C. R. Doering and J. D. Gibbon, On the shape and dimension of the Lorenz attractor, Dynamics and Stability of Systems, vol.755, issue.3, p.2555268, 1995.
DOI : 10.1007/978-1-4684-0313-8

J. D. Farmer, E. Ott, and J. A. Yorke, The dimension of chaotic attractors, Physica D, vol.7, p.1533180, 1983.

H. Giacomini and S. Neukirch, Integrals of motion and the shape of the attractor for the Lorenz model, Physics Letters A, vol.227, issue.5-6, p.3099318, 1997.
DOI : 10.1016/S0375-9601(97)00077-7

H. J. Giacomini, C. E. Repetto, and O. P. Zandron, Integrals of motion for three-dimensional non-Hamiltonian dynamical systems, Journal of Physics A: Mathematical and General, vol.24, issue.19, p.456774574, 1991.
DOI : 10.1088/0305-4470/24/19/020

N. Goldenfeld, O. Martin, Y. Oono, and F. Liu, Anomalous dimensions and the renormalization group in a nonlinear diffusion process, Physical Review Letters, vol.64, issue.12, p.1361, 1990.
DOI : 10.1103/PhysRevLett.64.1361

A. Goriely, 1996: Integrability, P artial Integrability and Nonintegrability for Systems of Ordinary Diierential Equations, J. Math. Phys, vol.37, p.187111893

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, of Applied Mathematical Sciences, pp.0-387, 1983.

E. A. Jackson, Perspectives of nonlinear dynamics, 1992.

T. Kunihiro, The Renormalization-Group Method applied to asymptotic analysis of vector elds, p.9609045, 1996.

M. Kus, Integrals of motion for the Lorenz system, Journal of Physics A: Mathematical and General, vol.16, issue.18, p.689, 1983.
DOI : 10.1088/0305-4470/16/18/002

E. Lorenz, Deterministic nonperiodic ow, J. Atmospheric Sci, vol.20, p.1300141, 1963.

E. Lorenz, On the prevalence of aperiodicity in simple systems, Global Analysis, p.53375, 1979.
DOI : 10.1137/0135020

T. Rikitake, Oscillations of a system of disk dynamos, Proc. Camb, p.89, 1958.
DOI : 10.1098/rspa.1955.0268

B. Saltzman, 1962: Finite amplitude free convection as an initial value problem, J. Atmospheric Sci, vol.19, p.3299341
DOI : 10.1175/1520-0469(1962)019<0329:fafcaa>2.0.co;2

C. Sparrow, 6. The Lorenz equations, of Applied Mathematical Sciences, 1982.
DOI : 10.1515/9781400858156.111

P. Alsholm, Existence of limit cycles for generalized Li??nard equations, Journal of Mathematical Analysis and Applications, vol.171, issue.1, p.242, 1992.
DOI : 10.1016/0022-247X(92)90387-S

T. R. Blows and N. G. Lloyd, The number of small amplitude limit cycles of Li enard equations, Math. Proc. Cambridge Philos. Soc., 95, p.7511758, 1984.

T. R. Blows and L. Perko, Bifurcation of Limit Cycles from Centers and Separatrix Cycles of Planar Analytic Systems, SIAM Review, vol.36, issue.3, p.3411376, 1994.
DOI : 10.1137/1036094

L. A. Cherkas, Estimation of the number of limit cycles of autonomous systems, Diierential Equations, vol.13, p.529, 1977.

C. Christopher and N. G. Lloyd, Small-amplitude limit cycles in Li enard systems, Nonlinear diierential equations and applications, 1998.

W. C. Coppel, Some Quadratic Systems with at most One Limit Cycle, Dynamics Reported, vol.2, p.61168, 1988.
DOI : 10.1007/978-3-322-96657-5_3

F. Dumortier and C. Li, On the uniqueness of limit cycles surrounding one or more singularities for Li enard equations, Nonlinearity, issue.9, p.148991500, 1996.

F. Dumortier and C. Li, Quadratic Li enard equations with quadratic damping, J. Diierential Equations, vol.139, p.41159, 1997.

A. Gasull and J. Torregrosa, Small-amplitude limit cycles in Li enard systems via multiplicity, Prepublicacions U.A.B, vol.27, 1997.

H. Giacomini, J. Llibre, and M. Viano, On the nonexistence, existence and uniqueness of limit cycles, Nonlinearity, vol.9, issue.2, pp.92-5011516, 1996.
DOI : 10.1088/0951-7715/9/2/013

H. Giacomini and S. Neukirch, Number of limit cycles of the Li enard equation, Phys. Rev. E, vol.564, p.380993813, 1997.

H. J. Giacomini and M. Viano, Determination of limit cycles for 2-D dynamical systems, Phys. Rev. E, vol.52, p.2222228, 1995.

N. M. Kryloff and N. N. Bogoliuboff, Introduction a l a m ecanique non-lin eaire : les m ethodes approch ees et asymptotiques, -2 of Ukrainska Akad. Nauk Inst, 1937.

M. Levi, Qualitative analysis of the periodically forced relaxation oscillations, Memoirs of the American Mathematical Society, vol.32, issue.244, 1981.
DOI : 10.1090/memo/0244

N. Levinson and D. Smith, A general equation for relaxation oscillations, Duke Mathematical Journal, vol.9, issue.2, p.382
DOI : 10.1215/S0012-7094-42-00928-1

A. Li, Etude des oscillations entretenues", Rev. Gen. d' electricit e, XXIII, p.901, 1928.

A. Lins, W. De-melo, and C. C. Pugh, On Linard's equation, Geometry and Topology 597, pp.3355357-105, 1977.

. Chap, II:Nombre de cycles limites pour le syst eme de Li enard

J. Llibre, L. Pizarro, and E. Ponce, Comment on : 'Number of limit cycles of the Li enard equation, Phys. Rev. E, p.583, 1998.

S. Lynch, Li enard systems and the second part of Hilbert's sixteenth problem, Nonlinear Analysis, Theory, Methods & Applications, vol.303, p.139551403, 1997.

K. Odani, The Limit Cycle of the van der Pol Equation Is Not Algebraic, Journal of Differential Equations, vol.115, issue.1, p.1466152, 1151.
DOI : 10.1006/jdeq.1995.1008

K. Odani, Existence of exactly N periodic solutions for Li enard systems, p.217, 1996.

L. M. Perko, Diierential equations and dynamical systems, v ol. 7 of Texts in Applied Mathematics, 1996.

G. S. Rychkov, The maximal number of limit cycles of the system _ y = ,x , _ x = y , a 1 x + a 3 x 3 + a 5 x 5 is equal to two, Diierential Equations, p.301, 1975.

B. Van-der-pol, 1927a: Nature120, pp. 3633364. van der Pol B. 1927b: : F orced oscillations in a circuit with nonlinear resistance, pp.6-11

J. C. Wilson, Algebraic solutions of Li enard equations, Contrib. Diierential Equations, vol.3, p.1120, 1964.

Z. Xianwu, Remarks on the uniqueness of limit cycles, Kexue Tongbao, vol.28, p.4522455, 1983.

Z. Zhang, On the existence of exactly two limit cycles for the Li enard equation, Acta Math. Sinica, vol.24, p.7100716, 1981.

C. Zuppa, Order of cyclicity of the singular point o f L i enard polynomial vector elds, Bol. Soc. Brasil. Mat, vol.122, p.1055111, 1981.

. Tab and . Iii, 7 Coeecients des polyn^ omes ^ R n;5 a a n apparaissant dans le d eveloppement III.5-1 pour le syst eme III, pp.3-4

H. Giacomini and S. Neukirch, Improving a method for the study of limit cycles of the Li enard equation, Phys. Rev. E, pp.576-657336576, 1998.

P. Holmes and D. Rand, Bifurcations of the forced van der Pol oscillator, Quarterly of Applied Mathematics, vol.35, issue.4, p.4955509, 1978.
DOI : 10.1090/qam/492551

N. M. Kryloff and N. N. Bogoliuboff, Introduction a l a m ecanique non-lin eaire : les m ethodes approch ees et asymptotiques, -2 of Ukrainska Akad. Nauk Inst, 1937.

V. K. Melnikov, On the stability of the center for time periodic perturbations, Trans. Moscow Math. Soc, vol.12, p.1157, 1963.

L. M. Perko, Diierential equations and dynamical systems, v ol. 7 of Texts in Applied Mathematics, 1996.

H. Poincar-e, 1880: M emoire sur les courbes d eenies par les equations dii erentielles, IIVI of uvre I. P aris

M. A. Sanju-an, Li enard systems, limit cycles and Melnikov theory van der Pol B. 1927: : F orced oscillations in a circuit with nonlinear resistance, Phys. Rev. E, vol.571, issue.3, pp.57761-65, 1998.

F. Verhulst, Nonlinear diierential equations and dynamical systems, 1991.

P. Alsholm, Existence of limit cycles for generalized Li??nard equations, Journal of Mathematical Analysis and Applications, vol.171, issue.1, p.242, 1992.
DOI : 10.1016/0022-247X(92)90387-S

A. A. Andronov, E. A. Leontovich, I. I. Gordon, and A. G. Maier, Theory of Bifurcations of Dynamic Systems on a Plane, Israel program of scientiic translations, 1971.

T. R. Blows and L. Perko, Bifurcation of Limit Cycles from Centers and Separatrix Cycles of Planar Analytic Systems, SIAM Review, vol.36, issue.3, p.3411376, 1994.
DOI : 10.1137/1036094

H. W. Broer, F. Dumortier, S. J. Van-strien, and F. Takens, Structures in Dynamics, vo l . 2 o f Studies in mathematical physics, 1991.

S. Chows and C. Li, 1994: Normal forms and bifurcation of planar vector elds

H. Giacomini and S. Neukirch, Algebraic approximations to bifurcation curves of limit cycles for the Li enard equation, Physics Letters A, vol.244, p.53358, 1998.

E. Hopf, Abzweigung einer periodischen LL osung von einer stationn aren LL osung eines diierential-systems, Ber. Math.-Phys. Kl. SS achs Acad. Wiss. Leipzip, pp.94-1122, 1942.

N. G. Lloyd, Li enard systems with several limit cycles, Math. Proc. Camb, p.565, 1987.

K. Odani, Existence of exactly N periodic solutions for Li enard systems, p.217, 1996.

L. M. Perko, Bifurcation of limit cycles: geometric theory, Proc. AMS, p.225, 1992.
DOI : 10.1090/S0002-9939-1992-1086341-1

G. S. Rychkov, The maximal number of limit cycles of the system _ y = ,x , _ x = y , a 1 x + a 3 x 3 + a 5 x 5 is equal to two, Diierential Equations, p.301, 1975.

F. Takens, Unfolding of certain singularities of vector elds : generalized Hopf bifurcations, J. Diierential Equations, vol.14, p.4766493, 1973.

C. Zuppa, Order of cyclicity of the singular point o f L i enard polynomial vector elds, Bol. Soc. Brasil. Mat, vol.122, p.1055111, 1981.

P. Alsholm, Existence of limit cycles for generalized Li??nard equations, Journal of Mathematical Analysis and Applications, vol.171, issue.1, p.242, 1992.
DOI : 10.1016/0022-247X(92)90387-S

A. A. Andronov, E. A. Leontovich, I. I. Gordon, and A. G. Maier, Theory of Bifurcations of Dynamic Systems on a Plane, Israel program of scientiic translations, 1971.

T. R. Blows and N. G. Lloyd, The number of small amplitude limit cycles of Li enard equations, Math. Proc. Cambridge Philos. Soc., 95, p.7511758, 1984.

T. R. Blows and L. Perko, Bifurcation of Limit Cycles from Centers and Separatrix Cycles of Planar Analytic Systems, SIAM Review, vol.36, issue.3, p.3411376, 1994.
DOI : 10.1137/1036094

H. W. Broer, F. Dumortier, S. J. Van-strien, and F. Takens, Structures in Dynamics, vo l . 2 o f Studies in mathematical physics, 1991.

L. A. Cherkas, Estimation of the number of limit cycles of autonomous systems, Diierential Equations, vol.13, p.529, 1977.

S. Chows and C. Li, 1994: Normal forms and bifurcation of planar vector elds

C. Christopher and N. G. Lloyd, P olynomial systems : a lower bound for the Hilbert numbers, Proc. R. Soc. Lond. A, 450, p.2199224, 1995.

C. Christopher and N. G. Lloyd, Small-amplitude limit cycles in Li enard systems, Nonlinear diierential equations and applications, 1998.

B. Coll, A. Gasull, and J. Llibre, Uniqueness of limit cycles for a class of Li enard systems with applications, Journal of Math. Analysis and Applications, vol.141, p.4422450, 1989.

W. C. Coppel, Some Quadratic Systems with at most One Limit Cycle, Dynamics Reported, vol.2, p.61168, 1988.
DOI : 10.1007/978-3-322-96657-5_3

C. R. Doering and J. D. Gibbon, Applied analysis of the Navier-Stokes Equations, 1995.
DOI : 10.1017/CBO9780511608803

C. R. Doering and J. D. Gibbon, On the shape and dimension of the Lorenz attractor, Dynamics and Stability of Systems, vol.755, issue.3, p.2555268, 1995.
DOI : 10.1007/978-1-4684-0313-8

H. Dulac, Sur les cycles limites, Bulletin de la Soci&#233;t&#233; math&#233;matique de France, vol.2, p.455188, 1923.
DOI : 10.24033/bsmf.1031

F. Dumortier and C. Li, On the uniqueness of limit cycles surrounding one or more singularities for Li enard equations, Nonlinearity, issue.9, p.148991500, 1996.

F. Dumortier and C. Li, Quadratic Li enard equations with quadratic damping, J. Diierential Equations, vol.139, p.41159, 1997.

J. Ecalle, Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac, 1992.

J. Ecalle, J. Martinet, and R. Moussu, Non-accumulation des cycles limites, C.R. Acad, 1987.

J. D. Farmer, E. Ott, and J. A. Yorke, The dimension of chaotic attractors, Physica D, vol.7, p.1533180, 1983.

A. Gasull and J. Torregrosa, Small-amplitude limit cycles in Li enard systems via multiplicity, Prepublicacions U.A.B, vol.27, 1997.

H. Giacomini, J. Llibre, and M. Viano, On the nonexistence, existence and uniqueness of limit cycles, Nonlinearity, vol.9, issue.2, pp.92-5011516, 1996.
DOI : 10.1088/0951-7715/9/2/013

H. Giacomini and S. Neukirch, Integrals of motion and the shape of the attractor for the Lorenz model, Physics Letters A, vol.227, issue.5-6, p.3099318, 1997.
DOI : 10.1016/S0375-9601(97)00077-7

H. Giacomini and S. Neukirch, Number of limit cycles of the Li enard equation, Phys. Rev. E, vol.564, p.380993813, 1997.

H. Giacomini and S. Neukirch, Algebraic approximations to bifurcation curves of limit cycles for the Li enard equation, Physics Letters A, vol.244, p.53358, 1998.

H. Giacomini and S. Neukirch, Improving a method for the study of limit cycles of the Li enard equation, Phys. Rev. E, pp.576-657336576, 1998.

H. J. Giacomini, C. E. Repetto, and O. P. Zandron, Integrals of motion for three-dimensional non-Hamiltonian dynamical systems, Journal of Physics A: Mathematical and General, vol.24, issue.19, p.456774574, 1991.
DOI : 10.1088/0305-4470/24/19/020

H. J. Giacomini and M. Viano, Determination of limit cycles for 2-D dynamical systems, Phys. Rev. E, vol.52, p.2222228, 1995.

C. Gillain, La th eorie g eom etrique des equations dii erentielles de Poincar e et l'histoire de l'Analyse, 1977.

N. Goldenfeld, O. Martin, Y. Oono, and F. Liu, Anomalous dimensions and the renormalization group in a nonlinear diffusion process, Physical Review Letters, vol.64, issue.12, p.1361, 1990.
DOI : 10.1103/PhysRevLett.64.1361

A. Goriely, 1996: Integrability, P artial Integrability and Nonintegrability for Systems of Ordinary Diierential Equations, J. Math. Phys, vol.37, p.187111893

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, of Applied Mathematical Sciences, pp.0-387, 1983.

I. Hacking, Nineteenth Century Cracks in the Concept of Determinism, Journal of the History of Ideas, vol.44, issue.3, p.4555475, 1983.
DOI : 10.2307/2709176

P. Holmes and D. Rand, Bifurcations of the forced van der Pol oscillator, Quarterly of Applied Mathematics, vol.35, issue.4, p.4955509, 1978.
DOI : 10.1090/qam/492551

E. Hopf, Abzweigung einer periodischen LL osung von einer stationn aren LL osung eines diierential-systems, Ber. Math.-Phys. Kl. SS achs Acad. Wiss. Leipzip, pp.94-1122, 1942.

Y. Ilyashenko, Dulac's memoir 'On limit cycles' and related problems of the local theory of diierential equations, Russian Math. Surveys VHO, p.1149, 1985.

Y. Ilyashenko, 1991: Finiteness theorems for limit cycles

E. A. Jackson, Perspectives of nonlinear dynamics, 1992.

L. Jibin and L. Chunfu, Global bifurcation of planar disturbed Hamiltonian systems and distributions of limit cycles of cubic systems, Acta Math. Sinica, pp.28-5099521, 1985.

N. M. Kryloff and N. N. Bogoliuboff, Introduction a l a m ecanique non-lin eaire : les m ethodes approch ees et asymptotiques, -2 of Ukrainska Akad. Nauk Inst, 1937.

T. Kunihiro, The Renormalization-Group Method applied to asymptotic analysis of vector elds, p.9609045, 1996.

M. Kus, Integrals of motion for the Lorenz system, Journal of Physics A: Mathematical and General, vol.16, issue.18, p.689, 1983.
DOI : 10.1088/0305-4470/16/18/002

E. Landis and I. Petrovski, Letter to the editor, Math. Sb, vol.73, p.160, 1967.

M. Levi, Qualitative analysis of the periodically forced relaxation oscillations, Memoirs of the American Mathematical Society, vol.32, issue.244, 1981.
DOI : 10.1090/memo/0244

N. Levinson and D. Smith, A general equation for relaxation oscillations, Duke Mathematical Journal, vol.9, issue.2, p.382
DOI : 10.1215/S0012-7094-42-00928-1

A. Liapunov, Probl eme g en eral de la stabilit e du mouvement, Ann. Fac. Sci. Univ. Toulouse, vol.9, p.2033475, 1907.

A. Li, Etude des oscillations entretenues", Rev. Gen. d' electricit e, XXIII, p.901, 1928.

A. Lins, W. De-melo, and C. C. Pugh, On Linard's equation, Geometry and Topology 597, p.3355357, 1977.

J. Llibre, L. Pizarro, and E. Ponce, Comment on : 'Number of limit cycles of the Li enard equation, Phys. Rev. E, p.583, 1998.

N. G. Lloyd, Li enard systems with several limit cycles, Math. Proc. Camb, p.565, 1987.

E. Lorenz, Deterministic nonperiodic ow, J. Atmospheric Sci, vol.20, p.1300141, 1963.
DOI : 10.1007/978-0-387-21830-4_2

E. Lorenz, On the prevalence of aperiodicity in simple systems, Global Analysis, p.53375, 1979.
DOI : 10.1137/0135020

S. Lynch, Li enard systems and the second part of Hilbert's sixteenth problem, Nonlinear Analysis, Theory, Methods & Applications, vol.303, p.139551403, 1997.

L. Markus, Global structure of ordinary diierential equations in the plane, Trans. Amer. Math. Soc, vol.76, p.1277148, 1954.

V. K. Melnikov, On the stability of the center for time periodic perturbations, Trans. Moscow Math. Soc, vol.12, p.1157, 1963.

D. Neuman, Classiication of continuous ows on 2-manifolds, Proc. Amer, p.73381, 1975.

K. Odani, The Limit Cycle of the van der Pol Equation Is Not Algebraic, Journal of Differential Equations, vol.115, issue.1, p.1466152, 1151.
DOI : 10.1006/jdeq.1995.1008

K. Odani, Existence of exactly N periodic solutions for Li enard systems, p.217, 1996.

L. M. Perko, Bifurcation of limit cycles: geometric theory, Proc. AMS, p.225, 1992.
DOI : 10.1090/S0002-9939-1992-1086341-1

L. M. Perko, Diierential equations and dynamical systems, v ol. 7 of Texts in Applied Mathematics, 1996.

I. G. Petrovskii and E. M. Landis, On the numberof limit cycle of the equation dy=dx = Px; y=Qx; y where P and Q are polynomials, Math. Sb. N.S, vol.43, p.1499168, 1957.

H. Poincar-e, 1880: M emoire sur les courbes d eenies par les equations dii erentielles, IIVI of uvre I. P aris

L. S. Pontrjagin, Uber Autoschwingungssysteme, die den hamiltonshen nahe liegen, Physikalische Zeitschrift der Sonjetunion, vol.6112, p.25528, 1934.

T. Rikitake, Oscillations of a system of disk dynamos, Proc. Camb, p.89, 1958.
DOI : 10.1098/rspa.1955.0268

G. S. Rychkov, The maximal number of limit cycles of the system _ y = ,x , _ x = y , a 1 x + a 3 x 3 + a 5 x 5 is equal to two, Diierential Equations, p.301, 1975.

B. Saltzman, 1962: Finite amplitude free convection as an initial value problem, J. Atmospheric Sci, vol.19, p.3299341
DOI : 10.1175/1520-0469(1962)019<0329:fafcaa>2.0.co;2

M. A. Sanju-an, Li enard systems, limit cycles and Melnikov theory, Phys. Rev. E, pp.571-57761, 1998.

G. Sansone and R. Conti, Nonlinear diierential equations, 1964.

S. Shi, On limit cycles of plane quadratic systems, Sci. Sinica, vol.25, p.41150, 1982.

C. Sparrow, 6. The Lorenz equations, of Applied Mathematical Sciences, 1982.
DOI : 10.1515/9781400858156.111

S. H. Strogatz, Nonlinear dynamics and chaos, The Advanced Book Program, 1994.

C. Sturm, 1833: Sur les equations dii erentielles lin eaires du second ordre
DOI : 10.1007/978-3-7643-7990-2_30

M. Tabor, Chaos and integrability in nonlinear dynamics : An Introduction, I n terscience, 1989.

M. Tabor and J. Weiss, Analytic structure of the Lorenz system, Physical Review A, vol.24, issue.4, p.2157, 1981.
DOI : 10.1103/PhysRevA.24.2157

F. Takens, Unfolding of certain singularities of vector elds : generalized Hopf bifurcations, J. Diierential Equations, vol.14, p.4766493, 1973.

J. M. Thompson and H. B. Stewart, Nonlinear Dynamics and Chaos, Computers in Physics, vol.4, issue.5, 1986.
DOI : 10.1063/1.4822949

Y. Tr-eve, Boxing the Lorenz attractor", unpublished. van der Pol B. 1922: On oscillation hysteresis in a triode generator with two degrees of freedom, p.7000719, 1979.

B. Van-der-pol, 1927a: Nature120, pp. 3633364. van der Pol B. 1927b: : F orced oscillations in a circuit with nonlinear resistance, pp.6-11

F. Verhulst, Nonlinear diierential equations and dynamical systems, 1991.

J. C. Wilson, Algebraic solutions of Li enard equations, Contrib. Diierential Equations, vol.3, p.1120, 1964.

Z. Xianwu, Remarks on the uniqueness of limit cycles, Kexue Tongbao, vol.28, p.4522455, 1983.

Y. Yanqian, Theory of limit cycles, v ol. 66 of Translations of Math. monographs, 1986.

E. D. Yorke and J. A. Yorke, Metastable chaos: The transition to sustained chaotic behavior in the Lorenz model, Journal of Statistical Physics, vol.4, issue.1, p.263, 1979.
DOI : 10.1007/BF01011469

R. K. Zeytounian, 1991: M ecanique des uides fondamentale, v o l . m 4 o f Lecture Notes in Physics

Z. Zhang, On the existence of exactly two limit cycles for the Li enard equation, Acta Math. Sinica, vol.24, p.7100716, 1981.

H. Zoladek, Eleven small limit cycles in a cubic vector eld, Nonlinearity, issue.8, p.8433860, 1995.

C. Zuppa, Order of cyclicity of the singular point o f L i enard polynomial vector elds, Bol. Soc. Brasil. Mat, vol.122, p.1055111, 1981.