J. Alander, On interval arithmetic range approximation methods of polynomials and rational functions, 365í372. ëAllen83ë J.F. Allen. í Maintaining knowledge about temporal intervals, pp.832-843, 1983.
DOI : 10.1016/0097-8493(85)90031-7

. Ëavesani, í COOL: An Object System with Constraints. TOOLS90, pp. 221í228, ëBeaudoin-Lafon et al.91ë M. Beaudoin-Lafon et E. Cournarie. í ALIEN: A Prototype-Based Constraint System. í Rapport de Recherche n 662, 1990.

. Ëbellicha, Vilarem. í CSP techniques using partial orders on domain values. ECAI'94 workshop on constraint reasoning raisedb y practical applications. í Amsterdam, Pays-Bas, 1994. ëBellicha93ë A. Bellicha. í Maintenance of Solution in a Dynamic Constraint Satisfaction Problem, pp.261-274, 1993.

. Ëbenhamou, í CLPPIntervalss revisited. íT echnical report n CS-94-18, ëBenhamou et al.95ë F. Benhamou et W. Older. í Applying Interval Arithmetic to Real, Integer and Boolean Constraints. Journal of Logic Programming, 1994.

. Ëbenjamin, í Satisfying multiple rated constraints in a knowledge based decision aid PROSE : Une bo ^ ite a outils fonctionnelle pour l'interpr etation de contraintes, 9th ConferenceonArtiaecial Intelligence Applications , pp. 227í283. í, 1992.

P. Berlandier, í Deux variations sur le th eme de la consistance d'arcs : maintien et renforcement. í Rapport technique n 2426, 1994.

. Ëbessi-ere, Cordier. í Arc-consistency and Arc-consistency again, Eleventh National ConferenceonArtiaecial Intelligence. pp. 108í113. í, 1993.

C. Ëbessi-ere91ë, Bessi ere. í Arc-consistency in Dynamic Constraint Satisfaction Problems, Proc. of AAAI'91, 1991.

C. Ëbessi-ere92ë, Bessi ere. í Syst emes ac ontraintes evolutifs en IntelligenceArtiaecielle, Th ese de doctorat en informatique, 1992.

C. Ëbessi-ere94ë and . Bessi-ere, í An Overview of KRL, a Knowledge Representation Language í The LOOPS manual : a data and object-oriented programming system for Interlisp.í Rapport technique n Memo KB-VLSI-81-13, Artiaecial Intelligence Cognitive Science, vol.65, issue.1 1, pp.179-190, 1977.

. Ëborning, í Constraint Hierarchies ëBorning81ë A. Borning. í The Programming Language Aspects of ThingLab, a Constraint- Oriented Simulation Laboratory í Graph-based algorithms for boolean function manipulation, Proc. of OOPSLA'87 353í387. ëBrachman85ë R. J. Brachman. í "I lied about the trees", Or Defaults and Deaenitions in Knowledge Representation. AI Magazine, pp.345-374, 1981.

B. Buchberger, í Grí obner bases: An algorithmic methodinpolynomial ideal theory, pp.184-232, 1985.
DOI : 10.1007/978-94-009-5225-6_6

. Ëcapponi, í Objects, types and constraints as classiaecation schemes, International Conference on Knowledge Re-use, Storage and Eaeciency KRUSE95, pp.69-73, 1995.

C. Capponi, Classiaecation des classes par les types Repr esentations Par Objets, ed. par EC2, pp. 215í224. í La Grande Motte, France, 1993. ëCapponi94ë C. Capponi. í Interactive class classiaecation using types. New Approaches in Classiaecation and Data Analysis, pp.204-211, 1994.

C. Capponi, í Identiaecation et exploitation des types dans un mod ele de connaissances a objets, 1995.

. Ëcardelli, On understanding types, data abstraction, and polymorphism, ACM Computing Surveys, vol.17, issue.4, pp.471-522, 1985.
DOI : 10.1145/6041.6042

. Ëcardelli, Operations on records, Mathematical Structures in Computer Science, vol.1, issue.01, pp.3-48, 1991.
DOI : 10.1016/0022-0000(78)90014-4

L. Cardelli, J. Demongeot, T. Herv-e, V. Rialle, and C. Roche, ëCarr e et al.88ë B. Carr eetG.Com yn. í On Multiple Classiaecation, Point of View and Object Evolution ëCarr e89ë B. Carr e. í M ethodologie orient ee-objet pour la repr esentation des connaissances. Concepts de points de vue, de repr esentation multiple et evolutive d'objet.í F rance, Artiaecial Intelligence and Cognitive Sciences, pp.49-62, 1984.

. Ëchailloux, í Le-Lisp version 15.2 : the reference Manual. í INRIA, France, mai 1986 í Where the really hard problems are, 12th International Joint ConferenceonArtiaecial Intelligence ëCleary87ë J.C. Cleary.í Logical arithmetic. Future Computing System, pp.125-149, 1987.

G. E. Collins, Quantiaeer elimination for real closed aeelds by cylindrical algebraic decomposition. 2nd GI ConferenceonAutomata Theory and Formal Languages. pp. 134í183. í Springer-Verlag, 1975. ëColmerauer90ë A. Colmerauer. í An Introduction to PROLOG, 69í90. ëColmerauer93ë A. Colmerauer. í Naive Solving of Non-linear Constraints, pp.89-112, 1990.

. Ëcooper, í Characterising tractable constraints, 347í361. ëDantzig63ë G. B. Dantzig. í Linear Programming and Extensions. í Princeton University Press, 1963.

. Ëdavenport, Computer-Algebra : Systems and Algorithms for Algebraic Computation í GENET : a connectionnist architecture for solving constraint satisfaction problems by iterative improvement AAAI'94, pp. 325í330. í 1994. ëDavid93ë P.D a vid. í When functional and bijective constraints make a CSP polynomial. 13th International Joint ConferenceonA rtiaecial Intelligence, pp. 224í229. í Chamb ery,F rance, 1993. ëDavis87ë H.E. Davis. í VIEWS : Multiple Perspectives and Structured Objects in a Knowledge Representation Language and master of science thesis, MIT, 1987. ëDavis91ë L. Davis. í Handbook of genetic algorithms, 1991.

. Ëdechter, í The cycle-cutset method for improving search performance in AI applications, ëDechter et al.88aë A. Dechter et R. Dechter. í Belief Maintenance in Dynamic Constraints Networks . AAAI'88, pp. 37í42. í SaintPaul, 1987.

. Ëdechter, Network-based heuristics for constraint-satisfaction problems, Artificial Intelligence, vol.34, issue.1, pp.1-38, 1988.
DOI : 10.1016/0004-3702(87)90002-6

. Ëdechter, í Experimental evaluation of preprocessing techniques in constraint satisfaction problems, Proc. of the 11 th IJCAI, pp.271-277, 1989.

. Ëdechter, Tree clustering for constraint networks, Artificial Intelligence, vol.38, issue.3, pp.353-366, 1989.
DOI : 10.1016/0004-3702(89)90037-4

. Ëdechter, Temporal constraint networks, Proc. of AAAI'86, pp. 178í183. í Philadelphia 87í107. ëDechter90ë R. Dechter. í Enhancementschemes for constraint processing: backjumping, learning, and cutset decomposition. Artiaecial Intelligence, pp.61-95, 1986.
DOI : 10.1016/0004-3702(91)90006-6

L. Dekker, í FROME: repr esentation multiple et classiaecation d'objets avecpoints de vue, 1994.

. Ëdelobel, Adiba. í Bases de donn ees et syst emes relationnels, 1982.

. Ëdershowitz, í Rewrite systems. í Rapport de Recherche n RR-478, 1989.

. Ëdeville, An eaecient arc-consistency algorithm for a class of CSP problems, Proc. of the 12 th IJCAI The Constraint Logic Programming Language Chip. International Conference on Fifth Generation Computer Systems.íTokio, Japon, 1988.

J. Doyle, A truth maintenance system, Artificial Intelligence, vol.12, issue.3, pp.231-272, 1979.
DOI : 10.1016/0004-3702(79)90008-0

. Ëducournau, í La multiplicit e de l'h eritage dans les langages a objets, Technique et Science Informatiques, vol.1989, issue.1, pp.259-273, 1987.

J. S. Ely, í Prospects for Using Variable Precision Interval Software in C++ for Solving some Contemporary Scientiaec Problems, 1990.

. Ëescamilla, Relationships in an object knowledge representation model, [1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence, 1990.
DOI : 10.1109/TAI.1990.130411

J. Euzenat, í Un syst eme de maintenanced el av erit ep our une repr esentation de connaissances centr ee-objet.íFrance, M emoire de dea d'informatique, 1987.

J. Euzenat, í D eaenition abstraite de la classiaecation et son application aux taxonomies d'objets. 2ndes journ ees Repr esentation par Objets RPO'93, pp.235-246, 1993.

J. Euzenat, On a purely taxonomic and descriptive meaning for classes. 13th IJCAI Workshop on Object-BasedRepresentation Systems, pp. 81í92. í Chamb ery,France, 1993. ëEuzenat94ë J. Euzenat. í Classiaecation dans les repr esentations par objets: produits de syst emes classiaecatoires, pp.185-196, 1994.

B. Faltings, í Elaboration d'un langage extensible fond e sur les sch emas, le langage Objlog+.í France, Th ese, Universit e d'Aix-Marseille III, juillet 1991. ëFerber84ë J. Ferber. í MERING : un langage d'acteurs pour la repr esentation des connaissances et la compr ehension du langage naturel, Artiaecial Intelligence, vol.65, pp.179-189, 1984.

. Ëfikes, í The role of frame-based representation in reasoning, Communications of the ACM, vol.28, pp.904-920, 1985.

. Ëfornarino, í Expression des relations et maintien de la coh erence: le concept de lien. í Rapport de Recherche n 1346, 1990.

. Ëfornarino, í Experiences with SRL: An Analysis of a Frame-based Knowledge Representation. Expert Data Systems í Integrating Constraints with an Object-Oriented Language, Proc. of ECOOP'92. pp. 268í286. í Utrecht, Pays-Bas, 1992. ëFreeman-Benson89ë B. N. Freeman-Benson. í AModule Mechanism for Constraints in Smalltalk. íT echnical Report n 89-05-03 Proceddings of OOPSLA'89. ëFreeman-Benson90ë B. N. Freeman-Benson. í Kaleidoscope: Mixing Objects, Constraints and Imperative Programming. ACM SIGPLAN Notices ECOOPèOOPSLA'90, pp.77-88, 1989.

. Ëfreuder, í Partial Constraint Satisfaction, 21í70. ëFreuder78ë E. C. Freuder. í Synthesizing constraint expressions, pp.958-966, 1978.

E. C. Freuder, í Complexity of K-tree structured constraint satisfaction problems, Proc. of AAAI'90 ëFreuder91ë E. C. Freuder. í Eliminating Interchangeable Values in Constraint Satisfaction Problems . Proc. of AAAI'91, pp.227-233, 1990.

. Ëfrost, í Dead-end driven learning, Proc. of AAAI'94, pp.294-300, 1994.

. Ëfrost, í In search of the best constraint satisfaction search, Proc. of AAAI'94, pp.301-306, 1994.

J. Gaschnig, í A general backtrack algorithm that eliminates most redundant tests í Performancemeasurement and analysis of certain search algorithms. í Rapport technique n CMU-CS-79-124, Proc. of the 5 th IJCAI, 1977.

. Ëgeaener, í An improved constraint-propagation algorithm for diagnosis . 10th International Joint ConferenceonArtiaecial Intelligence, 1987.

. Ëgensel, í Expression d'un mod ele de t^ aches a l'aide d'une repr e sentation par objets. Repr esentation Par Objets, pp.225-236, 1992.

. Ëgensel, í Int egration de contraintes, d'objets composites et de t^ aches dans un mod ele de repr esentation par objets, Neuvi eme congr es Reconnaissance des Formes et IntelligenceArtiaecielle, RFIA'94, pp.281-292, 1994.

J. Gensel, í Gestion des d ependances et des hypoth eses dans un mod ele de connaissances a objets, 1990.

J. Gensel, Expression et satisfaction de contraintes dans Tropes,unmod ele de repr e sentation de connaissances par objets Repr esentation Par Objets, pp. 51í62. í La Grande- Motte, France, juin 1993, ëGensel93bë J. Gensel. í Integrating Constraints in an Object-Based Knowledge Representation System. International Workshop on Constraint Processing at CSAM'93, 1993.

J. Gensel, Integrating constraints in a knowldge representation system Constraint Processing, pp.67-77, 1983.

D. E. Goldberg, Genetic algorithm in search, optimization and machine learning, J. Gosling. í Algebraic Constraints. í Pittsburgh, 1983.

. Ëgí-usgen, í Some Fundamental Properties of Local Constraint Propagation, 237í247. ëHan et al.88ë C. Han et C. Lee. í Comments on Mohr and Henderson's Path Consistency Algorithm . Artiaecial Intelligence, pp.125-130, 1988.

E. Handsen, í An Overview of Global Optimization Using Interval Analysis, pp.289-307, 1988.

. Ëharalick, Increasing Tree Search Eaeciency for Constraint Satisfaction Problems ëHaselbí ock93ë A. Haselbí ock. í Exploiting Interchangeabilities in Constraint Satisfaction Problems, Proc. of AAAI'86, pp. 986í990. í Philadelphia Proc. of the 13 th IJCAI, pp. 282í287. í Chamb ery,France Mondot et A. Napoli. í Leraisonnement en IntelligenceArtiaecielle ëHavens et al.92ë W. Havens, S. Sidebottom, G. Sidebottom, J. Jones et R. Ovans. í ECHIDNA: A Constraint Logic Programming Shell Paciaec Rim International ConferenceonArtiaecial Intelligence.í S eoul, Cor ee du Sud, 1980.

. Ëhentenryck, Incremental search in Constraint Logic Programming, New Generation Computing, vol.4, issue.4, pp.257-275, 1991.
DOI : 10.1007/BF03037165

. Ëhentenryck, í The design, Implementation, and Evaluation of the Constraint Language cccFDD.íTechnical report n CS-93-02 Brown University, janvier 1993. ëHentenryck89ë P.Van Hentenryck. í Constraint Satisfaction in Logic Programming ëHentenryck90ë P.V an Hentenryck. í Incremental Constraint Satisfaction in Logic Programming. ICLP'90, pp. 189í202. í 1990. ëHentenryck91ë P.V an Hentenryck. í The CLP language CHIP: Constraint Solving and Applications, 36th Computer Society International Conference ëHong93ë H. Hong. í RISC-CLPPReall: Logic Programming with Non-linear Constraints over the Reals, 1989.

. Ëhubbe, í An eaecient cross product representation of the constraint satisfaction problem search space, Proc. of AAAI'92, pp.421-427, 1992.

. Ëhyví-onen, í Interval Constraint Satisfaction Tool INC++. 1993 IEEE International ConferenceonTools with AI Hyví onen. í Constraint reasoning based on interval arithmetic: the tolerance propagation approach í Le-Lisp v16 : manuel de r ef erence, 1992. ëIlog92bë ILOG, Gentilly,F rance. í PECOS: manuel de r ef erenceVersion 1.1, 1992. ëIlog94ë ILOG, Gentilly,F rance. í IlogT alk version 3.01 : manuel de r ef erence, ëIngals78ë D.H.H. Ingals. í The Smalltalk-76 Programming System Design and Implementation. Fifth POPL ëJaaear et al.87ë J. Jaaear et J. L. Lassez. í Constraint Logic Programming. SIGPLAN Notices Symposium on Principles of Programming Languages, pp.9-17, 1978.

. Ëjanssen, í Probl emes de satisfaction de contraintes: techniques de r esolution et application a la synth ese de peptides. í Rapport de Recherche n 54, France, Centre de Recherche en Informatique de Montpellier, 1988. ëJanssen90ë P. Janssen. í Aide al ac onception : une approche bas ee sur la satisfaction de contraintes, 1990.

P. J. Ëj and . Egou, Contribution al ' etude des probl emes de satisfaction de contraintes : algorithme de propagation et de r esolution, propagation de contraintes dans les r eseaux dynamiques, Th ese de doctorat en informatique, 1991.

P. J. Ëj, E. Kim, J. Bertino, and . Garza, Decomposition of domains based on the micro structure of aenite constraint satisfaction problems, Eleventh National ConferenceonArtiaecial Intelligence. pp. 731í736. í Composite Objects Revisted. ACMèSIGMOD International Conference on the Management of Data ëKleer86ë J. De Kleer. í An Assumption-Based TMS. Artiaecial Intelligence, pp.337-347, 1986.

T. Ëkí-ok-eny94ë and I. Kí-ok-eny-edemontpellier, Satisfaction de Contraintes dans un Environnement Orient e Objets.í France Constraint Logic Programming : SelectedResearch. ëLauri ere78ë J-L. Lauri ere. í A language and a program for stating and solving combinatorial problems, Huyinh et K. McAloon. í Simpliaecations and Elimination of Redundant Linear Arithmetic Constraints Artiaecial Intelligence, vol.10, issue.5 1, pp.73-88, 1978.

. Ëlee, VanEmden. í Interval Computation as deduction in CHIP LeSaint. í Maximal Sets of Solution for Constraint Satisfaction Problems, 255í276. ëLeler88ë W. Leler. í Constraint Programming Languages 11th ECAI'94 110í114. í Amsterdam, Pays-Bas, 1994. ëLhomme93ë O. Lhomme. í Consistency Techniques for Numeric CSPs. 13th International Joint ConferenceonArtiaecial Intelligence, pp. 232í238. í Chamb ery,France, 1993. ëLiu et al.92ë B. Liu et Y. Ku. í Constraint-Lisp: An Object-Oriented Constraint Programming Language, pp.17-26, 1988.

. Ëlopez, A Constraint Imperative Programming Language Havens. í Hierarchical arc consistency : exploiting structured domains in constraint satisfaction problems, ëMarcke87ë K. Van Marcke. í KRS : An Object-Oriented Representation Language. Revue d'IntelligenceArtiaecielle, pp.99-118, 1977.

O. Ëmari~-no91ë, Mari~ no. í Classiaecation d'objets composites dans un syst eme de repr esentation de connaissances multi-points de vue

. Ëmichalski, Learning from Observation : Conceptual Clustering, Philips et P. Laird. í Solving Large-Scale Constraint Satisfaction and Scheduling Problems Using a Heuristic repair Method. Proc. of AAAI'90, pp.17-24, 1975.

. Ëminton, Minimizing conflicts: a heuristic repair method for constraint satisfaction and scheduling problems, Artificial Intelligence, vol.58, issue.1-3, pp.161-205, 1992.
DOI : 10.1016/0004-3702(92)90007-K

. Ëmitchell, Hard and easy distributions of SAT problems, Proc. of AAAI'92, pp.459-465, 1992.

. Ëmohr, Networks of Constraints: Fundamental Properties and Applications to Picture Processing í The breakout method for escaping from local minima, Proc. of the 8 th ECAI 95í132. ëMoore66ë R. Moore. í Interval Arithmetic. í Englewoods Cliae, Proc. of AAAI'93 Vander Zanden. í Declarative Programming in a Prototype-Instance System: Object-Oriented Programming Without Writing Methods 184í200. í Proceedings of the OOPSLA'92, pp.40-45, 1966.

B. Nadel, Constraint satisfaction algorithms, Computational Intelligence, vol.3, issue.5, pp.188-224, 1989.
DOI : 10.1145/321921.321925

. Ënapoli, Techniques de classiaecation pour mod eliser la synth ese de mol ecules organiques Angoujard. pp. 241í252. í Amsterdam, Pays-Bas, 1991. ëNapoli92ë A. Napoli. í Repr esentation a objets et raisonnement par classiaecation en Intelligence Artiaecielle. í CRIN-INRIA Lorraine, France, Doctorat d' etat es sciences math ematiques, 1st International Confernce on Knowledge Modeling and Expertise Transfer KMET'911 I, janvier 1992. ëNeveu et al.94ë B. Neveu et P. Berlandier. í Arc-Consistency for Dynamic Constraint Satisfaction Problems: An RMS free Approach. Workshop on Constraint Satisfaction Issues Raisedby Practical Applications at ECAI'94. í Amsterdam, Pays-Bas, ao^ ut, 1994.

. Ëolder, í Extending Prolog with constraint arithmetic on real intervals, Canadian Conference on Electrical and Computer Engineering, 1990.

. Ëolder, Constraint Logic Programming : SelectedResearch. ëOplebodu89ë A. Oplebodu. í CHARME : un langage industriel de programmation par contraintes, Constraint Arithmetic on Real Interval,chap. 10 Proc. of AVIGNON'89, pp.175-196, 1989.

B. Orsier, Institut National Polytechnique de Grenoble, juin 1990. ëPoncabar e et al.91ë T. Poncabar e et F. Rechenmann. í SCAI : un environnementd ed eveloppement de syst emes a bases de connaissances en calcul scientiaeque et technique. Troisi eme convention intelligence artiaecielle, pp. 491í509, ëProsser93ë P. Prosser. í Domain aeltering can degrade intelligent backjumping. 13th International Joint ConferenceonArtiaecial Intelligence, pp. 262í267. í Chamb ery,France, 1993. ëPuget et al.93ë J. F. Puget et P. Albert. í SOLVER: Constraints + Objects = Descriptions. Workshop on Object Representation at the 13th International Joint ConferenceonA rtiaecial Intelligence, pp. 93í101. í Chamb ery, 1991.

J. Puget, í Pecos : a High Level Constraint Programming Language. SPICIS92.í Singapour, septembre 1992 Purdom. í Search rearrangement backtracking and polynomial average time, Proc. of AVIGNON'92, pp. 129í138. í 117í133. ëQuillian68ë M.R. Quillian. í Semantic Memory. Semantic Information Processing, pp.227-270, 1968.

. Ëratscheck, í Computer Methods for the Range of Functions, 1984.

. Ërechenmann, SHIRKA : Syst eme de gestion de bases de connaissances centr ees-objets. í INRIA et laboratoire Art emis è IMAG 1990. ëRechenmann92ë F. Rechenmann. í Integrating procedural knowledge: procedural attachment revisited . 25th INRIA anniversary workshop on knowledge representation, ëRechenmann93ë F. Rechenmann. í Integrating procedural and declarative knowledge in objectbased knowledge models. IEEE International Conference on Systems, Man and Cybernetics, pp. 98í101. í Le Touquet, 1992.

. Ërieu, An Object Model for Engineering Design í Vers un environnement de r esolution de probl emes en biom etrie í apports des techniques de l'intelligence artiaecielle et de l'interaction graphique, Proc. of AVIGNON'92 Th ese de biom etrie ëRumbaugh87ë J. Rumbaugh. í Relations as Semantic Constructs in an Object-Oriented Language. Proc. of OOPSLA'87 1987. ëSabin et al.94ë D. Sabin et E.C. Freuder. í Contradicting Conventional Wisdom in Constraint Satisfaction. ECAI'94 ëSanella94ë M. Sanella. í Constraint Satisfaction and Debugging for Interactive User Interfaces.í Ph-D Dissertation n, pp.466-481, 1977.

. Ëschiex, ëSeidel81ë R. Seidel. í A new method for solving satisfaction problems í A New Method for Solving Hard Satisaeability Problems : reference manual, juillet 1995, Nogood Recording for Static and Dynamic Constraint Satisfaction Problems. International ConferenceonTools with Artiaecial Intelligence Proc. of the 7 th IJCAI, pp. 338í342. í Vancouver, Canada Proc. of AAAI'92, pp. 440í446. í ëSkelboe74ë S. Skelboe. í Computation of rational interval functions. BIT 87í95. ëSmolka et al.93ë G. Smolka, M. Hentz et J. Wí urtz. í Object-Oriented Constraint Programming in Oz. í Research Report n RR-93-16, 1974.

. Ëstallman, Forward reasoning and dependency-directed backtracking in a system for computer-aided circuit analysis CONSTRAINTS -A Language for Expressing Almost-Hierarchical Descriptions, 135í196. ëSteaek81aë M. Steaek. í Planning and Meta-Planning MOLGEN: Part 22. Artiaecial Intelligence 141í170. ëSteaek81bë M. Steaek. í Planning with Constraints MOLGEN: Part 11 1í39. ëSutherland63ë I. Sutherland. í Sketchpad : A Man-Machine Graphical Communication System. í Cambridge ëTayar95ë N. Tayar. í Gestions des versions pour la construction incr ementale et concourante de bases de connaissances, 1963.

. Ëtsang, í Solution synthesis in the constraints satisfaction problem.í Technical Report n CSM-142, ëTsang93ë E. Tsang. í Foundations of Constraint Satisfaction. í Academic Press Computation in Cognitive Science, 1990.

. Ëverfaillie, í Dynamic Backtracking for Dynamic Constraint Satisfaction Problems. Workshop on Constraint Satisfaction Issues RaisedbyPractical Applications at ECAI'94. í Amsterdam, Pays-Bas, 1994.

. Ëverfaillie, í Solution Reuse in Dynamic Constraint Satisfaction Problems satisfaction de contraintes : production et r evision de solution par modiaecations locales, Proc. of AAAI'94 Thirteenth International ConferenceA vignon'93, pp.277-286, 1993.

. Ëwadge, Ashcroft. í Lucid, the Dataaeow Programming Language, 1985.

. Ëwallace, í Conjunctive width heuristics for maximal constraint satisfaction Eleventh National ConferenceonArtiaecial Intelligence í WhyA C-3 is almost always better than AC-4 for establishing arcconsistency in CSPs. 13th International ConferenceonArtiaecial Intelligence, pp. 239í245. í Chamb ery,France, 1993. ëWaltz72ë D. Waltz. í Generating semantic description from drawing of scenes with shadows.í A.I. Memo n 271, ëWilk91ë M. R. Wilk. í Equate: An Object-Oriented Constraint Solver. ACM SIGPLAN NO- TICES 286í298. í Proceedings of OOPSLA'91, 1972.

J. Willamowski, Mod elisation de t^ aches pour la r esolution de probl emes en coop eration syst eme-utilisateur. í Grenoble, France, Th ese d'informatique, ëWinston et al.87ë M. E. Winston, R. Chaaen et D. Herrmann. í A taxonomyo fP art-Whole Relations, pp.417-444, 1987.

M. Yokoo, í Weak-commitment search for solving constraint satisfaction problems, Proc. of AAAI'94, pp.313-318, 1994.
DOI : 10.1007/3-540-60299-2_6