Skip to Main content Skip to Navigation

Algèbre de Hecke quasi-ordinaire universelle d'un groupe réductif

Abstract : The starting point of this work is the study of a conjecture of type $R\simeq\mathbb(T)$ in the general case of a connected reductive group $G$, defined over $\mathbb(Q)$, admitting a Shimura variety and not necessarily split. The main assumption is the near-ordinarity of automorphic representations and its Galois counterpart. We get, under mild hypotheses, the equality of the Krull dimensions of a universal deformation ring of a nearly-ordinary Galois representation and of a localised nearly-ordinary Hecke algebra. The theory of Bruhat-Tits building is used to study the structure of parabolic Hecke algebras at $p$. From a general control theorem, we deduce, in certain cases, that the universal nearly-ordinary Hecke algebra is finite and torsion free over the Hida-Iwasawa algebra of $G$. This result allows to construct families of nearly-ordinary Hecke eigensystems passing through a given eigensystem.
Document type :
Complete list of metadata

Cited literature [26 references]  Display  Hide  Download
Contributor : David Mauger <>
Submitted on : Tuesday, April 20, 2004 - 4:40:18 PM
Last modification on : Wednesday, April 28, 2021 - 6:45:36 PM
Long-term archiving on: : Friday, April 2, 2010 - 8:00:55 PM


  • HAL Id : tel-00005938, version 1


David Mauger. Algèbre de Hecke quasi-ordinaire universelle d'un groupe réductif. Mathématiques [math]. Université Paris-Nord - Paris XIII, 2000. Français. ⟨tel-00005938⟩



Record views


Files downloads