P. Armand, A quasi-Newton penalty barrier method for convex minimization problems, Accepté pour publication dans, Computational Optimization and Applications, 2001.

P. Armand, J. Gilbert-et-s, A. Jan-jégou, and . Bfgs, IP algorithm for solving strongly convex optimization problems with feasibility enforced by an exact penalty approach, Mathematical Programming, vol.92, issue.3, pp.393-424, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00955215

P. Armand, J. C. Gilbert-et-s, and . Jan-jégou, A Feasible BFGS Interior Point Algorithm for Solving Convex Minimization Problems, SIAM Journal on Optimization, vol.11, issue.1, pp.199-222, 2000.
DOI : 10.1137/S1052623498344720

URL : https://hal.archives-ouvertes.fr/inria-00073185

I. Bongartz, A. R. Conn, N. L. Gould-et-ph, . Toint, and . Cute, CUTE: constrained and unconstrained testing environment, ACM Transactions on Mathematical Software, vol.21, issue.1, pp.123-160, 1995.
DOI : 10.1145/200979.201043

C. G. Broyden, The Convergence of a Class of Double-rank Minimization Algorithms, IMA Journal of Applied Mathematics, vol.6, issue.3, pp.76-90, 1970.
DOI : 10.1093/imamat/6.3.222

R. H. Byrd, J. Gilbert-et-j, and . Nocedal, A trust region method based on interior point techniques for nonlinear programming, Mathematical Programming, vol.89, issue.1, pp.149-185, 2000.
DOI : 10.1007/PL00011391

URL : https://hal.archives-ouvertes.fr/inria-00073794

R. H. Byrd, M. E. Hribar-et-j, and . Nocedal, An Interior Point Algorithm for Large-Scale Nonlinear Programming, SIAM Journal on Optimization, vol.9, issue.4, pp.877-900, 1999.
DOI : 10.1137/S1052623497325107

R. H. Byrd, P. Lu, J. Nocedal-et-c, and . Zhu, A Limited Memory Algorithm for Bound Constrained Optimization, SIAM Journal on Scientific Computing, vol.16, issue.5, pp.1190-1208, 1995.
DOI : 10.1137/0916069

R. H. Byrd-et-j and . Nocedal, A Tool for the Analysis of Quasi-Newton Methods with Application to Unconstrained Minimization, SIAM Journal on Numerical Analysis, vol.26, issue.3, pp.727-739, 1989.
DOI : 10.1137/0726042

R. H. Byrd, J. B. Nocedal-et-r, and . Schnabel, Representations of quasi-Newton matrices and their use in limited memory methods, Mathematical Programming, vol.9, issue.1, pp.129-156, 1994.
DOI : 10.1007/BF01582063

R. H. Byrd, R. A. Tapia-et-y, and . Zhang, An SQP Augmented Lagrangian BFGS Algorithm for Constrained Optimization, SIAM Journal on Optimization, vol.2, issue.2, pp.210-241, 1992.
DOI : 10.1137/0802012

A. R. Conn, N. I. Gould-et-p, and . Toint, LANCELOT : a FORTRAN package for large-scale nonlinear optimization (Release A), no 17 in Springer Series in Computational Mathematics, 1992.
DOI : 10.1007/978-3-662-12211-2

A. R. Conn, D. L. Orban-et-ph, and . Toint, CUTEr (and SifDec), a Constrained and Unconstrained Testing Environment, revisited, Cerfacs, p.4, 2002.

W. C. Davidon and A. E. , Variable metric methods for minimization, C. Res. and Develop. Report ANL, vol.5990, 1959.

A. V. Fiacco-et-g and . Mccormick, Nonlinear programming : Sequential unconstrained minimization techniques, 1968.
DOI : 10.1137/1.9781611971316

R. Fletcher, A new approach to variable metric algorithms, The Computer Journal, vol.13, issue.3, pp.317-322, 1970.
DOI : 10.1093/comjnl/13.3.317

R. Fletcher, Practicals Methods of Optimization, pp.55-56, 1981.
DOI : 10.1002/9781118723203

R. J. Fletcher-et-m and . Powell, A Rapidly Convergent Descent Method for Minimization, The Computer Journal, vol.6, issue.2, pp.163-168, 1963.
DOI : 10.1093/comjnl/6.2.163

K. R. Frisch, The logarithmic potential method of convex programming, 1955.

D. M. Gay, M. L. Overton-et-m, and . Wright, A Primal-dual Interior Method for Nonconvex Nonlinear Programming, Appl. Optim, vol.14, pp.31-56, 1996.
DOI : 10.1007/978-1-4613-3335-7_2

J. Gilbert-et-c and . Lemaréchal, Some numerical experiments with variable-storage quasi-Newton algorithms, Mathematical Programming, vol.11, issue.2, pp.407-435, 1989.
DOI : 10.1007/BF01589113

P. E. Gill, W. Murray, M. A. Saunders-et-m, and . Wright, SNOPT : an SQP algorithmn for large-scale constrained optimization, Numerical Analysis Report 97-2, 1997.

D. Goldfarb, A family of variable-metric methods derived by variational means, Mathematics of Computation, vol.24, issue.109, pp.31-40, 1970.
DOI : 10.1090/S0025-5718-1970-0258249-6

J. Gondzio, Multiple centrality corrections in a primal-dual method for linear programming, Computational Optimization and Applications, vol.4, issue.no. 3, pp.137-156, 1996.
DOI : 10.1007/BF00249643

J. Gondzio-et-r and . Kouwenberg, High-Performance Computing for Asset-Liability Management, Operations Research, vol.49, issue.6, pp.879-891, 2001.
DOI : 10.1287/opre.49.6.879.10015

A. L. Griewank-et-p and . Toint, Local convergence analysis for partitioned quasi-Newton updates, Numerische Mathematik, vol.31, issue.1, pp.429-448, 1982.
DOI : 10.1007/BF01397884

A. L. Griewank-et-p and . Toint, Partitioned variable metric updates for large structured optimization problems, Numerische Mathematik, vol.21, issue.1, pp.119-137, 1982.
DOI : 10.1007/BF01399316

J. Hiriart-urruty and E. C. Lemaréchal, Convex analysis and minimization algorithms. I, 1993.
DOI : 10.1007/978-3-662-02796-7

N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica, vol.244, issue.S, pp.373-395, 1984.
DOI : 10.1007/BF02579150

L. G. Khachian, Polynomial algorithms in linear programming, USSR Computational Mathematics and Mathematical Physics, vol.20, issue.1, pp.191-194, 1979.
DOI : 10.1016/0041-5553(80)90061-0

V. , K. J. Et-g, and . Minty, How good is the simplex algorithm ?, Inequalities, pp.159-175, 1972.

L. Mclinden, An analogue of Moreau???s proximation theorem, with application to the nonlinear complementarity problem, Pacific Journal of Mathematics, vol.88, issue.1, pp.101-161, 1980.
DOI : 10.2140/pjm.1980.88.101

D. C. Liu-et-j and . Nocedal, On the limited memory BFGS method for large scale optimization, Mathematical Programming, vol.45, pp.503-528, 1989.

F. A. Lootsma, Hessian matrices of penalty functions for solving constrained optimization problems, Philips Res, Repts, vol.24, pp.322-331, 1969.

F. A. Lootsma, Boundary properties of penalty functions for constrained optimization problems, Philips Res. Repts, 1970.

F. A. Lootsma, A survey of methods for solving constrained optimization problems via unconstrained optimization, in Numerical Methods for Non-Linear Optimization, 1972.

I. J. Lustig, R. E. Marslen-et-d, and . Shanno, Feature Article???Interior Point Methods for Linear Programming: Computational State of the Art, ORSA Journal on Computing, vol.6, issue.1, pp.1-14, 1994.
DOI : 10.1287/ijoc.6.1.1

M. Marazzi, A note on the use of predictor-corrector techniques in Nonlinear Optimization, Presented at Nonlinear Optimization and Applications, 1998.

J. L. Morales, A numerical study of limited memory BFGS methods, Applied Mathematics Letters, vol.15, issue.4, pp.481-487, 2002.
DOI : 10.1016/S0893-9659(01)00162-8

W. Murray, An algorithm for constrained minization, Academic Press London and, pp.247-258, 1969.

W. Murray, Analytical expressions for the eigenvalues and eigenvectors of the Hessian matrices of barrier and penalty functions, Journal of Optimization Theory and Applications, vol.7, issue.3, pp.189-196, 1971.
DOI : 10.1007/BF00932477

W. H. Murray-et-m and . Wright, Line Search Procedures for the Logarithmic Barrier Function, SIAM Journal on Optimization, vol.4, issue.2, pp.229-246, 1994.
DOI : 10.1137/0804013

S. G. Nash-et-j and . Nocedal, A Numerical Study of the Limited Memory BFGS Method and the Truncated-Newton Method for Large Scale Optimization, SIAM Journal on Optimization, vol.1, issue.3, pp.358-372, 1991.
DOI : 10.1137/0801023

J. Nocedal, Updating quasi-Newton matrices with limited storage, Mathematics of Computation, vol.35, issue.151, pp.773-782, 1980.
DOI : 10.1090/S0025-5718-1980-0572855-7

S. Oren-et-e and . Spedicato, Optimal conditioning of self-scaling variable Metric algorithms, Mathematical Programming, vol.11, issue.1, pp.70-90, 1976.
DOI : 10.1007/BF00935660

J. M. Ortega-et-w and . Rheinboldt, Iterative solution of nonlinear equations in several variables, Society for Industrial and Applied Mathematics (SIAM), 2000.
DOI : 10.1137/1.9780898719468

J. D. Pearson, Variable metric methods of minimisation, The Computer Journal, vol.12, issue.2, pp.171-178, 1969.
DOI : 10.1093/comjnl/12.2.171

F. Potra, An Infeasible-Interior-Point Predictor-Corrector Algorithm for Linear Programming, SIAM Journal on Optimization, vol.6, issue.1, pp.19-32, 1996.
DOI : 10.1137/0806002

M. J. Powell, On the Convergence of the Variable Metric Algorithm, IMA Journal of Applied Mathematics, vol.7, issue.1, pp.21-36, 1971.
DOI : 10.1093/imamat/7.1.21

M. J. Powell, A fast algorithm for nonlinearly constrained optimization calculations , in Numerical Analysis Dundee, pp.144-157, 1977.

D. F. Shanno, Conditioning of quasi-Newton methods for function minimization, Mathematics of Computation, vol.24, issue.111, pp.647-657, 1970.
DOI : 10.1090/S0025-5718-1970-0274029-X

D. F. Shanno-et-r and . Vanderbei, An Interior-Point Algorithm for Nonconvex Nonlinear Programming, Computational Optimization and Applications, vol.13, pp.231-252, 1999.

R. Tapia, Y. Zhang, M. Saltzman-et-a, and . Weiser, The Mehrotra Predictor-Corrector Interior-Point Method As a Perturbed Composite Newton Method, SIAM Journal on Optimization, vol.6, issue.1, pp.47-56, 1996.
DOI : 10.1137/0806004

M. H. Wright, Interior methods for constrained optimization, Acta Numerica, pp.341-407, 1991.
DOI : 10.1017/s0962492900002300

S. J. Wright, Primal-Dual Interior-Point Methods, 1997.
DOI : 10.1137/1.9781611971453

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=