]. A. Ale33 and . Alexandrov, A theorem on convex polyhedra, Trudy Mat. Int. Steklov, Sect. Math, vol.4, issue.87, 1933.

]. F. Avn&boi87, J. D. Avnaim, and . Boissonnat, Simultaneous containment of several polygons, Proc. 3rd Annu. ACM Sympos, pp.242-250, 1987.

]. I. Bar81 and . Barany, A vector-sum theorem and its application to improving flow shop guarantees, Mathematics of operation research, vol.6, 1981.

]. J. Boi&yvi95, &. M. Boissonnat, and . Yvinec, Géométrie algorithmique, Ediscience International, collection informatique, 1995.

]. E. Bol69 and . Bolker, A class of convex bodies, Trans. Amer. Math. Soc, vol.145, pp.323-346, 1969.

]. T. Bon&fen34, &. W. Bonnesen, and . Fenchel, Therorie der konvexen Körper, 1934.

J. Bourgain, J. Lindenstrauss, and V. Milman, Approximation of zonoids by zonotopes, Acta Mathematica, vol.162, issue.0, pp.73-145, 1989.
DOI : 10.1007/BF02392835

]. R. Buc43 and . Buck, Partition of space, Amer. Math. Monthly, vol.50, pp.541-544, 1943.

]. H. Cox62 and . Coxeter, The classification of zonohedra by means of projective diagrams, Journ. de Math, issue.2, 1962.

]. H. Cra79 and . Crapo, Mathematical questions concerning zonohedral space-filling, Structural Topology, issue.2, pp.53-69, 1979.

O. Daoudi, B. Lacolle, N. Szafran, and &. P. Valentin, Zonoidal Surfaces", Curves and surfaces for Geometric Design, 1994.

]. R. Eva&87, G. Evans, &. V. Koppelman, and . Tarjan, Shaping geometric objects by cumulative transaltion sweeps, IBM J. res. develop, vol.31, p.3, 1987.

]. D. Gal54 and . Gale, Irreductible convex sets, Proc. Intern. Congr. Math., Amsterdam, pp.217-218, 1954.

]. D. Gir86 and . Girard, Convexe résidu maximal et gestion de mélanges sur une plateforme

]. D. Gir&val89, &. P. Girard, and . Valentin, Zonotopes and mixtures management, International series of Numerical Mathematics, vol.87, 1989.

]. P. Gri&stu91, B. Gritzmann, and . Sturmfels, Minkowski Addition of polytopes: Computational complexity and applications to Gröbner bases, 1990.

]. P. Gri&stu93, B. Gritzmann, and . Sturmfels, Minkowski Addition of polytopes: Computational complexity and applications to Gröbner bases, SIAM J. Disc. Math, vol.6, issue.2, pp.246-269, 1993.

]. H. Gro78 and . Groemer, On multiple space subdivisions by zonotpes, Monatsh. Math, vol.86, pp.3-185, 1978.

]. B. Grü67 and . Grünbaum, Convex Polytopes, Pure and applied Math, vol.16, 1967.

]. L. Gui&sei87, R. Guibas, and . Seidel, Computing Convolutions by Reciprocal Search, Discrete & Comput. Geometry, vol.2, pp.175-193, 1987.

]. A. Han80 and . Hanegraaf, Twenty questions on zonogons, zonohedra and zonoids, Structural Topology, pp.4-31, 1980.

]. W. Hil81 and . Hildenbrand, Short-Run Production based on Microdata, Econometrica, vol.49, pp.5-1095, 1981.

]. W. Hil&ney82, A. Hildenbrand, and . Neyman, Integrals of production sets with restricted substitutions, J. Math. Economics, issue.9, pp.71-82, 1982.

]. K. Iwa91 and . Iwano, Strong Minkowski decomposition is NP-complete, IEECE Translations, vol.74, issue.4, pp.653-659, 1991.

]. M. Kal82 and . Kallay, Indecomposable polytopes, Israel Journal of Mathematics, vol.41, issue.3, pp.235-243, 1982.

]. A. Kau91, M. A. Kaul, V. O-'connor, and . Srinivarsan, Computing Minkowski sums of regular polygons, Proc. 3rd Canada Conf, pp.74-77, 1991.

]. B. Lac&sza96, &. N. Lacolle, and . Szafran, Complexité des sections planes zonoèdres, 1996.

]. B. Lac&val93, P. Lacolle, and . Valentin, Modélisation géométrique de la faisabilité de plusieurs mélanges, p.3, 1993.

N. [. Lacolle, &. P. Szafran, and . Valentin, Les mélanges binaires : modélisation géométrique et algorithmes, Rapport de recherche IMAG - RR 841 -M, 1991.

]. Lau87 and . Laumond, Obstacle growing in a non-polygonal world, Information processing letters, pp.25-41, 1987.

]. W. Mey74 and . Meyer, Indecomposables polytopes, Trans. American Math. Soc, vol.190, pp.77-86, 1974.

]. P. Mcm&she68, G. C. Mcmullen, and . Shephard, Diagrams for centrally symmetric polytopes, Mathematika, vol.15, pp.123-138, 1968.

]. P. Mcm&she71, G. C. Mcmullen, and . Shephard, Convex polytopes and upper bound conjecture, Lecture Notes, vol.3

]. P. Mcm70 and . Mcmullen, Polytopes with centrally symmetric faces, Israel J. Math, vol.8, pp.194-196, 1970.

P. Mcmullen, On zonotopes, Transactions of the American Mathematical Society, vol.159, 1971.
DOI : 10.1090/S0002-9947-1971-0279689-2

P. Mcmullen, Representations of polytopes and polyhedral sets, Geometriae Dedicata, vol.2, issue.1, pp.83-99, 1973.
DOI : 10.1007/BF00149284

P. Mcmullen, Indecomposable convex polytopes, Israel Journal of Mathematics, vol.10, issue.3, pp.321-323, 1987.
DOI : 10.1007/BF02771695

]. P. Mcm&sch74, R. Mcmullen, &. C. Schneider, and . Shephard, Monotypic polytopes and their intersection properties, Geometriae Dedicata, vol.3, pp.99-129, 1974.

]. D. Mou&sil91, &. R. Mount, and . Silverman, Combinatorial and computational aspects of Minkowski decompositions, pp.107-124, 1991.

]. G. Pan88 and . Panina, Representation of a n-dimensional body in the form of a sum of (n-1)-dimensional bodies, Soviet Journal of Contemporary Mathematical Analysis, vol.23, issue.4, pp.91-103, 1988.

]. G. Sal71 and . Sallee, Minkowski decomposition of convex sets, Israel Journal of Math, vol.12, 1972.

]. G. She63 and . Shephard, Decomposable convex polyhedra, pp.89-95, 1963.

]. G. She67 and . Shephard, Polytopes with centrally symmetric faces" Can, J. Math, vol.19, pp.1206-1213, 1967.

]. R. Sil73 and . Silverman, Decomposition of plane convex sets, Part I, Pacific Journal of Mathematics, vol.47, issue.2, pp.521-530, 1973.

]. R. Sil&ste88, A. Silverman, and . Stein, Algorithms for the decomposition of convex polygon, 1988.

]. K. Sla86 and . Slaoui, Application des techniques mathématiques à la gestion des mélanges : histosplines et optimisation, Thèse INPG GrenobleSmi87] Z. SmilanskyDecomposability of Polytopes and Polyhedra, pp.24-29, 1986.

]. N. Sza91 and . Szafran, Zonoèdres : de la géométrie algorithmique à la théorie de la séparation, Thèse de l'Université Joseph Fourier, 1991.

]. P. Val86 and . Valentin, Zonotopes and Chromatography : a geometric appproach of seperation production, nd Congress in Preparative Chromatography HPLC, 1986.

]. F. Vale64 and . Valentine, Convex sets

]. W. Wei74 and . Weil, Decomposition of convex bodies, Mathematika, vol.21, pp.19-25, 1974.

]. N. Xuo92 and . Xuong, Mathématiques discrètes et informatique, Collection Logique Mathématiques et Informatique (LMI) Ed. Masson

[. Zaslavsky, Facing up to arrangements: face-count formulas for partitions of space by hyperplanes, Memoirs of the american mathematical society, p.154, 1975.
DOI : 10.1090/memo/0154

M. Günter and . Ziegler, Lectures on Polytopes, Gradute Texts in Mathematics, vol.152