L. Connaissances-de-nature-discriminante and .. , 106 3.1.2.1 Leur rrle dans notre approche, p.107

N. Ragot, Systtme de classiication hybride interprrtable par construction automatique de systtmes d'inffrence oue. -Technique et science informatiques , Hermms, pp.853-878, 2003.

N. Ragot, Generic Hybrid Classiier Based on Hierarchical Fuzzy Modeling: Experiments on On-Line Handwritten Character Recognition, IEEE International Conference on Document Analysis and Recognition (ICDAR'03), pp.963-967, 2003.
DOI : 10.1109/icdar.2003.1227802

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1.4666

N. Ragot, A new hybrid learning method for fuzzy decision trees, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297), pp.1380-1383, 2001.
DOI : 10.1109/FUZZ.2001.1008915

URL : https://hal.archives-ouvertes.fr/hal-01191729

N. Ragot, Combinaison hiirarchique de systtmes d'inffrence oue : application la reconnaissance en-ligne de chiires manuscrits, Actes du congrs CIFED'02, Conffrence F ddrative sur l''crit et le Document, pp.305-314, 2002.

N. Ragot, -Moddlisation Automatique des Connaissances par Systtmes d'Inffrence Floue Hiirarchisss, Actes du congrs LFA'01, Rencontres Francophones sur la Logique Floue et ses Applications, pp.105-111, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01009488

S. Aksoy and R. M. Haralick, Probabilistic vs. geometric similarity measures for image retrieval, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662), p.3577362, 2000.
DOI : 10.1109/CVPR.2000.854847

A. Luus, A. C. Alexandre, M. Campilho, and . Kamel, On combining classiiers using sum and product rules, Pattern Recognition Letters, issue.22, pp.12833-1289, 2001.

M. Kamal, M. J. Ali, and . Pazzani, Error reduction through learning multiple descriptions, Machine Learning, p.1733202, 1996.

F. Alimoolu and E. Alpaydin, Combining multiple representations for pen-based handwritten digit recognition, ELEKTRIK: Turkish Journal of Electrical Engineering and Computer Sciences, vol.9, issue.1, p.1112, 2001.

F. M. Alkoot and J. Kittler, Experimental evaluation of expert fusion strategies, Pattern Recognition Letters, vol.20, issue.11-13, p.136111369, 1999.
DOI : 10.1016/S0167-8655(99)00107-5

F. M. Alkoot and J. Kittler, Modiied product fusion, Pattern Recognition Letters, vol.23, p.9577965, 2002.

E. Alpaydin, C. Kaynak, and E. F. Alimoolu, Cascading multiple classiiers and representations for optical and pen-based handwritten digit recognition, Proc. of the 7th International Workshop on Frontiers in Handwriting Recognition, p.4533462, 2000.

H. Altinnay and M. Demireckler, Why does output normalization create problems in multiple classiier system?, Proc. of the 16th International Conference on Pattern Recognition, p.7755778, 2002.

M. R. Anderberg, Cluster Analysis for Applications, 1973.

R. Anquetil and H. Bouchereau, Integration of an on-line handwriting recognition system in a smart phone device, Object recognition supported by user interaction for service robots, 2002.
DOI : 10.1109/ICPR.2002.1047827

E. Anquetil, B. Cooasnon, and . Et-frrddric-dambreville, A symbol classiier able to reject wrong shapes for document recognition systems, Graphics Recognition, Recent Advances, p.2099218, 1941.

R. Anquetil and G. Lorette, Automatic generation of hierarchical fuzzy classication systems based on explicit fuzzy rules deduced from possibilistic clustering: Application to on-line handwritten character recognition, Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU'96), p.2599264, 1996.

C. Aptt and S. Weiss, Data mining with decision trees and decision rules, Future Generation Computer Systems, vol.13, issue.2-3, 1997.
DOI : 10.1016/S0167-739X(97)00021-6

D. Bahler and L. Navarro, Combining heterogeneous sets of classiiers: Theorical and experimental comparison of methods. under review

D. Bahler and L. Navarro, Methods for combining heterogeneous sets of classiiers, Proc. of the 7th National Conference on Artiicial Intelligence Workshop on New Research Problems for Machine Learning, 2000.

A. Bellili, M. Gilloux, and E. P. Gallinari, Reconnaissance de chiires manuscrits par un systtme hybride mlp-svm, Actes du 13 e Congrs Francophone de Reconnaissance des Formes et d'Intelligence Artiicielle, p.7611769, 2002.

H. Bersini, G. Bontempi, and C. Decaestecker, Comparing rbf and fuzzy inference systems on theorical and practical basis, Internation Conference on Artiicial Neural Networks (ICANN'95), p.1699174, 1995.

C. James and . Bezdek, Pattern recognition with fuzzy objective function algorithms, 1981.

C. M. Bishop, Neural Networks for Pattern Recognition, 1995.

I. Bloch, Incertitude, imprrcision et additivitt en fusion de donnnes : point de vue historique, Traitement du Signal, vol.13, issue.4, p.2677288, 1996.

I. Bloch, Information combination operators for data fusion: a comparative review with classification, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol.26, issue.1, p.52267, 1996.
DOI : 10.1109/3468.477860

B. Bouchon-meunier, La logique oue et ses applications, 1995.

B. Bouchon-meunier and C. Marsala, Logique oue, principes, aide la ddcision, Traitt, vol.2

B. Bouchon-meunier and C. Marsala, Traitements de donnnes complexes et commande en logique oue, Traitt IC2 : Information -Commande -Communication, Traitt, vol.2, 2003.

L. Breiman, Bagging predictors, Machine Learning, vol.10, issue.2, p.1233140, 1996.
DOI : 10.1007/BF00058655

L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classiication and Regression Trees, 1984.

C. E. Brodley, E. Paul, and . Utgoo, Multivariate decision trees, Machine Learning, vol.21, issue.1, p.45577, 1995.
DOI : 10.1007/BF00994660

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.55.7328

D. S. Broomhead and D. Lowe, Multivariable functional interpolation and adaptative n e t works, p.3211355, 1988.

W. Buntine and T. Niblett, A further comparison of splitting rules for decision-tree induction, Machine Learning, p.75585, 1992.
DOI : 10.1007/BF00994006

J. C. Christopher and . Burges, A tutorial on support vector machines for pattern recognition, Data Mining and Knowledge Discovery, vol.2, issue.2, p.1211167, 1998.

L. P. Robin, T. Chang, and . Pavlidis, Fuzzy decision tree algorithms, IEEE Transactions on Systems, Man and Cybernetics, vol.7, issue.1, p.28835, 1977.

S. Chen and S. Lin, A new method for constructing fuzzy decision trees and generating fuzzy classiication rules from training examples, Cybernetics and Systems, issue.7, p.31763385, 2000.

J. Kevin, J. W. Cherkauer, and . Shavlik, Growing simpler decision trees to facilitate knowledge discovery, KDD-96 Proceedings. Second International Conference on Knowledge Discovery and Data Mining, p.3155318, 1996.

K. Cios, W. Pedrycz, and R. Swiniarski, Data Mining Methods for Knowledge Discovery, IEEE Transactions on Neural Networks, vol.9, issue.6, 1998.
DOI : 10.1109/TNN.1998.728406

K. Cios, W. Pedrycz, and R. Swiniarski, Data Mining Methods for Knowledge Discovery, IEEE Transactions on Neural Networks, vol.9, issue.6, p.384, 1998.
DOI : 10.1109/TNN.1998.728406

B. Cooasnon and J. Camillerapp, Dmos, une mmthode ggnnrique de reconnaissance de documents : valuation sur 60 000 formulaires du 19 e siicle, ctes du Colloque International Francophone sur l''crit et le Document (CI- FED'02), p.2255234, 2002.

R. Collobert and S. Bengio, Svmtorch: Support vector machines for large-scale regression problems, Journal of Machine Learning Research, vol.1, p.1433160, 2001.

V. Gusnard-de, Reprrsentation et exploitation lectroniques de documents anciens (textes et images, p.57773, 1999.

R. Debnath and H. Takakashi, Learning Capability: Classical RBF Network vs. SVM with Gaussian Kernel, Developments in Applied Artiicial Intelligence, 15th International Conference on Industrial and Engineering. Applications of Artiicial Intelligence and Expert Systems, p.2933302, 2002.
DOI : 10.1007/3-540-48035-8_29

G. Thomas and . Dietterich, Ensemble methods in machine learning, MCS 2000, p.1115, 2000.

C. Ding and X. He, Cluster merging and splitting in hierarchical clustering algorihtms, Proceedings of the IEEE International Conference on Data Mining (ICDM'02), p.1399146, 2002.

D. Dubois and H. Prade, On data summarization with fuzzy sets, Fifth IFSA Congress, p.4655468, 1993.

D. Dubois and H. Prade, La probllmatique scientiique du traitement de l'information. Revue I3 : Information -Interaction -Intelligence, 2001.

O. Richard, . Duda, E. Peter, and . Hart, Pattern Classiication and Scene Analysis, 1973.

R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classiication, 2001.

R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classiication, p.5422548, 2001.

P. W. Robert and . Duin, The combining classiier: to train or not to train?, Proc. of the 16th International Conference on Pattern Recognition (ICPR-2002), Lecture Notes in Computer Sciences, p.7655770, 2002.

P. W. Robert, . Duin, M. J. David, and . Tax, Experiments with classiier combining rules, MCS 2000, Lecture Notes in Computer Sciences, v olume 1857, p.16629, 2000.

J. C. Dunn, A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters, Journal of Cybernetics, vol.3, issue.3, p.32257, 1974.
DOI : 10.1080/01969727308546046

T. Evgeniou and M. Pontil, Support Vector Machines with Clustering for Training with Very Large Datasets, Methods and Applications of Artiicial Intelligence, Second Hellenic Conference on AI LNAI 2308, LNAI 2308, p.3466354, 2002.
DOI : 10.1007/3-540-46014-4_31

U. M. Fayyad and K. B. Irani, On the handling of continuous-valued attributes in decision tree generation, Machine Learning, vol.1, issue.2, p.877102, 1992.
DOI : 10.1007/BF00994007

U. Fayyad, G. Piatetsky-shapiro, and P. Smyth, From data mining to knowledge discovery in databases, p.37754, 1996.

U. Fayyad, G. Piatetsky-shapiro, and P. Smyth, Knowledge discovery and data mining: Towards a unifying framework, Proc. of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96), p.82288, 1996.

W. Frawley, G. Piatetsky-shapiro, and E. C. Matheus, Knowledge discovery in databases, chap. Knowledge discovery in databases: An overview, p.1127

F. Yoav, . Et-llew, and . Mason, The alternating decision trees learning algorithm, The Sixteenth International Conference on Machine Learning, p.1244133, 1999.

F. Yoav, E. Et-robert, and . Schapire, Experiments with a new boosting algorithm, International Conference on Machine Learning, p.1488156, 1996.

I. Gath and A. B. Geva, Unsupervised optimal fuzzy clustering, Proceedings of the IEEE Transaction on Pattern Analysis and Machine Intelligence, p.7733781, 1989.
DOI : 10.1109/34.192473

S. Gentric, Architecture neuronale volutive : application la reconnaissance e t l a s e gmentation automatique de l''criture, Thhse de PhD, 1999.

G. Giacinto and F. Roli, Dynamic classiier selection based on multiple classiier behaviour, Pattern Recognition, vol.34, issue.9, p.1799181, 2001.

N. Giusti, F. Masulli, and A. Sperduti, Theorical and experimental analysis of a two-stage system for classiication, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.7, p.8933904, 2002.

J. M. Gloger, A. Kaltenmeier, E. Mandler, and E. L. Andrews, Reject management in a handwriting recognition system, Proceedings of the Fourth International Conference on Document Analysis and Recognition, p.5566559, 1997.
DOI : 10.1109/ICDAR.1997.620562

D. E. Goldberg, Genetic Algorithms in search, optimization, and machine learning, 1989.

M. Guetova, S. Hhlldobler, and H. Sttrr, Incremental Fuzzy Decision Trees, KI 2002, LNAI, p.67781, 2002.
DOI : 10.1007/3-540-45751-8_5

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.9915

H. Guo and S. B. Gelfand, Classiication trees with neural network feature extraction, IEEE Transactions on Neural Networks, vol.3, issue.6, p.923333, 1992.

E. E. Gustafson and W. C. Kessel, Fuzzy clustering with a fuzzy covariance matrix, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes, p.7611766, 1979.
DOI : 10.1109/CDC.1978.268028

I. Guyon, L. Schomaker, R. Plamondon, M. Liberman, and E. S. Janet, UNIPEN project of on-line data exchange and recognizer benchmarks, Proceedings of the 12th IAPR International Conference on Pattern Recognition (Cat. No.94CH3440-5), p.29933, 1994.
DOI : 10.1109/ICPR.1994.576870

I. Guyon, J. Makhoul, R. Schwartz, and V. Vapnik, What size test set gives good error rate estimates?, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.20, issue.1, p.52264, 1998.
DOI : 10.1109/34.655649

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.3326

H. C. Yau and M. T. Manry, Automatic determination of reject thresholds in classifers employing discriminant functions, IEEE Transactions on Signal Processing, vol.40, issue.3, p.7111713, 1992.

K. Tin and . Ho, A Theory of Multiple Classiier Systems And Its Application to Visual Word Recognition, Thhse de PhD, 1992.

K. Tin and . Ho, Data complexity analysis for classiier combination, Proceedings of the 2nd International Workshop on Multiple Classiier Systems, p.53367, 2001.

K. Tin and . Ho, Multiple classiier combination: Lessons and next steps, Hybrid Methods in Pattern Recognition, p.1711198, 2002.

T. Kam, H. , and M. Basu, Complexity measures of supervised classiication problems, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.3, p.2899300, 2002.

K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural Networks, vol.4, issue.2, p.2511257, 1991.
DOI : 10.1016/0893-6080(91)90009-T

C. Hsu and C. Lin, A comparison of methods for multi-class support vector machines

Y. S. Huang and C. Y. Suen, A method of combining multiple experts for the recognition of unconstrained handwritten numerals, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.17, issue.1, p.90094, 1995.
DOI : 10.1109/34.368145

K. R. Ianakiev and V. Govindaraju, Improvement of recognition accuracy using 2-stage classiication, Proc. of the Seventh International Workshop on Frontiers in Handwriting Recognition, p.1533165, 2000.

A. Ittner and M. Schlosser, Discove r y o f r e l e v ant new features by g e n e rating non-linear decision trees, KDD-96 Proceedings. Second International Conference on Knowledge Discovery and Data Mining, p.1088113, 1996.

A. K. Ivind-due-trier, . Jain, . Et-torrnn, and . Taxt, Feature extraction methods for character recognition-A survey, Pattern Recognition, vol.29, issue.4, p.6411662, 1996.
DOI : 10.1016/0031-3203(95)00118-2

R. A. Jacobs, M. I. Jordan, S. J. Nowlan, E. Et-geoorey, and . Hinton, Adaptative mixtures of local experts, Neural Computation, vol.3, issue.1, p.79987, 1991.

R. Jager, Fuzzy Logic in Control, Thhse de PhD

A. K. Jain and R. C. Dubes, Algorithms for clustering data, 1988.

J. Jang and C. Sun, Functional equivalence between radial basis function networks and fuzzy inference systems, IEEE Transactions on Neural Networks, vol.4, issue.1, p.1566159, 1993.
DOI : 10.1109/72.182710

Z. Cezary and . Janikow, A genetic algorithm method for optimizing fuzzy decision trees, Information Sciences, vol.89, issue.3-4, p.2755296, 1996.

Z. Cezary and . Janikow, Fuzzy decision trees: Issues and methods, IEEE Transactions on Systems, Man and Cybernetics, vol.28, p.1114, 1998.

Z. Cezary, M. Janikow, and . Fajfer, Fuzzy partitioning with d3.1, 18th International Conference of the North American Fuzzy Information Processing Society -NAFIPS, p.476671, 1999.

J. Yung, J. Hsu, and I. Chiang, Fuzzy classiication trees, Ninth International Symposium on Artiicial Intelligence in Joint Cooperation with the Sixth International Conference on Industrial Fuzzy Control and Intelligent Systems, p.43118, 1996.

M. Kearns and Y. Mansour, A fast, bottom-up decision tree pruning algorithm with near-optimal generalization, Proceedings of the Fifteenth International Conference on Machine Learning (ICML'98), p.2699277, 1998.

E. Kim, W. Kim, and Y. Lee, Classiier fusion using local conndence, ISMIS 2002, pp.2366-5833591, 2002.

J. Ho-kim, K. K. Kim, and C. Y. Suen, Hybrid schemes of homogeneous and heterogeneous classiiers for cursive w ord recognition, Proc. of the Seventh International Workshop on Frontiers in Handwriting Recognition, p.4333442, 2000.

J. Kittler, M. Hatef, R. P. Duin, and J. Matas, On combining classiiers, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.20, issue.3, p.2266239, 1998.

R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, International Joint Conference o n A rtiicial Intelligence (IJCAI-95), p.113771145, 1995.

R. Kothari and M. Dong, Decision trees for classiication: A review and some new results. soumis World Scientiic, 2000.

R. Krishnapuram, Fuzzy clustering methods in computer vision, Proceedings of the 1st European Congress on Fuzzy and Intelligent Technologies (EUFIT'93), p.7200730, 1993.

R. Krishnapuram, Generation of membership functions via possibilistic clustering, Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference, p.9022908, 1994.
DOI : 10.1109/FUZZY.1994.343851

R. Krishnapuram and J. M. Keller, A possibilistic approach to clustering, IEEE Transactions on Fuzzy Systems, vol.1, issue.2, p.988110, 1993.
DOI : 10.1109/91.227387

R. Krishnapuram and J. M. Keller, The possibilistic C-means algorithm: insights and recommendations, IEEE Transactions on Fuzzy Systems, vol.4, issue.3, pp.3855-393, 1996.
DOI : 10.1109/91.531779

L. I. Kuncheva, C. J. Whitaker, C. A. Shipp, and R. P. Duin, Is independence good for combining classiiers?, Proc. of the 15th International Conference o n Pattern Recognition (ICPR-2000), p.1688171, 2000.

I. Ludmila and . Kuncheva, Switching between selection and fusion in combining classiiers: An experiment, IEEE Transactions on Systems, Man and Cyberneticss Part B: Cybernetics, vol.32, issue.2, p.1466156, 2002.

I. Ludmila and . Kuncheva, A theorical study on six classiier fusion strategies, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.2, p.2811286, 2002.

I. Ludmila, C. J. Kuncheva, and . Whitaker, Measures of diversity in classiier ensembles, Machine Learning, p.1811207, 2003.

L. Lam, Classiier combinations: Implementations and theorical issues
DOI : 10.1007/3-540-45014-9_7

L. Lam and C. Y. Suen, Application of majority voting to pattern recognition: an analysis of its behavior and performance, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol.27, issue.5, p.5533568, 1997.
DOI : 10.1109/3468.618255

M. Last, O. Maimon, and E. Minkov, IMPROVING STABILITY OF DECISION TREES, International Journal of Pattern Recognition and Artificial Intelligence, vol.16, issue.02, pp.1455-159, 2002.
DOI : 10.1142/S0218001402001599

V. Di-lecce, G. Dimauro, A. Guerriero, S. Impedovo, G. Pirlo et al., Classiier combination: The role of a-priori knowledge, Proc. of the 7th International Workshop on Frontiers in Handwriting Recognition, p.1433152, 2000.

R. Lengelll, DDcision et reconnaissance des formes en signal, Traitement du Signal et de l'Image, chap. 6. Traitement du Signal et de l'Image, 2002.

I. Lerman, F. P. Joaquim, . Da, and . Costa, Coeecients d'association et variables a tres grand nombre de categories dans les arbres de ddcision application a l'identiication de la structure secondaire d'une prottine, 1996.

. Levenshtein, Binary codes capable of correcting deletions, insertions and reversals, Soviet Physics Doklady, vol.10, p.7077710, 1966.

T. W. Liao, A. K. Celmins, R. J. Hammel, and I. , A fuzzy c-means variant for the generation of fuzzy term sets. Fuzzy Sets and Systems, p.2411257, 2003.

. Tjen-sien, W. Lim, Y. Loh, and . Shih, A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classiication algorithms, Machine Learning, p.2033228, 2000.

W. Loh and Y. Shih, Split selection methods for classiication trees, Statistica Sinica, vol.7, p.8155840, 1997.

J. B. Macqueen, Some methods for classiication and analysis of multivariate observations, Proceedings of the 5th Berkley Symposium on Mathematical Statistics and Probability, p.2811297, 1967.

Y. Mansour, Pessimistic decision tree pruning based on tree size, Proceedings of the Fifteenth International Conference on Machine Learning (ICML'98), 1997.

C. Marsala and B. Bouchon-meunier, Choice of a method for the construction of fuzzy decision trees, The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03., p.5844589, 2003.
DOI : 10.1109/FUZZ.2003.1209429

C. Marsala and B. Bouchon-meunier, Measures of discrimination for the construction of fuzzy decision trees, Proc. of Fuzzy Information Processing (FIP'03), p.7099714, 2003.

C. Marsala, B. Bouchon-meunier, and E. A. Ramer, Hierarchical Model for Rank Discrimination Measures, Proc. of the eight IFSA'99 World Congress, p.3399343, 1999.
DOI : 10.1007/978-3-642-39091-3_35

URL : https://hal.archives-ouvertes.fr/hal-01219707

C. Marsala, Apprentissage inductif en prsence d e d o n n es imprcises : construction et utilisation d'arbres de ddcision ous, Thhse de doctorat, 1998.

J. and K. Martin, An exact probability metric for decision tree splitting and stopping, Machine Learning, p.257791, 1997.

U. Maulik and S. Bandyopadhyay, P erformance evaluation of some clustering algorithms and validity indices, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.12, p.165001654, 2002.

E. Mayoraz and E. Alpaydin, Support vector machines for multi-class classiication, Proceedings of the International Workshop on Artiical Neural Networks (IWANN99), p.8333842, 1999.

W. S. Mcculloch and W. Pitts, A logical calculus of the ideas of immanent in nervous activity, Bulletin of Mathematical Biophysics, vol.5, p.1155133, 1943.

J. Mingers, An empirical comparison of selection measures for decision-tree induction, Machine Learning, p.3199342, 1989.
DOI : 10.1007/BF00116837

B. Moobed, Combinaison de classiieurs, une nouvelle approche, Thhse de doctorat, 1996.

J. Moody and C. J. Darken, Fast Learning in Networks of Locally-Tuned Processing Units, Neural Computation, vol.1, issue.2, p.2811294, 1989.
DOI : 10.1109/MASSP.1987.1165576

K. Sreerama and . Murthy, Automatic construction of decision trees from data: a multi-disciplinary survey, Data Mining and Knowledge Discovery, vol.2, issue.4, pp.3455-389, 1998.

C. Olaru and L. Wehenkel, A complete fuzzy decision tree technique. Fuzzy Sets and Systems, p.2211254, 2003.

E. Osuna, R. Freund, and F. Girosi, Support vector machines: Training and applications. Rapport technique n o AIM-1602, 1997.

R. Nikhil, K. Pal, J. C. Pal, and . Bezdk, A mixed c-means clustering model, Proceedings of the IEEE International Conference on Fuzzy Systems, p.11121, 1997.

M. Parizeau, A. Lemieux, and C. Gagnn, Character recognition experiments using Unipen data, Proceedings of Sixth International Conference on Document Analysis and Recognition, p.4811485, 2001.
DOI : 10.1109/ICDAR.2001.953836

J. Park and I. W. Sandberg, Approximation and Radial-Basis-Function Networks, Neural Computation, vol.2, issue.2, p.3055316, 1993.
DOI : 10.1162/neco.1991.3.2.246

C. Milie-poisson, P. Viard-gaudin, and . Lallican, Combinaison de rrseaux de neurones convolution pour la reconnaissance de caracttres manuscrits en-ligne, Conffrence F ddrative sur l''crit et le Document (CIFED'02), p.3155324, 2002.

L. Prevost, S. Gentric, and E. M. Milgram, Model generation and cooperation in on-line omni-writer handwriting recognition, Proceedings of the Third International Conference on Information Fusion, p.338, 2000.
DOI : 10.1109/IFIC.2000.859899

L. Prevost and M. Milgram, Automatic allograph selection and multiple expert classiication for totally unconstrained handwritten character recognition, International Conference on Pattern Recognition, p.3811383, 1998.

L. Prevost and M. Milgram, Modelizing character allographs in omni-scriptor frame: a new non-supervised clustering algorithm, Pattern Recognition Letters, vol.21, issue.4, p.2955302, 2000.
DOI : 10.1016/S0167-8655(99)00159-2

L. Prevost, A. Moises, C. Michel-sendis, L. Oudot, and E. M. Milgram, Combining model-based and discriminative classiiers: application to handwritten character recognition, Internation Conference on Document Analysis and Recognition (ICDAR'03), p.31135, 2003.

J. Puzicha, Y. Rubner, C. Tomasi, and J. M. Buhmann, Empirical evaluation of dissimilarity measures for color and texture, Proceedings of the Seventh IEEE International Conference on Computer Vision, p.116551173, 1999.
DOI : 10.1109/ICCV.1999.790412

M. Ramdani, Systtme d'induction formelle base de connaissances imprcises, Thhse de doctorat, 1994.

E. H. Ratzlaa, A scanning n-tuple classiier for online recognition of handwritten digits, Internation Conference o n D o cument Analysis and Recognition (ICDAR'01), p.18822, 2001.

E. H. Ratzlaa, Methods, report and survey for the comparison of divers isolated character recognition results on the unipen database, Internation Conference on Document Analysis and Recognition (ICDAR'03), p.6233628, 2003.

S. Rifqi and . Monties, Fuzzy prototypes for fuzzy data mining Knowledge Management in Fuzzy Databases, et J. Kacprzyk (ditt par), 2000.

F. Roli and G. Giacinto, Hybrid Methods in Pattern Recognition, chap. Design of Multiple Classiier Systems, World Scientiic, 2002.

E. H. Ruspini, A new approach to clustering, Information and Control, vol.15, issue.1, p.22232, 1969.
DOI : 10.1016/S0019-9958(69)90591-9

S. Safavian and D. Landgrebe, A survey of decision tree classiier methodology, IEEE Transactions on Systems, Man, and Cybernetics, vol.21, issue.3, pp.6600-674, 1991.

A. Sankar and R. J. Mammone, Optimal pruning of neural tree networks for improved generalization, IJCNN-91-Seattle International Joint Conference on Neural Networks, p.219924, 1991.
DOI : 10.1109/IJCNN.1991.155341

W. S. Sarle, Neural networks and statistical models, Proceedings of the Nineteenth Annual SAS Users Groups International Conference, p.153881550, 1994.

B. Schhlkopf, K. Sung, C. J. Burges, F. Girosi, P. Niyogi et al., Comparing support vector machines with Gaussian kernels to radial basis function classiers, IEEE Transactions on Signal Processing, issue.11, pp.4527588-2765, 1997.

J. Schrmann, Pattern classiication: a uniied view of statistical and neural approaches, c hap, 1996.

A. Glenn and . Shafer, Mathematical Theory of Evidence, 1976.

C. E. Shannon, The mathematical theory of communication, 1948.

Y. Shih, Families of splitting criteria for classiication trees, Journal of Statistics and Computing, vol.9, issue.4, p.3099315, 1999.

Y. So and . Sohn, Meta analysis of classiication algorithms for pattern recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.21, issue.11, p.113771144, 1999.

M. William and . Spears, Evolutionary Algorithms, The Role of Mutation and Recombination, 2000.

S. R. Waterhouse and A. J. Robinson, Classiication using hierarchical mixtures of experts, Proc. of the IEEE Workshop on Neural Networks for Signal Processing IV, p.1777186, 1994.

Y. Ching, L. Suen, and . Lam, Multiple classiier combination methodologies for diierent output levels, MCS, p.52266, 2000.

H. Tanaka, T. Okuda, and E. K. Asai, Fuzzy information and decision in statistical model, Advances in Fuzzy Set Theory and Applications, p.3033320, 1979.

M. J. David, . Tax, P. W. Robert, and . Duin, Using two-class classiiers for multiclass classiication, Proc. of the 16th International Conference on Pattern Recognition, p.1244127, 2002.

M. J. David, . Tax, R. P. Martijn-van-breukelen, J. Duin, and . Kittler, Combining multiple classiiers by averaging or by multiplying? Pattern Recognition, p.147551485, 2000.

G. Valentini and F. Masulli, Ensembles of Learning Machines, Neural Nets WIRN Vietri-2002, Lecture Notes in Computer Sciences, v olume 2486, p.3319, 2002.
DOI : 10.1007/3-540-45808-5_1

V. Vapnik, The Nature of Statistical Learning Theory, 1995.

W. N. Venables and B. D. Ripley, Modern Applied Statistics with S-plus, 1997.

C. Viard-gaudin, P. M. Lallican, S. Knerr, and E. P. Binter, The ireste on/oo (ironoff) dual handwriting database, Proceedings of the Fifth International Conference on Document Analysis and Recognition (ICDAR'99), p.4555458, 1999.

G. Louis, . Vuurpijl, R. B. Lambert, and . Schomaker, Two-stage character classiication: A combined approach of clustering and support vector classiiers, Proc. of the Seventh International Workshop on Frontiers in Handwriting Recognition, p.4233432, 2000.

R. Wagner and M. Fisher, The String-to-String Correction Problem, Journal of the ACM, vol.21, issue.1, p.1688173, 1974.
DOI : 10.1145/321796.321811

W. Wang, P. Jones, and E. D. Partridge, Diversity between neural networks and decision trees for building multiple classiier systems, Multiple Classiier Systems Series Lecture Notes in Computer Sciences, p.2400249, 2000.

X. Wang, D. S. Yeung, and E. C. Tsang, A comparative study on heuristic algorithms for generating fuzzy decision trees, IEEE Transactions on Systems, Man and CyberneticssPart B: Cybernetics, issue.2, p.312155226, 2001.

K. Donald, . Wedding, J. Krzystof, and . Cios, Certainty factors versus parzen windows as reliability measures in rbf networks, Neurocomputing, vol.19, issue.1-3, p.1511165, 1998.

P. Michael and . Windham, Cluster validity for the fuzzy c-means clustering algorithm, IEEE Trnasactions on Pattern Analysis and Machine Intelligence, vol.4, issue.4, p.1982, 1982.

D. H. Wolpert, Stacked generalization, Neural Networks, vol.5, issue.2, p.2411259, 1992.
DOI : 10.1016/S0893-6080(05)80023-1

X. Lisa-xie and G. Beni, A validity measure for fuzzy clustering, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.13, issue.8, p.8411847, 1991.

L. Xu, A. Krzyyak, and C. Y. Suen, Methods of combining multiple classiiers and their applications to handwriting recognition, IEEE Transactions on Systems, Man and Cybernetics, vol.22, issue.3, p.4188435, 1992.

Q. Xu, L. Lam, and C. Y. Suen, Automatic segmentation and recognition system for handwritten dates on canadian bank cheques, Proc. of the 7th International Conference o n D o cument Analysis and Recognition (ICDAR'03), p.7044708, 2003.

Y. Yuan and M. J. Shaw, Induction of fuzzy decision trees. Fuzzy sets and systems, p.1255139, 1995.

A. Lofti and . Zadeh, Fuzzy sets, Information and Control, vol.8, p.3388353, 1965.

A. Lofti and . Zadeh, Probability measures of fuzzy events, Jour. Math. Analysis and Appl, vol.23, p.4211427, 1968.

A. Lofti and . Zadeh, Outline of a new approach to the analysis of complex systems and decision processes, IEEE Trans. on Systems, Man, and Cybernetics, vol.3, pp.288-332, 1973.

A. Lofti and . Zadeh, Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1, p.3328, 1978.

A. Lofti and . Zadeh, Soft computing and fuzzy logic, IEEE Software, p.48856, 1994.

N. Zahid, M. Limouri, and E. A. Essaid, A new cluster-validity for fuzzy clustering, Pattern Recognition, vol.32, issue.7, p.108991097, 1999.
DOI : 10.1016/S0031-3203(98)00157-5

J. Zeidler and M. Schlosser, Fuzzy handling of continuous attributes in decision trees, ECML-95 Mlnet Familiarization Workshop "Statistics, Machine Learning and Knowledge Discovery in Databases, p.41146, 1995.

J. Zeidler and M. Schlosser, Continuous-valued attributes in fuzzy decision trees, 6 th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, p.3955400, 1996.

A. Zighed, R. Rakotomalala, and Y. Kodratoo, Graphes d'induction : Apprentissage et Data Mining, 2000.