Skip to Main content Skip to Navigation
Theses

Réduction des graphes de Goresky-Kottwitz-MacPherson ; nombres de Kostka et coefficients de Littlewood-Richardson

Abstract : This work consists of the concrete realization of two theoretic algorithms coming from recent publications. The first part deals with the implementation of the reduction of a Goresky-Kottwitz-MacPherson graph. This graph is a combinatorial analogue of a compact connected symplectic manifold with a hamiltonian action of a compact torus. The second part is devoted to the implementation of the computation of two coefficients involved in the action of a complex semi-simple Lie group on a finite-dimensional vector space: the multiplicity of a weight in a finite-dimensional irreducible representation (Kostka number) and the coefficients of decomposition of the tensor product of two finite-dimensional irreducible representations (Littlewood-Richardson coefficients).
Document type :
Theses
Complete list of metadatas

https://tel.archives-ouvertes.fr/tel-00005168
Contributor : Charles Cochet <>
Submitted on : Monday, March 1, 2004 - 8:35:10 AM
Last modification on : Tuesday, December 1, 2020 - 2:34:03 PM
Long-term archiving on: : Friday, April 2, 2010 - 8:10:03 PM

Identifiers

  • HAL Id : tel-00005168, version 1

Collections

Citation

Charles Cochet. Réduction des graphes de Goresky-Kottwitz-MacPherson ; nombres de Kostka et coefficients de Littlewood-Richardson. Mathématiques [math]. Université Paris-Diderot - Paris VII, 2003. Français. ⟨tel-00005168⟩

Share

Metrics

Record views

316

Files downloads

567