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Introduction

Semiconductor lasers are the most important invention in the development of
the opto-electronics technologies. The main reason for the success of these de-
vices is that they achieve laser operation with sub-millimeter sizes, requiring a
current supply of only a few milliamperes for emitting CW at ambient temper-
ature (Ref. [1]). The manufacturing process is low cost and it guarantees highly
reliable and easy-to-handle devices, since no alignment or setting procedure is
required. The semiconductor media characteristics allow for very fast response
to electrical modulation (several Gbytes/sec); hence the successful application of
semiconductor laser in telecommunication industry. Moreover, by changing the
semiconductor elements or the doping levels of the active medium it is possible
to produce laser devices in a very wide range of emission wavelengths (400 nm
- 1600 nm) covering, in this way, the optical fiber windows of low absorption
(840 nm, 1150 nm, 1550 nm) and providing sources for spectral physics applica-
tions (optical pumping of Er-doped fibers at 980 nm, tunable narrow-linewidth
sources for spectral characterization). For all these reasons, the technological im-
pact of semiconductor lasers in opto-electronics has been impressive. Nowadays,
in all-day life, this source has been largely implemented in the widest variety
of warehouses (compact-disk players) and professional equipment (from dental

surgery applications to industrial cutting or welding laser machines).

In this thesis we describe the dynamical behavior of the semiconductor laser

when part of the light emitted is re-injected back into the laser. This experimental



configuration is very interesting both from the technological/applicational per-
spective, and from the laser dynamics investigation point of view. In fact, optical
feedback is unavoidable whenever a reflective surface is located in front of the
laser, i.e whenever the laser light has to be coupled into an optical fiber or used
onto reflective substrates (compact-disks, for example). If the laser performance
(linewidth, spectral purity, stability, modulation bandwidth) is affected by the
optical feedback, the laser may become useless for many applications. Hence the
need of describing and understanding the effects of the optical feedback on the
laser behavior. The technological impact of optical feedback on the semiconduc-
tor laser applications is testified by the huge amount of literature developed on

this subject in the last twenty years.

The effect of delayed feedback on dynamical systems has been studied in
different branches of science such as physics (Ref. [2]), chemistry (Ref. [3]) and
other fields (Ref. [4]). These systems, which are commonly encountered in nature,
often show a complex behavior and they challenge many intuitive and theoretical
descriptions. Feedback was originally perceived as a stabilizing factor. It was
introduced in several types of systems (Ref. [5]), but in many cases the result was
strong fluctuations of the variables. A laser system with feedback is a infinite
dimensional dynamical system. The system may potentially exhibit very rich
dynamics (possible presence of chaotic attractors) and this complexity makes

such systems very interesting for general studies of non-linear dynamics.

Previous works show that the feedback improves the laser performance for a
small range of parameters values, stabilizing the output and reducing the optical
linewidth (Ref. [6]). On the other hand, for the widest part of parameter-space,
optical feedback affects detrimentally the coherence of the laser emission (Refs. [7,
8]). In particular, for a moderate level of feedback, as the injection current is

increased, the laser output becomes unstable and displays sudden power drops



followed by a slower recovery stage (Refs. [9, 10, 11]). The characteristic rate
of such fluctuations (10 — 100 M Hz) is much smaller than the other typical
frequencies of the system (relaxation oscillations, for example), hence the name
Low-Frequency Fluctuations (LFF). As LFF appear in the intensity output the
laser linewidth broadens up to tens of GH z and the coherence of the laser beam is
strongly reduced (Coherence-Collapse as named in Refs. [8, 12, 13, 14]). LFF are
characteristic of semiconductor lasers, including conventional edge-emitters and
distributed-feedback semiconductor lasers (DF'B), see Refs. [7, 15]. The fact that
LFF do not appear in other kinds of lasers under optical feedback is attributed
to the strong amplitude-phase coupling that exists in semiconductor lasers due

to the linewidth enhancement factor («) (Refs. [16, 17, 18, 19]).

Low-Frequency Fluctuations are the central issue of this dissertation. In spite
of the fact that this phenomenon has been extensively studied and a huge liter-
ature exists on it, the discussion about the origin of LF'F' is still open. We have
identified the bifurcation that is at the origin of this phenomenon and we have

characterized the physical mechanism that induces this instability.

This thesis is organized as follows: in the first chapter we introduce some con-
cepts on laser dynamics and on semiconductor laser physics as a theoretical back-
ground of our analysis on the LF F-instability. We present the Maxwell-Bloch
equations for a two level laser and the instabilities described by this model. Semi-
conductor laser physics is introduced in the second part of this chapter underlining
the difference with the two-level laser. We describe the effective two-level model
for semiconductor media, leading to a realistic expression for the semiconduc-
tor susceptibility (Ref. [20]). This allows for writing a semiconductor laser model
where the coherent coupling between the light and the active medium is taken into
account, hence overcoming the approximation of the laser rate-equations. The

optical cavity imposes the boundary conditions in the laser equations allowing



for a multi-mode description of the laser dynamics (Ref. [21]).

In the second chapter we describe the experimental results obtained in edge-
emitting semiconductor laser. We start describing the solitary laser characteris-
tics and the general parameter-space properties of the laser with feedback system
(section one and two), locating the parameter regions explored in our experiments.
The phenomenology of LF'F' is described in section three. Then, we report on
the experimental characterization of the bifurcation at the origin of LF'F' (section
four). For the first time, experimental evidence of ezcitability in an optical system
is given. Moreover, the role of noise in the system is explored in detail leading to
the first experimental observation of Coherence Resonance. Finally, on the base
of the dynamical ingredients identified, we depict the simplest dynamical model
able to describe the LF F-instability. Numerical simulations of this model show
good agreement with the experimentally observed statistical properties of LFF',
thus confirming the correctness of our interpretation. The physical mechanism at
the origin of LF'F' is explored in section five. By means of time-resolved optical
spectra obtained with very high time-resolution (streak camera measurements)
we have been able to identify the role of the laser modes in the LF F-instability.
In section six we compare our experimental evidences to the theoretical models
existing in the literature. We conclude this chapter describing the results of the

experiment with frequency-selective feedback.

In the third chapter we report on the experimental results obtained in Vertical-
Cavity Surface-Emitting (VCSEL's) laser with optical feedback. Dynamics in-
volving the two orthogonal linear polarizations components appears to be the
dominant feature in this system. A theoretical model able to describe qualita-

tively the polarization behavior is presented.

In the Appendix A we describe the equipment used in the experiments and

some technical aspect of the semiconductor laser laboratory. Finally, in Appendix



B, we review the most important experimental results presented in the literature
concerning the statistical properties of the LF'F' time-intervals. This review al-

lows for a comparison with our results of Chap. II






Chapter 1

Laser Physics and Instabilities

1.1 The Two-Level laser equations

This section is intended as an introduction to two-level laser physics and insta-
bilities following the vast literature that developed this issue. Laser instability
has been a field largely explored in the last twenty years and an exhaustive list
of references on this subject would be necessarily very long. Here we can limit
ourselves to reference those books which were our personal entry-point to the
problem and on which this chapter is based (Refs. [22, 23, 24, 25, 26, 27]). The
references listed in these books represent a very useful guide to navigate in the

laser physics literature.

The importance of laser instabilities was first revealed in the early 1960’s by
a number of Russian physicist such as Uspensky, Fain and Khanin, Oraevsky
and by Haken in Stuttgart. In 1975 Haken discovered the analogy between the
laser equation and Lorenz equations for convective hydrodynamical system. The
possibility of exploring chaotic dynamics in laser systems triggered a huge in-
terest in the field of laser instabilities. Those behaviors, that were considered
”annoying” from the point of view of laser engineering since they were affecting
the C'W performance of the laser, started to be investigated and classified. In-

stabilities mean a spontaneous break of temporal and spatial symmetry, since a

7



steadily driven laser starts to develop spatio-temporal fluctuations in its output.
Changing the control parameters of the laser we may obtain a very rich variety
of unstable behaviors. The laser parameter-space is a rich source of interest for
non-linear dynamics. Non-linear dynamics provides the instruments to analyze
the behavior of a non-stable dynamical system (Refs. [28, 29]). When, changing
the control parameters, a dynamical system changes its spatio-temporal behav-
ior, non-linear dynamics says that a bifurcation has occurred in the system. The
identification of the type of bifurcation provides all the information required to
describe the dynamical behavior of the system in the bifurcation neighborhood.
In fact, the behavior types of any system when it bifurcates or, alternatively,
the ways an instability develops, could be described by few very general equa-
tions called normal-forms. The laser dynamics investigation is very useful both
for laser physics both for non-linear dynamics (Ref. [30]). Laser systems are
real dynamical systems where instabilities develops with time-scale in general
smaller than 1072 s. Such fast time-scales make the experimental application of
the non-linear dynamics instruments much easier in lasers than in other dynam-
ical systems previously explored, like chemical systems or fluids. On the other
hand the identification of the bifurcation offers valuable clues on modeling laser

behavior and, by consequence, on internal mechanism of laser action.

The first paragraph is dedicated to the description of the operating principle
on which a laser is based. The second treats the light-matter interaction in
the Active Medium deriving the Maxwell-Bloch (or ” Laser-Lorenz”) equations.
The boundary conditions of these equations are imposed by the optical cavity,
considered in the third paragraph. Thus we obtain a set of equations describing
the two-level laser. We look for the stationary solutions of these equations and,
by performing a stability analysis, we analyze the instabilities predicted by this

model.



1.1.1 Operating principles

A laser is essentially an oscillator operating at optical frequencies. It is composed
by three basic ingredients: i)An Active Medium that, interacting with the electro-
magnetic field, provides the mechanism for the amplification of radiation, ii)An
Optical Cavity that provides the positive feedback loop for the radiation, iii)A
pumping mechanism that provides the energy for compensating the radiation

losses due both to internal mechanisms and to the emission of radiation.

The ”heart” of the laser is the Active Medium. In the interaction between
light and matter there are three main processes that may occur: Spontaneous
emission, Stimulated Emission and Absorption. Spontaneous emission implies the
spontaneous decay of an electron from an excited state to a lower one, and we
define as Ay; its probability per unit of time. According to quantum mechanics,
the atomic absorption of a photon of energy hv implies an electronic transition

from a level E; to a level Ey, where:

E2 — E1 = hv (111)

Vice versa, the electronic transition from Fy to E; implies the atomic emission of
a photon of energy hv. So the law 1.1.1 could be read in two directions describing,
from left to right, emission and, from right to left, absorption. Let us define B,
and By; the atomic probability per unit of time and unit of radiation intensity for,
respectively, absorption and stimulated-emission to occur. An Active Medium is
a collection of atoms: we call Ny the density of atom excited in the upper state
with energy Es and N; the number of atoms in the lower state with energy E;

we can write the net change of Ny for unit of time:

N, = By E(V) Ny — [Ag + By E(V)]N, (1.1.2)
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being E(v) the radiation energy density. At the thermal equilibrium Maxwell-

Boltzmann statics implies that:

=€

Ny hv/KT
— =" 1.1.3
Ny ( )

Then

o Ay1/Big
E(V) - e}w/KT _ 321/312

(1.1.4)

This expression could be compared with Planck’s radiation equation for radiation

in equilibrium with matter and we obtain:

A21 - 87'”/3 B21
By B c3 By

=1 (1.1.5)

Let us now calculate the probability of stimulated emission for unit of time (that

is also the absorption probability) :

A
E()By = —/—2— (1.1.6)
exrt — 1

This relation says that the field-matter interaction strength is proportional to
the spontaneous-emission term. The net power generated by one unit of Active

Medium volume in the interaction with a monochromatic plane wave is:

A
P = (N, — Ny 22 (1.1.7)

exT — 1
The Active Medium amplifies the radiation when the upper level F5 is more pop-
ulated of atoms than the level E;. Radiation amplification from a medium could
be obtained if external energy is supplied to keep Ny larger than Nj; the so-called
population inversion. Population inversion is obtained and maintained through
the laser pumping mechanism. In this way the Active Medium transforms the

incoherent energy of the pumping into a quasi monochromatic electro-magnetic

field.



11

The Optical Cavity provides a positive feedback loop: it brings back at the
entrance of the Active Medium part of the radiation coming out from the medium.
When an amplifier has a positive feedback loop a small amount of broad band
noise is enough to drive the system to oscillate. Spontaneous Emission provides
the initial noise in laser system. Then, if the pumping mechanism is strong
enough, it is possible to achieve a stationary condition where the radiation gain
compensates the radiation losses and emission of coherent light occurs steadily.
Saturation of the gain, because of the finite pump rate of atoms, prevents the gain
process to grow indefinitely. The minimum level of the pumping for which the
condition gain equal to losses is obtained is called laser threshold. Further increase
of the pump determines an increase of the gain saturation value. The excess of
gain over the losses determines the intensity of the laser emission. It is worth to
point out that light emission is not the only mechanism of losses, in semiconductor
laser, for example, non radiative re-combination processes may occur as well.
From the theoretical point of view, the laser could be described quite accurately
by a semi-classical approach using Maxwell-Bloch equations to describe the light
interaction with the medium and appropriate boundary conditions to take into

account the optical cavity.

1.1.2 The Maxwell-Bloch equations

The Maxwell-Bloch equations are derived using the classical Maxwell equation
to describe the electro-magnetic field and the Bloch equations to describe the
medium. The Maxwell-Bloch approach is based on a self consistent approximation
for which the electro-magnetic field interacting with microscopic dipoles creates a
macroscopic polarization which acts as source for the electro-magnetic field that
interacts again with the dipoles and so on. The classical treatment of the field lies

on the fact that the field intensity is, inside the cavity, large enough for justifying



12

the classical approximation. We can write:
2 e 2
V°E — 50 FE = ;P (1.1.8)
c

being F the electric field and P the macroscopic atomic polarization.
Bloch equations for the matter interacting with an electro-magnetic field are
derived from the Schroedinger equation, where the Hamiltonian of each atom

could be written as:

hiw, (10 01\ Fuw, . X

2 \o -1 1 0 2

being hw, the energy gap between the two electronics levels, E the electro-
magnetic field, d the projection of the atomic electrical dipole moment in the
direction of the field polarization, 6 the Pauli matrices. The time evolution of

the operators is given, in the Heisenberg representation, by:
;o L [6, H] (1.1.10)
o= —|0, 1.
ih

Several approximations have been done to write the Hamiltonian in 1.1.9 :

i) The atom is described as a two-level system with unperturbed eigenstate | ¥y >

and | ¥ > and unperturbed energies By = —2 and F, = &2 The state wave
function could be written as
‘ U >=q ‘ Uy > +b | Uy > (1111)

being a and b the time-dependent complex amplitudes. ii) The second term of
1.1.9, describing the interaction dipole-field (H;,;), assumes reflexion symmetry
(not valid for the non centro-symmetric crystals). iii)We have neglected the cen-
ter of mass effects considering only one-photon transitions. iv) We have neglected
the vectorial character of the field assuming a single electro-magnetic field polar-

ization axis. v) We have neglected the variation of the electric field inside the
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atom assuming the dipole approximation. This approximation is based on the hy-
pothesis that the term of the field ei?'ﬁ, where ? is the wave-vector of the field
and 7’ is the position vector of the electron in respect with the atom nucleus, can
be neglected. This holds as far as A is much larger than the radius of the atom.
Such a approximation is consistent with the semi-classical treatment of the field.
vi) All atoms are identical, i.e. the medium is considered to be homogeneously
broadened. This is not the case, for example, in gas lasers at low pressure where
the velocity vector of the molecule separates the atoms in groups. Each group
will contribute to the emission in a slight different way because of the Doppler

effect and the radiation emission line will be inhomogeneously broadened.

In order to provide a description for the whole collection of atoms of the Active
Medium we assume that all atoms contribute in the same way to the polarization
(homogeneously broadened system). Then the macroscopic polarization for unit

of volume of the medium is
P=Nd<o, > (1.1.12)

being N the atomic density in the medium and d the atomic dipole. Performing
the average on the Pauli operators we can realize that, given the wave function

of 1.1.11:

<d,> = <|bP>—-<|al’>

<dp> = <ba>+<a'b> (1.1.13)

Therefore, < o, > is the difference between the probability of having an atom
excited in the upper level and the probability of having an atom in the lower
level, while the macroscopic polarization P could be written, according to 1.1.12

as a sum of two complex conjugate terms. Following 1.1.10 the time-evolution of
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the mean value operators reads (omitting the operators hat):

<0p> = —w, <oy >
. dE
<oy> = wa<0m>+27<oz>
. dE
<0o,> = —27<oy> (1.1.14)

The term ‘%E it is the well known expression of the Raby frequency. It is worth to
notice that the semi-classical treatment of the field allowed for writing < Fo, >=

FE < o0, >. We can define the new variables:
r=(<oy>—-i<o,>)/2 = (< oy >+i <o, >)/2 D=<o,>

We have then < g, >= r+r* and < g, >= (r*—r)/i that could be compared with
the polarization decomposition described in 1.1.13. We write the time-evolution

equations for the new variables:

i

© = —iw,r — —~dED

T W, T .hd

P = iwar*+%dED

. 92dE

D = idT(r*—r) (1.1.15)

At this point we can return on the electric field equation 1.1.8 and separate the
electric field term and atomic polarization term into a fast oscillating term and

into a slow one:

1 ; .
E(z,t) = EEO(Z’t)GZ(kcz—wct)+Ea<(z’t)e—z(kcz—wct)
T(Z, t) = 7"0(2, t)ei(kcz_wct)
r(z,t) = 1z, t)e ReED (1.1.16)

where w, (and k. = w./c) is not specified up to now except for being an optical
frequency (of the order of 10'Hz) much larger than the typical time-scales evo-

lution of the envelopes Ey, ry, 5. We can assume the so-called Slowly Varying
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Envelope Approzimation (SV EA) which lies on the fact that the variation scales
in time and in space for the envelopes are much slower than the variation scales

of the fast oscillating terms:

we| To | >> | Oyro |, we| Eo | >> | 9,Ey |, ke| Eo | >> | 0,Ey | (1.1.17)

We can also neglect the fast terms oscillating at 2w, since they average to zero
at the time-scales of the envelopes (Rotating Wave Approzimation, RW A). Fi-
nally, we neglect transverse effects in the electrical field, looking only for plane
wave solutions (Plane Wave Approximation, PW A). We can then write for the

electrical field and atomic polarizations envelopes:

Nd
atE() + caon = iw

To +cc (1.1.18)
€0

We can operate in the same way in eqts. 1.1.15 by replacing E with the expression
1.1.16 and, according to 1.1.17, applying SV EA and RW A approximations to the

field and to the polarization terms. We get, defining P = —2iry and P* = 2iry*.

d

P = —ifsoP — ﬁEOD +eec
d
2—h(E0P* + E;P) (1.1.19)

where d4c = w, — we.

The time-evolution eqts. 1.1.19 determines the evolution of the complex
macroscopic polarization of the medium and of the population difference between
the two level states when the electro-magnetic field interact with a collection of
stable atoms. So far, no irreversible process has been considered. Since the atomic
levels are not stable in general (except for the ground state) and have a limited
lifetime when interacting with an electro-magnetic field, we have to introduce
these irreversible processes in our description. There are no equations able to

represent these phenomena in a fundamental way as the Schroedinger equation
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does for the stable atomic state. For this reason, the atomic decay processes are
introduced in a phenomenological fashion. The decaying of the population implies
a decay of the polarization, but atomic polarization could decay for other reasons
that do not involve population decay (elastic collision, for examples). Hence, the
introduction of two different decay rates for polarization and population difference
(7L and 7).

In order to work as an amplifier, the Active Medium must have a higher prob-
ability of emitting rather than absorbing radiation. In other words, the emission
rate must be larger than the absorption rate. At thermal equilibrium this is not
possible, as it is easy to verify by using the Maxwell-Boltzmann statistics (see
eqts. 1.1.3). Lasers cannot operate at thermal equilibrium; a constant injection
of energy is required to maintain the emission rate larger than the absorption
rate. This injection of energy is called pumping. Several pumping mechanism
are employed in laser technologies. The most common is the incoherent opti-
cal pumping that excites continuously the atoms electrons to the upper levels.
The effect of the pumping is incorporated into the population equation through
a term D, that increases the population difference between the upper and the

lower levels. Equations 1.1.19 become, after re-scaling:

1 ~
-oF+0,F = gP + c.c.
c

8tﬁ = —")/J_(FE + (]. + ZAAc)ﬁ) + c.c.

~ 1 ~ ~ ~
oD = 7//[§(FP* + F*P)— (D —1)] (1.1.20)
. _ dE D _ P pny_ D _ wg—we _ —Nw.d?D
where: F' = h\/ﬂ"iy//, = ’ZTJ;D_O’ D = Do Aygc = ez and g = 72ch60ﬂ0.

These equations describe the light matter interaction for a dissipative and pumped
medium. Depending on the sign of the pump D, the Active Medium will behave
as an amplifier or as an absorber. In the limit of weak field, D ~ Dy and D=~ 1;

1.1.20 may be solved by Fourier transforming and considering a monochromatic



17

Lo
5 10

L
—10 -5

(@]
Detuning (unit of )

Figure 1.1: R(x) (line) and S(x) (square) as a function of the detuning (w — w,). The
detuning is normalized to 7y, .

component of the field envelope F' = F (&, z)e™™*. We obtain a scaled expression

for the complex electronic susceptibility x of the medium, defined as P= xF":

'Yﬁ_ - YL(w = w,)

— + 3 1.1.21
F =l @ =—w) (1.121)

where w = @ + w,.. We plot R(x) and I(x) in Fig. 1.1. Solving the equation for

the propagation of the field in the Active Medium we obtain the Bear’s law:
F(@,2) = F(@,0) @ ®0 2) ¢i(T+g () (1.1.22)

Eqt. 1.1.22 says that a monochromatic field interacting with an amplifying
Active Medium suffers both amplification and dispersion. In the hypothesis of
weak field (which implies D & Dy) the field intensity is exponentially amplified
by a factor proportional to the length of the Active Medium. The exponential
amplification rate per unit of length is given by the real part of the electronic sus-
ceptibility and it is a function of the frequency detuning between the interacting
field and the atomic transition frequency (Fig 1.1). This function is called gain

curve and it has a symmetric Lorentzian shape, centered at detuning equal zero,
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of width (HW HM) ~,. Together with amplification, the field suffers dispersion.
Remembering the starting field eqts. 1.1.16 and that, given the frequency and
the wave number of a propagating field, the index of refraction n of the medium

can be calculated as n = ck/w, we obtain:
n=1+cgS(x)/we (1.1.23)

Eqt. 1.1.23 says that, in general, the value of the refraction index of the medium is
different from the unpumped (g = 0) material refraction index value. The depen-
dence of the dispersion with the optical field frequency is given by the imaginary
part of the electronic susceptibility (3(x)), (Fig 1.1). This function says that no
dispersion occurs if the frequency of the interacting field is not detuned respect
to the atomic transition frequency. It worth noting that maximum dispersion
occurs for detuning equal to ;. The dispersion curve could be obtained from

the gain curve using Kramer-Kronig’s relations.

1.1.3 The optical cavity

Besides the mechanism of gain, the laser requires a positive feedback loop. The
laser optical cavity provide this effect (Fig. 1.2). Let us suppose that the electro-
magnetic field can propagate, along the ring cavity, just in one direction, as can
be achieved experimentally inserting an optical diode in the cavity. In this way
we can neglect the counter-propagating wave in the cavity and the subsequent
standing-wave that is formed by the interaction between the two fields. If the

cavity length is £ and the medium length is L the boundary condition reads:

{—L

F(0,t) = RF(L,t = —

) (1.1.24)

being R the power reflectivity of the mirrors 1 and 2. Now we can identify

reference optical frequency w, for the electrical field and polarization in eqts.

1.1.16 as the resonant frequency of the empty cavity: w. = QJZTC, being j an
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Figure 1.2: Schematic representation of a ring cavity. The mirrors labeled 1 and 2 have power
reflectivity R, while mirrors 3 and 4 are ideal reflectors.

integer number. The five coupled eqts. 1.1.20 with the boundary condition of
1.1.24 describe theoretically the laser system.
We can look for the envelope-stationary solution of this system. Such solutions

will have, in general, the form (omitting the tilde on P and on D):
F(z,t) = Fy(2)e ™ P(z,t) = Pye ™ D(z,t) = Dg(z)  (1.1.25)

where w is the frequency offset of the operating optical field respect to the refer-
ence frequency w.. If we called wy, the lasing frequency, then w; = w. + w. We

obtain, substituting the 1.1.25 into the 1.1.20,
1 —iA
Pst(z) = —Fst(Z) ) B}
14+ A2 4| Fy(2) |
1+ A?
1+ A2 | Fy(z)

where A = “"‘;% Separating the modulus and the phase of the stationary field

Dy(2) (1.1.26)

envelope Fy;(z) = p(z)e?® and substituting in the first of eqts. 1.1.20 and in the
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boundary condition 1.1.24, we obtain

9 B
w, = MacTOII g 4y (1.1.28)
YL+ K

The second equation could be expressed in terms of wry,:

Wl = (we + Oélj)jf Walt j=0,41,4+2... (1.1.29)
1

where k = @ are the cavity losses for the field and oy = % is the free-spectral-
range of the cavity or the separation between two longitudinal-modes. From
eqts. 1.1.29 we realize that the operational optical frequency is a losses weighted
average of the atomic resonant frequency and the frequency of one cavity mode.
A stability analysis is necessary to find out which of the longitudinal-modes will
be active. Anyway, eqt. 1.1.27 imposes already a selection between the possible
operational resonant cavity modes. A necessary condition for a cavity mode to

operate is that, at its frequency, gain must overcome the losses. This is the

so-called threshold condition that reads:
(9L)hrj = (1+A%) [ InR | (1.1.30)

From the first of eqts. 1.1.20, replacing the expression for Py (first equation
in eqts. 1.1.26) and considering the boundary conditions, we can obtain the
longitudinal profile of the field modulus p(z) at the steady-state conditions. The
overall variation of p(z) in Active Medium depends on the mirror reflectivity and
on the degree of saturation. The typical increase of the field modulus is about
10% when gL = 1.0, R = 0.9 o; = 2.0, and rises up to 65 % if gL = 5.0 and
R =0.5.
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1.1.4 Stationary solutions and stability analysis

The general stability analysis of the Maxwell-Bloch equation is a quite challenging
problem. The complications come from the spatial dependence of the field and
of the atomic variables. A way to avoid this obstacle is to assume the so-called

Uniform (or Mean) Field Approzimation. Such approximation assumes
gL — 0 T — 0 (1.1.31)

This approximation is not trivial, since, even if the gain per pass in the medium
is assumed very small, the radiation will stay inside the cavity for many round
trips, since R — 1. In this way the two effects compensate each other and the
threshold condition could be fulfilled. Defining C = %, the threshold condition

reads

(14 A%)

(Cinrj = 5

(1.1.32)

It is important to point out that, in this approximation, the stationary field profile
is uniform along the cavity longitudinal coordinate. Applying the theorem of the
mean value as integrating the first of 1.1.20, we have p(L) ~ p(0). Numerical
simulations using this approach reveal that one should assume values for gL and
T that are unrealistically low (gL < 0.1, 7" < 0.01). Lugiato et al. in 1980
succeeded in implementing this limit in a more general way. They defined a new

set, of independent variables for the eqts. 1.1.20, 1.1.24:

Z = z t'—t-l—g—_Li'
o B c L’

F(,¢) = F(Z,#)eT™R  P(Z,') = P(<,)eT ™% D(z, 1) = D(z', ')

By this transformation the two non-isochronous events at the boundary conditions

become isochronous, and the Maxwell-Bloch equations take the form (omitting
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the tilde):
cL
Oy F + TBzF = —k(F+2CP) + c.c.
8,yP = —")/J_(FD + (1 + ’LAAc)P) + c.c.
1 2!
D = —v,[=(FP*+ FP)eTME) 1 D 1]  (1.1.33
/15

where we have redefined C' = 2\19TLR\' The new equations differ from the equations

1.1.20 and 1.1.24 for having a phase velocity % instead of ¢ and in including an
explicit spatial dependence through the exponential factor. Now the boundary

condition reads
F(0,t) = F(L,t") (1.1.34)

that is the conventional periodic boundary condition of ordinary linear vibration
problems. We can then introduce an appropriate modal decomposition of the
Fourier type with related modal amplitude. The big advantage is that the new
field amplitude F (2/,t') is very uniform throughout the medium, even when the
values for gL and 7" deviate slightly from the uniform-field approximation require-

ments. The Fourier decomposition of the variables in Maxwell-Bloch equation

PN _ 'S o [0 o
(P(Z,,t,)> = D unf )( ) +ec.

D(Z,t) = Y un(2)dn(t) (1.1.35)

gives:

where the ortho-normal complete base on which the variables are projected is

. 2
ethn? where ky = il (1.1.36)

!
u A = —
w is an unknown frequency offset that measures the frequency separation between

the selected cavity reference and the optical laser frequency (wy,). Since D(2',t')

is real d,(t') = d*,,(t'). We can notice that, the introduction of an ortho-normal
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and complete set of modal function was not possible in the frame of eqts. 1.1.20,
1.1.24, unless applying the mean-field approximation. In this limit the two pic-
tures converge to one another. The Maxwell-Bloch modal amplitudes obey the

following equations:

d L
%fn - wan - n(fn + QCpn) - ZCknzfn +c.c
d Wg — We — W
gPn = - T - 1 (—— )P .
ol n; f L+l +c.c
d 1 .
%dn = _’Y//[_g Z;(fn'pn”rn”n’n +
—i—fnrp:;,,l“nu,n/,n) +d, — 5n,0] (1.1.37)

where I'y is a coupling term between modes that reads:

]_ L : ;22 1_R2 ]-
0 o= X7 ke 2R _ 1.1.38
P L/O e et R* 2 [InR | +ik,L (1.1.38)

steady-state solutions can be obtained as usual setting the derivative to zero.
In general the j* steady-state is a linear combination of different n'*-order modal
functions 1.1.36. Then, the longitudinal field profile modulus will not be perfectly
homogeneous but it will contain the interference terms due to the presence of
additional harmonic Fourier components.

It is worth noting that eqts. 1.1.37 are an exact description of the laser
system without additional approximations beside those used in the Maxwell-Bloch
picture of matter-radiation interaction. Thus eqts. 1.1.37 are useful as a starting
point to implement approximations for the laser description. For example, from
eqts. 1.1.37 it is possible to obtain improved solutions in the single-mode limit
(normally obtained trivially retaining just the n = 0 field amplitudes in the
1.1.37).

The mean-field approximation applied to 1.1.37 implies vanishing mode-mode
coupling: ', — d,0. In this limit the j** steady-state will be purely homoge-

neous and every single frequency field solution of 1.1.37 (i.e. every stationary
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solution ;™) corresponds to a single spatial mode. We can then introduce new

field and polarization amplitudes whose general expression is:

To(t') = z, (1 exp(—ick,t') = x, () exp(—iant’) (1.1.39)
We then obtain a new set of modal equations where the amplitudes are defined
by 1.1.39. The stationary solutions are obtained by putting the derivatives to
zero and the generic j™ stationary solution is identified by five strings of infinite
modal components (omitting the bar on the atomic and field amplitudes):
fos oy fhoe SO0 S5 [ PO PA Do PO PEL PR dy iy sy

that, in the uniform-field limit, takes the form

f9 = [20 — (1+ A2)]36,, + c.c.
2
L+ AT+ | fo |
. 1+ A?
dv) = - L G0 (1.1.40)
1+ A2+ | 7|
where
f Aac —jou/v1 wj K Q1
A, = - = Apgc — j— 1.1.41
! L+k/vL gt n—i—m( Ac ]%) ( )
The threshold condition for the stationary solutions ;% is
20 > 1+ A (1.1.42)

Multiple solutions are possible if the medium has enough gain and/or the inter-
mode spacing is small compared with the gain curve width. The two situations
where steady-state solutions cannot or can coexist for the same parameters set
are shown in Fig. 1.3. In the case of multiple steady-state solutions the stability
analysis will reveal which solution is going to dominate.

In order to analyze the stability of the solution j** let us linearize eqt. 1.1.37

around the stationary solution by setting

2, () = 2996, ; + 62, (1) (1.1.43)



! 12
‘Fj“'|| J=1

4 J=-1 J:0 J=1 J=0

2 1=
g | \

| 1 1 -
0 —
-4 -2 0 2 ° S
N

Figure 1.3: steady-state output intensity | F;(L) |” for the solutions j = 0, =1 as a function
of the detuning parameter A4¢. Parameters used (right): gL = 2.0, R = 0.5, %’ = 2.0,
=50, (left): the same as right except for 2t =3.0. From Ref. [22]

where x represents the general variable of 1.1.37. The infinite system of equation,
after substitution, breaks up in blocks of five equations each block containing the
perturbation variables & fny;(t'), 0 f5_;(t"), 0pni;(t'), 6p;_;(t'), ddn(t'). Introduc-

ing the usual ansatz
oz (t') = e 6x(0) (1.1.44)

where x represents the general perturbation variable, we find the fifth degree

characteristic equation for the constant rate A

1=5

S Al (M) =0 (1.1.45)

=0
the coefficients A; depends on the j* stationary state parameters values and on
the frequency a,, of the n-th Fourier mode. The steady-state j** will be stable if
and only if the real part of all of the five eigenvalues )\,(f,)j are negative for all n.
If it exists a value n’ at which one or more eigenvalues have real positive parts
this means that an instability is developing, causing the growth of of side-bands
at frequencies +a,. Then the field amplitude F(2',t') departs from its uniform
stationary configuration developing a spatio-temporal time structure. Numer-

ical analysis have revealed that the eigenvalues relative to the atomic variables
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(P, P*, D) have large negative real parts. The remaining two eigenvalues are rela-
tive to the field degrees of freedom (F, F*) and can be associated to the linearized
evolution of the field amplitude and phase. Indeed the resonant phase eigenvalue
has a zero real value in agreement with the marginal stability of the phase of the
laser resonant mode at the steady-state. We can identify mainly two mechanisms

of instability: the amplitude instability and the phase instability.

Amplitude instability occurs for zero value of detuning A ¢ or for Ay < aj.
This situation may occur in lasers with gain curve width larger than several free-
spectral-ranges of the laser cavity and it requires large unsaturated gain g. In Fig.
1.4 we show the two largest real part of the eigenvalues of the eqt. 1.1.45 where
a1 = 3y, and A ¢ = 0. As the gain is increased over gL = 2.0 the real part of the
eigenvalues Ai’gﬁl become positive. This means that an arbitrary perturbation at
the frequencies a3 = 31 grows exponentially in the linear regime and the cavity
field becomes a superposition of the steady-state solution at the frequency w, and
of growing side-bands at frequencies w. + a3. Similar plots for the stationary
solutions j = £1 (also above the threshold for the parameters chosen) show that
these are unstable for both the gain values of Fig. 1.4 (upper panel). This means
that no stable state is available for the laser. Thus, after a transient, a persistent
self pulsing develops, characterized by the beat-note between modal components
(multiple of the free-spectral-range). Such kind of instability, appearing for high
gain, is also known as Risken-Nummedal instability. If the laser gain is further
increased, more than one side-band becomes unstable, the non-linear dynamics
could become very complicate and develops the signatures of deterministic chaos.
If the modal separation is small enough, increasing the gain one notes that the
beat frequency or, alternatively, the modal frequency at which the eigenvalue real

part become positive, increases.
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Phase instability occurs when the gain curve width contains more than one free-
spectral-range and the detuning is varied. The instability develops when ¢
reaches the value at which multiple stationary solutions coexist. Fig. 1.4 (lower
panel) shows that the real part of the phase eigenvalue )\im becomes positive for
04c = 1.2. The subsequent evolution depends on the stability of the coexisting
mode. If this one is stable, the laser operation is transferred to the stable state,
with a discontinuous change of the asymptotic intensity-output and operating
frequency (”winner takes all”). If the coexisting mode is unstable too, undamped
pulsations develop and the system is not able to reach any stationary state.
Whether the first or the second behavior takes place depends on whether the
stability domains of the modes overlap or not. The linear stability analysis shows
that the first case is favored for ”YY/_.L/ < 1, while the instability is more of the
“winner takes all” kind if 1/—1 ~ 1. It is worth to add that the detuning value
for which the mode hop occurs in the ”winner take all” mechanism, depends on
the direction of variation of the detuning: thus the system exhibits hysteretic

behavior. This is not the case when there is no coexistence of stable domains.

The above described instabilities are of multi-mode type since they involve the
running laser mode and, at least, a pair of side-bands. Instabilities could develop
also in a single-mode laser. From eqts. 1.1.37 we can obtain the single-mode
laser imposing that all variables with the index n # 0 vanishes and imposing that
¢~v,/c — 0. In this conditions all the cavity modes, except the resonant one,
are very far away from the atomic gain line and they do not play any role in the
evolution of the system. If, in addition, we assume resonance between the atomic
gain line and the only remaining cavity mode, the laser equation reduces to a set
of equations isomorphic to the Lorenz model describing convective hydrodynamic

instabilities. The new set of laser equations are unstable under the following con-

(s+yr+y//)(5+71)
2C > 1+ pR—yE—

ditions: i) k > v, +,/, called bad cavity limit and ii)
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Figure 1.4: Two largest real part of the eigenvalues for j = 0 plotted as a function of 2= viewed
as a continuous variable. Upper Panel: A4¢c =0, R = 0.95, f;‘—i = 3.0, ’,%/ = 1.5 gL = 0.8(left),

gL = 2 (right). Lower Panel: R = 0.95, &+ = 3.0, gL = 0.5

Y

0.8 Aac = 0.7 (left),

A gc = 1.2 (right). The line marked with a indicates the amplitude eigenvalue, the one with p

the phase eigenvalue. From Ref. [22].
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called high gain condition. The high gain condition sets a threshold (called sec-
ond threshold) for which undamped pulsations set in. For the isomorphism with
the Lorenz model, the self-spiking behavior that laser exhibits above the second
threshold is deterministic chaos of Lorentz-type. In fact, the bifurcation sequence
is more complicate than the one depicted here, we can reference Ref. [22] for a

more exhaustive description.
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1.2 Semiconductor laser

In the semiconductor lasers the three basic ingredients for the laser operation can

be identified in this way:

i)The gain mechanism, in the simplest semiconductor laser structure, is provided
by the electron-hole recombination in the depletion region of a forward biased p-n
junction (homostructure). In modern devices this has been replaced by the double
heterostructure and by the quantum-well heterostructure. ii)The pumping mech-
anism maintaining the population inversion in the junction, is provided by the
injection of electrical current into the p-n junction. iii)The feedback mechanism is
provided by the polished facets at the ends of the semiconductor block, forming,
in this way, a Fabry-Pérot cavity. In more modern devices the cleaved facets have
been replaced by a periodic index perturbation integrated along the laser struc-
ture acting as a grating (Distributed Bragg Reflectors (DBR) and Distributed
Feedback (DF B) lasers). Quarter-wave DBR layers may be also stacked parallel
to the wafer in order to obtain vertical emission (Vertical-Cavity Surface-Emitting
Lasers). Lateral confinement of the field into the cavity may be obtained through
dielectric waveguiding or through gain guiding. Sizing the transverse dimension

of the waveguide allows to select single transverse-mode operation.

The p-n junction and its optical properties are described in the first para-
graph together with the optical confinement technique most used. In the second
paragraph we describe the electro-magnetic field propagation in a semiconductor
medium, deriving the longitudinal-mode structure and the threshold condition.
The semiconductor lasers present important differences in respect with the gas
lasers or solid state lasers, for which the two-level Maxwell-Bloch equations were

conceived. In particular, the energy-bands structure of a semiconductor medium
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implies a different expression for the electrical susceptibility. Semiconductor me-
dia are conceptually similar to an ensemble of two-level atoms, though with dif-
ferent transition energies as defined by the electronic band structure and, more
important, with different occupation of the electronic states. The problem of
the evaluation of the susceptibility in a semiconductor medium is analyzed in
the paragraphs three and four. In the third paragraph we describe the results
of a phenomenological approach to the problem, leading to semiconductor laser
rate-equations. In paragraph four we present a more fundamental approach; the
semiconductor susceptibility is calculated taking into account the semiconductor
energy-band structure. Introducing some approximations it is possible to ob-
tain an effective two-level Maxwell-Bloch equations set for semiconductor laser.
This set of equations provides an instrument to explore realistically the multi-
mode dynamics of the semiconductor laser. In last part of paragraph four we
present some numerical results showing the multi-mode behavior predicted by
the effective two-level model. Finally, in the last paragraph, we will describe the
Vertical-Cavity Surface-Emitting Lasers (VCSEL's) with particular emphasis on
the polarization properties of these devices. This section is supposed to provide
the essential concepts of semiconductor laser physics and it has been based on

the Refs. [1, 20, 21, 31, 32, 33, 34, 35]

1.2.1 Operating principles

The optical properties of the p-n junction

Semiconductor materials are characterized by the existence of a relative small gap
of forbidden energies, (0.1 —2 eV') between the valence band of bonding electrons
and the conduction band of free electrons. Hence, thermal energy or optical
interactions (absorption of a photon whose energy is larger than the bandgap

energy) may easily excite the uppermost valence electrons into the conduction
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band and the vacancy left in the valence band behaves effectively as a positively
charged free particle (hole). The Fermi-Dirac distribution describes the electrons

(and holes) distribution through the energy state E:

1
IB) = G mpmr 1

(1.2.1)

where E is the Fermi energy level, which identifies the borderline between empty
states and filled states as 7" — 0, k is the Boltzman constant, and 7" is the absolute
temperature. It worth to notice that the Fermi energy does not correspond, in
general, to any eigenenergy of an electron in the crystal. If the semiconductor
crystal does not contain any defect, the Fermi energy is located at the center of
the band-gap: all the valences states are filled, while the conduction states are
empty. When the semiconductor is doped by donors or acceptors, the electron
or hole population increases, filling states in the conduction band or generating
holes in the valence band even for 7" — 0. In this case the Fermi level may be
pushed inside the conduction band (for donor doping) or inside the valence band
(acceptor doping). When the semiconductor is not at the thermal equilibrium
because of a current flow or other photoexcitation, quasi-Fermz levels for each one
of the bands are used rather than the Fermi level. This description holds whenever
the carrier scattering time within a band is much shorter than the equilibration
time between the bands, which is always true for the large carrier density involved
in p — n junctions. Indeed, the timescale for intra-band relaxation is ~ 107%s
while for electron-hole recombination is ~ 10~%s.

A p — n junction is formed by two semiconductor blocks, one doped with
donors (n) and the other with acceptors (p), in contact each other. When the
two blocks are put in contact, there is an electrons flow from the n-type block to
the p-type block and a counter-propagating flow of holes. This carriers diffusion

re-establishes the equilibrium in the semiconductor. Prior to contacting the two



33

blocks, their Fermi levels were not matched; after a transient, an equilibrium state
is reached and the two blocks have the same Fermi energy level. During the flow
of carriers, several radiative electron-hole re-combinations may occur, although
other kinds of re-combination mechanisms are possible. Eventually, a depletion
region is created at the junction. This region presents, at its borders, electrons
in excess (or negative charged acceptors) in the p-type block and holes in excess
(or positive charged donors) in the n-type block. The consequent junction elec-
tric field prevents any further carrier diffusion. If the junction is forward biased
by an external voltage overcoming the internal electrical field, carrier diffusion
occurs into the junction. There is a small region at the junction where both holes
and electrons are present. In this narrow region re-combination occurs and, in
the case of radiative emission, a photon of energy hv = E,, being E, the semi-
conductor band-gap is emitted. This photon may be later absorbed trough the
reverse process, generating a carrier pair. The level of current flowing in the semi-
conductor block for which stimulated-emission has the same probability to occur
as absorption is called transparency. For currents below transparency, the semi-
conductor medium behaves as an absorber, for currents above it behaves as an
amplifier. Defining the net rate of stimulated-emission, 7y, namely the difference
between the stimulated photon rate and the absorption rate, the transparency
condition is fulfilled when r;=0. For a given photon energy, E=E.-E,=hv, ry
is proportional to the difference between the occupation probabilities of the elec-
trons in the conduction band with energy E., f.(E.), and the electrons in the
valence band with energy E,, f,(E,). Such occupation probabilities, according
to 1.2.1, read (fi(E;) = (exp[(E; — Ef;)/kT] + 1), i = ¢,v), where E;, and Ey,
are the quasi-Fermi levels for the conduction and valence band. Beyond trans-
parency, because net stimulated-emission occurs, the occupation probability in

the conduction band at energy E. is larger than the occupation probability in
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the valence band at energy E,, f. > f,, a condition equivalent to the popula-
tion inversion introduced in the first section. Radiation emission may occur as
spontaneous-emission or as stimulated emission. In the first case, photons are
emitted in random directions and with arbitrary phases and the emitted light
is incoherent. In the second case the process is initiated by an already existing
photon which matches in phase, in frequency and in the direction of propagation,

generating coherent light.

Radiative recombinations are not the only recombination mechanisms at the
junction; electron-hole pairs may annihilate releasing their energy in form of lat-
tice phonons instead of photons (non radiative recombination). This may happen
through Auger recombinations, recombinations at defects, and surface recombi-
nations. Non radiative recombinations affect the efficiency of the stimulated-
emission process in the semiconductor and, therefore, the current threshold of
the laser. Auger recombination involves four particle states (three electrons and
one hole or two electron-hole pairs); the energy released at the recombination of
a pair is absorbed by a carrier (electron or hole) which gets excited to a high
energy state in the band. This electron or hole relaxes back to thermal equilib-
rium releasing energy in form of lattice vibrations (phonons). Auger effect is the
dominant non radiative mechanism in narrow-gap lasers, especially at large tem-
perature. It is responsible for the strong increasing of the threshold current for
large temperatures. Recombination with defects occurs when a carrier interacts
non radiatively with a defect in the active region. Defects are normally formed
during the epitaxial growth of the semiconductor. A particular source of defects
comes from the presence of surfaces interrupting the semiconductor lattice. At
the edges of the active region or at the hetero-structure interfaces the crystal lat-
tice geometry is broken. This causes the presence of many dangling bonds that

can absorb impurities from the external environment.
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Figure 1.5: Left: Three-layer slab-waveguide heterostructure: nq > ns, Eg1 < Eg. Right:
Energy band diagram of a double heterostructure laser under forward bias.

Apart from the internal losses mechanisms, in the junction composed by the
same band gap semiconductor (homostructure), the optical gain is limited by the
very small size of the active region. In the homostructure the population inversion
is reached only in the narrow portion of the junction where the electrons and holes
are coexisting. The first diode lasers, based on this type of structure, had very
large current threshold values (> 50kA/cm?) and they were running just in pulsed
mode at room temperature.

More efficient structures are double heterostructure and the quantum-well
heterostructure (see Refs. [1, 36]); the modern semiconductor lasers are based on
these solutions.

Double heterostructure lasers (DH) are formed by sandwiching a thin (100
to 200 nm thick) active layer of a given semiconductor material between two
or more cladding layers of different semiconductor materials with wider band-
gap. The cladding materials must posses almost the same lattice constant of
the active layer in order to avoid formation of lattice defects during the growth
of the wafers. The heterostructure provides better carrier confinement than the
homostructure: the potential barriers at the heterojunctions prevent the outflow

of electrons (holes) from the n-type region, while the bandgap difference helps
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Figure 1.6: Band structure of a single (left) and multi quantum (right) well hetero-structure.

the injected carriers to be confined at the active region, as shown in Fig. 1.5.
Moreover, the heterostructure provides optical confinement of the radiation: since
the cladding layers have a smaller refractive index than the active layer, they
originate a dielectric waveguide which confines, by total internal reflection, the

generated photons in the vicinity of the active region.

A single quantum-well laser is similar to a conventional bulk heterostructure
(Fig. 1.6), but with the active layer only a few nanometers wide (< 20 nm), which
requires sophisticated growth techniques. In a quantum well, carriers are confined
along the direction normal to the quantum-well plane (quantization direction),
and their energy and density of states become quantized. Coherent radiation
occurs by stimulated electron-hole recombination between the quantized sub-
bands of the conduction and valence bands. Because of the thin heterostructure,
carriers are tightly confined, resulting in a better efficiency than in bulk laser
diodes, and thus in lower threshold devices. However, optical confinement requires
the addition of separate confinement heterostructure layers with a refractive index
in between that of the cladding layers and the wells. Multiple quantum wells can
also be produced by alternating narrow layers with low and high bandgaps, which

allows for higher powers.
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Different emission wavelengths may be obtained changing the semiconductor
materials or the doping levels. Nowadays semiconductor lasers cover the optical
spectrum from near ultraviolet to far infrared. It is important that the lattice
vector of the two semiconductors of a specific heterostructure match each other to
better than 0.1%. This requirement fixes the semiconductors pairs for obtaining
a specific wavelength. Blue-green visible lasers are based on the ZnSe family
on GGaAs substrates, such as ZnSSe and ZnCdSe. Red visible lasers, operating
between 620 and 690 nm, are based on Ga;,_zIn,P or (Aleal,w)yInl,yP on
GaAs substrates. Laser diodes based on Al,Ga; ,As technology grown on GaAs
substrates emit at relatively higher wavelengths, from 750 to 870 nm, depending
on the aluminum concentration. The other common group of lasers is based on
In,Ga,_,As grown on GaAs substrate or In;_,Ga,Asi_, P, on InP substrates,
having emission wavelengths in the near infrared area (980 to 1650 nm). Longer
wavelength regions, from 1.7 to 4.4 ym, are covered by InGaAsSb lasers on GaSbh

substrates.

The optical confinement

In conventional semiconductor lasers, known as edge-emitting lasers, the resonator
is a Fabry-Pérot cavity of partially reflecting facets, formed by cleaving the wafer
along parallel crystal planes to create flat mirror facets. The presence of the

resonator fixes the direction of propagation for the stimulated light emission.

The double heterostructure determines the mechanism for the optical confine-
ment in the direction perpendicular to the junction plane. A third confinement
mechanism is required to confine the radiation in the plane of the junction, per-
pendicularly to the direction of the radiation propagation. This confinement is

obtained through two main techniques: index guiding or gain guiding. The first
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one is obtained by building a dielectric waveguide laterally to the radiation prop-
agation axis. In the second one, it is the gain profile, determined by the injected
current profile, that confines laterally the radiation. The index waveguide may be
sized in order to support just the fundamental transverse-mode. In this case, nor-
mal dimensions of the waveguide are hundreds of microns along the cavity axis,
few microns along the direction perpendicular to the cavity axis, in the junction

plane, hundreds of nanometer perpendicular to the junction plane.

In such a quasi planar waveguide built-in a semiconductor laser two polar-
ization modes may propagate: the transverse electric (T'E) and the transverse
magnetic (T'M). The TE modes have the electrical field vector perpendicular
to the direction of propagation in the plane of the junction, while for the T M
it is the magnetic field vector to have this direction. The facets reflectivity at
the end of the cavity are larger for the T"E-modes and the optical confinement is
more efficient for the 7E modes than for the 7'M modes. Hence the T'E modes
have a lower threshold gain than the 7'M modes and are strongly selected in

edge-emitting laser diodes, unless the gain itself strongly favors T'M.

Other techniques for building the optical cavity in edge-emitting lasers consist
of a periodic index perturbation integrated along the laser structure and acting as
a grating. In the Distributed Feedback (DF B) laser structure the grating region
is built into the pumped part of the gain region, while in the Distributed Bragg
Reflector (DBR) lasers the grating replaces the usual cleaved mirror on one or

both sides of the resonator.

A completely different approach is employed in the Vertical-Cavity Surface-
Emitting Lasers (VCSEL's, see Ref. [37]). In these lasers, the cavity is vertical
and the mirrors, typically quarter-wave DB Rs, are parallel to the wafer surface.
It is worth noting that in quantum-well VOSEL's the quantization direction

coincides with the emission direction while in the other classes of quantum-well
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laser diodes is always perpendicular. We will describe the VCSFEL's in details in

the paragraph three.

1.2.2 Light-matter interaction in a semiconductor medium

The electro-magnetic field equation in a semiconductor laser medium reads:
1
c

The difference in respect with the 1.1.8 is the term containing the conductivity,
neglected in case of gas lasers. Under steady-state condition and considering just

the linear polarization we can write, after Fourier transforming:
P, = ex(w)E, (1.2.3)

x is the electrical susceptibility, analogous to the scaled version introduced, for
a two level laser, in 1.1.21. In general x is a second rank tensor, in the case
of isotropic medium it is a scalar. Dealing with semiconductor materials it is
convenient to separate y in two complex components: the first being the suscep-
tibility in the absence of external pumping x,; the second being the additional
contribution related to the pumping strength, x,. Omitting the notation for the

dependence with w:

X = Xo T+ Xp (1.2.4)

Fourier transforming the 1.2.2, replacing the 1.2.3 we solve the equation for the
field propagation in the Active Medium. We obtain for the complex index of

refraction of the Active Medium, j:
= p+ i(A/2ko) (1.2.5)
where

po= (1+R(x) + R0 (1.2.6)

A = B )+ /(e (1.27)
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i is the refractive index of the medium, while A is the power-absorption coef-
ficient. Eqts. 1.2.6 are very general and may be applied also to conventional
two-level lasers. The index of refraction p depends on the the external pumping.
In general R(xp) << 1+ R(x,) and we can approximate pu = u + Apyp, being
the refractive index of the unpumped material and Ay, the change induced by

the pumping.

App = R(xp) /200 (1.2.8)

In two-level lasers, Ay, = 0 when there is no detuning between the frequency
of the laser field and the atomic transition frequency. In the first section we
have shown that the frequency of the laser field is close to the gain curve peak
frequency; thus Ay, ~ 0 for two-level lasers. For semiconductor lasers the term
A, does not vanish at gain peak frequency. The reason of this difference lies on
the band structure of the energy levels in the semiconductor medium and on the
high density of charge carriers in the active region which determines band-gap
shrinkage and band-filling. We will discuss this issue in paragraph four. Here we
just underline that Ay, is normally negative and the correction term is of the
order of 1% of the unpumped material index of refraction. The power absorption
coefficient is given by the term (y,) that accounts for the unpumped material

absorption; the term J(x,) that accounts for the effect of external pumping on

koo

that accounts for several
(€owp)

the material absorption and the term A;,; =
internal mechanism of internal losses as free-carrier absorption and scattering at

the heterostructure interfaces. We can define the net gain g as

k
g=—i%m+m) (1.2.9)

Then the net absorption coefficient is given by

A=-Tg+ A (1.2.10)
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where ' is the confinement factor, taking into account the spreading of the optical
mode beyond the active region.

At this point it is easy to obtain the threshold condition and the resonant
frequencies for the resonator. Threshold condition requires that the field repro-
duces itself after a round-trip, calling R; and Ry the facet reflectivities at the two
ends, ¢ the length of the cavity, and assuming single-mode operation, we have,

separating real and imaginary part:

(RiRy)?e29 = 1 (1.2.11)

sin(2ukel) = 0 (1.2.12)
The threshold condition for the gain is then

thh = Am + Aint (1213)

where Ay, is the mirror loss: A, = 5; In( Rlle)'

The lasing frequencies are given by the cavity-resonance frequency:

v=yj jeN (1.2.14)

(2p)
The mode separation is given by Av = ¢/(2p4¢), where py = p+v(0p/0v) is the
group index of the dispersive semiconductor material. Thus, eqt. 1.2.8 indicates
that longitudinal-mode frequencies and their separation depends on the external
pumping.

We have now to relate the gain g with the pumping current J. It becomes
unavoidable to describe the coherent response of the semiconductor material to
the optical field. The problem is to find an expression for the susceptibility ¥,
relating the electrical field F and the polarization P induced. Several approaches
are possible. The most complete one is the quanto-mechanical one, analogous to

the approach explored for the gas laser. Defining the density matrix operator p
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and the dipole-moment p, we have
P = TT(PP) = Z(pcvpvc + pvcpcv) (1215)
c,v
The sum is over all the energy states per unit volume in the conduction and

valence bands. The evolution of the density operator is given by
) 1 o F 1
p=Ho =T e B pl =S+, + 7T (1.2.16)

H, is the unperturbed Hamiltonian of the semiconductor, « is the decay opera-
tor and T takes into account the carrier generation in the active region for the
external pumping.

This approach is extremely complex for semiconductor lasers. In the v op-
erator are included both interband process and the intraband process (electron-
electron scattering, electron-phonon scattering) and the latter are not yet well
understood. Moreover the band structure and the density of states in the bands
is required for writing Hy. Some progress has been done by the assumption of the
parabolic density of states. We will discuss these improvements in the paragraph
four.

A simpler way to deal with gain in semiconductor laser consists in assuming
the gain dependence on carrier density as observed experimentally or as obtained
numerically from eqt. 1.2.16 and incorporating this dependence phenomenologi-
cally in the laser equation describing the light-matter interaction.

In the next paragraphs we develop the problem of finding an expression for
the susceptibility x of the semiconductor media, for brevity we limit our analysis

to bulk semiconductor structures.
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1.2.3 The phenomenological description: Rate-Equations

The phenomenological approach is based on the fact that, in bulk semiconductor
lasers, the gain calculated at the lasing frequency varies almost linearly with the
injected carrier density and the same happens to the term Ay, in the expression

of the refraction of index.

g(N) = a(N = No)

Ap, = bN (1.2.17)

being Ny the carrier density level at which the transparency occurs. Then aNj is
the absorption coefficient of the unpumped material. It worth to point out that
these equations are in good agreement with the experimental observations. We

have now an expression for the pumping dependent susceptibility:
Xp = (20 — ia/ko) N (1.2.18)

We can defined the so-called « (Ref. [38]) factor expressing the coupling between

the real and the imaginary parts of the carrier dependent susceptibility:

R(Ox/ON) _ Rxp)
3(0x/ON)  S(xp)

(1.2.19)

The « factor is an important parameter for describing the light-matter interac-
tion in semiconductor materials. It depends on the frequency detuning between
the optical field frequency and the gain peak frequency of the material. When
considering lasing operation in conventional edge-emitting lasers, this detuning
is negligible because of the high density of longitudinal-modes below the gain
curve. In the frame of the phenomenological eqts. 1.2.17, valid at the lasing

frequency, we have o = — 2keb
a

. Since b is negative, o is a positive dimensionless
number. This factor reveals the main difference between the semiconductor laser

and the two-level ones, as we anticipated when describing the dependence of the
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refraction index on the pumping rate. The equivalent for « in a two-level medium
is the detuning between the gain peak frequency and the optical field frequency
and it vanishes at resonance. This is not true for semiconductor laser where, in
spite of the negligible detuning between the lasing frequency and the gain peak,
the « factor takes values from two to six (Refs. [38, 39]). These values marks
the difference between the « factor and the detuning of the two level lasers. No
laser action is expected for a detuning value so large: it would be equivalent for
the laser to emit at a frequency which is detuned from the gain peak five times
the gain curve HW HM width, which is unphysical. From this point of view it
is difficult to apply the two-level Maxwell-Bloch equations to the semiconductor

laser, unless introducing the o factor phenomenologically.

The o factor for a semiconductor medium is calculated in a fundamental
way in paragraph four, following the approach depicted by eqt. 1.2.16 with the
assumption of the parabolic density of states. The origin of « lies on the gain
curve of the semiconductor media. Because of the presence of energy bands rather
than two energy levels, the gain curve is asymmetric (Ref. [40]) and it is peaked
at a frequency for which the carrier induced refraction index is not zero. On the
contrary, in two-level lasers, the gain curve has a symmetric Lorentzian shape
and Kramer-Kronig’s relations imply the absence of dispersive effects at the gain

peak.

The « factor has a strong impact on the spectral properties of the laser and
also on its stability when perturbed by external mechanisms. The laser field
linewidth has been found to be enhanced by a factor (1 + o?) (Ref. [40]), hence

the name linewidth enhancement factor often attributed to .

The phenomenological eqts. 1.2.17 allow for relating gain and dispersion with
the carrier density at the lasing frequency. In order to be able to write the

semiconductor laser equations we need an expression that related the carrier
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density N with the current density J. This is obtained through a rate-equation
for the electrons. The total charge neutrality guarantees that the rate-equation

for the holes is derivable from the one for the electrons.

N = D(v?N) + q—‘]d — R(N) (1.2.20)

D is the diffusion coefficient of the carrier density, the second term takes into
account the injection rate of the carrier through external pumping, R(n) considers
the carrier loss due to the different recombination processes.

When the semiconductor laser is strongly index guided and the active region
is much smaller compare to the diffusion length, the diffusion term may be ne-
glected. Then at the steady-state we have simply J = gdR(N). The expression of
R(N) should take into account all the recombination process. The most suitable
form for R(N), valid if the doping level of the active region is much smaller than

the carrier density injected, is given by
R(N) = A,,N + BN> + CN® + RN, (1.2.21)

The term A,,, N takes into account the non radiative recombination, BN? consider
the spontaneous-emission, CN? describes the Auger effect and, finally, Rs Ny
where N, is the intracavity photon density and Ry = (¢/14)g(IN) expresses the
stimulated recombination that leads to the coherent emission of radiation. It
worth to point out that this phenomenological model assumes the coefficient A,
B and C independent of the pumping level. In fact, this approximation is rather
crude since it is well known that B depends on the carrier density, while the
Joule heating of the Active Medium, because of the pumping current flow, affects
remarkably C'. Remembering 1.2.20, 1.2.13 we can write the threshold condition

for the pumping current:

Jin = qd N/ Te(Nin) (1.2.22)
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being:
Ny, = Ny + (A + Agny) /(al) Te(Ni) = (Anr + BNy, + CNZ) 1 (1.2.23)

being 7, the recombination time of the carriers. We can also obtain the intracavity

photon density relationship with the pumping current:

Npw = ni(1p/qd)(J = Jun) (1.2.24)

where 7; is the internal quantum efficiency introduced phenomenologically, v, is

the group velocity and 7, is the lifetime of the photon in the cavity.

7, ' = 0g(Am + Aint) (1.2.25)

When threshold is reached the carrier density stays locked to the value ny, while
the light emission increases with increasing the pumping current. The power
emitted by the laser is given by P,,; = %hm)gAmVNph, being V' = Lwd the active
region volume. Hence, we obtain

hv nzAm

Ppyp = — —1om
out 2(] Am + Aint

(I— I — AL) (1.2.26)

being Al the possible increase of the leakage current with the current I. Eqt.
1.2.26 takes into account the fact that the increase of the emitted power is not
increasing linearly with the pumping, for large of the current. Three contributions
are predicted to contribute to power saturation:
i)The increase of leakage current with I, through the term ATy, ii)The increase of
I, with I because of junction Joule heating that reduce the recombination carrier
time 7.. Recombination rate increases, as we have already mentioned, because of
the increase of the contribution from the Auger effect C' with the temperature,
iii) The internal loss A;,; increases with I.

The phenomenological approach describes quite well the characteristics of
emission of a semiconductor laser. It is natural then to extend this procedure to

describe the laser dynamics.
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Semiconductor laser Rate-Equations

The phenomenological approach leads to the semiconductor rate equations. These
are obtained solving the field propagation eqt. 1.2.2-1.2.3 with the assumptions
1.2.17-1.2.18. The field can be developed on the basis formed by the laser cav-
ity resonance frequencies; assuming SV E'A approximation and single transverse-

mode profile we end up with:

1+« _
= — TG(N) -7, "E
N = id — Apn+ BN?2 +CN3 —G(N)| E |? (1.2.27)
q

where G(N) = a 1]:[ ;g%; € is the non-linear-gain coefficient and it has been in-
troduced phenomenologically in order to take into account the saturation of the
gain. Dividing the slowly varying part of the electric field £ in amplitude and
phase: E = v/Te® we can replace the field equation in 1.2.27 by:

N — Ny 1

i= ra NNy
[ 1+6|E|2 P ]
. 1 N — Ny
= —aal—— 1.2.28
¢ 2 1+¢e EJ ( )

We have already commented that the validity of these equations lies on the fact
that the polarization decay rate depends on the intraband phenomena which have
a timescale much shorter than the carrier and photon lifetimes. According to the
number of degrees of freedom of this laser system, semiconductor laser can be
classified a class B laser. It worth to remember that adiabatic elimination of the
fast variables must be employed with great care in presence of laser instabilities
(Ref. [22]). This establishes a limitation for using the rate eqts. 1.2.28 in order
to describe a laser instability, possibly because of external mechanism (feedback,
optical injection). Moreover, in 1.2.27, the boundary conditions, represented by
the optical resonator, have been imposed by including the facet loss term «,, in

the photon lifetime 1.2.25. A rigorous approach would require (see section one)
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to consider the spatial dependence of E along the cavity, and then the integration
of F(z) through the longitudinal direction imposing the boundary conditions at
the facets. These approximations are particularly severe when rate eqts. 1.2.28
are extended to describe the multi-mode semiconductor laser. Then, eqts. 1.2.28
are written for each mode with different field-carrier density coupling terms, since
the gain coefficient changes with optical field frequency and they read:

Ln = [CuGum(N) =7y im)
J

N = = _ A N+BN?2+CN?— N)| E,» 2 1.2.2
oq = ANt +C D (G (N)| Egy 1) (1.2:29)

m
Since the rate-equations picture neglects the spatial dependence of the electro-
magnetic field in the cavity, the spatial dependence of the mode-carrier coupling
and the mode-to-mode coupling are not considered. As shown in the first sec-
tion for a two-level laser, such mechanisms are fundamental in order to describe
realistically the dynamics of a multi-mode laser. Moreover, in eqts. 1.2.29 the
gain coefficient changes with optical field frequency, but the corresponding spec-
tral dependence of the refraction index change on carriers (through the « factor)
is not taken into account. Thus, eqts. 1.2.29 are not a valid tool to predict
semiconductor laser instabilities. However, in spite of those limitations, the rate-
equations model is quite useful for small-signal analysis of the laser: it describes
rather accurately phenomena like noise properties, transient response and inten-
sity modulation. In addition, several features like spectral variation of the lasing
frequency due to thermal effects, band-filling or band shrinkage can be added
phenomenologically to the model through suitable coefficients. In this way, phys-
ical mechanisms of very complex theoretical description may be implemented in
a unified and simple approach that, under certain conditions, is reliable enough
to predict the laser response to a small perturbation.

A more rigorous approach should be based on the derivation of an equation
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able to describe the coherent field-semiconductor medium interaction. We have
already mentioned, when introducing the eqt. 1.2.16, the difficulties of deriving
an expression for the electrical susceptibility of the semiconductor lasers. In
particular, one of the problems comes from the complexity of the energy band
structure of semiconductor media. Two approaches have been explored: the
microscopic description (Ref. [41]) and the effective two-level model (Ref. [20]).
The microscopic approach tries to evaluate the susceptibility of the semiconductor
media starting from the electronic structure of the crystal, considering or not
many-body effects (Refs. [42, 43, 44]). The limitation of these models is their
complexity and that they apply strictly only to CW laser operation or to small
signal analysis. Anyway this exact approach is extremely useful when we want
to relate macroscopic properties of the semiconductor media with their band
structure.

The effective two level model consists in reducing, after opportune approxi-
mations, the band structure of the semiconductor material to an effective two-
level system. Then, semiconductor laser equations analogous to Maxwell-Bloch
are obtained, allowing for the modeling of the laser dynamics. In fact, since
Maxwell-Bloch equations consider explicitly the coherent coupling between the
optical feedback and the semiconductor medium, they enable large-signal anal-
ysis, four-wave mixing analysis and they consider the possibility of multi-mode
operation. Moreover, the effective two-level model incorporates phenomenologi-
cally the main results of the microscopic theories, including thermal effects and

many-body interaction. We will describe this approach in the next paragraph.
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1.2.4 The effective two-level description

This paragraph is based on the paper by S.Balle, Optics Comun. 119, 227 (1995)

The effective two-level model is based on the Maxwell-Bloch equations as ob-
tained in the first section with all the related approximations assumed (RWA,
SVEA, Plane Wave Solution). The difference concerns the slowly varying am-
plitude of the non-linear polarization of the medium that, for the semiconductor
laser, has to be obtained taking into account the semiconductor band structure.
This derivation is based on the calculation of the electrical susceptibility of the
semiconductor medium that, in a two-band approximation, reads

o s JB) = fulk)
X = =g 2 1 M) e ] + 48

(1.2.30)

being V' the crystal volume, E., (k) = E.(k) — E,(k) the energy difference be-
tween the conduction and the valence band states, M, (k) is the electric dipole
element between the conduction and the valence band states, y(k) is the tran-
sition linewidth, f.(k) and f,(k) are the quasi-equilibrium Fermi-Dirac distribu-
tions functions for the electrons in the conduction and in the valence bands and
the summation is performed over all k£ vector in the first Brillouin zone. Eq 1.2.30
would require a numerical treatment for realistic band structure and finite temper-
ature. Here we assume: i) parabolic bandstructures: E. = E,/2 + (h*k?*)/(2m.),
E, = —E,/2 — (W*k*)(2m,) (m. and m, being the effective mass in the conduc-
tion and in the valence band respectively), ii) M, (k) = M, iii) v(k) = h/T3, that
is considering the electric dipole strength and the transition linewidth indepen-
dent of k. The contributions to xz(w) cannot be evaluated analytically except at
zero temperature, replacing the summation by an integral. Then, considering the

quasi-Fermi level close to the bottom of conduction band and just the frequency
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relevant to the lasing process, we obtain

+|M|2N—N0(1—ioz0)

1.2.31
€0h z ( 3 )

xe(w) = xz(w)

where N = N, + N}, is the carrier density out of equilibrium, z = w—E;/hi+1i/T5,
X1 (w) includes the terms not depending on N directly, and Ny(1 —iay) is defined
as:

. eq
b

No(1 — i) = N e
ol o) = N — T+ 4]

(1.2.32)

where the terms N, T? and w,? are the carrier density, the polarization decaying
rates and the emission frequency at the gap for the semiconductor being at the
equilibrium, i.e. when no current is injected. The main approximation in this
last equation is to neglect the frequency dependence of ag by assuming w — wy.
In this way, upon Fourier transforming to the time domain, and after including
the linear term in the effective refraction index and losses for the electric field
yields a simple equation for the temporal evolution of the non-linear polarization.
Considering that the electric field is oscillating at a frequency wy with a slowly
varying amplitude E, the evolution equation for the slowly varying amplitude of

the non-linear material polarization, P, then reads:

1 62 Wo 1
OA = — |i— (0?A+K2A W —P ——A
t 2n? [lwo ( =4+ Ko )+Z heo Tp }

N
AN = J—%(N)N—%,/@(A*P—AP*HM?N
0

1
8tP = |:_T2 + z(wo — wg)] P -
2
—z'r%, / @(N — Ny +iagNg)A  (1.2.33)
0

where A denotes the modal amplitude of the optical field normalized in such a
way that |A|* corresponds to photon density, ko = nwy/c, 7, is the photon lifetime

inside the cavity due to losses, and n is the effective refraction index in the active
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region. T is the polarization lifetime, and Vg is the transparency carrier density
at frequency w,. J is the injection current density into the active region per unit
time (in carriers per unit time and unit volume), v.(N) = 1/7, is the nonradiative
decay rate of the injected carriers, which in general may depend explicitely on
the carrier density (Ref. [1]), A is the effective carrier diffusion coefficient, and
" is the modal confinement factor into the active region (defined as the fraction
of modal power confined within the active region). The physical origin of «aq
comes from the electronic structure of the semiconductor materials; the band
structure allows for the spreading of the transition energies, all nearly resonant.
As a consequence, the complex electrical susceptibility, which takes into account
all the possible transitions, cannot be purely imaginary even at the gain peak.
The presence of the parameter g in 1.2.33 implies three fundamental differences
between semiconductor laser and conventional two-level lasers: i)the gain and the
refraction index spectral shapes of the Active Medium are asymmetric and ii)the
gain is maximum where the dispersion does not vanish, iii)the gain and the refrac-
tion index spectral shapes depends on the carrier density. The gain peak shift to
larger frequency and increases to larger values as IV increases. In this third point
thermal and many-body effects play an important role as well. Considering these
effects in addition to the parameter o and incorporating them in a term a.yf
it is possible to calculate the « factor obtaining values close to the experimental
ones (Ref. [39]). The derived s is equivalent to the phenomenological term

introduced in the last paragraph.

In general, 75 and w, may depend on both carrier number and on Joule heating
related to the value of J. Increasing the temperature in the active region leads
to a redshift of the frequency of the gain peak (see §I1.1.2) and to a reduction
of the maximum gain (Ref. [42]). These effects are not taken into account in the

model 1.2.33, since we have supposed 1" = 0.
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Moreover, as N increases, many-body effects induce a bandgap shrinkage
(Ref. [45]) and they lead to an increased carrier scattering which reduces 75
(Ref. [44]) and modify the width of the gain curve. These changes due to varia-
tions of the carrier density do not affect the Lorentzian shape of the gain spectrum
characteristic of the two level model. The eqts. 1.2.33 enable the analysis of the
effects of carrier density on both w, and T5.

In order to gain insights into these effects, we can assume a linear dependence
of v, and of w, with the carries. Thus, through the linear coefficients, we can

account for the above mentioned effects in a phenomenological way.
Yy =1/Ty = 1/Ty + (N — Np); wyg = wy + s(N — Np) (1.2.34)

The steady-state complex susceptibility is then given by

. D+7;a()
—ia
1+ pD—i(0 —oD)’

x(w) = (1.2.35)

where a = I'Ny(|u|*TY /) (Fwo/0)/? determines the differential gain, 6 = (wy +
w — wy)T3 is a normalized frequency detuning, D = N/Ny — 1, and p = rNoT3
and o = sNyTY. The gain spectrum is determined as g(w) = (—wo/nc)I(x(w)),
where n is the refraction index of the Active Medium, and the additional change
in the refraction index is given by An = (1/2n)R(x(w)). In semiconductor media,
at difference with the conventional two-level system, the resulting gain spectrum
is not symmetric about its peak, and the gain peak no longer corresponds to zero
dispersion (see Figs. 1.7).

Moreover, the gain peak shifts towards larger frequencies as the carrier density
increases, as experimentally observed in the experiments at constant temperature
(Ref. [46]). As pointed out before, the asymmetry of the gain spectrum depends
only on the value of «p; the dependence on N of both 75 and w, leads only to
a variation of both the frequency of the gain peak and the gain bandwidth, but

the gain spectrum keeps a lorentzian shape. Moreover, because of band-filling,
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Figure 1.7: (right)Gain spectrum as a function of the normalized detuning # obtained for
p = 0.75 and 0 = 1.2 for ap = 0.9 (solid line) and oy = 0.7 (dashed line). Lines with no
symbols correspond to N = 1.99N; and lines with symbols to N = 1.79N;. (left) Dispersion
spectrum for the same parameters as above. The value p = 0.75 used in Fig. 1.7 implies that
the polarization decay rate increases five times when going from N = 0 to N = 2N, thus giving
about 80% reduction in the maximum gain due to both thermal and many-body effects; also,
the value 0 = 1.2 corresponds to the case where the frequency of the gain peak exhibits a
blueshift of about 7 nm when going from N = 0 to N = 2Ny. From Ref. [20].

the parameter g yields a carrier-induced shift in the frequency of the gain peak

even for s = 0. When r = s = 0, the gain peak occurs at

1
b= (D— ,/D2+ag) : (1.2.36)

so the frequency of the gain peak exhibits a blue-shift towards 6 = 0 as the
carrier density increases. However, the total shift in the frequency of the gain
peak in Fig. 1.7 contains also the contribution arising from ¢ # 0. The effective
« parameter can be identified with the phenomenological term defined by eqt.
1.2.19, which now depends on both the frequency and carrier density. In order to
match the observed values of «, it is crucial to take into account the dependence
on the carrier density of both w, and 75, otherwise o,y essentially corresponds
to detuning and hence it is restricted to small values.

The effective a factor has been computed for different injection levels as a

function of frequency, some of which are displayed in Fig. 1.8. Fig. 1.8 (left
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Figure 1.8: (left panel) acyss in the region of maximum gain of Fig. 1.8. (right panel) a.yss
obtained for p = 0.75 and ¢ = 1.0 for @ = 0.9 (solid line) and ag = 0.7 (dashed line). Lines
with no symbols correspond to N = 1.79N; and lines with symbols to N = 1.59N;. From
Ref. [20].

panel) shows « in the region close to the gain peak in Fig. 1.7, and for the same
parameter values; « is a uniformly decaying function of the normalized detuning
. However, in Fig. 1.8 (right panel) « shows a rather different behaviour, with
a very marked bump in the vicinity of the gain peak (now located around 6 = 0);

the existence of this bump has been experimentally observed in Ref. [47].

Amplified Spontaneous Emission (ASE) spectrum can be computed from eqts.
1.2.33 for different levels of current injection. Below threshold the stimulated-
emission contribution to the carrier density dynamics can be neglected and the
spontaneous emission is assumed being proportional to the carrier density and
homogeneously distributed through the entire laser modes spectrum. Then, the
amplified spontaneous-emission spectrum can be calculated easily from the evolu-
tion equations for the electric field and the non-linear polarization by expanding
the field in terms of the longitudinal-modes of the Fabry-Pérot laser. The result
is plot in Fig. 1.9; the longitudinal modal resonances are superimposed to the

asymmetric shape of the gain curve of the Active Medium (Refs. [46, 48]).
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Figure 1.9: Amplified Spontaneous Emission spectrum for the parameters in Fig. 1.9. The
upper panel corresponds to N = N;, while the lower panel corresponds to N = 1.99N;. The
modes are located symmetrically around # = 0 with an intermode spacing of §6 = 0.08. Note
that only about 100 modes on the 500 considered appear to effectively contribute to the ASE.
From Ref. [20].



o7

Equations 1.2.33, with boundary condition describing the laser cavity, can be
used to simulate the dynamical behavior of the semiconductor laser. This could
be useful to understand the observed general multi-mode behavior (see §I1.1.2)
of the semiconductor lasers, even when they are pumped far above threshold.
In fact, because of the extremely short intra-band carrier scattering, semicon-
ductor lasers have an homogeneously broadened gain profile and, therefore, they
are expected to exhibit mostly single-mode character. This is not confirmed ex-
perimentally. For pumping current close to the laser threshold, the semiconduc-
tor lasers optical spectra show several longitudinal-modes excited whose relative
power vary with the pump current. In index guided semiconductor lasers the
mode-suppression-ratio (M SR, the ratio between the main mode power and the
most intense side mode power) increases with the pumping current and, eventu-
ally, only one longitudinal-mode dominates on the others (a laser is said to be
single-mode when M SR exceed 20 dB). Gain guided lasers maintain their multi-
mode character far above threshold and additional technique need to be employed
to force a single-mode behavior. Moreover, even for largely pumped index guided
lasers, every laser instability (maybe induced by an external perturbation as it is
the case for the optical feedback) is coupled to a very rich multi-mode dynamics.
In the following paragraph we will describe the physical mechanisms that rule
the longitudinal-modes competition and we will show numerical results on the
multi-mode dynamics. The same effective two-level approach has been applied

to quantum-well lasers in Ref. [49]
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Multi-mode semiconductor laser dynamics

This paragraph is based on the paper by M.Homar, S.Balle, M. San Miguel, Optics Comun.

131, 380 (1996)

The number of lasing modes with significant power depends on the operating
conditions of the laser, and it is determined by several mechanism such as Sponta-
neous Emission Noise, Spatial Hole Burning (S H B), phase sensitive interactions
such as Four Wave Mizing (FW M) and Diffusion processes.

i)Spontaneous Emission Noise. It is well known that the rate of spontaneous-
emission into each cavity mode in semiconductor lasers is four or five orders of
magnitude larger than in both gas and solid state lasers. This, together with the
large gain rate of semiconductor active media, determines the multi-mode optical
spectra typical of the semiconductor laser when pumped close to the threshold
(Ref. [50]). The large amplified spontaneous emission is ”colored” by the comb of
the laser cavity modes lying below the gain curve (as shown in Fig. 1.9). Thus,
at currents near or slightly above threshold, the power carried by the mode at
the peak of the gain spectrum is comparable to the amplitude of the secondary
modes. These sides modes eventually saturate at large injection currents, as it
would occur normally in a homogenously broadened laser. Single-mode output
is achieved only at currents appreciably above threshold when the primary mode
power is substantially larger than the power of the secondary modes. Spontaneous
emission noise is the dominant mechanism for multi-mode excitation close to
the laser threshold; it becomes less relevant for pumping currents well above
threshold.

ii) Spatial Hole Burning, SH B The low reflectivity of the laser facets in edge-
emitting bulk devices prevents us for applying the uniform-field approximation,

as done in §1.1.4. Thus, the mode-to-mode coupling between the slow varying
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modal amplitudes (the term expressed by eqt. 1.1.38 in the first section) cannot
be neglected. This coupling term takes into account the competition between the
longitudinal-modes for the maximal gain via the modal profiles. In fact, despite
the field intensities are maximal at the laser facets to compensate the losses due to
the low reflectivities, each modal profile affects the longitudinal profile of carrier

density in a slightly different way.

In addition, the fast spatial oscillating term e?*? of the electric field inside
the Fabry-Pérot laser cavity, determines a population ”grating” along the cavity
axes. The electric field depletes the carriers in the location of the Active Medium
where the electric wave field has a trough, while does not affect the location in
correspondence with the nodes. Thus, each longitudinal-mode affect the spatial
dependence of the carrier density with a different wavelength fast varying term.
The longitudinal-modes compete for the maximal gain through the corresponding
grating generated in the carrier density profile. In §I.1.3 this coupling is repre-
sented by the sum between different modal components in eqts. 1.1.37 and it
is worthwhile to remark that it survives to the uniform-field approximation. In
absence of carrier diffusion this short range SHB is negligible only very close
to the laser threshold, while, further above threshold, it causes the excitation of
side modes, giving rise to multi-mode laser emission. Anyway, for semiconduc-
tor laser in general, it is less important than the SH B generated by the modal
profiles, since carrier diffusion is strong enough to wash out the grating effects in

the carrier density profile.

iii) Carrier Diffusion. As we have seen, Carrier Diffusion washes out the
population grating, limiting the SHB effects. Thus it contributes to enforce
single-mode emission, even at large pumping current values. However, smaller

values of the diffusion coefficient do not fully eliminate multi-mode emission far
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above threshold and it allows for several competing modes, leading to mode-

beating and mode-hopping.

In order to analyze the dynamics of the modes competition in semiconductor
lasers, let us consider the laser eqts. 1.2.33 where we inserted the phenomeno-
logical assumptions 1.2.34. As done for calculating the amplified spontaneous
emission spectrum a spatially distributed noise term £(z,t) is added to the po-
larization equation. This term acts as a polarization source and it models inde-
pendent spontaneous-emission process in different points of the cavity.

We can decompose the electric field amplitude into two counter-propagating

waves (Travelling-Wave description),
Az, 1) = At (2, t)e™ " + A7 (z,t)e e |

where AT (z,t) is the slowly varying envelope of the electric field propagating
forward and A~ (z, t) is the slowly varying envelope of the electric field propagating
backwards. The set of coupled equations for A*(z,t), AT(z,t), P(z,t) and D are
obtained as in Ref. [51]. The obtained set of equations including Travelling-
Wave equations for the field which must be solved in conjunction with boundary
conditions imposed by the cavity mirrors. This will result in a structure of the
field power spectrum without a priori assumptions on the laser longitudinal-mode
structure. Denoted by r; and ro the field amplitude reflectivities of the cavity
facets placed at z = 0 and z = /, respectively, the boundary conditions for the

field are:

AT (z=0,t) =r A (2 =0,t) A (z =4£,t) =1 AT (2 = £, 1)
(1.2.37)

together with the boundary condition for the longitudinal carrier density

0.D],_4,=0. (1.2.38)
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The spatial variations in polarization and carrier number over wavelength dis-

tances can be treated by means of a Fourier series expansion,

P(S, t) — gikez Z P(;)CZipkcz + e ikez Z P(;)e_zipkcz

D(Z,t) = D(O)(Z, t) +

WE

[D(P) ('Za t)eZipkcz + D(p) (Z, t)*efQipkcz] (1239)

p=1

These equations can be studied following the procedure in Ref. [51], truncating
the expansion after the first harmonic and keeping only the ”grating terms” p = 1.
This truncation gives rise to a set of coupled equations for A%, P(jOE), P(f), D)
and D(y).

Integration of traveling wave equations starting from random initial conditions
for the electric field and for various values of the injection current and carrier
diffusion constant, allows the dynamical analysis of the multi-mode dynamics. In
particular, the parameters influence on the mode competition dynamics can be
investigated. This work has been performed in Ref. [21].

A sample of the main different situations that can be found with this Traveling
Wave model is summarized in Fig. 1.10 where the time-evolution of the total
output power I(t) = |A*(z = £,t)|? and dominant frequency (inset) are shown for
different values of the injection current and of the carrier diffusion coefficient. The
crucial role of carrier diffusion is evident. For a diffusion A = 1.6 107° (top panel)
the laser reaches single-mode emission after a short transient . Residual chirping
associated with the carrier density modulation due to relaxation oscillations can
be observed in the dominant frequency (see inset). The same qualitative behavior
is observed for two levels of injection current, D = 1.1D;, or D = 1.8Dy,. For
lower carrier diffusion (A = 0.4 107°) (central and bottom panel) laser emission
becomes multi-mode, with a number of active modes that depends on the carrier
injection level. Close to threshold mode beating between two main modes is

observed in the total output power (central panel) with a fast modulation of I(¢)
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Figure 1.10: Time evolution of the total output power, I(t), for different levels of injection
current and diffusion coefficients: a)D = 1.8Dy;, and D, = 2cm?s™! (A = 1.6 107°); b)D =
1.1Dyp, and D, = 0.5¢cm?s™! (A = 0.4 107%); ¢)D = 1.8Dy;, and D, = 0.5cm?s~1. D, is the not
scaled version of the diffusion constant. In the inset we plot the frequency carrying the largest
power in the time-resolved optical spectrum for each case. From Ref. [21].
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Figure 1.11: upper panel) Output power associated with different active modes as a function
of time for D = 1.8 Dy, and A = 0.4 10~°. (The zero mode is considered the one closest to zero
frequency). (lower panel, Left): Time-resolved optical spectrum for the case D = 1.8Dy;, and
A = 0.41075. The power level is displayed in a time and frequency plot on a 16-level gray scale,
with black corresponding to the lowest value and white to the highest. Time runs from ¢ = 0
to t = 28 ns on the vertical axis while frequency runs from —2777.78 GHz to 0 GHz on the
horizontal axis. (lower panel, Right): selected samples of the time-resolved optical spectrum
taken over different time windows. The starting time for each window is displayed, and their
positions in the left panel indicated by arrows. From Ref. [21].
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at an oscillation frequency of 171 GHz corresponding to the longitudinal-mode
spacing. The two active modes compete but coexist at all times. Higher above
threshold (bottom panel) I(¢) displays a complicated sustained dynamics which
is associated with a recurrent hopping among four (and even five) active modes,
as can be observed in the inset.

A more direct description of the mode competition in the situation of Fig.
1.10 (lower panel) is given by looking at the output power associated with each
of the active modes (Fig. 1.11, upper panel). There are time windows where the
laser emits almost in a single mode (e. g. between 12 and 13 ns), but in other
time windows several longitudinal-modes are active. In general, the dominant
mode hops in a recurrent way, and it is worth noting that, differently to the
case in Fig. 1.10 (central panel), some of the active modes switch-on and off
without coexisting at all times. This mode hopping dynamics in can be better
explored by looking at the time-resolved optical spectrum, as shown in Fig. 1.11
(lower panel). Mode competition and hopping are clearly displayed, showing time
windows of quasi single-mode operation followed by mode hops and time windows
of mode coexistence. It is also evident the effects of frequency chirp associated
with transient relaxation oscillations as a drift in the positions of the modal peaks;
this effect is especially clear in the initial regime (before 9 ns, say), and it also
induces the characteristic chirp-induced broadening of the modal peaks in the

time-resolved optical spectrum.
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Figure 1.12: Typical VCSEL's structure.

1.3 The Vertical-Cavity Surface-Emitting Lasers
(VCSEL's)

The VCSEL's are semiconductor lasers where the cavity axis is orthogonal to
the semiconductor wafer layers (Refs. [52, 53]). The concept of a vertical cavity
structure together with the standard semiconductor growth technology allow the
creation, from a single wafer chip, of many VCSEL's arrays whose optical and
electrical properties homogeneity is assured (Ref. [54]). The parameters of each
array (number of elements, geometry, distance between elements, single address-
ability) are easily controllable during the manufacturing process. Apart from the
evident reduction of production costs comparing to conventional edge-emitting
laser arrays or single elements, the VCSEL's present many advantages also in
the optical/electrical performances: short cavity length (=~ 1um) ensuring single-

longitudinal-mode operation, threshold current typically of the order of few mA
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Figure 1.13: Standing wave intensity distribution in the central region of a VCSEL. The
active region thickness is one-quarter of the operating wavelength, divided by the refraction
index. Note the refraction index variation of the DBR layers. From Ref. [54]

due to their large gain and large mirrors reflectivity, a small divergence output
beam with high coherence and high spectral purity.

The VCSFEL's structure is shown in Fig. 1.12. The vertical cavity is formed
by DBR mirror consisting of alternating semiconductor layers of quarter-wave
thick high and low-refractive index. Because of the short active region, VCSFEL's
have lower round-trip gain than conventional edge-emitting lasers. In order to
lower the threshold current, large reflectivity is required for the laser cavity mir-
rors. Power reflectivity of ~ 99.9% is achieved by stacking together tens of DBR
pairs. The DBR mirrors clad a gain region composed by one or several quantum-
wells. For optimizing the modal gain the quantum-well structures are placed
at the antinodes of the standing-wave of the resonant longitudinal-mode of the
VCSEL cavity (Ref. [55]). Fig. 1.13 shows the standing-wave intensity distribu-
tion in the central region of a VCOSFEL (left) and a typical reflectivity spectrum
(right) for a GaAs MQW laser wafer (Ref. [54]).
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Figure 1.14: VCSEL structures: (a) VCSEL wafer; (b) gain-guided; (c) air-posted; (d)
buried heterostructure.

In order to confine the radiation in the plane orthogonal to the cavity axis,

several techniques are employed:

i) Gain-guiding: proton-implantation is employed to produce a surrounding large-
resistance region which drives the injected carriers into the active region (current
confinement) (Refs. [56, 57]). The large gain region generated at the center of
the proton-implanted region provides optical confinement.

ii) Index-guided VCSEL's use either mesa-etched, buried heterostructure, or na-
tive oxide processes to produce a transverse refractive index profile to induce

optical waveguiding. Air-post VCSEL's (Fig. 1.14(c)) (Ref. [58]) have strong
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waveguiding because the large refractive index difference between the heterostruc-
ture and the air. Weakly index-guided VCSFEL’s can be built, e.g., by re-growing
a cladding layer around the air-post structure with a lower refractive index than
the active region (Fig. 1.14(d)) (Ref. [59]). This structure, referred to as buried
heterostructure, allows for simultaneous current and optical confinement. An al-
ternative way of producing index-guided devices is through a native oxide process,
in which a specific layer of AlAs in the VCSFEL structure is selectively trans-
formed into a native oxide which has a low refractive index and a large resistivity

(Ref. [60]).

The effective VCSFEL's cavity length is of the order of one to a few times
the emission wavelength. Therefore, the longitudinal eigenmode separation is
of tens of nm, and only one longitudinal-mode falls within the gain spectrum.
VCSEL's are intrinsically single-longitudinal-mode devices. As a consequence
of this feature, the electrical and optical characteristics of VCSFEL's are strongly
affected by thermal effects. Both the cavity mode and the gain peak frequencies
shift as the temperature of the active region changes. The resonant frequency of
the cavity mode red-shifts with a rate of 0.5—1 A/C° (Refs. [61, 62, 63]) because
of the heat-induced changes in the background refraction index and, indirectly,
through temperature-dependent changes in the carrier number. The gain profile
red-shifts at ~ 3 A/C® because of bandgap shrinkage with temperature (Refs. [64,
65]). The different dependence rate on temperature yields, as current is increased,
a detuning of the gain peak with the cavity resonance and the gain available for
laser action decreases, inducing saturation of the output light. Joule heating is
strongly effective in VCSEL's because of the large series resistance resulting from
the DBR mirrors stack through which the current flows. large reflectivity mirrors
require sharp interfaces that increase their series resistance. This results in large

operating voltages and correspondingly large dissipated powers occur during CW
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Figure 1.15: (left) L-I characteristic for a 15 pm active-region diameter VCSEL taken at
different substrate temperatures (a) 39.0, (b) 31.5, (c) 23.0, (d) 15.5, (e) -1.0, (f) -10.3, and
(g) -19.8 CY; the inset shows the dependence of the maximum output power emitted by the
VCSEL for the labeled temperatures. (right) Dependence of the CW current (solid circles)
and bias voltage (open circles) at the lasing threshold on the substrate temperature. From
Ref. [35].

operation of the device. For most applications, the effects of temperature changes

on the device must be minimized.

Broad area VCSEL devices easily have a rather large Fresnel number which
favors the appearance of transverse patterns. Studies of the mode profile in the
near field and/or far field have been combined with spectral information taken
at low (Ref. [56]) and high resolution (Refs. [66, 67]) in order to analyze the
transverse-mode structure of VCSFEL's. transverse-modes of typical VCSEL's
are nearly Gauss-Laguerre or Gauss-Hermite (TEM) modes. The fundamental
transverse-mode, commonly termed as the T'E'My, mode, has a Gaussian beam
pattern. The sequence of appearance of transverse-modes in VCSEL's with
increasing current is, typically, similar for many structures. Emission in the
fundamental Gaussian transverse-mode occurs for current values just above the
threshold while higher-order transverse-modes can be successively excited as the

current is increased.
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1.3.1 Polarization characteristics of VCSFEL's

Contrary to the edge-emitters, VCSFEL's do not have a strong mechanism fixing
the polarization axis. The high degree of transverse symmetry of the VCSEL
cavity and the cubic crystal impose no constraints on any type of polarization
(linear, circular, elliptical) or the preference of the polarization direction. On the
other hand, the presence of linear anisotropies in the VCSFEL cavity breaks the
transverse symmetry favoring one polarization axis. Although several VCSFEL's
display stable linearly polarization emission close to threshold (Refs. [68, 69]), the
polarization state of the emitted light is, in many cases, dependent on the injected
current. Many experiments have shown that VCSFEL's may switch from emit-
ting linearly polarized light to emitting polarized light of the orthogonal linear
polarization as the current is changed above the lasing threshold, a phenomenon
known as polarization switching. Some authors have also reported polarization
bistability (Ref. [70]) and hysteresis of the switching current (Ref. [71]). Emis-
sion on both linearly polarized modes (polarization coexistence) with different
emission frequencies (Refs. [68, 72|), as well as in both linearly polarized modes
with the same emission frequency (elliptically polarized light) (Ref. [73]) have
also been reported. All these polarization behaviors are observed to occur close
to threshold within the fundamental transverse-mode regime. For larger injec-
tion currents, the excitation of high-order transverse-modes may be accompanied
by changes in the polarization state of the output light. A commonly observed
feature in VCSEL's is that the first order transverse-mode tends to lase in the
polarization orthogonal to that of the fundamental T'E'Myy mode. For larger cur-
rents, the power in the dominant polarization typically saturates while the power
in the orthogonal polarization rapidly increases (Refs. [72, 74]). Abrupt polar-
ization switching between high-order modes has also been observed (Ref. [72]).

Polarization-resolved measurement of the VCSFEL's optical spectrum close to
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threshold, have revealed a splitting of the operating frequency of the two polariza-
tion modes. In some cases the two frequencies are unresolved within experimental
accuracy (< 2 —3 GHz) (Refs. [66, 72]). In other works the reported frequency
separations are about 10 — 12 GHz (Refs. [68, 70, 75]) while a wide range, from
5 to 20 GHz, has also been reported (Ref. [76]). The same splitting has been
found, for larger current, for the polarization components of the same high-order
mode (Ref. [77]). These features indicate the presence of linear birefringence (or
linear phase anisotropy) in the VCSEL cavity which breaks the frequency de-
generacy of the transverse-modes with orthogonal polarizations. Therefore, linear
birefringence and VCSEL's anisotropies are device characteristics affecting the

polarization behavior.

Several efforts have been made to control the VCSFEL's polarization by play-
ing with these parameters (Ref. [78]). Solutions proposed were based on anisotropic
transverse cavity geometries (Ref. [68]), anisotropic stress produced from an ellip-
tical etched hole (Ref. [79]), anisotropic gain from a fractional layer superlattice
(Ref. [80]), polarization selective optical feedback (Ref. [81]). Woerdman and
coworkers developed an experimental all-optical technique, referred to as the hot-
spot technique, to manipulate the VCSEL birefringence almost at will in either
a reversible (Ref. [82]) or a permanent (Ref. [83]) way. Using this technique, this
group performed a systematic experimental study of VCSEL anisotropies which
allowed the identification of the physical mechanisms for the transverse symme-
try breaking. From these studies, it turns out that the dominant anisotropy in
VCSEL's is a linear birefringence between the preferred crystal axes, which is

caused by both the elasto-optic (Ref. [82]) and the electro-optic (Ref. [76]) effects.

An explanation for the polarization state selection in the fundamental mode
of VCSEL's has been given in terms of the degree of matching between the gain

peak and the polarization mode frequencies (Ref. [84]). The birefringence induced
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splitting of the mode frequencies leads to different gains for the two modes. This
explication was supported by the analysis of the VCSFEL's emission as the mean
frequency of the two polarization modes was shifted all along the gain curve
and as the strain induced anisotropies was varied, changing both the frequency
splitting and the gain differences for the modes. Within this framework stable
polarization emission occurs when the gain difference favors the same polarization
mode at any current value (Ref. [84]). Polarization switching is expected when
there is an exchange of the relative gain of the two polarized modes as the current
is increased (Ref. [72]). Coexistence of both linearly polarized states occurs if the
gain difference is small (small birefringence). Several theoretical works have been
developed to include in a coherent model the polarization modes competition
for the gain together with other experimentally observed polarization features

(Ref. [85]).

From a more fundamental point of view, the polarization state of light emitted
by a laser depends on both the angular momentum of the quantum states involved
in the material transitions and on the laser cavity. Emission of a quantum of light
(a photon) with right (left) circular polarization corresponds to a transition in
which the projection of the total material angular momentum on the direction
of propagation changes by +1 (—1) in units of 5. However, the anisotropies,
geometry and waveguiding effects of the cavity can lead to a preference for a
particular polarization state of the laser light. These two ingredients can compete

or be complementary, their relative importance depending on the type of laser.

A fundamental model, called Spin Flip Model (SFM), has been developed by
San Miguel, Feng, and Moloney in Ref. [86] which considers the polarization of
the laser field by including the magnetic sublevels of the conduction and valence
bands in unstrained quantum-well VCSEL media. The SFM model considers

the coupling of the vector optical field to the two allowed transitions between the
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conduction band and the heavy hole band in unstrained quantum-well media. The
evolution equation for the vector optical field of circularly polarized components
is derived from Maxwell’s equations for a gain-guided VCSFEL, and includes
transverse effects through the optical diffraction term. The evolution equations
for the material dipole densities and the carrier densities for each transition are
derived using a density matrix formalism, and extended spatially in the transverse
plane by considering carrier diffusion. Coupling between the circularly left and
right polarized transitions is assumed to occur via spin-flip relaxation processes.
The polarization and transverse-mode dynamics of VCSFEL's are described in
terms of two coupled sets of semiclassical two-level Maxwell-Bloch equations, one
for each circularly polarized transition.

Regalado et al. in Refs. [87, 88] have used the SFM for analyzing the polar-
ization properties of a VCSFEL emitting on the fundamental transverse-mode.
The single-mode operation allows the derivation of a rate-equations model which
includes the characteristic cavity anisotropies of VCSFEL's, birefringence and
dichroism, as well as the saturable dispersion through the a-factor. This sim-
ple model describes the allowed linearly and elliptically polarized steady-states.
Moreover, the stability analysis of these solutions allows the prediction of the
different polarization behaviors as the VCSFEL parameters are changed. We de-
scribe the main results of this approach in the following paragraph, following the

Ref. [88].
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Figure 1.16: Four level model for polarization dynamics in VCSEL's. From Ref. [88]

Rate-equation model for polarization dynamics in VCSFELs*

* this paragraph is based on the paper: J. Martin-Regalado, M. San Miguel, N. B. Abraham, and
F. Prati, “Polarization Properties of Vertical-Cavity Surface-Emitting Lasers”, IEEE Journal

of Quantum Electronics 33, 765 (1997)

Fig. 1.16 shows the schematic band structure of quantum well VCSEL's.
From this scheme, applying a rate-equations approach is possible to derive the
following equations valid for a single transverse-mode operating devices. A more
rigorous derivation can be performed from the SEM (Ref. [86]) after introducing
the simplification of single transverse-mode operation and after the adiabatical
elimination of the material dipole polarization. Then, for fundamental transverse-

mode operation, VCSFEL's equations read:

Fy = k(l+ia)(D+d—1)Fy — (v, + ivp) Fy
D = —y(D—u) =D +d)|Fs* = y(D —d)|F|*
d = = =D+ d)|Fsf? + (D - d)|F_P (131)
where Fy is the scaled version of the slowly varying amplitudes of the left (—) and

right (+) circularly-polarized optical fields. D = (D, + D_)/2 = a(N — Ny)/x,

being N — N, the total carrier distribution referred to the transparency value Nj.
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d= (D, — D_)/2 = an/k, being n is the difference of the carrier distributions
associated with the transitions o, and o_ respectively. x is the field decay rate,
« is the linewidth enhancement factor, v is the decay rate of the total carrier
population, 4 is the injection current normalized to threshold, and ~, is the decay
rate of the carrier population difference through spin-flip relaxation processes,
Y% = 0, 7, = 0 are, respectively, the linear phase anisotropy and the linear
amplitude anisotropy. Eqts. 1.3.1 may be written in terms of the orthogonal

linear components of the electric field:

F, +F_ .
— F=—j-T ~ = 1.3.2
V2 N (132)

Typically y~! ~ 1 ns and k~! ~ 1 ps and the spin mixing processes described by

r F,—F_

vs occur on an intermediate time-scale. Hence, the dynamics of d cannot be in
principle adiabatically eliminated.

The equations 1.3.1 for v, = 0, 7, = 0 describe polarization dynamics in a
perfect isotropic VCSFEL, and predicts the preference of quantum-well material
for linearly polarized emission. The orientation of the linearly polarized modes is
not fixed by the non-linear field-matter interaction in this model. Therefore, any
amount of linear birefringence or linear-gain anisotropy resulting from material or
cavity anisotropies restricts the linearly polarized solutions to one of two specific
states along the linear anisotropy axes, that we call here the Z-and ¢ directions.

The parameter v, represents the effect of a different index of refraction (im-
plying different emission frequency) for each linear polarization as a consequence
of the birefringency of the crystal. v, leads to a frequency difference of -, between
the 2— and ¢-polarized solutions. In addition, the two polarization modes may
have a slightly different gain-to-loss ratio that can be related to the anisotropic
gain properties of the crystal, the slightly different position of the frequencies of
the modes with respect to the gain profile, and/or different cavity geometries for

the differently polarized modes. These effects are included in the parameter 7,
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which leads to different thresholds for the linearly polarized solutions. The values
of these parameters depend critically on VCSEL designs.
The system of equations 1.3.1 has a variety of stationary solutions. The arbitrary

steady-state solution reads
F, = Quefw+t¥)+i0 D — po d=d, (1.3.3)

where 6 is the global phase that can be ignored or set to zero without loss of gener-
ality, and v is a relative phase which indicates the direction of linear polarization
in the transverse plane of the laser.

In absence of anisotropies (7, = 7, =0) the stable solutions are linearly polar-
ized but oriented in an arbitrary direction of the quantum-well plane (Ref. [86]).
For 7, # 0, and when there are no amplitude (gain or loss) anisotropies (y, = 0),
we obtain four types of steady-state solutions. For each of these solutions the
phase anisotropy breaks the rotational invariance of the orientation of the field
(polarization) vector, that is, the relative phase ¢ is no longer arbitrary. Two of
these types of solutions have orthogonal linear polarization. We will call these
states the £— and g-polarized solutions (modes).

For the linearly polarized modes the circularly polarized components have
equal amplitudes and frequencies, but differ of 7/2 in the relative phase . The
other two types of solutions are elliptically polarized solutions for which the cir-
cularly polarized components have equal frequencies but different amplitudes.
The stability analysis of these stationary solutions allows the determination of
the lasing polarization state as the parameters are changed. We have plotted
in Fig. 1.17 the stability domains for the linearly z- and ¢-polarized solutions
in the (7, — w) stability diagram. The Z-polarized solution is always stable for
any current p < p,, which occurs below the solid line. The ¢-polarized solution
is stable when g > p,, which occurs to the left of the dashed line. Therefore,

the stability diagram is divided into four different regions with different stability
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Figure 1.17: Stability diagram for the steady-state solutions. The #-polarized state is stable
below the continuous line (u,), while the g-polarized state is stable to the left of the dashed
line (u,). Elliptically polarized solutions are stable within the narrow region between the solid
line and the stars. The following parameters have been used: £ = 300 ns™!, v = 1 ns~!, vy,=
50 ns~! and a = 3. From Ref. [88].

for the linearly polarized solutions: region I, where both linearly polarized states
are stable, region II where both are unstable, and regions III and IV where only
Z-or g-polarized solutions are stable, respectively. The stability of the z— and
y-polarized solutions can be interchanged by changing the sign of 7,. Finally,
the linear stability of elliptically polarized solutions has also been examined. The
elliptically polarized solution is stable in a narrow domain of parameters in which

1 is close to but larger than p,.

More complicate is the case where anistropies both in amplitude and in phase
are considered (7, # 0). In this case the Z— and g-polarized modes have different
thresholds. Moreover, these linear polarized solutions have different steady-state
amplitudes and different optical frequencies even in absence of phase anisotropy.
We consider two cases in which a small amplitude anisotropy is introduced in
the system. In the first case 7, is negative (Fig. 1.18, left) and Z-polarized

emission is ”favored” because its lasing threshold is lower than the threshold of
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Figure 1.18: (left) Stability diagram for v, =-0.1v; other parameters as in Fig. 1.17. The
Z-polarized mode has the lowest threshold. (right) Stability diagram for v, =0.1+; other pa-
rameters as in Fig. 1.17. §-polarized mode has the lowest threshold. From Ref. [88].

the orthogonal polarization state. The other situation is when 7, is positive (Fig.
1.18, right) and the g-polarization is ”favored” because its lasing threshold is

lower than that of the Z-polarized state.

In the stability diagram for 7, = —0.1y (shown in Fig. 1.18 (left)), the -
polarized solution is stable below the solid line, while the g-polarized solution is
stable inside the zone bounded by the dashed curves. There are zones in which
only one mode is stable, zones of bistability and zones in which neither linearly
polarized mode is stable. As the birefringence (7,) goes to zero, only the Z-
polarized solution is stable. In a large domain given roughly by x > 1.1 and
0.03 < 7,/7v < 8.0 only the g-polarized mode is stable, indicating that despite the
Z-polarized solution is favored by the gain anisotropy, the emission will switch
to y-polarized emission as the current is increased near threshold, an effect of
the combination of saturable dispersion and birefringence similar to that which
appeared in Fig. 1.17. In the stability diagram for 7, = 0.17 (shown in Fig. 1.18

(right)), the Z-polarized solution is stable in the region between the solid curves,
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while the y-polarized solution is stable to the left and below the dashed curve.
As in Fig. 1.18 (left) there are also zones where either one, both or none of the
linearly polarized states are stable. As the birefringence (-y,) goes to zero, only
the g-polarized (lower threshold) solution is stable. For -, > 10.0y and as the
current is increased, there is a switching of stability from the mode with larger
gain-to-loss ratio (y-polarized mode) in favor of the weaker mode (Z-polarized
mode).

The main difference between the situation with amplitude anisotropy and
the case of isotropic gain of Fig. 1.17 is the different thresholds of the two
modes. The somewhat unexpected consequence is that when the injection current
is increased, the weaker mode does not always gain stability where the solution
exists. Most strikingly the weak mode does not gain stability for any value of the
current when the birefringence is small. These two effects are those which indicate
the importance of the gain anisotropy, giving stability only to the mode with
the larger gain-to-loss ratio. However, important zones remain near threshold,
accessible for typical values of many VCSFEL's, in which the saturable dispersion
and the birefringence combine to induce switching to the mode with the lower

gain-to-loss ratio.



80



Chapter 2

The Edge-emitting
semiconductor lasers with optical
feedback

In this chapter we report on the experimental characterization of semiconductor
edge-emitting lasers with optical feedback. The main issue of our work is the
analysis of the Low-Frequency Fluctuations (LFF) phenomenon, appearing for
moderate-to-strong feedback levels. Our investigation is devoted to shed light on
this instability, both on its dynamical nature and on the physical mechanism at

its origin.

In the first section we describe the experimental set-up and the main char-
acteristics of the solitary laser. We also define the control parameters and we
specify the parameter ranges that we have experimentally explored. In the sec-
ond section we provide an overview of the dynamical regimes the system exhibits
as the control parameters are scanned, LF'F' phenomenon is then located in the
general parameter-space. In the third section we present the experimental char-
acterization of the LF'F phenomenology. Then (section four), we argue, from
non-standard experimental test, the dynamical origin of this phenomenon. We

demonstrate experimentally that the semiconductor laser with optical feedback
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behaves like an excitable-medium and we clarify the role of noise in the LF'F-
instability. Moreover, by controlling the noise level, we provide the first experi-
mental evidence of Coherence Resonance in an optical system.

The second part of the experimental work, devoted to the identification of
the physical mechanism at the origin of LF'F, is presented in section five. In
order to resolve the fast time-scales of semiconductor laser dynamics a monitoring
system with high bandwidth is required. We have employed this system also for
monitoring the spectral-resolved intensity output of the laser. In this way the
intensities of the internal-cavity-modes active during the LF F-instability can also
be monitored with high time-resolution. Such measurements allow us to identify
unambiguously the role of laser modes in the LF F-instability. In section six we
compare our results with the models in the literature. Finally, in section seven,
we report on the experiment with frequency-selective optical feedback, gaining

further insights into the physical mechanism at the origin of LF'F'.
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2.1 Preliminary considerations

The experiments described in the following sections have been performed on a
time duration of three years and, of course, many different kinds of laser devices
were used. In the following experimental reports we describe just the general
features, ignoring the details relative to the particular kind of device. For this
reason we do not trace systematically the device characteristics, unless when it
is important to explain differences from the ”standard” behavior. In this case
Appendix A provides detailed information on each device used. For several rea-
sons, mainly historical, we assume as standard the behavior obtained with the
edge-emitting laser Hitachi’™ HLP 1400. In the feedback literature, this laser is
the most used in the experiments and its characteristics are the most referenced

in the theoretical works.

2.1.1 Experimental Set-up

The basic experimental set-up configuration used is the one showed in Fig. 2.1.
The stability of the temperature of the laser submount is better than 0.01°C. An
AR-coated collimator is placed at the laser output in order to reduce the beam
divergence. An external mirror is placed in front of the laser in order to re-inject
into the laser cavity part of the light emitted. This distance can be varied between
0.1 m and 1.0 m. The intensity-output is detected by 2—3 G H z bandwidth silicon
avalanche photodiodes. The signal is analyzed by a spectrum analyzer (22 GHz
bandwidth), and a digital oscilloscope (500 M Hz analogue bandwidth). Part of
the output beam is reflected into a scanning Fabry-Pérot analyzer to check the
spectral characteristics of the laser output. An Acousto-Optic Modulator controls

the feedback level.
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Figure 2.1: Experimental Set up: L lens, S scope, PG pulse generator, PS power supply, FP
Fabry-Pérot interferometer, APD Avalanche Photodiode, C collimating lens, BS beam splitter,
AOM acousto-optic modulator M mirror, DS digital scope, SA spectrum analyzer, A microwave
amplifier, T T-coupler

2.1.2 The solitary laser

In our experiments the most used device is the commercial Hitachi'™ HLP
1400 edge-emitting laser whose active region is made of GaAlAs. The emission
wavelength is around 840 nm, the cavity length is approximately 300 pum and
the frequency separation between the longitudinal-mode is 125 GH z. The power
reflectivity of the cavity mirrors is defined by the index gap semiconductor/air
and it is R ~ 35%. In Fig. 2.2 we show the Light Output vs. Pumping Current
Intensity (L/I) curve of one of this laser with and without optical feedback and
in Fig. 2.3 we show the noise spectrum and the optical spectrum of the same laser
without feedback for different levels of pumping current. We can notice that, in

the case shown, the solitary laser threshold Iy, s, is at 48 mA.

The laser without optical feedback operates in a single-longitudinal-mode

(MSR > 20 dB) for currents above 51.8 mA. For lower current values several
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Figure 2.2: Light Output / Pumping Current Intensity curves for the solitary laser and laser
with feedback (darker trace).

longitudinal-modes are active. We can notice that the mode-suppression-ratio
increases with increasing the pump, as the spontaneous-emission noise relevance
decreases (see §1.2.4).

The impact of the pumping current on the laser emission characteristics is
two-fold: it controls the carrier density level in the active region and it affects
the temperature of the active region by Joule heating.

The temperature changes modify both the band structure of the semiconduc-
tor and the refractive index of the active medium. The carrier distribution in
the conduction band is affected by the temperature according to the Fermi-Dirac
distribution:

dN 1
a8 = O e iE = Eyo) /KT (21.1)

where p.(FE) is the conduction-band density of states and E is measured from

the bottom of the conduction band. In a bulk system, like the laser considered

here, p.(E) = 4%(2,%)3/2\/1_?, while in a quantum-well laser: p.(E) = %3¢, An

expression analogous to 2.1.1 describes the hole distribution in the valence band.
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According to 2.1.1, the increasing of the temperature determines a redistribution
of the carrier towards higher energy states. As a consequence, in a bulk system,
because of the dependence of the conduction-band density of states on the energy,
the distribution peak lowers and shifts to smaller energy. Therefore, for increasing
temperature, the gain peak decreases and red-shifts, while the gain curve broadens
on the high energy side. In a quantum well laser, because of the constant density
of states, the distribution peak is at the edge of the band, where the carrier
density is affected only at large temperature. Hence, quantum well lasers are less

sensible to temperature increasing.

The refractive index of the active medium is affected by temperature changes.
For GaAs the temperature coefficient of the refractive index of the unpumped
material is 5.5 x 107 /K. Since the index of refraction increases, the comb of
cavity resonant frequencies red-shifts. The decrease of the frequency 1y depends
on the internal-cavity order, according to: dﬁ = —%", being p the unpumped
index of refraction of the active medium. The frequency modal separation A is
also affected: % = —%“. Calling j the order of the resonance v, the shift rate
of vy with a variation in the index of refraction is j times the shifting rate of
A. The shift rate of » and A with the pumping rate because of thermal effects,
depends on the thermal mass of the laser system. Typical values are 40K /W for

GaAs/Al,Gay_,As DH lasers.

The increase of carrier density in the active region, as mentioned in §1.2.4,
modifies the band structure affecting the real and the imaginary part of semicon-
ductor susceptibility. Band-filling determines, in bulk lasers, a blue-shift and an
increase of the gain peak as well as a broadening of the gain curve towards the
high energy side. Band-gap re-normalization, a many-body effect arising from the
screened Coulomb interaction between electrons and hole, determines a red-shift

of the gain peak. The gain curve shifts to the red, thus decreasing the frequency
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of the band edge. For standard carrier densities (= 10'®/cm?), if the carrier
density is increased without inducing Joule heating of the active region (perfect
thermal stabilization of the device), the band-filling effect is dominant.

Band-filling and many-body effects affect also the refraction index of the semi-
conductor medium, as shown by the « factor. In §1.2.4 we have seen that ay
changes depending on the detuning between the field frequency and the band-gap.
For long cavity lasers as the Hitachi’™™ HLP1400, the natural lasing frequency
is very close to the gain peak and the above mentioned detuning is negligible.
Then, « is positive and the increase of carrier density determines a decrease of
the refraction index and, as a consequence, a blue-shift of the lasing frequency.
In VCSFEL's, the short cavity allows for lasing frequency very detuned respect to
the gain curve. When the detuning is large and positive, o takes negative value
and the lasing frequency red-shifts with increasing carrier density.

As the laser pumping current is increased, the carrier density in the active
region increases and, at the same time, the semiconductor medium heats up.
In Fig. 2.3 the dominant feature is the red-shifting effects of the gain peak;
warming up effects appear to dominate on band-filling effects. For low current
levels, the gain curve is evidenced by the colored spontaneous emission at the
resonant frequencies of the laser cavity. The modal power envelope shifts to the
red as current is increased (see the change from 49.2 mA to 49.8 mA). When
the laser is single-mode, the gain peak shifting induces mode hops to the closest
red detuned longitudinal-mode as the current is increased (see the jump at 51.8
mA). The red-shift rate could be estimated to be 15 GHz/mA (0.36 A/mA).
Finally, we remark that the shift of the cavity resonant frequencies is negligible
compared to the shift of the gain curve. As a consequence, the shift in lasing
frequency appears as jumps between consecutive higher wavelength modes rather

than a continuous shift.



88

—10

—30F

—40F

Power spectrum noise (dB)

—70

49.2 mA

1000 2000
Frequency (MHz)

3000

—10
—20¢

—30F

—50

—60

Power spectrum noise (dB)
|
~
o

-70

49.8 mA

1000 2000
Frequency (MHz)

3000

—10
—20F

=30¢F

—50F

—60

Power spectrum noise (dB)
|
~
o

-70

50.5 mA

1000 2000
Frequency (MHz)

51.0 mA

3000

—10

—20F

—30F

—50F

—60

Power spectrum noise (dB)
|
~
o

-70

Follows in the

1000 2000
Frequency (MHz)

next page —»

3000

Intensity (arb. units), atten X20 Intensity (arb. units), atten X5 Intensity (arb. units), atten X2

Intensity (arb. units), atten X50

100

50

200

150

200

150

100

50

100

50

<

RED Frequency 1125 GHz/div BLUE

RED Frequency 1125 GHz/div BLUE

RED Frequency 1125 GHz/div BLUE



89

51.8 mA )
. —10 ‘ ‘ S 140F ‘ ‘ ‘ ‘ ]
[aa) > n ! ! | | ]
3,207 3 g 120 - 3 |
] = L ' ]
2 © 100F 1 E
g —30F 1 = r : ]
0 = N —
€ 2 80 1 ]
S —40F ER E | B
3 s °0F | E
& 50 15 a0k 3 1
o > L . . ]
%760 1 & 20p ‘ E
C F " ' ' ' n
& -70 s ‘ B o S S S S S
0 1000 2000 3000 =
Frequency (MHz) RED Frequency 1125 GHz/div BLUE
52.3 mA )
~ —10 ' i 010 I I A AR RS
o = t i i i i g
© " " ' '
— —20F 105 [ ! : | | ]
B 5190 i ! 3 3 ]
e —30f T : : : : 1
4] | | | | ]
§74o— i S 100F i i i i -
I s B 3 ! ! 3 1
a =50 E = [ 1 | 1 | ]
. 50 | | | | .
¢ -60 = r ! ‘ ! ! 4
g 2 r : : : : ]
& -70 ‘ ‘ Q@ 0l e ]
0 1000 2000 3000 =
Frequency (MHz) RED Frequency 1125 GHz/div BLUE
56.7 mA )
~ —10 ' i B 120 [T T T T T T T T
o =< ! ! ! ! ]
— 20 7§ 100 ! ! ! ! E
[ - | | | ' 4
ks = ! ! ! ! 1
e —30f 7 . 80 : : : : E
@ i i i i ]
S = | | | | B
o —40p E s 60 : : : : .
5 ‘ s s s s :
8 —50F E 2 40 ; ; | | ]
7 S . ; : : 4
& _70 ‘ ‘ S obel
0 1000 2000 3000 ©
Frequency (MHz) RED Frequency 1125 GHz/div BLUE
81.5 mA 2
__—10 ‘ ‘ S {50 [T T T T T T T T
g o0 : : : : ]
< _o0f = I : | 1
v 9 ; ‘ ‘
2 = r ! ! ! b
5 ; ‘ ‘
© -30F E FWOOT 1l
£ 2 b 1 | I ]
5 -0} iz I | | | 1
3 > L 1 J
& —50F 1 € s0p : : :
N o L : : : ]
§76OWM,W%’ 2 [ ! ! ]
(o} @ L | | | | |
& -70 ‘ ‘ & 0 ‘ ‘ ‘ ‘
0 1000 2000 3000 =
Frequency (MHz) RED Frequency 1125 GHz/div BLUE

Figure 2.3: Solitary laser emission characteristics vs. Pumping Current: Power Spectrum
and Optical Spectrum.
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2.1.3 Definition and measures of the parameters

In the feedback configuration there are four main parameters that could be
changed: the pumping current, the feedback level, the external-cavity length
and the feedback phase. The pumping current is changed by the power supply.
The cavity length is changed on a coarse scale by placing the external mirror at
different distances from the laser. The feedback phase is controlled by wavelength
tuning of the external-cavity length, obtained by moving the external mirror by
a piezo-electric positioner.

The amount of feedback depends on the optical components inside the external-
cavity (reflectivity of the external-cavity mirror, beam splitters inside the external-
cavity, etc.) and on a coupling factor taking into account the quality of the align-
ment and of the mode matching between the emitted and the returned beams.
The mode matching is controlled by acting on the collimating lens close to the
laser cavity, the alignment is controlled by the micro-metric screws that tilt the
external mirror. Experimental groups define and measure the amount of light
fed back into the laser in different ways. In order to make comparisons between
different experimental and theoretical works described in the literature, it is op-
portune to revise the different ways to quantify the feedback level. In general, the

feedback is described by a delay term added to the solitary laser rate equation:

FE(t—7) (2.1.2)

£

where 7 is the time delay because of an external cavity round-trip (;), being [

the external-cavity length and F is the feedback rate, defined as:

_ 1- Rl Rewt

r Tin Rl

(2.1.3)

being R; the power reflectivity of the laser mirror where the light is fed back,

T.n the laser cavity round trip time and R.,; the effective power reflectivity of
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the external mirror. R.;; is an effective term including all the losses experienced
by the field in the external-cavity, because of the optics inside the cavity, to the
feedback beam mode matching and alignment. Then, the real system is described
simply as the solitary laser plus an external mirror of reflectivity R,;. In fact,
R..; gives the power ratio between the light power emitted by the laser and the
light power returned into the laser cavity. The feedback level, k2, is defined as
the ratio between the light inside the laser and the light returned into the laser

cavity. It is normally expressed in dB and it is related to F by:
K2 = (FTin) (2.1.4)

In the feedback literature the three parameters f, k2, or R.;: are the most com-
monly used to quantify the feedback level.

Experimentally it is difficult to estimate the real fraction of light that is re-
injected into the laser. One could measure easily the ratio between the light power
emitted by the solitary laser and then, the light returned just before the collima-
tor, like in Ref. [89], but the losses for the coupling between the laser and the
external field (collimator) are not taken into account. A possible way to quantify
the coupling ratio between laser and collimator is proposed in Refs. [90, 91], where
the solitary laser light power is measured before and after the collimator placed in
its working position. In this way the laser/collimator coupling ratio R, is mea-
sured and it is assumed to be the same even for the reversed propagation path of
the field. Calling R.,, the power ratio between the light returned to the collimator
by the external-cavity and the light transmitted by the collimator, the fraction of
light returned into the laser is estimated to be Rez = Reoupi * Reaw * Reoupi- In fact,
this measurement gives just a rough estimation of the collimator/laser coupling
coefficient: the problem of mode matching between the returned beam and the
laser cavity is not taken into account by the measuring detector. This is proven

by modifying slightly the laser/collimator distance around the position for which
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the beam is focused onto the external mirror: the measure of the coupling ratio
by a detector (active region diameter larger than 0.5 mm) is not significantly
affected while, in the system, the feedback level changes dramatically.

In order to quantify the feedback level we have preferred to use an indirect
method where, rather than measuring the light fed back, we have measured the
feedback effects in the laser characteristics. In fact, when a laser is subjected
to optical feedback, the threshold decreases linearly, on a wide feedback range,
with the feedback rate F, since re-injecting back into the laser cavity part of
the light emitted is equivalent to reducing the losses of the laser. Using the rate
eqts. 1.2.27, the re-injected field term 2.1.2 changes the level of the total losses
1/7,. If the external-cavity is at least two orders of magnitude longer than the
optical length of the laser cavity, the phase effect of the feedback is negligible
on the system output power (see the next section or Refs. [10, 92]). Therefore
we can assume the maximum constructive interference between the returned field
and the field in the cavity and, according to 1.2.27 with 2.1.2, we have the new
threshold condition: G = 1/7, — 2F . Calling Iy feeq the current threshold of the
system with feedback, we have:

Tinsol = Tin, jeed -9 F (2.1.5)
Ith,sol 1/7-17

that holds if 1/7,(Iin, feea) = 1/7p(Iin so1), i-€. if aune does not change a lot with
current. Eqt. 2.1.5 enables us to relate the threshold reduction with the other
parameters used to quantify the feedback strength. In our experiments we express

the feedback level with the threshold reduction induced (in percentage) &:

I S0 — 1 ee
EZ [100 « ( th,sol th,f d)]%

2.1.6
Ith,sol ( )

Since this measure involves the effect of the feedback on the laser, it takes into

account all the losses suffered by the light in traveling in the external-cavity.
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2.1.4 Feedback level setting: alignment condition and mode-
matching

Once the external-cavity mirror is in place and the collimating lens at its working
distance from the laser, the alignment between the feedback beam and the laser
is optimized by tilting the external mirror until reaching the position at which
the feedback level is maximum (minimum laser threshold). One may think that
the feedback level may be changed by tilting the external mirror, i.e. modifying
the feedback beam alignment quality. In fact, by this method other effects are
introduced as well. The misalignment between the returned and emitted beams
could introduce multiple pass resonances in the external-cavity, due to the fact
that the beam is reflected by the chip substrate surface, one or several times,
before returning into the laser cavity (Refs. [11, 93, 94]). Anyway, the exper-
imental investigation of the system behavior as the external mirror is tilted is
exposed in Ref. [95]. Another effect that is possibly introduced is an asymmetry
in the re-injected beam profile in the active region, with the consequence of a

inhomogeneous feedback profile through the active medium.

Once found the best alignment, the feedback level may be improved further
by changing the position of the collimating lens. It turned out that the feedback
level depends critically on lens focusing point (see Ref. [11]) and it is maximized
when the collimating lens is focusing the laser beam on the surface of the external
mirror. Since the cavity is symmetric around the external mirror, beam focusing
on the mirror surface implies that the returned beam at the laser facet is the
image of the beam at the emission source. The fact that this method realizes
a better mode matching than beam collimation is probably due to the strong
astigmatism of the laser beam. In fact, even setting the collimator at its working
point, the collimation is never perfect and the beam spreads slightly as it travels

inside the external cavity.
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In our experiment we have always maintained perfect alignment and mode match-
ing condition.

Since we want to study the effect of the delayed field re-injection, without any
spatial effect spuriously coupled, we do not tilt the external mirror in order to
control the feedback level. For the same reason, we have always set the position
of the collimators in order to have a perfect mode matching between the emitted
and the re-injected fields. We have changed the feedback level using the methods
described in the Appendix A.5.1.

Many experimental works in the literature show set-up where the feedback is
applied onto the back laser facet. In some devices, the laser chip is mounted on
open mounting that enables the propagation of the back emission light (typically
Hitachi™ HLP 1400). Since the laser chip has not the back facet on the edge of
the mounting, the emitted light, partly reflected by the mounting base, interferes
with itself, exactly as in a Lloyd interferometer. The consequence is that the
back beam presents interference fringes. For this reason we strongly dislike the
experimental configuration using such a beam as feedback beam. In our opinion,
in such configuration, it is impossible to guarantee mode matching and, because
of the interference fringes, frequency non-selective feedback. On the other hand,
this back beam, once properly focused, is very useful for the detection of the
output power of the system.

In our feedback experiment we have explored feedback levels involving thresh-
old reduction larger than 1% (typically from 5% up to 25%). In terms of f this
would mean (assuming 1/7, = 6.31 x10'! s ') larger than 3.15x 10 s~ * (typically
from 1.57 x 10* s7! up to 7.9 x 10 s7'), in terms of xk? (assuming 7;;, = 8 ps )
this would mean larger than —32 dB (typically from —18 dB up to —4 dB), in
terms of R this would mean (assuming R; = Ry = 0.31) larger than 4 x 10~*

(0.04%), typically from 0.01 (1%) up to 0.26 (26%).
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Figure 2.4: Parameter space for a DFB laser with feedback: pumping current and feedback
level. From Ref. [96]

2.2 Global description of the parameter-space

2.2.1 Parameter-space overview

In this paragraph we want to describe briefly the general parameter-space of the
system laser with optical feedback. We have not performed this characterization
based on wide control parameters variation ranges, since it has been already
performed by other groups, and it is fully available in the literature (Refs. [7, 14]).
We want to describe the general phenomenology of the system in order to locate
the parameter-space region where we have performed our analysis. In Fig. 2.4
we report a qualitative mapping of the parameters space according to Ref. [14].
The system is composed by a single-mode semiconductor laser with an external

reflector at a distant variable from 10 em to 100 em.

We can notice that feedback starts to affect the laser behavior already at
—80 dB. At —70 dB (regime II) the system starts to admit multiple stable solu-

tions that correspond to external-cavity-modes. Increasing the feedback level the
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system could lase on an increasing number of different external-cavity-modes and
spontaneous-emission noise could induce mode hopping (Refs. [14, 96]). Regime
I and II are called weak feedback regimes. The weak feedback regimes have been
experimentally studied in Ref. [91] for low biasing current (I < 1.5 Ij s01). In
Ref. [91] it turns out that the spectral characteristics of a semiconductor laser with
optical feedback depend on the feedback level and on the laser characteristics. It
is possible to define two critical levels for the feedback: the first, r,, is the level
for which, if r < r,, the laser is always single-mode no matter the feedback phase
(regime I), the second, 7y, is the level for which, if 7, < r < 1}, the system emits
on a single or on several external-cavity-modes depending on the feedback phase.
Anyway, for r, < r < 1y, the Mode-Suppression-Ratio is always larger than 20 dB
even when, because of noise-induced hopping among external-cavity-modes, the
emission is multi-mode. For r, < r < r, the optical linewidth of the compound
system can be much narrower than the solitary laser (0.1 M Hz against 17 M Hz
in Ref. [91]). In this regime, the feedback improves the laser performance, es-
pecially using short cavity, where the wide separation between external-cavity-
modes makes the single-mode operation very robust (Ref. [92]). While for r < 7,
only one internal-cavity-mode is active, several internal-cavity-modes are excited
for » > r, and the M SR falls down abruptly; we are in regime IV. In regime
III, obtained for I > 1.5 - I, 50, the feedback improves again the stability of the

solitary laser and the optical line gets narrowed (Refs. [97, 98, 99, 100]).

In regime V (strong feedback level) feedback improves the coherence properties
of the laser. It must be pointed out that such strong feedback level requires AR
coating of the laser facet exposed to feedback and perfect alignment and mode

matching conditions.

The regime IV (moderate feedback level) is dynamically very rich and it is the

most explored in the literature. Going from the regime III to the regime IV
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a quasi-periodic route to chaos has been found in Ref. [101]. Here it is shown
experimentally that the laser main mode is destabilized by a Hopf bifurcation
(at a feedback level = —43 dB) and a limit cycle takes place at the frequency
of the relaxation oscillation of the solitary laser. Continuing to increase the
feedback level this limit cycle gets larger and distorted, and, at —31 dB, the
trajectory presents the characters of a chaotic attractor. The interpretation of
quasi periodic route to chaos is supported by observing the power spectrum as
the feedback level is increased. From —44 dB to —32 dB it shows increasing
intensity peaks at the inverse of the external-cavity round-trip time (g4;), then it
shows frequency locking between v,;; and the relaxation oscillation of the solitary
laser (f,) and finally it shows broadening of the peaks, testifying the appearance
of the chaotic attractor. The frequency locking region is very sensible to the
experimental conditions like pumping current and external-cavity length; hence
Mork et al. claimed that the route to chaos may be interrupted by frequency
locking. These experimental evidences are coherent with a calculated bifurcation
diagram predicting quasi periodic route to chaos. Further confirmations come
from the fact that the calculated bifurcation diagram predicts the coexistence of
two attractor whose existence has been showed experimentally. It is important
to underline that the laser is a DFB laser, the pumping current is 1.8 - Iy, 44,
the external-cavity length is of the order of 15 ¢m and it is tuned such that
an external-cavity resonance coincides with the solitary active laser mode. This

prevents, for low feedback level, the excitation of other external-cavity-modes.

2.2.2 The effects of the feedback phase

The tuning of the cavity length on wavelength scales affects the emission charac-
teristics of the system. The relevance of the feedback phase depends, in general,

on the external-cavity length and on the feedback level. For weak feedback levels
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we may represent the system as a laser cavity perturbed by a weak fraction of
the field emitted, returned into the laser cavity with a phase difference due to
the delay accumulated during the external-cavity round-trip. When the external-
cavity length is tuned on a wavelength scale, the phase relationship between the
field emitted and the field re-injected changes. Since the interference condition is
altered, the stability of the active laser mode is affected and the system jumps to
another external and/or internal-cavity-mode, where the interference condition is
more convenient. The mechanism of this instability depends, among other things,
on the relationship between external-cavity length (L..;) and internal-cavity op-
tical length (L$?;). This relationship determines the matching between the fre-
quencies of the external and of the internal-cavity-modes and, as a consequence,
whether the system will hop to the closest external cavity mode, continuing lasing

close to the same internal-cavity-mode, or it will hop to an external-cavity-mode

far apart more than one internal-cavity free spectral range.

For large cavity lengths it is necessary to consider that the spectral density
of external-cavity resonances grows, changing consequently the mechanisms of
the mode hopping. Finally, for a given cavity length, the feedback level affects
the stability of the modes since it is directly related to the finesse of the exter-
nal resonator. We now describe how these considerations come into play in the
experiments.

In Ref. [16] they investigate the effects of weak feedback on the L/I curve of

opt

the laser for short external cavities (L < 20-Lj,;). Then, the separation between

external-cavity-modes is of the same order of magnitude than the separation
between internal-cavity-modes. For an external-cavity of 1 ¢m the spacing of the
external-cavity-modes is of 15 GHz, and it becomes the same as the internal-
cavity-mode spacing if L., ~ L;’Zf ~ 3.5+ Ly, i.e. typically Lo, ~ 1 mm,

because of the active medium refractive index. For L, < 20+ L%}, if the solitary
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laser is emitting on a single-longitudinal-mode, the compound system emits on a
single external-cavity-mode for a wide range of feedback level (Ref. [92]), because
of the large detuning among the solitary laser peak and the other external-cavity-
modes. In this situation, the tuning of the external-cavity length on wavelength
scale generates a modulation of the system output, exactly as expected from
scanning a low finesse Fabry-Pérot (Refs. [16, 91]). Since Joule heating makes
the output wavelength of the solitary laser increase continuously as the pumping
current increases (0.092 A /mA, or, in terms of external-cavity-modes separation,
0.26 modes/mA in Ref. [16]), the same modulation is present (with a period of

556 MA), in the L/I curve, for a fixed length of the external-cavity (Fig. 2.5).

The amplitude of the undulation depends on L.,; and it is maximized when it
corresponds to a multiple integer of L. In this condition (Fig. 2.5, lower panel),
the optical spectrum shows that, in the interval of pumping current correspond-
ing to each L/I undulation period, the active external cavity mode is always the
same, and, at the successive undulation period, the system has jumped abruptly
to the next external-cavity-mode (at higher wavelength for increasing current).
The active external-cavity-mode is the one closest to the solitary laser peak; as
this peak moves to higher wavelength because of the current increasing, the sys-
tem hops on the external-cavity-mode better tuned to the solitary laser frequency.
In the situation where Loy = nL; + AL (Fig. 2.5, upper panel), the situation is
more complicate: increasing the current, starting from the bottom of an undula-
tion, the optical spectrum shows that the system jumps from one internal-cavity
(say the mode of order m) mode to the closest one m + 1 at smaller wavelength.
This hopping from one internal-cavity-mode to the next one continues up to the
next bottom of the undulation, there the system has jumped abruptly back at

the mode m — 1, the closest higher wavelength internal-cavity-mode to the mode

where the system was lasing at the preceding bottom of the L/I curve. This
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phenomenology is repeated through all the ripples of the L/I curve. The differ-
ence between the two behaviors is due to the frequency matching between the
combs of the internal and of the external cavity modes. When L, = nL} there
is always the same detuning between all the internal-cavity-modes and the clos-
est external-cavity-modes; the active external-cavity-mode is always the closest
one to the lasing mode. The lasing mode retains the control on the selection of
the external-cavity-mode, because no other internal-cavity-mode is better tuned
with respect an external-cavity-mode. When L., = nL;’l’f + AL, this is not true
anymore. In this case the system realizes a better matching using an internal-
cavity-mode different from the one active in the solitary laser case. Let us suppose
that, at a certain pumping current level, the internal mode m (the solitary lasing
one) is resonant with the external-cavity-mode m/; increasing the current, the
comb of internal-cavity moves, and the mode m and m' are not perfectly tuned
anymore. Depending on AL, it could be that now the modes m + 1 and m’ + n'
are the best tuned and then the system emits on the mode m' 4+ n’. The system
chooses different internal-cavity-modes in order to maximize the feedback inter-

ference and, as a consequence, the intensity-output varies smoothly as the current

is increased (Fig. 2.6).

In Fig. 2.6 (from: Ref. [16]) we show the amplitude of the output undulation
of the L/I curve as the length of the cavity is changed. The maxima corresponds
t0 Legy = nL, where the system is extremely sensible to the feedback phase.
It worth noting that, as the length of the cavity is increased, the height and the

separation of the peaks decrease because of the increasing density of external-

cavity-modes.

In Fig. 2.7 we show the output power versus external-cavity length curves for
different feedback levels (from: Ref. [89]). The minima corresponds to the lengths

at which Le,; ~ nL!. Around these cavity length values, the system emits always
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on the same internal-cavity-mode and the intensity-output decreases strongly for
the destructive interference between the field emitted and field fed back. Instead,
when Lz # nL%!, the system emits on different internal-cavity-modes and the

nt’

effect on the power output is smoother.

opt
int)?

When the external-cavity length is increased over L., > 100- L./, the spec-
tral density of the external-cavity resonances is very high. For such lengths, a
variation on a wavelength scale of the external-cavity does not perturb remark-
ably the intensity-output of the system (Fig. 2.7, left panel); the spectral density
provides good internal /external cavity modes matching for any ratio between Ly,
and L}. In other words, the high spectral density of the external-cavity-mode
breaks the competition between internal and external-cavity-modes.

The feedback level, increasing the finesse of the external resonator, increases

the undulational amplitude of the L/I curve and the sensibility to the feedback

phase as the cavity length is varied (Fig. 2.7, right panel, Ref. [89]).

Our experimental work has been dedicated to the regime IV and V (it moderate-
to-strong feedback levels) and we have always used fairly long external-cavity

(Legt = 15—100 ¢m). In this experimental conditions, the system is not critically



1.1 ' ' ' * 1.1F 1
% 1K w\/v~\\/ﬂ\»\/v~\/,w g | BN /\‘\V/a\”_/\\/’/' s
5 £
o) | o.q

re TS

External Cavity Length L External Cavity Length L

(@) (a)

L
-
——

Normalized Power
-
i L
Normalized Power

0. . 0.
100 102 104 16 18
External Cavity Length L External Cavity Length L
®) ®)

Figure 2.7: Experimental results of the output power as a function of the external-cavity
length for different cavity locations. On the left: R.;r = 0.248, a) L = 15 — 19 mm, b)
L =100 — 104 mm. On the right: L = 15— 19 mm a) Ress = 0.0115, b) Resy = 0.387. From
Ref. [89]

sensitive to the feedback phase wavelength scale tuning of the external-cavity
and the results obtained are qualitatively valid for any cavity length in the above

mentioned range as in Ref. [10].
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Figure 2.8: Light Output / Pumping Current curves for different feedback levels.

2.3 The Low-Frequency Fluctuations (LFF)

In Fig. 2.2 we have shown the L/I curve for the laser system with optical feedback
from a distant reflector (Leyy = 63 em, Tepy = 4.2 ns). In Fig. 2.8 we show the L/T
curve for different levels of feedback, we used low bandwidth detector (< 1 M H z).
From these curves we can estimate the amount of feedback £ by comparing the
threshold of the system with feedback Iy feeq With the threshold of the solitary
laser Iy, so- In the case of Fig. 2.2 we have Ly, feeq = 44 mA which is equivalent
to a feedback level of € = 9.3% of threshold reduction.

The shape of the curves shown in Fig. 2.8 is typical for feedback level involving
threshold reduction (&) from 2% up to 20% (feedback level from —32 dB up
to —2 dB, or 0.04% < R.sr < 33%) (Refs. [11, 96, 102]). We remark a kink

around the threshold of the solitary laser. By monitoring the laser output with
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a 100 M Hz detector (Fig. 2.2), we notice that this kink is due to drops of the
laser intensity, appearing abruptly with large amplitude at a given pump level.
These features in the L/I curves give already important indication on the nature
of the instability at the origin of the drops. It appears evident from Fig. 2.2 that
these fluctuations could not be originated by a super-critical Hopf bifurcation. In
fact, in this case, the instability would appear with small amplitude oscillations,

increasing as the control parameter is changed.

In Fig. 2.8, where the output power has been averaged on a long time-scale,
the appearance of power drops induces an abrupt decrease of the Slope Efficiency
of the system. Kink in the L/I curve are, for laser engineering, the most relevant
effect of feedback in a laser system, since the quality of a device is often related
to the maximum power achievable kink free, i.e. in the linear range of the L/I

curve.

In order to describe the emission characteristics of semiconductor laser with
optical feedback we plot in Figs. 2.9, 2.10, 2.11 the time intensity-output, the
noise (or power) spectrum and the optical spectrum of the system as the control
parameters are changed. The bandwidth of the time-series is limited by the scope
bandwidth (500 M Hz). The power spectra are limited by the detector bandwidth
(~ 2 GHz). In order to detect the entire set of the laser internal longitudinal-
mode, the free spectral range of the interferometer has been set at ~ 3200 GHz,
limiting the resolution to ~ 20 GHz. In Fig. 2.9 the external-cavity round-
trip is 7.4 = 4.2 ns, we show the behavior of the system as pumping current
is increased and the feedback level is & = 12%. In Figs. 2.10-2.11 the external
cavity round-trip is 7ez; = 3.2 ns, we have fixed the pumping current (respectively,
at I = 1.09 Iy, 5o and I = 1.2+ Iy, 4) and we have changed the feedback level.
Decreasing this parameter we obtain the same sequence of behaviors as increasing

the current. In order to achieve very large feedback level, the experiment of Figs.
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2.10-2.11 has been performed with an Hitachi™™ HLP1400 partially A R-coated
(= 1%) on the output facet. For a feedback level 9% < & < 25% the system

exhibits three main regimes as the pumping current (I) is changed.

eStable-regime. Appearing for Iy, feea < I < Ijfp, being Ijf; the pumping
current value at which the power drops occur. I;y; depends on the feedback level

but it is always Lz 2 It 5o for 9% < & < 25%.

This regime (Fig. 2.9a, 2.10a, 2.11a) is characterized by a constant intensity-
output at low-frequency (0-100 M H z). The corresponding power spectrum can be
flat or composed by narrow peaks at the multiple of the external-cavity resonant
frequencies (vey), depending on the feedback level. If the feedback level is very
strong (£ 2 15%) the power spectrum shows no noise in excess at any electrical
frequency and the corresponding optical spectrum shows single internal-cavity-
mode operation (Fig. 2.10a, 2.11a). We can conclude that the laser emit on a

single external-cavity-mode.

From the optical spectrum we remark that, when I, ;o < I < I;55, the Mode-
Suppression-Ratio (M SR) of the system with feedback is larger than the solitary
laser M SR at the same current (compare the optical spectrum of Fig. 2.3 at
I = 49.2 mA with the one of Fig. 2.9). In these conditions, the properties
of coherence of the laser are improved by the feedback (regime V in Fig. 2.4).
Moreover, a comparison between the lasing absolute frequencies of the system
with and without feedback reveals that, in the feedback configuration, the lasing
peak is red-shifted of several internal-cavity free spectral ranges in respect with
the solitary laser lasing modes. The amount of this frequency shift increases
with the feedback level and it is due mostly to the decrease of the carrier density
stationary value induced by the laser threshold reduction. This change occurs
at injection current almost constant since the carriers injected in excess respect

to the new threshold value increases the photon density stationary value. Then,
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according to the consideration of §I1.1.2, band-filling effect dominates on the

thermal effect and the gain curve shifts to the red for the carrier density decrease.

If the feedback is not very strong (Fig. 2.9a), 9% < & < 15%, Iisr = Lih sor,
the power spectrum shows narrow noise peaks at the resonant frequencies of
the external-cavity (ves). These peaks correspond to the beating notes between
external-cavity-modes: the first peak at v, is given by the beating note of adja-
cent external-cavity-modes, the second peak, at 2-v,,;, correspond to the beating
note of external-cavity-modes separated by two orders and so on. These frequency
components can be resolved in the time signal provided they fall inside the oscil-
loscope bandwidth; this condition is verified, for the peak at vey, if Ley: > 30 cm.
In the time trace, this component appears as a small sinusoidal modulation of

the output intensity.

In Fig. 2.9a the power spectrum shows, at the right side of each external-cavity
resonance, a broad and lower noise peak. We have not observed this side peak in
the power spectrum of the stable-regime when using the AR-coated laser of Fig.
2.10-2.11, even for equivalent feedback levels. This suggests that the presence
of side peaks is connected to some property of the solitary laser. Moreover, the
broad peaks, as the pumping current is increased, broaden and move to higher
frequencies. Since the broad peaks are located only on a side of the narrow
peaks at v.,; and since there is no peak in the power spectrum at the frequency
difference between the peaks at v.,; and the side peaks, we can conclude that
these peaks are not originated by a beating between an external-cavity-mode and
a broad side peak. The double-peaked structures in the power spectrum seems
rather originated by the beating itself between different external-cavity-modes.
The origin of this double-peaked intensity noise spectrum has been explained
in Ref. [103] as due to correlation between the lasing mode and sub-threshold

external-cavity-modes, leading, in the beating note, to strong suppression of the
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intensity noise. The dip in between the two peaks is then originated by the
strong anti-correlation between the noise in the active mode and the noise in the

sub-threshold external-cavity-modes.

eCoherence-Collapse: LFF-regime. Appearing for Ij;; < I < I, being I,
the highest pumping current at which the LF'F features are still recognizable in

the time trace.

Increasing the pumping current from the stable-regime we approach a value of
pumping current at which sudden intensity breakdowns appear in the time signal
(Fig. 2.9b). The power drops are followed by slower relaxation to the previous
power level, this recovery is stepped by the round-trip time of the external-cavity
Tezt and it lasts 12-16 7,,;. The amplitude of the fluctuation is almost the same
for every breakdown. The rate of the fluctuations increases with the pumping
current (Figs. 2.9b,c,d) and, for the same pumping level, it increases with decreas-
ing feedback levels (Figs. 2.10b,c,d). Moreover, the drops rate depends on the
external-cavity length, which fixes the recovery time and, therefore, imposes an
upper limit v,,,, to the breakdown rate. This highest rate corresponds to the sit-
uation where each drop occurs immediately after the recovering of the one before
(Fig. 2.9d), then vy., &~ (12 - Tep) ™' For a typical cavity length (L, = 50 cm,
Tezt = 3 Ms), the maximum drop frequency will be around 30 M Hz. Since this
frequency value is much smaller than the other frequencies of the system (re-
laxation oscillation or external-cavity free-spectral-range), the above described

fluctuations have been called Low-Frequency Fluctuations (LF'F).

The noise spectrum shows strong and broad noise components in the low-
frequency region of the spectrum, corresponding to the presence of LF'F', and
broad peaks at the external-cavity resonant frequencies. The optical spectrum,
in the LF F-regime, shows always multiple internal-cavity-modes. Crossing I;s¢

from the stable-regime, this fact is evident in Figs. 2.9b, 2.10b, 2.11b: as power
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drops start to appear in the time signal, the optical spectrum shows a sudden
decrease of the M SR; several internal longitudinal-modes become active at the
blue side of the mode lasing in the stable-regime, covering the spectral interval
up to the solitary laser lasing frequency (dash line in the optical spectra of Figs.
2.9d,e). In addition, the linewidth of each modal peak has broadened up to
40 G'Hz, indicating a frequency chirp of each mode during the fluctuations. In
this condition the coherence properties of the laser are lost, hence the name

Coherence-Collapse.

In Fig. 2.9(b-e) it is possible to observe how the features of the fluctuations
evolve, increasing the current from I;¢;. Passing I;¢¢, LF'F starts to appear in the
time signal grouped in bursts. These bursts are formed by few fluctuations when
I = I);; and appear quite seldom in the time-series (Fig. 2.9b). In this condition
the noise spectrum may jump between the situation associated to the stable-
regime (power spectrum in Fig 2.9a) and the one typical of the LF F-regime, due
to the fact that the sweeping time of the spectrum analyzer and the bursts rate
are of the same order. Increasing the pumping current the bursts become more
and more frequent in the time trace, up to have LFF' all over the time trace (Fig.
2.9c). The interval of currents for which the LF F-regime is alternating in time
with the stable-regime depends on the feedback level. For feedback level £ ~ 9%,
the ”burst region” is very narrow and gets broader for increasing feedback level. In
the time-series, once the LF F-regime is totally settled down (Fig. 2.9¢), the LF'F’
time-intervals decrease for increasing current, while the LF'F amplitude is not
significantly affected. Corresponding to the increasing rate of LF'F', the optical
spectrum shows an increasing number of internal-cavity-modes with a consequent
further decreasing of the M SR. This trend continues up to the current value at
which the interval between the power drops is equal to their recovery time. In this

condition a drop occurs as the intensity has recovered after the preceding drop.
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The intrinsic duration of the LF'F' (that involves the breakdown plus the recovery
stage) locks with the drop rate and the corresponding low-frequency peak in the
power spectrum narrows in correspondence to almost-periodic LF'F' in the time
signal (Fig. 2.9d).

If the current is further increased there is a limit (I..) at which the LFF
features (drops plus stepped recovery) are lost in the time-series. This starts to
appear in localized time-intervals (when I = I..) (Fig. 2.9e) and then it extends
to the whole time-series.
eFully-developed Coherence-Collapse (CC-regime). Appearing for I >
I..

The time signal in this regime is highly irregular, the corresponding power
spectrum shows excess noise at all frequencies and the M SR in the optical spec-
trum is very low (Figs. 2.9e, 2.11¢). In the CC the laser coherence has dropped

to few tenths of millimeters.
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Figure 2.9: (b) Laser emission characteristics with feedback level £ = 12%, 7oz = 4.2 ns and
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In Fig. 2.10 (I = 1.09 - 4 50) We observe the three regimes, previously identified
versus pumping current, for the following values of feedback level:

13% < € < 25% : stable single-mode emission on the internal-cavity (Fig. 2.10a).
11% < € < 13% : LFF appears seldom in time (Fig. 2.10b) and multi internal-
cavity-mode operation of the system.

6% < & < 11% : LFF(Fig. 2.10c-d) extended to all the time-scale, increasing in
frequency and getting almost-periodic, The M SR in the optical spectrum gets
lower as the LFF rate increases. Fully-developed Coherence-Collapse settles
down for feedback level smaller than 5% at this pumping current value.

For I = 1.2 - Ij su (Fig. 2.11) we observe the same sequence, even if, in
this case, the fully-developed Coherence-Collapse is reached for larger feedback
values.

18% < & < 25% : stable single-mode on the internal-cavity (Fig. 2.11a).
14% < £ < 18% : LF'F seldom appearing in time (Fig. 2.11b).
5% < & < 8% : Coherence-Collapse fully-developed (Fig. 2.11c¢).
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Figure 2.10: (a) Laser emission characteristics with feedback level ¢ = 24%, 7.4y = 3.2 ns
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Figure 2.10: (C) Laser emission characteristics with feedback level £ = 9%, Tezs = 3.2 ns and
I/ It 5ot = 1.09.
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In Fig. 2.12 we represent the qualitative parameter-space around the laser
threshold for moderate-to-strong feedback levels. I;¢; increases with the feedback
level and for feedback level £ < 9% it goes below Iy, 5. The current interval of
the stable-regime decreases as feedback level decreases and, below £ < 6%, the
regime of stability disappears. At this feedback level and for lower ones, for
Lip feea < I < Iy 501, the power spectrum shows a broad noise component at low-
frequency and noise peaks at multiple of v.,;. These lasts are broader then the
ones characteristic of the stable-regime. Moreover, the low-frequency peak and
the peaks at multiple of v.,; appear all together in the power spectrum as I ~
Iip, feeqa- For greater pumping current, they broaden and get higher approaching,
without sudden changes, the noise spectrum figure typical of the LF F-regime.
In the time domain, accordingly, as the current is increased, LF'F amplitude
increases gradually from a negligible value. As I = Iy feeq the LF'F amplitude
does not grow anymore, instead the LF'F rate keeps increasing until the system
enters in the C'C regime. Therefore, the abrupt transition from the stable-regime
to the LF F-regime with non zero amplitude fluctuations it is not observed if

£ < 6%.

It is important to point out that, for a given point in the parameter-space,
the LF'F amplitude is almost the same for every drop. LF'F are breakdowns of
the intensity-output from an high intensity level determined by the feedback rate,
down to an intensity level close to the one of the solitary laser. Increasing the
pumping current, the solitary laser intensity increases and so it does the lowest
level at the drop. Since the high intensity level before the drop increases too (see
L/I curves), the LFF amplitude is not very affected by pumping current varia-
tion. On the other hand, if we increase the feedback rate, the highest level before
the drop moves up and the LF'F' amplitude grows. If I < I, 4 the lowest level at

the drop corresponds to the off state; in this condition the fluctuation amplitude
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Figure 2.12: Qualitative parameter-space around laser threshold for moderate-to-strong feed-

back levels

is 100% of the level before the drop. It worth to note that all these considerations

have been done analyzing the time intensity on a 500 M Hz bandwidth scope.

This bandwidth limit could hide several important features, as it will be clear in

section five.
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2.4 LFF: characterization of the dynamics

In this section we describe the experimental analysis performed on the transition
between the stable-regime and the LF F-regime for feedback level £ > 6%. The
aim is two-fold: i) understand whether the nature of the Low-Frequency Fluc-
tuations is deterministic or stochastic; ii) in case of determinism, identify the

bifurcation type at the origin of the instability.

2.4.1 Stochastic or deterministic nature?

This question is very important and not only from a theoretical point of view.
Understanding the nature of LF'F' means being able to prevent them to occur: if
their nature is deterministic they can not be avoided, unless setting the control
parameters in the stable-regime. On the other hand, if LF'F" are stochastic fluctu-
ations they could be avoided reducing the noise sources in the system (improving
the power supply, thermal stabilization, etc.). In order to obtain information on
this issue we perform statistical measurements on the LF'F phenomenon.

The first experimental test consists in performing an averaging of the time-
evolution between consecutive drops crossing a prefixed intensity threshold. We
trigger the oscilloscope on the maximum of the derivative of the intensity each
time the intensity becomes lower than the threshold value, and we average the
traces of 10* events. In the LFF-regime, close to the stable-regime (64 mA,
66 mA in Fig. 2.13) we observe that, around the drop, the averaged LF'F trace is
strongly similar to the single LF'F traces; the fast oscillations present just before
the drops and in the recovery stage are not washed out by the averaging process.
The washing out takes place only after the recovery of the intensity. This feature
indicates that, around the drop, the system is exhibiting an intensity behavior
that is always the same for all the LF'F'. Let us associate to each LF'F' an orbit

in the phase-space. No matter the dimension of the phase-space associated to
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our system, we can reduce an orbit to its projection onto a plane containing the
intensity-output variables (I,1) that are easily detectable. We call LFF-orbit
the projection of the orbit associated to a Low-Frequency Fluctuation. Since,
fixed the parameters, the time intensity behavior around the drops is similar for
every drop, the LF F-orbit is almost the same for each LF'F. On the other hand,
the fact that the system looses correlation before the next drops, shows that the
triggering mechanism of the drops is likely to have a stochastic nature. Hence we
can try a first hypothesis on the nature of low-frequency fluctuations: they have
a deterministic nature but, at least in the LF F'-regime, they are noise-induced.
In this contest we can define a time ¢, as the LF F-orbit time or the time taken
by the system to run along the LF F-orbit. We also define a time ¢, as the system
waiting-time (also called firing-time or escaping-time or activation-time) between
the end of the recovery stage of an LF'F and the next departure. Then the total
time-interval between two Low-Frequency Fluctuations will be T' = t, + t,. The
loss of correlation between two drops indicates that, in the LF F-regime, noise is
controlling ¢, while ¢,, by definition, is fixed by the deterministic evolution of the

Low-Frequency Fluctuation.

In the fully-developed Coherence-Collapse regime (68 mA, 70 mA in Fig.
2.13) we note that the structure of the oscillations is never completely washed
out and determinism plays the most relevant role. These observations indicate
that a bifurcation does exist somewhere in the parameter-space. This bifurcation
is "anticipated” by noise which plays a relevant role close to the critical point.

Deterministic behavior takes over at larger pump rates.

In order to gain more insights on the dynamics of the system in the LF'F-
regime, we have analyzed the statistics of the time-interval T' between pulses. The
LeCroy™ 7200 allows direct statistical measurements. Given a time trace it is

possible to specify some features that identify a particular event. The scope is
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Figure 2.13: Average of the temporal behavior over 10* consecutive drops, feedback level =
8%, cavity length = 51.5 cm

then able to discriminate the events in the time trace and accumulate in memory
only the information on it (time, intensity etc.), allowing for the computation of
up to 50000 events. The analysis on the entire time traces would have required
huge time and memory size in order to achieve this number of events. The Low-
Frequency Fluctuation can be identified in the time-series by setting an intensity
level threshold and taking as event the fact that the output signal has downward
crossed this threshold. In Figs. 2.14-2.17 we show the time-interval distribution
between two LF'F" as the parameters are changed. We also show the return maps
of the signal obtained plotting the time 7" between successive intensity drops. This
diagram is made by digitizing the temporal signal and memorizing the times 6,
for which the intensity of the n;, pulse reaches a prefixed given value Iy, and
evaluating 7T,, = 6, — 6,_1. We have chosen the threshold I, in a region of the

intensity for which the maps are independent from that value. This return-map
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is equivalent to a Poincaré section of the system at constant intensity. In fact,
if the signal is periodic, it gives a single point in the return-map, or a finite set
of discrete points. If it is aperiodic, the different points are distributed over an
extended region. Thus, at least the presence of well defined structures in the
return maps indicates the deterministic origin of the dynamics. We perform the
measurements over samples of more than 10® pulses. It is important to notice
that, for computing the return-map, it is necessary the entire sequence of the
time-intervals. So, in this case, the analysis has to be performed on a complete
time-series rather than on a purely cumulative time-intervals count. The number
of events used for building the return-map is necessarily limited to the number
of events present in the maximum time length that the scope is able to acquire
without loosing in sampling rate (one million of points at 1 GS/s) and, therefore,
it is dependent on the values of the parameters controlling the event rate. In
Fig. 2.14 we show the distribution curve and the return-map of the LF'F' time-
intervals as the pumping current is increased, for a feedback level of 8% and a
cavity length of 63 ¢m (4.2 ns roundtrip). In Fig. 2.15 we show the distribution of
the LF'F time-intervals in logarithmic scale and for a feedback level of & = 12%.

Three different regimes can be distinguished as pumping current is increased:

e Purely noise-controlled LF'F'. Increasing the pumping current, the system
transits from the stable-regime to the LF F-regime as I > Ijpp. For I =~ Iy,
depending on the feedback level, there is a small current interval for which the
two regimes coexists in time and the system jumps from one to the other with a
rate larger than ms. For greater current LF F-regime settles down definitively, we
remark that the power drops occur in the time signal with a low rate (Fig. 2.14a,
2.15a). The interval between the drops 7" is much larger than the duration of a
single fluctuation, ¢, > t, and T is mainly determined by the firing time of LF'F’,

T ~ t,. The LFF time-interval distributions have a decreasing exponential shape
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(Fig. 2.15) peaked at finite time whose value depends on the parameters. We also
notice that there is a minimum time allowed between the drops. This refractory
time is related to the single LF'F duration (t,) and it is due to the fact that,
after a departure, the system cannot exhibit an LF'F before the preceding one
has recovered. The duration of a single LF'F is given by the dropping time, that
is very fast, and the recovery stage, which is much slower. This last time value
is determined, as we have explained in the preceding section, by the external-
cavity round-trip time and it is not affected significantly by the other parameters.
Indeed, from the histograms in Fig. 2.14 and 2.15, we notice that the refractory
time does not change a lot with increasing the pumping current and its value is

60 — 90 ns (which is equivalent to 14 — 21 external-cavity round trips).

The shape of the time-interval distribution at the beginning of the LF F-region
indicates the major role of noise in the firing mechanism, according to Kramers’
theory. Kramers developed a theory for the brownian motion of a particle in a
double potential well. The particle may jump from one well to the other one
under the action of noise, we define as 7" the first-passage time between the two
potential minima. (Ref. [104]). If the noise is gaussian delta-correlated with zero
mean and variance D, the escaping rate or the averaged first-passage time is given
by: In(< T >) o (1/D) (Ref. [105]). Moreover, Kramers’ theory says that, if
the noise force is small, the average escaping time is approximately the standard
deviation of the the first-passage times: < T' >~ 0. For symmetric bistable
system the first-passage times distribution for long intervals is an exponential
function decaying at the escaping rate. The tails of the distributions of Figs.
2.14a,b and 2.15a exhibit an exponential decaying starting from the refractory
time. Kramers’ statistic catches the features of the LF'F' time-interval statistic
related to the firing time ¢, but, of course, cannot describe the existence of a

refractory time which is not present in the problem of the particle in the double
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potential well.

The return-map (Figs. 2.14a,b) shows a cloud of points without any struc-
ture, as we can expect from a system where the noise rules the dynamics. As
a further test, we have plotted also the k-order return maps (7, vs. T,_x) for
several k-values. Such analysis has not revealed the presence of higher-order
correlations. Moving the parameters deeper in the LF F-region, increasing the
pumping current or decreasing the feedback level, the rate of the LFF increases
and the distribution peak moves to smaller time values. Consequently, the cloud

of points in the return-map moves to smaller time values and reduces its size.

Finally it is worthwhile to note that the standard deviation of the L F'F" ampli-
tudes and the LF'F duration (t,) is smaller than 10%, confirming the deterministic

origin of the pulse itself (”coherent” build-up of the pulses).

e noise-controlled LF'F with clusters Increasing the current deeper in the
LF F-region we remark, in the LF'F' time-intervals distribution curves, the ap-
pearance (Figs. 2.14c-e; 2.15b-d) of a narrow peak at low time values. As pump-
ing current is further increased, this peak grows in size, but its time value is not
significantly affected. In the time-series this peak of probability correspond to
clusters of consecutive LF'F' where the departure occurs immediately after the
recovering of the preceding LF'F'. Inside the clusters T" ~ t, and ¢, ~ 0. Since
t, is determined with a low dispersion by the external-cavity length, clusters of
LFF contribute to the interval distribution with a narrow peak in the histogram
at &~ 70 ns (~ 17 round trips on the external-cavity). In the time-series we re-
mark also that, in the clusters of consecutive Low-Frequency Fluctuations, the
intensity level from which the power drops is lower than the quiescent intensity

level from which it drops in the fluctuations where ¢, > 0.

At the right of the narrow cluster peak, in the intervals distribution curves,

there is also a broad peak (at = 200 ns in Fig. 2.14c, at ~ 750 ns in Fig. 2.15b)
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relative to the LF'F' appearing at intervals for which ¢, > ¢, and T" = ¢,. This
peak moves to lower values as pumping current is increased since the activation
time decreases, but it maintains the same characteristics: the exponential tail
and < T >~ op. We conclude that, even in this parameter region where LFF
appears in clusters, noise is still triggering the LF'F. The difference lies on the
fact that the system does not necessarily come back to a quiescent-state after an
LF F-orbit. It can continue to fluctuate for a certain number of times, showing
clusters of LF'F'. Hence the bi-modal distribution of the time-intervals. Increasing
the pumping current, the probability of having two or more consecutive drops is
increasing. In the distribution curves the peak relative to the LF'F' clusters is
increasing in size (Figs. 2.14d,e; 2.15c-¢) at the expense of the peak where ¢, is
dominant. Moreover the activation time continues to decrease and eventually the

right peak merges into the other one (Figs. 2.14f,g; Figs. 2.15f,g).

The return-map shows the same mixing between an almost-periodic state
determined by the clusters and a purely noise controlled firing. By consequence
the system exhibits return maps with an almost ordered structure of points (Figs.
2.14d-2.14e) together with a broad cloud of point at (200 ns; 200 ns). The cloud

merges in a low size spot in Fig. 2.14f. In this situation, ¢, ~ 0.

Comparing Fig. 2.14 and 2.15 we remark that for larger feedback levels the
average activation time (< ¢, >) of the system is longer and the peaks separation
in the bi-modal distribution curve structure is larger. Moreover, the clusters of
LFF settle down and take over more abruptly for strong feedback level: in Fig.
2.15 the right peak almost disappears before merging into the one corresponding

to the clusters of drops, while in Fig. 2.14 it decreases in size more smoothly.

e Determinism takes over In Fig. 2.14g and 2.15g the low dispersion of the
histograms and the size of the spot in the return-map show that the system has a

almost-periodic behavior. The histograms (especially the one in Fig. 2.14g) shows
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a structure of peaks, enveloped in the distribution curve, whose separation is the
external-cavity round-trip time. This structure is indicating that the probability
of departure is higher for time interval between LF'F equals to multiples of the
external-cavity round-trip. Further increase of current determine the settling of
the fully-developed Coherence-Collapse. The LF'F' shape is lost, and the events
as defined before are not recognizable anymore in the time-series. In Fig. 2.14h
we show the return-map and the histogram in the fully-developed Coherence-
Collapse regime obtained with the same I used in the 2.14f and 2.14g (I, = 130,
using the reference scale of the time-series). The relevance of the external cavity
round-trip time is evident from the very well defined structures in the return-map.
The system is exhibiting oscillations separated by an integer number of 7.,;. As
Iy is raised the peak in the time-interval distribution moves towards shorter 7.,
but the structure remains. This structure is indicating that the system is now

governed by determinism.
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Figure 2.14: (a,b) LFF time-intervals statistical measurements Vs. pumping current for a
cavity length of 63 em (Tept = 4.2 08), (Ith,sor = 48.5 mA), feedback level: £ = 8%, I = 47.7mA
(above), I = 48.0 mA (below).
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Figure 2.14: (¢c-d) LFF time-intervals statistical measurements Vs. pumping current for a
cavity length of 63 cm (Tegt = 4.2 n8), (Itn,so0 = 48.5 mA), feedback level: £ = 8%, I = 48.6 mA
(above), I = 49.2 mA (below).
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Figure 2.14: (e-f) LFF time-intervals statistical measurements Vs. pumping current for a
cavity length of 63 cm (Tezt = 4.2 n8), (Itn,so0 = 48.5 mA), feedback level: £ = 8%, I = 49.5 mA
(above), I = 50.1 mA (below).
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Figure 2.14: (g-h) LFF time-intervals statistical measurements Vs. pumping current for a
cavity length of 63 cm (Tezt = 4.2 n8), (Itn,so0 = 48.5 mA), feedback level: £ = 8%, I = 53.0 mA
(above), I = 54.0 mA (below).
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Figure 2.15: (e-h) LFF time-intervals statistical measurements Vs. pumping current for a
cavity length of 63 cm (Tezt = 4.2 ns), (Ith,s00 = 48.5 mA), feedback level: £ = 12%, (from the
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In the next series of measurements we have changed the feedback level for
two different pumping current levels and cavity lengths. The qualitative features
observed decreasing the feedback level, are not different from the ones obtained
by increasing the pumping current. We notice the same sequence of behaviors,
even if we have not reached feedback level low enough to observe fully-developed
Coherence-Collapse at the pumping current used. In Figs. 2.16a,b; 2.17 we can
remark the presence of the bi-modal distribution: it is worthwhile to note that the
right peak in the histograms changes its size at the advantages of the left peak,
but does not change its time position as the feedback level is varied. Apparently

t, is not very affected by the feedback level.
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Figure 2.16: (a-b) LFF time-intervals statistical measurements Vs. feedback level for a
cavity length of 41 em (Tege = 2.7 ns), I/Lip s = 1.04% and feedback level: ¢ = 11.5%
(above), 10% (below).
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Figure 2.16: (c-d) LFF time-intervals statistical measurements Vs. feedback level for a
cavity length of 41 em (Tegt = 2.7 ns), I/Iip, 500 = 1.04% and feedback level: & = 6.8% (above),
& =4.5% (below).
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Figure 2.17: (a-d) LFF time-intervals statistical measurements Vs. feedback level for a cavity
length of 63 cm (Teyt = 4.2 ns), I/ 5o = 1.02%, feedback level = (from the top) & = 3% (a),
E=7% (b), £ =9.3% (c), £ =11.4% (d).
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Let’s now discuss how the statistical properties of the time between drops
change with parameters. In Figs. 2.18-2.19 we show the mean < 7" > and the
standard deviation o of the time interval between pulses as a function of pumping
current and of the feedback level. We plot this dependence in logarithmic scale
also. The index R, R = op/ < T >, is an indicator of the regularity of the
drops. If the index takes values around one or larger, we have the characteristic
signature of a noise-induced event (Ref. [106]). On the other hand, if the event is
periodic, the index goes to zero. Let’s define e = (I — I;57), where I is the pump

current and I;sf is the current at which LF'F appear.

Fig. 2.18 shows an exponential dependence of < 7" > and o7 with the pumping
current for the widest range of e values. This kind of dependence is lost for very
low values of e and strong feedback levels (Fig. 2.18, lower panel), when the LF'F
are very sporadic, and also for large values of e, where C'C' settles down. The
index R decreases from a value close to one down to a minimum as the pumping
current is increased. Then, the regularity of the LF'F' increases with the pumping
current and the role of noise, dominating when LF'F starts to appear, is overtaken
by determinism. The relative maxima of R in Fig. 2.18 is a consequence of the
presence of the two peaks in the distribution of the time-intervals, since the

regularity is affected by the bi-modality of the time-interval distribution.

The dependence of < T > and or with the feedback level is not so clear as with
the pumping current (Fig. 2.19). It seems that we have a different dependence
with the feedback level depending on which region is explored. When the feedback
level is strong enough (> 5%) < T > and oy are not very affected by an increasing
of the feedback level. If the feedback level is (> 9%) either < T > either o grow
quickly with the feedback. The index also is growing, expressing the fact that
noise plays a more important role in controlling the system. If the feedback level

is lower than 5% there is a discontinuity in the dependence of R, < T > and or
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with the feedback level. We can also remark that the characteristic time (< 7" >)
involved in the upper panel of Fig. 2.19 is smaller than in the lower panel, where

the external-cavity is longer.
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Figure 2.18: < T >, or and o7/ < T > vs. pumping current for a cavity length of 63 cm
(Tewt = 4.2 ns) and feedback level: £ = 8% (above), £ = 12% (below).



147

IN<T> (solid); In(c(T)) (dashed) <T> (solid); o(T) (dashed)
T T e Lo e e e L LA B A S
/
;
3.5 7 A
7
/
£ sof / ]
<= > 7 80
£ /
= Y
= ’
2.5 / 4
-
-
-
./’/
2.0 7 B 60
_: . .
1. 1.5 2.0 2.5 -
In(threshold reduction) =
Py
E
index =
1.0 T
40+
0.8 B
A~ 0.6 R
< .
v
= ¢
= 20 .
S 0.4 B 7
*
./'
K
0.2 i =
s ™
0.0 . . . . . ol vl vl b b by
o 2 4 & s 10 12 o 2 4 6 s 10 12
threshold reduction threshold reduction
IN<T> (solid); In(c(T)) (dashed) <T> (solid); o(T) (dashed)
5.5F T T T e SOO[ T T T T T I T T[T T[T
/
1
5.0 - A
I
= i
S i 400
g 4.5 /' A
= 7
/
4.0\ S ]
\ ;ST
\ /
N _ 300
N~ -
3.5k N L 1 -
0.5 1.0 1.5 2.0 2.5 -
In(threshold reduction) =
Py
E
index =
1.0 T
200
0.8 B
A~ 0.6 R
fa
v
=
= 100 / R
5 o4l B /
*
* 7
0.2+ B 3 -
&é‘"*
0.0 . . . . . ol vl vl b b by
o 2 4 & s 10 12 o 2 4 6 s 10 12

threshold reduction threshold reduction

Figure 2.19: < T >, or and o7/ < T > vs. feedback level (£), for a cavity length of 41
em (Tegt = 2.7 n8), I/Iip s = 1.02% (above) and of 63 ¢cm (Tegt = 4.2 n8), I/Lip 500 = 1.04%
(below). The threshold reduction is expressed in mA.



148

2.4.2 Characterization of the bifurcation

From the previous measurements, we can conclude that: i) In the phase-space
must exist a ”quiescent-state” from which the system may depart; when this
occurs the system evolves following a well-defined orbit to which it corresponds
a Low-Frequency Fluctuation in the intensity-output variable. ii) In the LFF-
regime, for parameters values close to the stable-regime, the system looses mem-
ory during the interval T" and the statistics of the time-intervals between drops
follow the Kramers’ rules describing the first-passage times of a noise-driven par-
ticle escaping from a potential well. These evidences suggest that noise acts as a
trigger for the LF'F. iii) LF'F appear in the time-series with a finite amplitude
and at a low-rate. Increasing the pumping current the rate increases while the
amplitude of the fluctuations is not strongly affected. iv) Approaching the CC-
regime, deterministic terms play the relevant role in describing the dynamical
behavior of the system giving phase correlation among the interval 7'.

Considering these experimental observations, we can discard the existence of
a super-critical Hopf bifurcation ruling the LFF' appearing. In fact, this would
lead to small amplitude pulses with a well defined frequency, while, in our case,
the passage from the LF F-regime to the stable-regime is characterized by the
existence of large amplitude pulses with a vanishing rate. In non-linear dynamics
a bifurcations that can lead to an oscillatory behavior with these characteristics
is the Andronov-Saddle node bifurcation (simply Andronov bifurcation hereafter),
see Refs. [107, 108]).

An Andronov bifurcation is a global bifurcation involving an unstable fixed-
point, a stable fixed-point (node) and a saddle-node whose unstable manifold is
the stable manifold of the node (heteroclinic connection). When the bifurcation
occurs the saddle-node and the node annihilate as in a simple saddle-node bifur-

cation, but the presence of the heteroclinic connection originates a closed orbit
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(limit cycle) which stays for a long time in the neighborhood of the preexisting
fixed-point and suddenly evolves fast far away from it. Such bifurcation is char-
acteristic, for example, of a pendulum in a rotating wind or a laser with injected
signal (Ref. [109]) and it is described by Adler’s equation. The Andronov bifur-
cation is characterized by the presence of fluctuations having a fixed amplitude
and a frequency vanishing approaching the bifurcation point with the law p~'/2,
being p the control parameters. The presence of noise on this dynamical sce-
nario makes that the system has a finite probability of departing from the stable
fixed-point even for parameter values at which the bifurcation has not occurred.
In this situation the statistics of the departures is analogous to the first-passage
time problem described by Kramers. Thus, the LF F-regime may be heuristically
explained assuming the dynamical scenario of the Andronov bifurcation, and con-
sidering the presence of the noise which triggers the drops before the bifurcation
has occurred. The control parameters determine the separation between the sta-
ble fixed-point and the unstable manifold of the saddle-node in the phase-space
or, in term of a first-passage time problem, the depth of the potential well cor-
responding to the attraction basin of the fixed-point (activation-energy). In this
way, for a given amount noise present into the system, the probability of depart-
ing and, consequently, the rate of the drops changes with the pumping current
and the feedback level. The situation of almost-periodic LF'F corresponds to
the case where the activation energy is so small compared to the noise level that
the average waiting-time (inverse of Kramers’ rate) is negligible and there is a
very high probability for a system to depart as soon as it has recovered from the
preceding LF'F'. In this situation deterministic processes are less sensitive to the

amount of noise.

According to this interpretation, the bi-modal time-interval distribution can

be explained in the following way: as the system is returning to the stable point
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in the phase-space after a drop, running along the last part of the LF F-orbit,
its speed decreases (the last part of the recovery stage is slow, as it is evident
from the time trace) and the noise may drive again the system out from the basin
of attraction of the stable point. Then, approaching the attractor, the system
can depart before having reached the quiescent-state, jumping to an inner orbit
very close to the one relative to the first drop. This dynamics could continue
for several times before the system could reach again the attractor. Hence, LF'F
appear grouped in clusters where they are separated by a time T' ~ t, and where
the LFF departing intensity level is lower than the departing intensity level of

the LF'F dropping from the quiescent-state.

It worth noting that the whole LF F-regime can be explained without requir-
ing that the Andronov bifurcation needs actually to occur at some parameter
values. The almost-periodic LF'F' situation can be explained either by assuming
an high Kramers’ rate of the noise-driven departures, thus without requiring the
trespassing of the bifurcation point, either by assuming the occurring of the bifur-
cation that originates periodic fluctuations whose regularity is somehow affected
by the noise present into the system. Because of the unavoidable presence of the
noise into the system, it is extremely difficult to provide irrefutable experimental

proof that the bifurcation has really occurred.

A system is defined ezcitable whenever its response to a perturbation has
the following feature. If the kick amplitude is smaller than a certain threshold
the system response is proportional to the perturbation size. Instead, if the
kick amplitude overcomes the threshold value, the system responds with a large
excursion in the phase-space before returning to the initial state and, therefore,
the response becomes independent of the perturbation size. This somewhat vague
definition allows us to recognize excitability in a wide variety of systems, most

remarkably in biology (Ref. [110]). A system possessing an Andronov bifurcation
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is excitable (Ref. [108]). This is evident considering the heteroclinic structure
involved in this bifurcation. Let us prepare the system in the stable fixed-point
and kick it with increasing size perturbations. Initially, for small size stimulus,
the system does not leave the basin of the attractor: it reacts proportionally to the
kick size, staying in the neighborhood of the fixed-point, and then returning to the
quiescent-state. Increasing the perturbation size we finally reach the threshold
for which the system leaves the basin of the attractor. Then the system evolves
following the heteroclinic connection between the unstable manifold of the saddle
and the stable manifold of the attractor. This topology makes the system to follow
a large excursion in phase-space before coming back again to the quiescent-state.
Thus the reaction to the kick is fixed by this heteroclinic orbit and it is not

anymore related to the perturbation size.

In the frame of the Andronov bifurcation interpretation Low-Frequency Fluc-
tuations are noise-induced excitable pulses. This interpretation fits very well with
the phenomenology of the LF'F' and the noise role evidenced by the experimental

observations.

We can recognized an excitable medium by its response to a fast variation
of a parameter (excitation pulses). In Fig. 2.20 we show the results of the
experiment proving the excitable character of our system. The external-cavity
length is 21.7 ¢m (1.5 ns round-trip) and the corresponding LFF' time duration
is t, ~ 22 ns. We fix the pumping current close enough to the threshold of the
system, such that intensity is constant in time. Through a bias-T, we add to the
pumping current pulses whose amplitude and width can be varied. The width of
the pulses is of 80 ps and the rate is of 30 ns. Changing this amplitude we have
observed the existence of a threshold for the appearance of excitable pulses in
the intensity-output of the system. Below this threshold the system reaction is

proportional to the kick size (2—2.6 mA); above 3 mA the reaction is independent
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of the perturbation both in amplitude and width. Further increasing the kick
size increases the ratio between the number of excitable pulses and the number of
kicks, approaching unity for perturbation sizes of 10 mA (see the time-intervals
histograms of Fig. 2.20). In fact, the unavoidable presence of noise overlapped to
the perturbations yields a non constant threshold value for the kick. Hence the
situations where just few kicks induce a excitable pulses. Just as noise anticipates
the bifurcation, it can, overlapped to the kicks, trigger the departures before the
kicks have actually achieved the excitability threshold value. As the kicking size
is increased, noise becomes secondary and every perturbation triggers a pulse. It
is fundamental to remark the fact that the amplitude of the excitable pulses is
not affected by the wide variation of the size of the kicks, nor it is related to the
pulse width; the excitable pulses observed in Fig. 2.20 are similar in amplitude
and width to the Low-Frequency Fluctuations observed in the LF F-regime, thus
confirming the excitable character of our system. To our knowledge this is the
first experimental observation of excitability in an optical system.

It worth noting that, in our experiment, we used a pulse rate larger than t,.
Then, there is an high probability that the system has returned to the quiescent-
state before the next kick. Increasing the kicking frequency above (t,)~! prevents,
even for huge kick sizes, to excite an LF'F' for every kick. Moreover, we observed
particular excitation frequencies for which no LF'F' are excited no matter the
perturbation sizes. We are currently exploring these features analyzing the ratio

between the refractory time and the kicking period (Ref. [111]).
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Figure 2.20: Intensity of the system when a small amplitude perturbation (width: 80 ps ,
period: 30 ns) is added to the pumping current; the amplitude of the perturbation is written
on the top of each picture. In the right column we show the probability distribution of the
time-interval between excitable pulses. The system is prepared in this way: I/ s0=1.01,
feedback level:{ = 10%, cavity length=21.7 ¢m (1.4 ns round-trip).
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2.4.3 Noise role: Coherence Resonance

We have shown the very important role of noise in our system. We have demon-
strated that noise anticipates the bifurcation that leads the system to exhibit
LFF; at the beginning of the LF F-region, noise triggers the fluctuations and
the system appears as a noise-driven deterministic system. In order to build the
simplest dynamical model able to describe, at least qualitatively, the behavior
of our system, the direct analysis of the noise influence on the system dynamics

would be very useful.

Controlling the noise in our system is not only useful to argue elements for
the dynamical description. We have shown that our system is excitable. Noise-
driven excitable systems represent a very attracting issue. By adding noise to
a dynamical system in general, it is possible to obtain order in chaotic systems,
synchronization, and Stochastic Resonance (Refs. [112, 113]). The latter appears
typically in a bi-stable system with noise, when a periodic forcing of frequency
Vsor is applied (Ref. [114]). It has been found that the periodic response or,
equivalently, the S/N ratio of the system is maximal for a certain noise level. This
is intuitive considering Kramer’s theory which establishes a relation between the
average interval < T > between noise-driven jumping between the two states and
the noise level. When the noise amplitude implies a rate < T >"'=1/2- vy, ,
the S/N response of the system to this forcing is strongly enhanced. Controlling
the forcing frequency instead of the noise level, it exists a forcing frequency that
verifies the same condition, hence the name of Stochastic resonance. Therefore,
while in conventional linear systems noise is always perceived as a degrading

factor, in some non-linear systems it can improve the regularity of the signal.

Recently the effect of noise on the autonomous excitable oscillator described

by the Fitz Hugh - Nagumo system has been analyzed in Ref. [106]. In this work it
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has been theoretically proven that the characteristic correlation time of the noise-
induced excitable pulses shows a maximum for a finite noise amplitude. Since
in this system there is no periodic forcing, this situation does not correspond to
stochastic resonance and it has been named Coherence Resonance in Ref. [106].
The physical meaning of Coherence Resonance can be understood by considering
the features of excitable systems, namely, the pulse firing occurs only when a
perturbation overcomes a certain (nonzero) threshold and thereafter the response
of the system is almost independent of the size of the perturbation itself. Two
characteristic times have been defined for each value of the input noise: the
refractory time (or orbit-time) ¢,, usually close to the pulse width itself, and the
activation time ¢, between consecutive pulses. The time ¢, is just the time T
between consecutive excitations if 7' > ¢,. In general, the firing process can be
initiated by noise and therefore the time 7" becomes stochastic. For small amount
of noise we can intuitively assume that the description of 7" follows the statistical
properties of the noise itself. However, for larger noise amplitudes the average
value of T" decreases. The excitable character of the system imposes the physical
limit T > t,; as a consequence, for increasing noise, an almost periodic pulsing
takes place and the variance o(T) decreases. This corresponds to a maximum of
the coherence of the system. Further increases of the noise amplitude induce the
deformation of the orbit of the excitable pulses and eventually the dynamics is

ruled by the noise.

We have experimentally investigated the effect of noise in our excitable optical
system. Changing the amount of noise, and choosing the adequate indicators, we

report the first experimental evidence of Coherence Resonance.

The experimental setup is the same as in Fiig. 2.1. The length of the external-
cavity is here 36 cm, corresponding to a free spectral range of 416 M Hz. The

threshold reduction induced by the optical feedback is 12%. The laser is pumped
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at 1 % above the solitary laser threshold. We add a broadband (more than
1 GHz), gaussian noise source, with zero mean amplitude into the laser, via
the bias-tee. Such a broad-band noise is generated by an Avalanche Photo-
diode detecting the spontaneous-emission of a semiconductor laser biased just
below its threshold. The band limitation of 1 GHz comes from the bandwidth
of the detector. Such signal is then amplified using a 20 d B microwave amplifier
(1 MHz — 22 GHz). The noise level is varied by controlling the amount of light
reaching the detector with a polarizer placed between the laser and the detector.
The system output signal detection is carried out by a fast avalanche photodiode
(2 GHz bandwidth) and a LeCroy digital oscilloscope (500 M Hz bandwidth).
A DC-100 M H z amplifier allows to select the frequency range of interest. It is
worthwhile to note that filtering the signal at 100 M H z allows us to monitor the
excitable pulses without the details introduced by faster time scales.

In the absence of added noise, the output intensity is constant in time. As
the noise is added, we observe the appearance of excitable pulses, randomly dis-
tributed in time (Fig. 2.21a). Increasing the amount of noise, the pulse rate
increases, until the signal becomes almost periodic (Fig. 2.21¢). For larger noise
the signal becomes irregular (Fig. 2.21d), since the amplitude of the pulses starts
to fluctuate strongly. It seems that, around some definite noise level, the be-
haviour of the system is more regular, which would be an indication of Coherence
Resonance. Following Ref. [106], we study the behavior of the time-interval be-
tween pulses T using the indicator R, defined as the variance of the scaled variable
R =07/ < T >. In the case of a perfectly periodic signal, R would be identically

Zero.
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Figure 2.21: time-series and histogram of the time interval probability distribution between
drops for increasing (from the top) noise level applied in the pumping current: —65 dBm /M Hz
(a), =57.5 dBm/MHz (b), —49.5 dBm/MHz (c), —45 dBm/M Hz (d). The system is so
prepared: cavity length = 36 ¢cm, £ = 12%, I/ 500 = 1.0.
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Figure 2.22: <T >,or and or/ < T > versus n for the experiment of Fig. 2.21.

In Fig. 2.22 we plot o7, < T > and R as a function of the noise amplitude
7. We define the pulse time as the instant when the signal crosses, with negative
slope, a fixed threshold value corresponding to 80% of the amplitude of the pulses
shown in Fig. 2.21. As noise is increased from its minimum value, R reaches a
minimum for 9 = 7, = —57 dBm/MHz and increases afterwards. The min-
imum is clearly observable for a wide range of threshold choices; the particular
threshold value affects only how fast Ry increases for noise levels above 7, but
it does not modify the statistics for noise levels below this optimum value. This is
a clear evidence of Coherence Resonance, since around a particular level of input

noise we find maximum regularity of the pulse train.
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2.4.4 A simple dynamical model

It is a typical strategy in non-linear dynamics to find paradigmatical equations,
if possible the simplest ones, whose solutions present a desired feature (Ref. [30]).
The purpose of this strategy is to be able to make predictions about the behaviour
of a particular problem, regardless of its intrinsic details. In order to study
excitability, we can study the phase space organization of the flow of a dynamical
system close, in parameter-space, to the point at which an Andronov bifurcation
takes place. The most simple equation whose solutions undergo an Andronov

bifurcation is the following one:
§' = p— cosb (2.4.1)

with # € S, i.e. and angular variable. Notice that if 4 > 1, there are no fixed-
points, and the flow consists in a monotonous growth of the variable . This
growth is interrupted at y = 1 for a couple of fixed-points that are born at 8 = 0.
For —1 < p < 1, these fixed-points (a repulsor and a node) coexist, and the
connection between their manifolds is guaranteed by their topological structure
in phase space. Let us assume that our system is governed by the eqt.2.4.1 with
1 =1—¢, and our initial condition is f = V/2¢e. A perturbation larger than 21/2¢
will induce a large response and the system will increase its phase by 27.

The key element in order to obtain excitability is the connection between the
manifolds of the fixed-points. In the model previously described, this connection
is provided by the topological structure of the phase-space. In order to draw a
model applicable to a larger class of systems, the dynamics has to account for it.
The minimal dimensionality in which this can be achieved for euclidean variables

is two. A simple model with the desired features is

¥ =y (2.4.2)

Yy = x—y—2>+ay+e + e (2.4.3)
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Figure 2.23: Bifurcation diagram and phase portraits for the system described by eqts.
(2.2) — (2.3). In regions I and IT there are three fixed-points: a node, a saddle and a repeller.
Crossing the separatrix to region I11, the saddle and the attractor collapses. The three lower
regions display a qualitatively different behaviour. In regions I the unstable manifold of the
saddle approaches a limit cycle. In region I the unstable manifold of the saddle is the stable
manifold of the node and the system behaves as an excitable one. The dashed lines represent
the parameters values explored in the histograms of Fig. 2.25.

with (z,y) € R?, and €, €5, € RY.
Let us study the structure of the flow of this system. The fixed-points are

2

found at y = 0, and at ¢, = —2 + 23 — e22%. A double root exists when ¢ =

— 263 — €/3+2(2/9 + 5)¥2. For e < —Z€3 — €2/3 + 2(62/9 + £)*/? a saddle
and a node coexist with a third fixed-point that exists for all values of ¢; and €.
The three fixed-points can be ordered according to their z values, as they all lie
in the y = 0 axis. For all parameter values, the node has the smallest x value.
In Fig. 2.23 we display the qualitatively different behaviours of the flow
in the different regions of the parameter-space. Those regions are limited by
curves in which either local or global bifurcations take place. The curve that
separates region I1I from the others contains the parameter values at which the
saddle node bifurcation takes place, explicitly written above. Above this curve,

there is only one fixed-point that feeds a limit cycle. Below this curve, there are

three fixed-points connected as follows. In region I, the unstable manifold of the
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saddle feeds the node and a limit cycle. The third fixed-point also feeds the cycle.
Regions I and I are separated by a curve in parameter space in which the saddle
has an homoclinic connection (from region I towards this curve, the limit cycle
approaches the saddle). Within region 7, the unstable manifold of the saddle
is the stable manifold of the node, and the saddle is connected to the repulsive
fixed-point. There is no limit cycle in this region. The flow is orbitally equivalent
to the one dimensional flow described above when —1 < u < 1. Notice that
crossing the separatrix in parameter-space from region I to region I11 implies
undergoing an Andronov bifurcation. As mentioned, the system described by
eqts. 2.4.2 with parameter values within what we have called region /1 behaves
as an excitable one. The response of the system to a perturbation of an initial
state located at the node will be independent of the size of the perturbation,
provided that it places the system beyond the stable manifold of the saddle. As
the unstable manifold of the saddle is attractive, the response will evolve close to

it no matter the size of the perturbation.

We have discussed the excitable nature of our model for parameter values in
region I1. Let us assume an initial condition in the neighborhood of the attractor.
Under the influence of noise, this state might be eventually taken beyond the
stable manifold of the saddle. As its unstable manifold is attractive, the state
will now evolve following this manifold closely (independently of the original size
of the perturbation) until it approaches again the vicinity of the fixed-point. It
is important to recall that in this region of the parameter-space, the unstable
manifold of the saddle is the stable manifold of the node. Associating this large
excursion in the phase-space with a dropout event, we recover the behaviour

described in the previous sections for the LF F-regime.

Notice that in our model, a given noise level will give rise to dropout events

of higher rate as we approach (from region II), the separatrix defined by the
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curve of saddle nodes. From Fig. 2.23 it appears that €; rules the approach
to the Andronov bifurcation i.e. the distance between the fixed-points, while €
controls the distance to a saddle loop global bifurcation. Recalling the definitions
of §I1.4.1, ¢; controls the activation time %, i.e. while €5 controls the ” probability”

of having LF'F clusters.

In order to obtain numerical results for our excitable system we have sepa-
rated our problem into deterministic evolution and noise. The eqts. 2.4.2 were
integrated numerically. In order to simulate the presence of noise in our system
we perturb, after each integration step, the x variable by a number given by
V2Dét, being 6t the integration time step and ¢ a function that, at each step,
generates random numbers Gaussian-distributed with zero mean and variance
one. This stochastic term simulate a noise of zero mean and variance (or noise
level) D. The square root of the time step arises from the transition probability

for a diffusive process.

In Fig. 2.24 we show the time behaviour of the x variable for increasing values
of ¢, and €2=0.4 (Fig. 2.24a) and €,=0.5 (Fig. 2.24b). The noise level D is set
to 1073.

It is evident the qualitative agreement with the experimental time traces of
§I1.3, obtained increasing the pumping current. In fact, ¢; plays a role analogous
to the pumping current of the laser: increasing €; the activation time ¢, decreases

and LF'F rate increases.

The role of the noise in this dynamical model follows the outlines we argued
from the experimental results. When, in the parameter space, the bifurcation
has not yet occurred, noise may trigger the LF'F' and, in this case, the activation

time t, of the drops has a statistic distribution following the Kramer’ laws.

Comparing Figs. 2.24a and 2.24b we can also remark the role of ey: for lower

value of this parameter the possibility of having clusters of LF'F' separated just
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Figure 2.24: Time-series of the x variable when ¢; is varied and e; = 0.4, D = 0.001, the
integration step is 0.01. Setting D = 0 we checked that the Andronov bifurcation takes place

in e = 0.5, ¢ = 0.252.
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Figure 24b: Time-series of the x variable when ¢; is varied and €3 = 0.5, D = 0.001, the
integration step is 0.01. Setting D = 0 we checked that the Andronov bifurcation takes place

in e = 0.4, €1 ~ 0.268.
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by the orbit time t, is increasing. Clusters of LF'F' have been also observed in
the experimental time-series and they are at the origin of the bi-modal time-
interval histograms of Figs. 2.14-2.17. Equations 2.4.2, exhibit the dynamical
features characteristic of the LF'F' clustering. In a delimited region of parameters
(€2 small), noise can determine, after a drop, a further departure of the system
before it has completely recovered its quiescent-state. This originates clusters of
LF'F separated only by a time T' =~ t,, t, &~ 0. Two ingredients determine the
occurrence of these early drops: the small separation between the manifolds (set

by €2) and the noise level.

In order to verify more deeply the agreement between this model and the
experimental observations, we compare the histograms of the time-intervals be-
tween LF'F as generated by eqts. 2.4.2 with the experimental ones §11.4.2. The
statistical analysis on the calculated time-series has been performed in Ref. [115]

and the result is shown in Fig. 2.25.

These histograms shows very clearly the role of €; and €, in the model. The bi-
modal character of the distribution fits well the experimental obtained histograms
of Figs. 2.14-2.17. The right-most peak is related to the activation time ¢, and
it increases in height and moves to lower values as €; is increased. The right-
most peak in the experimental obtained histogram shows the same features for

increasing the current or decreasing the feedback level.

The left-most peak increases in height as a consequence of the higher probabil-
ity of LF'F' clusters, while the time location of the peak does not change since it
is fixed by the LF F-orbit time ¢, which is not significantly affected by the param-
eter values. The experimentally observed behavior of this peak is very similar:
increasing the pumping current or decreasing the feedback level, its height in-
creases together with the probability of LF'F' clusters while its time location is

not affected significantly. The bi-modal distribution holds in the model even after
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Figure 2.25: Probability distributions of time between dropout events in the model (binsize=1
a.u.): ¢)ea=0.5 and €;=0.22,0.23,0.24,0.25,0.26,0.27 corresponding to increasing rightmost peak
amplitudes, d)e;=0.25 and €2=0.5,0.48,0.46,0.44,0.42,0.4 corresponding to increasing leftmost
peak amplitudes. From Ref. [115].

the Andronov bifurcation. In Ref. [115] this is explained as a ”scar of the saddle
node bifurcation in the limit cycle”. Before reaching the neighborhood where the
saddle node was located before the bifurcation, the system can cross the stable
manifold of the saddle following a more internal loop in the phase-space. This
early-triggered drop adds a count to the left-most peak in the histograms. Noise
level and the separation between the manifolds control the probability of this
phenomenon. The same mechanism has been argued from the experimental data
in §I1.4.2. Tt is worth noting that the presence of noise hides the occurrence of
the bifurcation in the variables of the system. The unavoidable noise presence in
the experiment makes impossible the determination of the bifurcation boundaries

in the parameter space.

The fact that such a simple model, built with the dynamical ingredients ar-
gued from the experimental observation, is able to represent successfully all these
detailed LF'F' features, confirms the correctness of the hypothesis formulated in

the previous sections on the LF'F' dynamical origin. On the other hand, it is not
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evident to attribute a physical meaning to the variable x and y, and it appears
also that neither €; nor €5 can be identified exactly with the experimental control
parameters. From the experimental data it follows that both the pumping cur-
rent and the feedback level control ¢, and the height of the leftmost peak in the
histograms associated to the LF'F' cluster presence. In the model, instead, each
parameter controls just one of these effects. This loss of information is the price

to pay for the simplicity of this model.
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2.5 LFF': physical mechanism of the instability

The model presented in section four, built according to the dynamical ingredients
inferred from the measurements, identifies the dynamical scenario at the origin
of the Low-Frequency Fluctuations. Anyway, as we have pointed out, it does
not furnish many elements in order to understand the physical mechanism for
which the system looses its stability and starts to exhibit drops in the output
intensity. Moreover, the dynamical description has been performed on the aver-
aged intensity-output variable of the system. Even if dynamically this variable
is relevant [116], the low bandwidth filtering process may hide several features,
fundamental in order to identify the physical mechanism of L F F-instability. This
is evident comparing the bandwidth limitation for the time signal (500 M H z)
and the time-scales involved in the system. In fact, it has been shown (Fig. 2.9,
for example) that the appearance of LF'F is associated to the excitation of many
external and internal-cavity-modes of the compound laser. In order to resolve the
beat note between consecutive external-cavity-modes (1 GH z apart, for example)
a time-resolution of the order of 350 ps is required. Such time-resolution is ac-
cessible to our detector but it is at the limit of the performances of conventional
single shot scopes. Time resolutions of 3.5 ps are required to solve the beating
note of two consecutive internal-cavity-modes (separated by 125 GHz) and this

is even beyond the limit of our detectors.

2.5.1 Relevance of the internal-cavity laser modes

In order to get information about the roles of the internal-cavity-modes of the laser
in the LF F-instability, we may analyze the behavior of the modal components
during an LF'F, performing a time-resolved optical spectrum. Even if each modal
intensity will be filtered by the scope bandwidth, it is possible to gain insight into

the dynamics of each mode at the drops and during the recovery.
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We have shown that the emergence of LF'F' is associated with the excitation
of additional longitudinal-modes of the solitary laser. In Fig. 2.26 we show the
optical spectrum, obtained with a monochromator, of the system in the stable-
regime and of the system when LF'F appear. The use of the monochromator
avoids any problem of aliasing, thus enabling the observation of the entire set of
lasing modes. Fig. 2.26 shows clearly that the appearance of LF'F' is associated
to the excitation of several solitary-laser-modes. We can quantify this dependence
measuring, for different experimental conditions, both the number of drops per
time unit and the number of modes above —20 dB with respect to the maximum
peak (Fig. 2.27). The set-up used is the one of Fig. 2.1 where the F'SR of
the Fabry-Pérot equals 22 times the laser diode mode spacing, i.e. ~ 2900 GHz
and its finesse is around 200. The laser (Hitachi™ HLP 1400) is AR-coated

on one facet in order to achieve very large feedback levels, the solitary laser
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Figure 2.27: Correlation between the number of drops in 1 ms and the number of excited
solitary-laser-modes for different feedback levels (£) (0 mV = 20%, 100 mV = 14%, 200 mV =
10%, 300 mV = 8%, 400 mV = 6%, 500 mV = 5%, 600 mV = 4%, 700 mV = 3%) and
different laser currents: a) 80 mA = I/Iip 5o = 1.03, b) 8 mA = I/Lip se = 1.09, ¢) 90 mA =
I/Lip st = 1.15 and d) 95 mA = I/Lip s = 1.22. Solid line: decimal logarithm of the number
of drops. Symbols: number of excited solitary-laser-modes divided by 5.

threshold is 78 mA. In the LF F-regime, the number of excited solitary-laser
modes monotonically increases for decreasing feedback level and saturate at about
22 modes, showing that the presence of LFF is strongly linked to multi-mode

behavior.

In order to resolve in time the optical spectrum a second fast Avalanche Pho-
todiode is positioned behind a Fabry-Pérot and replace the conventional slow
silicon photodiode of Fig. 2.1. We fix the length of the Fabry-Pérot and we
record the total intensity and the intensity transmitted through the etalon simul-
taneously. The latter corresponds to the component of the optical spectrum at

the transmission frequency of the Fabry-Pérot, and its temporal behavior is the
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same after every drop of the total intensity.

We record the time-resolved spectrum for different current and feedback levels
by repeating the above measurement for all frequencies inside F'SR of the Fabry-
Pérot (now equal to 6 solitary-laser-modes, ~ 800 GHz) and superposing the
data recorded for every frequency. The appearance of an LF'F triggers each
measurement, which covers a time span of 190 ns with a time resolution of 1 ns.
Following a drop of the total intensity (see Fig. 2.28), the active laser modes
switch-off. As the power recovers, all solitary-laser-modes within the F'SR of
the Fabry-Pérot (and possibly more because of aliasing) start emitting with their
modal frequencies strongly blue-shifted. Interestingly we see that the maximal
value of this shift can be almost equal to the solitary-laser-mode spacing (see
Fig. 2.28a and 2.28c)). It is worth noting that, as the total power recovers, all
the modal frequencies recover synchronously, with a recovery time below 50 ns,

which is of the order of the recovery time for the total intensity.

In addition, the recovery for the modal powers takes longer than 200 ns. On
this long time-scale, the solitary-laser-modes exchange energy following dynamics
similar to that observed during the switch-on transient of a laser (Ref. [117]). It is
worth noting that none of the solitary-laser-modes has an evolution which mimics
that of the total power. If there were such a mode, one could then interpret
the evolution of the system as dominated by this mode, the others becoming
excited because of the non-linear effects associated with the fast, large amplitude

modulation of the master mode.

In Fig. 2.28b, one can see the effect of multiple drops (every 20 — 25 ns).
In this case, which is close to the fully-developed CC regime, the time-resolved
spectrum is more noisy because the drops are so frequent that the system is no

longer able to completely recover its quasi-C'W state after every drop.
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Figure 2.28: (above) Time-resolved spectrum of the laser for currents: I/Iip s = 1.13
with AOM voltages a) 170 mV = 11% threshold reduction and b) 380 mV = 7% threshold
reduction, and I/Ij s = 1.01 with AOM voltages ¢) 170 mV = 11% threshold reduction
and d) 380 mV = 7% threshold reduction. Darker areas correspond to larger optical intensity.
(below) Total intensity-output of the system in the same time interval at which the time-resolved
spectrum was acquired. Each figure is associated to the the one with the same letter in the
preceding picture. We can compare the total LEF'F length with the modal recovery times.
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In the LF F-regime, the time-resolved optical spectrum shows that the solitary-
laser-modes are synchronized and they drop together. Following the drop, several
modes become active, and they start to recover the power level they had just be-
fore the drop by means of inter-mode exchange of energy; as a consequence, the
recovery for the power in each mode is much slower than the recovery of the
total power, which indicates that a single-longitudinal-mode description of such
LFF behavior will not capture important underlying dynamics. Because there is
strong coupling among the modes on long time-scales, it appears that, in order
to describe the LF'F, either an effective multi-mode description (Ref. [118]) or
a partial differential equation to describe the compound cavity (Ref. [21]) would

be required.

Our analysis indicates that even for only two modes, the inclusion of the
feedback terms leads to a breaking of the usual antiphase dynamics (as occurring
in Ref. [119]). Antiphase dynamics is the dominant effect in between LF'F.
However, each LF'F breaks the phase locking of the modes, which start to oscillate
in phase until the modal intensities reach the vicinity of their steady-state values;

at this point, antiphase dynamics is again observed.

In Fig. 2.29 we show the time-resolved optical spectrum for a laser with
feedback in the LF'F-regime, when the F'SR of the interferometer contains 62
solitary-laser-modes. The laser is a quantum well GaAlAs laser SDLT™ 5400C,
with a mode spacing of 58 GHz. The Fabry-Pérot F'SR is of 3500 GH z, allowing
the monitoring of the almost entire set of laser internal-cavity-modes excited
during an LFF'. Of course, the large value of F'SR implies a lower resolution
than in the Fig. 2.28 and we are not able to distinguish the blue-shift at the
drop of every mode, as in Fig. 2.28. Fig. 2.29 shows the huge number of
modes activated at the drop. Comparing the intensity recovering times in the

time-resolved spectrum with the recovering time of the total intensity LF'F', it
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Figure 2.29: (above) Time-resolved spectrum of an SDLTM 5400C with optical feedback.
I/Lip sot = 1.15 and threshold reduction is of 10%. Lighter areas correspond to larger optical
intensity. The horizontal unit correspond to 2.85 GHz (below).
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is evident that the inter mode energy exchange lasts much longer than the LFF

recovery stage.

2.5.2 The problem of the bandwidth limitation

Looking at the power spectrum corresponding to the LF F-regime (Fig. 2.9,
for example) it is evident that very fast oscillations are present in the time sig-
nal. These components are not detected in our 500 M Hz bandwidth limited
time-series. A detecting system, whose rise time is slower than the evolution
time-scales of a signal performs a time averaging of the signal monitored. In a
dynamical system a bandwidth filtered variable is still a relevant variable for the
system [116]: a bifurcation present in the time averaged variable series is neces-
sarily also present in the real-time variable series. The experimental observation
of a bandwidth filtered intensity instead of the real-time intensity is equivalent
to study a dynamical system where the variable [ I(t)d¢ replaces I(t). Since the
time-scale of the time integrated variable is much slower than the real-time vari-
able, the adiabatic elimination may be applied. In this way the dimensionality
of the system is reduced. In terms of phase-space, the adiabatical elimination is
equivalent to a projection of the full dimensional phase-space onto a lower dimen-
sional space where the time averaged variable is relevant for the characterization

of the flow.

More insights into the real-time variable are advisable in order to understand
the physical origin of LF F-instability. The power spectra showed in Fig. 2.9
show frequency peaks up to 3 GH z, covering the whole frequency band at which
the Avalanche Photodiode used is sensible. Further measurements with a Shottky
photodiode reveals external-cavity peaks up to 22 GHz (Ref. [120]). Moreover,
the fact that these peaks are very broad in the power spectra (Fig. 2.9), prevented

us from using sampling high speed scope in order to detect them. As explained in
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Figure 2.30: Experimental set-up

Appendix A the only possible solutions dealing with very fast non periodic signal

is the streak-camera.

2.5.3 The streak-camera measurements

These measurements are performed on an Hitachi™ HL 6314MG laser emitting
around 630 nm, with a mode spacing of ~ 135 GHz and a threshold current of
24 mA. In Fig. 2.30 we show the experimental set-up.

An external mirror of 30% reflectivity, placed at a distance of 30 ¢m from the
laser output (delay time 7 = 2 ns), reduces the threshold of the laser down to
22 mA (=~ 8% threshold reduction). Part of the output beam is sent to a 2 GHz
bandwidth silicon avalanche photodiode. The photodiode signal is monitored
with a digital oscilloscope (500 M Hz analog bandwidth) and it can also be sent

to a power spectrum analyzer (1.5 GHz bandwidth). The remaining portion of
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the laser output is detected by a single-shot streak-camera system. This system
is based on a streak tube with an S 20 photo-cathode having a radiant sensitivity
of 20 mA/W at 630 nm and a P — 11 phosphorus screen. A fiber-optics coupled
gated image intensifier is used to intensify the output of the streak tube. The
intensified image is detected with a two-dimensional, fiber coupled and thermo-
electrically cooled C'C'D array. We operate the camera with different streak
speeds, from about 4.5 ns/screen (16 ps time-resolution), to 65 ns/screen (230 ps
time resolution), to monitor the laser output on different time spans. The time-
resolution of the system and the linearity of the ramp at each speed are tested
with a mode-locked Ti:Sapphire laser. In order to maximize the signal-to-noise
ratio of our measurements, the input optics of the streak-camera is removed and
the laser output is focused directly onto the photo-cathode. A CW He — Ne
laser is used to determine the minimum sensitivity of the streak camera. This
test rules out any possibility that in our experiments the camera might have been
operated below the level at which a continuous signal can appear as a sequence
of pulses as a result of a low number of photo-electrons and a high intensifier gain

(see Appendix A.4).

In Fig. 2.31 we show the total intensity as a function of time observed with
the oscilloscope (a) and the streak-camera (b). In both cases we note that the
average intensity increases steadily with time until it suddenly drops to a min-
imum value. We can also observe that in both cases there are fast intensity
pulses, partially filtered in the oscilloscope trace by the limited bandwidth of the
detection system. The streak-camera measurement shows that the pulses disap-
pear immediately following the drop of the total intensity. These pulses exhibit
a marked pseudo-periodicity at the round-trip time of the optical field in the
external-cavity. However, there also exists pulsing at shorter time-scales which

suggests the influence of higher frequencies. It must be noted that in the case
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Figure 2.31: Total intensity as a function of time taken with a) the oscilloscope, and b) the
streak camera with a time-resolution about 230 ps . Note the pseudo periodicity of the signal
at the roundtrip time in the external cavity (~ 2 ns.)
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of Fig. 2.31 we have chosen parameter values such that the period of the relax-
ation oscillations of the laser (7, & 2.5 ns) is longer than the delay time. Thus,
the faster pulsing cannot be a consequence of undamped relaxation oscillations.
We repeat the measurements for several values of injection current and feedback
strength over hundreds of intensity drops in each case. As long as the system
operated in the so-called LF F-regime, the above qualitative behavior remained
unaltered even if the relaxation oscillation frequency is larger than the inverse
of the delay time. However, the quantitative details change from one drop to

another.

In Fig. 2.32 we show intensity traces covering time spans of 21 ns taken with
time-resolution 70 ps (a-c) and time-spans of 4.5 ns and 16 ps time-resolution
(d-f). Each trace corresponds to a different drop, and starts at different delay
relative to the drop. These measurements confirm that up to our maximum
time-resolution there is no underlying dynamics and that Fig. 2.31b illustrates

the relevant behavior of the total intensity.

In order to analyze the origin of the pulsing occurring at shorter times than
the delay time, we conduct spectral-resolved measurements. We place a 0.3 m
grating monochromator (ActonResearch™ V M503) with a resolution of 0.5 Ain
front of the streak-camera. Removing the output slit of the monochromator, we
obtain a wavelength dispersed beam on the camera photo-cathode. In this way,
we are able to record the time-resolved spectrum, with the horizontal axis of the
streak image corresponding to wavelength, at the price of a lower signal-to-noise
ratio due to the dispersion of the beam. The spectral resolution is ~ 40 GHz,
enough to clearly resolve the resonances of the internal laser cavity although

insufficient to resolve the external-cavity resonances.

Fig. 2.33 displays typical time-resolved spectra in the LF F-regime taken with

the streak-camera with a resolution of 230 ps in time. We clearly observe that
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Figure 2.32: Temporal evolution of the total intensity taken with the streak camera over
different time spans: a-c) 21 ns time-span, 70 ps time-resolution; d-f) 4.5 ns time-span, 16 ps
time resolution. Different traces correspond to different drops, and the starting point relative

to the drop is changing from one acquisition to the other.
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Figure 2.33: Typical streak images showing the time-resolved spectra in the LF F-regime
(36,37,38,40) and in the fully-developed C'C' (43). The first four (from the left) time-resolved
spectra are relative to the situation where LF'F in the low-frequency time signal appear almost
periodic (at a rate of 33.8 M Hz). For the four images the current value (25.6 mA) and all
the other parameter values are the same. The fifth image is relative to a current of 32.5 mA.
The time span is 65 ns with a time-resolution of =~ 230 ps , while the frequency resolution is
= 40 GHz. The time increases from bottom to top, the frequency from left to right, the power
is plotted in false-color logarithmic scale, from purple (low power) to bright red (high power).
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most of the time the system operates in multiple modes of the internal laser cavity,
in agreement with the results of the last paragraph, and in general the dominant
active modes are not consecutive ones. When a drop of the total intensity occurs
(see times ~ 5 ns and 35 ns) all modal intensities are below the photo-cathode
sensitivity. However after a delay of a few ns, we observe that several diode modes
grow from the background. The modal evolution is controlled by the delay time,
and until the next drop of the total intensity takes place there is a transfer of

energy among these modes.

Important dynamical information can be gained from the analysis of the tem-
poral evolution of the relevant modal intensities, shown in Fig. 2.34. Each mode
is pulsing with a repetition rate controlled by the external-cavity round-trip time,
but in general the phase of pulsation is different for different modes; in particular,
the two dominant modes over a given time-interval operate with different phases.
The origin of the oscillations can be understood as a partial phase locking of the
external-cavity resonances within each internal-cavity resonance. Since the modal
intensities are pulsing with arbitrary phases one relative to the other, the total
intensity displays fast pulsing (which looks irregular because of the exchange of
energy among the modes) around a non-vanishing average level, in agreement
with Ref. [120]. The analysis also reveals that shortly after two or more modes
synchronize their amplitudes to pulse in phase, a drop in the total intensity occurs

as soon as the pulses are big enough (see lower trace in Fig. 2.34).

It is worth noting that in general, after each drop of the total intensity both
the number of modes and the respective phase of the pulsing changes, and that
the dominant modes just after the drop are not the dominant ones just before
it. However, the repetitive feature is that a total intensity drop happens shortly

after several modes start pulsing in phase.
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Figure 2.34: (a) Modal intensity traces for the dominant modes in the streak 36 of Fig.
2.33 for times around a Low-Frequency Fluctuation, inf. and sup. indicates which LF'F of the
streak (the first or the second) is resolved. Blue corresponds to the modes at lower wavelength,
red to ones to at higher wavelength. The black trace at the bottom corresponds to the modal
correlation, defined as the product of the modal powers above the background level.
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Figure 2.34: (b) Modal intensity traces for the dominant modes in the streak 37 of Fig.
2.33 for times around a Low-Frequency Fluctuation, inf. and sup. indicates which LF'F of the
streak (the first or the second) is resolved. Blue corresponds to the modes at lower wavelength,
red to ones to at higher wavelength. The black trace at the bottom corresponds to the modal
correlation, defined as the product of the modal powers above the background level.
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Figure 2.34: (c) Modal intensity traces for the dominant modes in the streaks 38 and 40 of
Fig. 2.33 for times around a Low-Frequency Fluctuation. The number on each panel indicates
the streak number of Fig. 2.33, inf. and sup. indicates which LFF of the streak (the first
or the second) is resolved. Blue corresponds to the modes at lower wavelength, red to ones
to at higher wavelength. The black trace at the bottom corresponds to the modal correlation,
defined as the product of the modal powers above the background level.
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As the injection current is increased, the intensity drops become more fre-
quent, and finally the signal in the oscilloscope looks almost random. This sit-
uation is the commonly called fully-developed Coherence-Collapse regime (CC),
Fig. 2.33(e). In the C'C regime, the signal observed with the streak-camera does
not show qualitative differences as compared to the LF'F' case, although now the
signal fluctuates strongly at all times. In fact, the time-resolved spectrum in the
CC' regime does not show any ”dark periods” where all modes are below the
sensitivity limit of the streak-camera. In addition, it appears that the different

modes are no longer synchronized, as was the case in the LF F-regime.

The above results disclose that the interaction between the resonances of the
internal-cavity is at the origin of the total intensity drops. It is worthwhile noting
that the operating modes are usually not consecutive ones, as it occurs with the
multi-mode instabilities in laser theory (see first chapter or the Refs. [121]). A
physical interpretation can be based on a typical multi-mode laser instability.
The system is essentially controlled by the delay time, which fixes a resonance
frequency at 7. For one laser mode, the external-cavity-modes tend to lock in
phase during the build-up of the average total intensity, thus leading to pulses. If
the delay is long enough the active material can recover before the next pulse is
generated, and another laser mode is able to operate and it will grow from noise.
The external-cavity-modes inside the bandwidth of this "new” operating mode
tend also to lock in phase, but their locking phase will in general be different
from that of the previously existing mode. In this way several electro-magnetic
modes are able to operate but their non-linear coupling leads to an instability
which gives origin to the drop of the total intensity and to fast variations of the
material properties like refractive index. As a consequence, there is a shift in
frequency and later operation at other unrelated laser modes. The process then

initiates again.
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In conclusion, the fast pulsing observed in the total intensity with the streak-
camera is due mainly to the superposition of the intensities of different longitu-
dinal laser modes and, for each mode, to a phase locking process of the external
resonances. The intensity drops are the result of a multi-mode instability and
the total intensity value is generally above the spontaneous-emission level. The
non repetitivity of the signal from drop to drop leaves unanswered the question
about the role of noise and the deterministic character of this particular sys-
tem. Heuristically we can say that the whole process seems to be dominated by
noise. However, the instability giving rise to each drop leads to a short stage of
determinism during the recovery, but it is difficult to establish an unambiguous
conclusion about the role of noise by just measuring the intensity and operation

frequency of the laser.
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2.6 Theoretical models

2.6.1 The Lang-Kobayashi model

In the literature about L F'F' the most commonly model used is the Lang-Kobayashi
model (Ref. [16]). This theoretical approach was originally developed for a single-
mode semiconductor laser (DF B laser) and weak feedback levels (region I and 1T
of Fig. 2.4). The temporal evolution of the complex amplitude of the electric field
coupled to the carrier density is described by semiconductor laser rate-equations
1.2.28. The effect of the optical feedback is included in its first approximation
by means of the re-injection of the field itself with a time delay corresponding
to an external-cavity round-trip. The influence of this feedback term on the
rate-equations is to couple the modulus and the phase of the electric field. The

Lang-Kobayashi equations read:

dE (1+ia) 1 .

i — )E+FE(t— ot 2.6.1
o 5 (G Tp) +FE(t—1)e +R (2.6.1)
dN N

- = J—-— _QGF? 2.6.2
o J - G (2.6.2)

T, is the carrier lifetime, and 7, is the photon lifetime. w, is the solitary laser
frequency. The optical gain is G = Gy (N —N,)/(1+¢E?), where G is the modal
gain, N, the carrier density at transparency, and € the gain saturation coefficient.
« is the linewidth enhancement factor, J is the current density, F is the feedback
rate and R is the rate of spontaneous-emission into the lasing mode. The weak
feedback approximation means F << 1, otherwise all the multiple delays terms
of the re-injected field have to be considered. Lang-Kobayashi model describes
well the experimental results obtained for weak feedback level (Refs. [101, 16]).
In spite of their limits, Lang-Kobayashi equations have been applied almost
universally in the literature, to all the feedback regimes and, in particular, to

LFF-regime (Refs. [17, 19]).
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Figure 2.35: Evolution of the trajectory in phase-space for LF'F (a) and CC (b). Diamonds
denote cavity modes and antimodes. The mode with maximum-gain is denoted with a square.
The system evolves towards the maximum-gain mode passing very close to the antimodes and
almost reaching the unstablé Tantfold of the saddle generating a drop out event, In the C'C
regime chaos and antimode dynamics compete. From: J. Mulet C. Mirasso, Phys. Rev. E 59,

5400, (1999)

From the numerical integration of the Lang-Kobayashi model, it has been
shown that the laser power exhibits drops similar to those experimentally ob-
served at low-frequency (Refs. [17, 19]). In these simulations a low pass filter was
included in order to describe the bandwidth of the detectors commonly used in
the experiment. Without any filtering the numerical experiment exhibits strong
irregular picosecond light pulses at a rate associated with the relaxation oscilla-
tion frequency, typically of a few GHz (Ref. [19]). According to these simulations
LF'F originate from a deterministic chaotic attractor which encompasses a large
number of unstable fixed-points, either saddle-node points or foci (Ref. [17]).
This chaotic attractor coexists with one or more stable fixed-points. The tra-
jectory, if in the chaotic attractor, wanders in phase-space around the foci until
it approaches a saddle (Fig. 2.35). The collision with a saddle gives rise to a

large, fast excursion in phase-space until the evolution recovers towards the foci.
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Since this process lasts for several delay times, it generates a long-time-scale dy-
namics which contributes to the lower part of the spectrum, and it was called
chaotic itinerancy with a drift because it involves a drift in the laser frequency.
The numerical intensity pulses departing from zero intensity level come from the
wandering of the system around the foci; the amplitude grows steadily until the
collision with a saddle takes place leading to a sudden reduction of the intensity

(Ref. [19]).

A first experiment using a single shot streak-camera was performed in order
to avoid the low pass filtering of the common detector (Ref. [122]). By comparing
the experimental time-series with the numerical ones, the authors concluded the
correctness of the Lang-Kobayashi model. However, no information was given
about either the location of the picture experimentally taken with respect to the
power-dropout or the relation between the amplitude of the fast pulses and the
average power. Indeed, from these measurements it is difficult for the reader to
conclude the validity of the model. Moreover, further statistical measurements of
the intensity distribution with a sampling oscilloscope have shown that the fast
fluctuations in general take place around an average intensity value different from

zero (Ref. [120]), thus disagreeing with the model.

Our streak-camera measurements provides a more complete experimental pic-
ture on the fast pulses observed in Ref. [122]. We have shown, by zooming out
from the maximum resolution time span, that this pulses are not randomly oc-
curring in time. They do have a periodicity related to multiples of external-cavity
round-trip time. Moreover, the pulsing occurs around a non-vanishing average

level, in agreement with Ref. [120].

In our time-resolved optical spectra measurements we have shown that the
pulses in the total intensity come from different internal-cavity-modes. At each

LFF there is no mode following the total intensity and the number of modes
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involved, as well as their dynamics changes widely at every drop. We have also
shown that the LF'F appears in correspondence of the synchronization of the
modal pulsing.

These experimental observations cannot be explained within a single-mode
Lang-Kobayashi model, but, instead, they require a description which takes into

account the multi-mode character of the solitary laser.

2.6.2 The Duarte-Solari analysis

In a recent work (Refs. [123, 124]) Duarte and Solari analyzed the problem of the
optical feedback in semiconductor lasers as a problem of double-cavity boundary
conditions. The external optical feedback is then naturally included as a conse-
quence of the boundary conditions, fixed by the external mirror and by the the
laser facets. Moreover the semiconductor medium is described in its full spatial
extension, hence allowing for multi-longitudinal-mode operation. Therefore they
avoid the assumption of single-mode operation and they overcome the inclusion
of the external mirror as a perturbative term in the solitary laser rate-equations.
The Duarte-Solari analysis considers the complete problem of a double cavity
system where one cavity is the solitary semiconductor laser and the second is
the external one (L > ¢) delimited by the external mirror of power reflectiv-
ity R. Such a general approach allows for determining the limits of validity of
Lang-Kobayashi equations. Two limit cases are evident in the double cavity ap-
proach: i) the case with no external mirror (R = 0), where the modal solutions
of the system are spaced by Aw = ¢/(nf) (being n the refraction index of the
semiconductor medium); ii) the case where R = 1, where the distance between
the modes solutions is Aw = ¢/L. The equations considered in Ref. [123] for the
semiconductor media are similar to the one introduced in Ref. [20] and described

in the first chapter of this thesis 1.2.33, called Effective two levels Maxwell-Bloch
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equations. The diffusion terms in 1.2.33 is considered large enough to neglect the
spatial dependence of the carrier density, this allows for assuming N (z,t) = N(t).
The boundary conditions are written considering the active medium located at
0 < z < ¢, while the external mirror is placed at x = —L. Then, writing the

field, for x <0, as E(z,t) = Ay(ct —z) + A_(ct + x):

E(l,t) = 0
ON(2,1)/0x |g=¢ = ON(x,t)/0z |1=0
eli—I>nO E(_G, t) - eli—n>lOE(€, t)

lim 0E(x,t)/0x |z=— = lim OE(z,1)/0x |1=c
e—0 e—0

Ai(ct+L) = —RA (ct—1L) (2.6.3)

The first condition is due to the fact that the mirror in z = £ is assumed to be a
perfect mirror, the second is because the carrier cannot leave the semiconductor,
the third and the forth are the continuity conditions for the electric and magnetic
fields, the fifth is the boundary condition at the external mirror of reflectivity R.
The parameter choice is w, = 2 x 10" Hz, I' = 0.4, 1/T = 10'%, £ = 300um,

L = 35¢. The monochromatic solutions can be found proposing:
Ej(z,1) = exp(—iwt)[A;ef*i®) 4 B;el-t*iv)] (2.6.4)

where j = 0 indicates the external-cavity region and j = 1 the active media.
The eqts. 1.2.33 with the boundary conditions 2.6.3 and the ansatz 2.6.4 are
resolved at the steady-state by a recursive algorithm. In Fig. 2.36 we plot the
complex wave vector k; allowed for different values of R. To every contour line it
corresponds a value of R, increasing from R = 0 (points) to R = 1 (real axis). In
Fig. 2.37 we plot the stationary solutions in the space Carrier density, frequency.
For R = 0 we obtain the solitary-laser-modes (Fig. 2.37, top). For R # 0

new solutions (”islands”), clustered around the solitary laser solutions, appear
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Figure 2.36: Complex wave vector k; allowed for different values of R. Contour lines are
labeled by R and increase from R = 0 (points) to R = 1 (real axis). From Ref. [123]

(Fig. 2.37, center). These solutions are created through saddle-node bifurcations
as R is increased. Their frequency separation depends on the ratio L/f. The
island emerging from each stable solution of the solitary laser corresponds to the
solutions found in the Lang-Kobayashi equations. Increasing the feedback level
these islands get larger and finally they start to merge into one (Fig. 2.38, top)
for low frequencies while, for high frequencies, they still look like islands. Finally,
for R > 0.011, the spectrum of the monochromatic modes is represented by a
single wavy line and the islands have disappeared (Fig. 2.37, lower panel). In
Fig. 2.38 we plot a transitional case (R = 0.01048 - R = 0.01055) showing the
merging process between islands. The result of this analysis shows that these
changes, increasing R, are beyond the possibilities of Lang-Kobayashi equations
since they require the interaction in bifurcations of solutions coming from different
solitary-laser-modes, neglected in Lang-Kobayashi. This analysis reveals that

Lang-Kobayashi equations are only valid for weak feedback level, but they are
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Figure 2.37: Carrier density vs. frequency for the laser with different reflectivity external
mirror (from top to bottom: R = 0, R = 0.008, R = 0.018). Inset: the frequencies of the
monochromatic modes correspond to the intersection of the lines Im(N(w)) with the w axis.
From Ref. [123]
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Figure 2.38: Carrier density vs. frequency for the laser with different reflectivity external
mirror (from top to bottom: R = 0.01048, R = 0.01055). From Ref. [123]

unable to describe what happens for R > 0.011, when ”islands” from different
solitary-laser-modes start to merge together.

The stability analysis of the stationary solutions is analyzed in Ref. [124]. In
this paper Solari and Duarte describe how the stability is affected by the main
parameters (pumping current, feedback level, external-cavity length).

For J = 40 and for R = 0 the threshold mode is always stable while the others
are unstable in one or several directions. For R = 0.002 a pair of new modes are
created through a saddle-node bifurcation. The two modes with lowest N are
stable while the others are unstable. Further increasing R, we have that in the
transitional case (R = 0.01055) the solution with maximal gain and the two
neighboring solutions are stable, but their stability has weakened.

In Fig. 2.39 we show the eigenvalue spectrum of a mode which is unstable for
R = 0.002. As R increases several eigenvalues approach the imaginary axis
and, eventually, they take positive values for the real part (Fig. 2.39, lower
panel). Moreover, the difference in the imaginary part between consecutive eigen-
values suggests they can be related to external-cavity-modes, though it is not
formally correct to distinguish between external and internal-cavity-modes. In

the spectrum of a solution, the presence of an eigenvalue A with positive real
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part (R(A\) > 0) means that it exists a perturbation of a certain spatial depen-
dence for which the solution is unstable and for which undamped oscillation at
the frequency (A) develops in the system (see chap. 1.1). Then, Fig. 2.39 says
that there is a growing number of electrical field spatial structures which may
excite undamped oscillation in the mode analyzed. It is worthwhile to notice
that these frequencies are grouped in sets whose separation is equal to the sepa-
ration between solitary-laser-modes. For R = 0.009 three clearly separated sets
of unstable directions differing in the magnitude of the excitation frequency are
observed. Again, the frequency separation between the three sets is equal to the

separation between solitary-laser-modes.

For the values of R at which it has been observed the transition between island
and merged solutions, the spectra of the solutions depend strongly on the value
of N. The solutions with low carrier density are weakly unstable, for moderate N
the spectrum is still wavy and the number of unstable directions and the strength
of the instability has increased. Finally, for large N the solutions are strongly
unstable. Further increasing R beyond the transition value makes that only the
solutions corresponding to local minima of the curve N vs. w (see Fig. 2.37) are
stable. The most unstable solutions are the ones located at the local maxima of

the same curve.

Solari and Duarte explored also the effect of the pumping current. Here
we resume the effect of changing the pumping current on the most unstable

eigenvalue of the threshold mode (Fig. 2.40).

For R = 0, increasing J affects the stability of the threshold mode lowering the
real part and shifting the imaginary part of the most positive real part eigenvalue.
These variations are smooth and monotonous with increasing the pumping cur-

rent.

For R = 0.009, ®(A) vs. J shows a peaked, non monotonous structure. The J(\)
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vs. J curve shows that, corresponding to each ripple in R(\), there is one value
for ¥(A). Jumping from one ripple to the next one, as J is increased, there is a
jump of the value of ()) equal to the external-cavity-mode separation. In other
words, as J increases, the most unstable mode is jumping from one external-
cavity resonance to the next one. For R = 0.009 the lasing mode remains stable,
since (A) < 0.

For R = 0.01055 the curve of () vs. J maintains its ripple structure, but now
there is a value of J (= 30) for which the lasing mode looses its stability. There
are regions of J where the mode undergoes a Hopf-instability and suddenly the
system exhibits an oscillation at frequency equal to (). This Hopf-instability
marks the starting point of a possible sequence of instabilities which eventually

leads to more complicate dynamical states.

For R = 0.018, after the metamorphosis the above effects are significantly stronger

and the lasing mode is destabilized for smaller .J.

It worth noting that, since R(\) may become very small as the pumping
current is increased, the lasing mode becomes weakly stable. In this situation
the presence of noise in the system (spontaneous-emission) may anticipate the
instability, as argued from our experiment. Then, J controls the relevance of
the noise, since it changes the degree of stability of the mode. Moreover, since
the system may develop undamped oscillation on a wide range of frequencies
(containing several free spectral ranges of the internal-cavity), the dynamics will

involve the excitation of a great number of laser cavity modes.

The Solari-Duarte analysis determines a maximum feedback level for which
the Lang-Kobayashi model is still valid. This limit (R ~ 0.01) is much smaller
than the feedback ranges where Low-Frequency Fluctuations appear. Lang-
Kobayashi stationary states, organized as separated islands of external-cavity-

modes, each one centered around the relative internal-cavity-mode, are recovered
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for R < 0.01. Above this limit, Solari-Duarte model shows that these islands
merge together through bifurcations involving solutions coming from different
internal-cavity-modes islands. The stability analysis shows that, as J is increased,
the lasing solution becomes unstable versus perturbations having different lon-
gitudinal spatial structure. Undamped oscillations may develop at frequencies
separated by an amount corresponding to the internal-cavity free spectral range.
It would be extremely interesting to analyze the dynamics predicted by Solari-
Duarte model, unfortunately numerical simulations of these equations have not
been performed yet. Anyway, our experimental results seem to confirm heuristi-
cally many peculiarities emerging from this analysis: the role of the solitary laser
cavity modes in destabilizing the laser solution, the importance of the noise level
in the trigger mechanism of the instability, the weak stability (or the instability),
of the lasing solution versus perturbations corresponding to a wide number of
internal-cavity-modes which determines, together with noise, a modal dynamics

deeply irregular and very rich in the number of modes involved.
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2.7 The frequency-selective feedback

We have shown that Low-Frequency Fluctuations are strongly related to the ex-
citation of several longitudinal laser modes. A straightforward modification for
improving the stability of the system is to replace the external mirror by an opti-
cal grating. The presence of a wavelength dispersive element implies a frequency
filtering for the re-injected field, possibly limiting the bandwidth of the optical
feedback to only one internal-cavity-mode. In this configuration multistability
between modes of the external-cavity was theoretically and experimentally re-
ported in Refs. [125, 126]. The macroscopic behavior of such system in terms
of tunability and reduction of the spectral width was studied in Refs. [127, 128].
We analyze experimentally the system dynamics as a function of three control
parameters: feedback strength, pumping current and detuning between the re-
injected frequency of the grating and the resonant frequencies of the laser cavity.
We find bistability in the laser operation both below and above the solitary laser
threshold. In the last part we sketch a model able to describe our experimental

system, and we give an heuristic interpretation of the observed instabilities.

2.7.1 Experimental results

In order to achieve strong feedback levels we use an Hitachi’™ HLP 1400 partially
AR-coated (< 1%) on the facet exposed to feedback (Fig. 2.41). A holographic
grating (1800 lines/mm, efficiency ~ 90 % at Littrow angle) is placed at 0.5 m
from the laser in Littman-Metcalf configuration. This configuration allows, with-
out using a beam expander, to match completely the surface of the grating in
order to reach the highest resolution uncoupled from mirror tilting (detuning).
We maximize the resolution (18 GHz) of the grating fixing it at an angle of 5°
with respect to the incident beam. The first order is sent to a 95% reflectivity

mirror which closes the external-cavity and allows the frequency tunability of
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Figure 2.41: Experimental set for the laser with frequency-selective feedback. L lens, S scope,
PS power supply, FP Fabry-Pérot interferometer, APD Avalanche Photodiode, C collimating
lens, BS beam splitter, AOM acousto-optic modulator M mirror, DS digital scope, SA spectrum
analyzer, A microwave amplifier, T T-coupler, G grating

the system. Part of the output beam is reflected into a scanning Fabry-Pérot
analyzer (600 GHz Free Spectral Range and finesse of 100) to check the spectral
characteristics of the laser output. The remaining elements of the set-up are the
same used in the set-up of Fig. 2.1.

The laser without optical feedback has a threshold of 80 mA and it operates
multi-longitudinal-mode up to currents of the order of 100 mA. It works primarily
in two modes when the current is between 85 mA and 100 mA.

Our frequency-selective element allows, when effective, to select just one single
solitary-laser-mode. A single-mode operation of the system depends on two main
parameters: the feedback level and the detuning of the frequency selected by the
grating with respect to a solitary laser cavity resonance.

We define this detuning in the range [0, 5], being ¢ the laser cavity length,
and we take always as reference the nearest-blue located solitary-laser-mode. This

definition is due to the periodicity of the system behavior when the above defined
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Feedback level (Arb. Units)

Figure 2.42: Bistability cycle for detuning of 60 Ghz: intensity-output vs. Feedbak Level.

parameter is changed on several internal-cavity free spectral range.

The feedback level is strongly dependent on phase matching and it is maxi-
mized by focusing the beam on the plane mirror which closes the cavity. In this
condition the acousto-optic modulator is the only element controlling the feed-
back level. In Fig. 2.42 we show the intensity as a function of feedback level
for a pumping value of 84 mA and detuning of 60 GHz to the red of a cavity
mode. The system shows clearly a bistable behavior. This bistability is not due
to the sweeping of the parameters. In fact, if we fix the feedback level inside the
bistability cycle, the intensity-output can be high or low depending on the pre-
vious history of the system. This bistable cycle appears at different values of the
pump level, and even when the solitary laser is below threshold. The two states
of the bistable cycle can be interpreted as: i) one state controlled by the disper-
sive element which re-injecting the electro-magnetic field decreases the losses and
therefore it produces a high intensity-output, and ii) a lower state corresponding
to the laser without feedback. Thus, the frequency of the upper state is close to

the one selected by the grating, while in the lower state the system operates in an
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Figure 2.43: a)Optical Spectrum of the system at the upper branch of bistability cycle.

b)Optical Spectrum of the system at the lower branch of bistability cycle. The vertical scale is
magnified two times in respect with the one in a).

analogous way as the solitary laser does (see Fig. 2.43). If the pumping current
is below 80 mA, the intensity of the lower branch vanishes, and its frequency is

not defined.

Changing the detuning towards larger values, the area of the bistable cycle
increases until the system will not switch anymore to the upper branch even for
maximum feedback intensity. For smaller detuning the bistable cycle decreases
in size and finally it disappears. The intensity-output grows nonlinearly with
the feedback level, and the optical spectrum shifts gradually from the solitary
laser frequency to the one imposed by the grating. It must be noticed that the
qualitative behavior remains unchanged for all experimentally accessible pumping

levels.

Fixing the detuning at a position where the behavior of the intensity is not



206

a)
i2)
E
)
g
s 4
2
= 1
J5i
E 1
Time (50 ng/div.)

-10
€ 201
o
S
>  -301
‘D
5]
£ 40+

0 1000 2000 3000
Frequency (MHz)

Figure 2.44: a) intensity-output and b) Power Spectrum of the system when the detuning is
set to 30 GHz and the feedback level is moderate.

bistable the intensity-output is constant for the maximum achievable feedback
level. Decreasing the amplitude of the feedback the intensity-output decreases,
the power spectrum shows peaks at the external-cavity resonance frequencies and
the optical linewidth increases and the peak shifts back towards the solitary laser
frequency.

Below a certain feedback level, Low-Frequency Fluctuations appear in the
intensity-output (Fig. 2.44(a)). When this occurs the optical linewidth broadens
dramatically to the blue side of the spectrum (Fig. 2.45). The power spec-
trum shows the characteristic low-frequency component and all the peaks at the
external-cavity frequencies broadened (Fig. 2.44(b)). It’s important to notice
that the optical spectrum shows the existence of several laser longitudinal-modes

growing as the fluctuations at low-frequency appear. Their frequency positions
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Figure 2.45: Trace b): Optical Spectrum corresponding to Fig. 2.44. Trace a) and c) are
added for comparison with b). Trace a) is the optical spectrum of the system for a feedback
level slightly larger than in b): the corresponding output intensity is constant in time. The
remaining parameters values are the same as in a). Trace c) is the optical spectrum of the

solitary laser at the same pumping current as it is in trace a) and b). In a) the vertical scale is
compressed four times than in b), in ¢) is expanded 2.5 times than in b).

are not different from the solitary laser case. Thus when fluctuations at low-
frequency are present in the field intensity only the frequency component around
the re-injected mode are perturbed. The other longitudinal-modes seem not cou-
pled to this one. However this observation shows only the time averaged behaviors
of the spectrum while it does not provide information about correlation in real-
time between different modes. Instead, if we detect the temporal behavior of the
intensity of each longitudinal-mode, we notice that simultaneously to the dropout
of the total intensity, the intensity of the lateral modes grows (Fig. 2.46). Thus

the modes are strongly coupled even if just one of them is affected in the frequency
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Figure 2.46: Total intensity (upper trace) and intensity of a lateral laser mode (lower trace)
as function of time monitored contemporaneously (see text).

domain by the feedback. However there is no frequency shift for them and the
duration of the pulse is shorter than the recovery time for the dominant mode.
This is the main difference we found on the dynamical behavior of a selective
frequency feedback with respect to an optical feedback provided by a mirror.
Our heuristic interpretation is that the dropout process is produced when
the dominant mode is destabilized by the presence of the lateral modes. In
other words perturbations whose frequencies corresponds to those of the lateral
modes tend to grow producing the intensity dropout . However the strongly
frequency-selective feedback allows their existence for times of the order of a single
round-trip (3.2 ns). In fact the dispersive element will immediately misalign such

frequency, and the system returns fast to the dominant mode.
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2.7.2 Interpretation

A theoretical model to describe this system was proposed in Refs. [125, 126]. They
considered the external grating as element changing the effective reflectivity while
not imposing any dispersive effect. With such assumption the model becomes
identical to the case of having a conventional mirror for closing the external-
cavity. Multiple steady-state solutions occur for parameter values corresponding
to semiconductor lasers. However the separation in frequency among consecutive
steady-state solutions is of the order of the inverse of the external-cavity roundtrip
(~ 300 M Hz for a 50 em external-cavity length). We showed experimentally, in
agreement with the experimental result of Refs. [125, 126], that the two possible
steady-states in the bistable cycle corresponds to a frequency separation of the
order of tens of GHz. Such difference can be understood only if we consider
that the grating will strongly select the frequency at which the feedback is effec-
tive. In other words, the theoretical models previously presented are valid only if
the bandwidth of the grating is much larger than the modal separation between
longitudinal-modes of the solitary laser. Thus the grating will behave essentially
as a conventional mirror whose reflectivity does not depend on frequency. In our
experiment the bandwidth of the grating is smaller than the longitudinal-mode
separation and the dispersion of the feedback becomes strongly relevant. Fur-
thermore, a complete model able to describe the dynamical instabilities would
require a multi-mode description of the laser. Clearly because of the existing
coupling among modes, we can not expect a good agreement with a single-mode
theory. We are unaware of the existence in literature of such a model containing
both a multi-mode description and/or the existence of a dispersive element in the
external-cavity. We want to show here that a simple model for a two level atom
interacting with an electro-magnetic field but including a multi-mode descrip-

tion and the appropriate boundary conditions for a strongly selective feedback
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explains our experimental results when no instabilities are present. A description
of the intensity fluctuations would require a numerical simulation which is not
the aim of the paper.

We assume a two level atomic medium interacting with an electro-magnetic
field in the rotating wave approximation. The frequency-selective feedback is
included through the boundary conditions. The well known Maxwell-Bloch equa-

tions read:

1
O.E+ _OF = gP+z'%E
P = —y.((1+i8)P — EN)

AN = —y((N=N,)+ %(E*P + EPY)) (2.7.1)

where FE, P, and N are the electro-magnetic field envelope, the atomic polariza-
tion and the population inversion respectively; «, 71, and 7 are their respective
loss rates; N, is the pumping rate, g is the gain , c is the speed of light in the
medium, wy is the frequency of the electro-magnetic field with respect to a cavity
resonance w, which was taken as reference; J is the detuning parameter which
indicates the separation in frequency between the electro-magnetic field and the
atomic resonance normalized to v,, 6 = “’“‘7%4 Assuming unidirectional ring

laser with the medium uniformly distributed along the whole cavity the boundary

conditions are:

t—7
L—¢

E(0,t) =1 [E(L,t) + refy E(,t"ewrwd Tt —r —¢)dt' | (2.7.2)
0

where £ is the length of the laser cavity, L is the length of the external-cavity , 7
is the round-trip time in the external-cavity and I'(¢) is the transfer function of

the frequency-selective element. Assuming:

[(t) = (Aw)el7Awiwelt (2.7.3)
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which describes our phase grating we can define:

Uy(t) = /0 t E(l,1')(Aw)el~Awilwg—we—wt)(t=t) g/ (2.7.4)
Then:
AUy = —Aw((1 +14d,)U; — Ey] (2.7.5)
where §, = (o—e—wr) _KZ)—“")

So the boundary condition reads:

E(O,t) ( (f t)+7“eff€(

(t—7)) (2.7.6)

and the eqtns. 2.7.1-2.7.5 are the equations of motion. By simple algebra we find

the steady-state solutions:

A0 = T pamEletNo - (1+8) () |
we = —%[\I/(wg)+6ln(7“1®(wg))]+2%7rj jez (2.7.7)

where p is the modulus of electric field and:

(M

2 _ o 2 L—/ B
O = I T gy e e T) marctad)

a2 sin[(w, + we) (E4) — arctgd,)

[

VU(weg) = arct -
() ol 1+ a2cos|(w. + we) (1£) — arctgd,]

(2.7.8)

where « is a constant depending on the reflectivity of the output mirrors and the
grating. A complete analysis as a function of the parameters will be presented
elsewhere. However we can remark some qualitative features for each mode j:

i) If Aw — oo and L — 0 then we obtain the usual steady-state solutions for a
laser. ii) As © depends on the frequency wy, then 2.7.7 has multiple solutions.

iii) If Aw is small compared to and d, is of the same order of magnitude of

[4
209
Aw, then there are, at least, three possible steady-state solutions. One of them

is close to the operation frequency of the laser without feedback. A second one is
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close to the frequency w, defined by the grating. An intermediate value is found
to be unstable.

These qualitative feature are able to explain the bistable behavior and the
trend of the bistable cycle as we change the value of ,. A numerical integration
is necessary in order to check the agreement of the model in the parameter region
where experiment shows oscillatory behavior: this work will be developed in the

future.



Chapter 3

The Vertical-Cavity
Surface-Emitting Lasers
(VCSEL's) with Optical Feedback

3.1 Introduction

It is well known that VCSEL's do not have a strong mechanism for a single
polarization selection and may show instabilities because of the polarization dy-
namics (see §1.3). Such effects were recently studied in the experimental config-
uration of laser with optical feedback with polarization selection (Refs. [81, 129,
130, 131]). Here we describe the experimental results obtained in the case where
the VCSEL's were submitted to polarization preserving optical feedback. This
experiments have been motivated by different reasons: i) to check what would
happen submitting to optical feedback a semiconductor source that is single-
longitudinal-mode. Does Low-Frequency Fluctuations still appears? Are there
other kind of instabilities? ii) To characterize the VCSFEL's behavior in presence

of optical feedback, thus evidencing the dynamics of the polarization components

It has been argued that VCSEL's should be relatively immune to optical feed-
back because of large reflectivity of the mirrors forming the cavity (Refs. [132,

133]). However, it has been shown that VCSEL's may exhibit in some cases a

213
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sensitivity to optical feedback comparable to that of edge-emitter lasers (Refs. [134,
135]). In this chapter we show that a VCSEL with polarization preserving
and mode-matched optical feedback can display instabilities in the total output
power which are linked to fluctuations in the polarization components of the
VCSEL emission. We show that for perfect phase matching and alignment of
the external-cavity, the total output power is quite stable over a wide range of
parameter values, although anti-phase oscillations of the two linear polarization
components may occur, with a oscillation period corresponding to the external-
cavity round-trip time. As the current injection is increased, instabilities of the
total output power which look like the well known Low-Frequency Fluctuations
in edge-emitting lasers develop. Fluctuations appear simultaneously in the two
polarization modes, in such a way that the dominant polarization mode dis-
plays power drops which are simultaneous with bursts in the power of the de-
pressed polarization mode. A theoretical model is presented which explains qual-
itatively the experimental results. The model is based on the Spin-Flip Model
(SFM), (Ref. [86]) which has been often used to explain polarization switching
in VCSFEL's as described in §1.3. In order to describe the effects of the external
mirror, we develop an approximation valid for arbitrary reflectivities of the ex-
ternal mirror which includes all round-trips in the external cavity; the inclusion
of multiple round-trips in the external cavity is necessary because of the large
reflectivity of the mirrors forming the VCSEL cavity (Ref. [136]). The widely
used Lang and Kobayashi approximation (Ref. [16]), which accounts only for one
round-trip in the external-cavity, is recovered in the limit of very low optical

feedback.

This chapter is organized as follows. In Sect. II we present the experimental
results. In Sect. III we develop the model, and in Sect. IV we analyze the

numerical results and we compare them with experimental ones.
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3.2 Experimental results

In our study, we use a proton-implanted GaAs VCSEL with lasing wavelength )\,
around 850 nm manufactured by VIXEL™™ Corp. The active area is defined by
proton implantation, its diameter is around 8 ym (Refs. [54, 83]). The VCSEL
is battery powered and mounted on a thermo-electric device to stabilize the tem-
perature. The VCSEL output is focused by an AR-coated aspheric lens onto a

distant reflector that provides mode-matched optical feedback.

Two different configurations of the external-cavity have been used. The first
one allows for large feedback (threshold reduction of 28%, Fig. 3.1a). The second
one (Fig. 3.1b), where mirror M was removed and BS1 was substituted by a
wedged glass substrate, provides moderate feedback (threshold reduction of 15%).
These configurations have been chosen in order to avoid interferometric effects
from any optical elements (see appendix A.7). In fact, the symmetric beam shape
of the VCSFEL together with its high spectral purity easily produce interference
effects in optical elements with parallel faces (beam splitters, dielectric mirrors,
windows, neutral density filters, etc.), which act as an etalon if anti-reflection
coatings are not perfect. This effect has to be avoided in order to maintain the
feedback not selective in frequency. Moreover, the incidence of the beam onto
the surfaces of the optical elements should be normal in order to preserve the

polarization in the external feedback cavity.

The output is polarization-resolved by means of a Glan-Taylor prism. A
A/2-waveplate placed into the optical path just before the Glan-Taylor prism
allows to check the orientation of the analyzer with respect to the polarization
emitted by the laser. Thus, a rotation of the polarization axis of the output field
can be measured by rotating the \/2-waveplate. The two beams emerging from

the polarizer are focused onto Si avalanche photodetectors (APD1 and APD2,



VYISEL

o T
] L
APDE
. P Sanoli
- EE:.:::,I,,“ ﬂgﬂnlmm uﬁ:?li'“l:gfupt
S lyzer
ViISEL L
B52 PBS m
FF
| "
“ Ej APDE
. P Sanoli
- E;:::ﬁulnn 3;1'::"““ Dﬂ:ﬁ'“l:gfupt
SoeAlyzer

Figure 3.1: (a,b) Schematic experimental setup for (a,above) large feedback
(b,below) moderate feedback: C collimator, BS polarization preserving beam
splitter, PBS polarizing beam splitter, M mirror, L. lens, APD avalanche pho-
todiode, D broad area slow detector, FP plano-planar scanning Fabry-Pérot, A
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bandwidth ~ 2.5 GHz). Their signals are monitored with a digital oscilloscope
(LeCroy™ T7200A, analog bandwidth 500 M Hz). An RF-spectrum analyzer
monitors the power spectrum of the signals in a range covering the full bandwidth
of the detectors. The optical spectrum is obtained with a scanning Fabry-Pérot

whose free spectral range is 293 GH z, and its finesse is of the order of 200.

The main characteristics of the solitary VCSEL are shown in Fig. 3.2. The
threshold current of the solitary VCOSEL is Iy, 5o = 2.65 mA, and it emits linearly
polarized light in the fundamental transverse mode up to 3.7 mA. For currents
between 3.7 mA and 4.4 mA, we have bistability between the two linearly polar-
ized modes with noise-induced switching from one to the other, whose frequency
splitting is of the order of 2.8 GHz. Above 4.4 mA, the first order transverse

mode appears.

In the feedback experiment we will stay always well below this point. The
aim of this work is to characterize the dynamical behavior of the VCSEL with
feedback in the parameter region where the intensity-output of each polarization

component is not stable.

In Fig. 3.3 we show the polarization-resolved L-I curve of the VCSEL with
large feedback. The threshold is now Iy, feeq = 1.9 mA, and the emission is stable
and linearly polarized for currents above I; = 2.22 mA. At I ~ 2.65 mA, a
polarization switching occurs, but the laser emission is still stable and linearly

polarized until the larger order transverse mode comes into play.

For currents between Iy feeq and I the VCOSEL output is unstable both
in total power and polarization orientation. Close to Iy feea (see Fig. 3.4a,
I =2.02mA), the output field is almost linearly polarized but there are important
fluctuations at low frequency in the two components. The power spectrum of each
component shows multiple beat notes of external-cavity modes, and noise excess

at low frequencies. For larger currents (Fig. 3.4b, I = 2.13 mA) the amplitude of
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Figure 3.2: Polarization-resolved dynamics of solitary laser for current 3.01 mA (upper left
panel), 4.11 m A (central left panel) and 4.67 mA (bottom left panel). Right-hand panels display

the corresponding optical spectra.
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Figure 3.3: Polarization-resolved LI-curve of the VCSEL in the large-feedback configuration.

the Low-Frequency Fluctuations increases, and the two polarization components

are in anti-phase.

At this point the fluctuations manifest themselves in sudden drops in the
power of the dominant polarization component (and the total power) which is
followed by a rather slow stepwise recovery. This shape resembles very much the
shape of the power drops in the low frequency fluctuation regime in edge-emitters
with feedback. Each drop of power of the dominant polarization component is
accompanied by a burst in power of the one which is usually depressed.

Further increasing the current, the Low-Frequency Fluctuations appear grouped
in bursts (Fig. 3.4c, I = 2.19 mA) separated by intervals of constant output. The

length of the bursts reduces and the time between bursts increases as the current

is increased.

Finally, for currents above I; the Low-Frequency Fluctuations disappear and
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the output is linearly polarized (Fig. 3.5). However, the RF spectrum of each
polarized component displays several narrow peaks with side-bands at multiples
of the external cavity frequency spacing (Fig. 3.5, upper panels). The two lin-
early polarized components can be adjusted to interfere with variable amplitude
by rotating the \/2-waveplate (Fig. 3.5, lower panels). We observe that the
RF spectrum is modified by this operation, and there is a position of the \/2-
waveplate where the central component of the external cavity modes is suppressed
while the side-bands remain (Fig. 3.5, 2.36 mA, 66° ). This result indicates that
each polarization is oscillating with a period corresponding to the external round
trip time but in anti-phase, because the beating disappears if we compensate their
difference in amplitude. The side-bands indicate that a second lower frequency
exists and the two polarization components oscillate in-phase at this frequency.
For currents above 2.65 mA, the system then emits linearly stable on the other
component and single external-cavity mode operation is improved if the current

is further increased.

It is worth remarking that the orientation of the polarization axes of the
VCSEL with feedback is affected by minute anisotropies in the external-cavity.
As a consequence, the emission of the VCSFEL with feedback has in general prin-
cipal axes rotated with respect to those of the solitary device. This uncontrolled
rotation of the axes can be compensated for by the A\/2 wave-plate in the output
beam thus realigning the emission axes with those of the polarizer. Interestingly,
the orientation of the linearly polarized emission from the VCSFEL with feedback
can be controlled by inserting a highly anisotropic element in the external-cavity

(as a A/4 or A\/2 waveplate), whose axes become dominant.

In Figs. 3.6a and 3.6b we show the moderate feedback case. In this case the
output of the system is always very noisy with broad peaks in the power spectrum

both at low frequency and at the external-cavity resonances. Although antiphase
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Figure 3.4: (a) Emission characteristics of the VCSEL in the large-feedback configuration
for current injection I = 2.02 mA. Big upper panel: Time trace of the polarization-resolved
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panel: Time trace of the total power. Bottom right panel: Power spectrum of one polarization
component.
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Fig. 3.4: (b) Emission characteristics of the VCSEL in the large-feedback configuration for
current injection I = 2.13 mA. Big upper panel: Time trace of the polarization-resolved powers,
(Inset panel) long scale time trace of the polarization-resolved powers. Bottom left panel: Time
trace of the total power. Bottom right panel: Power spectrum of one polarization component.



223

2.19 mA
250~ ] i | .
200 — —
Lo 2x10% ]
0 L i
‘c 150 — -]
2 = —
o L i
S i
) o i
3
S 100+ —
50— —
O bbby ool | A g | | |
2000 2500 3000 3500 4000
Time (ns)
total signal
150 0
. )
2 =
5 £
D
o =
5 75t o —50
~ Q.
[ (%]
o o
% )
o 3
(o
Ol v —100 L L
0 1x10% 2x10% 0 500 1000
Time (ns) Frequency (MHz)

Fig. 3.4: (c) Emission characteristics of the VCSEL in the large-feedback configuration for
current injection I = 2.19 mA. Big upper panel: Time trace of the polarization-resolved powers,
(Inset panel) long scale time trace of the polarization-resolved powers. Bottom left panel: Time
trace of the total power. Bottom right panel: Power spectrum of one polarization component.
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Figure 3.5: (upper half of the figure) Time trace of the polarization-resolved powers and
corresponding power spectrum of one polarization component of the VCSEL in the large-
feedback configuration for current injection of I = 2.24 mA and of I = 2.56 mA. (upper half of
the figure) Power spectrum of one polarization component of the VCSEL in the large-feedback
configuration, for current injection of I = 2.36 mA, as the the \/2-waveplate is rotated. Then
the polarization axis are rotated before the polarizing beam splitter of 0°, 26°, 66°, 90°, as
indicated above each panel. In this way the two linearly polarized components can be adjusted
to interfere with variable amplitude.
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Figure 3.6: (a,b) Polarization-resolved time-series for the moderate feedback con-
figuration when I = 3.09 mA(above) and I = 3.16 mA(below).
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dynamics is not as clear as for the strong feedback case, anyway it is evident that

the fluctuations in both polarizations are synchronous.

3.3 Model

In order to describe the effects of optical feedback on the output characteristics
of the VCSFEL, we have on one hand to describe the interaction of the optical
field with the material in the active region, and on the other, we have to include
in the description the effects of the external mirror while keeping the vector

characteristics of the optical field.

Our starting point for the description of the VCSFEL is the Spin-Flip Model
(SFM) developed in Ref. [86] (see §1.3). The original SFM model does not include
optical feedback, and therefore the evolution equations for the optical field have
to be modified in order to take it into account. Polarized feedback effects in the
SEM have been considered previously by adding to the rate-equations for one of
the field components a delayed term which represents the effect of the external
mirror (see Refs. [130, 81]. For polarization preserving feedback one could follow
the same approach for both components of the field (as in Ref. [131]); however,
in this limit only one roundtrip in the external-cavity is taken into account for
the dynamics, and it has been pointed out (Refs. [136] that because of the large
reflectivity of the Bragg mirrors defining the VCSEL cavity, several roundtrips
should be considered. Nevertheless, as shown in the Appendix, an approximation
taking into account all roundtrips in the external cavity can be developed for
any reflectivity of the external mirror based on the fact that the Bragg mirror

reflectivity is almost one.
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In this approximation, the dynamical evolution of the system is given by

c . 1—12 .
Ri(t) = anLrg - 2AL(t —7) —rofsRe(t — 7) (3.3.1)
I Ne=N, .
d,N N -2 E T A2y (Na = N, (3.3.2
N sy~ VelVe 91+S|Ai|2\ +|? =7 (N = Ng), (3.3.2)

where

Ny — Ny

Ra(t) = deAw(9) + KAL(0) + (0 + ) A=) ~ D1 — o) {5 s

A

(3.3.3)

In these equations, AL is the slowly varying amplitude of the left and right
circularly-polarized components of the optical field, and Ny is the carrier density
with spin-down and up, respectively. In addition, x = 1/(27,) (7, being the
photon lifetime in the solitary VCSEL cavity), g is the differential material gain
multiplied by the group velocity of the transverse mode, ¢/n,, N; is one half of
the transparency carrier density (i. e., the transparency carrier density per spin
orientation), s is the gain saturation parameter, « is the linewidth enhancement
factor, I' is the field confinement factor to the active region, and v, and v, are
the dichroism and birefringence, respectively. 73 = r3exp(i€27) is the amplitude
reflection coefficient into the VCSFEL cavity including the optical phase change
after one external-cavity roundtrip. I/(2eV) is the density of carriers with given
spin orientation injected into the active region per unit time, v, is the nonradiative

carrier relaxation rate, and v, is the spin-flip rate.

It is worth noting that (3.3.1) and (3.3.2) reduce to the SEM model when there
is no external-cavity [R(¢) = 0], and that the Lang and Kobayashi approxima-

tion is recovered in the limit of weak feedback, when only the first round-trip in
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the external-cavity needs to be taken into account,

Ret) = ooty AL (6= 1) — oy Rt = 7)
= 7 —T) = 1of -7
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I~ r ALt — ; 3.34
2ngLr3 Ty i( T) ( )

Moreover, from the numerical point of view they allow us to approximately de-
scribe the effect of all reflections in the external mirror with a single additional
memory vector, Ry (¢t — 7), thus memory consumption and computational cost
are essentially the same as in the Lang and Kobayashi approximation.
Equations (3.3.1) and (3.3.2), together with (3.3.3), can be recast into the

form used in Ref. [88] by scaling the variables according to

B, = %Ai , (3.3.5)
N, + N_
N =14 (L —Nt) : (3.3.6)
K 2
gN, —N_
= r? 3.3.7
n PR (3.3.7)

We also include spontaneous-emission noise and injection current fluctuations

into the evolution equations, which then read

Ri(t) = KfEL(t—7)—rofsRy(t —T) + 1/ Bsp(N £n)xx(t) , (3.3.8)

N+n N —n
N = —N—-—— _|E,*P————|E_|? .
AN = (- N B - R + Ve (39

dn = —qun = (gl B - P 4 VE(@310
where
Rat) = dyBa(t) + KB () + (7a + 1) E(t) — 51 — ia)(N £ n)——
1+ s'|EL|?
(3.3.11)

with the other parameters being given as f = (¢/k2n,L)73(1 —73) /72, 8’ = 7es/9,
¥s = Ye + 27, and p = (Tg/k) [(I/2¢V7.) — Ny]. Finally, the Langevin terms

Xi(t) are taken as uncorrelated, gaussian white noises.
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3.4 Numerical results

We have numerically integrated eqs. (3.3.8)-(3.3.11) for a variety of injection
currents and different external-cavity setups. The output of the VCSEL may
exhibit a variety of behaviours depending on the injection current and the pa-
rameter values. We analyze here the evolution with current injection for quite a
typical parameter set for the VCSEL (as in Ref. [88]): x = 300 ns™!, a = 3,
Ye = 1 ns™!, L = 0.24um, ng = 3.5, 1 = 0.998, r1 = 1, 7, = 50, s’ = 0.1,

1

Y = 35 ns™t, 7, = 0.1 ns'. For the confinement factor we take I' = 4.5% and

1

we consider a material gain coefficient of 1400 em ™", while for the noise strengths

we take O = € =3 107 ns™!.

For an effective reflectivity of the external mirror r3 = 0.075, a 12% maximum
threshold reduction is achieved. Emission in a single polarization orientation, in
either single or multiple external-cavity modes is found for currents close enough
to threshold (see Fig. 3.7). As the current is increased, periodic switching be-
tween the two polarization orientations is found, the two polarizations being in an
antiphase state which oscillates with a period corresponding to the external-cavity

roundtrip time (see Fig. 3.8).

Further increase of the injection current leads to a clearly unstable output of
the VCSFEL associated with irregular bursts of the depressed polarization mode
(see Fig. 3.9, upper panel). In this unstable regime, low-pass filtering of the
VCSEL output displays power drops on a slow time-scale corresponding to the
time-interval between bursts, which is of the order of 50 — 100ns. The recovery
time of these power drops is of the order of tens of ns, and both these time-scales
and the shape of the power drop and recovery time are very similar to the so
called Low-Frequency Fluctuations (LF'F') observed in edge-emitting lasers with

optical feedback. Noteworthy, the polarization-resolved filtered traces show that
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the drops in the total power coincide with drops in the power of the dominant
polarization compoOnent and with an increase in the power of the depressed one;
moreover, the depressed mode remains excited during times noticeably longer
than the duration of the drop in the total power, thus leading to two-mode oper-
ation during most of the time. When one of the polarization modes is at the noise
level, the VCSFEL output is either stable or displays dynamics corresponding to
multiple external-cavity mode operation. However, it does not exhibit power
drops, which occur only when both polarization modes are active, although there

are regimes where both are active and the VCSFEL output is quiescent.

Since the two linear polarization components have a frequency splitting given
by the residual birefringence, the time-resolved spectrum in the LF F-regime
shows that total power drops correspond to a power drop in the dominant linear
polarization component followed by a power increase in the depressed one, thus
leading to a transfer of power from the former to the latter which survives quite
longer than the total power drop. This effect has already been observed in edge-
emitting lasers with optical feedback in the LF F-regime (chap. 2), although in

this case many more than two modes are involved in the dynamics.

In addition, it is clear from Fig. 3.9 (upper panel) that the total power
oscillates around a DC level and that it approaches the zero level when a power
drop occurs. Therefore, the statistics of the total power on a fast time-scale is
peaked around the mean value of the power, and decreases for both high and
low power levels (see Fig. 3.9, lower panel). It is worth noting that the decrease
on both sides of the maximum is controlled by the non-linear gain saturation ',
which forbids high power pulses and the subsequent depletion of carrier density
which leads to a deep minimum in the total power; however, even for s’ = 0 we
find a power distribution peaked around its mean value, although the distribution

in this case is broader. Similar results were found for edge-emitting lasers with
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optical feedback in Ref. [120].

For even larger currents (see Fig. 3.10) the drops become much more frequent,
and the optical spectrum displays two peaks corresponding to each of the linear
polarization components. Moreover, low power values become more frequent, and
as a consequence the statistical distribution of the power flattens (see Fig. 3.10,

lower panel).

The dynamics obtained from the numerical simulations and its evolution as the
current injection is raised is qualitatively similar to the experimental observations.
The ambiguities in parameter values do not allow for quantitative comparisons,
and make an exhaustive parameter-space covering useless. However, we have
checked that forcing the system to operate with the same density of spin-up and
spin-down carriers (i. e., in the limit 7, — oo) the results are qualitatively the
same as when spin dynamics is included in the model. We have also considered
the case of a VCSFEL with very large dichroism, in such a way that in the absence
of feedback only one of the polarization modes is stable in a very broad range
of injection current, i. e., a quasi single-mode situation: the VCSFEL is now
much more stable, but in the unstable regions the phenomenology is the same as
discussed previously although LF'F appear at larger currents than before. Finally,
we have performed deterministic simulations of the theoretical model; in this case
we find that LF'F occur at much larger currents as compared with the stochastic
case. Moreover, the LFF obtained in this case are much more irregular, and
reminiscent of the so-called Coherence-Collapse, so it seems that noise leads to
an anticipation of the onset of LF'F through escape from an otherwise stable

state.

The main point of disagreement between the theoretical model and the exper-

imental observations concerns the point where LF'F are obtained with respect
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Figure 3.9: (above) Same as Fig. 3.8, but for u = 1.25, (below) Histogram of the values of
the total power for g = 1.25 during the time span corresponding the figure above
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to the solitary laser threshold. In the experimental results, LF'F' appear in a re-
stricted current range below the solitary laser threshold. Instead, the numerical
simulations do not display LF'F until 4 > 1, i. e. above the threshold of the soli-
tary VCSEL, although antiphase oscillations at the external-cavity round-trip
time may occur for u < 1. We think that the reason for such a discrepancy is
likely to be that in the theoretical model the frequency dependence of the gain
and refractive index (a-factor) have not been considered. The emission wave-
length of the VCSFEL with feedback is noticeably redshifted with respect to that
of the solitary VCSFL, which may involve substantial changes in the VCSFEL
parameter values not taken into account in the theoretical model. The inclusion
of such effects requires a dynamical model that includes the spectral dependence
of both the gain and the linewidth enhancement factor, and is currently under

investigation.
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Chapter 4

Conclusions

In this dissertation we have analyzed the dynamics of semiconductor laser when
part of the light emitted is re-injected into the laser cavity by a distant mirror. In
particular, we have explored the so-called strong and moderate feedback regimes.
This parameter region is characterized by the presence of Low-Frequency Fluctu-
ations (LF'F) in the output intensity of the system. We have described in details
the phenomenology of this instability and we have explored its statistical proper-
ties. On the base of these observations we have revealed the dynamical origin of
the LF'F. The dynamical scenario leading to the saddle node-Andronov bifurca-
tion together with the unavoidable presence of noise in the system appears to be
at the origin of these drops. Since a dynamical system exhibiting this scenario is
excitable, we have tested the response of our system to external perturbations,
finding the threshold-like behavior typical of the excitable media. This evidence
provides a further confirmation on the correctness of our dynamical interpreta-
tion of the LF'F'. Moreover, it is the first experimental evidence of ezxcitability in
an optical system. This first observation opens a very interesting line of research
in the analysis of semiconductor laser with feedback. The dynamical scenario on
which excitability takes place in our system may be further investigated by chang-
ing the excitation rate and analyzing the response of the system. This work, still

on progress, can shed light on to the influence of the parameters on the dynamical
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properties of semiconductor laser with optical feedback. Moreover, we are going
to analyze the behavior of coupled excitable media by using two semiconductor

laser with optical feedback systems coupled together.

Noise role in the excitable systems can be very important; we have measured
the regularity (or coherence) of the system output as the noise level into the laser
is varied and we have found a maximum of regularity for a finite noise level. Thus,
below this level, noise improves the regularity of the output signal. This is the
first experimental evidence of the so-called Coherence Resonance, theoretically

predicted in excitable systems.

We have provided the experimental evidences in order to draw one of the sim-
plest dynamical model able to describe the LF'F phenomenon. We have found
good qualitative agreement between the prediction of this model and the exper-
imentally observed statistical properties of the LF'F', confirming the correctness

of our dynamical picture.

We have also obtained strong indications about the physical mechanism at
the origin of the LF F-instability. We have pointed out the strong dependence
between the number of active longitudinal-modes and the rate of LF'F'. We have
shown that LF'F appear together with the excitation of several modes of the
solitary laser. By means of time-resolved spectral analysis we have showed that
the instabilities at low frequency are generated by the interaction among different
modes of the laser. Using a streak-camera system with time-resolution of the
order of picoseconds we have showed that the fast pulsing of the total intensity
is a consequence of the time delay and multi-mode operation of the laser. These
experimental observation are beyond the possibility of the widely-used Lang-
Kobayashi model which is based on a rate-equation and single-mode description
of the solitary laser. Our observations are instead in qualitative agreement to

what predicted by the Solari-Duarte analysis, where the laser is described by
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an effective two-level model and the optical feedback is considered through the
boundary conditions imposed by the double cavity.

In order to force the edge-emitting laser to be single-mode, we have explored
an experimental configuration where the optical feedback is frequency-selective,
describing the characteristics of the system when the frequency of the feedback
is tuned. Even in this case power drops appear bounded to the excitation of
side modes of the solitary laser. It can be interesting, for the future, to analyze
the internal-cavity-mode dynamics of a DF B semiconductor laser with optical
feedback in the LF F-regime. This can provide further confirmation on the role
of solitary laser modes as LF'F' appears.

In this spirit we have analyzed the influence of feedback on a Vertical-Cavity
Surface-Emitting Lasers (VCSEL's). For the extremely wide separation between
longitudinal-modes, VCSFEL’s is, from this point of view, a single-mode device.
On the other hand, not having a strong mechanism for selecting the polarizations,
the VCSEL's may have two active polarization modes. Even in VCSEL's, a low
frequency fluctuation instability appears for moderate-to-strong feedback level. In
this device we have shown that the instability is due to the interaction between the
two different polarization-modes. We have also worked on a model that provide a
qualitative agreement with the experimental evidences. Further work is required
to improve the quantitative agreement. In particular, we want to tune the cavity
resonance in respect with the gain peak by changing the laser temperature. In
this way we can explore regions of the parameter-space not achievable with the
usual parameters (current, feedback level), allowing for a complete comparison

with the polarization dynamics predicted by the theoretical model.
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Appendix A

Experimental Set-up

One of the main difference between the semiconductor lasers and the other kinds
of lasers is the order of magnitude of the time-scales involved. Asshown in the first
chapter, the typical photon lifetime in the cavity is from few ps to few tenth of ps,
while the relaxation oscillations are of the order of G H z. Thus, the semiconductor
lasers are very fast dynamically. Fast time response is the basic requirements
for the semiconductor laser monitoring equipment. The typical bandwidth for
the detection system dealing with semiconductor lasers ranges from 1 M Hz up
to tenth of GHz. Unfortunately the state-of-art of the microwave electronics
technology set a limit for the bandwidth of detectors and, most important, of the
single-shot oscilloscopes. Actually the maximum analogue cut-off frequency for
a commercial single-shot scope is of the order of few GHz. This limit is largely
overcome when sampling-mode technique is applicable; commercially available
sampling heads reach 60 GHz and more. On the other hand, this working mode
requires strictly periodical signals and periodicity is not, in general, guaranteed
in the temporal characterization of a dynamical system. Indeed the sampling-
mode technique is very useful in the engineering of the semiconductor laser for
telecommunications, where the periodicity of the signal is determined by the

modulational clock.
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The detectors normally used are Avalanche Photodiodes that covers a band-
width from zero to few GHz (2.5 GHz typical). In Fig. 2.1 we showed the typical
experimental configuration for our experiment. This configuration is bandwidth
limited by the Avalanche Photodiode (2 GHz) detector and by our scope band-
width (500 M Hz) for the time-series monitoring. The set-up shown in Fig. 2.1 is
the one used for the general characterization of the behavior of the system versus
the control parameters. Other configurations allows to reach higher cut off fre-
quency but they are not so convenient for compactness, flexibility and simplicity
as the one showed. Indeed, other configurations have been used when charac-
terizing a particular phenomenon in details. For example, in order to overcome
the bandwidth limit for the single shot monitoring, we used a Streak Camera

(time-resolution of 16 ps) as an alternative to the oscilloscope.

The electrical connections must be compatible with the high frequencies into
play: we used SM A technology (0 — 20 G Hz bandwidth) for cables, connectors,
attenuators, power splitter, bias-TEE. Great care has been paid in the grounding
and connecting procedures of the detectors and of the sources. Microwave de-
tection is very sensible to external noise sources: the wires must be the shortest
as possible and axial connection (for the lasers and detectors pins) to the SM A
plugs is required.

The fast time-scales involved in the laser present also some advantages: spuri-
ous mechanical vibrations of the supports and thermal instabilities interact with
the system on time-scales much slower than the ones of the laser and they can

be easily distinguished and separated.

The laboratory equipment could be grouped in four main parts: the mechan-
ical parts, the optical parts, the detection parts, the sources parts. The first
group is composed by all the parts used for controlling the optical signal: lenses,

polarizers, mirrors , beam splitters and so on. The second group is formed by
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the supports needed for setting up the experiment in all its parts: the optical
table, the supports for the optics, the supports for the sources, the supports for
the detectors. The third group is composed by all the detecting and measuring
instruments: the detectors, the oscilloscopes, the signal analyzers and so on. Fi-
nally the sources group is meant to be the ensemble of optical sources (lasers)
with their controlling instruments like power supply and thermal controller. In
the following sections we will describe the characteristics of these parts in our

semiconductor laboratory.

A.1 The optics

The optical parts used include output couplers, lenses, mirrors, beam splitter,
polarizing beam splitter, neural density filters, diffraction grating.

Output Couplers. Since the output beam of the semiconductor laser is strongly
divergent, the presence of an output coupler is necessary to reduce the beam
spread. In order to couple the maximum amount of light, this coupler must have
large numerical aperture. Moreover, the output couplers must be AR-coated
for the lasing wavelength for avoiding spurious back reflection. To match these

requirements we use Rodenstock™ collimators of the series 1403 (see table Al).

ORD. NUM. | foc. leng. | num. apert. | Wavel. | Img. Field & | Qual. \?/z
140-000-20 7.5 mm 0.30 780 - 890 0.12 mm 500
137-000-20 9.0 mm 0.25 780 - 880 0.20 mm 500
108-000-20 5.0 mm 0.50 800 - 850 0.14 mm 400

Table Al: collimators characteristics

Beam Splitters have been used either for the detecting part of the set-up ei-
ther as part of the external-cavity. In the external-cavity they have been used as
external-cavity mirror or as internal splitter to extract light from the compound

system. We used:
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Eksma™ P.0. 867/0OLI/EKS/96 plano beam splitter AR/R 50/50410 at 800 —
900 nm, Angle of Incidence (AOI): 0° (if it is placed at 45° we measured different
reflection for the two polarizations // and L: 58% //, 43% L).

The AR coating of the second face prevents from self-interference of the optical
field inside the beam splitter. In this case the beam splitter would behave as a low
finesse etalon and the power transmittivity would become wavelength dependent.
The angle of incidence indicates the angle at which there is no polarization
changes in the reflected (or transmitted) beam in respect with the incoming beam.
If the system has just a single polarization axis, like in edge-emitting lasers, the
AQI just changes the amount of light reflected or transmitted from the beam
splitter, which is not critical for the experiment. On the other hand, when the
system has not a well defined polarization axis (VCSEL's), it is important to
avoid effects of this kind since they destroy the polarization isotropy of the feed-
back. In order to avoid any alteration of the polarization properties of the laser
beam polarization preserving element must be used into the external-cavity. For
this purpose we have used a beam splitter MellesGriot’™ 03BTL039 that, at
830 nm, for AOI = 45° assures the same transmission for the p-plane and s-plane

and a difference of less than 2% in the range 810 — 850nm.

Mirrors. We have usually used gold mirrors of a reflectivity larger than 95%.
Other materials (like Al) have been used used as external-cavity mirrors for re-
ducing the amount of feedback. Dielectric mirrors has been used sometimes in
order to get a transmitted output from the compound system; this avoids the
intracavity beam splitter which extracts the monitoring beam. In the VCSEL
experiments we have used the Eksma’™ P.0 867/0OLI/EKS/96 wedged mirror as
external-cavity mirror. In fact, due to the beam characteristics of the VCSEL’s,
the self interference effects in the conventional two parallel faces beam splitter

persisted in spite of the AR coating (see section A6)
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Polarization-resolving beam splitter as Glenn Taylor have been used to resolve
the two polarization axis in VCSFEL's. The orthogonality of the beam with this
device may cause spurious back reflection. It is advisable to tilt slightly the beam
splitter in order to avoid this problem since an optical isolator would modify the
polarization of the field.

Neutral density filter could be used in order to control the feedback level, as
far as they do not cause self-interference effect of the beam.

Optical Diodes were used to suppress spurious back reflections. We have used
an optical isolators OFRTM [0-2-8/0-LP with an isolation power of -35 dB. This
isolator is composed by a Faraday rotator with two polarizers.

Holographic diffraction grating has been used to realize frequency-selective optical
feedback. We have used a Milton Roy"™™ 85-83-16-330 Sr 5138, gold coated, 1800
grooves/mm and absolute efficiency measured in near Littrow (8° between the
incident and diffracted beam): 90% for polarization orthogonal to the grooves,

15% for polarization parallel to the grooves.

A.2 The supports

The mechanical parts of the semiconductor lab include the mountings for the
sources, for the optics and for the detectors. The first important element is the
optical table. In our case it was a Newport?™ board standing on air chamber that
provide amortization of the vibrations. The mounting for the sources guarantees
good and stable electrical contact, the possibility of grounding the laser terminal
when it is switched off, good thermal contact with the Peltier cell (thermal paste
has been used to increase the heat conductivity). The mounting for the laser
must ensure good heat dissipation and easy accessibility at the two sides of the
laser facets for placing the coupling optics. For the output coupler, in order to

control accurately the mode matching and the alignment, we have used always
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a micrometer positioner with XY Z movements (Newport™ M-466). For the
external cavity mirror we used a Newport™™ M-600A-3 with micrometer screws,

in order to control carefully the alignment.

A.3 The detectors

We used four classes of detectors: Avalanche Photodiode (Mitsubishi™™ PD1002,
Silicon Sensor™ 230 -i ). The first were used for conventional measurements.
Their bandwidth (up to 3 GH z) covers the analogue bandwidth of the scope and
enable the detection of the widest part of phenomena occurring in semiconductor
lasers. The silicon photodiode have been used for measuring requiring a low
bandwidth and large active region of the detector like the power measurements
for the L /T curves or after a Fabry-Pérot spectrum analyzer. We list the avalanche

photodiode characteristic in tables A2 and A3:

name MITSUBISHI PD 1002
Active Aerea 200 pm
Total capacit.(C,) 1.1 pF
Break-down volt. (Vpg ) | 100-200V (150V typ.) (100 pA)
Spectral respons. 0.45 A/W (50 V, 800 nm)
Cut-off freq. 2 GHz (R, 50 Q)
Dark current (Ip) 0.8 nA (50 V bias)
Mult. Rate 1000 (Ry, 1 K, I=10 nA)
Quantum Efficiency 77% (50 V, 800 nm)
Inverse Current (Ig) 200 pA (T < 80°)
Direct Current (Ir) 10 mA (T < 807)
NEP 1X 10 " W/v/Hz (800 nm)

Table A.2: Mitsubishi PD 1002 Data Sheet
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name SILICON SENSOR 230 -i
Active Aerea 230 um
Total capacit.(C,) 1.5 pF
Break-down volt. (Vpgg) 166.7 V (I=2pA)
Spectral respons. 0.45 A/W (780 nm)
Cut-off freq. 2 GHz (R, 502)
Rise Time 180 ps
Optimum Gain 50-60
Gain M 200 (min.)
Excess Noise factor 2.2
Excess Noise index 0.2
Noise current 0.5 pA/ VHz
NEP 1X 10 =" W/v/Hz(800 nm)

Table A.3 Silicon Sensor 230 -i Data Sheet

A.4 The instruments

Oscilloscope. We used a LeCroy™ 72004 in order to monitor the time signal
of our system. The LeCroy®™ 72004 is a two channel digital oscilloscope with
a 500 M H z analogue bandwidth and 1 GH z digital bandwidth (extension up to
2 GHz in one channel mode). This scope has a memory of 1 million of points
and allows long time-series acquisition. Hence the possibility of employing this

instrument for statistical measurements.

Power Spectrum Analyzer. We used a Hewlett-Packard™ HP8593 C with a
frequency range from 9 KHz up to 22 GHz. The electrical signal sent to the
spectrum analyzer was amplified using a microwave amplifier Hewlett-Packard™™

HP83006 A with a gain of 20 dB and a bandwidth 10 M Hz — 26.5 GH z.

Scanning Fabry-Pérot. Two Fabry-Pérot systems were used: A Tropel ™™

mod. 350 and a Thorlabs™ MDT 690 piezoelectric driver with the KC1-PZ

piezoelctric Kinematic Mount. The mirrors used were two plane mirrors EKSMA™™
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P.O. 867/OLI/EKS/96 with a flatness over \/10, High Reflection Coated at
820 — 900 nm, R > 99.5 (Finesse of 200) and AR-coated at 820 — 900 nm.
The Free Spectral Range (F'SR) was varied according to the measurement. We
have used a F'SR up to 3000 GH~z in order to monitor the entire set of laser
internal-cavity modes, and a F'SR of 200 GH z in order to check the spectrum of
a VCSFEL's. In using the Fabry-Pérot we have always checked there was not light
fed back into the laser system by the mirrors of the interferometer. In general, for
FSR > 100 GHz, a slight tilting of the Fabry-Pérot was enough to misalign the
returned beam with the laser system, without loosing a great amount of Finesse.
When this procedure was not possible we have used optical isolators (sometimes
two of them were required). The output of the Fabry-Pérot has been monitored
using a BPW 32silicon photodiode. The signal was monitored on a Tektroniz!™
TDS 420 scope.

Pulse Generator. We used a Hewlett-Packard™™ HP8593 C. This instrument
allows to pulse the laser with pulses of variable width (60 ps - 1 ns), amplitude

(0.1 V -1V) and frequency (33 MHz - 3.3 GHz).

Streak Camera. Streak-cameras are instruments for the detection of ultra-
fast optical phenomena. The streak tube is composed by a photocathode, two
deflecting electrodes generating an electric field orthogonal to the direction of
the photo-electron beam emitted by the photocathode, a Multi Channel Plate
Photo-multiplier (MCP) and a Phosphor screen. Light enters into the streak
tube passing through a slit and a lens system focusing the slit-image on the
photocathode. Light hits the photocathode that generates photo-electrons. These
are accelerated by a strong longitudinal electrical field between the photocathode
and the meshing electrodes. The accelerated photo-electrons passes in between
two deflecting plates to which a voltage signal is applied. The photo-electrons are

then deflected of an angle proportional to the voltage difference applied to the
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plates. A known signal applied to the plates allows to associate to every deflection
angle a known time-interval. In the single-shot streak camera the deflecting signal
is a ramp. Since the ramp rise time is known, the deflection induced on the
electron beam gives a direct indication of the time. In this way, the temporal
information has been transformed into a spatial information and every angle is
associated to a time. When deflected, the photo-electrons are spread along the
direction parallel to the electrical field between the two plates; they hit the M C' P
unit that increases their number of a factor of &~ 5000. Finally the electrons hits
a phosphor screen and they are converted in an optical image called streak image.
This image is a stripe of points of different intensities. Every point of the stripe
is associated to a time and the intensity of the point is associated to the intensity
of the electro-magnetic field at that time. A C'CD detector register and analyze

the streak image.

The streak-camera avoids the usual bandwidth problems of the conventional
oscilloscope cause there is not a real-time detection of the optical field. The
technical problem is just to supply a wide-amplitude, fast rise-time ramp signal
to the deflection plates. The ramp characteristics together with the density of
MCP channels determines the time-resolution of the streak camera. The time-
resolution is also limited by the beam spot size on the photocathode. For this
reason, it is advisable to focus at most the light beam onto the photocathode.
Finally, it is important to have high density pixel CCD arrays, in order to be

able to distinguish the channels onto the phosphor screen.

Using the femtoseconds pulses from a mode-locked Titanium Sapphire laser
we have measured the time-resolution of the instruments and we have calibrated
the time reference on the streak image. For our streak system we have reached
a time-resolution of 16 ps with a time span of 4.5 ns. The time span is variable,

by changing the ramp slope, up to 65 ns; in this case the time-resolution drops
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to 230 ps.

The biggest problems involved in using a streak-camera are related to the low
sensitivity of this instrument. This problem is normally avoided using synchro-
scan streak-camera. In this system the signal to be monitored is synchronized
with a sinusoidal signal applied to plates. If the signal has a repetitive feature
whose frequency is equal to the frequency of the plate signal, this feature appears
always at the same position of the streak image. In this way, the signal over
noise ratio (S/N) is increased remarkably. Streak-camera are used in synchro-
scan when used for monitoring the laser response to modulation or transients. In
our case this solution is not applicable, since LF'F are not periodical in general.
Moreover, previous measurements showed random time intensity fast pulses that

would be washed-out by a synchro-scan detection.

The low radiant sensitivity of the photocathode determines the low streak-
camera sensitivity. Moreover, there several sources of power losses for the incom-
ing light intensity: the losses at the input system of slit and optics (50%), the
losses for the photo-electrons hitting the separation of two adiacent channels of the
photo-multiplier and, finally, the losses at the interface CCD/phosphor screen.
We avoid the losses at the input optics by focusing the spot size directly into the
photocathode, removing the optical system at the entrance of the photo-tube. We
also used a fiber coupled and thermo-electrically cooled high-sensitive CC'D array
in order to reduce at most the losses at the interface phosphor screen/CCD. Our
photocathode spectral response curve gives a radiant sensitivity of 0.5 mA/W at
830 nm for a quantum efficiency of 0.1%. This sensitivity is very small in order
to monitor the output from a low power semiconductor laser. For this quan-
tum efficiency the probability for the photocathode to generate a photo-electron
when a photon hits its surface is extremely low. Therefore, the monitoring of

the real optical signal is strongly affected by the shot-noise of the streak-camera
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apparatus. In this condition, a weak but constant beam of photons hitting the
photocathode (CW optical signal) is monitored as a sequence of pulses as a result
of the low number of photo-electrons and the high intensifier gain. This effect
is more dramatic when the time-resolution is high and the time span is small
as a consequence of the smaller time integration of the photo-electron beam on
each point of the phosphor screen. These problems have prevented us to use our
streak system to monitor the output from an Hitachi'™ HLP1400 with optical
feedback. The emission power of an Hitachi’™ HLP1400 with optical feedback
in the LF F-region is, in the most favorable conditions, of the order of 0.8 mW¥V.
In order to evaluate the reliability of the streak system in this condition, we have
monitored the power equivalent CW output power from the laser without feed-
back. The signal obtained by the streak-camera with time-resolution of 16 ps
(4.5 ns time span) showed pulses on a negligible DC' component.

In order to estimate the minimal power requirement for getting a reasonable
S/N ratio in our detecting system, we have used an He — Ne laser emitting
at 630 nm. At this wavelength the spectral response of the tube is 40 time
better than at 830 nm: 20 mA/W for a 3% quantum efficiency. We have varied
the intensity of the CW incoming beam and we have found that the minimal
power for having a S/N ratio of & 5 is 0.2 mW with a time-resolution of 16 ps.
The equivalent minimum power requirement value at 830 nm is of 8 mW, well
beyond the power characteristics of a laser exhibiting LF'F'. Then, we have
decided to use a 630 nm semiconductor laser, instead of the more conventional

Hitachi™ HLP1400.

A.5 The optical sources and their control

We have used several different commercial laser devices. These sources were the

most used in the literature concerning similar experiments. We list here below
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the devices used and their characteristics.

SDL™ 5400 C: edge-emitting GaAlAs laser emitting at 822 nm (rate power
of 50 mW), MQW structure. The cavity length is 750 um long for a FSR of
50 GHz (measured value). The laser emits on the foundamental Gaussian mode.

Typical characteristics for these lasers are:

Spectral Width (nm) 3 (typ.) 5 (max)
Slope Efficiency (mW/mA) | 0.75 (min) 0.9 (typ)
Conversion Efficiency 30
Emitting Dimensions (um) 3X1
Beam Divergence (FWHM) 92 ||, 30°L
Threshold Current (mA) 35 (typ) 55 (max)
Series resistance R (2) 4 (typ) 6 (max)
Voltage 1.5V + RI
Thermal resistance 60° C/W

Table A.4: SDL 5400 C Data Sheet

Hitachi™ HL6314MG: edge-emitter AlGalnP laser emitting at 635 nm, index
guided M QW structure, lasing on foundamental Gaussian mode, emitting around

630 nm, with a mode spacing of &~ 135 GHz. Other parameter of the laser are:

Emitting Wavel. (nm) 635 + 5
Polarization Ratio (@3 mW) > 350
Beam Divergence (FWHM) | 8°4+2° ||, 30° £ 9°L
Threshold Current (mA) 25

Table A.5: Hitachi”™™ HL 6314MG Data Sheet

Hitachi™ HLP 1400: edge-emitting GaAlAs laser, emitting at 840 nm, bulk
structure, double-hetero-structure technology and Channel Substrate Planar (C'SP)
horizontal wave-guiding channel (index guided) whose size confine the emission to
single transverse-mode. The cavity length is around 300 ym and the separation
between the longitudinal-mode is of 125 GHz (measured value), the reflectivity

of the cavity mirrors is defined by the index gap semiconductor (n~3.5) / air and
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it is R~35%. In some experiments we used devices with one mirror AR-coated

up to 1%. In the following table we represent the most used parameter for this

laser.

Active region(L,W,T)
Volume
Refr. Index
Reflect. at laser faces
Group Index
Group Velocity
Round-trip time
Vacuum wavel.
Absorp. losses
Mirror losses
Total loss coeff.t
Loss rate
Photon lifetime
Conf. factor
Diff. gain
Carrier dens. at transp.
Carrier dens. at thresh.
Gain compres. coeff.
Non radiative recomb. rate
Radiative recomb. rate
Auger effect
Spont. emission lifetime
Spont. emission coefficient
Spont. emission rate

Linewidth enhanc. factor

Lg,w,d
\%4
ng
r,=r1,=(ng—1)/(ny + 1)
ng = n¢+w‘?9ij
Vg é
T, = 2ngLq/c
Ao
Qg
a, = - Inz

Te = (Apr + BNy, + CN2)

300,4,0.1 um
1.2210 16 m3
3.5
0.5556
4.0
7.5210° cm st
8.0 ps
853 nm
45em~t
39.2 em™!
84.2 em~1
6.31 x 10t 571
1.6 ps
0.25
2.8 x 10712 m3s71
1.400 x 10% m 3
2.302 x 10%* m™3
2.5 x 1077 em?
3.6 x 108 571
0.57 x 10 em3s~t
—0.6 x 10% embs~1
2.04 ns
2.552
1.6 x 10'2 571
3

Table A.6: Hitachi HLP 1400 data. From Ref. [11]
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Honeywel'™™ HFE4080 — 321 Vertical-Cavity Surface-Emitting Laser emitting

at 850 nm.
Parameter Test condition Values
Output Power (mW) Ir =10 mA 0.5 (min) 1.25 (typ)
Threshold Current (mA) 3.5 (min) 6 (typ)
Slope Efficiency (mW/mA) Ir =10 mA 0.3 (min)
Forward Voltage (V) Ir =10 mA 1.75 (min) 2.1 (typ)
Reverse breakdown volt. (V) | Ig =10 pA 5 (min) 10 (typ)
Peak Wav. (nm) I =10 mA | 820 (min) 850 (typ) 860 (max)
Spectral Width (nm) Ir =10 mA 0.5
Temp. variation I;;, (mA/C)°) +0.042
Temp. variation A(nm/C°) 0.06
Series resistance R () 30

Table A.7: Characteristics of Honeywell’™ HFE4080 — 321

Vizel™ LA—S—850—1X16—3s, 1X16 VCOSEL's laser array emitting at 850 nm.
The active area is defined by proton implantation, its diameter is around 8 um.
No data sheets available. The production procedure and the laser characteristics

are described in [54]

A.5.1 Laser controlling

Since the semiconductor laser is sensible to environment temperature variations,
it is convenient to stabilize the device temperature during a measurement. Every
device has been mounted with the laser chip submount in thermal contact with
a Peltier cell and with a thermistor. The current in the Peltier cell is driven
by an electronic circuit (Hytek HY — 5610) that compare the resistance of the
thermistor with a set value and, according to this, warm up or cool down the
Peltier surface in contact with the laser. This thermo-controlling circuit has an

output signal that allows to test the amount of temperature stability reached. We
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have always performed our measurements under thermal stabilization of the laser
submount to better than 0.01° C'. It worth to point out that this stabilization do
not prevent the thermal changes inside the chip due to variation on the pumping
current flow. The thermal controlling system we have used is useful for helping
the laser to dissipate the heat (especially at large rated power) and to avoid over
heating of the device, but it cannot help on stabilize the temperature gradient in
the laser chip.

The other important controlling element of the laser is the power supply. The
power supply must be a stable CW source. We have used a DC' battery-based
power supply in order to power our devices. The current flow was stabilized
at £0.1 mA. Semiconductor lasers are very sensible to electro static discharge
(ESD) and could be damaged if a reversed biased is applied. Great care has to be
applied in handling these devices. Anti-static wrist must be always worn when it
is necessary to operate on the devices. Even the laser switching on/off procedure
are delicate; short-circuiting of the laser terminals is recommended during the

power supply turning on/off.

A.5.2 Feedback controlling

The feedback level, after mode matching and alignment (see chap. 2.1), can be
varied in different ways: i) by a neutral density filter, ii) by a polarizer, iii)by
an acousto-optical modulator, iv) by changing the external-cavity mirror reflec-
tivity. The feedback controlling must change the intensity of the returned field
without changing the other characteristics of the beam, like the polarization or
the frequency. We analyze different solutions versus this criterion:

Neutral density filters. They may generate self-interference of the transmit-
ted beam, as explained before. This problem is strongly present dealing with

VCSEL's (see next section), where the beam quality and coherence is very high
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and self-interference on two parallel facets occurs easily. In the case of the edge-
emitter we have not remarked the presence of such effect, mainly because of the
lower quality of the beam shape; we have just tilted the filter in order to avoid
spurious back reflections.

Polarizing Filters. It is a valid solution when dealing with edge-emitter beams,
as far as the rotation of the polarizer does not affect the alignment. Modifying
the polarization state, this method could not be used in the experiment with
VCSEL's.

Acousto-optical modulator. This method exploits the acousto-optics properties of
some crystals. These crystals change their index of refraction when an electric
field is applied at the ends of the crystal block. If a sinusoidal electric field is
applied to the crystal block at an acoustic frequency (typically 80 M Hz) and the
crystal length support such a frequency, then an acoustic standing wave settle
down along the crystal block. Such a standing-wave determines a modulation of
the index of refraction of the crystal and the crystal behaves like a diffraction
grating for an incoming optical beam. The efficiency of this grating (i.e. the
relative intensity of the first order in respect with the zero order) depends on the
modulation depth of the refraction index and therefore on the amplitude of the
electric field applied to the crystal. Modulating at low frequency the 80 M Hz
signal it is possible to tune continuously the intensity of the zero order beam re-
spect with the first order beam intensity. One can also control easily the feedback
level by applying a DC signal to vary the amplitude of the 80 M Hz signal. The
zero order intensity can be varied from the maximum (zero grating efficiency) to
a minimum (maximum grating efficiency). The first order intensity can be varied
from zero (zero grating efficiency) to a maximum (maximum grating efficiency).
It is important to point out that the first order beam is shifted of 80 M Hz in

respect with the incoming signal. As any other grating, the efficiency is strongly
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dependent on the polarization of the field. In the case of VCSEL’s this methods
can not be applied because it is not polarization preserving.

External-cavity mirror reflectivity. Varying the feedback level by changing metal-
lic mirrors having different reflectivities, avoids all problems of polarization al-
teration of the feedback field and of self-interference effects. On the other hand,
once changed the mirror, re-alignment of the optics is required, and this may
not be acceptable during a measure devoted to characterize the laser behavior
when sweeping the parameters. If the feedback mirror is a dielectric one, self-
interference problems may be reduced if the second face of the mirror is A R-coated
or, better, tilted respect the reflecting one (wedged beam splitter). Moreover, nor-
mal incidence is required normally to avoid polarization alteration of the reflected

beam respect with the incoming one.

A.6 Experimental problems dealing with VCSEL's

The feedback level when dealing with VCSFEL's cannot be controlled, unless
changing the reflectivity of the external mirror, i.e. rebuilding the set up. The
presence of a laser dynamics involving modes with different polarization axis
excludes the possibility of employing polarization sensitive devices like Acousto-
Optical Modulators or Polarizer Filters, otherwise we alter the polarization isotropy
of the external-cavity. Moreover, as explained before, Neutral Density filters and
Beam Splitters inserted in the external-cavity behave as an interferometer filter
(etalon). Indeed, the strong coherence of the VCSEL beam and the regular cir-
cular shape of the spot size make the system very sensitive to self-interference
effect. The same effect was noticed from the glass window that covers the detec-
tors, and also from AR-coated Beam Splitters, mainly due to residual reflection
of the back facet. All these problems were evidenced analyzing the output of soli-

tary VCSEL elements versus pumping current. If we insert optics with parallel
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Figure A.1: L/I curve of a VCSEL element showing the undulation originated by self-
interference effect in optics interposed between the laser and the detector. In this case self-
interference was occurring in a beam splitter placed in front of the detector. The undulation
period depends on the incidence angle of the beam onto the beam splitter, the L/I curve of the
same laser element does not present any undulation when this spurious etalon effect is removed.

facets between the detector and the collimator, the L/I curve of the VCSEL's
shows regular undulations (see Fig. Al) appearing periodically as the current is
increased. This periodicity could be changed and eventually eliminated tilting or
removing the optical elements interposed between the laser and the detector. In
fact, changing the pumping current the emission wavelength of the laser is tuned

and the signal is filtered by the Airy function of the parasitic etalon.

This problem has several consequences: i)We cannot use Neutral Density filter
to control the feedback level, ii)The use of Beam Splitters for intracavity appli-
cations, as external-cavity mirror and in a Fabry-Pérot interferometer, requires
great care. In particular it has been found that the AR-coating on the Beam
Splitters normally used is not efficient enough to eliminate the problem. Only
wedged beam splitters, not having the two faces parallel, can avoid the problem.

iii)It is advisable not to use detectors with a glass window. These criteria limit
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the possible experimental configurations of the external-cavity. In order to ob-
tain an isotropic feedback, not affecting the polarization and the frequency of
laser emission, we have used the configurations of Fig. 3.1. In the first case we
used a metallic (gold or aluminum) mirror as external mirror to provide optical
feedback. The output beam was obtained by putting an A R-coated, polarization-
preserving beam splitter in the cavity and using the reflected beam for feedback
and the transmitted one to get the output beam. This beam splitter was tested
for not exhibiting any etalon effect at its working angle (45°). We used this con-
figuration to obtain the strongest feedback. In the second we used a wedged glass
substrate to provide feedback: we get then a reflectivity of 4% and we were able
to use the transmitted beam to monitor the system. We used this configuration
to obtain a weaker feedback level.

When the etalon effect is present in the beam splitters that constitute the
two mirrors of a scanning Fabry-Pérot, the measurements of optical spectra are
altered. In fact, convolved with the Airy function of the interferometer cavity,
there is the Airy function relative to the parasitic etalon. The resulting effect
is a modulation in the transmission vs. frequency curve of the scanning Fabry-
Pérot, having a period of about 20 GH z that corresponds to the thickness of the
beam splitter. When the laser has a narrow emission this effect does not disturb
too much if we want to deduce just the qualitative indications from the Fabry-
Pérot. On the other hand, if the optical linewidth is broader than 20 GH z, then
the optical spectrum exhibits broad peaks separated of 20 GHz that are just an

artifact from the set up.
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Appendix B

Comparison with LF'F' statistical
measurements reported in the
literature

Statistical measurements on LF'F have been performed by several groups and
there is discrepancy between the results obtained. Sacher et al. [137] have found
that, defining € = (I — Lip s01)/Iin 501, there is a dependence < T >oc €. They
interpret the LFF as a manifestation of time-inverted type II intermittency.
This interpretation is justified by considering the LF'F' time-interval distribution
curves and the Poincaré plot of the intensity of consecutive minima of the fast
oscillation component at 7.,;. Further statistical measurements do not agree
with Sacher measurement of < 7" > vs. ¢, especially for large feedback level
and for low pumping current [138, 139, 102], i.e. at the beginning of the LF F-
regime. Our measurements too do not support Sacher interpretation. In our

! is strongly related to the choice of the

opinion Sacher power-law < T >ox €~
current value at which LF'F' appears. In general, the power-law paradigm of a
type II intermittency phenomenon scales with the normalized control parameter
value € = (I — Iy)/Iy, being I the parameter value at which the intermittent

phenomenon takes place [28]. In [137] [y is assumed equal to Iy, o since LE'F

appears, for the feedback level explored by Sacher, at the solitary laser threshold.
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In fact, this assumption is not justified since noise rules the appearing of LF'F'.
The real value of I for the LF'F' phenomenon is hidden by the presence of noise
which anticipates the bifurcation; then, the methods for the identification of a

purely deterministic process are not applicable.

Another model for explaining the statistics of the time-intervals in the LF F'-
regime is the one proposed by Henry and Kazarinov [140]. Using the dynamical
ingredients predicted by Lang-Kobayashi model (see §I1.6.1), they analyze the
stability of the ”maximum gain mode” attractor in presence of a stochastic per-
turbation. They compare the dynamics of the system to the motion of a particle
in a potential well where the spatial coordinate is the deviation of the carrier den-
sity from its stationary state value. The escape of the particle over the barrier
corresponds to a drop. Then, the statistics of the time interval between drops are
described by Kramer’s theory. Even if we do not agree on the dynamical scenario
arising from the Lang-Kobayashi model for the feedback levels involved in our ex-
periment (see §11.6.1), Henry and Kazarinov model is close to our interpretation
of LFF as the system departing from a stable state under the action of noise.
The experiments comparing to Henry-Kazarinov model find qualitative but not

quantitative agreement with the theory. We can compare these results with ours:

In [138] they find LFF time-interval distribution curves very similar to ours
with a refractory time, exponentially decaying tails and double peaks in the
distributions for a given range of the pumping current values. They investigate
also the dependence of < T' > on the pumping current, finding curves very similar
to ours. The comparison with Henry-Kazarinov holds for low pumping current

values but it fails for large values.

In [139] they investigated dependence of < T > on the pumping current and

on the feedback levels. The curves obtained changing the feedback level are in
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qualitative agreement with ours for equivalent parameter values. On the other
hand, we can not compare the results for & > 12% since we have not reached,
in the laser employed for the statistics, such strong feedback level. Moreover we
have not observed, for feedback level £ > 10%, LF F appearing below the solitary
laser threshold as they did. In [139] they claimed perfect agreement with Henry-
Kazarinov model for the dependence of < T" > changing the feedback level. On
the other hand, no fitting with this model has been tried versus the pumping
current. It worth to note, in [139], the non-monotonic dependence of < T >
with feedback level (at /Iy, = 0.98) similar to what we have observed, which, in
addition, is not in agreement with Henry-Kazarinov model.

In [102] they have measured the LF' F' time-interval distribution curves, finding
curves very similar to ours. In particular they have observed that the index R is
close to one for low pumping current and then it decreases to R = 0.3 for large
current values. Instead, their results on the dependence of < T" > on the pumping
current, showing < 7" > non-monotonically decreasing I, is in contradiction with

ours and with the other experimental results here reported.
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Appendix C

VOSEL's with feedback model
details

The case considered here corresponds to a single-mode VCSFEL which, due to
growth-induced stresses, presents some small amount of birefringence and dichro-
ism. The main effect of small birefringence is to induce a frequency shift of the
two linear polarization orientations of the fundamental mode, leaving the mode
profile almost equal to that of the perfect waveguide. Then, each Fourier com-
ponent of the electric field distribution inside the VCSFEL cavity can be written

as

Ei(w,z,p) = Ax(W)V,(2)U,(p) - (C.0.1)

In this equation, AL is the amplitude of each circular polarization component of
the field, ¥(w, z) is the longitudinal field distribution, and U,(p) is the modal
profile in the unperturbed waveguide.

U,(p) is given by

()J2

ViU (p) + 5 2u(p)Vulp) = BU.(p) ; (C.0.2)

where ¢ is the speed of light in vacuum, €,(p) is the transverse distribution of
dielectric function, and (3, the propagation constant of the mode in the unper-
turbed waveguide. We assume perfect mode-matching between the field leaving

the top mirror and the reinjected field.
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The longitudinal field distribution is given by
U, (2) = re"" e 7 (C.0.3)

where the boundary conditions at the edges of the cavity select the allowed lon-

gitudinal wavevectors ¢,

T q Ty 4+ ree™T
= M-+ —I —_ .04
g L + 2L " (7‘1 1+ mr;;e"”) (C.04)
= g +ip(w), (C.0.5)

r1,79 and r3 being the effective field reflectivities of the bottom, top and external
mirror, respectively, and 7 = 2L.;;/c the roundtrip time in the external-cavity.
qo corresponds to the wavevector when no external-cavity is present,

™

QO=ML

+ ﬁln (rire) (C.0.6)

while ¢(w) takes into account the effects of the external-cavity,

2L ro 14 rorzei”

d(w) = Lln <1 + Lors  ree™ > . (C.0.7)

We assume that only one of these wavevectors is in the vicinity of the gain
peak, hence the VCSFEL operates single-longitudinal-mode. Substituting (C.0.1)
into the wave equation for each polarization component of the field, and assuming
that they are around the carrier frequency € given by M(n/L) = 3(2), the fre-
quency components of the slowly-varying amplitudes in each circular polarization
component are given by

. . . c
i (u) =~ AL () + TP () — (0 + i) A () + 9O + ) A )
9
(C.0.8)
where k = 1/(27,), 7, being the photon lifetime in the solitary VCSEL cavity, 7,

and -, are the dichroism and birefringence, respectively, and n, = (d8/dw);,,
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is the group index at the carrier frequency. P, is proportional to the carrier-
induced electric dipole density in each of the polarizations, and describes the
carrier-induced gain and dispersion. Finally, I' is the field confinement factor to
the active region for the carrier frequency (2.

In order to obtain a time-evolution equation for the field amplitudes, we must
Fourier transform back to the time domain, but the presence of the external-
cavity (through &(Q2 + u)) does not allow us to obtain a closed form for the
evolution equation. The usual approach is then to consider that the reflectivity
of the external mirror is very small, and to expand ¢(2 + u) to first order in
r3, which means to consider only one reflection in the external mirror and leads
to the well known Lang and Kobayashi approximation [16]. Unfortunately, this
approximation is not justified for VCSEL's because of the large reflectivities
of the Bragg mirrors, and it is essential to include multiple reflections [136].
However, the large reflectivity of the Bragg mirror allows us to find an alternative
solution to the problem. If the lasing mode is close to the center of the stop
band, then ro & 1, so (1 — r2)/ry is a small quantity regardless of r3. Hence, for

a VCSEL we have that

1 1— 7.2 r3eiQTei“T
Q = —in|(1 2 : C.0.9
o +u) 2L " < + ro 14 Tgrgez‘”T) ( )
11— 2 QT tuT
n -T2 Ts€ € (C.0.10)

2L 1y 1+ rorzefTeiut

Substituting it into (C.0.8), multiplying both sides by 1 + ror3e®7e¢®7  and

Fourier transforming to the time domain, we find

A

c . 1—r2
T3
27’LgL T2

Ri(t) +T27,;3R:|:(t—7') = A:}:(t—T) , (COll)

where 75 = r3e”¥ is the amplitude reflectivity of the external mirror into the

VCSEL cavity including the optical phase change after one external-cavity roundtrip,
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and
Ri(t) = diAs(t) + kAL (t) — iTPe(t) + (Va +i7,) Ax(t) - (C.0.12)

The description of the system is completed with the evolution of the material
variables. We take the same model as in [87, 88|, which has been extensively
studied and provides a good qualitative framework for the description of the
VCSEL properties. The only difference with [87, 88] is that we consider non-

linear gain saturation. Then, the electric-dipole density is given by

Ny — N,

A (C.0.13)

which is obtained by assuming that birefringence is small enough for the two po-
larization components have almost the same modal gain g, o factor, transparency
carrier density NV; and non-linear gain saturation coefficient, s. N4 is the density

of carriers with spin down (spin up) within the active region.
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