adaptés de \(\mathcal{M}_{4,4}(\mathbb{R}) \),
- l’incrément \(dW^P_{t,x} \) est un vecteur de \(\mathbb{R}^4 \) engendré par des \(\mathcal{F}_t \)-mouvements browniens simples (ou processus wieneriens standards\(^9\)), tel que \(dW^P_{t,x}(dW^P_{t,x})' = Mdt \),
- et l’incrément \(d\pi^P_{t,x} \) est un vecteur de \(\mathbb{R}^4 \) engendré par des processus ponctuels \(\mathcal{F}_t \)-adaptés, tel que \(\forall t, d\pi^P_{t,x}(dW^P_{t,x})' = 0_{4,4}, \) avec

\[
x_t = \begin{pmatrix} S_t & V_t & R_t & \lambda_t, \lambda \end{pmatrix}',
\]

\[
dW^P_{t,x} = \begin{pmatrix} dW^P_{t,S} & dW^P_{t,V} & dW^P_{t,R} & dW^P_{t,\lambda} \end{pmatrix}',
\]

\[
F^P_x(\tau, x_t) = \begin{pmatrix} F^P_S(\tau, x_t) & F^P_V(\tau, V_t) & F^P_R(\tau, R_t) & F^P_{\lambda}(\tau, \lambda_t, \lambda) \end{pmatrix}',
\]

\[
G^P_x(\tau, x_t) = \begin{pmatrix} G_S(\tau, x_t) & 0 & 0 & 0 \\ 0 & G_V(\tau, V_t) & 0 & 0 \\ 0 & 0 & G_R(\tau, R_t) & 0 \\ 0 & 0 & 0 & G_{\lambda}(\tau, \lambda_t, \lambda) \end{pmatrix},
\]

\(^9\) D’après le théorème de Lévy, tout processus de Wiener est un mouvement brownien standard (cf. Karatzas & Shreve (1988) [146], page 82).
\[J_s(\tau, x_t) = \begin{pmatrix} J_S(\tau, S_t) & 0 & 0 & 0 \\ 0 & J_V(\tau, V_t) & 0 & 0 \\ 0 & 0 & J_R(\tau, R_t) & 0 \\ 0 & 0 & 0 & J_{\lambda_s}(\tau, \lambda_t, S) \end{pmatrix}, \quad (4.4) \]

e

\[d\pi^P_{t,x} = \begin{pmatrix} d\pi^P_{t,S} \\ d\pi^P_{t,V} \\ d\pi^P_{t,R} \\ d\pi^P_{t,\lambda_t} \end{pmatrix} = \begin{pmatrix} k_{t,S} dN^P_{t,S} \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad (4.5) \]

où \(k_{t,S} \in \mathbb{K}_S \subseteq \mathbb{R} \) et \(N^P_{t,S} \) désignent respectivement, la variable "amplitude des sauts" et le processus de Poisson de fréquence \(\lambda_t, S \in \mathbb{R} \) dans le processus du cours de l’actif sous-jacent.

La définition de l’équation (4.2) demeure incomplète tant qu’il n’a pas été précisé quel sens donner à cette équation différentielle : en effet, comme il a été vu précédemment, l’élément différentiel \(d\pi^P_{t,x} \) n’est pas infinitésimal puisqu’il prend, au moment du saut, la valeur unité. Du fait du "boudage" de \(x_t \) dans l’équation, il est nécessaire de définir sur quel point s’appuyer pour calculer l’incrément ponctuel \(J_x(\tau, x_t) d\pi^P_{t,x} \), celui-ci n’étant pas infinitésimal à l’occurrence d’un saut et l’évolution de \(x_t \) étant par conséquent discontinu en ce point (il s’agit de la même difficulté que lorsque l’on multiplie une mesure de Dirac par une fonction discontinue au point support de la mesure). J’opte pour la définition classique d’Itô (1951) [139] qui prend pour point support le point situé "à gauche" dans le temps, qui d’un point de vue numérique, correspond au schéma d’intégration d’Euler, c’est-à-dire la limite : \(\lim_{\epsilon \to 0} x_{t-\epsilon} \). Plus précisément, l’évaluation de l’incrément \(d\pi^P_{t,x} \) est calculée comme telle:\(^10\)

\[dx_t = \lim_{\epsilon \to 0} F^P_x(\tau, x_{t-\epsilon}) \epsilon + G_x(\tau, x_{t-\epsilon})(W^P_{t,x} - W^P_{t-\epsilon,x}) + J_x(\tau, x_{t-\epsilon})(\pi^P_{t,x} - \pi^P_{t-\epsilon,x}). \]

Ce processus est bien un processus markovien, dans la mesure où les accroissements \(dW^P_{t,x} \) et \(d\pi^P_{t,x} \) étant indépendants, ils sont indépendants du "passé" de \(x_t \). Autrement dit, les

\(^{10}\) On peut montrer que sous les hypothèses de régularité suffisante des fonctions \(F^P_x, G_i, J_j, \forall i = S, V, R, \lambda, S \) et \(\forall j = S, V, R \) (lipschitziennes), un tel processus est bien défini et est continu à droite et limité à gauche (C.A.D.L.â.G.).
accroissements $W^P_t - W^P_{t-\epsilon}$ et $\pi^P_t - \pi^P_{t-\epsilon}$ sont indépendants de l'ensemble $\{x_s, s \leq t-\epsilon\}$, et ceci quelque soit ϵ. La connaissance de la valeur de $x_{t-\epsilon}$ et de la loi des accroissements des bruits suffit donc pour écrire la loi de dx_t, donc celle de x_t par la formule :

$$x_t = \lim_{\epsilon \to 0} x_{t-\epsilon} + F^P_x(\tau, x_{t-\epsilon}) \cdot \epsilon + G_x(\tau, x_{t-\epsilon})(W^P_t - W^P_{t-\epsilon}) + J_x(\tau, x_{t-\epsilon})(\pi^P_t - \pi^P_{t-\epsilon}).$$

Pour qu'il n'y ait pas d'ambiguïté sur la définition de l'équation différentielle stochastique, je remplacerai la variable t par t_- à chaque fois que cela sera nécessaire, indiquant par là que le point d'appui de l'évaluation de l'accroissement est le point limite à gauche11 :

$$dx_t = F^P_x(\tau, x_{t-})dt + G_x(\tau, x_{t-})dW^P_t + J_x(\tau, x_{t-})d\pi^P_t.$$
D ans la suite de l'exposé, je suppose a priori que le premium du call européen est de classe C^2, $n \geq 2$ pour assurer l'existence et la continuité12 de ses dérivées partielles secondes sur \mathbb{R}_+. Le fait que la quantité $dW^P_t d(W^P_t) = Mdt$, où M désigne la covariance (ou puissance) du mouvement brownien n'est plus négligeable (au sens d'Ito (1951) [139]) devant dt (les termes quadratiques ne sont plus négligeables devant dt) et/ou le fait qu'aucune puissance des accroissements $d\pi^P_t$ n'est négligeable vis-à-vis de dt, tout calcul différentiel dit ordinaire (sans éléments stochastiques) est interdit. Aussi, pour calculer la différentielle de $C_t(\tau, x_t, K)$ relativement au temps, il est nécessaire de remonter à la définition de la différentielle en tant que limite, selon les règles d'Ito (1951), soit :

$$dC_t(\tau, x_t, K) = \lim_{\epsilon \to 0}(C_t(\tau, x_t, K) - C_t(\tau, x_{t-\epsilon}, K))$$ et développer $C_t(\tau, x_t, K)$ en série de Taylor :

$$\triangle C_t(\tau, x_t, K) = \left(\frac{\partial C_t}{\partial x}\right)'_{x_{t-\epsilon}} \triangle x_t + \frac{1}{2} \left(\frac{\partial^2 C_t}{\partial x^2}\right)_{x_{t-\epsilon}} |\triangle x_t|^2 + \cdots ,$$

11 Pour illustrer la nécessité d'une telle définition, il peut être utile d'emprunter un exemple issu du domaine du traitement de signal et de considérer le signal du télégraphiste, qui peut être modélisé comme suit :

$$x_0 = 0,$$
$$dx_t = (1 - 2x_t)dN^P_t.$$ Il est clair qu'à l'occurrence d'un saut, x_t est égal à 0, $dx_t = 1$ et après celui-ci, $x_t = 1$. Inversement, à une nouvelle occurrence de saut, $dx_t = -1$ et x_t repasse à 0. 12 de façon à vérifier : $\frac{\partial C^2_t}{\partial x_i \partial x_j} = \frac{\partial C^2_t}{\partial x_i \partial x_j}, \forall i \neq j.$
où j’ai appelé $\triangle x_t = x_t - x_{t-\epsilon}$ et $\triangle C_t(\tau, x_t, K) = C_t(\tau, x_t, K) - C_t(\tau, x_{t-\epsilon}, K)$.

Il est clair que la différentielle totale du *premium* du *call* précédent peut alors s’écrire, au sens d’Itô (1951), comme suit :

$$dC_t(\tau, x_t, K) = \left(\frac{\partial C_t}{\partial x_t} \right)' F_x^P(\tau, x_t) + \frac{1}{2} tr \left\{ G_x(\tau, x_t) \frac{\partial^2 C_t}{\partial x_t^2} \right\} dt$$

$$+ \left(\frac{\partial C_t}{\partial x_t} \right)' G_x(\tau, x_t) dW_{t,x} + \{ C_t(\tau, S_t + k_{t,s} J_{S_t}(\tau, S_t), V_t, R_t, \lambda_{t,s}, K) - C_t(\tau, S_t, V_t, R_t, \lambda_{t,s}, K) \} dN^P_{t,s}.$$

L’opérateur différentiel générateur du processus C_t, $L_4(C_t)$, et défini par $d\mathbb{E}[C_t]/dt = \mathbb{E}[L_4(C_t)|C_t]$, s’écrit :

$$L_4(C_t) = \left(\frac{\partial C_t}{\partial x_t} \right)' F_x^P(\tau, x_t) + \frac{1}{2} tr \left\{ G_x(\tau, x_t) \frac{\partial^2 C_t}{\partial x_t^2} \right\} - \frac{\partial C_t}{\partial \tau}$$

$$+ \lambda_{t,s} \int_{k_{t,s} \in \mathbb{K}_s} \{ C_t(\tau, S_t + k_{t,s} J_{S_t}(\tau, S_t), V_t, R_t, \lambda_{t,s}, K) - C_t(\tau, S_t, V_t, R_t, \lambda_{t,s}, K) \} dP(k_{t,s}).$$

La volatilité stochastique et la fréquence stochastique des sauts comme variables génératrices d’incomplétude de marché

Dans le cadre de ce modèle, où à un support unique je fais correspondre plusieurs sources d’aléas qui ne sont pas parfaitement corrélées (la dimension du vecteur $W_{t,x}$ des \mathcal{F}_t, mouvements browniens n’est pas strictement égale au nombre d’actifs risqués), le marché est incomplet. Cette incomplétude du marché ne peut clairement pas provenir de la modélisation stochastique du taux d’intérêt, puisque l’incertitude générée par le caractère aléatoire d’une telle variable peut être diversifiée au moyen d’une obligation zéro-coupon. Par contre, le fait de considérer la variance (ou la volatilité) comme une variable aléatoire génère un marché incomplet. En effet, l’incertitude générée par la volatilité stochastique ne peut pas être diversifiée, puisque la volatilité n’est ni un actif négocié, ni parfaitement corrélée avec un actif échangé sur les marchés. Il en est exactement de même pour la variable "fréquence de sauts". Du fait de l’incomplétude du marché, il n’est pas possible, contrairement au modèle de Black & Scholes (1973), de s’assurer d’une unique mesure de probabilité risque-neutre (ou probabilité ajustée) équivalente à la mesure de probabilité historique P et par suite, le principe d’absence d’opportunité d’arbitrage ne permet pas d’établir un unique *premium* pour un *call* donné, mais un ensemble de *premiums* admissibles, chacun associé à une prime de risque. Il est clair que le problème de valorisation nécessite de spécifier les termes de prime de risque (par exemple, Hull & White (1987) proposent, dans le cadre de leur modèle à pure volatilité stochastique, d’associer une prime de risque due à la volatilité nulle, ce qui constitue une solution, parmi tant d’autres, au
problème d’incomplétude du marché). Il est également clair que les termes de risque sont indépendants d’un actif particulier\(^{13}\). Une approche "naturelle" consistant à "compléter" les marchés incomplets a été proposée par Bajeux (1996) \(\cite{15}\), mais ne permet pas de valoriser les \textit{calls}. L’autre alternative est de perdre en généralité en faisant intervenir une hypothèse supplémentaire concernant la préférence des agents financiers. En adoptant le modèle relatif au taux de consommation (stochastique) proposé par Breeden (1979) \(\cite{44}\), si j’appelle \(l_{t,V}(\tau, x_t)\) la prime de risque liée à la variance \(V_t\) et \(C_t\) le taux de consommation instantanée, il vient :

\[
l_{t,V}(\tau, x_t)dt = \gamma \cdot \text{cov}[dV_t, \frac{dC_t}{C_t}],
\]

où \(\gamma\) représente l’aversion relative au risque d’un investisseur type. En considérant maintenant le modèle relatif à la consommation de Cox, Ingersoll & Ross (1985) \(\cite{67}\) :

\[
dC_t = \mu_c V_t C_t dt + \sigma_c \sqrt{V_t} C_t dW^P_{t,C},
\]

où \(dW^P_{t,C} dW^P_{t, S_t} = \delta_c dt\), je peux postuler l’hypothèse que la prime de risque liée à la variance est proportionnelle à cette dernière, soit \(l_{t,V}(\tau, x_t) \equiv l_V V_t\). En généralisant ce résultat au vecteur état \(x_t\), je fais l’hypothèse simplificatrice suivante :

\textbf{Hypothèse 4.2.3 (Prime de risque).} La prime de risque associée à chacune des variables d’état (stochastiques) est proportionnelle à ladite variable d’état. En particulier, la prime associée au taux d’intérêt n’est pas forcément constante, ni forcément nulle.

En effet, cette forme de prime de risque relaxe l’hypothèse de constance de la prime associée au taux d’intérêt (hypothèse\(^{14}\) conforme à la théorie de l’habitat et retenue dans le modèle de Vasicek (1977) \(\cite{222}\)). Elle revient aussi à généraliser l’hypothèse de nullité de la prime de risque due au taux d’intérêt (hypothèse des "anticipations locales") retenue dans le modèle de Cox, Ingersoll & Ross (1985) \(\cite{67}\). Autrement dit, en faisant l’hypothèse 4.2.3, appliquant alors les résultats de Cox, Ingersoll & Ross (1985) \(\cite{67}\) et suivant le schéma de Bakshi, Cao & Chen (1997) \(\cite{16}\), je peux me ramener à un espace risque-neutre \((\mathbb{R}, \mathcal{T}, Q)\) en faisant l’hypothèse d’une fonction d’utilité logarithmique des investisseurs. Je réécris sous \(Q\) le modèle d’évaluation :

\(^{13}\) Pour les options sur actions, Lamoureux & Lastrapes (1993) \(\cite{149}\) ont montré que ces termes sont non nuls.

\(^{14}\) Cette hypothèse est sujette à de vives critiques, selon lesquelles l’investisseur renouvelle successivement ses décisions à l’identique et conduit, de ce fait, à une économie "figée" (Cf. Hakansson (1971) \(\cite{119}\)).
\[dx_t = F_x(\tau, x_t) dt + G_x(\tau, x_t) dW_{t,x} + J_x(\tau, x_t) d\pi_{t,x}, \]
\(\text{ou la partie tendance :} \)

\[F_x(\tau, x_t) = \begin{pmatrix} F_S(\tau, x_t) & F_V(\tau, V_t) & F_R(\tau, R_t) & F_{\lambda_s}(\tau, \lambda_s, S) \end{pmatrix}' , \]
\(\text{diffère de} \ F^P_x \ \text{d'un vecteur de primes de risque dues aux différentes sources d'incertitude} \ W^P_{t,v} , W^P_{t,r} , W^P_{t,\lambda_s} \ (\text{théorème de Cameron-Martin-Girsanov (1960)} \ [117]). \) Dans (4.9), \(W_{t,x} \) et \(\pi_{t,x} \) désignent respectivement sous \(Q \) le vecteur des processus de Wiener standards et le vecteur des processus ponctuels.

Proposition 4.2.1 (Equation intégro-différentielle (EID)). Sous les hypothèses 4.2.1, 4.2.2 et 4.2.3, l'équation intégro-différentielle que doit satisfaire un call européen, ne versant pas de dividende, de premium \(C_t \) supposé fonction de sa durée de vie \(\tau = T - t \), du prix d'exercice \(K \) et du vecteur d'état \(x_t = (S_t, V_t, R_t, \lambda_s, S) \)', à composantes stochastiques, peut s'écrit dans un univers risque-neutre \((\mathbb{R}, T, Q) \) :

\[
\left\{ R_t S_t - \lambda_s \int_{k_t, s \in K_s \subseteq \mathbb{R}} k_t, s J_S(\tau, S_t) dQ(k_t, s) - F_{S_t}(\tau, x_t) \right\} \frac{\partial C_t}{\partial S_t} + \left(\frac{\partial C_t}{\partial \tau} \right) F_x(\tau, x_t) \\
+ \frac{1}{2} \text{tr} \left\{ G_x(\tau, x_t) MG_x(\tau, x_t) \frac{\partial^2 C_t}{\partial x_t^2} \right\} - \frac{\partial C_t}{\partial \tau} - R_t C_t \\
+ \lambda_s \int_{k_t, s} \left\{ C_t(\tau, S_t + k_t, s J_S(\tau, S_t), V_t, R_t, \lambda_s, K) - C_t(\tau, S_t, V_t, R_t, \lambda_s, S, K) \right\} dQ(k_t, s) = 0, \]

\(\text{associée à la condition terminale :} \)

\[C_t|_{\tau=0} = C_t(0, x_t, K) \equiv (S_T - K)^+, \]

\(\text{où} \ F_x(\tau, x_t) \ \text{et} \ G_x(\tau, x_t) \ \text{sont respectivement définies par} \ (4.10) \ \text{et} \ (4.3). \)

\[dW_{t,x} dW'_{t,x} = M dt = M' dt = \begin{pmatrix}
1 & \rho_{s,v} & \rho_{s,r} & \rho_{s,\lambda_s} \\
\rho_{v,s} & 1 & \rho_{v,r} & \rho_{v,\lambda_s} \\
\rho_{r,s} & \rho_{r,v} & 1 & \rho_{r,\lambda_s} \\
\rho_{\lambda_s,s} & \rho_{\lambda_s,v} & \rho_{\lambda_s,r} & 1
\end{pmatrix} dt \in \mathcal{M}_{4,4}(\mathbb{R}). \]

Preuve. Cf. preuve de la proposition 4.3.1 dans laquelle je justifie la forme de l’équation intégro-différentielle satisfaite par un call européen versant de façon continue un dividende, en m’appuyant uniquement sur des arguments d’arbitrage entre l’offre et la
demande et sans coût de transaction, tels qu’ils ont pu être utilisés dans le modèle fon-
dateur de Black & Scholes, [35]. Pour retrouver la proposition 4.2.1, il suffit de prendre
\(D_t = 0, \forall t, \) étant clair que le modèle sans dividende peut être vu comme le même modèle
avec dividendes continuement égaux à 0. ■

(4.11) peut se réécrire :

\[
R_t = \frac{1}{C_t} \left[\int_{k_{t,s} \in \mathbb{K} \subseteq \mathbb{R}} \lambda_{t,s} \frac{\partial C_t}{\partial k_{t,s}} + F_V(\tau, V_t) \frac{\partial C_t}{\partial V_t} + F_R(\tau, R_t) \frac{\partial C_t}{\partial R_t} \right]
\]

\[
+ \lambda_{t,s} \int_{k_{t,s}} \left\{ C_t(\tau, S_t + k_{t,s}, J_S(\tau, S_t), V_t, R_t, \lambda_{t,s}, K) - C_t(\tau, S_t, V_t, R_t, \lambda_{t,s}, K) \right\} dQ(k_{t,s})
\]

(4.13)

Une interprétation de cette équation est la suivante : dans un univers risque-neutre où
les processus de diffusion qui interviennent, intègrent les différentes primes de risque liées
aux sources d’incertitude \((W_{t,s}^P, W_{t,v}^P, W_{t,R}^P, W_{t,\lambda}^P)\), l’espérance instantanée de rentabilité
du call \(C_t \) est strictement égale au taux sans risque. Au niveau de cette équation, il
convient de noter, pour la suite de la thèse, que la dérive du support \((F_{S_t})\) n’intervient
pas.

4.2.2 Le premium solution du modèle d’équilibre

S’agissant de trouver une solution à la précédente équation, et supposant a priori son
existence, je cherche dans cette partie la forme d’une telle solution.

Proposition 4.2.2 (Premium solution au modèle SVSISJ). La solution à (4.11)
peut être exprimée sous la forme :

\[
C_t(\tau, x_t, K) = S_t \Pi_{t,1}(\tau, x_t, K) - K B_t(\tau, R_t) \Pi_{t,2}(\tau, x_t, K),
\]

Preuve.

Sous la mesure de probabilité risque-neutre \(Q \) - que je suppose être intégrable au sens de
Lebesgue - le **premium** du call est une martingale :

\[
C_t(\tau, x_t, K) = B_t(\tau, R_t) \mathbb{E}_t^Q[C_t(0, x_t, K)],
\]
où $C_t(0, x_t, K)$ désigne la condition terminale $C_t(0, x_t, K) = (S_T - K)^+$. Il vient alors :

$$C_t(\tau, x_t, K) = B_t(\tau, R_t) \mathbb{E}^Q \left[(S_T - K)^+ \right]$$

$$= B_t(\tau, R_t) \int_k^{\infty} (S_T - K)Q(S_T) dS_T$$

$$= B_t(\tau, R_t) \left\{ \int_k^{\infty} S_T Q(S_T) dS_T - K \int_k^{\infty} Q(S_T) dS_T \right\}$$

$$= S_t \Pi_{t,1}(\tau, x_t, K) - KB_t(\tau, R_t) \Pi_{t,2}(\tau, x_t, K), \quad (4.14)$$

où j’ai posé :

$$\left\{ \begin{array}{l}
\Pi_{t,1}(\tau, x_t, K) = \frac{B_t(\tau, R_t) \int_k^{\infty} S_T Q(S_T) dS_T}{S_t} \\
\Pi_{t,2}(\tau, x_t, K) = \int_k^{\infty} Q(S_T) dS_T.
\end{array} \right. \quad (4.15)$$

Les quantités $\Pi_{t,1}$ et $\Pi_{t,2}$ peuvent être interprétées comme des mesures de probabilité risque-neutres. En effet, la deuxième équation de 4.15 peut s’interpréter comme :

$$\Pi_{t,2}(\tau, x_t, K) = \text{Pr}(S_T > K). \quad (4.16)$$

En définissant $F_u(w)$ la fonction de répartition en w d’une variable aléatoire u à valeurs dans \mathbb{R}_+ par :

$$F_u(w) = \frac{\int_0^w uQ(u) du}{\int_0^{\infty} uQ(u) du},$$

celle de S_T s’écrit en K :

$$F_{S_T}(K) = \frac{\int_0^K S_T Q(S_T) dS_T}{\int_0^{\infty} S_T Q(S_T) dS_T}, \quad (4.17)$$

soit encore

$$F_{S_T}(\tau, K) = \frac{B_t(\tau, R_t) \int_0^K S_T Q(S_T) dS_T}{S_t}. \quad (4.18)$$
En effet, la valeur de tout actif négocié peut être calculée en actualisant sa valeur espérée sous la mesure martingale équivalente. En particulier celle de S_t s’écrit :

$$S_t = B_t(\tau, R_t)\mathbb{E}_t^Q [S_T]$$

et par suite le dénominateur de 4.17 devient

$$\int_0^\infty S_T Q(S_T) dS_T = \mathbb{E}_t^Q [S_T] = \frac{S_t}{B_t(\tau, R_t)}.$$

$\Pi_{t,1}(\tau, x_t, K)$ peut s’exprimer en fonction de $F_{S_T}(\tau, K) : \Pi_{t,1}(\tau, x_t, K) = 1 - F_{S_T}(\tau, K)$, et je montre ainsi que la quantité $\Pi_{t,1}$ peut également être interprétée comme une probabilité (que le call expire "dans la monnaie") :

$$\Pi_{t,1}(\tau, x_t, K) = \Pr(S_T > K). \quad (4.19)$$

Le modèle de la structure par terme des taux d’intérêt

Dans le cadre du modèle $SVSISI$, où l’hypothèse peu réaliste de déterminisme du taux d’intérêt est levée, je postule que la courbe des taux est fonction d’une seule variable d’état (le taux court), R_t. En ce sens, je suppose que les prix des obligations de différentes maturités tendent à évoluer de façon corrélée lorsque le taux court fluctue. Autrement dit, ces derniers peuvent, en pratique, être assimilés au taux de rentabilité d’une obligation courte sans risque de défaut, B_t, typiquement un T-Bill aux USA ou un BTF15 en France. Ainsi, B_t est déterminé en t par l’ensemble

$$\{ R_u \}_{t \leq u \leq T},$$

c’est-à-dire la trajectoire du taux court instantané pendant toute la durée de vie de l’obligation. En effet, puisque la sensibilité du prix d’une option aux variations du taux d’intérêt est relativement faible, je suggère de ne retenir qu’une seule variable d’état pour modéliser la structure par terme des taux d’intérêt16. L’hypothèse d’efficacité du marché financier, qui assure qu’il n’existe pas d’arbitrage sans risque profitable, permet d’écrire que :

15 Bon à taux fixe.

16 Théoriquement, il serait envisageable de retenir d’autres modélisations nettement plus affinées et complexes, comme l’a montré le tableau 3.1 du chapitre 3, section 3.4.
4. Proposition du modèle SVSISJ à sauts, volatilité et taux stochastiques

\[B_t = B_t(T - t, R_t) \]

L'hypothèse sous-jacente selon laquelle les rentabilités instantanées des obligations de maturités différentes sont parfaitement corrélées ne signifie pas que les rentabilités de toutes les obligations doivent être les mêmes sur une période donnée. En effet, certains investisseurs, qui ne désirant pas réviser constamment la composition de leur portefeuille, ont besoin d'un ensemble relativement important de maturités, leur permettant ainsi d'atteindre leurs objectifs en matière d'investissement. Au vu de toutes ces considérations, il convient d'évaluer le prix d'un zéro-coupon. Il est possible d'énoncer la proposition suivante :

Proposition 4.2.3 (Prix d'un zéro-coupon). Soit une obligation zéro-coupon à flux final \(Z \) à échéance \(T \). Soit \(\tau = T - t \) la maturité de l’obligation. Si le taux d'intérêt peut-être modélisé par un processus "racine-carrée"\(^{17} \), de la forme

\[dR_i = (\mu_R - \gamma_R R_i)dt + (\sigma_R \sqrt{R_i})dW_{i,R} \]

sous une mesure de probabilité risque-neutre \(Q \), alors le prix \(B_i(\tau, R_i) \) suppose à priori fonction de la durée de vie du contrat \(\tau \geq 0 \) et du taux d'intérêt \(R_i \) d'une telle obligation, peut s'écritre :

\[
B_i(\tau, R_i) = Z \exp \left\{ \frac{\mu_R}{\sigma_R^2} \left[(\gamma_R + \eta)\tau - 2 \ln \left(1 - \frac{[\gamma_R + \eta][1 - e^{\eta\tau}]}{2\eta} \right) \right] \right.
- \left. \frac{2(1 - e^{\eta\tau})}{\gamma_R (1 - e^{\eta\tau}) - \eta(1 + e^{\eta\tau})} R_i \right\},
\]

ou

\[\eta \equiv \sqrt{\frac{\gamma_R^2 + 2\sigma_R^2}{\gamma_R}}. \]

Preuve.

Une démarche naturelle pour aboutir à la formule (4.20) est de supposer que le taux d'intérêt suit un processus stochastique de la forme très générale \(dR_i = F_R(\tau, R_i)dt + G_R(\tau, R_i)dW_{i,R} \) sous \(Q \), et de tenter de répondre aux deux questions qui sont étroitement liées :

- 1) quelles expressions de \(F_R(\tau, R_i) \) et \(G_R(\tau, R_i) \) retenir de façon à obtenir une expression analytique, "suffisamment exploitable", du prix de l’obligation ?

\(^{17}\) Comme le montrera la preuve 4.2.2, cette hypothèse de processus du taux d'intérêt comme processus racine-carrée s'impose naturellement de façon à obtenir une expression analytique "suffisamment exploitable".
- 2) quel serait alors le prix de l’obligation ?
En effet, la réponse à la première question donne des classes de processus compatibles
avec une solution analytique, et la seconde délivre le prix cherché de l’obligation.

1) Quelles expressions de $F_R(\tau, R_t)$ et $G_R(\tau, R_t)$ retenir de façon à obtenir une expression
analytique, "suffisamment exploitable", du prix de l’obligation ? La constitution d’un
portefeuille d’arbitrage, composé de deux obligations zéro-coupon de maturité respective
τ_1 et $\tau_2 \neq \tau_1$, permet de dériver l’EDP qui doit satisfaire le prix d’un zéro-coupon. Celle-ci
peut s’écrire sous la mesure de probabilité risque-neutre Q :

$$\frac{F_R(\tau, R_t)}{\partial \tau} + \frac{1}{2} \frac{\partial^2 B_t}{\partial R_t^2} B_t - \frac{\partial B_t}{\partial \tau} R_t B_t = 0,$$

à laquelle correspond la condition terminale, vraie par définition :

$$B_t|_{\tau=0} = B_t(0, R_t) \equiv Z.$$

On peut convenir qu’une expression "suffisamment exploitable" du prix du zéro-coupon,
versant un montant égal à Z à la date d’échéance T, prend la forme :

$$B_t(\tau, R_t) = Z e^{\mathcal{U}_t(\tau) - R_t \mathcal{V}_t(\tau)},$$

où $\mathcal{U}_t(\tau) \neq 0$ et $\mathcal{V}_t(\tau) \neq 0, \forall \tau \in \mathbb{R}_+$. Si une telle expression est solution de l’EDP (4.21)
alors :

$$- F_R(\tau, R_t) \mathcal{V}_t(\tau) + \frac{1}{2} G_R^2(\tau, R_t) \mathcal{V}_t^2(\tau) - \frac{\partial \mathcal{U}_t(\tau)}{\partial \tau} R_t \frac{\partial \mathcal{V}_t(\tau)}{\partial \tau} - R_t = 0.$$

Soit encore, en différenciant deux fois par rapport à R_t puis en simplifiant par $\mathcal{V}_t(\tau) \neq 0, \forall \tau$:

$$- \frac{\partial^2 F_R(\tau, R_t)}{\partial R_t^2} + \frac{1}{2} \mathcal{V}_t(\tau) \frac{\partial^2 G_R^2(\tau, R_t)}{\partial R_t^2} = 0.$$

Puisque \mathcal{V}_t est une fonctionnelle de τ, l’égalité précédente ne peut-être vraie que si :

$$\begin{cases} \frac{\partial^2 F_R(\tau, R_t)}{\partial R_t^2} = 0, \\ \frac{\partial^2 G_R^2(\tau, R_t)}{\partial R_t^2} = 0. \end{cases}$$

La résolution de ce système d’équations différentielles conduit à prendre, respectivement,
comme expressions pour $F_R(\tau, R_t)$ et $G_R(\tau, R_t)$:

$$F_R(\tau, R_t) = \mu_R(\tau) - \gamma_R(\tau) R_t,$$

$$G_R(\tau, R_t) = \sqrt{\zeta_R(\tau) R_t + \kappa_R(\tau)},$$
où μ_R, γ_R, ζ_R et κ_R sont des fonctionnelles de τ. Un tel processus

$$dR_t = [\mu_R(\tau) - \gamma_R(\tau)R_t]dt + \sqrt{\zeta_R(\tau)R_t + \kappa_R(\tau)}dW_{t,R}$$

généralise celui retenu dans les modèles relatifs à la structure par terme des taux de Vasicek (1977) [222] ($\zeta_R(\tau) = 0, \forall \tau$), de Cox, Ingersoll & Ross (1985) [66] ($\kappa_R(\tau) = 0, \forall \tau$, les autres paramètres étant constants) ainsi que de Hull & White (1990) [134] ($\zeta_R(\tau) = 0, \forall \tau$ ou $\kappa_R(\tau) = 0, \forall \tau$).

2) Quel serait alors le prix de l’obligation ? En prenant :

$$\begin{align*}
F_R(\tau, R_t) &\equiv \mu_R(\tau) - \gamma_R(\tau)R_t, \\
G_R(\tau, R_t) &\equiv \sqrt{\zeta_R(\tau)R_t + \kappa_R(\tau)}
\end{align*}$$

l’EDP (4.21) peut se réécrire :

$$-\frac{\partial U_t(\tau)}{\partial \tau} - \frac{1}{2}\zeta_R(\tau)U_t^2(\tau) - \gamma_R(\tau)U_t(\tau) + 1 = 0, \quad (4.25a)$$

$$-\frac{\partial U_t(\tau)}{\partial \tau} + \frac{1}{2}\kappa_R(\tau)U_t^2(\tau) - \mu_R(\tau)U_t(\tau) = 0. \quad (4.25b)$$

Afin de satisfaire $B_t|_{\tau=0} = B_t(0, R_t) = Z$, le le système de conditions terminales doit être le suivant :

$$\begin{align*}
U_t|_{\tau=0} &= U_t(0) \equiv 0, \\
V_t|_{\tau=0} &= V_t(0) \equiv 0.
\end{align*}$$

(4.26)

Il s’agit alors de résoudre un système différentiel ordinaire du premier ordre à coefficients non constants. Dans le cas très général où les paramètres μ_R, γ_R, ζ_R et κ_R, dépendant du temps ou sont tous non nuls, il semble qu’une solution analytique soit difficile à expliciter. Par contre, dans le cas particulier où $\mu_R(\tau) \equiv \mu_R, \forall \tau$, $\gamma_R(\tau) \equiv \gamma_R, \forall \tau$, $\zeta_R(\tau) \equiv \zeta_R \equiv \sigma_R^2, \forall \tau$ et $\kappa_R(\tau) \equiv 0, \forall \tau$ (cas où le taux d’intérêt suit un processus stochastique de type racine-carrée tel que l’ont adopté Cox, Ingersoll & Ross (1985)18 [66]18), il est possible d’extraire un prix analytique pour l’obligation. En effet, dans le cas d’un processus de diffusion "racine-carrée", les solutions de (4.25a) et (4.25b) associées à leur condition terminale (4.26) s’écrivent :

$$V_t(\tau) = \frac{2(1 - e^{\eta\tau})}{\gamma_R(1 - e^{\eta\tau}) - \eta(1 + e^{\eta\tau})}. \quad (4.27a)$$

18 Cependant, à la différence du modèle relatif à la structure par terme des taux de Cox, Ingersoll & Ross (1985), le modèle SVSISJ ne postule pas que la prime de risque liée au caractère aléatoire du taux est nulle. Cf. hypothèse 4.2.3.
4. Propriété du modèle $SYSISJ$ à sauts, volatilité et taux stochastiques

\[U_t(\tau) = \frac{\mu_R}{\sigma_R^2} \left[(\gamma_R + \eta) \tau - 2 \ln \left(1 - \frac{[\gamma_R + \eta][1 - e^\eta]}{2\eta} \right) \right], \quad (4.27b) \]

où
\[\eta \equiv \sqrt{\frac{\gamma_R^2 + 2\sigma_R^2}{\gamma_R}}. \]

En injectant (4.27a) et (4.27b) dans (4.22), on retrouve bien (4.20), et la proposition 4.2.3 est ainsi démontrée.

Muni des propositions 4.2.2 et 4.2.3, je cherche une solution candidate de (4.11) sous la forme de (4.14).

Il est clair que la résolution entièrement analytique de la précédente équation nécessite que je m'en restreigne à des cas particuliers où les parties déterministes et stochastiques des divers processus markoviens mis en jeu restent suffisamment simples.

Hypothèse 4.2.4 (Processus de diffusion "racine-carrée"). Une classe de processus présentent un compromis acceptable entre "facilité d'exploitation" et niveau de réalisme peut être le processus de diffusion "racine-carrée", tel que l'ont utilisé dès 1978 Richard [198], ou encore en 1985 Cox, Ingersoll et Ross [66] :

\[x_t = x_0 + \int_0^t \left(\mu_x - \gamma_x x_u \right) du + \sigma_x \int_0^t \sqrt{x_u} dW_{u,x}, \]

où \((\mu_x, \gamma_x, \sigma_x) \in \mathbb{R}^3\).

En effet, ce type de processus, appartenant à la classe des processus avec retour à la moyenne (mean-reverting), modélise deux types de contraintes d'évolution :
- la première représente la capacité de \(x_t\) à converger vers sa valeur moyenne à long terme \(\mu_x / \gamma_x\). Cette première contrainte, que l'on peut voir également comme une aptitude du processus, permet par exemple de traduire la constatation que d'un point de vue historique, des valeurs élevées ont tendance à être suivies le plus fréquemment par des mouvements de baisse, et inversement (phénomène de clustering de la volatilité\(^1\)).
- La seconde contrainte fait converger \(x_t\) vers sa valeur moyenne, à une vitesse \(\gamma_x\) d'autant plus grande qu'il s'en écarte davantage. Cela permet ainsi de modéliser une variable d'état se stabilisant autour de sa valeur moyenne.

\(^{19}\) Cf chapitre 1, section 1.2.
De plus, à la différence par exemple du processus d’Orstein-Uhlenbeck "OU", tel que l’a utilisé par exemple Vasicek en 1977 [222] pour modéliser le taux à court terme, le processus "racine-carrée" interdit toute valeur négative totalement irréaliste pour x_t, soit

\[x_t\big|_{t=0} = x_0 > 0, \]

pourvu que la condition initiale, $x_t\big|_{t=0} = x_0 > 0$, soit satisfaite.

Propriété 4.2.1 (Propriété isomorphique du processus "racine-carrée"). Soit $l_{i,x}$ la prime de risque associée à la variable aléatoire x_t. Si $l_{i,x} \propto x_t = \lambda_x x_t$, où $\lambda_x \in \mathbb{R}$, alors, sous les conditions classiques de régularité nécessaires à l’invocation du théorème de Girsanov, on a :

\[
\begin{align*}
d x_t &= \left[\mu_x - \gamma_x x_t - \lambda_x x_t \right] dt + \sigma_x \sqrt{x_t} d z^P_t \\
&= \left(\mu_x - \gamma_x^* x_t \right) dt + \sigma_x \sqrt{x_t} d z^Q_t
\end{align*}
\]

ou $\gamma^*_x \equiv \gamma_x + \lambda_x$.

D’après cette propriété, si la prime de risque liée à la variable x est proportionnelle à cette variable, alors les processus réels restent des processus racine-carrée dans l’univers risque-neutre. Autrement dit, le processus racine-carrée conserve sa nature lors du changement de l’univers (\mathbb{R}, T, P) vers l’univers (\mathbb{R}, T, Q).

Un autre avantage de poids d’un tel processus est qu’il permet d’aboutir à une solution analytique. En effet, dans le cas particulier où toutes les variables d’état intervenant dans le modèle SVSJS suivent la trajectoire d’un processus "racine-carrée" [21], il est possible de trouver une solution analytique au problème de valorisation, comme la suite de l’exposé va le montrer.

20 Le processus "OU" est solution au sens d’Itô (1951) [139], de l’équation différentielle stochastique suivante

\[dx_t = (\mu_x - \gamma_x x_t) dt + \sigma_x dW_{t,x} \]

où $(\mu_x, \gamma_x, \sigma_x) \in \mathbb{R}^3$, associée à la condition limite $x_t\big|_{t=0} = x_0$; sous cette formulation, parce que le terme de diffusion (termé en $dW_{t,x}$) est indépendant de x_t, il existe (au moins) une valeur de t pour laquelle cette variable d’état x_t peut être négative. En effet, si $x_t = 0$ alors il vient $dx_t = \mu_x dt + \sigma_x dW_{t,x}$ où rien n’interdit au terme de diffusion, qui est infiniment grand par rapport au terme de dérive, d’être négatif. Bien qu’elle soit négligeable, la probabilité que cet événement survienne n’est pas nulle.

21 En réalité, le processus du sous-jacent S_t peut ne pas suivre un processus racine-carrée. En effet, (4.13) montre que la partie "dérive" dans la spécification du processus d’évolution du cours de l’actif sous-jacent n’intervient en aucun cas dans l’équation différentielle satisfaite par le premium du call européen. Par conséquent, une autre expression pour la dérive de S_t peut convenir.
En effet, prenons :

\[
\begin{align*}
F_V(\tau, V_t) &\equiv \mu_V - \gamma_V V_t, \\
F_R(\tau, R_t) &\equiv \mu_R - \gamma_R R_t, \\
F_{\lambda_s}(\tau, \lambda_s, S) &\equiv \mu_{\lambda_s} - \gamma_{\lambda_s} \lambda_s, \\
G_S(\tau, S_t) &\equiv \sqrt{V_t} S_t, \\
G_V(\tau, V_t) &\equiv \sigma_V \sqrt{V_t}, \\
G_R(\tau, R_t) &\equiv \sigma_R \sqrt{R_t}, \\
G_{\lambda_s}(\tau, \lambda_s, S) &\equiv \sigma_{\lambda_s} \sqrt{\lambda_s, S}, \\
J_S(\tau, S_t) &\equiv S_t,
\end{align*}
\]

et

\[
\begin{align*}
\rho_{s, V} &\neq 0, \\
\rho_{s, R} &\equiv 0, \\
\rho_{s, \lambda_s} &\equiv 0, \\
\rho_{V, R} &\equiv 0, \\
\rho_{V, \lambda_s} &\equiv 0, \\
\rho_{R, \lambda_s} &\equiv 0.
\end{align*}
\]

\[(4.28)\]

Sous cette spécification, les paramètres structurels *tous constants* sont : μ_V / γ_V - le niveau moyen à long terme de la variance ; γ_V - la vitesse de retour à la moyenne de la variance ; σ_V - le coefficient de variation de la variance ; μ_R / γ_R - le niveau moyen à long terme du taux d’intérêt, γ_R - la vitesse de retour à la moyenne du taux d’intérêt, σ_R - le coefficient de variation du taux d’intérêt ; $\mu_{\lambda_s} / \gamma_{\lambda_s}$ - le niveau moyen à long terme de la fréquence des sauts, γ_{λ_s} - la vitesse de retour à la moyenne de la fréquence des sauts et $\rho_{s, V}$ - le coefficient de corrélation entre les chocs de variance et les rentabilités de l’actif support.

J’insiste encore sur le fait que tous ces paramètres sont spécifiés sous la mesure de probabilité risque-neutre, et non pas sous la mesure de probabilité réelle. Par conséquent, ces derniers peuvent différer (et diffèrent certainement) de leurs contreparties spécifiées dans l’univers probabilisé réel, du fait de l’existence de primes de risque associées au risque de cours de l’actif sous-jacent, risque de variance, risque de fréquence de sauts et risque de taux d’intérêt. Par ailleurs, je laisse l’expression de F_S libre de toute spécification, puisque ce terme de drift du cours de l’actif sous-jacent n’intervient pas dans l’équation à résoudre22.

Proposition 4.2.4 (Processus (stochastique) de la volatilité). *Dans le modèle SV-SISJ, le processus de la volatilité $\sigma_t = \sqrt{V_t}$ s’écrit :*

\[
d\sigma_t = \left[\frac{1}{2}(\mu_V - \frac{1}{4} \sigma_V^2)\sigma_t^{-1} - \frac{1}{2} \gamma_V \sigma_t\right] dt + \frac{1}{2} \sigma_V dW_t,\sigma.
\]

Preuve. Il s’agit d’une application immédiate du lemme d’Itô (1951) au processus de la variance :

\[
dV_t = (\mu_V - \gamma_V V_t) dt + \sigma_V \sqrt{V_t} dW_t, V.
\]

22 Dans l’optique d’une "pure" modélisation de la dynamique du cours de l’actif support, cette "liberté" ne serait pas acceptable.
4. Proposition du modèle SVSISJ à sauts, volatilité et taux stochastiques

En vérité, adopter ce processus de type "racine-carrée" introduit par Cox, Ingersoll & Ross (1985), puis par Heston (1993), Heynen, Kenna & Vorst (1994) [128], Bates (1996), ou encore par Bakshi, Cao & Chen (1997) par exemple, pour le processus de diffusion de la variance, revient à généraliser le processus de type "OU" à niveau moyen à long terme nul (terme en \(\sigma_t^{-1} \) nul), tel que l’ont utilisé, par exemple, Stein & Stein (1991) pour le processus de la volatilité. En effet, le processus de la variance peut s’écrire sous la forme particulière :

\[
dV_t = (\sigma^2 - 2\beta \gamma_t)dt + 2\delta \sqrt{V_t}dW_{t, V}
\]

si \(\mu_t = \sigma^2, \gamma_t = 2\beta, \sigma_t = 2\delta \), processus conduisant au processus "OU" de volatilité \(\sigma_t = \sqrt{V_t} \) :

\[
d\sigma_t = -\beta \sigma_t \, dt + \delta dW_{t, \sigma}.
\]

Sous l’hypothèse de processus racine-carrée pour chacune des variables d’état \(S_t, V_t, R_t, \lambda_t, \) il est possible d’énoncer la proposition suivante :

Proposition 4.2.5 (Valoration des calls européens (modèle SVSISJ)). Si les composantes du vecteur état \(x_t = \left(S_t, V_t, R_t, \lambda_t \right)' \in \mathbb{R}^4 \) suivent un processus racine-carrée, si \(\ln(1 + k_t) \sim N(\ln(1 + \mu_{k_t}) - \frac{1}{2}\sigma^2_{k_t}, \sigma^2_{k_t}) \), et si les fonctions caractéristiques des probabilités risque-neutres que le call expire "dans la monnaie" sont de arrêt intégrable, une formule de valorisation analytique d’un call européen ne versant pas de dividende, issue du modèle SVSISJ\(^{23}\) peut s’écrire :

\[
C_t(\tau, x_t, K) = S_t \Pi_{t,1}(\tau, x_t, K) - KB_t(\tau, R_t) \Pi_{t,2}(\tau, x_t, K), \quad (4.29)
\]

avec

\[
B_t(\tau, R_t) = \mathbb{E}_t^Q \left[\exp \left\{ - \int_t^{t+\tau} R_u \, du \right\} \right]
\]

\[
= \exp \left\{ \frac{\mu_R}{\sigma_R^2} \left[(\gamma_R + \eta)\tau - 2 \ln \left(1 - \frac{[\gamma_R + \eta][1 - e^{\eta\tau}]}{2\eta} \right) \right] - \frac{2(1 - e^{\eta\tau})}{\gamma_R(1 - e^{\eta\tau}) - \eta(1 + e^{\eta\tau})} R_t \right\}, \quad (4.30)
\]

\(^{23}\) Comme la suite de l’exposé va le montrer, ce modèle SVSISJ coïncide avec celui de Black & Scholes (1973) [35] si \(\mu = \gamma_s = \sigma_s = \mu_R = \gamma_R = \sigma_R = \mu_{\lambda, s} = \gamma_{\lambda, s} = \sigma_{\lambda, s} = \mu_{S, V} = \gamma_{S, V} = 0 \), avec celui à "purs sauts" de Merton (1976) [173], si \(\mu = \gamma_s = \sigma_s = \mu_R = \gamma_R = \sigma_R = \mu_{\lambda, s} = \gamma_{\lambda, s} = \sigma_{\lambda, s} = \rho_{S, V} = 0 \), avec celui de Heston (1993) [126] si \(\mu = \gamma_s = \sigma_s = \mu_R = \gamma_R = \sigma_R = \mu_{\lambda, s} = \gamma_{\lambda, s} = \sigma_{\lambda, s} = \mu_{S, V} = \gamma_{S, V} = 0 \), avec celui de Bates (1996) [24] si \(\mu = \gamma = \sigma = \mu_{\lambda, s} = \gamma_{\lambda, s} = \sigma_{\lambda, s} = 0 \), et enfin celui de Bakshi, Chen & Cao (1997) [16] si \(\mu_{\lambda, s} = 0 \).
où
\[\eta \equiv \sqrt{\gamma_r^2 + 2\sigma_R^2} \]

et \(\forall j = 1, 2, \)

\[\Pi_{t,j}(\tau, x_t, K) = \Pr(S_T > K) = \frac{1}{2} + \frac{1}{\pi} \int_0^{+\infty} \frac{Re\{e^{-i\phi \ln K} f_{t,j}(\tau, x_t, \phi)\}}{i\phi} d\phi, \quad (4.31) \]

où
\[
\begin{align*}
& f_{t,1}(T - t, S_t, V_t, R_t, \lambda_{t,s}, \phi) = \exp\{i\phi \ln S_t \}
+ \frac{\left(\phi^2 - i\phi\right)(1 - e^{\xi_{1,V}(T-t)})}{2i\phi(1 - e^{\xi_{1,R}(T-t)})} V_t \\
& + \frac{\gamma_r^2 \xi_{1,V}(1 + i\phi)(1 - e^{\xi_{1,V}(T-t)}) - \xi_{1,V}(1 + e^{\xi_{1,V}(T-t)}) V_t}{\gamma_r^2 (1 - e^{\xi_{1,R}(T-t)}) - \xi_{1,R}(1 + e^{\xi_{1,R}(T-t)}) R_t} \\
& + \frac{2\lambda_{t,s}}{\gamma_{1,s}(1 - e^{\xi_{1,s}(T-t)}) - \xi_{1,s}(1 + e^{\xi_{1,s}(T-t)})} \lambda_{t,s} \\
& + \frac{\mu_R}{\sigma_R^2} \left\{ \left(\gamma_{1,R} + \xi_{1,R}\right)(T - t) - 2 \ln \left(1 - \frac{\gamma_{1,R} \xi_{1,R} \left[1 - e^{\xi_{1,R}(T-t)}\right]}{2 \xi_{1,R}}\right) \right\} \\
& + \frac{\mu_R}{\sigma_R^2} \left\{ \left(\gamma_{1,s} + \xi_{1,s}\right)(T - t) - 2 \ln \left(1 - \frac{\gamma_{1,s} \xi_{1,s} \left[1 - e^{\xi_{1,s}(T-t)}\right]}{2 \xi_{1,s}}\right) \right\}, \\
& \quad (4.32a) \]
\]

sû : \[
\begin{align*}
\xi_{1,V} & \equiv \sqrt{\gamma_{1,V}^2 - \sigma_{V,s}^2 (1 + i\phi)^2 + \sigma_R^2 (\phi^2 - i\phi)}, \\
\xi_{1,R} & \equiv \sqrt{\gamma_{1,R}^2 - 2i\sigma_R^2 \phi}, \\
\xi_{1,s} & \equiv \sqrt{\gamma_{1,s}^2 - 2\sigma_{s,}\left\{(1 + \mu_{s,J})\left[1 + i\phi e^{-\sigma_{s,J}(\phi^2 - i\phi)/2} - 1\right] - \mu_{s,J} i\phi\right\}},
\end{align*}
\]
et

\[
\begin{align*}
f_{t,2}(T - t, S_t, V_t, R_t, \lambda_{t,s}, \phi) &= \exp\{i\phi \ln S_t - \ln B_t \\
& + \frac{\gamma_V - \sigma_V \rho_{s,V} i\phi - e^{\xi_{2,V} (T - t)}}{\sigma_V^2 + \phi^2} (1 - e^{\xi_{2,V} (T - t)}) V_t \\
& + \frac{\gamma_r (1 - e^{\xi_{2,r} (T - t)}) - \xi_{2,r}(1 + e^{\xi_{2,r} (T - t)})}{2(i\phi - 1)} R_t \\
& + \frac{2\{(1 + \mu_{\lambda_s}) i\phi e^{-\frac{\tau_{s}^2}{2} (\phi^2 + 2\phi)} - 1 - \mu_{\lambda_s} i\phi\} (1 - e^{\xi_{2,\lambda_s} (T - t)})}{\gamma_{\lambda_s} (1 - e^{\xi_{2,\lambda_s} (T - t)}) - \xi_{2,\lambda_s}(1 + e^{\xi_{2,\lambda_s} (T - t)})} \lambda_{t,s} \\
& + \frac{\mu_V}{\sigma_V^2} \left\{ (\gamma_V - \sigma_V \rho_{s,V} i\phi + e^{\xi_{2,V} (T - t)})(T - t) \right\} \\
& - 2\ln(1 - \frac{\gamma_V - \sigma_V \rho_{s,V} i\phi + e^{\xi_{2,V} (T - t)}}{2\xi_{2,V}}) \\
& - \frac{\mu_r}{\sigma_r^2} \left\{ (\gamma_r + \xi_{2,r})(T - t) - 2\ln(1 - \frac{\gamma_r + \xi_{2,r}}{2\xi_{2,r}}) \right\} \\
& + \frac{\mu_{\lambda_s}}{\sigma_{\lambda_s}^2} \left\{ (\gamma_{\lambda_s} + \xi_{2,\lambda_s})(T - t) - 2\ln(1 - \frac{\gamma_{\lambda_s} + \xi_{2,\lambda_s}}{2\xi_{2,\lambda_s}}) \right\},
\end{align*}
\]

(4.32b)

où

\[
\begin{align*}
\xi_{2,V} &= \sqrt{\gamma_V - \sigma_V \rho_{s,V} i\phi}^2 + \sigma_V^2 (\phi^2 + i\phi) \\
\xi_{2,R} &= \sqrt{\gamma_r - 2\sigma_r^2 (\phi - 1)} \\
\xi_{2,\lambda_s} &= \sqrt{\gamma_{\lambda_s} - 2\sigma_{\lambda_s}^2 \{ (1 + \mu_{\lambda_s}) i\phi e^{-\frac{\tau_{s}^2}{2} (\phi^2 + 2\phi)} - 1 - \mu_{\lambda_s} i\phi\}.
\end{align*}
\]

Preuve. Cf. Annexe A.1 □

Dans l’ouvrage de Kendall & Stuart (1977) [147], il est montré que l’intégrale présente dans (4.31) converge.

dernier intervalle est plus petite qu’un certain nombre donné a priori, 10^{-10} par exemple, l’intégration est stoppée et \(\phi_{\text{max}} \) est fixé.

4.2.3 Le modèle \(SVSISJ \) comme généralisation des modèles en temps continu de la littérature

Lorsque la fréquence des sauts est déterministe et constante : le modèle de Bakshi, Cao & Chen (1997) (modèle \(SVSI\text{-}J \))

Lorsque \[
\begin{align*}
\mu_{\lambda_t, s} & \to 0 \\
\gamma_{\lambda_t, s} & \to 0 \\
\sigma_{\lambda_t, s} & \to 0
\end{align*}
\]
je retrouve le modèle de Bakshi, Cao & Chen (1997) :

\[
f_{L, L}(T - t, S_t, V_t, R_t, \lambda_S, \phi) = \exp \{ i\phi \ln S_t \}
\]
\[
+ \left(\frac{\sigma_v}{\gamma_v} \right)^2 \rho_{S,v} (1 + i\phi) \left(1 - e^{\gamma_1,V(T-t)} \right) - \xi_1,V (1 + e^{\gamma_1,V(T-t)}) V_t
\]
\[
+ \frac{2i\phi(1 - e^{\xi_1,R(T-t)}/\gamma_R)}{\gamma_R (1 + e^{\xi_1,R(T-t)})} R_t
\]
\[
+ \lambda_S \{ (1 + \mu_{s,J}) \xi_1,V \} \left(1 + i\phi \right) - \mu_{s,J} \xi_1,V \} \left(T - t \right)
\]
\[
- 2 \ln \left(1 - \frac{\left[\gamma_v - \sigma_v \rho_{S,v} (1 + i\phi) + \xi_1,V \right] \left[1 - e^{\gamma_1,V(T-t)} \right]}{2\xi_1,V} \right)
\]
\[
+ \frac{\mu_R}{\sigma^2_R} \left\{ (\gamma_R + \xi_1,R)(T - t) - 2 \ln \left(1 - \frac{\left[\gamma_R + \xi_1,R \right] \left[1 - e^{\gamma_1,R(T-t)} \right]}{2\xi_1,R} \right) \right\}
\]

\[
(4.33a)
\]

où

\[
\xi_1,V \equiv \sqrt{\frac{\gamma_v - \sigma_v \rho_{S,v} (1 + i\phi)}{\sigma^2_v} (\phi^2 - i\phi)}
\]
\[
\xi_1,R \equiv \sqrt{\frac{\gamma_R}{\sigma^2_R} 2i\sigma^2_R \phi}
\]

et
\[f_{1,2}(T - t, S_t, V_t, R_t, \lambda_s, \phi) = \exp \{ i \phi \ln S_t - \ln B_t \} \]
\[- (\phi^2 + i \phi)(1 - e^{\xi_{2,v}(T-t)}) \]
\[+ \frac{[\gamma_v - \sigma_v \rho_{s,v} i \phi (1 - e^{\xi_{2,v}(T-t)}) - \xi_{2,v}(1 + e^{\xi_{2,v}(T-t)}) V_t}{2(i \phi - 1)(1 - e^{\xi_{2,r}(T-t)})} \]
\[+ \frac{\gamma_R (1 - e^{\xi_{2,r}(T-t)}) - \xi_{2,R}(1 + e^{\xi_{2,r}(T-t)}) R_t}{\lambda_s \{ (1 + \mu_{j_s}) i \phi e^{-\lambda_{j_s}(\phi^2 + i \phi)/2} - 1 - \mu_{j_s} i \phi \} (T - t) \]
\[+ \frac{\mu_v}{\sigma_v^2} \{(\gamma_v - \sigma_v \rho_{s,v} i \phi + \xi_{2,v})(T - t) \}
\[- 2 \ln(1 - \frac{[\gamma_v - \sigma_v \rho_{s,v} i \phi + \xi_{2,v}] [1 - e^{\xi_{2,v}(T-t)}]}{2\xi_{2,v}}) \}
\[+ \frac{\mu_R}{\sigma_R^2} \{(\gamma_R + \xi_{2,R})(T - t) - 2 \ln(1 - \frac{[\gamma_R + \xi_{2,R}] [1 - e^{\xi_{2,R}(T-t)}]}{2\xi_{2,R}}) \} \]

\[(4.33b)\]

où
\[\xi_{2,v} \equiv \sqrt{[\gamma_v - \sigma_v \rho_{s,v} i \phi]^2 + \sigma_v^2 (\phi^2 + i \phi)} \]
\[\xi_{2,\lambda_s} \equiv \sqrt{\gamma_{\lambda_s}^2 - 2 \sigma_{\lambda_s}^2 \{ (1 + \mu_{j_s}) i \phi e^{-\lambda_{j_s}(\phi^2 + i \phi)/2} - 1 - \mu_{j_s} i \phi \} \} \]

Lorsque le taux d’intérêt est déterministe et constant (modèle SVSJ)

Dans le cas particulier où le taux d’intérêt est déterministe et constant, c’est-à-dire
\[\left\{ \begin{array}{l}
\mu_R \rightarrow 0 \\
\gamma_R \rightarrow 0 \\
\sigma_R \rightarrow 0
\end{array} \right. \]

les expressions analytiques de \(f_{1,j}, \forall j = 1, 2 \) se simplifient en :
\[f_{1,1}(T - t, S_t, V_t, R, \lambda_{1,s}, \phi) = \exp \{ i \phi \ln S_t + i R \phi (T - t) \}
\]
\[- (\phi^2 + i \phi)(1 - e^{\xi_{1,v}(T-t)}) \]
\[+ \frac{[\gamma_v - \sigma_v \rho_{s,v} (1 + i \phi) (1 - e^{\xi_{1,v}(T-t)}) - \xi_{1,v}(1 + e^{\xi_{1,v}(T-t)}) V_t}{2(1 + \mu_{j_s}) \{ (1 + \mu_{j_s}) i \phi e^{-\lambda_{j_s}(\phi^2 + i \phi)/2} - 1 - \mu_{j_s} i \phi \} (1 - e^{\xi_{1,\lambda_s}(T-t)})} \lambda_{1,s} \]
\[+ \frac{\mu_v}{\sigma_v^2} \{(\gamma_v - \sigma_v \rho_{s,v} (1 + i \phi) + \xi_{1,v})(T - t) \}
\[- 2 \ln(1 - \frac{[\gamma_v - \sigma_v \rho_{s,v} (1 + i \phi) + \xi_{1,v}] [1 - e^{\xi_{1,v}(T-t)}]}{2\xi_{1,v}}) \}
\[+ \frac{\mu_{\lambda_s}}{\sigma_{\lambda_s}^2} \{(\gamma_{\lambda_s} + \xi_{1,\lambda_s})(T - t) - 2 \ln(1 - \frac{[\gamma_{\lambda_s} + \xi_{1,\lambda_s}] [1 - e^{\xi_{1,\lambda_s}(T-t)}]}{2\xi_{1,\lambda_s}}) \} \]

\[(4.34a)\]
4. Proposition du modèle SVSISJ à sauts, volatilité et taux stochastiques

\[\begin{align*}
\xi_{1,V} & \equiv \sqrt{\gamma_V - \sigma_V \rho_{s,V} (1 + i \phi)^2 + \sigma_V^2 (\phi^2 - i \phi)} \\
\xi_{1,\lambda_S} & \equiv \sqrt{\gamma_{\lambda_S}^2 - 2\sigma_{\lambda_S}^2 \{ (1 + \mu_{\lambda_S})(1 + \mu_{\lambda_S}) \phi e^{-\sigma_{\lambda_S}^2 (\phi^2 + i\phi)^2/2} - 1 \} - \mu_{\lambda_S} i \phi},
\end{align*} \]

et

\[f_{1,2}(T - t, S_t, V_t, R, \lambda_{t,S}, \phi) = \exp \left\{ i \phi \ln S_t + i R \phi, (T - t) \right\} \frac{-(\phi^2 + i \phi)(1 - e^{\xi_{2,V}(T-t)})}{\gamma_V - \sigma_V \rho_{s,V} i \phi(1 - e^{\xi_{2,V}(T-t)}) - \xi_{2,V}(1 + e^{\xi_{2,V}(T-t)})V_t} \]
+ \frac{2\{ (1 + \mu_{\lambda_S})i \phi e^{-\sigma_{\lambda_S}^2 (\phi^2 + i\phi)^2/2} - 1 - \mu_{\lambda_S} i \phi \} \gamma_{\lambda_S} (1 - e^{\xi_{2,\lambda_S}(T-t)}) - \xi_{2,\lambda_S}(1 + e^{\xi_{2,\lambda_S}(T-t)})}{\gamma_{\lambda_S} (1 - e^{\xi_{2,\lambda_S}(T-t)}) - \xi_{2,\lambda_S}(1 + e^{\xi_{2,\lambda_S}(T-t)})} \lambda_{t,S} \]
+ \frac{\mu_{\lambda_S}}{\sigma_{\lambda_S}^2} \left\{ (\gamma_{\lambda_S} + \xi_{2,\lambda_S})(T - t) - 2 \ln \left(1 - \frac{\xi_{2,\lambda_S}}{2\xi_{2,\lambda_S}} \right) \right\},
\]

(4.34b)

où

\[\begin{align*}
\xi_{2,V} & \equiv \sqrt{\gamma_V - \sigma_V \rho_{s,V} i \phi^2 + \sigma_V^2 (\phi^2 + i \phi)} \\
\xi_{2,\lambda_S} & \equiv \sqrt{\gamma_{\lambda_S}^2 - 2\sigma_{\lambda_S}^2 \{ (1 + \mu_{\lambda_S})i \phi e^{-\sigma_{\lambda_S}^2 (\phi^2 + i\phi)^2/2} - 1 \} - \mu_{\lambda_S} i \phi}.
\end{align*} \]

Lorsque l’intensité des sauts est nulle, ou lorsque l’amplitude des sauts est nulle (modèle SVSI)

Si la fréquence des sauts est nulle c’est-à-dire \(\lambda_{t,S} \equiv 0, \forall t \geq 0 \), il vient :
4. Proposition du modèle **VSISJ** à sauts, volatilité et taux stochastiques

\[f_{1,1}(T-t, S_t, V_t, R_t, \phi) = \exp \{ i\phi \ln S_t \}
\]
\[+ \frac{-i\phi (1 - e^{\xi_{1,Y} \cdot (T-t)})}{2(1 - e^{\xi_{1,Y} \cdot (T-t)})} V_t
\]
\[+ \frac{\gamma_R (1 - e^{\xi_{1,R} \cdot (T-t)}) - \xi_{1,R} (1 + e^{\xi_{1,R} \cdot (T-t)})}{\gamma_R} R_t
\]
\[+ \frac{\mu_R}{\sigma^2} \left\{ (\gamma_Y - \sigma_Y \rho_{S,Y} (1 + i\phi) + \xi_{1,Y} \cdot (T-t)) - 2 \ln(1 - \frac{\gamma_Y - \sigma_Y \rho_{S,Y} (1 + i\phi) + \xi_{1,Y} \cdot [1 - e^{\xi_{1,Y} \cdot (T-t)}]}{2\xi_{1,Y}}) \right\}
\]
\[(4.35a) \]

où

\[\xi_{1,Y} \equiv \sqrt{\gamma_Y - \sigma_Y \rho_{S,Y} (1 + i\phi)^2 + \sigma_Y^2 (\phi^2 + i\phi)} \]
\[\xi_{1,R} \equiv \sqrt{\gamma_R - 2i\sigma^2 \phi} \] et

\[f_{1,2}(T-t, S_t, V_t, R_t, \phi) = \exp \{ i\phi \ln S_t - \ln B_t \}
\]
\[+ \frac{-i\phi (1 - e^{\xi_{2,Y} \cdot (T-t)})}{2(1 - e^{\xi_{2,Y} \cdot (T-t)})} V_t
\]
\[+ \frac{\gamma_R (1 - e^{\xi_{2,R} \cdot (T-t)}) - \xi_{2,R} (1 + e^{\xi_{2,R} \cdot (T-t)})}{\gamma_R} R_t
\]
\[+ \frac{\mu_R}{\sigma^2} \left\{ (\gamma_Y - \sigma_Y \rho_{S,Y} i\phi + \xi_{2,Y} \cdot (T-t)) - 2 \ln(1 - \frac{\gamma_Y - \sigma_Y \rho_{S,Y} i\phi + \xi_{2,Y} \cdot [1 - e^{\xi_{2,Y} \cdot (T-t)}]}{2\xi_{2,Y}}) \right\}
\]
\[+ \frac{\mu_R}{\sigma^2} \left\{ (\gamma_R + \xi_{2,R}) \cdot (T-t) - 2 \ln(1 - \frac{\gamma_R + \xi_{2,R} \cdot [1 - e^{\xi_{2,R} \cdot (T-t)}]}{2\xi_{2,R}}) \right\}
\]
\[(4.35b) \]

où

\[\xi_{2,Y} \equiv \sqrt{\gamma_Y - \sigma_Y \rho_{S,Y} i\phi)^2 + \sigma_Y^2 (\phi^2 + i\phi)} \]
\[\xi_{2,R} \equiv \sqrt{\gamma_R^2 - 2\sigma^2 ((i\phi - 1)).} \]
Lorsque le taux d’intérêt et la fréquence des sauts sont déterministes et constants : le modèle de Bates (1996) (modèle SV-J)

\[
\begin{align*}
\mu_R &\to 0 \\
\gamma_R &\to 0 \\
\sigma_R &\to 0 \\
\mu_{\lambda,s} &\to 0; \\
\gamma_{\lambda,s} &\to 0 \\
\sigma_{\lambda,s} &\to 0
\end{align*}
\]

Si maintenant

\[
\begin{align*}
f_{1,1}(T-t, S_t, V_t, R, \lambda_s, \phi) &= \exp\{i\phi \ln S_t + iR\phi.(T-t) \\
&+ \left[\gamma_{V} - \sigma_{V,\rho_s,V}(1 + i\phi)\right](1 - e^{\xi_{1,V}(T-t)}) - \xi_{1,V}(1 + e^{\xi_{1,V}(T-t)})V_t \\
&+ \lambda_s\left\{\frac{\left(1 + \mu_{j,s}\right)^2}{\left(1 + \mu_{j,s}\right)^2} e^{-\sigma_{j,s}^2 \left(\phi^2 - i\phi\right)/2} - 1 - \mu_{j,s} i\phi\right\}.(T-t) \\
&\quad + \frac{\mu_{V}}{\sigma_{V}^2}\left\{(\gamma_{V} - \sigma_{V,\rho_s,V}(1 + i\phi) + \xi_{1,V}).(T-t) \\
&\quad - 2\ln\left(1 - \frac{\left[\gamma_{V} - \sigma_{V,\rho_s,V}(1 + i\phi) + \xi_{1,V}\right]\left[1 - e^{\xi_{1,V}(T-t)}\right]}{2\xi_{1,V}}\right)\right\},
\end{align*}
\]

(4.36a)

où

\[
\xi_{1,V} = \sqrt{\left[\gamma_{V} - \sigma_{V,\rho_s,V}(1 + i\phi)\right]^2 + \sigma_{V}^2 \left(\phi^2 - i\phi\right),}
\]

et

\[
\begin{align*}
f_{1,2}(T-t, S_t, V_t, R, \lambda_s, \phi) &= \exp\{i\phi \ln S_t + iR\phi.(T-t) \\
&+ \left[\gamma_{V} - \sigma_{V,\rho_s,V}i\phi\right](1 - e^{\xi_{2,V}(T-t)}) - \xi_{2,V}(1 + e^{\xi_{2,V}(T-t)})V_t \\
&+ \lambda_s\left\{\frac{\left(1 + \mu_{j,s}\right)^2}{\left(1 + \mu_{j,s}\right)^2} e^{-\sigma_{j,s}^2 \left(\phi^2 + i\phi\right)/2} - 1 - \mu_{j,s} i\phi\right\}.(T-t) \\
&\quad + \frac{\mu_{V}}{\sigma_{V}^2}\left\{(\gamma_{V} - \sigma_{V,\rho_s,V}i\phi + \xi_{2,V}).(T-t) \\
&\quad - 2\ln\left(1 - \frac{\left[\gamma_{V} - \sigma_{V,\rho_s,V}i\phi + \xi_{2,V}\right]\left[1 - e^{\xi_{2,V}(T-t)}\right]}{2\xi_{2,V}}\right)\right\},
\end{align*}
\]

(4.36b)

où

\[
\xi_{2,V} = \sqrt{\left[\gamma_{V} - \sigma_{V,\rho_s,V}i\phi\right]^2 + \sigma_{V}^2 \left(\phi^2 + i\phi\right).}
\]

Lorsque le taux d’intérêt est déterministe et constant, et la fréquence des sauts est nulle : le modèle de Heston (1993) (modèles SV)

Enfin, (4.29) coïncide avec le modèle de Heston (1993) dans le cas particulier où :
\[
\begin{aligned}
\mu_R &\to 0 \\
\gamma_R &\to 0 \\
\sigma_R &\to 0 \\
\lambda_{s,t} &\equiv 0
\end{aligned}
\]

\[
f_{t,1}(T - t, S_t, V_t, R, \phi) = \exp\{i\phi \ln S_t + iR\phi(T - t)\} \frac{-(\phi^2 - \phi)\left(1 - e^{\xi_{1,V}(T-t)}\right)}{[\gamma_v - \sigma_v \rho_{s,v}(1 + i\phi)](1 - e^{\xi_{1,V}(T-t)}) - \xi_{1,V}(1 + e^{\xi_{1,V}(T-t)}) V_t} + \frac{\mu_v}{\sigma_v} \left\{ (\gamma_v - \sigma_v \rho_{s,v}(1 + i\phi) + \xi_{1,V})(T - t) \right. \\
&\left. - 2 \ln\left(1 - \frac{[\gamma_v - \sigma_v \rho_{s,v}(1 + i\phi) + \xi_{1,V}][1 - e^{\xi_{1,V}(T-t)}]}{2\xi_{1,V}}\right) \right\},
\end{aligned}
\]

(4.37a)

où
\[
\xi_{1,V} \equiv \sqrt{[\gamma_v - \sigma_v \rho_{s,v}(1 + i\phi)]^2 + \sigma_v^2 (\phi^2 - \phi)},
\]

et

\[
\begin{aligned}
f_{t,2}(T - t, S_t, V_t, R, \phi) = \exp\{i\phi \ln S_t + iR\phi(T - t)\} \frac{-(\phi^2 + \phi)(1 - e^{\xi_{2,V}(T-t)})}{[\gamma_v - \sigma_v \rho_{s,v}i\phi](1 - e^{\xi_{2,V}(T-t)}) - \xi_{2,V}(1 + e^{\xi_{2,V}(T-t)}) V_t} + \frac{\mu_v}{\sigma_v} \left\{ (\gamma_v - \sigma_v \rho_{s,v}i\phi + \xi_{2,V})(T - t) \right. \\
&\left. - 2 \ln\left(1 - \frac{[\gamma_v - \sigma_v \rho_{s,v}i\phi + \xi_{2,V}][1 - e^{\xi_{2,V}(T-t)}]}{2\xi_{2,V}}\right) \right\}
\end{aligned}
\]

(4.37b)

où
\[
\xi_{2,V} \equiv \sqrt{[\gamma_v - \sigma_v \rho_{s,v}i\phi]^2 + \sigma_v^2 (\phi^2 + \phi)}.
\]

4.3 Extension au cas avec dividendes

Les perspectives immédiates de la section précédente me conduisent naturellement à tenter de "lever" l'hypothèse selon laquelle l’actif sous-jacent ne paie pas de dividende sur toute la durée de vie de l’option, de façon à élargir le champ d’application du modèle précédent vers les options européennes sur actif sous-jacent payant des dividendes. La section précédente peut ainsi être vue comme un cas particulier de cette section où je développe un modèle plus général de valorisation par équilibre d’un call européen en présence de dividendes.
4.3.1 Spécification du modèle d’équilibre SVSISDSJ et cadre mathématique

De toute évidence, la réalité exigerait que les versements des dividendes soient modélisés de façon discrète, puisque par essence, les phénomènes se déroulent en temps discret. Je traite néanmoins dans cette section uniquement du cas théorique où les dividendes sont versés de façon continue, en vue d’exhiber une solution entièrement analytique. Quoiqu’il en soit, les solutions apportées à cet égard peuvent interesser tout particulièrement l’évaluation d’actifs contingents, tels que les options sur obligations. Par ailleurs, je considère que le niveau des dividendes versés est aléatoire : cela permet d’englober le cas particulier où le montant des dividendes versés de façon continue est parfaitement connu. Ce dernier cas n’est pas complètement irréaliste car la plupart des entreprises adoptent une politique de dividendes relativement stable à court terme.

Proposition 4.3.1 (EID avec dividendes stochastiques). Soit D_t le dividende instantané, au cours de l’intervalle de temps dt, rapporté par l’actif sous-jacent : la rentabilité de cet actif résulte alors de l’encaissement de ce dividende, en sus des variations de son cours. Soit un call européen sur un support versant ce dividende continu D_t dont la dynamique est régime, sous la probabilité historique P, par le processus de diffusion (markovien et en temps continu) général :

$$dD_t = F^P_D(\tau, D_t)dt + G^P_D(\tau, D_t)dW^P_t,$$

où W^P_t désigne un processus de Wiener standard sous P. Je considère le modèle suivant, à sauts poissonnien et à cinq variables d’état toutes stochastiques, qui s’écrit sous P :

$$dx_t = F^P_x(\tau, x_t)dt + G^P_x(\tau, x_t)dW^P_t + J(\tau, x_t)d\pi^P_t,$$

où successivement :

$$x_t = \begin{pmatrix} S_t & V_t & R_t & D_t & \lambda_t \end{pmatrix}^T,$$

$$dW^P_t = \begin{pmatrix} dW^P_S \hspace{1cm} dW^P_V \hspace{1cm} dW^P_R \hspace{1cm} dW^P_D \hspace{1cm} dW^P_{\lambda} \end{pmatrix}^T,$$

$$F^P_x(\tau, x_t) = \begin{pmatrix} F^P_S(\tau, x_t) & F^P_V(\tau, V_t) & F^P_R(\tau, R_t) & F^P_D(\tau, D_t) & F^P_{\lambda}(\tau, \lambda_t) \end{pmatrix}^T,$$

$$G^P_x(\tau, x_t) = \text{diag} \begin{pmatrix} G^P_S(\tau, x_t) & G^P_V(\tau, V_t) & G^P_R(\tau, R_t) & G^P_D(\tau, D_t) & G^P_{\lambda}(\tau, \lambda_t) \end{pmatrix} \in \mathcal{M}_{5,5}(\mathbb{R}),$$
4. Proposition du modèle SVSISJ à sauts, volatilité et taux stochastiques

\[
J_x(\tau, x_1) = \text{diag} \begin{pmatrix}
J_S(\tau, S_t) \\
J_V(\tau, V_t) \\
J_R(\tau, R_t) \\
J_D(\tau, D_t) \\
J_{\lambda_S}(\tau, \lambda_{t,S})
\end{pmatrix} \in \mathcal{M}_{5,5}(\mathbb{R}),
\]

\[
d\pi_{1,x}^P = \begin{pmatrix}
d\pi_{1,S}^P \\
d\pi_{1,V}^P \\
d\pi_{1,R}^P \\
d\pi_{1,D}^P \\
d\pi_{1,\lambda_S}^P
\end{pmatrix} = \begin{pmatrix}
k_{1,S} dN_{1,S}^P \\
0 \\
0 \\
0 \\
0
\end{pmatrix},
\]

tel que

\[d\pi_{1,x}^P (dW_{t,x}^P)' = 0_{5,5}.\]

Je désigne encore par \(C_t : (\tau, x_1, K) \in \mathbb{R}_+^2 \rightarrow C_t(\tau, x_1, K) \in \mathbb{R}_+ \), le premium du call européen que je suppose a priori toujours de classe \(C^m, n \geq 2 \). Sous \(Q \), l’équation intégrado-différentielle satisfaite par le premium du call précédent peut alors s’écrire, au sens d’Itô, comme suit :

\[
\{(R_t - D_t) S_t \lambda_{t,S} \mathbb{E}_t^Q [k_{1,S} J_S(\tau, S_t)] - F_{S_t}(\tau, x_1) \} \frac{\partial C_t}{\partial S_t} \\
+ \left(\frac{\partial C_t}{\partial x_1} \right)' F_x(\tau, x_1) + \frac{1}{2} \text{tr} \{ G_x(\tau, x_1) M G_x(\tau, x_1) \frac{\partial^2 C_t}{\partial x_1^2} \} - \frac{\partial C_t}{\partial \tau} - R_t C_t \\
+ \lambda_{t,S} \mathbb{E}_t^Q [C_t(\tau, S_t + k_{1,S} J_S(\tau, S_t), V_t, R_t, D_t, \lambda_{t,S}, K) - C_t(\tau, S_t, V_t, R_t, D_t, \lambda_{t,S}, K)] = 0,
\]

où la matrice des variances/covariances s’écrit :

\[
M = M' = \begin{pmatrix}
1 & \rho_{S,V} & \rho_{S,R} & \rho_{S,D} & \rho_{S,\lambda_S} \\
\rho_{V,S} & 1 & \rho_{V,R} & \rho_{V,D} & \rho_{V,\lambda_S} \\
\rho_{R,S} & \rho_{R,V} & 1 & \rho_{R,D} & \rho_{R,\lambda_S} \\
\rho_{D,S} & \rho_{D,V} & \rho_{D,R} & 1 & \rho_{D,\lambda_S} \\
\rho_{\lambda_S,S} & \rho_{\lambda_S,V} & \rho_{\lambda_S,R} & \rho_{\lambda_S,D} & 1
\end{pmatrix}.
\]

La condition terminale reste inchangée par rapport au cas sans dividende :

\[C_t|_{\tau=0} = C_t(0, x_t, K) \equiv (S_T - K)^+.
\]

(4.39)
Preuve. Soit $d\Pi_t / \Pi_t$ la rentabilité instantanée (sur la période dt) d’un portefeuille qui peut être vue comme le barycentre des rentabilités instantanées de quatre *calls* de *premium* $C_t, \forall 1 \leq i \leq 4$, de durée de vie τ_i avec $\tau_i \neq \tau_j \forall i \neq j$, de la rentabilité instantanée de leur actif sous-jacent commun en tenant compte de l’encaissement de dividendes et de la rentabilité instantanée d’un zéro-coupon versant 1 $\$ à échéance, pondérées respectivement des masses $\frac{\alpha_{t,i}}{\sum_{j=1}^{4} \alpha_{t,j} + \gamma_t + \beta_t}$, $\frac{\gamma_t}{\sum_{j=1}^{4} \alpha_{t,j} + \gamma_t + \beta_t}$, et $\frac{\beta_t}{\sum_{j=1}^{4} \alpha_{t,j} + \gamma_t + \beta_t}$ où $\forall i, (\alpha_{t,i}, \gamma_t, \beta_t) \in \mathbb{R}_+^3$ telles que $\sum_{j=1}^{4} \alpha_{t,j} + \gamma_t + \beta_t \neq 0, \forall t$. Au cours d’un incrément dt, la rentabilité de ce portefeuille s’écrit :

$$
\frac{d\Pi_t}{\Pi_t} = \frac{1}{\sum_{j=1}^{4} \alpha_{t,j} + \gamma_t + \beta_t} \left\{ (G_S(\tau, x_t)) \left(\sum_{i=1}^{4} \frac{\alpha_{t,i}}{C_{t,i}} \frac{\partial C_{t,i}}{\partial S_t} + \frac{\gamma_t}{S_t} \right) dW_{t,S}
\right.
+ G_V(\tau, V_t) \sum_{i=1}^{4} \frac{\alpha_{t,i}}{C_{t,i}} \frac{\partial C_{t,i}}{\partial V_t} dW_{t,V} + G_R(\tau, R_t) \sum_{i=1}^{4} \frac{\alpha_{t,i}}{C_{t,i}} \frac{\partial C_{t,i}}{\partial R_t} + \frac{\beta_t}{B_t} \frac{\partial B_t}{\partial R_t} dW_{t,R}
\left.+ G_D(\tau, D_t) \sum_{i=1}^{4} \frac{\alpha_{t,i}}{C_{t,i}} \frac{\partial C_{t,i}}{\partial D_t} dW_{t,D} + G_{\lambda_S}(\tau, \lambda_{t,t}) \sum_{i=1}^{4} \frac{\alpha_{t,i}}{C_{t,i}} \frac{\partial C_{t,i}}{\partial \lambda_{t,t}} dW_{t,\lambda_S}
\right.
\left.+ \left[\sum_{i=1}^{4} \frac{\alpha_{t,i}}{C_{t,i}} \left(\frac{\partial C_{t,i}}{\partial x_t} \right)^t F^x_{\tau}(\tau, x_t) + \frac{1}{2} tr \{ G_x(\tau, x_t) M G_x(\tau, x_t) \frac{\partial^2 C_{t,i}}{\partial x_t^2} \} - \frac{\partial C_{t,i}}{\partial \tau} \right)
\right.
\left.+ F_{S_t}(\tau, x_t) \frac{\gamma_t}{S_t} + \gamma_t D_t + \frac{\beta_t}{B_t} \frac{\partial B_t}{\partial R_t} + \frac{1}{2} G_R(\tau, R_t) \frac{\partial^2 B_t}{\partial R_t^2} - \frac{\partial B_t}{\partial \tau} \right] dt
\left.+ k_t \frac{\gamma_t}{S_t} J_S(\tau, S_t) dN_{t,S} + \sum_{i=1}^{4} \frac{\alpha_{t,i}}{C_{t,i}} \left\{ C_{t,i}(\tau, S_t + k_t S_j, J_S, ..., K) - C_{t,i}(\tau, S_t, ..., K) \right\} dN_{t,S} \right\}.
$$

S’il n’y avait pas de sauts - par exemple si $\Pr(dN_{\tau,x} = 0) = 1$ - il serait possible de constituer un portefeuille exempt de risque en choisissant judicieusement les proportions

\[\text{Cf. Itô (1951) [139].}\]
4. Proposition du modèle SVISIJ à sauts, volatilité et taux stochastiques

des *allst* et de leur actif sous-jacent commun, de sorte à éliminer les composantes stochastiques de $dW^P_{t,x}$. L'existence d'un tel portefeuille est toutefois assujettie à la condition de nullité de

$$
\det \begin{pmatrix}
\frac{\partial C_{i,1}}{\partial t} & \frac{\partial C_{i,2}}{\partial t} & \frac{\partial C_{i,3}}{\partial t} & 0 \\
\frac{\partial C_{i,1}}{\partial D_1} & \frac{\partial C_{i,2}}{\partial D_1} & \frac{\partial C_{i,3}}{\partial D_1} & 0 \\
\mathcal{L}(C_{i,1}) & \mathcal{L}(C_{i,2}) & \mathcal{L}(C_{i,3}) & \mathcal{M}(B_i)
\end{pmatrix},
$$

où

$$
\forall i = 1, 2, 3, \mathcal{L}(C_{i,i}) \equiv \{(R_t - D_t)S_t - F^P_S(t, x_t)\} \frac{\partial C_{i,i}}{\partial S_t} + \left(\frac{\partial C_{i,i}}{\partial x_t}\right)' F^P_x(t, x_t) + \frac{1}{2} \text{tr} \left\{G_x(t, x_t) MG_x^*(t, x_t) \frac{\partial C_{i,i}}{\partial x_t^2}\right\} - \frac{\partial C_{i,i}}{\partial t} - R_tC_{i,i}
$$

et

$$
\mathcal{M}(B_i) \equiv F^P_R(t, R_t) \frac{\partial B_i}{\partial R_t} + \frac{1}{2} G^2_R(t, R_t) \frac{\partial^2 B_i}{\partial R_t^2} - \frac{\partial B_i}{\partial t} - R_t B_i.
$$

La rentabilité instantanée de ce portefeuille, au cours de dt, serait alors déterministe, telle que :

$$
\frac{d\Pi_t}{\Pi_t} = \frac{1}{\sum_{j=1}^{3} \alpha_j^i + \gamma_t^i + \beta_t^i} \left(\frac{\partial C_{i,i}}{\partial x_t}\right)' F^P_x(t, x_t)
$$

$$
+ \frac{1}{2} \text{tr} \left\{G_x(t, x_t) MG_x^*(t, x_t) \frac{\partial^2 C_{i,i}}{\partial x_t^2}\right\} - \frac{\partial C_{i,i}}{\partial t}
$$

$$
+ F^P_S(t, x_t) \frac{\gamma_t^i}{S_t} + \gamma_t^i D_t + \frac{\beta_t^i}{B_t} (F^P_R(t, R_t) \frac{\partial B_t}{\partial R_t} + \frac{1}{2} G^2_R(t, R_t) \frac{\partial^2 B_t}{\partial R_t^2} - \frac{\partial B_t}{\partial t}) dt,
$$

où les variables étoilées correspondent aux valeurs de α_i, γ_t et β_t, qui annulent les composantes stochastiques de $dW^P_{t,x}$.

En présence de sauts, il subsiste toujours dans la rentabilité instantanée de ce portefeuille une partie totalement aléatoire (celle qui comporte le saut). Cependant, comme Merton (1976) [173], je fais l'hypothèse suivante :

Hypothèse 4.3.1 (Risque diversifiable et sauts poissonniens). Si la composante du saut définie dans le processus du cours d'un actif sous-jacent n'est pas corrélée avec le marché, alors le risque supplémentaire (risque diversifiable) du à cette discontinuité ne devrait pas être rémunéré et ne devrait donc pas intervenir dans le premium de l'option associée.
Cette hypothèse signifie que le risque lié aux sauts non anticipés du cours du support est diversifiable et qu’il doit donc pouvoir être éliminé par la constitution d’un portefeuille judiciairement constitué. Par conséquent, ce risque n’est pas rémunéré par le marché. Cette hypothèse, à l’évidence non satisfaisante dans l’absolu, semble malgré tout acceptable au regard de Ball & Torous (1985), puisque dans leur examen de l’impact de sauts dans le *premium* des *calls*, aucun saut d’amplitude significative n’apparaît dans les rentabilités quotidiennes de l’indice CRSP (*Center for Research in Security Prices*) pondéré par les valeurs du marché. Quoiqu’il en soit, l’hypothèse 4.3.1 selon laquelle le risque de saut serait diversifiable, conforte une supposition commune selon laquelle, "il existe un risque qui ne peut être complètement géré"25 et permet de dire qu’en moyenne, la rentabilité instantanée du portefeuille rapporte exactement le taux sans risque26 R_t pendant dt, soit $\mathbb{E}(\text{d} \Pi_t / \Pi_t) = R_t dt$.

En identifiant, il vient alors le système suivant :

\[
\sum_{i=1}^{4} \alpha_{i,t} \frac{\partial C_{t,i}}{\partial S_t} + \frac{\gamma_t}{S_t} = 0, \quad (4.40a)
\]

\[
\sum_{i=1}^{4} \alpha_{i,t} \frac{\partial C_{t,i}}{\partial \Pi_t} = 0, \quad (4.40b)
\]

\[
\sum_{i=1}^{4} \frac{\alpha_{i,t} \partial C_{t,i}}{C_{t,i}} \frac{\partial R_t}{\partial R_t} + \frac{\beta_t}{B_t} \frac{\partial B_t}{\partial R_t} = 0, \quad (4.40c)
\]

\[
\sum_{i=1}^{4} \frac{\alpha_{i,t} \partial C_{t,i}}{C_{t,i}} \frac{\partial B_t}{\partial B_t} = 0, \quad (4.40d)
\]

\[
\sum_{i=1}^{4} \frac{\alpha_{i,t} \partial C_{t,i}}{C_{t,i}} \frac{\partial \lambda_t,S}{\partial \lambda_t,S} = 0, \quad (4.40e)
\]

25 par exemple, le risque de défaillant.

26 Le taux d’intérêt R_t est, en effet, sans risque dans l’intervalle $[t, t+dt]$ puisqu’en t, on connaît son niveau pour un placement courant jusqu’en $t+dt$.

4. Proposition du modèle SVSISJ à sauts, volatilité et taux stochastiques 172
\[\sum_{i=1}^4 \alpha_{l,i} \left[\frac{\partial C_{i,i}}{\partial x_i} \right]' F^P_x(\tau, x_i) + \frac{1}{2} \text{tr} \left\{ G_x(\tau, x_i) M G_x(\tau, x_i) \frac{\partial^2 C_{i,i}}{\partial x_i^2} \right\} - \frac{\partial C_{i,i}}{\partial \tau} + \lambda_{l,S} \int_{k_{l,S}} \left\{ C_{i,i}(\tau, S_t + k_{l,S} J_S(\tau, S_t), V_i, \ldots, K) - C_{i,i}(\tau, S_t, V_i, \ldots, K) \right\} dP(k_{l,S}) \]

\[+ \frac{\gamma_t}{S_t} [F^P_s(\tau, x_t) + \lambda_{l,S} \int_{k_{l,S}} k_{l,S} J_S(\tau, S_t) dP(k_{l,S})] + \gamma_t D_t \]

\[+ \frac{\beta_t}{B_t} [F^P_R(\tau, R_t) \frac{\partial B_t}{\partial R_t} + \frac{1}{2} G_R(\tau, R_t) \frac{\partial^2 B_t}{\partial R_t^2} - \frac{\partial B_t}{\partial \tau}] \equiv R_t \left(\sum_{j=1}^4 \alpha_{l,j} + \gamma_t + \beta_t \right) \quad (4.40f)\]

De (4.40a), j’extrais

\[\gamma_t = -S_t \sum_{i=1}^4 \frac{\alpha_{l,i}}{C_{i,i}} \frac{\partial C_{i,i}}{\partial S_t}\]

et en injectant dans (4.40f), il vient :

\[\sum_{i=1}^4 \frac{\alpha_{l,i}}{C_{i,i}} \left[\left(R_t - D_t \right) S_t - \lambda_{l,S} \int_{k_{l,S}} k_{l,S} J_S(\tau, S_t) dP(k_{l,S}) - F^P_s(\tau, x_t) \right] \frac{\partial C_{i,i}}{\partial S_t} \]

\[+ \left(\frac{\partial C_{i,i}}{\partial x_i} \right)' F^P_x(\tau, x_i) + \frac{1}{2} \text{tr} \left\{ G_x(\tau, x_i) M G_x(\tau, x_i) \frac{\partial^2 C_{i,i}}{\partial x_i^2} \right\} - \frac{\partial C_{i,i}}{\partial \tau} - R_t C_{i,i} \]

\[+ \lambda_{l,S} \int_{k_{l,S}} \left\{ C_{i,i}(\tau, S_t + k_{l,S} J_S(\tau, S_t), V_i, \ldots, K) - C_{i,i}(\tau, S_t, V_i, \ldots, K) \right\} dP(k_{l,S}) \]

\[+ \frac{\beta_t}{B_t} [F^P_R(\tau, R_t) \frac{\partial B_t}{\partial R_t} + \frac{1}{2} G_R(\tau, R_t) \frac{\partial^2 B_t}{\partial R_t^2} - \frac{\partial B_t}{\partial \tau} - R_t B_t] \equiv 0,\]

soit encore :

\[\sum_{i=1}^4 \frac{\alpha_{l,i}}{C_{i,i}} \Delta C_{i,i} + \frac{\beta_t}{B_t} \mathcal{M}(B_t) \equiv 0. \quad (4.41)\]
où

\[\mathcal{L}(C_{1,i}) = \left((R_t - D_t)S_t - \lambda_{t,s} \int k_{t,s} J_S(\tau, S_t) dP(k_{t,s}) - F^P_S(\tau, x_t) \right) \frac{\partial C_{1,i}}{\partial S_t} \]

\[+ \left(\frac{\partial C_{1,i}}{\partial x_t} \right)' F^P_x(\tau, x_t) + \frac{1}{2} tr \left\{ G_x(\tau, x_t) M G'_x(\tau, x_t) \frac{\partial^2 C_{1,i}}{\partial x^2_t} \right\} - \frac{\partial C_{1,i}}{\partial \tau} - R_tC_{1,i} \]

\[+ \lambda_{t,s} \int \{ C_{1,i}(\tau, S_t + k_{t,s} J_S(\tau, S_t), V_t, \ldots, K) - C_{i,j}(\tau, S_t, V_t, \ldots, K) \} dP(k_{t,s}) \]

et :

\[\mathcal{M}(B_t) = F^P_R(\tau, R_t) \frac{\partial B_t}{\partial R_t} + \frac{1}{2} G^2_R(\tau, R_t) \frac{\partial^2 B_t}{\partial R^2_t} - \frac{\partial B_t}{\partial \tau} - R_tB_t. \]

Le système formé par (4.40b), (4.40c), (4.40d), (4.40e) et (4.41) admet une solution autre que la solution triviale \((\alpha_{t,i}, \beta_t) = (0, 0)\) si et seulement si sa matrice associée n’est pas de rang plein :

\[
\begin{pmatrix}
\frac{\partial C_{1,1}}{\partial t} & \frac{\partial C_{1,2}}{\partial t} & \frac{\partial C_{1,3}}{\partial t} & \frac{\partial C_{1,4}}{\partial t} & 0 \\
\frac{\partial C_{2,1}}{\partial t} & \frac{\partial C_{2,2}}{\partial t} & \frac{\partial C_{2,3}}{\partial t} & \frac{\partial C_{2,4}}{\partial t} & 0 \\
\frac{\partial C_{3,1}}{\partial t} & \frac{\partial C_{3,2}}{\partial t} & \frac{\partial C_{3,3}}{\partial t} & \frac{\partial C_{3,4}}{\partial t} & 0 \\
\frac{\partial C_{4,1}}{\partial t} & \frac{\partial C_{4,2}}{\partial t} & \frac{\partial C_{4,3}}{\partial t} & \frac{\partial C_{4,4}}{\partial t} & 0 \\
\mathcal{L}(C_{1,1}) & \mathcal{L}(C_{1,2}) & \mathcal{L}(C_{1,3}) & \mathcal{L}(C_{1,4}) & \mathcal{M}(B_t)
\end{pmatrix}
\]

Autrement dit, dans la précédente matrice, une rangée doit pouvoir s’écritre comme une combinaison linéaire des autres. En prenant, par exemple, la dernière ligne, il vient :

\[\mathcal{M}(B_t) = l_t, R(\tau, x_t) \frac{\partial B_t}{\partial R_t} \]

et, \(\forall 1 \leq i \leq 4,\)

\[\mathcal{L}(C_{1,i}) = l_t, V(\tau, x_t) \frac{\partial C_{1,i}}{\partial V_t} + l_t, R(\tau, x_t) \frac{\partial C_{1,i}}{\partial R_t} + l_t, D(\tau, x_t) \frac{\partial C_{1,i}}{\partial D_t} + l_t, \lambda_s(\tau, x_t) \frac{\partial C_{1,i}}{\partial \lambda_t, s}, \]

soit encore \(\mathcal{L}(C_{1,i}) = \left(\frac{\partial C_{1,i}}{\partial x_t} \right)' \cdot l_t, x(\tau, x_t), \) où \(l_t, x(.) = \begin{pmatrix} 0 \\
l_t, V(.) \\
l_t, R(.) \\
l_t, D(.) \\
l_t, \lambda_s(.) \end{pmatrix}. \)
En posant alors

\[F_x(\tau, x_1) = F_x^P(\tau, x_1) - l_{i,x}, \quad (4.42) \]

et en récrivant dans l’univers risque-neutre \((\mathbb{R}, \mathcal{T}, Q)\), on retrouve finalement (4.38). Le vecteur \(l_i\) peut être interprété comme le vecteur des primes de risques liées au vecteur d’état \(x_i\).

4.3.2 Le premium solution du modèle d’équilibre

Comme en 4.2.2, il est aisés et relativement réaliste de prendre comme processus de diffusion pour les différentes grandeurs qui interviennent dans le modèle, un processus "racine-carrée", ainsi qu’une seule corrélation non nulle (la corrélation entre le cours du support et de sa variance que j’ai notée \(\rho_{S,V}\)) :

\[
\begin{align*}
F_V(\tau, V_t) &\equiv \mu_V - \gamma_V V_t, \\
F_R(\tau, R_t) &\equiv \mu_R - \gamma_R R_t, \\
F_D(\tau, D_t) &\equiv \mu_D - \gamma_D D_t, \\
F_{\lambda_S}(\tau, \lambda_S) &\equiv \mu_{\lambda_S} - \gamma_{\lambda_S} \lambda_S, \\
G_S(\tau, x_1) &\equiv \sqrt{V_t} S_t, \\
G_V(\tau, V_t) &\equiv \sigma_V \sqrt{V_t}, \\
G_R(\tau, R_t) &\equiv \sigma_R \sqrt{R_t}, \\
G_D(\tau, D_t) &\equiv \sigma_D \sqrt{D_t}, \\
G_{\lambda_S}(\tau, \lambda_S) &\equiv \sigma_{\lambda_S} \sqrt{\lambda_S}, \\
J_S(\tau, S_t) &\equiv S_t,
\end{align*}
\]

et

\[
\begin{align*}
\rho_{S,R} &\equiv 0, \\
\rho_{S,D} &\equiv 0, \\
\rho_{\lambda_S} &\equiv 0, \\
\rho_{V,R} &\equiv 0, \\
\rho_{V,D} &\equiv 0, \\
\rho_{R,D} &\equiv 0, \\
\rho_{R,\lambda_S} &\equiv 0, \\
\rho_{D,\lambda_S} &\equiv 0.
\end{align*}
\quad (4.43)

Proposition 4.3.2 (Valorisation avec dividendes stochastiques (modèle SV-SISDSJ)). Si les composantes du vecteur état, \(x_i = \{ S_t, V_t, R_t, D_t, \lambda_S \}^t\), suivent un processus racine-carrée, si \(\ln(1+k_{i.t}) \sim \mathcal{N}(\ln(1+\mu_{j_S}) - \frac{1}{2}\sigma^2_{j_S}, \sigma^2_{j_S})\), et si les fonctions caractéristiques des probabilités risque-neutres que le call expire "dans la monnaie" sont de carré intégrable, une formule de valorisation analytique d’un call européen versant des dividendes stochastiques, issue du modèle SVSISJ, peut s’écrire :

\[
\begin{align*}
C_i(\tau, S_t, V_t, R_t, D_t, \lambda_S, K) &\equiv S_t \Pi_{i,1}(\tau, S_t, V_t, R_t, D_t, \lambda_S, K) \\
&- KB_i(\tau, R_t) \Pi_{i,2}(\tau, S_t, V_t, R_t, D_t, \lambda_S, K),
\end{align*}
\quad (4.44)
\]

avec

\[
B_i(\tau, R_t) = \mathbb{E}_Q^0[\exp\{-\int_t^{t+\tau} R_u du\}]
\]

\[
= \exp\left\{ \frac{\mu_R}{\sigma_R^2} [\gamma_R + \eta] - 2\ln(1 - \frac{[\gamma_R + \eta][1 - e^{\eta \tau}]}{2\eta}) \right\} - \frac{2(1 - e^{\eta \tau})}{\gamma_R(1 - e^{\eta \tau}) - \eta(1 + e^{\eta \tau})} R_t,
\]

\quad (4.45)
où

\[\eta \equiv \sqrt{\gamma_R^2 + 2\sigma_R^2}, \]

e et

\[\Pi_{i,j}(T - t, S_t, V_t, R_t, D_t, \lambda_{i,s}, K) = \frac{1}{2} \]

\[+ \frac{1}{\pi} \int_0^{+\infty} \text{Re}\left[e^{-i\phi \ln K} f_{i,j}(T - t, S_t, V_t, R_t, D_t, \lambda_{i,s}, \phi)|i\phi| d\phi, \right. \]

\[\left. \quad (4.46) \right] \]

où

\[f_{i,j}(T - t, S_t, V_t, R_t, D_t, \lambda_{i,s}, \phi) = \exp\{ i\phi \ln S_t \]

\[- (\phi^2 - i\phi)(1 - e^{\xi_{i,V}(T-t)}) \]

\[+ \frac{\gamma_v - \sigma_y p_{s,y} (1 + i\phi)(1 - e^{\xi_{i,V}(T-t)}) - \xi_{i,V}(1 + e^{\xi_{i,V}(T-t)}) V_t}{2i\phi(1 - e^{\xi_{i,R}(T-t)})} R_t \]

\[+ \frac{\gamma_R (1 - e^{\xi_{i,R}(T-t)}) - \xi_{i,R}(1 + e^{\xi_{i,R}(T-t)}) R_t}{2(1 + i\phi)(1 - e^{\xi_{i,D}(T-t)})} D_t \]

\[\frac{2\{(1 + \mu_{j,s})[(1 + \mu_{j,s}) e^{-\frac{\sigma_s^2}{2}} (\phi^2 - i\phi)]/2 - 1] - \mu_{j,s} i\phi \} (1 - e^{\xi_{i,\lambda_s}(T-t)})}{\gamma_{\lambda_s} (1 - e^{\xi_{i,\lambda_s}(T-t)}) - \xi_{i,\lambda_s}(1 + e^{\xi_{i,\lambda_s}(T-t)})} \lambda_{i,s} \]

\[+ \frac{\mu_y}{\sigma_y^2} \{ (\gamma_{\lambda} - \sigma_y p_{s,y} (1 + i\phi) + \xi_{i,V})(T - t) \}

\[- 2 \ln(1 - \frac{[\gamma_{\lambda} - \sigma_y p_{s,y} (1 + i\phi) + \xi_{i,V}[1 - e^{\xi_{i,V}(T-t)}]}{2\xi_{i,V}}) \}

\[+ \frac{\mu_y}{\sigma_R^2} \{ (\gamma_R + \xi_{i,R})(T - t) - 2 \ln(1 - \frac{[\gamma_R + \xi_{i,R}[1 - e^{\xi_{i,R}(T-t)}]}{2\xi_{i,R}}) \}

\[+ \frac{\mu_D}{\sigma_D^2} \{ (\gamma_D + \xi_{i,D})(T - t) - 2 \ln(1 - \frac{[\gamma_D + \xi_{i,D}[1 - e^{\xi_{i,D}(T-t)}]}{2\xi_{i,D}}) \}

\[+ \frac{\mu_{\lambda}}{\sigma_{\lambda}^2} \{ (\gamma_{\lambda} + \xi_{i,\lambda})(T - t) - 2 \ln(1 - \frac{[\gamma_{\lambda} + \xi_{i,\lambda}[1 - e^{\xi_{i,\lambda}(T-t)}]}{2\xi_{i,\lambda}}) \}, \]

\[(4.47a) \]

si

\[
\left\{ \begin{array}{l}
\xi_{i,V} \equiv \sqrt{[\gamma_{\lambda} - \sigma_y p_{s,y} (1 + i\phi)]^2 + \sigma_y^2 (\phi^2 - i\phi)} \\
\xi_{i,R} \equiv \sqrt{\gamma_R^2 - 2i\sigma_R^2 \phi} \\
\xi_{i,D} \equiv \sqrt{\gamma_D^2 + 2\sigma_D^2 (1 + i\phi)} \\
\xi_{i,\lambda} \equiv \sqrt{\gamma_{\lambda}^2 - 2\sigma_{\lambda}^2 \{(1 + \mu_{j,s})[(1 + \mu_{j,s}) e^{-\frac{\sigma_s^2}{2}} (\phi^2 - i\phi)]/2 - 1] - \mu_{j,s} i\phi \},}
\end{array} \right. \]
et

\[
\begin{align*}
&f_{1,2}(T - t, S_t, V_t, R_t, D_t, \lambda_{i,s}, \phi) = \exp\{ i\phi \ln S_t - \ln B_t \\
&- (\phi^2 + i\phi)(1 - e^{\xi_{2,V}(T-t)}) \\
&+ \frac{\gamma_V - \sigma_V \rho_{s, V} i\phi(1 - e^{\xi_{2,V}(T-t)}) - \xi_{2,V}(1 + e^{\xi_{2,V}(T-t)})}{2(i\phi - 1)(1 - e^{\xi_{2,R}(T-t)})} V_t \\
&+ \frac{\gamma_{R}(1 - e^{\xi_{2,R}(T-t)}) - \xi_{2,R}(1 + e^{\xi_{2,R}(T-t)})}{2\sigma^2_V (\phi^2 + i\phi)^{1/2}} R_t \\
&- 2i\phi(1 - e^{\xi_{2,D}(T-t)}) \\
&+ \frac{\gamma_{\lambda}(1 - e^{\xi_{2,\lambda}(T-t)}) - \xi_{2,\lambda}(1 + e^{\xi_{2,\lambda}(T-t)})}{2\sigma^2_R (\phi^2 + i\phi)^{1/2}} \lambda_{i,s} \\
&+ \frac{\mu_V}{\sigma^2_V} \left((\gamma_V - \sigma_V \rho_{s, V} i\phi + \xi_{2,V})(T - t) \right) \\
&- 2\ln\left(1 - \frac{\gamma_V - \sigma_V \rho_{s, V} i\phi + \xi_{2,V}[1 - e^{\xi_{2,V}(T-t)}]}{2\xi_{2,V}} \right) \\
&+ \frac{\mu_R}{\sigma^2_R} \left((\gamma_R + \xi_{2,R})(T - t) \right) - 2\ln\left(1 - \frac{\gamma_R + \xi_{2,R}[1 - e^{\xi_{2,R}(T-t)}]}{2\xi_{2,R}} \right) \\
&+ \frac{\mu_D}{\sigma^2_D} \left((\gamma_D + \xi_{2,D})(T - t) \right) - 2\ln\left(1 - \frac{\gamma_D + \xi_{2,D}[1 - e^{\xi_{2,D}(T-t)}]}{2\xi_{2,D}} \right) \\
&+ \frac{\mu_{\lambda}}{\sigma^2_{\lambda}} \left((\gamma_{\lambda} + \xi_{2,\lambda})(T - t) \right) - 2\ln\left(1 - \frac{\gamma_{\lambda} + \xi_{2,\lambda}[1 - e^{\xi_{2,\lambda}(T-t)}]}{2\xi_{2,\lambda}} \right) \right)
\end{align*}
\]

(4.47b)

où

\[
\begin{align*}
\begin{cases}
\xi_{2,V} &\equiv \sqrt{\gamma_V - \sigma_V \rho_{s, V} i\phi}^2 + \sigma^2_V (\phi^2 + i\phi) \\
\xi_{2,R} &\equiv \sqrt{\gamma_R - 2\sigma^2_R (i\phi - 1)} \\
\xi_{2,D} &\equiv \sqrt{\gamma_D + 2\sigma^2_D (\phi} \\
\xi_{2,\lambda} &\equiv \sqrt{\gamma_{\lambda} - 2\sigma^2_{\lambda} \{1 + \mu_{\lambda} (i\phi e^{-\sigma^2_{\lambda}(\phi^2 + i\phi)^{1/2}} - 1) - \mu_{\lambda} i\phi \}}.
\end{cases}
\end{align*}
\]

Preuve. Cf. Annexe A.2 ■

Cas particulier : lorsque les dividendes sont déterministes et constants (modèle SVSIDSJ)

Si l’on considère que les dividendes sont constants sur toute la vie de l’option, c’est-à-dire

\[
\begin{cases}
\mu_D \to 0 \\
\gamma_D \to 0 \\
\sigma_D \to 0
\end{cases}
\]

alors les expressions de \(f_{1,j}, \forall j = 1, 2 \), se simplifient en :

\[
\begin{cases}
\mu_D \to 0 \\
\gamma_D \to 0 \\
\sigma_D \to 0
\end{cases}
\]
\[f_{t,t}(T - t, S_t, V_t, R_t, D, \lambda_t, \phi) = \exp \{ i \phi \ln S_t - D(1 + i \phi)(T - t) \]
+ \frac{\gamma_Y - \sigma_Y \rho_{S,Y} (1 + i \phi)}{\gamma_R - \xi_{1,R}(1 + e^{\xi_{1,Y} T})} \cdot \frac{1}{(T - t)} (1 + \xi_{1,Y} V_t - e^{\xi_{1,Y} (T - t)})
+ \frac{\gamma_R - \xi_{1,R}(1 + e^{\xi_{1,Y} T}) - \xi_{1,Y}(1 + e^{\xi_{1,Y} (T - t)})}{1 - e^{\xi_{1,Y} (T - t)}} \frac{R_t}{1 - e^{\xi_{1,Y} T}}
+ \frac{2(1 + \mu_j \cdot e^{-\sigma_{1,j}^2 (\phi^2 - i \phi) / 2} - 1) - \mu_j \phi}{1 - e^{\xi_{1,Y} (T - t)}} \lambda_t,
+ \frac{\mu_Y}{\sigma_Y} ((\gamma_Y - \sigma_Y \rho_{S,Y} (1 + i \phi) + \xi_{1,Y})(T - t)
- 2 \ln(1 - \frac{\gamma_Y - \sigma_Y \rho_{S,Y} (1 + i \phi) + \xi_{1,Y} [1 - e^{\xi_{1,Y} (T - t)}]}{2 \xi_{1,Y}}))
+ \mu_R \frac{(\gamma_R + \xi_{1,R})(T - t) - 2 \ln(1 - \frac{\gamma_R + \xi_{1,R} [1 - e^{\xi_{1,R} (T - t)}]}{2 \xi_{1,R}})}{\xi_{1,R}}
+ \mu_{\lambda_s} \frac{(\lambda_Y + \xi_{1,\lambda_s})(T - t) - 2 \ln(1 - \frac{\gamma_{\lambda_s} + \xi_{1,\lambda_s} [1 - e^{\xi_{1,\lambda_s} (T - t)}]}{2 \xi_{1,\lambda_s}})}{\xi_{1,\lambda_s}}, \tag{4.48a} \]

où
\[\begin{align*}
\xi_{1,Y} & \equiv \sqrt{\gamma_Y - \sigma_Y \rho_{S,Y} (1 + i \phi)}^2 + \sigma_Y^2 (\phi^2 - i \phi) \\
\xi_{1,R} & \equiv \sqrt{\gamma_R - 2 \sigma_R \phi} \\
\xi_{1,\lambda_s} & \equiv \sqrt{\gamma_{\lambda_s} - 2 \sigma_{\lambda_s}^2 \left\{ (1 + \mu_{\lambda_s}) (1 + \mu_{\lambda_s}) e^{-\sigma_{\lambda_s}^2 (\phi^2 - i \phi) / 2} - 1 \right\} - \mu_{\lambda_s} \phi} \end{align*} \]
et

\[
\begin{align*}
 f_{1,2}(T - t, S_t, V_t, R_t, D, \lambda_{t,s}, \phi) &= \exp\{i\phi \ln S_t - i D\phi, (T - t) - \ln B_t \\
 &+ \left(\xi_{2,V} - \sigma_{V,S,V} i \phi \right) (1 - e^{\xi_{2,V}(T-t)} - \xi_{2,V}(1 + e^{\xi_{2,V}(T-t)}) V_t \\
 &+ 2(i\phi - 1)(1 - e^{\xi_{2,R}(T-t)}) \right) R_t \\
 &+ 2\left\{ (1 + \mu_{j_s}) i \phi e^{-\sigma_{j_s}^2 (\phi^2 + i\phi)/2} - 1 - \mu_{j_s} i \phi \right\} (1 - e^{\xi_{2,\lambda_s}(T-t)}) \\
 &+ \frac{\mu_{V}}{\sigma_V^2} \left\{ (\xi_{V} - \sigma_{V,S,V} i \phi + \xi_{2,V})(T - t) \\
 &- 2 \ln\left(1 - \frac{[\xi_{V} - \sigma_{V,S,V} i \phi + \xi_{2,V}][1 - e^{\xi_{2,V}(T-t)}]}{2\xi_{2,V}} \right) \right\} \\
 &+ \frac{\mu_{R}}{\sigma_R^2} \left\{ \xi_{2,R} + \xi_{2,R}\right\} (T - t) - 2 \ln\left(1 - \frac{[\xi_{R} + \xi_{2,R}][1 - e^{\xi_{2,R}(T-t)}]}{2\xi_{2,R}} \right) \right\} \\
 &+ \frac{\mu_{\lambda,s}}{\sigma_{\lambda,s}^2} \left\{ \xi_{2,\lambda_s} + \xi_{2,\lambda_s}\right\} (T - t) - 2 \ln\left(1 - \frac{[\xi_{\lambda,s} + \xi_{2,\lambda_s}][1 - e^{\xi_{2,\lambda_s}(T-t)}]}{2\xi_{2,\lambda_s}} \right) \right\} \\
\end{align*}
\]

où :

\[
\begin{align*}
 \xi_{2,V} &\equiv \sqrt{[\xi_{V} - \sigma_{V,S,V} i \phi]^2 + \sigma_{V}^2 (\phi^2 + i\phi)} \\
 \xi_{2,R} &\equiv \sqrt{\xi_{R}^2 - 2\sigma_{R}^2 (i\phi - 1)} \\
 \xi_{2,\lambda,s} &\equiv \sqrt{\xi_{\lambda,s}^2 - 2\sigma_{\lambda,s}^2 \left\{ (1 + \mu_{j_s}) i \phi e^{-\sigma_{j_s}^2 (\phi^2 + i\phi)/2} - 1 - \mu_{j_s} i \phi \right\}}.
\end{align*}
\]

4.3.3 Étude de cas particuliers

Lorsque les dividendes sont nuls (modèle SVISJ)

Si \(D_t \equiv 0, \forall t \geq 0 \), on retrouve le modèle SVISJ de la section précédente 4.2.2.

4.4 Dérivation des paramètres de sensibilité

Dans cette section, l'argument que je note "\(\cdot \)" représente le 7-uplet \((\tau, S_t, V_t, R_t, D_t, \lambda_{t,s}, K)\).

4.4.1 Les variations premières : les deltas

Le caractère analytique du premium du call permet la dérivation analytique des expressions des deltas. Dans le cadre du modèle SVISJ, il y a quatre deltas puisqu'il y a quatre sources de variations stochastiques au cours du temps : risque de cours du sous-jacent \(S_t \), risque de variance \(V_t \) (ou ce qui revient au même, risque de volatilité \(\sigma_t = \sqrt{V_t} \)), risque
de taux d’intérêt \(R_t \), et enfin risque de fréquence de sauts poissonniers \(\lambda_{i,s} \). Dans le modèle SVSISJ, il faut ajouter un cinquième paramètre de sensibilité, le paramètre de sensibilité à la variation du montant du dividende.

- Paramètre \(\delta \) de sensibilité au cours de l’actif sous-jacent :

\[
\Delta_{t,s}(\tau, x_t, K) \equiv \frac{\partial C_t(\cdot)}{\partial S_t} \\
= \frac{\partial}{\partial S_t} B_t(\tau, R_t) \int_{K}^{\infty} \left(S_T - K \right) Q(S_T) dS_T \\
= B_t(\tau, R_t) \frac{\partial}{\partial S_t} \int_{\ln(\frac{K}{S_t})}^{\infty} \left(S_t e^u - K \right) Q(u) du \\
= B_t(\tau, R_t) \int_{\ln(\frac{K}{S_t})}^{\infty} e^u Q(u) du \left[(S_t e^u - K) \right]_{u=\ln(K/S_t)} \frac{\partial \ln(K/S_t)}{\partial S_t} \\
= \Pi_{t,1}(\cdot) \geq 0, \tag{4.49a}
\]

où j’ai posé \(u = \ln \frac{S_T}{S_t} \) et appliqué la règle de Leibniz relative à l’intégration.

- Paramètres \(\delta \) de sensibilité à la volatilité, au dividende et à la fréquence des sauts :

\[
\forall g = V, D, \lambda_s, \\
\Delta_{t,g}(\tau, x_t, K) \equiv \frac{\partial C_t(\cdot)}{\partial g} \\
= S_t \frac{\partial \Pi_{t,1}(\cdot)}{\partial g} - KB_t(\tau, R_t) \frac{\partial \Pi_{t,2}(\cdot)}{\partial g}, \tag{4.50a}
\]

- Paramètre \(\delta \) de sensibilité au taux d’intérêt :

\[
\Delta_{t,R}(\tau, x_t, K) \equiv \frac{\partial C_t(\cdot)}{\partial R_t} \\
= S_t \frac{\partial \Pi_{t,1}(\cdot)}{\partial R_t} - KB_t(\tau, R_t) \left\{ \frac{\partial \Pi_{t,2}(\cdot)}{\partial R_t} \frac{2(1 - e^{\eta})}{\gamma_{\eta}(1 - e^{\eta}) - \eta(1 + e^{\eta})} \Pi_{t,2}(\cdot) \right\}. \tag{4.51a}
\]

Dans toutes ces expressions, \(\forall j = 1, 2 \) et \(\forall g = V_t, R_t, D_t, \lambda_{i,s} \),

\[
\frac{\partial \Pi_{t,j}(\cdot)}{\partial g} = \frac{1}{\pi} \int_{0}^{\infty} Re \left\{ \frac{1}{i \phi} e^{-i \phi \ln K} \frac{\partial f_{t,j}(\tau, x_t, \phi)}{\partial g} \right\} d\phi.
\]
4.4.2 Les variations secondes : les *gammas*

Dans le cadre du modèle *SVSISJ*, les différentes expressions des dérivées secondes (les *gammas*) du *premium* du *call* donné dans la proposition 4.3.2 peuvent s’exprimer de façon analytique. Elles sont données ci-dessous.

- Paramètre *gamma* de sensibilité au cours de l’actif sous-jacent :

\[
\Gamma_{t,s}(\tau, x_t, K) \equiv \frac{\partial^2 C_t(\cdot)}{\partial S_t^2} = \frac{\partial \Pi_{t,1}(\cdot)}{\partial S_t} = \frac{1}{\pi} \int_0^{+\infty} \text{Re}\left\{e^{-i\phi \ln K} S_t f_{t,1}(\tau, x_t, \phi)\right\} d\phi > 0. \tag{4.52a}
\]

- Paramètre *gamma* de sensibilité à la volatilité, au dividende et à la fréquence des sauts :

\[
\forall g = V, D, \lambda_S,
\Gamma_{t,f}(\tau, x_t, K) \equiv \frac{\partial^2 C_t(\cdot)}{\partial g^2} = \frac{\partial \Pi_{t,1}(\cdot)}{\partial g} = S_t \frac{\partial^2 \Pi_{t,1}(\cdot)}{\partial g^2} - KB_t(\tau, R_t) \frac{\partial^2 \Pi_{t,2}(\cdot)}{\partial g^2}, \tag{4.53a}
\]

- Paramètre *gamma* de sensibilité au taux d’intérêt :

\[
\Gamma_{t,r}(\tau, x_t, K) \equiv \frac{\partial^2 C_t(\cdot)}{\partial R_t^2} = \frac{\partial \Pi_{t,1}(\cdot)}{\partial R_t} - KB_t(\tau, R_t)\left\{\frac{\partial^2 \Pi_{t,2}(\cdot)}{\partial R_t^2} - 2\left[\frac{2(1 - e^{\nu r})}{\gamma_r (1 - e^{\nu r}) - \eta (1 + e^{\nu r})}\right] \frac{\partial \Pi_{t,2}(\cdot)}{\partial R_t}\right\} + \left[\frac{2(1 - e^{\nu r})}{\gamma_r (1 - e^{\nu r}) - \eta (1 + e^{\nu r})}\right]^2 \Pi_{t,2}(\cdot).
\]

- Paramètre *gamma* de sensibilité "croisée" :

\[
\forall g = V, D, \lambda_S,
\Gamma_{t,s_g}(\tau, x_t, K) \equiv \frac{\partial^2 C_t(\cdot)}{\partial S_t \partial g} = \frac{\partial \Pi_{t,1}(\cdot)}{\partial g} = \frac{1}{\pi} \int_0^{+\infty} \text{Re}\left\{e^{-i\phi \ln K} \frac{\partial f_{t,1}(\tau, x_t, \phi)}{\partial g}\right\} d\phi. \tag{4.55a}
\]

Dans toutes précédentes expressions, \(\forall j = 1, 2 \) et \(\forall g = V_t, R_t, D_t, \lambda_{t,s}, \)

\[
\frac{\partial^2 \Pi_{t,j}(\cdot)}{\partial g^2} = \frac{1}{\pi} \int_0^{+\infty} \text{Re}\left\{e^{-i\phi \ln K} \frac{\partial^2 f_{t,j}(\tau, x_t, \phi)}{\partial g^2}\right\} d\phi.
\]
4.5 Conclusion

Dans ce chapitre, m’inspirant du modèle de Bakshi, Cao & Chen (1997, 2000), je propose un modèle SVESISJ (Stochastic Volatility, Stochastic Interest Rate, Stochastic Dividend, Stochastic Jumps) de la classe de modèles à système markovien. Levant les hypothèses insatisfaisantes de déterminisme à la fois de la volatilité de l’actif sous-jacent et du taux d’intérêt, il constitue une alternative aux modèles existants d’évaluation des options européennes sur actif versant un dividende stochastique. Ce modèle est une réponse possible aux faiblesses des modèles ne pouvant prétendre capturer tout sauf pouvant ébranler le cours de l’actif sous-jacent, une skewness négative ainsi que le caractère "fortement" leptokurtique de la distribution réelle des rentabilités de celui-ci (sauts poissonniens à amplitude et fréquence aléatoires).

L’idée de ce modèle est la suivante : la fonction caractéristique de la probabilité que le cours du support soit plus grand (ou plus petit) que le prix d’exercice du call peut s’exprimer de façon analytique dans certains cas, en particulier lorsque les variables d’état du modèle suivent la trajectoire d’un processus "racine-carrée". Ainsi, dans le but d’obtenir une formule d’évaluation entièrement analytique, je forme une équation intégro-différentielle que doit satisfaire le premium d’un call européen, qui conduit à la résolution d’un système d’équations différentielles ordinaires de Ricatti (c’est l’"approche différentielle" de Heston (1993) ou encore de Bakshi, Cao & Chen (1997, 2000), par opposition à l’"approche martingale" de Scott (1997) [208]). En pratique, ce modèle fait intervenir un jeu de 15 paramètres (12 dans le cas où le sous-jacent ne donne pas lieu à l’encaissement de dividendes), dont les valeurs numériques instantanées peuvent être calculées, par exemple, selon l’algorithme du gradient, dont la fonction critère à minimiser est la différence entre le prix issu du modèle et le prix observé empiriquement, ou encore selon l’algorithme des moments simulés. Ces algorithmes sont explicités dans l’annexe B.

Lorsque le support ne verse aucun dividende, le modèle à volatilité, taux d’intérêt stochastiques et à processus de diffusion avec sauts d’amplitude et d’intensité stochastiques, généralise les principaux modèles analytiques, à volatilité stochastique, issus de la littérature financière sur l’évaluation des options. En effet, il coïncide avec le modèle de Heston (1993) lorsque le taux d’intérêt est déterministe et constant et la fréquence des sauts est nulle. Il se ramène à celui de Bates (1996) lorsque le taux d’intérêt et la fréquence des sauts sont déterministes et constants, et enfin à celui de Bakshi, Cao & Chen (1997) lorsque l’intensité des sauts est déterministe. Comme ces auteurs, la formule d’évaluation à laquelle j’aboutis fait intervenir un logarithme complexe (à travers l’expression des fonctions caractéristiques $f_{i,j}$), fonction de variables multiples, qu’il s’agit d’évaluer avec prudence. En effet, le fait d’utiliser la valeur principale du logarithme complexe, (comme le font certains logiciels commerciaux de calcul mathématique Mathematica, Mathcad, pour citer deux exemples), peut conduire à des discontinuités sur l’intervalle d’intégration du logarithme et, de ce fait, fausser l’intégration des fonctions caractéristiques.
"One assumption in Black-Scholes that is clearly not true is the assumption that the volatility is constant. It is interesting, therefore, to compare the prices given by Black-Scholes with the prices given by a model where the volatility follows a stochastic process."

John Hull, *Options, futures and other derivatives.*

Sommaire

5.1 Introduction : objectifs du chapitre 184
5.2 Simulations du processus à incrément browniens et ponctuels marqués .. 184
5.3 Influence des paramètres d’un modèle à volatilité stochastique sur les *calls* .. 197
 5.3.1 Influence du *drift* de la variance sur les *calls* 198
 5.3.2 Influence de la volatilité de la variance sur les *calls* 201
 5.3.3 Influence de la maturité de l’option sur les *calls* 204
 5.3.4 Influence de la corrélation entre cours et variance du support sur les *calls* 206
5.4 Pouvoir descriptif du *smile* de volatilité du modèle *SVSISJ* . 207
5.5 *Premium* typique du modèle *SVSISJ* 210
5.6 Conclusion ... 212
5.1 Introduction : objectifs du chapitre

Le chapitre précédent a proposé un modèle SVSISJ d'évaluation des options, mettant en œuvre, d'un côté un processus mixte à accroissements à la fois browniens et ponctuels marqués pour décrire la dynamique de l'actif sous-jacent et d'un autre côté, un processus de diffusion avec retour vers la moyenne racine-carrée comme processus stochastique pour la variance des rentabilités du support. Avant toute étude empirique du modèle SVSISJ sur des données réelles issues du marché, il convient d'étudier les propriétés théoriques de ces processus et l'influence des paramètres qui entrent en jeu sur le premium des calls évalués par le modèle. Précisément, dans la première section de ce chapitre, je me focalise sur le processus retenu pour décrire la dynamique de l'actif sous-jacent en posant la question suivante "quelle est la trajectoire type décrite par un processus ponctuel ?". Dans une seconde section, je m'intéresse particulièrement à la pertinence de la proposition d'un processus stochastique pour la variance, en posant la question "quel est l'impact des paramètres structurels sur le premium des calls ?". Enfin, la dernière section discute de l'enjeu du pouvoir descriptif de l'effet smile de volatilité : "quel est le pouvoir descriptif du smile de la volatilité implicite au modèle SVSISJ ?". Je tente de répondre à ces questions par voie numérique, en usant de simulations de Monte Carlo, par passage aux processus en temps discret suivant un schéma d'Euler.

5.2 Simulations du processus à incréments browniens et ponctuels marqués

Processus du cours du support comme processus de diffusion à dérive constante et sans force de rappel vers la moyenne (mouvement brownien géométrique)

En première approche, en faisant abstraction des sauts, du taux d'intérêt et des éventuels détachements de dividendes, si l'on considère que la dérive dans le processus du cours du support est constante et n'intègre pas de force de rappel vers une valeur moyenne, et si l'écart type du cours est constante, autrement dit si le processus du cours support est du type brownien géométrique

\[S_{t+\Delta t} = S_t(1 + \mu_s \Delta t) + \sigma_s W_{t+\Delta t}, \]

(5.1)

alors on obtient des dynamiques de cours illustrées dans la figure 5.1 avec le jeu de paramètres suivants :
Sans force de rappel vers la valeur moyenne, le mouvement brownien géométrique décrit un cours qui fluctue autour d’une droite de pente $\mu_s = 0.5$, tandis que la valeur de $\sigma_s = 0.5$ fixe l’amplitude des fluctuations autour de cette droite. Il est à noter que l’amplitude de ces fluctuations ne croît pas avec le temps. Dans ces conditions, il semblerait que le mouvement brownien géométrique, sans force de rappel vers la valeur moyenne, est une bonne approximation de la dynamique des prix des actifs dont la courbe de tendance est linéaire et lorsque les variations des prix ne croissent pas dans le temps, en l’absence de saut discontinu.
Processus du cours du support comme processus *mean-reverting* à moyenne à long terme nulle (Ornstein-Uhlenbeck "OU" à moyenne à long terme nulle)

S'il est correct de supposer que le processus du cours du support est un processus de diffusion "OU" à retour vers une valeur moyenne à long terme égale à zéro, alors la dynamique du cours est donnée par

\[S_{t+\Delta t} = S_t(1 - \gamma_s \Delta t) + \sigma_s W_{t+\Delta t, s}. \]

(5.2)

où \(\gamma_s > 0 \). Plusieurs réalisations d'un tel processus sont simulées dans la figure 5.2, obtenue avec le jeu de paramètres suivants :

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cours du support à (t = 0)</td>
<td>(S_0 = 100)</td>
</tr>
<tr>
<td>Vitesse de retour à la valeur moyenne du support</td>
<td>(\gamma_s = 0.5)</td>
</tr>
<tr>
<td>Volatilité du support</td>
<td>(\sigma_s = 0.5)</td>
</tr>
<tr>
<td>Pas d'observation</td>
<td>(\Delta t = 10^{-2})</td>
</tr>
</tbody>
</table>

![Image of simulation results](image)

Fig. 5.2: Exemple de trois trajectoires suivies par un processus de diffusion "OU"

On peut observer que la dérive est inversement proportionnelle au cours à travers le paramètre \(\gamma_s \), tandis que le terme de diffusion qui est une constante (positive) "règle" la
vitesse de retour vers cette valeur moyenne\(^1\). Il s’agit d’un cas particulier du processus \textit{mean-reverting} avec force de rappel vers une moyenne nulle. Pour cette raison, cette classe de processus\(^2\) peut être une bonne approximation de la dynamique des prix d’actifs fluctuant autour de 0.

\textbf{Processus du cours du support comme processus de diffusion à retour vers la moyenne "racine-carrée"}

Si l’on suppose que le processus du cours du support est un processus de diffusion à retour vers la moyenne "racine-carrée", on obtient la dynamique discrète :

\[S_{t+\Delta t} = S_t + (\mu_s - \gamma_s S_t)\Delta t + \sigma_s \sqrt{S_t} W_{t+\Delta t, S}, \quad (5.3) \]

dont plusieurs réalisations sont illustrées dans la figure 5.3 ci-après :

\(^1\) L’effet du retour vers la moyenne est étudié dans nombre de papiers de littérature, en particulier dans l’article de Chan, Karolyi, Longstaff & Sanders (1992) [58] qui remarquent que cet effet tend à être lent pour le taux d’intérêt. Pour ma part, mes simulations font état d’une convergence vers la valeur moyenne au delà de la 200\(^e\) observation (cf. fig. 5.2).

\(^2\) Le processus "OU" a été initialement utilisé en mécanique statistique, par exemple pour modéliser la vitesse d’une particule en mouvement au sein d’un fluide ou d’un gaz.
Fig. 5.3: Exemple de trois trajectoires suivies par un processus à retour vers la moyenne "racine-carrée"
L'exemple de simulation 5.3 de processus à retour vers la moyenne "racine-carrée" est obtenu avec le jeu de paramètres suivants :

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cours du support à (t = 0)</td>
<td>(S_0 = 100)</td>
</tr>
<tr>
<td>Niveau moyen à long terme du support</td>
<td>(\mu_s / \gamma_s = 100)</td>
</tr>
<tr>
<td>Vitesse de retour à la valeur moyenne du support</td>
<td>(\gamma_s = 0.5)</td>
</tr>
<tr>
<td>Volatilité du support</td>
<td>(\sigma_s = 0.5)</td>
</tr>
<tr>
<td>Pas d'observation</td>
<td>(\Delta t = 10^{-2})</td>
</tr>
</tbody>
</table>

Le processus illustre une force de retour vers la valeur moyenne \(\mu_s / \gamma_s = 100 \), avec une vitesse de retour fixée par le paramètre \(\gamma_s = 0.5 \) (plus cette valeur est petite et plus le retour vers la valeur moyenne se fait lentement). Il convient de noter que ce type de processus semble décrire un mouvement périodique, et de ce fait, ce dernier semble être incompatible avec les marchés efficiencys. Cependant, Fouque, Papanicolaou & Sircar (2000) [107] montrent qu'un processus avec retour à la moyenne, à vitesse de retour élevée, constitue une approche adéquate de modélisation de la volatilité du marché. Par ailleurs, le terme de diffusion étant fonction du cours du support, ce processus ne peut être à valeurs négatives.

Processus du cours du support comme processus ponctuel marqué

Si je suppose maintenant que le cours du support suit un processus ponctuel marqué de marque \(k_{t,i} \) et dont les instants d’occurrence sont gouvernés par un processus de Poisson \(N_t \) à paramètre \(\lambda t \), l’équation d’évolution devient en ce cas de la forme :

\[
S^n_t = \sum_{i=1}^{n} k_{t,i} N_i(k_{t,i}),
\]

où j’ai noté par \(N_i(k_{t,i}) \) le nombre de sauts d’amplitude \(k_{t,i} \) qui se sont produits dans l’intervalle \([0, t]\).

Propriété 5.2.1 (Moments statistiques d’un processus ponctuel marqué). Soit le processus de comptage (5.4), dans le cas où \(\lambda \) est stationnaire,

- \((i)\) \(\mathbb{E}[S^n_{t + \Delta t} - S^n_t] = \mathbb{E}[k_t] \lambda \Delta t \) (espérance) ;

- \((ii)\) \(\mathbb{E}[S^n_{t + \Delta t} - S^n_t]^u = \mathbb{E}[k^n_t]^u \lambda \Delta t, \forall u > 1 \) (moment d’ordre \(u \)).

Plusieurs réalisations d’un processus ponctuel sont tracées dans la figure 5.4.
Fig. 5.4: Exemple de trois trajectoires suivies par un processus ponctuel marqué

L’exemple de simulation 5.4 de processus ponctuel marqué π_{f_c} (cf. définition 4.2.1), où l’amplitude de la marche aléatoire a été volontairement exagérée, est obtenu avec le jeu de paramètres suivants :

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cours du support à $t = 0$</td>
<td>$S_0 = 100$</td>
</tr>
<tr>
<td>Fréquence des sauts</td>
<td>$\lambda_t \sim \mathcal{N}(0.5,1)$</td>
</tr>
<tr>
<td>Loi de l’amplitude des sauts</td>
<td>$\mathcal{P}(k_t) \sim \mathcal{N}(10,5)$</td>
</tr>
<tr>
<td>Pas d’observation</td>
<td>$\Delta t = 10^{-2}$</td>
</tr>
</tbody>
</table>
Ce processus de comptage peut être engendré comme une marche ou une promenade aléatoire dans laquelle l'amplitude et la fréquence des marches sont des variables aléatoires, soit :

\[S^n_t = \sum_{i=0}^{n} X_i \Delta t, \quad t = n \Delta t, \quad (5.5) \]

où \(X_i \Delta t \) représente un processus en temps discret, défini sur chaque intervalle \(\Delta t \), qui prend la valeur \(k_i \) avec une probabilité de \(\lambda_i \Delta t \), et la valeur zéro avec une probabilité de \(1 - \lambda_i \Delta t \). Il modélise l'évolution temporelle d'un cours qui reste constant sauf "de temps en temps", où il "sauté".

Propriété 5.2.2 (Probabilité de saut avec un processus ponctuel marqué). Soit le processus de comptage (5.5), dans le cas où \(\lambda_i \) est stationnaire\(^3\), autrement dit si \(\lambda_i \equiv \lambda \), la probabilité d'avoir \(s \) sauts dans l'intervalle \([0, t]\) s'écrit :

\[\frac{1}{s!} (\lambda t)^s e^{-\lambda t}. \]

Preuve. En effet, soit \(Z \) la variable aléatoire ",nombre de sauts survenus au cours de l'intervalle \([0, t]\)". L'événement \([Z = s]\) pendant \([0, t]\) équivaut à avoir \(s \) fois l'événement \([Z = 1]\) et \((n - s)\) fois l'événement \([Z = 0]\) pendant le même intervalle, soit :

\[\Pr[Z = s] = \Pr[\bigcap_{s} \{Z = 1\}, \bigcap_{n-s} \{Z = 0\}] \]

\[= C^n_s (\lambda \Delta t)^s (1 - \lambda \Delta t)^{n-s} \]

\[= C^n_s (\lambda t)^s (1 - \frac{t}{n})^{n-s} \]

\[= \frac{n(n-1)\cdots(n+s-1)}{s!} (\lambda \frac{t}{n})^{s} (1 - \lambda \frac{t}{n})^{n-s} \]

\[\overset{n \to \infty}{\longrightarrow} \frac{n^s}{s!} (\lambda t)^s e^{-\lambda t} \]

\[\overset{n \to \infty}{\longrightarrow} \frac{1}{s!} (\lambda t)^s e^{-\lambda t}. \]

\(^3\) Si la fréquence varie avec le temps, il est également possible de montrer que la probabilité d'avoir \(s \) sauts dans l'intervalle \([0, t]\) est modifiée selon \(\frac{1}{t} \int (\Lambda_t)^s e^{-\Lambda_t} \), où \(\Lambda_t = \int_{0}^{t} \lambda_t d\tau \).
En prenant alors $s = 1$, par exemple, et en fixant a priori et de façon arbitraire une fréquence de sauts, il est possible de se donner une idée de la forme de la densité de probabilité qu’un saut intervienne au cours de l’intervalle $[0, t]$, comme le montre la figure 5.5 :

Remarque 5.2.1. Dans le cas où λ_t est stationnaire, on retrouve bien que Z décrit un processus "pur" poissonnier puisqu’il vérifie les propriétés suivantes :
- (i) $\Pr(Z = 0) = 1$;
- (ii) Z est à accroissements indépendants et stationnaires ;
- (iii) $\Pr[Z = s] = \frac{1}{s!}(\lambda_t t)^s e^{-\lambda_t t}$.

Remarque 5.2.2. Le processus suivi par la variable aléatoire Z est également un processus de Lévy, au regard de la définition 1.5.2.

Processus du cours du support comme processus mixte mean-reverting "racine-carrée"/ponctuel marqué

En intégrant les deux types de processus précédents, le processus du cours du support s’écrit (en faisant abstraction du taux d’intérêt et des éventuels détachements de divi-
dendes) :

\[
\begin{align*}
 dS_t &= (\mu_S - \gamma_S S_t)dt + \sqrt{\gamma_t} S_t dW_{t,S} + k_{t,S} S_t dN_{S_t} \\
 dV_t &= (\mu_V - \gamma_V V_t)dt + \sigma_V \sqrt{\gamma_t} dW_{t,V},
\end{align*}
\]

où \(N_{S_t} \) est un processus de Poisson à paramètre \(\lambda_{t,S} \) et

\[
\begin{align*}
 dW_{t,S} dW_{t,V} &= dW_{t,V} dW_{t,S} = \rho_{s,v} dt, \\
 dN_{S_t} dW_{t,S} &= dW_{t,S} dN_{S_t} = dN_{S_t} dW_{t,V} = dW_{t,V} dN_{S_t} = 0.
\end{align*}
\]

En temps discret, ce système peut s’écrire :

\[
\begin{align*}
 S_{t+\Delta t} &= S_t + (\mu_S - \gamma_S S_t) \Delta t + \sqrt{\gamma_t} S_t W_{t+\Delta t,S} + k_{t,S} S_t N_{t+\Delta t,S} \\
 V_{t+\Delta t} &= V_t + (\mu_V - \gamma_V V_t) \Delta t + \sigma_V \sqrt{\gamma_t} W_{t+\Delta t,V}.
\end{align*}
\]

Trois réalisations d’un tel processus à sauts d’intensité déterministe sont envisagées dans la figure 5.6, successivement en basse\(^4\) puis en haute fréquence\(^5\), et enfin lorsque celle-ci est aléatoire. La figure est obtenue en exagérant volontairement l’amplitude des sauts éventuels et avec le jeu commun de paramètres numériques suivant :

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cours du support à (t = 0)</td>
<td>(S_0 = 100)</td>
</tr>
<tr>
<td>Niveau moyen à long terme du cours du support</td>
<td>(\mu_S / \gamma_S = 100)</td>
</tr>
<tr>
<td>Vitesse de retour à la moyenne</td>
<td>(\gamma_S = 0.5)</td>
</tr>
<tr>
<td>Niveau moyen à long terme de la variance du support</td>
<td>(\mu_V / \gamma_V = 0.5)</td>
</tr>
<tr>
<td>Vitesse de retour à la moyenne de la variance du support</td>
<td>(\gamma_V = 0.5)</td>
</tr>
<tr>
<td>Volatilité de la variance du support</td>
<td>(\sigma_V = 0.5)</td>
</tr>
<tr>
<td>Loi de l’amplitude des sauts</td>
<td>(\mathcal{P}(k_{t,S}) \sim \mathcal{N}(10, 5))</td>
</tr>
<tr>
<td>Coefficient de corrélation entre les chocs de variance et les rentabilités</td>
<td>(\rho_{s,v} = 0.5)</td>
</tr>
<tr>
<td>Pas d’observation</td>
<td>(\Delta t = 10^{-2})</td>
</tr>
</tbody>
</table>

\(^4\) J’appelle "basse fréquence" une fréquence positive proche de 0.
\(^5\) De même, j’appelle "haute fréquence" une fréquence proche de 1.
5. Analyse numérique et propriétés théoriques du modèle SVSISJ

\[\begin{align*} \end{align*} \]

\textbf{Fig. 5.6:} Exemple de trois trajectoires suivies par un processus mixte à diffusion "racine-carrée" et à sauts d'occurrence déterministe (basse fréquence)

\textit{Note : Cette simulation est obtenue en fixant } \lambda_S = 0.2. \]

\[\begin{align*} \end{align*} \]

\textbf{Fig. 5.7:} Exemple de trois trajectoires suivies par un processus mixte à diffusion "racine-carrée" et à sauts d'occurrence déterministe (haute fréquence)

\textit{Note : Cette simulation est obtenue en fixant } \lambda_S = 0.8. \]

\[\begin{align*} \end{align*} \]
Fig. 5.8: Exemple de trois trajectoires suivies par un processus mixte à diffusion "racine-carrée" et à sauts d’occurrence aléatoire

Note : Cette simulation est obtenue en fixant $\lambda_{t,S} \sim \mathcal{N}(0.5,1)$.

La figure 5.9 illustre les rentabilités $\Delta r_t(\tau) \equiv r(t) - r(t - \tau) \equiv \ln S_t - \ln S_{t-\tau}$ correspondantes au trois cas précédents.
Fig. 5.9: Exemple de rentabilités générées par un processus mixte à diffusion "racine-carrée"/ponctuel
La figure 5.10 donne les distributions non paramétriques correspondantes aux rentabilités précédentes.

Fig. 5.10: Exemple de distributions de rentabilités générées par un processus mixte

Les valeurs de kurtosis et de skewness correspondantes aux distributions précédentes sont regroupées dans le tableau ci-dessous:

<table>
<thead>
<tr>
<th></th>
<th>$\lambda_S = 0.2$</th>
<th>$\lambda_S = 0.8$</th>
<th>$\lambda_{t,S} \sim \mathcal{N}(0.5,1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skewness</td>
<td>1.17</td>
<td>-16.82</td>
<td>-7.29</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>8.2</td>
<td>288.69</td>
<td>53.35</td>
</tr>
</tbody>
</table>

5.3 Influence des paramètres d’un modèle à volatility stochastique sur les *calls*

En plus d’un processus mixte (processus de diffusion et à sauts), le modèle proposé SV-SISJ fait intervenir un processus stochastique pour la volatilité. Il s’agit alors, dans cette
partie, à travers une comparaison avec le modèle à volatilité constante de Black & Scholes (1973), d'étudier l'influence des divers paramètres (notamment la dérive, la volatilité de la variance, et la corrélation entre les chocs de variance et les rentabilités du cours de l'actif sous-jacont, ainsi que la maturité du call) sur les premia de calls européens. A chaque fois, je considère la position du prix d'exercice K par rapport au cours du support S_t, c'est-à-dire lorsque :
- les calls sont "en dehors de la monnaie" (lorsque $m^l = \ln \frac{S_t}{K} < 0$);
- les calls sont "proches de la monnaie" (lorsque $m^l = \ln \frac{S_t}{K} \approx 0$);
- les calls sont "en dedans de la monnaie" (lorsque $m^l = \ln \frac{S_t}{K} > 0$).

Pour améliorer la lisibilité des résultats, il est convenable d'adopter comme modèle, le modèle SV à pure variance stochastique :

$$C_t^{SV} = \begin{pmatrix}
S_{t+\Delta t} = S_t + \mu_s \Delta t + \sqrt{V_t} S_t W_{t+\Delta t} \\
V_{t+\Delta t} = V_t + \mu_V \Delta t + \sigma_V \sqrt{V_t} W_{t+\Delta t} \\
W_{t+\Delta t} = 0.
\end{pmatrix}$$ (5.11)

- Quel est l'impact des paramètres μ_V et σ_V sur les premia des calls ?
- Quel est le poids de cette influence lorsque la maturité varie ?
- Quel est l'impact de la maturité sur les premia des calls ?

5.3.1 Influence du drift de la variance sur les calls

La simulation 5.11 suivante correspond aux valeurs numériques données dans le tableau ci-après et en faisant varier le ratio cours de l'actif sous-jacont/prix d'exercice de l'option pour trois valeurs de μ_V (0.0005, 0.5 et 1).

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>σ_V</th>
<th>R</th>
<th>τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valeurs numériques</td>
<td>1</td>
<td>10%*</td>
<td>0.5**</td>
</tr>
</tbody>
</table>

* taux annuel de 0.09531...%.
** comprise entre 182 et 183 jours.

Il en ressort les observations suivantes :
- les calls "proches de la monnaie" (entre 0.86 et 1.06) sont sous-évalués par rapport au modèle de Black & Scholes (1973), cette sous-évaluation est fonction croissante de la dérive de la variance stochastique ;
- les calls en "dehors de la monnaie" (en dessous de 0.86) ou "en dedans de la monnaie" (au dessus de 1.06) sont surévalués par rapport au modèle de Black & Scholes (1973), cette surévaluation est fonction croissante de la dérive de la variance stochastique ;
- les deux modèles convergent en premium lorsque la dérive de la variance stochastique tend vers 0.
5. Analyse numérique et propriétés théoriques du modèle SVISJ

Fig. 5.11: Différence de premia des calls entre les modèles SV et Black & Scholes (variations sur la dérive de la variance)

et :
- que le call soit "en dehors", "proche" ou "en dedans de la monnaie ", l’écart de premium entre le modèle à volatilité stochastique et le modèle de Black & Scholes (1973) est fonction croissante de la dérive de la variance stochastique. Cet écart est le plus élevé lorsque les calls sont proches de la monnaie ;
- les deux modèles convergent en premium lorsque les calls sont "très en dedans" ou "très en dehors de la monnaie" (en dessous de 0.60 et au dessus de 1.50).

La figure 5.11 correspond au plan de coupe $\tau = 0.5$ dans les figures suivantes :
Fig. 5.12: Différence de *premia* des *calls* entre les modèles *SV* et Black & Scholes ($\mu_V = 10^{-4}$)

Fig. 5.13: Différence de *premia* des *calls* entre les modèles *SV* et Black & Scholes ($\mu_V = 0.5$)
Les surfaces illustrées dans les figures 5.12 et 5.13 permettent de capter l'évolution de l'influence du drift de la variance dans le temps :
- toutes les observations précédentes sont d'autant plus vérifiées que la maturité est grande ;
- quel que soit la moneyness de l'option, l'écart entre les calls évalués par le modèle à volatilité stochastique et le modèle de Black & Scholes (1973) semble s'accroître de façon non linéaire avec la maturité.

Proposition 5.3.1. (Influence du drift de la variance sur les calls)
- (i) le drift de la variance permet d'ajuster la surévaluation par rapport au modèle de Black & Scholes (1973) des calls "en dehors" et "en dedans de la monnaie" ;
- (ii) le drift de la variance permet d'ajuster la sous-évaluation par rapport au modèle de Black & Scholes (1973) des calls "proches de la monnaie" ;
- (iii) les calls "très en dehors" ou "très en dedans de la monnaie" sont "très faiblement" influencés par une variation du drift de la variance ;
- (iv) l'influence du drift est d'autant plus significative que la maturité de l'option est élevée.

5.3.2 Influence de la volatilité de la variance sur les calls

La méthodologie précédente est répétée pour étudier l'impact de la volatilité de la variance. Pour plusieurs valeurs de μv, on trace la différence \(C_{i}^{SV} - C_{i}^{BS} \) de premia des calls entre les modèles SV et Black & Scholes, en fonction du ratio \(S_{i}/K \).

On obtient la figure 5.14 pour σv = 1, 2, 3 et le jeu de paramètres suivant :

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>μv</th>
<th>(R)</th>
<th>τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valeurs numériques</td>
<td>0.0001</td>
<td>10%</td>
<td>0.5</td>
</tr>
</tbody>
</table>

De cette figure 5.14, plusieurs observations peuvent être faites :
- les calls "proches de la monnaie" (entre 0.86 et 1.06) sont sous-évalués par rapport au modèle de Black & Scholes (1973). Cette sous-évaluation est fonction croissante de la volatilité de la variance stochastique ;
- les calls en "dehors de la monnaie" (en dessous de 0.86) ou "en dedans de la monnaie" (au dessus de 1.06) sont surévalués par rapport au modèle de Black & Scholes (1973). Cette surévaluation est fonction croissante de la volatilité de la variance stochastique ;
- les deux modèles convergent en premium lorsque la volatilité de la variance stochastique tend vers 0.

et :
- que le call soit "en dehors", "proche" ou "en dedans de la monnaie", l'écart de premium entre le modèle à volatilité stochastique et le modèle de Black & Scholes (1973) est fonction croissante de la volatilité de la variance stochastique. Cet écart est le plus élevé lorsque les calls sont proches de la monnaie ;
Fig. 5.14: Différence de premia des calls entre les modèles SV et Black & Scholes (variations sur la volatilité de la variance)

- les deux modèles convergent en *premium* lorsque les *calls* sont "très en dedans" ou "très en dehors de la monnaie" (en dessous de 0.60 et au dessus de 1.50).
- les deux modèles convergent en *premium* lorsque la volatilité de la variance stochastique tend vers 0.

Dans la figure 5.14, les courbes $\sigma_v = 2$ et $\sigma_v = 3$ correspondent à l’intersection entre le plan de coupe $\tau = 0.5$ et les surfaces exhibées dans les figures 5.15 et 5.16. En effet, si on trace la différence $C^S_i - C^{BS}_i$ de premia des calls entre les modèles SV et Black & Scholes, en fonction de la moneyness S_t/K et de la maturité de l’option τ, on obtient:
Fig. 5.15: Différence de premia des calls entre les modèles SV et Black & Scholes ($\sigma_v = 2$)

Fig. 5.16: Différence de premia des calls entre les modèles SV et Black & Scholes ($\sigma_v = 3$)
L’effet de la volatilité de la variance sur les calls est d’autant plus significatif que la maturité est grande : lorsque τ tend vers zéro, l’écart entre les modèles, $C_i^{SV} - C_i^{BS}$, tend à s’estomper, et lorsque τ augmente, l’écart augmente de façon exponentielle. À titre de comparaison avec l’impact du drift de la variance, μ_v, l’influence de la volatilité de la variance semble s’accroître avec la maturité.

Proposition 5.3.2. (Influence de la volatilité de la variance sur les calls)

- (i) la volatilité de la variance permet d’ajuster la surévaluation par rapport au modèle de Black & Scholes (1973) des calls "en dehors" et "en dedans de la monnaie";
- (ii) la volatilité de la variance permet d’ajuster la sous-évaluation par rapport au modèle de Black & Scholes (1973) des calls "proches de la monnaie";
- (iii) les calls "très en dehors" ou "très en dedans de la monnaie" sont "très faiblement" influencés par une variation de la volatilité de la variance ;
- (iv) l’influence du drift croît exponentiellement avec la maturité de l’option.

Lorsque sa volatilité tend vers 0, la variance stochastique tend à devenir déterministe et les rentabilités du cours de l’action support tendent à décrire une distribution log-normale. Très intuitivement et d’une manière générale, on peut s’attendre à ce que la valeur de la volatilité de la variance stochastique affecte très significativement la kurtosis de la distribution des rentabilités du cours de l’action support.

5.3.3 Influence de la maturité de l’option sur les calls

Pour différentes valeurs de la maturité, en faisant varier la moneyness, on peut étudier l’impact de la maturité de l’option sur les calls. Par exemple, on obtient la figure 5.17 pour τ = 30, 60 et 180 jours et en fixant :

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>μ_v</th>
<th>σ_v</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valeurs numériques</td>
<td>0.0001</td>
<td>1</td>
<td>10%</td>
</tr>
</tbody>
</table>

Au vu de la figure 5.17, on peut faire les observations suivantes :
- les calls "proches de la monnaie" sont sous-évalués par rapport au modèle de Black & Scholes (1973). Cette sous-évaluation est fonction croissante de la maturité du call ;
- les calls en "dehors de la monnaie" ou "en dedans de la monnaie" (au dessus de 1.06) sont surévalués par rapport au modèle de Black & Scholes (1973). Cette surévaluation est fonction croissante de la maturité du call ;
- les calls "très en dehors" ou "très en dedans de la monnaie" sont "très faiblement" influencés par une variation de la maturité du call.

et :
- que le call soit "en dehors", "proche" ou "en dedans de la monnaie", l’écart de premium entre le modèle à volatilité stochastique et le modèle de Black & Scholes (1973) est fonction croissante de la maturité du call. Cet écart est le plus élevé lorsque les calls sont "proches de la monnaie" ;

5. Analyse numérique et propriétés théoriques du modèle SISI.
5. Analyse numérique et propriétés théoriques du modèle SVISJ

![Diagram](image)

Fig. 5.17: Différence de *premia* des calls entre les modèles SV et Black & Scholes (variations sur la maturité)

- les deux modèles convergent en *premium* lorsque les calls sont "très en dedans" ou "très en dehors de la monnaie".

Avec les figures 5.11, 5.14 et 5.17, on retrouve certains résultats de Black (1975) [32] où l'auteur observe que le modèle de Black & Scholes (1973) sous-évalue les options "en dedans" et surévalue les options "en dehors". La raison d'être de cette surévaluation systématique des *premia* des options "en dehors de la monnaie", par exemple, peut être expliquée en référence à la courbe d'utilité des investisseurs, et par là leur degré d'aversion au risque. En effet, s'il est rationnel de penser que les agents financiers donnent leur préférence aux actifs, en l'occurrence à des options, caractérisés par un profit net espéré très élevé et par une perte limitée mais fort probable - ce qui est exactement le cas des options *out-of-the-money* - il s'ensuit que les *premia* de ces options sont surévalués.
5.3.4 Influence de la corrélation entre cours et variance du support sur les calls

Le coefficient de corrélation entre les rentabilités de l’actif sous-jacent et sa volatilité affecte de façon significative la valeur du coefficient d’asymétrie dans la distribution des rentabilités. En effet, si l’on considère le cas d’une corrélation positive, alors deux possibilités se présentent :
- lorsque la volatilité augmente, la probabilité que le cours du sous-jacent soit très élevé est plus forte que dans le cas d’un mouvement brownien ;
- lorsque la volatilité diminue, la probabilité que le cours du sous-jacent soit très bas est moins forte que dans le cas d’un mouvement brownien.

Ainsi, intuitivement, il apparaît qu’une corrélation positive crée une queue de distribution "plus épaissie à droite" et une queue de distribution "plus mince à gauche" que dans le cas d’une distribution normale.

Afin de mettre en valeur l’effet de la corrélation entre cours et variance du support, considérons le modèle SV à pure variance stochastique

\[
C_t^S = \begin{cases}
S_t + \mu_S \Delta t + \sqrt{V_t} S_t W_{t+\Delta t, S} \\
V_t + \mu_V \Delta t + \sigma_V \sqrt{W_t} W_{t+\Delta t, V} \\
W_{t+\Delta t, S} W_{t+\Delta t, V} = \rho_{S,V} \Delta t \neq 0.
\end{cases}
\]

La simulation 5.18 montre l’effet d’une corrélation positive et négative sur le premium du call évalué par le modèle SV, par rapport au premium donné par le modèle de Black & Scholes (1973).

![Fig. 5.18: Différence de premia des calls entre les modèles SV et Black & Scholes (variations sur la corrélation)](image)
Contrairement au cas d'une corrélation positive, la simulation 5.18 montre qu'avec le jeu de paramètres numériques issus du tableau

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>(\mu_v)</th>
<th>(\sigma_v)</th>
<th>(\bar{R})</th>
<th>(\tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valeurs numériques</td>
<td>0.0001</td>
<td>3</td>
<td>10%</td>
<td>0.5</td>
</tr>
</tbody>
</table>

une corrélation positive a pour effet d'augmenter (resp. diminuer) le *premium* des options en dedans (resp. en dehors) de la monnaie par rapport au modèle de Black & Scholes (1973).

Proposition 5.3.4. (Influence de la corrélation sur les calls)
- (i) une corrélation non nulle affecte la valeur du coefficient d'asymétrie de la distribution des rentabilités de l'actif sous-jacent ;
- (ii) une corrélation positive permet d'ajuster la surévaluation par rapport au modèle de Black & Scholes (1973) des calls "en dehors de la monnaie" et la sous-évaluation des calls "dans la monnaie" ;
- (iii) une corrélation négative permet d'ajuster la sous-évaluation par rapport au modèle de Black & Scholes (1973) des calls "dans la monnaie" et la sous-évaluation des calls "hors de la monnaie" ;
- (iv) les calls "en dehors" ou "en dedans de la monnaie" sont "fortement" influencés par une corrélation non nulle.

5.4 Pouvoir descriptif du smile de volatilité du modèle **SVSISJ**

Dans cette section, je cherche à répondre à la question "*quel est le pouvoir descriptif du smile de la volatilité implicite au modèle SVSISJ?*" Pour ce faire, je discrétise le modèle **SVSISJ** suivant un schéma d'Euler classique :

\[
\begin{align*}
S_{t+\Delta t} &= S_t + (\mu_s - \gamma_s S_t) \Delta t + \sqrt{\gamma_s} S_t W_{t+\Delta t, S} + k_{t,S} S_t N_{t+\Delta t, S} \\
V_{t+\Delta t} &= V_t + (\mu_v - \gamma_v V_t) \Delta t + \sigma_v \sqrt{V_t} W_{t+\Delta t, V} \\
R_{t+\Delta t} &= R_t + (\mu_R - \gamma_R R_t) \Delta t + \sigma_R \sqrt{R_t} W_{t+\Delta t, R} \\
\lambda_{t+\Delta t, S} &= \lambda_t, S + (\mu_{\lambda_S} - \gamma_{\lambda_S} \lambda_t, S) \Delta t + \sigma_{\lambda_S} \sqrt{\lambda_t, S} W_{t+\Delta t, \lambda_S}
\end{align*}
\tag{5.13}
\]

où

\[
\begin{pmatrix}
W_{t+\Delta t, S} \\
W_{t+\Delta t, V} \\
W_{t+\Delta t, R} \\
W_{t+\Delta t, \lambda_S}
\end{pmatrix} \sim \mathcal{N}
\begin{pmatrix}
0 & 1 & \rho_s & 0 & 0 \\
0 & \rho_v & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{pmatrix}
\tag{5.14}
\]

Par simulations de Monte Carlo, il est possible d'extraire la volatilité implicite au modèle **SVSISJ**. Les figures suivantes illustrent la surface de cette volatilité, en prenant en compte le signe de la corrélation entre le cours de l'actif sous-jacent et sa volatilité.
Fig. 5.19: Structure par terme typique de la volatilité implicite au modèle SVSISJ ($\rho_{SV} = -0.5$)
Fig. 5.20: Structure par terme typique de la volatilité implicite au modèle SVSISJ ($\rho_{SV} = 0.5$)

Les simulations 5.19 et 5.20 correspondent au jeu commun de paramètres numériques :

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cours du support à $t = 0$</td>
<td>$S_0 = 100$</td>
</tr>
<tr>
<td>Niveau moyen à long terme du cours du support</td>
<td>$\mu_s / \gamma_s = 100$</td>
</tr>
<tr>
<td>Vitesse de retour à la moyenne</td>
<td>$\gamma_s = 0.5$</td>
</tr>
<tr>
<td>Niveau moyen à long terme de la variance du support</td>
<td>$\mu_v / \gamma_v = 0.5$</td>
</tr>
<tr>
<td>Vitesse de retour à la moyenne de la variance du support</td>
<td>$\gamma_v = 0.5$</td>
</tr>
<tr>
<td>Volatilité de la variance du support</td>
<td>$\sigma_v = 0.5$</td>
</tr>
<tr>
<td>Niveau moyen à long terme du taux d’intérêt</td>
<td>$\mu_R / \gamma_R = 10%$</td>
</tr>
<tr>
<td>Vitesse de retour à la moyenne du taux d’intérêt</td>
<td>$\gamma_R = 0.5$</td>
</tr>
<tr>
<td>Volatilité du taux d’intérêt</td>
<td>$\sigma_R = 0.5$</td>
</tr>
<tr>
<td>Niveau moyen à long terme de la fréquence de sauts</td>
<td>$\mu_{\lambda_s} / \gamma_{\lambda_s} = 0.5$</td>
</tr>
<tr>
<td>Vitesse de retour à la moyenne de la fréquence de sauts</td>
<td>$\gamma_{\lambda_s} = 0.5$</td>
</tr>
<tr>
<td>Volatilité de la fréquence de sauts</td>
<td>$\sigma_{\lambda_s} = 0.5$</td>
</tr>
<tr>
<td>Loi de l’amplitude des sauts</td>
<td>$P[\ln(1 + k_{i,s})] \sim \mathcal{N}(10, 5)$</td>
</tr>
<tr>
<td>Pas d’observation</td>
<td>$\Delta t = 10^{-2}$</td>
</tr>
</tbody>
</table>
5. Analyse numérique et propriétés théoriques du modèle SVSISJ

Au vu des simulations de la figure 5.19, lorsque le coefficient de corrélation entre le cours de l’actif sous-jacent et sa volatilité est de signe négatif, ce qui est le cas "habituel", la surface de la volatilité implicite au modèle SVSISJ décrit un smirk qui décroît avec la moneyness. Une corrélation positive de la volatilité avec les rentabilités de l’actif sous-jacent a des implications totalement opposées. En conclusion, il peut émaner la proposition suivante :

Proposition 5.4. (Structure par terme de la volatilité implicite au modèle SVSISJ)

- (i) L’allure du smile n’est pas figée dans le temps ;
- (ii) l’effet smile semble affecter davantage les calls à maturité faible que les calls à maturité longue où l’effet tend à s’estomper ;
- (iii) lorsque la corrélation est négative (resp. positive), la volatilité implicite est une fonction croissante (resp. décroissante) concave vers le bas (resp. concave vers le haut) de la maturité pour les calls "en dehors de la monnaie" ;
- (iv) lorsque la corrélation est négative (resp. positive), la volatilité implicite est une fonction décroissante (resp. croissante) concave vers le haut (resp. concave vers le bas) de la maturité pour les calls "à la monnaie" et "en dedans de la monnaie" ;

5.5 **Premium** typique du modèle SVSISJ

En conservant le jeu de valeurs numériques de la section précédente, il est possible d’aboutir au graphique 5.21, qui donne une idée de l’allure type du premium SVSISJ en fonction de la moneyness, comparativement au modèle à volatilité constante de Black & Scholes (1973).

En traçant le précédent call SVSISJ en fonction de la maturité et de la moneyness, il vient le graphique 5.22.
5. Analyse numérique et propriétés théoriques du modèle SVSISJ

Fig. 5.21: Comparaison entre premia de call de Black & Scholes et call SVSISJ

Fig. 5.22: Allure typique d’un call évalué au sens du modèle SVSISJ
5.6 Conclusion

Ce chapitre a présenté diverses propriétés théoriques du modèle $SVSISJ$ d’évaluation des options. Dans ce modèle, la trajectoire type du processus mis en œuvre pour décrire la dynamique du cours de l’actif sous-jacent a été confrontée, au moyen de simulations de Monte Carlo, aux trajectoires décrites par les processus de diffusion pure tels que les processus browniens géométriques et les processus à retour vers la moyenne (Ornstein-Uhlenbeck et racine-carrée). Ce processus fait intervenir une composante ponctuelle à sauts poissoniens de fréquence et d’amplitude stochastiques, qui peut être vu comme un processus particulier de Lévy. Les résultats montrent qu’il semble bien adapté à la description des distributions de rentabilités à caractère leptokurtique.

D’un autre côté, dans le modèle $SVSISJ$, la présence d’un aléa associé à la variance permet de rendre compte de l’effet smile de la volatilité implicite. Si la variance n’est pas corrélée avec le cours de l’actif sous-jacent, alors il a été remarqué que, plus le drift de la variance tend vers zéro (s’éloigne de zéro), plus les calls proches de la monnaie affichent un premium inférieur (supérieur) à celui évalué par le modèle de Black & Scholes (1973). Ce constat est préservé lorsque l’on fait varier la volatilité de la variance : l’impact de la volatilité de la variance et l’impact du drift de la variance sur les premia vont dans le même sens. Dans le cas d’une corrélation entre variance et cours de l’actif sous-jacent non nulle, ce sont surtout les calls dans et hors de la monnaie qui sont affectés. Dans le cas le plus "habituell" d’une corrélation négative, la structure par terme typique de la volatilité implicite au modèle $SVSISJ$ décrit une fonction décroissante de la maturité, à concavité tournée vers le haut pour les calls "proches" et "dans la monnaie" et une fonction croissante de la maturité, à concavité tournée vers le bas pour les calls "hors de la monnaie".
Chapitre Six

Analyse empirique du modèle $SVSISJ$

sur le CBOE1

"...the models systematically overprice OTM calls while they underprice ITM calls. But the magnitude of such mispricing varies dramatically across the models, with the Black and Scholes producing the highest and the SVJ the lowest errors."

Gurdip Bakshi, Charles Cao & Zhiwu Chen,
Empirical performance of alternative option pricing models.

"Bakshi, Cao & Chen (1997) found that their SVJ model (jumps in returns) systematically overprice OTM calls."

Darrell Duffie, Jun Pan & Kenneth Singleton,
Transform analysis and asset pricing for affine jump-diffusions.

Sommaire

6.1 Introduction : objectifs de l’étude empirique 214
6.2 Données et méthodologie de l’étude empirique 215
 6.2.1 Caractéristiques des données 215
 6.2.2 Procédure d’estimation des paramètres 217
 6.2.3 Statistiques descriptives des rentabilités de l’indice S&P500 220
6.3 Performance statique en évaluation 223
 6.3.1 Approche in-sample 223
 6.3.2 Approche out-of-sample 228
6.4 Performance dynamique en couverture 234
 6.4.1 Identification des risques attachés à une position d’options ... 234
 6.4.2 Stratégie de couverture delta-neutre 237
6.5 Conclusion 244
6. Analyse empirique du modèle SVSISJ sur le CBOE

6.1 Introduction : objectifs de l’étude empirique

Ce chapitre a pour objectif d’examiner la performance empirique et comparative des modèles d’évaluation de Bakshi, Cao & Chen (1997) et SVSISJ dans la description du comportement des cours des actifs financiers. Sa raison d’être est conforme au fait que tout modèle d’évaluation suppose la formulation d’un processus modélisant la dynamique de l’actif support. Dans cette optique, la comparaison sur le critère de l’efficacité des modèles d’évaluation fondés sur des processus du cours différents ne pourrait qu’accroître notre connaissance de la dynamique du marché, d’autant que cette analyse adopte une vision étroitement liée à la pratique quotidienne des marchés. Les propos de Bakshi, Cao & Chen viennent en appui de ma démarche. Ils affirment : "while the search for that perfect option pricing model can be endless, we are tempted to ask : what do we gain from each generalized feature? Is the gain, if any, from a more realistic feature worth the additional complexity or implementational costs? Can any of the relaxed assumptions help resolve known empirical biases associated with the Black & Scholes formula, such as the volatility smiles...?" La réponse à ces interrogations peut être apportée en suivant deux itinéraires complémentaires. 1) Le premier consiste à vérifier la conformité interne de la structure des paramètres du modèle, et s’inscrit dans une démarche in-sample. Cette démarche permet de discerner les incohérences entre les spécifications théoriques et les observations empiriques. 2) Le second itinéraire conduit à mesurer, selon une procédure out-of-sample, l’erreur d’évaluation des options, relative au modèle. En réalité, on peut comprendre facilement que ces itinéraires sont non seulement complémentaires, mais également imbriqués. De plus, ils ont une structure hiérarchisée, dans la mesure où la performance d’un modèle à volatilité stochastique dans l’évaluation des options et la couverture des portefeuilles, dépend de la spécification correcte du processus de variance, à savoir la conformité et la cohérence internes des paramètres. L’intérêt de cette approche consiste à établir une relation entre les paramètres du processus de variance, implicitement reflétés dans les cours des options, et les caractéristiques des séries temporelles de la variance implicite reconstituées à partir de ces paramètres et des rentabilités de l’actif support. Dans cette optique, je ne pourrai passer outre les tests de la performance des modèles dans l’évaluation des options, dont les résultats confirmeront ou infirmeront l’hypothèse de légitimité des paramètres dans la description de la dynamique des marchés. Mon travail dans cette section s’inspire des idées et de la méthodologie des études de Bates (1996), Nandi (1996) [182],

\footnote{1 Une version plus courte de ce chapitre a été publiée dans Banque & Marchés, 60, pp. 41-51 (2002), sous le titre "Modèle d’évaluation à solution analytique des options à volatilité, taux d’intérêt stochastiques et à processus de diffusion à sauts : nouvelle approche et étude empirique sur le CBOE".}
Bakshi, Cao & Chen (1997), qui ont orienté leurs recherches vers le marché des options sur devise pour le premier et sur indice S&P500 pour les autres. Pour ma part, je focalise mon étude sur le marché des options sur indice S&P500, (SPX) négociées sur le CBOE.

Ainsi, dans ce chapitre j'expose, dans une première section, les caractéristiques de la base de données et la méthodologie adoptée pour l'étude empirique. Je propose un examen empirique du modèle SVSISJ, sur le plan de l'évaluation (performance statique du modèle) dans la deuxième section, et sur le plan de la couverture de positions d'options (performance dynamique) dans la dernière section.

6.2 Données et méthodologie de l'étude empirique

6.2.1 Caractéristiques des données

Tout analyste financier qui cherche légitimement à disposer de données les plus pertinentes possible, est conduit intuitivement à augmenter sensiblement la fréquence d'observations, optant souvent pour une analyse intra-journalière. Cependant, la précision des résultats d'une étude intra-jour peut très bien être compromise par l'existence d'une autocorrelation dans la série des rentabilités des actifs. En effet, à cause de l'existence de la fourchette de prix (outil indispensable à l'activité de market making, qui est supposée encadrer le prix d'équilibre), les cours de transaction peuvent laisser apparaître une corrélation négative, plus ou moins forte en valeur absolue, du fait que ces derniers sont enregistrés au prix d'achat ou au prix de vente. Brown (1990) [51] démontre que le choix de la fréquence d'observation des données a un impact non négligeable sur la précision de l'estimateur de la volatilité, justement à cause de cette éventuelle dépendance en séries des cours. Figlewski (1997) [105] en tire la conclusion selon laquelle, si les prix affichent une forte corrélation, alors une fréquence basse d'observation est préférable à une fréquence haute.

Dans la présente étude empirique, les cours de l'indice S&P500 faisant apparaître une

2 Par exemple, lorsque la volatilité implicite est obtenue à partir du prix d'achat, sa valeur sera supérieure à sa valeur de marché. Inversement, lorsque le premium de l'option utilisé dans le calcul provient d'une transaction à la vente, la volatilité implicite sera sous-évaluée. Le même raisonnement pourrait être appliqué concernant la fourchette des prix affichée sur le marché de l'actif sous-jacent : si le cours du support injecté dans la formule d'évaluation provient d'une transaction à l'achat, un call ATM (un put ATM) paraîtra OTM (ITM), et la volatilité implicite sera biaisée à la baisse (à la hausse), l'amplitude de ces effets dépendant de la maturité et de la moneyness des options.

corrélation statistiquement non significative, j’utilise ainsi les cours intra-jour des options sur indice S&P500 ; ce qui laisse, par la même occasion, le loisir d’exploiter des cours pour l’actif sous-jacent collectés idéalement au même moment que les cours des options desquelles ils dérivent, puisque j’ai recherché un maximum de synchronisation entre le cours de l’option et le cours de l’actif support4. Cela n’exclut pas, néanmoins, l’existence d’un phénomène de "staleness", signifiant que l’indice ne reflète pas la totalité de l’information disponible sur le marché, car tous les titres qui le composent ne jouissent pas d’une liquidité équivalente à tout moment de la cotation5. Ces cours sont calculés comme la moyenne des fourchettes de prix affichées par le teneur de marché, pendant la journée de cotation, à des intervalles de temps de 10 minutes.

- Les cotations enregistrées après la clôture du marché ne sont pas prises en compte ;
- les options ayant une maturité inférieure à cinq jours sont exclues de l’échantillon ;
- les options, dont les valeurs de transaction sont inférieures à 0.5 $, ne font pas partie de l’échantillon ;
- les cours des options doivent satisfaire à la condition d’absence d’arbitrage reflétée dans les travaux de Cox & Rubinstein (1985) [696].

Mon échantillon, qui s’étend sur une période allant du 06/08/2001 au 10/08/2001, est scindé en plusieurs catégories d’options, suivant leur maturité. Celui-ci fait intervenir les calls les plus proches de la monnaie (si $S_t - K$ désigne la valeur intrinsèque d’un call à l’instant t, alors le call est dit à la monnaie si $-0.0002 \leq S_t/K - 1 \leq 1.001$). Ces calls sont répartis en trois catégories selon leur échéance : calls à échéance courte

4 Jusqu’à une époque récente, les effets de non synchronisation ressortaient surtout dans les études de Park & Sears (1985) [191], Day & Lewis (1992,1993) [74],[75], Choi & Wohar (1992) [61]. D’après Harvey & Whaley (1991) [124], l’absence de synchronisation se traduit par une corrélation négative entre la volatilité implicite issue d’un call et celle issue d’un put. Leur étude porte sur les options sur S&P 500, négociées sur le CBOE. Parce que le marché clôture 15 minutes avant le marché des options, l’arrivée de bonnes (mauvaises) informations après la clôture du marché de l’actif sous-jacent, mais avant la clôture du marché des options, a pour effet de surévaluer (sous-évaluer) la volatilité implicite des calls par rapport à celle des puts.

5 Cf. Whaley (1993) [224].

6 Cette condition peut être schématisée de la façon suivante : $C_t(\tau, S_t, V_t, R_t, \lambda_t, s, K) \geq \max\{0, S_t - K, S_t - D_t^\tau - KB_t(\tau, R_t)\}$, où la valeur D_t^τ actualisée des dividendes journaliers est $D_t^\tau = \sum_{s=1}^{t-\tau} e^{-R_t(s)s} D_t^\tau(t+s)$ si $R_t(s)$ désigne le taux d’intérêt à maturité s.

6. Analyse empirique du modèle SVSISJ sur le CBOE
(ayant une maturité inférieure à 30 jours calendrariés); calls à échéance moyenne (ayant une maturité comprise entre 30 et 60 jours); calls à échéance longue (dont la maturité est comprise entre 61 et 180 jours). Au total, sur la période d’étude, 1 551 cours de calls, toutes catégories confondues, sont récoltés. Après avoir présenté la structure et la composition de l’échantillon, je décris, dans la prochaine section, la méthodologie suivie pour l’estimation des paramètres structurels, et pour l’examen empirique du modèle SVISJ.

6.2.2 Procédure d’estimation des paramètres

L’utilité pratique des modèles d’évaluation des options à volatilité et à taux d’intérêt stochastiques peut être occultée par la complexité des procédures d’estimation des paramètres entrant en jeu. Ces procédures, lorsqu’elles sont implémentées de façon inappropriée par rapport au modèle et au plan général de l’évaluation (nature des données, méthodologie), peuvent donner naissance à des biais d’évaluation non négligeables. Il est bien entendu que la gravité des difficultés concernant la mise en pratique des modèles à volatilité stochastique est d’autant plus intense que ces modèles sont riches en paramètres, et qu’ils intègrent des processus de nature différente. En ce sens, les procédures d’estimation des paramètres constituent en elles-mêmes un des trois types de difficultés posés par la problématique de la volatilité stochastique, à savoir les difficultés liées à l’estimation de la volatilité comme grandeur non observable directement sur les marchés. De la qualité de son estimation, outre les résultats en évaluation des premia d’options, dépendent directement les stratégies de couverture, cruciales chez les gestionnaires de portefeuilles. Tout comme le modèle de Black & Scholes (1973), qui fait référence à un seul paramètre non observable directement, l’estimation de la volatilité peut être réalisée à l’aide de deux techniques : premièrement, à partir des rentabilités historiques de l’actif sous-jacent; deuxièmement, à partir des cours des options observés sur le marché. Dans le cas des modèles de Bakshi, Cao & Chen (1997) et SVISJ où le taux d’intérêt est également stochastique, il faut estimer en plus les paramètres structurels relatifs à cette variable d’état.

Méthode d’estimation à partir des rentabilités historiques du sous-jacent et du taux d’intérêt

Afin d’expliciter la procédure d’estimation et pour mémoire, je rappelle les notations du modèle SVISJ sous la mesure de probabilité risque-neutre, que j’ai noté par Q depuis le troisième chapitre :

\[
\begin{align*}
\frac{dS_t}{S_t} & = F_s(T - t, S_t, \delta_t, \nu_t, \lambda_t) dt + \sqrt{T_t} S_t dW_{t,S} + k_t S_t dN_t S_t \\
\frac{dV_t}{V_t} & = (\mu_\nu - \gamma_\nu V_t) dt + \sigma_\nu \sqrt{T_t} dW_{t,V} \\
\frac{dR_t}{R_t} & = (\mu_R - \gamma_R R_t) dt + \sigma_R \sqrt{T_t} dW_{t,R} \\
\frac{d\lambda_t}{\lambda_t} & = (\mu_\lambda - \gamma_\lambda \lambda_t) dt + \sigma_\lambda \sqrt{T_t} dW_{t,\lambda} \\
\forall t, dN_{t,S} dW_{t,S} = dN_{t,S} dW_{t,V} = dN_{t,S} dW_{t,R} = dN_{t,S} dW_{t,\lambda} = 0,
\end{align*}
\]
6. Analyse empirique du modèle SVSISJ sur le CBOE

où $N_t \sim \mathcal{P}(\lambda_{t,s})$ et $\ln(1 + k_{t,s}) \sim \mathcal{N}(\ln(1 + \mu_{j,s}) - \frac{1}{2}\sigma_{j,s}^2, \sigma_{j,s}^2)$ et

$$dW_{t,x}dW_{t,x} = M\,dt = M'dt = \begin{pmatrix} 1 & \rho_{s,v} & 0 & 0 \\ \rho_{s,v} & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \, dt \in \mathcal{M}_{4,4}(\mathbb{R}).$$

Sous ces notations, le vecteur des paramètres structurels du modèle à estimer, s’écrit sous Q :

$$\Phi^P \equiv \left(\mu_v, \gamma_v, \sigma_v, \rho_{s,v}, \mu_r, \gamma_r, \sigma_r, \mu_{j,s}, \sigma_{j,s}, \mu_{\lambda s}, \gamma_{\lambda s}, \sigma_{\lambda s} \right).$$

Or, en réalité, le cours de l’actif sous-jacent et le taux d’intérêt sont observés sous la mesure de probabilité réelle P. Il s’ensuit que les paramètres cités ci-dessus, nécessaires à la mise en œuvre du modèle d’évaluation, ne peuvent pas être estimés à partir des données du marché. Toutefois, connaissant la relation qui existe entre les deux mesures de probabilité, la procédure d’estimation peut être conduite, selon l’algorithme suivant :

Première étape

Estimation, à partir des données du cours de l’actif et du taux d’intérêt collectées sur le marché, du vecteur

$$\Phi^P \equiv \left(\mu_v^P, \gamma_v^P, \sigma_v^P, \rho_{s,v}^P, \mu_r^P, \gamma_r^P, \sigma_r^P, \mu_{j,s}^P, \sigma_{j,s}^P, \mu_{\lambda s}^P, \gamma_{\lambda s}^P, \sigma_{\lambda s}^P \right).$$

Deuxième étape

Choix des valeurs du vecteur prime de risque,

$$l_t \equiv \left(l_{t,v}, l_{t,r}, l_{t\lambda_s} \right).$$

où $l_{t,v}, l_{t,r}, l_{t\lambda_s}$ représentent la prime de risque associée respectivement à la variance, au taux d’intérêt et à la fréquence de sauts.

Troisième étape

Obtention des paramètres du vecteur Φ^Q à partir de Φ^P et de l_t. Cette voie a été choisie, par exemple, par Melenberg & Werker (1999) [169] dans leur procédure d’estimation des paramètres structurels de plusieurs processus de volatilité stochastique et de taux d’intérêt constant.

Méthode d’estimation implicite, à partir des premia des options

Il existe cependant une deuxième méthode d’estimation des paramètres, qui relève d’un raisonnement opposé à celui de la méthode exposée précédemment. Il s’agit, en l’occurrence, d’estimer les paramètres en recourant uniquement aux cours des options observés sur le marché. L’idée de cette technique d’estimation est la suivante : puisque les premia des options sont entièrement déterminés, sous la mesure de probabilité équivalente Q, sur
la base des paramètres structurels et de la volatilité, les paramètres structurels peuvent par conséquent être estimés directement à partir des cours de ces options. Cette méthode a été utilisée par Bakshi, Cao & Chen (1997, 2000). C’est la technique que j’emprunte pour la présente étude empirique. Cette dernière appartient à la classe des méthodes d’estimation implicite qui ont servi dans d’autres études, notamment celles de Bodurtha & Courtodon (1987) [36], Melino & Turnbull (1990,1995) [170],[171], ou encore Bates (1996). La méthode d’estimation implicite, qui nécessite le recours à un algorithme d’optimisation non linéaire, peut se résumer en deux étapes :

Première étape
On collecte N cours de calls sur le même actif du même jour. Pour chaque $n = 1,\ldots,N$, on définit par τ_n la durée de vie du call n et K_n son prix d’exercice. On note également par $\hat{C}_{t,n}$ le premium observé sur le marché et par $C_{t,n}$ le premium du call donné par chacun des deux modèles. La différence Φ entre $\hat{C}_{t,n}$ et $C_{t,n}$ est une fonction des valeurs prises par la variance V_t et les paramètres structurels relatifs au processus de variance et au processus de sauts

$$\Phi \equiv \Phi^Q \equiv \left(\mu_V, \gamma_V, \sigma_V, p_{s,V}, \mu_R, \gamma_R, \sigma_R, \mu_{s,R}, \sigma_{s,R}, \mu_s, \gamma_s, \sigma_s \right). \quad (6.1)$$

Ainsi, pour chaque call n on définit le terme de l’erreur d’évaluation comme :

$$\epsilon_n[V_t, \Phi] \equiv \hat{C}_{t,n} - C_{t,n}.$$

Deuxième étape
Cette deuxième étape pose un problème d’optimisation non linéaire, s’agissant de minimiser le terme d’erreur ϵ_n spécifié dans l’étape précédente. On estime la variance instantanée V_t et le vecteur des paramètres Φ comme minima de la fonction critère suivante :

$$SEQ_t \equiv \min_{V_t, \Phi} \sum_{n=1}^N \left| \epsilon_n[V_t, \Phi] \right|^2, \quad (6.2)$$

où l’on a désigné par SEQ_t la somme des erreurs d’évaluation quadratiques observées à l’instant t. Cette étape permet d’obtenir les valeurs de la variance implicite de l’actif support et des paramètres structurels à l’instant t. Ces deux étapes sont répétées pour chaque observation de la période d’étude, et pour les deux modèles. La phase d’estimation (phase de filtrage au sens de la théorie de l’estimation7) ainsi construite, permet l’obtention d’estimateurs de V_t et Φ différents pour chaque observation de la période d’étude. L’hypothèse

7 La problématique de l’estimation des systèmes dynamiques peut se formuler ainsi : à partir de
d'une variation des paramètres, qui a d'ailleurs de fortes chances d'être vérifiée dans la réalité a priori, est ainsi respectée.

Il faut noter que cette méthode d'estimation privilégie les options à valeurs élevées (dans la monnaie et d'échéance longue) au détriment des options à faible valeur (en dehors de la monnaie et d'échéance courte). Cependant, selon Bakshi, Cao & Chen (1997), les méthodes alternatives n'apportent pas de véritable amélioration dans le traitement des options, dans la mesure où elles ont toutes tendance à privilégier telle ou telle classe d'options. Par ailleurs, l'efficacité de cette technique a été prouvée dans les travaux de Bates (1996), Dumas, Fleming & Whaley (1998) [81], Longstaff (1993) [157], Madan & Chang (1996) [162]. En conséquence, je retiens l'expression (6.2) comme fonction critère à minimiser pour l'estimation de V_t et Φ, et considère que ce critère d'estimation permet de traiter les deux modèles de façon objective.

Je retiens donc la méthode d'estimation implicite, à partir des premia des options, dont la procédure, décrite ci-dessus, a pour objectif de permettre, non seulement d'évaluer les options, mais également d'examiner la capacité des deux modèles confrontés à fournir une description adaptée de la relation dynamique entre les options et l'actif support.

6.2.3 Statistiques descriptives des rentabilités de l'indice S&P500

Le tableau 6.1 regroupe les principales statistiques descriptives des rentabilités de l'indice S&P500 pendant la période de l'étude.

L'observation d'un processus stochastique y_t, peut-on reconstruire un certain processus stochastique x_t, dont on connaît les liens avec le processus observé ? Par exemple, dans le domaine du traitement de signal, le processus x_t représente l'état d'un système dynamique (position d'un mobile par exemple), partiellement observé à travers les sorties bruitées y_t (capteurs RADAR par exemple). La théorie de l'estimation distingue trois types de problèmes :

- le filtre qui consiste à estimer l'état courant x_t au vu des observations passées $\{y_{r}, r \leq t\}$;
- la prédiction (ou prévision) qui consiste à estimer l'état futur x_{t+r}, avec $r > 0$ au vu des observations $\{y_{r}, r \leq t\}$;
- le lissage qui consiste à estimer l'état passé x_{t-r}, avec $r > 0$ au vu des observations $\{y_{r}, r \leq t\}$.

Je renvoie à l'excellent ouvrage de Jazwinski (1970) [143], à Clamon, Monin & Salut (1994) [57] ou encore Monin (1994) [180], pour une présentation rigoureuse et détaillée de la théorie de l'estimation.
6. Analyse empirique du modèle SVSISJ sur le CBOE

<table>
<thead>
<tr>
<th>Rentabilité</th>
<th>Moyenne</th>
<th>Ecart type</th>
<th>Skewness</th>
<th>Kurtosis</th>
<th>Q(5)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.58%</td>
<td>13.99%</td>
<td>0.148</td>
<td>1.849</td>
<td>482.00</td>
<td>33</td>
</tr>
</tbody>
</table>

Tab. 6.1: Statistiques des rentabilités intra-journalières du S&P500 (06/08/01−10/08/01)

Note : Q(5) représente la statistique du test de Ljung-Box d’autocorrélation d’ordre 5 des rentabilités et N est la statistique du test de \(\chi^2 \) testant l’hypothèse nulle d’une distribution normale des rentabilités, selon la procédure de Bera-Jarque.

Les résultats de l’analyse statistique des rentabilités de l’indice S&P500 ne permettent pas d’affirmer que la distribution est proche d’une distribution normale. En effet, la valeur de la kurtosis plaide en faveur d’une distribution platykurtique. Ceci est confirmé par les diagrammes QQ de la figure 6.2. L’évolution du cours de l’indice et des rentabilités pendant la semaine de l’étude est retracée sur la figure ci-dessous, qui met en valeur la présence de deux sauts importants dans l’évolution des rentabilités, intervenant à la 19\(^{e}\) à la 95\(^{e}\) observation. De toute évidence, le processus suivi par les rentabilités de l’indice S&P500 est caractérisé par une occurrence de sauts discontinus, d’intensité aléatoire.

![Graphique de rentabilité et cotations intra-journalières du S&P500](image)

Fig. 6.1: Cotations intra-journalières de l’indice S&P500 (06/08/01−10/08/01)

Note : Les cotations de l’indice S&P500 sont observées pendant toute la journée, de façon discrète à raison de 10 minutes.
Fig. 6.2: Diagrammes QQ et QQ "detrented" des rentabilités intra-journalières de l'indice S&P500 (06/08/01-10/08/01)
6.3 Performance statique en évaluation

J'examine, dans cette section, la performance des deux modèles d'évaluation des options, suivant deux approches : approche *in-sample* et approche *out-of-sample*.

6.3.1 Approche *in-sample* ou phase d'estimation des paramètres structurels

Le but de l'approche *in-sample* consiste, à travers l'estimation des paramètres structurels des deux modèles, à vérifier leur stabilité temporelle et à examiner la cohérence interne des modèles.

Estimation des paramètres implicites

L'estimation des paramètres est réalisée en minimisant l'écart entre le *premium* du *call* observé sur le marché et le *premium* attribué par chacun des modèles étudiés, selon la méthodologie décrite dans la section précédente\(^8\). Le tableau 6.2 rassemble les valeurs des paramètres structurels pour les deux modèles :

\(^8\) Cf. formule (6.2).
Tab. 6.2: Procédure in-sample - Estimation des paramètres structurels

Note : L’estimation des paramètres est réalisée au sens du minimum de la somme des différences quadratiques entre le premium du call observé sur le marché et sa valeur obtenue à partir d’un modèle d’évaluation donné : $\epsilon_n[V_t, \Phi] \equiv \hat{C}_{t,n} - C_{t,n}$ et $SEQ_t \equiv \min_{\mu_t, \Gamma_t} \sum_{n=1}^{N} |\epsilon_n[V_t, \Phi]|^2$. Le tableau montre les valeurs moyennes des paramètres estimés et leur écart type respectif entre parenthèses. Les paramètres structurels sont : μ_V / γ_V - le niveau moyen à long terme de la variance ; γ_V - la vitesse de retour à la moyenne de la variance ; σ_V - le coefficient de variation de la variance ; $\rho_{s,V}$ - le niveau moyen à long terme du taux d’intérêt ; γ_R - la vitesse de retour à la moyenne du taux d’intérêt ; σ_R - le coefficient de variation du taux d’intérêt ; $\mu_{s,s}$ - le niveau moyen de sauts du cours de l’actif support ; $\sigma_{s,s}$ - l’écart type du niveau de sauts du cours de l’actif support ; $\lambda_{s,s}$ - la fréquence annuelle des sauts du cours de l’actif support ; $\mu_{\lambda_s} / \gamma_{\lambda_s}$ - le niveau moyen à long terme de la fréquence des sauts ; γ_{λ_s} - la vitesse de retour à la moyenne de la fréquence des sauts et σ_{λ_s} - le coefficient de variation de la fréquence des sauts. "BCC" représente le modèle de Bakshi, Cao & Chen (1997).
Les valeurs des écarts types (valeurs entre parenthèses dans le tableau 6.2) - relativement faibles - attestent de la relative stabilité des paramètres pendant la période de l'étude. Le tableau 6.2 fournit une première information sur la forme des spécifications sou- tendant les modèles. Les deux paramètres qui reflètent le phénomène de la skewness et de la kurtosis dans la distribution des rentabilités de l'actif sous-jacent permettent de discriminer les deux modèles : les deux modèles divergent au niveau du paramètre \(\sigma_v \) pour les options de maturité comprise entre 61 et 180 jours. Le processus de la variance dans le modèle de Bakshi, Cao & Chen (1997) "exhîbe" un coefficient de variation plus élevé que dans le modèle \(SVSISJ \) pour cette catégorie d'options. Mais, c'est surtout le paramètre de corrélation \(\rho_{s,v} \) qui crée la source de divergence la plus grande entre les modèles : dans ce cas, c'est le modèle \(SVSISJ \) qui "exhîbe" le coefficient de corrélation le plus important. Cette divergence qui s'estompe, néanmoins, avec l'augmentation de la maturité des options provient, très certainement, du caractère erratic de l'intensité dans le processus du saut caractérisant le modèle \(SVSISJ \), dans lequel les paramètres gouvernant le comportement de l'intensité du saut sont \(\mu_\lambda, \gamma_\lambda \) et \(\sigma_\lambda \).

Cohérence interne des paramètres structurels

Afin de donner une idée sur la cohérence interne des paramètres structurels, je me propose, dans ce qui suit, de vérifier la conformité interne des modèles en comparant les valeurs des paramètres \(\rho_{s,v} \) et \(\sigma_v \), obtenues dans le cadre de l'estimation réalisée dans la sous-section précédente, aux valeurs de ces mêmes paramètres issues des séries temporelles de la variance implicite "reconstituée".

Plus précisément, l'examen de la cohérence interne des paramètres structurels des modèles, adopte la démarche suivante :

1. Premièrement, on injecte dans la formule d'évaluation d'un modèle particulier, le cours de l'actif sous-jacent à l'instant \(t \) et les valeurs des paramètres structurels estimés à l'instant \(t - 1 \).
2. Deuxièmement, on égalise la formule d'évaluation du modèle avec les cours de l'option observé sur le marché, en laissant le paramètre de la variance inconnu. La solution de cette équation donne un estimateur de la variance, à l'instant \(t \), correspondant à la catégorie de maturité de l'option.

On répète ces deux étapes pour toutes les catégories d'options de l'échantillon, et pour toutes les observations de la période d'étude. On obtient ainsi une série de la variance implicite sur la période de l'étude. On calcule ensuite le coefficient de variation de la série, ainsi que le coefficient de corrélation entre les variations de la variance implicite ainsi "reconstituée" et les rentabilités de l'indice S&P500. Les valeurs de ces deux paramètres sont comparées aux valeurs des paramètres obtenus dans le cadre de l'estimation in-sample des paramètres structurels. Plus ces valeurs se rapprochent, meilleure est la description de la dynamique suivie par les rentabilités de l'indice, pour un modèle donné.
6. Analyse empirique du modèle SVSISJ sur le CBOE

<table>
<thead>
<tr>
<th></th>
<th>$\tau < 30$</th>
<th>$30 \leq \tau \leq 60$</th>
<th>$60 < \tau \leq 180$</th>
</tr>
</thead>
<tbody>
<tr>
<td>modèle SVSISJ</td>
<td>ρ_{sY}</td>
<td>σ_Y</td>
<td>ρ_{sY} σ_Y</td>
</tr>
<tr>
<td>Paramètres implicites dans les premia des calls</td>
<td>-0.821 0.332</td>
<td>-0.849 0.267</td>
<td>-0.746 0.261</td>
</tr>
<tr>
<td>Paramètres issus des séries de la variance implicite et des rentabilités</td>
<td>0.160 0.262</td>
<td>0.104 0.251</td>
<td>0.308 0.23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$\tau < 30$</th>
<th>$30 \leq \tau \leq 60$</th>
<th>$60 < \tau \leq 180$</th>
</tr>
</thead>
<tbody>
<tr>
<td>modèle de BCC</td>
<td>ρ_{sY}</td>
<td>σ_Y</td>
<td>ρ_{sY} σ_Y</td>
</tr>
<tr>
<td>Paramètres implicites dans les premia des calls</td>
<td>-0.498 0.180</td>
<td>-0.652 0.256</td>
<td>-0.679 0.308</td>
</tr>
<tr>
<td>Paramètres issus des séries de la variance implicite et des rentabilités</td>
<td>0.111 0.294</td>
<td>-0.017 0.382</td>
<td>0.107 0.395</td>
</tr>
</tbody>
</table>

Tab. 6.3: Cohérence interne des paramètres de corrélation et variance

Les résultats, donnés dans le tableau 6.3, montrent clairement l’incohérence interne des paramètres des deux modèles. Cette incohérence est très flagrante, notamment lorsque l’on compare les valeurs du coefficient de corrélation implicite dans les prix des options, obtenues à l’aide de la minimisation de l’écart d’évaluation, avec les valeurs de ce même coefficient issues des séries temporelles de la variance implicite reconstituée. Ces valeurs divergent considérablement, étant donné leur signe opposé. Par contre, la comparaison des valeurs de la variance implicite extraite à partir des prix observés des options, avec les valeurs des séries de la variance reconstituée à l’aide des paramètres du processus de variance estimé lors de l’approche *in-sample*, vient nuancer quelque peu le constat de l’incohérence des modèles. En particulier, selon ce critère, le modèle SVSISJ s’avère plus cohérent, surtout lorsqu’il s’agit de l’estimation des deux catégories de variance dans le cadre des options de maturité comprise entre 30 et 60 jours. Le graphique suivant illustre la convergence des deux variances pour le modèle SVSISJ.
Fig. 6.3: Variance implicite dans les *premia* des *calls* et variance "reconstituée" de *SVSISJ*

Le graphique 6.3 témoigne de l’existence de sauts dans le processus de la variance implicite dans les prix observés des options selon le modèle *SVSISJ*. Par contre, la variance reconstituée semble être gouvernée par un processus avec retour à la moyenne. Quant au modèle de Bakshi, Cao & Chen (1997), le coefficient de variation de la variance implicite issue des *premia* observés des options est plus faible que ce même coefficient, caractérisant les séries temporelles de la variance implicite, estimée à partir des paramètres du processus de la variance modélisée selon le modèle de Bakshi, Cao & Chen (1997). Le graphique 6.4 confirme cette observation.
Fig. 6.4: Variance implicite dans les premia des calls et variance "reconstituée" de BCC

6.3.2 Approche out-of-sample ou phase de prévision des paramètres structurels

Ainsi, disposant des valeurs des paramètres structurels et de la variance, estimées à l’instant précédent t − 1, je calcule le premium à l’instant t de l’option, appartenant à la même maturité à partir de laquelle sont extraits les paramètres structurels et la variance. Cette approche s’inspire directement de la pratique. En effet, les opérateurs sur le marché, étant dans l’impossibilité de connaître les valeurs des paramètres structurels et de la volatilité de façon instantanée, adoptent dans la formule d’évaluation les valeurs de ces mêmes paramètres connus à l’instant précédent. Ainsi, obtiennent-ils la valeur de l’option
à l'instant présent, conformément au cours de l'actif support à ce même instant. L'erreur de prévision du modèle est ensuite donnée par la différence entre le *premium* de l'option issu du modèle et son cours observé sur le marché. En réitérant cette procédure pour chaque observation pendant la période de l'étude, pour les trois catégories de maturité, je calcule les erreurs moyennes correspondant à chacune de ces maturités et regroupe les résultats de la procédure *out-of-sample* dans le tableau 6.4.

<table>
<thead>
<tr>
<th></th>
<th><30</th>
<th>30-60</th>
<th>61-180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erreurs en % d'évaluation</td>
<td>SVISJ</td>
<td>BCC</td>
<td>SVISJ</td>
</tr>
<tr>
<td></td>
<td>-2.99</td>
<td>-33.71</td>
<td>-0.07</td>
</tr>
<tr>
<td></td>
<td>(0.047)</td>
<td>(0.155)</td>
<td>(0.013)</td>
</tr>
<tr>
<td>Erreurs absolues d'évaluation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.024</td>
<td>-2.835</td>
<td>-0.022</td>
</tr>
<tr>
<td></td>
<td>(0.452)</td>
<td>(0.99)</td>
<td>(0.514)</td>
</tr>
</tbody>
</table>

Tab. 6.4: Procédure *out-of-sample* - erreurs d'évaluation

Note : La figure 6.4 rassemble les erreurs de prévision moyennes relatives aux deux modèles d'évaluation. Les erreurs sont calculées en rapportant la différence entre le *premium* d'un call appartenant à une catégorie de maturité spécifique, observé sur le marché, et son *premium* déterminé par un modèle spécifique. Le calcul du *premium* selon un modèle d'évaluation à l'instant t est fondé sur les paramètres structurels et sur la variance estimée à l'instant $t-1$. Les chiffres entre parenthèses représentent les écarts types. La période de l'étude est du 06/08/2001 au 10/08/2001, pendant laquelle 1551 cours des calls sur S&P500 ont été récoltés.

Au vu de ces résultats, il semblerait que le modèle *SVISJ* permette une évaluation plus fidèle que celui de Bakshi, Cao & Chen (1997). En particulier, l'erreur relative d'évaluation décroît avec la maturité des options. L'erreur en valeur absolue montre une certaine stabilité face à la maturité des options. Cela traduit l'absence de biais d'évaluation lié à la maturité des options9. D'un autre côté, il convient de noter que les deux modèles ont tendance à surévaluer les options (à l'exception du modèle de Bakshi, Cao & Chen (1997) pour les options de maturité comprise entre 61 et 180 jours). Sans doute, la prise en compte du processus suivi par l'intensité du saut caractérisant le processus de diffusion des rentabilités de l'actif support, exerce un effet amplificateur sur les *premium* des options obtenus à l'aide des modèles d'évaluation. Toutefois, l'intégration d'une intensité aléatoire des sauts dans le modèle *SVISJ* a pour effet de modérer sensiblement la tendance à surévaluer systématiquement les options. Les graphiques 6.5, 6.6 et 6.7 retraquent l'évolution

9 Dans la version originale de l'étude, j'ai élargi l'analyse sur des options dans la monnaie $S_t/K - 1 > 1.05$ et en dehors de la monnaie $S_t/K - 1 < -0.05$. Les résultats concernant l'erreur d'évaluation consécutive à l'application du modèle *SVISJ* n'attestent pas de l'existence d'une relation entre le biais d'évaluation et la moneyness des options.
temporelle des *premias* des options calculés à l'aide des deux modèles d'évaluation et des *premias* intra-jour réels, observés dans un intervalle de 10 minutes pour les trois catégories de maturité.

![Graphique illustrant l'évolution des premias théoriques et observés des calls (τ < 30)](image)

Fig. 6.5: Evolution des *premias* théoriques et observés des *calls* (τ < 30)
Fig. 6.6: Evolution des *premia* théoriques et observés des *calls* (30 ≤ τ ≤ 60)

Fig. 6.7: Evolution des *premia* théoriques et observés des *calls* (60 < τ ≤ 180)

Fig. 6.8: Erreur relative en % d’évaluation des *premia* des *calls* de BS
Fig. 6.9: Erreur relative en % d'évaluation des *premia* des *calls* de BCC

Fig. 6.10: Erreur relative en % d'évaluation des *premia* des *calls* de SVSISJ
6.4 Performance dynamique en couverture

La précédente étude s’inscrit dans un cadre d’analyse statique, et peut trouver une prolongation naturelle dans une perspective dynamique, en évaluant l’efficacité de couverture des positions d’options à laquelle aboutissent les deux modèles. Dans cette section, je me propose ainsi de compléter l’étude de l’efficacité du modèle SVSISJ dans la couverture des positions sur options. En particulier, je m’intéresse à la "capacité" du modèle à couvrir des positions sur options lorsque varient les variables d’état qui fondent le modèle SVSISJ. En effet, la performance en couverture d’un modèle constitue souvent un "gage" (certainement nécessaire mais pas suffisant) de son adoption comme outil de travail, non seulement dans les travaux scientifiques, mais également dans les milieux professionnels de la finance de marché, en particulier les traders sur options.

6.4.1 Identification des risques attachés à une position d’options

Il est largement admis dans le milieu professionnel que toute intervention sur le marché des options doit être examinée au regard des cinq questions suivantes :
- quel est le risque prévalant entraîné par l’opération ?
- quel(s) est (sont) le(s) risque(s) que l’opérateur est disposé à supporter ou à ignorer ?
- quels sont les instruments permettant la mise en place d’une stratégie de couverture ?
- quel(s) est (sont) le(s) risque(s) contre le(s) quel(s) une stratégie de couverture pourrait s’avérer efficace ?
- comment la position d’options pourrait-elle être couverte ?

Le risque principal attaché à une position sur le marché des options est indubitablement celui lié à la variation du cours de l’actif sous-jacent. Les autres risques primordiaux sont bien sûr ceux liés à la volatilité, au taux d’intérêt, et au dividende. Dans la pratique, il est courant, pour un opérateur de marché, de choisir le risque contre lequel il élabore une stratégie de couverture et le risque non couvert qu’il est enclin à supporter. Quoiqu’il en soit, les risques auxquels son portefeuille d’options est exposé seront en quelque sorte diversifiés, si ce dernier inclut des options de maturités différentes : en effet, les risques attachés aux options diffèrent en fonction de la maturité de ces options. Si l’on prend, par exemple, le cas d’un actif ayant une rentabilité espérée supérieure au taux d’intérêt sans risque, en raison de la diversification du portefeuille en termes de maturité, la probabilité que la rentabilité du portefeuille soit supérieure au taux d’intérêt sans risque, augmente avec l’allongement de la maturité.

10 Logiquement, ce risque gravit l’échelle d’appréciation des opérateurs du marché avec l’allongement de la durée de vie des options.
Le risque de volatilité est également subordonné à l'influence de l'horizon temporel. Ainsi que le premier chapitre a pu le souligner11, le marché voit se succéder des périodes de volatilité faible et des périodes de volatilité élevée. Ces mêmes périodes se manifestent avec une certaine persistance et rendent la valeur des options en particulier à court terme, dépendante des caractéristiques de la période de la volatilité, faible ou élevée. En ce qui concerne les options à long terme (durée de vie supérieure à un an), l'impact de la volatilité instantanée sur leur valeur semble d'une importance moindre. Ceci est du au fait qu'à l'échéance des options à long terme, les conditions du marché changent de telle sorte qu'il est peu probable que la volatilité future dépende de la volatilité instantanée.

Le raisonnement suivi concernant le risque du taux d'intérêt est quelque peu différent. Les options à court terme ne sont pas exposées à un risque de taux important, puisque des chocs de taux sont rarement observés à l'échelle courte et même s'ils surviennent, l'impact sur la valeur des options est relativement faible, en raison de la nature limitée de la période d'actualisation de leur flux terminal. Il en est autrement pour ce qui concerne les options à long terme. En effet, ces options sont exposées à des chocs de taux beaucoup plus importants, et leurs flux terminaux doivent être actualisés sur des périodes plus longues. Par conséquent, il est facile de se rendre compte du rôle extrêmement important joué par le facteur d'actualisation, à la fois dans l'évaluation, et dans la couverture des positions d'options.

Le risque de dividende est inexorablement lié au risque de taux d'intérêt. Lorsqu'un actif distribue un dividende avant l'échéance de l'option, sa valeur va généralement baisser d'un montant équivalent à la valeur du dividende. Il est trivial que cette diminution doit être prise en compte dans la procédure d'évaluation. Mais alors que pendant la durée de vie des options courtes, peu de distributions de dividendes ont lieu, pendant la durée de vie des options longues, le nombre de distributions de dividendes peut croître considérablement. De ce fait, les options longues s'avèrent être plus exposées au risque de dividendes et ce d'autant plus que les dividendes subissent l'effet de modifications de la composition de l'indice boursier (dans les cas des options sur indices).

Il ressort de cette analyse très succincte que l'incidence des risques attachés aux positions d'options ont tendance à différer selon la maturité des options. Une stratégie de couverture doit bien évidemment être envisagée, en respectant les particularités des options courtes et longues, ainsi que leur relation face aux différents risques inhérents à leur détention. Ceci implique, nécessairement, une analyse au préalable de la structure par terme de la volatilité et du taux d'intérêt. Comme plusieurs études s'accordent à le reconnaître, la volatilité sur les marchés a tendance à revenir à long terme vers un niveau moyen. Ce phénomène de retour à la moyenne caractérise aussi la dynamique du taux d'intérêt.

11 Cf. section 1.2.
6. Analyse empirique du modèle SVSISJ sur le CBOE

D’après Chan, Karolyi, Longstaff & Sanders (1992) [58], ce phénomène se produit à un rythme plutôt lent, ce qui limite l’impact de la volatilité et du taux d’intérêt sur les options courtes. Autrement dit, pour cette catégorie d’options, le taux d’intérêt instantané est plus important que le taux moyen à long terme. En revanche, dans le cas des options longues, le retour à la moyenne constitue toujours une caractéristique à ne pas négliger. Dans cet ordre d’idées, on peut affirmer que le processus avec retour à la moyenne est un moyen de disassocier les variations instantanées du taux d’intérêt et de la volatilité des modifications structurelles dans leurs niveaux moyens à long terme.

L’adéquation nécessaire entre ces risques et les stratégies de portefeuille s’effectue par le biais de paramètres de sensibilité, dont les expressions (calculées dans le chapitre 4, section 4.4) s’écrivent dans le cadre du modèle SVSISJ :

– paramètre delta de sensibilité au cours de l’actif support :

\[\Delta_{t,S}(\tau, x_t, K) \equiv \frac{\partial C_t(\cdot)}{\partial S_t} = \Pi_{t,1}(\cdot), \quad (6.3) \]

– paramètres delta de sensibilité à la volatilité\(^{12}\) et à la fréquence des sauts :

\[\forall g = V, \lambda_S, \]
\[\Delta_{t,g}(\tau, x_t, K) \equiv \frac{\partial C_t(\cdot)}{\partial g} = S_t \frac{\partial \Pi_{t,1}(\cdot)}{\partial g} - KB_t(\tau, R_t) \frac{\partial \Pi_{t,2}(\cdot)}{\partial g}, \quad (6.4) \]

– paramètre delta de sensibilité au taux d’intérêt :

\[\Delta_{t,R}(\tau, x_t, K) \equiv \frac{\partial C_t(\cdot)}{\partial R_t} = S_t \frac{\partial \Pi_{t,1}(\cdot)}{\partial R_t} - KB_t(\tau, R_t) \left\{ \frac{\partial \Pi_{t,2}(\cdot)}{\partial R_t} - \frac{2(1 - e^{\eta})}{\eta(1 - e^{\eta})} \Pi_{t,2}(\cdot) \right\}, \quad (6.5) \]

Dans toutes ces expressions, \(\forall j = 1, 2 \) et \(\forall g = V_t, R_t, \lambda_t, S, \)

\[\frac{\partial \Pi_{t,j}(\cdot)}{\partial g} = \frac{1}{\pi} \int_0^{+\infty} \text{Re}\left\{ \frac{1}{i\phi} e^{-i\phi \ln \kappa} \frac{\partial f_{t,j}(\tau, x_t, \phi)}{\partial g} \right\} d\phi. \quad (6.6) \]

\(^{12}\) Appelé aussi "vega" dans la littérature.
où les $f_{i,j}$ sont données par la proposition 4.2.5. Ces paramètres, obtenus explicitement, permettent de fournir une vision quantitativement des différents aspects du risque global attaché aux portefeuilles d'options. Bajeux & Rochet (1996) [15] ont montré que dans un contexte de volatilité stochastique - dans le cas d'une corrélation nulle entre les variations de la volatilité et les rentabilités de l'actif support, une couverture delta-neutre contre les variations du cours de l'actif sous-jacent et contre les variations de la volatilité est suffisante pour immuniser efficacement les portefeuilles d'options\(^{13}\).

6.4.2 Stratégie de couverture delta-neutre

L'examen empirique du modèle SVSISJ au regard de sa capacité à couvrir des positions d'options, nécessite de convenir a priori d'une stratégie de couverture. En l'occurrence, j'adopte une couverture de type delta-neutre, c'est-à-dire une couverture qui neutralise les paramètres delta de sensibilité aux variations de cours de l'actif sous-jacent, de la variance, du taux d'intérêt et de la fréquence des sauts. Je concède, toutefois, qu'en présence de sauts poissonniers, une couverture "parfaite" n'est pas réalisable en pratique (cette évidence a été montrée par Merton (1976), Cox & Ross (1976) [68], Bates (1996)). Comme Merton (1976), je "travaille" alors en couverture "partielle", plus précisément en couverture "parfaite" du risque de diffusion, et en couverture incomplète du risque de saut ; l'impact du risque de saut sur l'efficacité de la couverture globale de la position dépendant de la fréquence d'ajustement du portefeuille de couverture.

Pour clarifier l'exposé, je propose d'étudier le cas d'un trader désirant couvrir une position courte sur un call C_i (option cible) de maturité égale à τ et de prix d'exercice K. Les "principes" des stratégies de couverture amène ce dernier à prendre une position sur l'actif support dans une certaine proportion $X_{i,s}$ à l'instant t (couverture contre le risque de prix). Par ailleurs, la couverture delta-neutre ainsi que l'environnement à volatilité et à fréquence de sauts toutes deux non constantes, conduit le trader à prendre position, dans une certaine proportion, respectivement X_{i,C_1} et X_{i,C_2} à l'instant t, sur deux calls (un premier call $C_{i,1}$ pour le risque de volatilité et un second call $C_{i,2}$ pour le risque de fréquence de sauts) à maturité identique au call cible mais à prix d'exercice respectivement $K_1 \neq K$ et $K_2 \neq K_1 \neq K$ (ou bien à maturité respectivement $\tau_1 \neq \tau$ et $\tau_1 \neq \tau_2 \neq \tau$). Le marché étant également à taux d'intérêt non constant et toujours dans le cadre d'une couverture delta-neutre, le trader doit, de plus, prendre position sur une obligation zéro-coupon B_k, dans une certaine proportion $X_{i,B}$ à la date t, pour se couvrir contre le risque de taux d'intérêt. Je suppose également qu'il reste au trader un reliquat de liquidités

\(^{13}\) En effet, lorsque la corrélation est nulle, le paramètre delta de sensibilité à la volatilité $(\Delta_{t,V})$ dérivé d'un modèle à volatilité stochastique exhibe un comportement similaire à sa contrepartie dérivée d'un modèle à volatilité constante, tel celui de Black & Scholes (1973).
(cash) à la date \(t \), que je note \(X_{t,0} \). La valeur à la date \(t \) (\(\Pi_t \)) du portefeuille de réplication de l’option cible est donc donnée par :

\[
\Pi_t = X_{t,0} + X_{t,S} S_t + \sum_{i=1}^{2} X_{t,C_i} C_i \tau + X_{t,B} B_t. \tag{6.7}
\]

Les proportions \(X_{t,S}, X_{t,C_1}, X_{t,B} \) et \(X_{t,0} \) qui permettent d’obtenir un portefeuille couvrant, au sens d’une couverture *delta*-neutre, de façon parfaite et à chaque instant le *call* cible, sont explicitement :

\[
X_{t,0} = C_t - X_{t,S} S_t - \sum_{i=1}^{2} X_{t,C_i} C_t \tau - X_{t,B} B_t, \tag{6.8a}
\]

\[
X_{t,S} = \Delta_{t,S}(\tau, x_t, K) - \sum_{i=1}^{2} X_{t,C_i} \Delta_{t,S}(\tau, x_t, K_i), \tag{6.8b}
\]

\[
X_{t,C_1} = \frac{\Delta_{t,\lambda_2}(\tau, x_t, K)\Delta_{t,V}(\tau, x_t, K_2) - \Delta_{t,V}(\tau, x_t, K)\Delta_{t,\lambda_2}(\tau, x_t, K_2)}{\Delta_{t,\lambda_3}(\tau, x_t, K_1)\Delta_{t,V}(\tau, x_t, K_2) - \Delta_{t,V}(\tau, x_t, K_1)\Delta_{t,\lambda_3}(\tau, x_t, K_2)}, \tag{6.8c}
\]

\[
X_{t,C_2} = \frac{\Delta_{t,\lambda_3}(\tau, x_t, K_1)\Delta_{t,V}(\tau, x_t, K) - \Delta_{t,V}(\tau, x_t, K_1)\Delta_{t,\lambda_3}(\tau, x_t, K)}{\Delta_{t,\lambda_3}(\tau, x_t, K_1)\Delta_{t,V}(\tau, x_t, K_2) - \Delta_{t,V}(\tau, x_t, K_1)\Delta_{t,\lambda_3}(\tau, x_t, K_2)}, \tag{6.8d}
\]

\[
X_{t,B} = (B_t - \frac{2(1 - e^{\eta \tau})}{\gamma (1 - e^{\eta \tau}) - \eta(1 + e^{\eta \tau})} - \sum_{i=1}^{2} X_{t,C_i} \Delta_{t,R}(\tau, x_t, K_i) - \Delta_{t,R}(\tau, x_t, K)) \tag{6.8e}
\]

où

\[
\eta \equiv \sqrt{\gamma^2 + 2\sigma^2}, \tag{6.9}
\]

et où \(\Delta_{t,S}(\cdot), \Delta_{t,V}(\cdot), \Delta_{t,\lambda_2}(\cdot), \Delta_{t,R}(\cdot) \) sont données respectivement par (6.3), (6.4) et (6.5).

Dans ce cas, la variation du portefeuille de couverture pendant \(dt \) s’écrit :

\[
\begin{align*}
d\Pi_t &= \mathcal{D}\Pi_t dt + [X_{t,S} + \sum_{i=1}^{2} X_{t,C_i} \frac{\partial C_{i,i}}{\partial S_t} \sqrt{\lambda_t} dW_{t,S} + \sum_{i=1}^{2} X_{t,C_i} \frac{\partial C_{i,i}}{\partial V_t} \sqrt{\lambda_t} dW_{t,V} + \sum_{i=1}^{2} X_{t,C_i} \frac{\partial C_{i,i}}{\partial S_t} \sqrt{\lambda_t} dW_{t,\lambda_3} + [X_{t,B} \frac{\partial B_t}{\partial R_t} + \sum_{i=1}^{2} X_{t,C_i} \frac{\partial C_{i,i}}{\partial R_t}] \sqrt{\lambda_t} dW_{t,R} + [X_{t,S} k_t S_t + \sum_{i=1}^{2} X_{t,C_i} [C_{i,i}(\tau, S_t(1 + k_t, S), K) - C_{i,i}(\tau, S_t, K)]] dN_{t,S}]
\end{align*}
\]

(6.10)
où \mathcal{D} représente l’opérateur de Dynkin :

$$
\mathcal{D} \Pi_t = \left[X_{t,s} + \sum_{i=1}^{2} X_{t,c_i} \frac{\partial C_{t,i}}{\partial S_t} \right] F_2(t) + \sum_{i=1}^{2} X_{t,c_i} \frac{\partial C_{t,i}}{\partial V_t} (\mu_V - \gamma_V V_t)
$$

$$
+ \sum_{i=1}^{2} X_{t,c_i} \frac{\partial C_{t,i}}{\partial \lambda_{s,t}} \left(\mu_{\lambda_s} - \gamma_{\lambda_s} \lambda_{s,t} \right) + \sum_{i=1}^{2} X_{t,c_i} \frac{\partial C_{t,i}}{\partial R_t} (\mu_R - \gamma_R R_t)
$$

$$
+ \frac{1}{2} \sum_{i=1}^{2} X_{t,c_i} \frac{\partial^2 C_{t,i}}{\partial S_t^2} \sigma_s^2 S_t + \frac{1}{2} \sum_{i=1}^{2} X_{t,c_i} \frac{\partial^2 C_{t,i}}{\partial V_t^2} \sigma_{V_t}^2 V_t + \frac{1}{2} \sum_{i=1}^{2} X_{t,c_i} \frac{\partial^2 C_{t,i}}{\partial \lambda_{s,t}^2} \lambda_s^2 \lambda_{s,t}
$$

$$
+ \sum_{i=1}^{2} X_{t,c_i} \frac{\partial^2 C_{t,i}}{\partial S_t \partial \lambda_{s,t}} \rho_{S,V_t} \sigma_s \sigma_{V_t} V_t - \frac{1}{2} \sum_{i=1}^{2} X_{t,c_i} \frac{\partial C_{t,i}}{\partial \tau} + \lambda_{t,i} \left(\mu_r - \gamma_r R_t \right) \frac{\partial B_t}{\partial R_t} + \frac{1}{2} \frac{\partial B_t}{\partial R_t^2} \sigma_r^2 R_t - \frac{\partial B_t}{\partial \tau}.
$$

Critère du minimum de variance des rentabilités du portefeuille de couverture

J’adopte comme critère de performance des modèles, pour cette étude dynamique, le critère du minimum de variance du portefeuille de couverture14. L’adoption de ce critère emprunté à Nandi (1996) s’impose de façon naturelle, puisqu’elle s’inscrit dans la "suite logique" des tests de la performance en évaluation pratiqués dans la section précédente.

Le portefeuille de couverture est réajusté périodiquement suivant une période de 10 minutes, de façon à obtenir un delta-neutre. Le tableau suivant regroupe les valeurs moyennes, sur la période concernée, des écarts types des changements de valeurs du portefeuille, couvert selon le modèle de Black & Scholes ou selon le modèle SVSI-J de Bakshi, Cao & Chen :

14 Il est également possible d’adopter comme critère de performance en couverture des modèles, le critère du minimum d’erreur de couverture $H_{t+\Delta t}$ entre l’instant t et l’instant $t + \Delta t$, $H_{t+\Delta t} = X_{t,0}e^{-R_{\Delta t}} + X_{t,s}S_{t+\Delta t} + X_{t,B}B_{t+\Delta t}(\tau-\Delta t, R_t) + \sum_{i=1}^{2} C_{t+\Delta t}(\tau-\Delta t, x_i, K_i) - C_{t+\Delta t}(\tau-\Delta t, x_i, K)$, formule précédente qui reste, bien entendu, applicable lorsqu’il s’agit d’"estimer" l’erreur de couverture avec le modèle de Black & Scholes (1973), en prénant à la fois une proportion $X_{t,s}$ investie dans l’actif sous-jacent, une proportion X_{t,c_1} investie dans chacun des deux calls et une proportion $X_{t,B}$ investie dans l’obligation zéro-coupon versant 1 $ à échéance, toutes continuent égales à zéro (dans ce cas, la couverture "delta-neutre" implique une unique prise de position, celle sur l’actif support). Pour le modèle SVSI-J de Bakshi, Cao & Chen (1997), la formule est encore applicable à condition de prendre une proportion X_{t,c_2} investie dans le deuxième call $C_{t,2}$, constamment égale à zéro.
Tab. 6.5: Performance dynamique en couverture - Critère du minimum de variance

Note : Le tableau 6.5 regroupe les valeurs moyennes des écarts types des valeurs de portefeuilles couverts en delta-neutre pour chaque modèle BS, BCC et SVSISJ. La période de réajustement des portefeuilles est de 10 minutes.

Les écarts types des valeurs des portefeuilles sont illustrés dans les graphiques 6.11, 6.12, 6.13 suivants :

Fig. 6.11: Écart types des valeurs de portefeuille de couverture delta-neutre ($\tau < 30$)
Fig. 6.12: Écart types des valeurs de portefeuille de couverture delta-neutre ($30 \leq \tau \leq 60$)

Fig. 6.13: Écart types des valeurs de portefeuille de couverture delta-neutre ($60 < \tau \leq 180$)
Différences statistiquement significatives entre les modèles

Pour savoir si les différences entre les valeurs moyennes des écarts types des valeurs de portefeuilles issus des différents modèles sont statistiquement significatives, qui sont données dans le tableau 6.5, j’utilise la statistique de la méthode des moments généralisés. Cette statistique, que je note par la suite par NW, consiste à comparer, à l’aide de la méthode des moments généralisés (GMM), les changements de valeurs r_t^{SVSISJ} et r_t^{BCC} des deux portefeuilles couverts respectivement par le modèle $SVSISJ$ et le modèle BCC, où les quantités r_t^{SVSISJ} et r_t^{BCC} sont définies respectivement par

$$
\begin{align*}
 r_t^{SVSISJ} &= \frac{\Pi_t^{SVSISJ} - \Pi_{t-1}^{SVSISJ}}{\Pi_{t-1}^{SVSISJ}} - m^{SVSISJ}, \\
 r_t^{BCC} &= \frac{\Pi_t^{BCC} - \Pi_{t-1}^{BCC}}{\Pi_{t-1}^{BCC}} - m^{BCC},
\end{align*}
$$

(6.11)

où Π_t^{SVSISJ} et Π_t^{BCC} désignent la valeur à la date t du portefeuille de couverture respectivement des modèles $SVSISJ$ et BCC et m^{SVSISJ} et m^{BCC} la moyenne respectivement des populations (estimée par la moyenne des échantillons) des portefeuilles $SVSISJ$ et BCC. S’agissant plus précisément de tester l’hypothèse $E[(r_t^{SVSISJ})^2 - (r_t^{BCC})^2] = 0$, je pose $Z_t = (r_t^{SVSISJ})^2 - (r_t^{BCC})^2$. La statistique de la méthode des moments généralisés NW s’écrit :

$$
NW = \sqrt{t + \tau} \frac{\sum_{l=1}^{t+\tau} (Z_l - m_z)}{\sqrt{\sum_{l=1}^{t+\tau} (Z_l - m_z)^2 + 2 \sum_{j=1}^{t+\tau} \sum_{l=j+1}^{t+\tau} (Z_l - m_z)(Z_{l-j} - m_z)}}
$$

(6.12)

où m_z représente la moyenne de Z_t et la loi NW est distribuée asymptotiquement selon une loi normale standard. Je résume dans le tableau ci-dessous les statistiques NW pour les trois catégories d’échéance étudiées :

\[\text{[15] Cf. Newey & West (1987) [188]. Cette démarche a, par ailleurs, déjà été adoptée dans le deuxième chapitre de la thèse, lorsqu’il s’agissait de tester l’hypothèse nulle d’égalité, deux à deux, des variances des valeurs de portefeuilles couverts par des modèles déterministes GARCH.}\]
Les tableaux 6.7 et 6.6 doivent être examinés conjointement avec le tableau 6.5. En particulier, on peut observer que la couverture mise en place à l’aide du modèle SVSISJ conduit à la variance du portefeuille la plus faible. Ceci est vrai pour tout horizon temporel, à l’exception de l’horizon de 6 mois pour lequel le modèle BCC aboutit à un écart type moyen légèrement inférieur à celui caractérisant la couverture à l’aide du modèle à fréquence de sauts stochastique. Les résultats des tableaux 6.7 et 6.6 confirment la prééminence, au niveau strictement statistique, de la couverture réalisée à l’aide du modèle SVSISJ sur la couverture mise en place à l’aide du modèle à fréquence de sauts déterministe et du modèle de BS. Autrement dit, la différence entre les variances des rentabilités des portefeuilles couverts à l’aide des différents modèles est statistiquement significative au seuil de 0.01 et ce, en tenant compte de l’autocorrélation et de l’hétéroscédasticité dans les variations "normalisées" des portefeuilles. En effet, la différence entre la variance des rentabilités du portefeuille couvert "à la" SVSISJ et celle du portefeuille couvert "à la" BS est significative pour les échéances de 1 et 3 mois et non significative pour l’échéance de 3 mois. En termes de performance de couverture, le modèle à fréquence de sauts stochastique surclasse les modèles de BS et de BCC à fréquence déterministe. La différence, en l’occurrence, est significative pour toutes les échéances.

Ces résultats semblent se confirmer pour les options OTM et ITM. Le modèle à processus de sauts de fréquence aléatoire dans la rentabilité du cours du sous-jacent, continue à afficher une nette prééminence dans cette approche dynamique. En effet, il conduit à des variances du portefeuille couvert moindres que celles enregistrées par le modèle à volatilité stochastique et à sauts de fréquence déterministe BCC, à l’exception des options ITM d’échéance comprise entre 61 et 180 jours et des options OTM d’échéance comprise entre 30 et 60 jours. Cependant, la statistique de Newey & West invalide la différence entre les variances des portefeuilles couverts selon les deux modèles, car elle est inférieure à 2. Le même constat pourrait être fait en ce qui concerne la performance de couverture du modèle SVSISJ comparée à celle du modèle de BS. Dans ce cas, seules les options OTM
d'échéance comprise entre 61 et 180 jours enregistrent une couverture moins efficace due à l'utilisation du modèle à sauts stochastiques. Malgré tout, la différence entre les variances n'est pas statistiquement significative selon la statistique de Newey & West.

Cette étude montre que le fait d'inclure des sauts poissonniers aléatoires dans le processus du cours de l'actif sous-jacent en gardant une volatilité stochastique peut améliorer sensiblement la couverture des portefeuilles d'options, exposés à l'un des risques les plus importants, à savoir celui de la volatilité. Néanmoins, il est important de bien garder présent à l'esprit que ces résultats peuvent être affectés d'un biais de sélection des données, biais dont il est fait état dans les travaux de Engle & Rosenberg (2000) [96]. Conscient de la possible présence de cet effet, je ne peux que recommander l'approfondissement de ce travail et la concentration des efforts scientifiques, surtout sur les techniques de collecte de données de marché correctes et fiables.

6.5 Conclusion

En vue de tester la pertinence d'une fréquence stochastique des sauts, je confronte, dans ce chapitre à vocation empirique, le modèle SVISJ au modèle SVSI-J de Bakshi, Cao & Chen (1997) caractérisé par une fréquence des sauts déterministe. La confrontation est effectuée sur le double plan de l'évaluation des premia d'options (performance dite "statique") et de la couverture de positions d'options sur indice Standard & Poor's 500 négociables sur le Chicago Board Options Exchange (performance dite "dynamique").

La performance statique du modèle proposé est examinée au regard de deux approches : approche in-sample et approche out-of-sample. La première approche consiste à estimer les paramètres structurels des modèles, sur le critère du minimum de la différence entre le cours observé sur le marché et le premium issu de chacun des modèles. A l'issue de cette approche in-sample, les paramètres estimés semblent être stables dans le temps, mais ne permettent pas l'obtention de valeurs de la variance et du coefficient de corrélation cohérentes avec celles implicites dans les prix observés des options et dérivées à l'aide de la phase de minimisation. L'approche out-of-sample consiste à examiner la performance de valorisation des deux modèles en mesurant l'erreur moyenne d'évaluation. Les résultats désignent le modèle SVISJ comme celui atteignant la meilleure efficacité d'évaluation pour les trois catégories de maturité des options à la monnaie sur l'indice S&P500, et par là, révèlent la pertinence d'une fréquence stochastique des sauts dans le processus des rentabilités de l'actif support dans l'évaluation des premia des options.

Dans un deuxième temps, la performance dynamique du modèle consiste à tester l'efficacité du modèle SVISJ en couverture delta-neutre (couverture contre les variations premières de cours, de volatilité, de taux d'intérêt et de fréquence de sauts) de positions d'options - comparativement au modèle de Bakshi, Cao & Chen (1997). Tout particulièrement, cette approche cherche à étudier la pertinence d'une fréquence des sauts poisson-
niens potentiellment présents dans le cours des rentabilités du cours de l'actif support. Contrairement aux performances en évaluation des premia, s'agissant des options ATM, les résultats en couverture delta-neutre semblent moins tranchés, au sens où le critère du minimum de variance des valeurs de portefeuille désigne le modèle SVSISJ comme le plus efficace pour deux catégories de maturité étudiées sur trois.
CONCLUSION GÉNÉRALE ET PERSPECTIVES

"Nous nous trouvons dans un monde irréductiblement aléatoire, dans un monde où la réversibilité et le déterminisme font figure de cas particuliers, où l’irréversibilité et l’indétermination microscopique sont la règle."

Ilya Prigogine et Isabelle Stengers, Nouvelle Alliance.

"A trader who slavishly uses a model to make every trading decision is heading for disaster. Only a trader who fully understands what a model can and cannot do will be able to make the model his servant rather than his master."

Sheldon Natenberg, Option volatility and pricing : advanced trading strategies and techniques.

Lors d’une confrontation du modèle proposé avec celui de Bakshi, Cao & Chen (1997) sur le double critère de l’évaluation et de la couverture des options sur indice Standard
& Poor's 500 négociables sur le *Chicago Board Options Exchange*, la thèse montre la pertinence d'une fréquence stochastique des sauts dans le processus des rentabilités. En particulier, malgré une certaine incohérence interne des paramètres, révélée à travers une procédure de type *in-sample*, le modèle *SVSISJ* s'avère plus performant dans l'évaluation des options, selon les résultats de la procédure *out-of-sample*. Lorsque la problématique porte sur la gestion de portefeuille, l'application des paramètres de sensibilité du modèle ont permis d’améliorer, comme les résultats empiriques le laissent penser, la couverture d'options ATM sur indice S&P 500 négociables sur le CBOE, pour deux catégories de maturité sur trois.

Ainsi, au terme de mes recherches, je soutiens que :

Premièrement : une fréquence de sauts aléatoire dans le processus des rentabilités du sous-jacent permet de ralentir la convergence vers la distribution gaussienne, lorsque la maturité des options à évaluer dépasse trois mois. Ce résultat est appuyé à la fois par des simulations numériques confrontant le cas où la fréquence des sauts est supposée déterministe et le cas où la fréquence des sauts est considérée aléatoire, toutes choses étant égales par ailleurs [chapitre 5], mais aussi par une étude empirique montrant l’effet du caractère aléatoire de cette fréquence de sauts [chapitre 6].

Deuxièmement : l’adoption au sein d’un modèle d’évaluation en présence de sauts, volatilité et taux stochastiques, d’un processus de diffusion à retour vers la moyenne de type racine-carrée pour modéliser la fréquence des sauts, permet d’aboutir à une solution entièrement analytique, au regard de la formule de valorisation (4.29). Les paramètres de sensibilité aux variations du cours du sous-jacent, de la volatilité et du taux d’intérêt sont également analytiques, au vu des formules 4.49a, 4.50a et 4.51a [chapitre 4].

Troisièmement : une fréquence de sauts régie par un processus racine-carrée permet de corriger les biais systématiques du modèle le plus général *SVSISJ* de Bakshi, Cao & Chen (1997), au regard d’une étude empirique menée sur le CBOE portant sur l’évaluation d’options sur indice S&P500 [chapitre 6].

Quatrièmement : la méthode de la transformée de Fourier utilisée pour générer les *premia* analytiques peut être étendue au cas purement théorique, où le sous-jacent verse de façon continue un dividende dont le montant suit un processus de diffusion à retour vers la moyenne de type racine-carrée [chapitre 4].
CONCLUSION GÉNÉRALE

Cinquièmement : le modèle SVSISJ constitue une généralisation du modèle de Bakshi, Cao & Chen (1997) et par transitivité successive, une généralisation du modèle à sauts et à volatilité stochastique de Bates (1996) et du modèle à volatilité stochastique de Heston (1993). Ce résultat est démontré en prenant la limite lorsque, simultanément le niveau moyen à long terme, la vitesse de retour vers ce niveau moyen, l’écart type de la fréquence des sauts tendent vers zéro [chapitre 4].

L’effort engagé dans cette thèse à fournir un modèle qui soit le plus réaliste possible doit être poursuivi, et une première perspective de recherche pourrait être l’introduction d’une composante à sauts dans le processus de diffusion pure de la volatilité, de la même façon que certains modèles ont introduit des sauts dans le processus de diffusion du cours du sous-jacent. De nombreuses observations empiriques montrent, en effet, que la volatilité ne suit pas un processus essentiellement continu, mais qu’elle "soute" de temps à autres, un peu comme le fait le cours du sous-jacent. L’introduction de sauts dans un processus de diffusion de la volatilité constitue un thème de recherche encore très peu exploré, du fait d’une grande difficulté à exhiber une formule analytique, ou du moins qui soit simple à utiliser en pratique. Le résultat pourrait alors engendrer un modèle de type SJVSISJ (Stochastic and Jumps Volatility, Stochastic Interest Rate and Stochastic Intensity Jumps Model), où le cours du sous-jacent et la volatilité suivent des processus mixtes. Il reste, néanmoins, fort probable que la solution à ce type de modèles ne soit guère envisageable que par voie numérique, ce qui laisse présager, par contre, des solutions toujours plus précises grâce à la montée en puissance des calculateurs et des techniques avancées en parallélisme.

Une seconde direction de recherche ultérieure, certainement plus pragmatique que la précédente, est l’élargissement du spectre d’application du modèle SVSISJ à d’autres types d’options. Je pense bien sûr aux options américaines mais également aux options exotiques, aux options de change, aux options à barrière ou encore aux options lookback dont l’engouement ne cesse de croître. En effet, force est de constater que la plupart des options négociables étant de type américain, l’enjeu est de présenter un modèle théorique qui traite le problème de l’exercice anticipé de manière explicite, et qui permette d’évaluer les options américaines sans avoir recours à des hypothèses trop restrictives sur le versement des dividendes et la fréquence de l’exercice anticipé.

Un autre prolongement possible pourrait concerner l’inclusion de coûts de transaction. En effet, l’objectif de "coller" le plus fidèlement à la réalité des marchés est sérieusement entravé par l’hypothèse d’absence de coût de transaction qui sont pourtant bien réels. Il faudra sans doute s’orienter vers des modèles en temps discret et recourir à des méthodes numériques pour les résoudre.

Il pourrait être intéressant et pertinent de considérer l’examen empirique du modèle SVSISJ sur d’autres marchés d’options (MONEP par exemple), et faisant intervenir des actifs financiers de types différents (actions, notamment). Cette accumulation, qui pour-
rait toutefois paraitre excessive, permettrait d’explorer en profondeur le comportement du modèle et de confirmer, ou d’infirmer, les résultats empiriques obtenus dans cette thèse. Ces prolongements empiriques pourraient, par ailleurs, tirer bénéfice d’une étude sur le comportement inter-temporel de la volatilité qui serait menée en amont. En effet, plusieurs travaux de recherche ont rapporté l’existence d’un effet jour ou heure dans le comportement de la volatilité (Stoll & Whaley (1990))\(^1\), McInish & Wood (1991)\(^2\) ou encore Foster & Vismanathan (1993)\(^3\). Ce phénomène est susceptible d’avoir des répercussions importantes au niveau de la gestion et la couverture des portefeuilles d’options.

Par ailleurs, l’élaboration de modèles, qui se veulent plus réalisistes, nécessite des procédures d’estimation capables de rendre justice à leur ambition et à leur potentialité. En effet, les non-linéarités, qui sont forcément présentes dans les processus, rendent non optimaux les algorithmes d’estimation linéaire et il serait incohérent d’essayer de fonder un modèle qui soit le plus abouti possible sans chercher en parallèle à optimiser ces algorithmes. Cette direction de recherche permet d’envisager l’application de techniques empruntées au domaine du traitement de signal, notamment les techniques de filtrage non-linéaire (les filtres de Kalman étendu et de Volterra, la classe des filtres polynomiaux, ou encore la technique particulière)\(^4\).

Enfin, dans un registre différent, des efforts doivent être orientés dans une réflexion de convergence entre les modèles en temps continu et les modèles en temps discret de la classe GARCH, dans l’esprit de Heston & Nandi (1997)\(^5\). L’inspiration dans le domaine peut être apportée par les travaux notamment de Nelson (1990)\(^6\) ou encore Duan (1996)\(^7\).

Les défis lancés sont grands et il s’agira de ne pas succomber à la tentation de sacrifier la simplicité sur l’autel de la technicité. En effet, la lecture de cette thèse, comme de plusieurs autres portant sur les options, peut laisser l’impression que l’évaluation des options peut être réduite à des enchaînements essentiellement algébriques. En réalité, il n’en est rien,

\[^{4}\text{SALUT, G. La technique partielle et ses développements. Rapport LAAS du CNRS, 1990.}\]
\[^{6}\text{NELSON, D. ARCH models as diffusion approximations. Journal of Econometrics 45 (1990), 7-38.}\]
\[^{7}\text{DUAN, J.C. A unified theory of option pricing under stochastic volatility from GARCH to diffusion. Working Paper. Hong Kong University of Science and Technology, 1996.}\]
puisque les modèles mathématiques, aussi aboutis soient-ils, ne doivent être considérés que comme un outil d’aide à la décision, et ne sauraient remplacer l’intuition, le flair, l’instinct ou encore l’expérience du trader.

"The mathematics of financial models can be applied precisely, but the models are not at all precise in their application to the real world. Their accuracy as a useful approximation varies significantly across time and place. The models should be applied in practice only tentatively, with careful assessment of their limitations in each application."


~~~~~~~~~
Références bibliographiques


[102] Feinstein, S. The Black-Scholes formula is nearly linear in $s$ for at-the-money options; therefore, implied volatilities from at-the-money options are virtually unbiased. Working paper, Federal Reserve Bank of Atlanta, 1989.


ANNEXES
Résolution des modèles $SVSISJ$ et $SVSISDSJ$

A.1 Preuve de la proposition 4.2.5

**Preuve.** Pour simplifier les calculs, je peux considérer sans perte de généralité que le payoff d’une obligation zéro-coupon, dont le prix actualisé contient l’information nécessaire et suffisante\(^1\) pour décrire la structure par terme du taux d’intérêt, vaut exactement § 1. Dans ce cas, le prix d’une telle obligation peut être clairement obtenu par la proposition 4.2.3 en fixant $Z = 1$. Avec des processus de type racine-carrée dont les paramètres structurels sont donnés par (4.28), (4.11) peut s’écrire :

\[
(R_t - \lambda_{s,S}E_t^Q[k_{t,S}])S_t \frac{\partial C_t}{\partial S_t} + (\mu_{v_i} - \gamma_v V_i) \frac{\partial C_t}{\partial \lambda_{s,S}} + (\mu_R - \gamma_R R_t) \frac{\partial C_t}{\partial R_t} + (\mu_{\gamma_{s}} - \gamma_{\gamma_{s}} \lambda_{s,S}) \frac{\partial C_t}{\partial \lambda_{s,S}}
\]

\[
+ \frac{1}{2} V_i S_t \frac{\partial^2 C_t}{\partial S_t^2} + \frac{1}{2} \frac{\partial^2 C_t}{\partial V_t^2} \left( V_i R_t \frac{\partial^2 C_t}{\partial R_t^2} + \frac{1}{2} \gamma_{\gamma_{s}} \lambda_{s,S} \frac{\partial^2 C_t}{\partial \lambda_{s,S}^2} + V_i S_t \lambda_{s,S} \frac{\partial^2 C_t}{\partial \lambda_{s,S} \partial V_t} + \frac{\partial^2 C_t}{\partial S_t \partial V_t} \right)
\]

\[
- \frac{\partial C_t}{\partial \tau} - R_t C_t + \lambda_{s,S} E_t^Q[C_t(\tau, S_t[1 + k_{t,S}], V_i, R_t, \lambda_{s,S}, K) - C_t(\tau, S_t, V_t, R_t, \lambda_{s,S}, K)] = 0.
\]

(A.1)

Si, de plus, $\ln(1 + k_{t,S}) \sim \mathcal{N}(\ln(1 + \mu_{j_S}) - \frac{1}{2} \sigma_{j_S} ^2, \sigma_{j_S} ^2)$, autrement dit si l’évolution de la variable stochastique $1 + k_{t,S}$ peut être décrite par le mouvement brownien géométrique suivant : $\frac{d(1 + k_{t,S})}{1 + k_{t,S}} = \ln(1 + \mu_{j_S}) dt + \sigma_{j_S} dW_t, k_{t,S}$, (A.1) peut s’écrire :

\[\text{La condition de suffisance du prix de l'obligation zéro-coupon vient de l'hypothèse forte selon laquelle la courbe des taux est dans sa totalité fonction du seul taux court.}\]
\begin{equation}
\begin{multline}
(R_t - \lambda_{t,S} \mu_{j,s}) S_t \frac{\partial C_t}{\partial S_t} + (\mu_{y_1} - \gamma_{y} V_t) \frac{\partial C_t}{\partial V_t} + (\mu_r - \gamma_{r} R_t) \frac{\partial C_t}{\partial R_t} + (\mu_{\lambda,S} - \gamma_{\lambda,S} \lambda_{t,S}) \frac{\partial C_t}{\partial \lambda_{t,S}} \\
+ \frac{1}{2} V_t S_t^2 \frac{\partial^2 C_t}{\partial S_t^2} + \frac{1}{2} \sigma_y^2 V_t \frac{\partial^2 C_t}{\partial V_t^2} + \frac{1}{2} \sigma_r^2 R_t \frac{\partial^2 C_t}{\partial R_t^2} + \frac{1}{2} \sigma_{\lambda,S}^2 \lambda_{t,S} \frac{\partial^2 C_t}{\partial \lambda_{t,S}^2} + V_t S_t \sigma_y \rho_{y,v} \frac{\partial^2 C_t}{\partial S_t \partial V_t} \\
- \frac{\partial C_t}{\partial \tau} - R_t C_t + \lambda_{t,S} \mathbb{E}_v^Q [C_t(\tau, S_t[1 + k_{t,S}], V_t, R_t, \lambda_{t,S}, K) - C_t(\tau, S_t, V_t, R_t, \lambda_{t,S}, K)] = 0.
\end{multline}
\end{equation}

\textit{A. Résolution des modèles SVSISJ et SVISDSJ}

Puisque $S_t$ reste à valeurs strictement positives si $S_t|_{t=0} = S_0 > 0$, il est possible de définir $X_t \equiv \ln S_t$ et écrire que :

\begin{equation}
\begin{multline}
(R_t - \lambda_{t,S} \mu_{j,s} - \frac{1}{2} V_t) \frac{\partial C_t}{\partial X_t} + (\mu_{y_1} - \gamma_{y} V_t) \frac{\partial C_t}{\partial V_t} + (\mu_r - \gamma_{r} R_t) \frac{\partial C_t}{\partial R_t} + (\mu_{\lambda,S} - \gamma_{\lambda,S} \lambda_{t,S}) \frac{\partial C_t}{\partial \lambda_{t,S}} \\
+ \frac{1}{2} V_t \frac{\partial^2 C_t}{\partial X_t^2} + \frac{1}{2} \sigma_y^2 V_t \frac{\partial^2 C_t}{\partial V_t^2} + \frac{1}{2} \sigma_r^2 R_t \frac{\partial^2 C_t}{\partial R_t^2} + \frac{1}{2} \sigma_{\lambda,S}^2 \lambda_{t,S} \frac{\partial^2 C_t}{\partial \lambda_{t,S}^2} + V_t \sigma_y \rho_{y,v} \frac{\partial^2 C_t}{\partial X_t \partial V_t} - \frac{\partial C_t}{\partial \tau} \\
- R_t C_t + \lambda_{t,S} \mathbb{E}_v^Q [C_t(\tau, X_t + \ln[1 + k_{t,S}], V_t, R_t, \lambda_{t,S}, K) - C_t(\tau, X_t, V_t, R_t, \lambda_{t,S}, K)] = 0.
\end{multline}
\end{equation}

Conformément à la proposition 4.2.2, je cherche une solution de (A.3) sous la forme :

\begin{equation}
C_t(\tau, X_t, V_t, R_t, \lambda_{t,S}, K) \equiv e^{X_t} \Pi_{t,1}(\tau, X_t, V_t, R_t, \lambda_{t,S}, K) \\
- KB_0(\tau, R_t) \Pi_{t,2}(\tau, X_t, V_t, R_t, \lambda_{t,S}, K).
\end{equation}

\textit{(A.4)} peut être décomposée en deux équations :

\begin{equation}
\begin{multline}
(R_t - \lambda_{t,S} \mu_{j,s} + \frac{1}{2} V_t) \frac{\partial \Pi_{t,1}}{\partial X_t} + (\mu_{y_1} - \gamma_{y} \sigma_y \rho_{y,v} \frac{\partial \Pi_{t,1}}{\partial V_t} + (\mu_r - \gamma_{r} R_t) \frac{\partial \Pi_{t,1}}{\partial R_t} \\
+ (\mu_{\lambda,S} - \gamma_{\lambda,S} \lambda_{t,S}) \frac{\partial \Pi_{t,1}}{\partial \lambda_{t,S}} \\
+ \frac{1}{2} V_t \frac{\partial^2 \Pi_{t,1}}{\partial X_t^2} + \frac{1}{2} \sigma_y^2 V_t \frac{\partial^2 \Pi_{t,1}}{\partial V_t^2} + \frac{1}{2} \sigma_r^2 R_t \frac{\partial^2 \Pi_{t,1}}{\partial R_t^2} + \frac{1}{2} \sigma_{\lambda,S}^2 \lambda_{t,S} \frac{\partial^2 \Pi_{t,1}}{\partial \lambda_{t,S}^2} - V_t \sigma_y \rho_{y,v} \frac{\partial^2 \Pi_{t,1}}{\partial X_t \partial V_t} \\
+ V_t \sigma_y \rho_{y,v} \frac{\partial^2 \Pi_{t,1}}{\partial X_t \partial V_t} - \lambda_{t,S} \mu_{j,S} \Pi_{t,1} - \frac{\partial \Pi_{t,1}}{\partial \tau} \\
+ \lambda_{t,S} \mathbb{E}_v^Q [(1 + \ln[1 + k_{t,S}]) \Pi_{t,1}(\tau, X_t + \ln[1 + k_{t,S}], V_t, R_t, \lambda_{t,S}, K) \\
- \Pi_{t,1}(\tau, X_t, V_t, R_t, \lambda_{t,S}, K)] = 0.
\end{multline}
\end{equation}

et
\[
(R_t - \lambda_{t,s} \mu_{t,s} - \frac{1}{2} V_i \frac{\partial \Pi_{t,2}}{\partial X_t} + (\mu_{s} - \gamma_{s} V_i \frac{\partial \Pi_{t,2}}{\partial V_i} + \mu_{R} - [\gamma_{R} - \frac{\sigma_{R}^{2}}{\mu} \frac{\partial B_{i}}{\partial R_{t}}] R_k) \frac{\partial \Pi_{t,2}}{\partial R_{t}} + \\
+ (\mu_{s} - \gamma_{s} \lambda_{t,s}) \frac{\partial \Pi_{t,2}}{\partial \lambda_{t,s}} + \frac{1}{2} V_i \frac{\partial^{2} \Pi_{t,2}}{\partial X_{t}^{2}} + \frac{1}{2} \sigma_{V}^{2} V_{i} \frac{\partial^{2} \Pi_{t,2}}{\partial V_{i}^{2}} + \frac{1}{2} \sigma_{R}^{2} R_{t} \frac{\partial^{2} \Pi_{t,2}}{\partial R_{t}^{2}} + \frac{1}{2} \sigma_{\lambda}^{2} \lambda_{t,s} \frac{\partial^{2} \Pi_{t,2}}{\partial \lambda_{t,s}^{2}} \\
+ V_i \sigma_{s} \rho_{s,v} \frac{\partial f_{t,1}}{\partial X_t} + \frac{\partial f_{t,1}}{\partial V_i} + \frac{\partial f_{t,1}}{\partial R_{t}} + \frac{\partial f_{t,1}}{\partial \lambda_{t,s}} + \frac{\partial f_{t,1}}{\partial \lambda_{s}} - \lambda_{t,s} \mu_{t,s} \frac{\partial f_{t,1}}{\partial R_{t}} + \\
+ \lambda_{s} \sigma_{s} \rho_{s,v} \frac{\partial f_{t,1}}{\partial X_t} \frac{\partial f_{t,1}}{\partial V_i} \frac{\partial f_{t,1}}{\partial R_{t}} + \lambda_{s} \rho_{s,v} \rho_{s,v} \frac{\partial f_{t,1}}{\partial \lambda_{t,s}} \frac{\partial f_{t,1}}{\partial \lambda_{s}} = 0,
\]

(A.5b)
Une forme candidate de $f_{i,j}, \forall j = 1, 2$ solution de (A.7a) et (A.7b) est :

$$f_{i,j} = f_{i,j}(\tau, X_i, V_i, R_i, \lambda_{i,s}, \phi)$$

$$= \exp\{i\phi X_i + A_{i,j}(\tau, \phi) V_i + B_{i,j}(\tau, \phi) R_i + C_{i,j}(\tau, \phi) \lambda_{i,s} + D_{i,j}(\tau, \phi) + \mathcal{E}_{i,j}\}$$  \hspace{1cm} (A.9)

où

$$\begin{cases} 
\mathcal{E}_{i,1} \equiv 0 \\
\mathcal{E}_{i,2} \equiv -\ln B_i,
\end{cases}$$

associée à la condition terminale : $B_i(\tau, R_i)|_{\tau=0} = B_i(0, R_i) \equiv 1$.

Si une telle forme (A.9) de $f_{i,1}$ est solution de (A.7a), alors il vient, en substituant $f_{i,1}$ dans (A.7a) :

$$(R_i - \lambda_{i,s} \mu_{j_s} + \frac{1}{2} V_i) i\phi + (\mu_v - [\gamma_v - \sigma_{v,s,y}] V_i) A_{v,1}(\tau, \phi) + (\mu_r - \gamma_r R_i) B_{v,1}(\tau, \phi)$$

$$+ (\mu_{j_s} - \lambda_{j_s} \lambda_{i,s}) C_{v,1}(\tau, \phi) + \frac{1}{2} V_i [-\phi^2 + \sigma_{v,s,y}^2 A_{v,1}(\tau, \phi) + 2\sigma_{v,s,y} i\phi A_{v,1}(\tau, \phi) + \frac{1}{2} \sigma_{j_s}^2 R_i B_{j_s,1}(\tau, \phi) + \frac{1}{2} \sigma_{j_s}^2 \lambda_{j_s} C_{j_s,1}(\tau, \phi) - \frac{\partial A_{v,1}(\tau, \phi)}{\partial \tau} V_i - \frac{\partial B_{v,1}(\tau, \phi)}{\partial \tau} R_i - \frac{\partial C_{v,1}(\tau, \phi)}{\partial \tau} \lambda_{i,s}$$

$$- \frac{\partial D_{v,1}(\tau, \phi)}{\partial \tau} - \lambda_{j_s} \mu_{j_s} + \lambda_{i,s} (1 + \mu_{j_s}) e^{-\sigma_{j_s}^2 (\phi^2 - i\phi) / 2} - 1) = 0.$$  \hspace{1cm} (A.10)

Il s’agit maintenant de résoudre :

$$- \frac{\partial A_{v,1}(\tau, \phi)}{\partial \tau} + \frac{1}{2} \sigma_{v,s}^2 A_{v,1}(\tau, \phi) - [\gamma_v - \sigma_{v,s,y} (1 + i\phi)] A_{v,1}(\tau, \phi) - \frac{1}{2} (\phi^2 - i\phi) = 0,$$  \hspace{1cm} (A.11a)

$$- \frac{\partial B_{v,1}(\tau, \phi)}{\partial \tau} + \frac{1}{2} \sigma_r^2 B_{v,1}(\tau, \phi) - \gamma_r B_{v,1}(\tau, \phi) + i\phi = 0,$$  \hspace{1cm} (A.11b)

$$- \frac{\partial C_{v,1}(\tau, \phi)}{\partial \tau} + \frac{1}{2} \sigma_{j_s}^2 C_{v,1}(\tau, \phi) - \gamma_{j_s} C_{v,1}(\tau, \phi)$$

$$+ (1 + \mu_{j_s}) e^{-\sigma_{j_s}^2 (\phi^2 - i\phi) / 2} - 1) = 0,$$  \hspace{1cm} (A.11c)

$$- \frac{\partial D_{v,1}(\tau, \phi)}{\partial \tau} + \mu_v A_{v,1}(\tau, \phi) + \mu_r B_{v,1}(\tau, \phi) + \mu_{\lambda s} C_{v,1}(\tau, \phi) = 0.$$  \hspace{1cm} (A.11d)
Ce système d’équations n’est autre qu’un système différentiel ordinaire de Ricatti à coefficients constants. Associé aux conditions terminales suivantes :

\[ A_{1,1}(\tau, \phi) = A_{1,1}(0, \phi) \equiv 0, \]  
\[ B_{1,1}(\tau, \phi) = B_{1,1}(0, \phi) \equiv 0, \]  
\[ C_{1,1}(\tau, \phi) = C_{1,1}(0, \phi) \equiv 0, \]  
\[ D_{1,1}(\tau, \phi) = D_{1,1}(0, \phi) \equiv 0, \]  

je résous successivement :

\[ A_{1,1}(\tau, \phi) = \frac{-\left(\phi^2 - i\phi\right)\left(1 - e^{\tau \xi_{1,V}}\right)}{\left[\gamma_v - \sigma_v \rho_{s,v} (1 + i\phi) \left(1 - e^{\tau \xi_{1,V}}\right) - \xi_{1,V}(1 + e^{\tau \xi_{1,V}})\right]} \]  
\[ \xi_{1,V} \equiv \sqrt{\left[\gamma_v - \sigma_v \rho_{s,v} (1 + i\phi)\right]^2 + \sigma_v^2 (\phi^2 - i\phi)}; \]

\[ B_{1,1}(\tau, \phi) = \frac{2i\phi\left(1 - e^{\tau \xi_{1,R}}\right)}{\gamma_R \left(1 - e^{\tau \xi_{1,R}}\right) - \xi_{1,R}(1 + e^{\tau \xi_{1,R}})} \]  
\[ \xi_{1,R} \equiv \sqrt{\gamma_{s}^2 - 2i\sigma_{s}^2 \phi}; \]

\[ C_{1,1}(\tau, \phi) = \frac{2\left\{ (1 + \mu_{s,j}) [(1 + \mu_{s,j})^{i\phi} e^{-\sigma_{j,s}^2 (\phi^2 - i\phi)/2} - 1] - \mu_{s,j} i\phi \right\} (1 - e^{\tau \xi_{1,\lambda_s}})}{\gamma_{\lambda_s} \left(1 - e^{\tau \xi_{1,\lambda_s}}\right) - \xi_{1,\lambda_s}(1 + e^{\tau \xi_{1,\lambda_s}})} \]  
\[ \xi_{1,\lambda_s} \equiv \sqrt{\gamma_{s}^2 - 2\sigma_{s}^2 \left\{ (1 + \mu_{s,j}) [(1 + \mu_{s,j})^{i\phi} e^{-\sigma_{j,s}^2 (\phi^2 - i\phi)/2} - 1] - \mu_{s,j} i\phi \right\}}; \]

\[ D_{1,1}(\tau, \phi) = \frac{\mu_{s,j}}{\sigma_{s}^2} \left\{ (\gamma_v - \sigma_v \rho_{s,v} (1 + i\phi) + \xi_{1,V} + \xi_{1,\lambda_s}) \tau - 2 \ln \left(1 - \frac{\gamma_v - \sigma_v \rho_{s,v} (1 + i\phi) + \xi_{1,V} + \xi_{1,\lambda_s}}{2\xi_{1,V}}\right) \right\} \]
\[ + \frac{\mu_{s,j}}{\sigma_{s}^2} \left\{ (\gamma_R + \xi_{1,R}) \tau - 2 \ln \left(1 - \frac{\gamma_R + \xi_{1,R}}{2\xi_{1,R}}\right) \right\} \]
\[ + \frac{\mu_{s,j}}{\sigma_{s}^2} \left\{ (\gamma_{\lambda_s} + \xi_{1,\lambda_s}) \tau - 2 \ln \left(1 - \frac{\gamma_{\lambda_s} + \xi_{1,\lambda_s}}{2\xi_{1,\lambda_s}}\right) \right\}. \]  

(A.12a)  
(A.12b)  
(A.12c)  
(A.12d)  
(A.13)  
(A.14)  
(A.15)  
(A.16)
Je déduis finalement les expressions analytiques des fonctions caractéristiques voulues \( f_{i,1} \) et \( f_{i,2} \). Enfin, pour obtenir l’expression analytique des probabilités risque-neutres \( \Pi_{i,j} \), \( \forall j = 1, 2 \), selon lesquelles le call expire dans la monnaie, je suppose que les fonctions caractéristiques respectives sont de carré intégrable (i.e. appartiennent à \( L^2(\mathbb{R}) \))^2 de façon à pouvoir définir les transformées de Fourier inverses de \( \Pi_{i,j} \) (ou les réciproques des fonctions caractéristiques \( f_{i,j} \) de \( S_T \))

\[
\Pi_{i,j}(T - t, S_t, V_t, R_t, \lambda_{t,S}, K) = \frac{1}{2} + \frac{1}{\pi} \int_0^{+\infty} \text{Re} \left[ e^{i\phi \ln K} f_{i,j}(T - t, S_t, V_t, R_t, \lambda_{t,S}, \phi) \right] d\phi.
\]

A.2 Preuve de la proposition 4.3.2

Preuve. De (4.38), il vient :

\[
(R_t - D_t - \lambda_t \cdot \mu_{t,s}) S_t \frac{\partial C_t}{\partial S_t} + (\mu_t - \gamma_V V_t) \frac{\partial C_t}{\partial V_t} + (\mu_R - \gamma_R R_t) \frac{\partial C_t}{\partial R_t} \\
+ (\mu_D - \gamma_D D_t) \frac{\partial C_t}{\partial D_t} + (\mu_{\lambda,s} - \gamma_{\lambda,s} \lambda_t) \frac{\partial C_t}{\partial \lambda_t} S_t^2 \frac{\partial^2 C_t}{\partial S_t^2} + \frac{1}{2} \sigma_V^2 V_t \frac{\partial^2 C_t}{\partial V_t^2} \\
+ \frac{1}{2} \sigma_R^2 R_t \frac{\partial^2 C_t}{\partial R_t^2} + \frac{1}{2} \sigma_D^2 D_t \frac{\partial^2 C_t}{\partial D_t^2} + \frac{1}{2} \sigma_{\lambda,s}^2 \lambda_t \frac{\partial^2 C_t}{\partial \lambda_t^2} S_t \frac{\partial^2 C_t}{\partial S_t \partial \lambda_t} + V_t S_t \rho_{s,v} \frac{\partial^2 C_t}{\partial S_t \partial V_t} - \frac{\partial C_t}{\partial \tau} - R_t C_t \\
+ \lambda_{t,s} \mathbb{E}_t^Q [C_t(\tau, S_0[1 + k_{t,s}], V_t, R_t, D_t, \lambda_{t,s}, K) - C_t(\tau, S_t, V_t, R_t, D_t, \lambda_{t,s}, K)] = 0.
\]

(A.17)

En faisant le changement de variables adéquat \( X_t \equiv \ln S_t \), (A.17) peut s’écrire :

\[
(R_t - D_t - \lambda_t \cdot \mu_{t,s} - \frac{1}{2} \frac{V_t}{X_t} \frac{\partial C_t}{\partial X_t}) \frac{\partial C_t}{\partial X_t} + (\mu_t - \gamma_V V_t) \frac{\partial C_t}{\partial V_t} + (\mu_R - \gamma_R R_t) \frac{\partial C_t}{\partial R_t} + (\mu_D - \gamma_D D_t) \frac{\partial C_t}{\partial D_t} \\
+ (\mu_{\lambda,s} - \gamma_{\lambda,s} \lambda_t) \frac{\partial C_t}{\partial \lambda_t} + \frac{1}{2} \frac{V_t}{X_t} \frac{\partial^2 C_t}{\partial X_t^2} + \frac{1}{2} \sigma_V^2 V_t \frac{\partial^2 C_t}{\partial V_t^2} + \frac{1}{2} \sigma_R^2 R_t \frac{\partial^2 C_t}{\partial R_t^2} + \frac{1}{2} \sigma_D^2 D_t \frac{\partial^2 C_t}{\partial D_t^2} + \frac{1}{2} \sigma_{\lambda,s}^2 \lambda_t \frac{\partial^2 C_t}{\partial \lambda_t^2} \frac{\partial^2 C_t}{\partial X_t \partial \lambda_t} + V_t S_t \rho_{s,v} \frac{\partial^2 C_t}{\partial X_t \partial V_t} - \frac{\partial C_t}{\partial \tau} - R_t C_t \\
+ \lambda_{t,s} \mathbb{E}_t^Q [C_t(\tau, X_t + \ln[1 + k_{t,s}], V_t, R_t, D_t, \lambda_{t,s}, K) - C_t(\tau, X_t, V_t, R_t, D_t, \lambda_{t,s}, K)] = 0.
\]

(A.18)

^2 Espace de Hilbert des fonctions réelles de carré intégrable.
Je cherche un *premium* solution de la forme :
\[
C_t(\tau, X_t, V_t, R_t, D_t, \lambda_t, K) = e^{X_t \Xi_{1,1}(\tau, X_t, V_t, R_t, D_t, \lambda_t, K)} - KB_t(\tau, R_t) \Pi_{1,2}(\tau, X_t, V_t, R_t, D_t, \lambda_t, K).
\]

La résolution de (A.18) est équivalente à celle des deux équations suivantes :

\[
(R_t - D_t - \lambda_t, \mu_t, V_t) \frac{\partial \Pi_{1,1}}{\partial X_t} + (\mu_t - \gamma_t \lambda_t, V_t) \frac{\partial \Pi_{1,1}}{\partial V_t} + \left( \mu_t - \gamma_t \lambda_t, \mu_t, \lambda_t, V_t \right) \frac{\partial \Pi_{1,1}}{\partial \lambda_t, \lambda_t, V_t}
\]

\[
+ \frac{1}{2} V_t \sigma_t \frac{\partial^2 \Pi_{1,1}}{\sigma_t^2} - \left( \Pi_{1,1} \left( \tau, X_t, V_t, R_t, D_t, \lambda_t, K \right) \right] = 0,
\]

(A.20a)

et

\[
(R_t - D_t - \lambda_t, \mu_t, V_t) \frac{\partial \Pi_{1,2}}{\partial X_t} + (\mu_t - \gamma_t \lambda_t, V_t) \frac{\partial \Pi_{1,2}}{\partial V_t} + \left( \mu_t - \gamma_t \lambda_t, \mu_t, \lambda_t, V_t \right) \frac{\partial \Pi_{1,2}}{\partial \lambda_t, \lambda_t, V_t}
\]

\[
+ \frac{1}{2} V_t \sigma_t \frac{\partial^2 \Pi_{1,2}}{\sigma_t^2} - \left( \Pi_{1,2} \left( \tau, X_t, V_t, R_t, D_t, \lambda_t, K \right) \right] = 0,
\]

(A.20b)

associées à leur condition terminale respective :

\[
\forall j = 1, 2, \quad \Pi_{j,1}|_{\tau = 0} = \Pi_{j,1}(0, X_t, V_t, R_t, D_t, \lambda_t, K) \equiv 1_{\tau \geq \ln K}.
\]

Les fonctions caractéristiques des probabilités risque-neutres \( \Pi_{j,3} \) satisfont également, respectivement (A.20a) et (A.20b).
\[
\begin{align*}
&(R_t - D_t - \gamma_d, s, \mu_{t,s} + \frac{1}{2} V_t \frac{\partial f_{t,1}}{\partial X_t} + (\mu_{r,t} - \gamma_r - \sigma_r p_{s,t} V_t) \frac{\partial f_{t,1}}{\partial V_t} + (\mu_{r,t} + \gamma_r R_t) \frac{\partial f_{t,1}}{\partial R_t} \\
+& (\mu_d - \gamma_d D_t) \frac{\partial f_{t,1}}{\partial D_t} + (\mu_{d,t} - \gamma_d, s, \lambda_{t,s}) \frac{\partial f_{t,1}}{\partial \lambda_{t,s}} + \frac{1}{2} V_t \frac{\partial^2 f_{t,1}}{\partial X_t^2} + \frac{1}{2} \sigma_r^2 V_t \frac{\partial^2 f_{t,1}}{\partial V_t^2} + \frac{1}{2} \sigma_r^2 R_t \frac{\partial^2 f_{t,1}}{\partial R_t^2} \\
+& \frac{1}{2} \sigma_d^2 D_t \frac{\partial^2 f_{t,1}}{\partial D_t^2} + \frac{1}{2} \sigma_d^2 \lambda_{t,s} \frac{\partial^2 f_{t,1}}{\partial \lambda_{t,s}^2} + V_t \sigma_r p_{s,t} \frac{\partial^2 f_{t,1}}{\partial X_t \partial V_t} - (D_t + \lambda_{t,s} \mu_{t,s}) f_{t,1} - \frac{\partial f_{t,1}}{\partial r} \\
+& \lambda_{t,s} \mathbb E_t[(1 + \ln(1 + k_{t,s})) f_{t,1}(\tau, X_t + \ln(1 + k_{t,s}), V_t, R_t, D_t, \lambda_{t,s}) - f_{t,1}(\tau, X_t, V_t, R_t, D_t, \lambda_{t,s})] = 0,
\end{align*}
\]

et

\[
\begin{align*}
&(R_t - D_t - \gamma_d, s, \mu_{t,s} + \frac{1}{2} V_t \frac{\partial f_{t,2}}{\partial X_t} + (\mu_{r,t} - \gamma_r - \sigma_r p_{s,t} V_t) \frac{\partial f_{t,2}}{\partial V_t} + (\mu_{r,t} + \gamma_r R_t) \frac{\partial f_{t,2}}{\partial R_t} \\
+& (\mu_d - \gamma_d D_t) \frac{\partial f_{t,2}}{\partial D_t} + (\mu_{d,t} - \gamma_d, s, \lambda_{t,s}) \frac{\partial f_{t,2}}{\partial \lambda_{t,s}} + \frac{1}{2} V_t \frac{\partial^2 f_{t,2}}{\partial X_t^2} + \frac{1}{2} \sigma_r^2 V_t \frac{\partial^2 f_{t,2}}{\partial V_t^2} \\
+& \frac{1}{2} \sigma_d^2 D_t \frac{\partial^2 f_{t,2}}{\partial D_t^2} + \frac{1}{2} \sigma_d^2 \lambda_{t,s} \frac{\partial^2 f_{t,2}}{\partial \lambda_{t,s}^2} + V_t \sigma_r p_{s,t} \frac{\partial^2 f_{t,2}}{\partial X_t \partial V_t} - \frac{\partial f_{t,2}}{\partial r} \\
+& \lambda_{t,s} \mathbb E_t[f_{t,2}(\tau, X_t + \ln(1 + k_{t,s}), V_t, R_t, D_t, \lambda_{t,s}) - f_{t,2}(\tau, X_t, V_t, R_t, D_t, \lambda_{t,s})] = 0.
\end{align*}
\]

Les conditions terminales respectives vérifient :

\[
\forall j = 1, 2, \quad f_{t,j} \big|_{t=0} = f_{t,j}(0, X_t, V_t, R_t, D_t, \lambda_{t,s}, \phi) \equiv e^{i\phi X_t}.
\]

En cherchant une forme candidate de la forme :

\[
f_{t,j} = f_{t,j}(\tau, X_t, V_t, R_t, D_t, \lambda_{t,s}, \phi) \equiv \exp\{i \phi X_t + A_{t,j}(\tau, \phi) V_t + B_{t,j}(\tau, \phi) R_t + I_{t,j}(\tau, \phi) D_t + C_{t,j}(\tau, \phi) \lambda_{t,s} + D_{t,j}(\tau, \phi) + E_{t,j}\},
\]

où je rappelle que :

\[
\begin{align*}
\{ & E_{t,1} \equiv 0 \\
& E_{t,2} \equiv - \ln B_t,
\end{align*}
\]
Il s’agit alors de résoudre :

\[
(R_t - D_t - \lambda_t,s \mu_{j,s} + \frac{1}{2} V_t) i \phi + (\mu_V - [\gamma_V - \sigma_V \rho_{s,\phi}] V_t) A_{t,1}(\tau, \phi) \\
+ (\mu_R - \gamma_R R_t) B_{t,1}(\tau, \phi) + (\mu_D - \gamma_D D_t) I_{t,1}(\tau, \phi) + (\mu_{\lambda,s} - \gamma_{\lambda,s} \lambda_t,s) C_{t,1}(\tau, \phi) \\
+ \frac{1}{2} V_t [-\phi^2 + \sigma_{V,\phi}^2 A_{t,1}^2(\tau, \phi) + 2 \sigma_{V,\phi} \rho_{s,\phi} i \phi A_{t,1}(\tau, \phi)] \\
+ \frac{1}{2} \sigma_{R,\phi}^2 R_t B_{t,1}^2(\tau, \phi) + \frac{1}{2} \sigma_{D,\phi}^2 D_t I_{t,1}^2(\tau, \phi) + \frac{1}{2} \sigma_{\lambda,s,\phi}^2 \lambda_t,s C_{t,1}^2(\tau, \phi) \\
- \frac{\partial A_{t,1}(\tau, \phi)}{\partial \tau} V_t - \frac{\partial B_{t,1}(\tau, \phi)}{\partial \tau} R_t - \frac{\partial I_{t,1}(\tau, \phi)}{\partial \tau} D_t - \frac{\partial C_{t,1}(\tau, \phi)}{\partial \tau} \lambda_t,s - \frac{\partial D_{t,1}(\tau, \phi)}{\partial \tau} \\
- (D_t + \lambda_t,s \mu_{j,s}) + \lambda_t,s ((1 + \mu_{j,s}) (1 \pm \phi^2)) e^{-\sigma_{\lambda,s,\phi}^2 (\phi^2 - i \phi)^2} - 1 = 0,
\]

ou bien successivement :

\[
- \frac{\partial A_{t,1}(\tau, \phi)}{\partial \tau} + \frac{1}{2} \sigma_{V,\phi}^2 A_{t,1}^2(\tau, \phi) - [\gamma_V - \sigma_V \rho_{s,\phi} (1 + i \phi)] A_{t,1}(\tau, \phi) - \frac{1}{2} (\phi^2 - i \phi) = 0,
\]

\[
- \frac{\partial B_{t,1}(\tau, \phi)}{\partial \tau} + \frac{1}{2} \sigma_{R,\phi}^2 B_{t,1}^2(\tau, \phi) - \gamma_R B_{t,1}(\tau, \phi) + i \phi = 0,
\]

\[
- \frac{\partial I_{t,1}(\tau, \phi)}{\partial \tau} + \frac{1}{2} \sigma_{D,\phi}^2 I_{t,1}^2(\tau, \phi) - \gamma_D I_{t,1}(\tau, \phi) - (1 + i \phi) = 0,
\]

\[
- \frac{\partial C_{t,1}(\tau, \phi)}{\partial \tau} + \frac{1}{2} \sigma_{\lambda,s,\phi}^2 C_{t,1}^2(\tau, \phi) - \gamma_{\lambda,s} C_{t,1}(\tau, \phi) \\
+ (1 + \mu_{j,s})[(1 + \mu_{j,s}) (1 \pm \phi^2)] e^{-\sigma_{\lambda,s,\phi}^2 (\phi^2 - i \phi)^2} - 1 - \mu_{j,s} i \phi = 0,
\]

\[
- \frac{\partial D_{t,1}(\tau, \phi)}{\partial \tau} + \mu_V A_{t,1}(\tau, \phi) + \mu_R B_{t,1}(\tau, \phi) + \mu_D I_{t,1}(\tau, \phi) + \mu_{\lambda,s} C_{t,1}(\tau, \phi) = 0.
\]

Avec le système de conditions terminales suivant :

\[
A_{t,1}|_{\tau=0} = A_{t,1}(0, \phi) \equiv 0, \\
B_{t,1}|_{\tau=0} = B_{t,1}(0, \phi) \equiv 0, \\
I_{t,1}|_{\tau=0} = I_{t,1}(0, \phi) \equiv 0, \\
C_{t,1}|_{\tau=0} = C_{t,1}(0, \phi) \equiv 0, \\
D_{t,1}|_{\tau=0} = D_{t,1}(0, \phi) \equiv 0,
\]
et $B_l(\tau, R_l)|_{r=0} = B_l(0, R_l) \equiv 1$, la résolution donne :

\[ \mathcal{A}_{t,1}(\tau, \phi) = \frac{-(\phi^2 - i\phi)(1 - e^{r\xi_{1,V}})}{[\gamma_V - \sigma_V \rho_{s,V}(1 + i\phi)][1 - e^{r\xi_{1,V}}] - \xi_{1,V}(1 + e^{r\xi_{1,V}})} \]  

(A.28)

où

\[ \xi_{1,V} \equiv \sqrt{[\gamma_V - \sigma_V \rho_{s,V}(1 + i\phi)]^2 + \sigma_V^2(\phi^2 - i\phi)}; \]

\[ B_{t,1}(\tau, \phi) = \frac{2i\phi(1 - e^{r\xi_{1,R}})}{\gamma_R(1 - e^{r\xi_{1,R}}) - \xi_{1,R}(1 + e^{r\xi_{1,R}})} \]  

(A.29)

où

\[ \xi_{1,R} \equiv \sqrt{\gamma_R^2 - 2i\sigma_R^2 \phi}; \]

\[ I_{t,1}(\tau, \phi) = \frac{-2(1 + i\phi)(1 - e^{r\xi_{1,D}})}{\gamma_D(1 - e^{r\xi_{1,D}}) - \xi_{1,D}(1 + e^{r\xi_{1,D}})} \]  

(A.30)

où

\[ \xi_{1,D} \equiv \sqrt{\gamma_D^2 + 2\sigma_D^2(1 + i\phi)}; \]

\[ C_{t,1}(\tau, \phi) = \frac{2\{(1 + \mu_{js})[1 + p_{js}i\phi e^{-\sigma_{js}^2(\phi^2 - i\phi)/2} - 1] - \mu_{js}i\phi\}(1 - e^{r\xi_{1,L}})}{\gamma_{\lambda S}(1 - e^{r\xi_{1,L}}) - \xi_{1,L}(1 + e^{r\xi_{1,L}})} \]  

(A.31)

où

\[ \xi_{1,L} \equiv \sqrt{\gamma_{\lambda S}^2 - 2\sigma_{\lambda S}^2\{(1 + \mu_{js})[1 + p_{js}i\phi e^{-\sigma_{js}^2(\phi^2 - i\phi)/2} - 1] - \mu_{js}i\phi\}}; \]

\[ D_{t,1}(\tau, \phi) = \frac{\mu_r}{\sigma_r^2}\{(\gamma_V - \sigma_V \rho_{s,V}(1 + i\phi) + \xi_{1,V})\tau - 2 \ln(1 - \frac{[\gamma_V - \sigma_V \rho_{s,V}(1 + i\phi) + \xi_{1,V}][1 - e^{r\xi_{1,V}}]}{2\xi_{1,V}})\} \]

\[ + \frac{\mu_r}{\sigma_r^2}\{(\gamma_R + \xi_{1,R})\tau - 2 \ln(1 - \frac{[\gamma_R + \xi_{1,R}][1 - e^{r\xi_{1,R}}]}{2\xi_{1,R}})\} \]

\[ + \frac{\mu_r}{\sigma_r^2}\{(\gamma_D + \xi_{1,D})\tau - 2 \ln(1 - \frac{[\gamma_D + \xi_{1,D}][1 - e^{r\xi_{1,D}}]}{2\xi_{1,D}})\} \]

\[ + \frac{\mu_{\lambda S}}{\sigma_{\lambda S}^2}\{(\gamma_{\lambda S} + \xi_{1,L})\tau - 2 \ln(1 - \frac{[\gamma_{\lambda S} + \xi_{1,L}][1 - e^{r\xi_{1,L}}]}{2\xi_{1,L}})\}. \]  

(A.32)
Méthodes numériques d’optimisation
statique et non linéaire

B.1 Algorithmes du gradient

Soit à résoudre le problème de minimisation suivant :

$$\min_x f(x), x?$$

où $f : x \in \mathbb{R}^n \rightarrow f(x) \in \mathbb{R}$ non linéaire de classe $C^1$. Dans la plupart des cas, à cause de l’expression de $f$, trouver analytiquement $x$ est difficile (voire impossible). L’algorithme du gradient est une méthode numérique qui se prête à la résolution de problèmes d’optimisation statique (les variables de décision sont des paramètres) lorsque le critère à optimiser est non-linéaire :

Première étape

On choisit un point de départ $x_0$ (en réalité, on choisit plusieurs points initiaux et on regarde si le point convergent est le même).

Deuxième étape

On détermine une direction de déplacement telle que $f$ décroisse en $x$. Soit $d_i$ cette direction de déplacement à l’itération $i$.

Troisième étape

On choisit une amplitude de déplacement $a_i$ qui fixe la vitesse de l’algorithme, telle que si $x_{i+1} = x_i + a_id_i$ alors $f(x_{i+1}) < f(x_i)$. 

Annexe B
Quatrième étape
On effectue un test d’arrêt.

Problème : comment trouver \( d_i \) et \( a_i \) pour accélérer la convergence ?

**Proposition B.1.1 (Algorithme du gradient).** La direction de déplacement à prendre est \( d_i = -\frac{\partial f}{\partial x_i} |_{x_i} \).

**Preuve.** Soit

\[ x_{i+1} = x_i + a_i d_i, \tag{B.1} \]

je cherche \( d_i \) tel que \( f(x_{i+1}) < f(x_i) \) c’est à dire tel que :

\[ f(x_i + a_i d_i) < f(x_i). \tag{B.2} \]

En développant \( f \) suivant Taylor au premier ordre autour de \( x_i \), la condition suivante devient :

\[ f(x_i) + \frac{\partial f}{\partial x_i} |_{x_i} \delta x_i < f(x_i). \tag{B.3} \]

Puisque \( f \) est scalaire, je peux écrire que \( \frac{\partial^2 f}{\partial x^2} |_{x_i} ^{x_i} = \frac{\partial f}{\partial x^2} |_{x_i} \). La condition (B.3) s’écrit maintenant :

\[ \frac{\partial f}{\partial x_i} |_{x_i} \delta x_i < 0, \tag{B.4} \]

qui se développe suivant \( \| \frac{\partial f}{\partial x^2} |_{x_i} \| \delta x_i \| \cos \theta < 0 \) où \( \theta \) désigne l’angle formé entre \( \frac{\partial f}{\partial x^2} |_{x_i} \) et \( \delta x_i \). Ce qui revient à choisir \( \frac{\pi}{2} + 2k\pi < \theta < \frac{\pi}{2} + 2k\pi \) avec \( k \) entier relatif. Puisque l’on cherche à rendre la décroissance \( f(x_{i+1}) - f(x_i) \) la plus grande possible en valeur absolue, il faut prendre \( \theta = (2k + 1)\pi \), de telle sorte que \( \delta x_i \) et \( \frac{\partial f}{\partial x^2} |_{x_i} \) soient opposés.

On obtient alors

\[ \delta x_i = -k \frac{\partial f}{\partial x^2} |_{x_i}. \tag{B.5} \]

En identifiant (B.1) et (B.5), il vient finalement :

\[
\begin{align*}
  a_i &= k \\
  d_i &= -\frac{\partial f}{\partial x^2} |_{x_i}
\end{align*}
\tag{B.6}
\]
B.2 Algorithme des moments simulés

La difficulté principale dans l’implémentation des modèles à volatilité stochastique provient du fait que le processus de volatilité n’est pas directement observable. Cette particularité constitue une entrave à l’utilisation de la méthode de maximum de vraisemblance dans l’estimation des paramètres. D’un autre côté, la méthode des moments généralisés, (Generalized Method of Moments) n’est non plus d’un grand secours, car elle suppose l’existence d’une expression analytique des moments caractéristiques des cours des options, qui n’est pas toujours disponible dans les modèles d’évaluation des options à volatilité stochastique. En ce sens, la méthode des moments simulés, (Method of Simulated Moments) peut constituer une approche satisfaisante d’estimation des paramètres structurels sur le base de la simulation des moments. Elle se déroule en deux grandes étapes que je détaille ci-après :

Première étape

Dans un premier temps, on divise l’échantillon en 9 classes d’options selon leur échéance et leur moneyness : options à court terme en dehors de la monnaie, à la monnaie, dans la monnaie, options à moyen terme en dehors de la monnaie, à la monnaie, dans la monnaie, option à long terme en dehors de la monnaie, à la monnaie, dans la monnaie. Les différentes catégories sont indexées par \( j = 1, ..., 9 \). Chaque jour de la période de l’étude, on sélectionne une option dans chaque catégorie, ce qui nous donne 9 séries de cours d’options pour chaque échéance et chaque moneyness. Je conviens de désigner respectivement par \( \tilde{C}_i^j(T^i - t, S_t, K^j) \) et \( C_i^j = \text{SVSISJ} (T^i - t, S_t, V_t, \Phi^Q, K^j) \) le cours de l’option observé sur le marché et le cours de l’option calculé par le modèle SVSISJ. L’expression de la différences ou des "bruits", point de départ de la procédure d’estimation des paramètres structurels, peut alors s’écrire :

\[
\epsilon_t(\Phi^Q) = \left( \frac{\hat{C}_i^j(V_t, \Phi^Q)}{K_t^j} - \frac{\mathbb{E}^Q(C_i^j(V_t, \Phi^Q))}{K_t^j} \right) \frac{C_i^j}{K_t^j}
\]

Cette formulation nous donne la condition des moments

\[
\mathbb{E}\{\epsilon_t(\Phi^Q)\} = 0,
\]

qui donne la contrainte que les erreurs \( \epsilon_t \) sont en moyenne nulles. En vue de neutraliser l’effet de la non stationnarité, induite par les variations du cours de l’actif support, l’expression des "bruits" est "corrigeée" par l’introduction du terme du prix d’exercice. L’estimateur de la méthode des moments simulés des paramètres structurels \( \Phi^Q \) est obtenu en minimisant la fonction quadratique suivante :

\[
J_{T,m} \equiv \arg\min_{\Phi} C_T W_T G_T,
\]
où $G_T \equiv \frac{1}{T} \sum_{t=1}^{T} \alpha_t(\Phi^Q)$, $G_T$ la transposée de $G_T$, $W_T$ une matrice symétrique définie et positive de pondération. Dans (B.7), la quantité $\mathbb{E}^Q_t\{C_i^T(V, \Phi^Q)\}$ est approximée par simulation (soit m le nombre de simulations), dont le raisonnement est le suivant :

- 1) On discrétise les processus des variables d’état suivant un schéma d’Euler :

$$
\begin{align*}
S_{t+\Delta t} &= S_t + (\mu_s - \gamma_s S_t) \Delta t + \sqrt{V_s} S_t W_{t+\Delta t, S} + k_{s, S} S_t N_{t+\Delta t, S} \\
V_{t+\Delta t} &= V_t + (\mu_v - \gamma_v V_t) \Delta t + \sigma_v \sqrt{T_v} W_{t+\Delta t, V} \\
R_{t+\Delta t} &= R_t + (\mu_r - \gamma_r R_t) \Delta t + \sigma_r \sqrt{T_r} W_{t+\Delta t, R} \\
\lambda_{t+\Delta t, S} &= \lambda_{t, S} + (\mu_{\lambda_s} - \gamma_{\lambda_s} \lambda_{t, S}) \Delta t + \sigma_{\lambda_s} \sqrt{\lambda_{t, S}} W_{t+\Delta t, \lambda_s}
\end{align*}
$$

(B.9)

- 2) On effectue une simulation des séries du processus quadridimensionnel et multinormal discrétisé en 1) avec :

$$
\begin{pmatrix}
W_{t+\Delta t, S} \\
W_{t+\Delta t, V} \\
W_{t+\Delta t, R} \\
W_{t+\Delta t, \lambda_s}
\end{pmatrix}
\sim
\mathcal{N}
\begin{pmatrix}
0 \\
0 \\
0 \\
0
\end{pmatrix}
\begin{pmatrix}
1 & \rho_{s, V} & 0 & 0 \\
\rho_{s, V} & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
$$

(B.10)

- 3) En se servant des séries simulées $(W_{t+\Delta t, S}, W_{t+\Delta t, V}, W_{t+\Delta t, R}, W_{t+\Delta t, \lambda_s})$, on peut construire les séries temporelles pour $S_t, V_t, R_t, \lambda_{t, S}$, pour $t = 1, ..., T$, les valeurs initiales de ces variables correspondant respectivement au cours de l’actif support observé le premier jour de la période d’estimation, au niveau moyen de la variance à long terme, à un taux d’intérêt à court terme et au niveau moyen de fréquence de saut à long terme.

- 4) Les étapes précédentes sont répétées n fois, de façon à obtenir m itérations de $(S_t, V_t, R_t, \lambda_{t, S})$. Dans chaque itération, on calcule les cours des options pour toutes les catégories $i$ et tout $t = 1, ..., T$. Cela donne m cours pour chaque catégorie $i$ et pour tout $t$. Enfin, pour chaque catégorie $i$ et chaque jour $t$ le cours théorique de l’option $C_t^i$ est approximé par la moyenne des m cours simulés. La quantité $\mathbb{E}^Q_t\{C_t^i(V, \Phi^Q)\}$ est ensuite approchée en prenant la moyenne des séries temporelles des cours théoriques simulés des options, comme l’illustre la figure B.1 ci-après.
Fig. B.1: Algorithme de l’approximation de $\mathbb{E}[C(V_t, \Phi^Q)]$
Deuxième étape

La première étape nous a permis d’obtenir une estimation des moments simulés des paramètres structurels $\Phi^Q$. Cependant, le problème de l’estimation de la variance reste non résolu. Un estimateur de cette dernière peut être obtenu à partir des prix des options observés sur le marché le même jour. En notant $n$, le nombre de cours observés sur le marché, une fonction critère à minimiser peut être la suivante :

$$SEQ_i \equiv \min_{V_i} \sum_{i=1}^{n} |C_i^d(V_i, \Phi^Q) - \hat{C}_i|^2,$$

où $SCE$ est la somme du carré des erreurs. Cependant, il convient de remarquer qu’à travers cette procédure, on assigne une seule volatilité à tous les cours, par conséquent les cours théoriques des options risquent de différer des cours observés sur le marché.
La transformée de Fourier d’un premium d’option

Dans cette annexe, je reviens sur la formule de valorisation 4.29 en présentant une approche permettant d’utiliser l’algorithme de la FFT.

C.1 Simplification de la transformée de Fourier d’un premium d’option

Je pose $k \equiv \ln K$ et $s_T \equiv \ln S_T$. La fonction caractéristique de $s_T$ dans l’univers risque-neutre s’écrit :

$$f_t(\phi) \equiv \mathbb{E}_t^Q[\exp\{i \phi s_T\}] = \int_{-\infty}^{\infty} e^{i \phi s_t} Q(s_T) ds_T, \ \phi \in \mathbb{R} \quad (C.1)$$

Sous l’hypothèse d’absence d’opportunité d’arbitrage, le premium du call est une martingale :

$$C_t(\tau, x_t, k) = B_t(\tau, R_t) \int_{k}^{\infty} (e^{sT} - e^k)Q(s_t) ds_t. \quad (C.2)$$

On remarque que lorsque $k$ tend vers $-\infty$, le premium du call tend vers $S_T$, et dans ce cas, l’intégrande n’est pas de carré intégrable. Pour obtenir une fonction qui soit de carré intégrable, il est possible de considérer un premium "modifié", noté $c_t$, défini par :

$$c_t(\tau, x_t, k) = \exp(\mu k) C_t(\tau, x_t, k) \quad (C.3)$$
avec $\mu > 0$. Autrement dit, on introduit un terme multiplicatif $\exp(\mu k)$ dont l'idée est la suivante : en choisissant judicieusement l'expression de $\mu$, il est possible d'obtenir un $c_t$ de carré intégrable par rapport à $k$. La transformée de Fourier du "premium" s'écrit :

$$\psi(u) = \mathcal{F}(c_t) = \int_{-\infty}^{\infty} e^{iku} c_t(\tau, x_t, k) dk, \quad u \in \mathbb{R}, \quad (C.4)$$

soit encore :

$$\psi(u) = B_t(\tau, R_t) \int_{-\infty}^{\infty} e^{iku} \int_{-\infty}^{\infty} e^{\mu k}(e^{sT} - e^{k})Q(s_T)d{s_T}dk \quad (C.5a)$$

$$= B_t(\tau, R_t) \int_{-\infty}^{\infty} Q(s_T) \int_{-\infty}^{\infty} e^{sT+\mu k} - e^{(1+\mu)k} e^{iku} dk d{s_T} \quad (C.5b)$$

$$= B_t(\tau, R_t) \int_{-\infty}^{\infty} Q(s_T) \frac{e^{(1+\mu+iu)s_T} - e^{(1+\mu+iu)s_T}}{1 + \mu + iu} d{s_T} \quad (C.5c)$$

$$= B_t(\tau, R_t) \frac{f_t \{u - i(1 + \mu)\}}{\mu^2 + \mu - u^2 + i(2\mu + 1)u} \quad (C.5d)$$

(C.5d) montre bien que, si l'on avait pas introduit le terme $\exp(\mu k)$, c'est-à-dire si $\mu = 0$, alors la quantité à intégrer n'est pas définie pour $u = 0$.

Par ailleurs, de (C.3), il vient :

$$C_t(\tau, x_t, k) = \exp(-\mu k)c_t(\tau, x_t, k) \quad (C.6)$$

Le "premium" $C_t(\tau, x_t, k)$ s'obtient en prenant la transformée de Fourier inverse $\mathcal{F}^*$ de $\psi(u)$ dans (C.4) :

$$C_t(\tau, x_t, k) = \frac{\exp(-\mu k)}{2\pi} \mathcal{F}^*(\psi(u)) \quad (C.7a)$$

$$= \frac{\exp(-\mu k)}{2\pi} \int_{-\infty}^{\infty} e^{-iku}\psi(u)du \quad (C.7b)$$

$$= \frac{\exp(-\mu k)}{\pi} \int_{0}^{\infty} e^{-iku}\psi(u)du. \quad (C.7c)$$

\(^{1}\) Je reviens plus tard dans l'exposé sur le choix de l'expression pour $\mu$. 
En effet, pour pouvoir écrire la dernière égalité, il a été exploité le fait que \( C_t(\tau, x_t, k) \), prix d’un call, est réel, ce qui implique que \( u \mapsto \psi(u) \) est impaire sur sa partie imaginaire et paire sur sa partie réelle. En injectant (C.5d) dans (C.7c), il s’agit maintenant d’évaluer numériquement l’intégrale généralisée
\[
\int_0^\infty e^{-iuk} \psi(u) du. \tag{C.8}
\]

Je présente, ci-dessous, une technique très classique de calcul d’une telle intégrale par troncature. L’idée est de découper l’intervalle d’intégration en deux intervalles \([0, a]\) où \( a \) désigne un réel strictement positif, et \([a, \infty[ : \)
\[
\int_0^\infty e^{-iuk} \psi(u) du = \int_0^a e^{-iuk} \psi(u) du + \int_a^\infty e^{-iuk} \psi(u) du. \tag{C.9}
\]

Autrement dit, l’intégrale généralisée se décompose en une somme d’une intégrale de Riemann (1867) et d’une autre intégrale généralisée. La valeur de \( a \) est fixée en fonction de la précision que l’on souhaite obtenir : en choisissant judicieusement cette valeur, la contribution du deuxième terme du membre de droite sera plus petite qu’une certaine quantité \( \epsilon > 0 \) que l’on aura fixée a priori.
Dans (C.5d), le module de \( f_t \) est majorée par :
\[
|f_t|^2 \leq \int_{-\infty}^{\infty} e^{\mu+1} Q(s_T) ds_T \tag{C.10a}
\]
\[
\leq \mathbb{E}_u^Q [S_T^{\mu+1}]. \tag{C.10b}
\]

Il s’ensuit alors que :
\[
|\psi(u)|^2 \leq \frac{\mathbb{E}_u^Q [S_T^{\mu+1}]}{(\mu^2 + \mu - u^2)^2 + u^2(2\mu + 1)^2} \leq \frac{C^2}{u^3}, \tag{C.11}
\]
 où \( C \) désigne une constante réelle.
En prenant la racine carrée de (C.11) :
\[
|\psi(u)| \leq \frac{C}{u^2}, \tag{C.12}
\]
puis en intégrant la dernière inégalité sur l’intervalle \([a, \infty[, il vient
\[
\int_a^\infty |\psi(u)| du \leq \frac{C}{a}. \tag{C.13}
\]
En prenant

\[ a \geq \frac{C}{\epsilon}, \]  
(C.14)

l'erreur d'intégration due à la troncature est plus petite que \( \epsilon \).

Je reviens maintenant sur le choix du coefficient \( \mu > 0 \), une condition suffisante pour que le premium modifié \( c_t \), soit de carré intégrable, est que \( \psi(0) \) soit fini, autrement dit d’après (C.5d), que \( f_t \{-i(\mu + 1)\} \) soit fini, c’est-à-dire

\[
\int_{-\infty}^{\infty} e^{i(-i(\mu+1))s_T} Q(s_T) ds_T = \mathbb{E}^Q[S_T^{\mu+1}] < \infty. \]  
(C.15)

En pratique, on peut fixer le coefficient réel positif \( \mu \) tel que la condition (C.15) soit satisfaite.

## C.2 Considérations algorithmiques : optimisation par FFT

L'intégration numérique en (C.8) peut être optimisée en termes de temps de calcul en utilisant la FFT (Fast Fourier Transform), technique largement utilisée en traitement de signal numérique, et plus généralement en électronique. En effet, la FFT est un algorithme efficient pour calculer une somme de la forme

\[
w(k) = \sum_{j=1}^{N} e^{-i \frac{2\pi}{N} (j-1)(k-1)x(j)}, \quad k = 1, \ldots, N, \]  
(C.16)

où \( N \) désigne typiquement une puissance de 2. Du point de vue de la complexité algorithmique\(^2\), la FFT permet de passer de \( N^2 \) opérations à \( N \ln(N) \) opérations.

Je détaille dans cette section l'intégration de (C.8) par FFT. En utilisant la méthode des trapèzes relative à l'intégration, et en posant \( v_j = n(j - 1) \), il est possible d’approximer \( C_t(\tau, x_t, k) \) par

\[
C_t(\tau, x_t, k) \approx \frac{\exp(-\mu k)}{\pi} \sum_{j=1}^{N} e^{-iv_jk} \psi(v_j)n. \]  
(C.17)

\(^2\) Ordre de grandeur du nombre d’opérations.
La borne d'intégration a devient $a = N n$. Si l'on s'intéresse, par exemple, aux options "proches de la monnaie", où $k$ est proche de 0, on sait que l'algorithme FFT va renvoyer $N$ valeurs pour $k$ : pour obtenir une maille régulière de $k$, il faut définir $\lambda$ tel que

$$ k_l = -b + \lambda (l - 1), \quad l = 1, \ldots, N. \quad (C.18) $$

Ceci donne des prix d'exercice $K$ de $e^{-b}$ à $e^{b}$, où

$$ b = \frac{N \lambda}{2}. $$

En injectant (C.18) dans (C.17), il vient :

$$ C_l(\tau, x_t, k_l) \equiv \frac{\exp(-\mu k_l)}{\pi} \sum_{j=1}^{N} e^{-i v_{j [-b+\lambda (l-1) \psi(v_{j})] n}}, \quad l = 1, \ldots, N. \quad (C.19) $$

Puisque $v_j = n(j - 1)$, (C.19) peut s'écrire :

$$ C_l(\tau, x_t, k_l) \equiv \frac{\exp(-\mu k_l)}{\pi} \sum_{j=1}^{N} e^{-i \lambda n(j-1)(l-1) e^{\delta_{v_j}} \psi(v_{j}) n}. \quad (C.20) $$

Pour appliquer la FFT, c'est-à-dire la formule (C.16), il convient de prendre

$$ \lambda n = \frac{2 \pi}{N}. \quad (C.21) $$

Il faut noter que le choix de la valeur de $n$ n'est jamais optimal, et que ce dernier résulte d'un compromis : d'un coté, une valeur d’autant plus faible pour $n$ permet d’obtenir une subdivision d’autant plus fine de l’intervalle d’intégration et par conséquent une approximation d’autant meilleure, mais d’un autre coté, une valeur faible de $n$ conduit à des premia de calls de prix d’exercice $e^k$ trop espacés l’un de l’autre. Pour contourner ce dilemme, une méthode possible est de pondérer les éléments de la sommation, au sens de la règle de pondération de Simpson :

$$ C_l(\tau, x_t, k_l) \equiv \frac{\exp(-\mu k_l)}{\pi} \sum_{j=1}^{N} e^{-i \lambda n(j-1)(l-1) e^{\delta_{v_j}} \psi(v_{j}) n} \left[ \frac{3 + (-1)^{j} - \delta_{j-1}}{3} \right], \quad (C.22) $$

où

$$ \delta_n = \begin{cases} 
1 & n = 0 \\
0 & n \neq 0.
\end{cases} $$

La dernière formule (C.22) est une FFT prête à être implementée.