A. Bernheim-groswasser and J. Prost, Mechanism of Actin-Based Motility: A Dynamic State Diagram, Biophysical Journal, vol.89, issue.2, 2003.
DOI : 10.1529/biophysj.104.055822

A. Bernheim-groswasser and S. Wiesner, The dynamics of actin-based motility depend on surface parameters, Nature, vol.53, issue.6886, pp.308-319, 2002.
DOI : 10.1083/jcb.153.4.881

L. A. Cameron and M. J. Footer, Motility of ActA protein-coated microspheres driven by actin polymerization, Proceedings of the National Academy of Sciences, vol.117, issue.4, pp.4908-4921, 1999.
DOI : 10.1083/jcb.117.4.765

L. A. Cameron and T. M. Svitkina, Dendritic organization of actin comet tails, Current Biology, vol.11, issue.2, pp.130-135, 2001.
DOI : 10.1016/S0960-9822(01)00022-7

M. F. Carlier and S. Wiesner, Actin-based motility as a self-organized system: mechanism and reconstitution in vitro, Comptes Rendus Biologies, vol.326, issue.2, pp.161-70, 2003.
DOI : 10.1016/S1631-0691(03)00067-2

A. E. Carlsson, Growth of Branched Actin Networks against Obstacles, Biophysical Journal, vol.81, issue.4, pp.1907-1930, 2001.
DOI : 10.1016/S0006-3495(01)75842-0

A. E. Carlsson, Growth Velocities of Branched Actin Networks, Biophysical Journal, vol.84, issue.5, pp.2907-2925, 2003.
DOI : 10.1016/S0006-3495(03)70018-6

P. Cossart and M. Lecuit, Interactions of Listeria monocytogenes with mammalian cells during entry and actin-based movement: bacterial factors, cellular ligands and signaling, The EMBO Journal, vol.17, issue.14, pp.3797-806, 1998.
DOI : 10.1093/emboj/17.14.3797

R. B. Dickinson and D. L. Purich, Clamped-Filament Elongation Model for Actin-Based Motors, Biophysical Journal, vol.82, issue.2, pp.605-622, 2002.
DOI : 10.1016/S0006-3495(02)75425-8

E. Evans and K. Ritchie, Strength of a Weak Bond Connecting Flexible Polymer Chains, Biophysical Journal, vol.76, issue.5, pp.2439-2486, 1999.
DOI : 10.1016/S0006-3495(99)77399-6

F. Frischknecht and M. Way, Surfing pathogens and the lessons learned for actin polymerization, Trends in Cell Biology, vol.11, issue.1, pp.30-38, 2001.
DOI : 10.1016/S0962-8924(00)01871-7

F. Gerbal and P. Chaikin, An Elastic Analysis of Listeria monocytogenes Propulsion, Biophysical Journal, vol.79, issue.5, pp.2259-75, 2000.
DOI : 10.1016/S0006-3495(00)76473-3

F. Gerbal and V. Laurent, Measurement of the elasticity of the actin tail of Listeria monocytogenes, European Biophysics Journal, vol.29, issue.2, pp.134-174, 2000.
DOI : 10.1007/s002490050258

P. A. Giardini and D. A. Fletcher, Compression forces generated by actin comet tails on lipid vesicles, Proceedings of the National Academy of Sciences, vol.13, issue.4, pp.6493-6501, 2003.
DOI : 10.1016/S0960-9822(03)00051-4

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC164474

T. L. Hill and M. W. Kirschner, Subunit treadmilling of microtubules or actin in the presence of cellular barriers: possible conversion of chemical free energy into mechanical work., Proceedings of the National Academy of Sciences, vol.79, issue.2, pp.490-494, 1982.
DOI : 10.1073/pnas.79.2.490

. Israelachvili, Intermolecular and surface forces, 1985.

C. Kocks and J. B. Marchand, The unrelated surface proteins ActA of Listeria monocytogenes and lcsA of Shigella flexneri are sufficient to confer actin-based motility on Listeria innocua and Escherichia coli respectively, Molecular Microbiology, vol.18, issue.3, pp.413-436, 1995.
DOI : 10.1111/j.1365-2958.1995.mmi_18030413.x

S. C. Kuo and J. L. Mcgrath, Steps and fluctuations of Listeria monocytogenes during actin-based motility, Nature, vol.407, issue.6807, pp.1026-1035, 2000.
DOI : 10.1038/35039544

I. Lasa and E. Gouin, Identification of two regions in the N-terminal domain of ActA involved in the actin comet tail formation by Listeria monocytogenes, The EMBO Journal, vol.16, issue.7, pp.1531-1571, 1997.
DOI : 10.1093/emboj/16.7.1531

L. Clainche, C. , and D. Pantaloni, ATP hydrolysis on actin-related protein 2/3 complex causes debranching of dendritic actin arrays, Proceedings of the National Academy of Sciences, vol.262, issue.7, pp.6337-6379, 2003.
DOI : 10.1016/S0006-3495(03)74969-8

X. Liu and G. H. Pollack, Mechanics of F-Actin Characterized with Microfabricated Cantilevers, Biophysical Journal, vol.83, issue.5, pp.2705-2720, 2002.
DOI : 10.1016/S0006-3495(02)75280-6

T. P. Loisel and R. Boujemaa, Reconstitution of actin-based motility of Listeria and Shigella using pure proteins, Nature, vol.401, issue.6753, pp.613-619, 1999.

J. L. Mcgrath and N. J. Eungdamrong, The Force-Velocity Relationship for the Actin-Based Motility of Listeria monocytogenes, Current Biology, vol.13, issue.4, pp.329-361, 2003.
DOI : 10.1016/S0960-9822(03)00051-4

C. J. Merrifield and S. E. Moss, Endocytic vesicles move at the tips of actin tails in cultured mast cells, Nat Cell Biol, vol.1, issue.1, pp.72-76, 1999.

A. Mogilner and G. Oster, Cell motility driven by actin polymerization, Biophysical Journal, vol.71, issue.6, pp.3030-3075, 1996.
DOI : 10.1016/S0006-3495(96)79496-1

URL : http://doi.org/10.1016/s0006-3495(96)79496-1

A. Mogilner and G. Oster, Force Generation by Actin Polymerization II: The Elastic Ratchet and Tethered Filaments, Biophysical Journal, vol.84, issue.3, pp.1591-605, 2003.
DOI : 10.1016/S0006-3495(03)74969-8

V. Noireaux and R. M. Golsteyn, Growing an Actin Gel on Spherical Surfaces, Biophysical Journal, vol.78, issue.3, pp.1643-54, 2000.
DOI : 10.1016/S0006-3495(00)76716-6

D. Pantaloni and R. Boujemaa, The Arp2/3 complex branches filament barbed ends: functional antagonism with capping proteins, Nat Cell Biol, vol.2, issue.7, pp.385-91, 2000.

D. Pantaloni and C. Le-clainche, Mechanism of Actin-Based Motility, Science, vol.292, issue.5521, pp.1502-1508, 2001.
DOI : 10.1126/science.1059975

C. S. Peskin and G. M. Odell, Cellular motions and thermal fluctuations: the Brownian ratchet, Biophysical Journal, vol.65, issue.1, pp.316-340, 1993.
DOI : 10.1016/S0006-3495(93)81035-X

T. D. Pollard and G. G. Borisy, Cellular Motility Driven by Assembly and Disassembly of Actin Filaments, Cell, vol.112, issue.4, pp.453-65, 2003.
DOI : 10.1016/S0092-8674(03)00120-X

D. A. Portnoy and V. Auerbuch, infection, The Journal of Cell Biology, vol.158, issue.3, pp.409-423, 2002.
DOI : 10.1074/jbc.M006407200

J. Prost, The physics of Listeria propulsion. Physics of bio-molecules and cells, 2001.

S. Samarin and S. Romero, How VASP enhances actin-based motility, The Journal of Cell Biology, vol.167, issue.1, pp.131-173, 2003.
DOI : 10.1021/bi00420a027

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2173428

G. A. Smith and J. A. Theriot, The tandem repeat domain in the Listeria monocytogenes ActA protein controls the rate of actin-based motility, the percentage of moving bacteria, and the localization of vasodilator-stimulated phosphoprotein and profilin, The Journal of Cell Biology, vol.135, issue.3, pp.647-60, 1996.
DOI : 10.1083/jcb.135.3.647

J. Taunton, Actin filament nucleation by endosomes, lysosomes and secretory vesicles, Current Opinion in Cell Biology, vol.13, issue.1, pp.85-91, 2001.
DOI : 10.1016/S0955-0674(00)00178-2

J. A. Theriot and T. J. Mitchison, The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization, Nature, vol.357, issue.6375, pp.257-60, 1992.
DOI : 10.1038/357257a0

L. G. Tilney and D. J. Derosier, How Listeria exploits host cell actin to form its own cytoskeleton. I. Formation of a tail and how that tail might be involved in movement, The Journal of Cell Biology, vol.118, issue.1, pp.71-81, 1992.
DOI : 10.1083/jcb.118.1.71

A. Upadhyaya and J. R. Chabot, Probing polymerization forces by using actin-propelled lipid vesicles, Proceedings of the National Academy of Sciences, vol.21, issue.4, pp.4521-4527, 2003.
DOI : 10.1007/BF00185119

A. Upadhyaya and A. Van-oudenaarden, Biomimetic Systems for Studying Actin-Based Motility, Current Biology, vol.13, issue.18, pp.734-778, 2003.
DOI : 10.1016/j.cub.2003.08.051

M. D. Welch and A. Iwamatsu, Actin polymerization is induced by Arp 2/3 protein complex at the surface of Listeria monocytogenes, Nature, vol.385, issue.6613, pp.265-274, 1997.
DOI : 10.1038/385265a0

S. Wiesner and E. Helfer, A biomimetic motility assay provides insight into the mechanism of actin-based motility, The Journal of Cell Biology, vol.109, issue.3, pp.387-98, 2003.
DOI : 10.1016/S0580-9517(02)31014-6

A. Bernheim-groswasser and S. Wiesner, The dynamics of actin-based motility depend on surface parameters, Nature, vol.53, issue.6886, pp.308-319, 2002.
DOI : 10.1083/jcb.153.4.881

P. M. Chaikin and T. C. Lubensky, Principles of condensed matter physics, 1997.

P. Cluzel and A. Lebrun, DNA: An Extensible Molecule, Science, vol.271, issue.5250, pp.792-796, 1996.
DOI : 10.1126/science.271.5250.792

URL : https://hal.archives-ouvertes.fr/hal-00312971

J. Howard and A. J. Hudspeth, Mechanical relaxation of the hair bundle mediates adaptation in mechanoelectrical transduction by the bullfrog's saccular hair cell., Proceedings of the National Academy of Sciences, vol.84, issue.9, pp.3064-3072, 1987.
DOI : 10.1073/pnas.84.9.3064

R. Merkel and P. Nassoy, Energy landscapes of receptor???ligand bonds explored with dynamic force spectroscopy, Nature, vol.394, issue.6714, pp.50-53, 1999.
DOI : 10.1038/16219

S. Wiesner, Mécanisme moléculaire de la motilité cellulaire basée sur la polymérisation d'actine. Faculté des Sciences, 2003.

S. Wiesner and R. Boujemaa-paterski, Actin based motility of Listeria monocytogenes and Shigella flexneri. Methods in microbiology, Eds, 2002.

S. Wiesner and E. Helfer, A biomimetic motility assay provides insight into the mechanism of actin-based motility, The Journal of Cell Biology, vol.109, issue.3, pp.387-98, 2003.
DOI : 10.1016/S0580-9517(02)31014-6

A. Bernheim-groswasser and J. Prost, Mechanism of Actin-Based Motility: A Dynamic State Diagram, Biophysical Journal, vol.89, issue.2, 2003.
DOI : 10.1529/biophysj.104.055822

A. Bernheim-groswasser and S. Wiesner, The dynamics of actin-based motility depend on surface parameters, Nature, vol.53, issue.6886, pp.308-319, 2002.
DOI : 10.1083/jcb.153.4.881

L. A. Cameron and M. J. Footer, Motility of ActA protein-coated microspheres driven by actin polymerization, Proceedings of the National Academy of Sciences, vol.117, issue.4, pp.4908-4921, 1999.
DOI : 10.1083/jcb.117.4.765

L. A. Cameron and T. M. Svitkina, Dendritic organization of actin comet tails, Current Biology, vol.11, issue.2, pp.130-135, 2001.
DOI : 10.1016/S0960-9822(01)00022-7

A. E. Carlsson, Growth Velocities of Branched Actin Networks, Biophysical Journal, vol.84, issue.5, pp.2907-2925, 2003.
DOI : 10.1016/S0006-3495(03)70018-6

F. Gerbal and P. Chaikin, An Elastic Analysis of Listeria monocytogenes Propulsion, Biophysical Journal, vol.79, issue.5, pp.2259-75, 2000.
DOI : 10.1016/S0006-3495(00)76473-3

F. Gerbal and V. Laurent, Measurement of the elasticity of the actin tail of Listeria monocytogenes, European Biophysics Journal, vol.29, issue.2, pp.134-174, 2000.
DOI : 10.1007/s002490050258

P. A. Giardini and D. A. Fletcher, Compression forces generated by actin comet tails on lipid vesicles, Proceedings of the National Academy of Sciences, vol.13, issue.4, pp.6493-6501, 2003.
DOI : 10.1016/S0960-9822(03)00051-4

B. Houchmandzadeh and J. F. Marko, Elasticity and Structure of Eukaryote Chromosomes Studied by Micromanipulation and Micropipette Aspiration, The Journal of Cell Biology, vol.4, issue.1, pp.1-12, 1997.
DOI : 10.1016/0092-8674(93)90163-K

L. A. Landau and E. , Theory of elasticity, 1967.

J. L. Mcgrath and N. J. Eungdamrong, The Force-Velocity Relationship for the Actin-Based Motility of Listeria monocytogenes, Current Biology, vol.13, issue.4, pp.329-361, 2003.
DOI : 10.1016/S0960-9822(03)00051-4

A. Mogilner and G. Oster, Force Generation by Actin Polymerization II: The Elastic Ratchet and Tethered Filaments, Biophysical Journal, vol.84, issue.3, pp.1591-605, 2003.
DOI : 10.1016/S0006-3495(03)74969-8

V. Noireaux and R. M. Golsteyn, Growing an Actin Gel on Spherical Surfaces, Biophysical Journal, vol.78, issue.3, pp.1643-54, 2000.
DOI : 10.1016/S0006-3495(00)76716-6

URL : http://doi.org/10.1016/s0006-3495(00)76716-6

J. Prost, The physics of Listeria propulsion. Physics of bio-molecules and cells, 2001.

A. Upadhyaya and J. R. Chabot, Probing polymerization forces by using actin-propelled lipid vesicles, Proceedings of the National Academy of Sciences, vol.21, issue.4, pp.4521-4527, 2003.
DOI : 10.1007/BF00185119

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC153588

A. Upadhyaya and A. Van-oudenaarden, Biomimetic Systems for Studying Actin-Based Motility, Current Biology, vol.13, issue.18, pp.734-778, 2003.
DOI : 10.1016/j.cub.2003.08.051

S. Wiesner, Mécanisme moléculaire de la motilité cellulaire basée sur la polymérisation d'actine. Faculté des Sciences, 2003.

S. Wiesner and E. Helfer, A biomimetic motility assay provides insight into the mechanism of actin-based motility, The Journal of Cell Biology, vol.109, issue.3, pp.387-98, 2003.
DOI : 10.1016/S0580-9517(02)31014-6

J. Zalevsky and L. Lempert, Different WASP family proteins stimulate different Arp2/3 complex-dependent actin-nucleating activities, Current Biology, vol.11, issue.24, pp.1903-1916, 2001.
DOI : 10.1016/S0960-9822(01)00603-0