C. A. Briot and J. C. Bouquet, Propri et es des fonctions d eaenies par des equations diae erentielles, pp.133-198

F. Boulier, D. Lazard, F. Ollivier, and M. Petitot, Representation for the radical of a aenitely generated diaeerential ideal, p.95, 1995.

F. Boulier, Etude et Implantation de Quelques Algorithmes en Alg ebre Diae erentielle, 1994.

F. Boulier, Some improvements of a lemma of Rosenfeld, 1996.

F. Boulier, Computing representations for radicals of aenitely generated diaeerential ideals, 1997.

D. Bini and V. Pan, Polynomial and Matrix Computations, volume Volume I -Fundamental Algorithm of Progress in Theoretical Computer Science, 1994.

T. Becker and V. Weispfenning, Grí obner Bases -A Computational Approach to Commutative Algebra, 1993.

J. Cano, An extension of the Newton-Puiseux polygon construction to give solutions of pfaaean forms, Ann. Inst. Fourier, grenoble, issue.43311, pp.125-142, 1993.

J. Cano, On the series deaened by diaeerential equations, with an extension of the Puiseux polygon construction to these equations, International Journal of Analysis and its Application, 1993.

D. Cox, J. Little, and D. Shea, Ideals, Varieties, and Algorithms, 1992.

R. Cohn, On the analog for diaeerential eqaution of the Hilbert-Netto theorem 47:268í270, 1941. ëCoh76ë R. Cohn. The general solution of a aerst order diaeerential polynomial, Proceedings of the American Mathematical Society ëDar75ë L. Dara. Singularit es g en eriques des equations diae erentielles multiformes, 1975.

S. Diop, Th eorie de l' elimination et principe du mod ele interne en automatique On the functions deaened by diaeerential equations with an extension of the Puiseux polygon construction to these equations, American Journal of mathematics, 1889.

P. Gianni, B. Trager, and G. Zacharias, Gr??bner bases and primary decomposition of polynomial ideals, Journal of Symbolic Computation, vol.6, issue.2-3, pp.149-167, 1988.
DOI : 10.1016/S0747-7171(88)80040-3

M. Hamburger, Ueber die sigulí aren lí osungen der algebraischen differenzialgleichnungen erster ordnung Journal fí ur die reine und angewandte Mathematik, 112:205í246, 1893. ëHil43ë A.P. Hillman. A note on diaeerential polynomials On the diaeerential algebra of a single diaeerential polynomial, Bulletin of the American Mathematical Society Annals of mathematics American Journal of Mathematics, vol.49, pp.711-712, 1943.

E. Hubert and E. Hubert, The general solution of an ordinary diaeerential equation Detecting degenerate behaviors in aerst order algebraic diaeerential equations, ISSAC'96, 1996.

E. Hubert, S. Izumiya, and J. Yu, Essential components of an algebraic diaeerential equation and the computation of their diaeerential bases How to deaene singular solutions, Kodai Mathematical Journal, vol.16, pp.227-234, 1993.

E. R. Kolchin, H. Kolchin, and . Levi, Topology, 3:309í318, 1965 Diaeerential Algebra and Algebraic Groups, volume 54 of Pure and Applied Mathematics Academic Press, 1973. ëKRHMë A. Kandri-Rody, H.Ma^ arouf, and M.Ssaaeni. Triviality and dimension of a system of algebraic diaeerential equations The Low power theorem for partial diaeerential equations, Journal of Symbolic Computations. ëLev42ë H. Levi. On the structure of diaeerential polynomials and on their theory of ideals. Transaction of the, pp.532-568113, 1942.

H. W. Raudenbush, Differential Fields and Ideals of Differential Forms, The Annals of Mathematics, vol.34, issue.3, pp.509-517, 1933.
DOI : 10.2307/1968174

J. F. Ritt, Manifolds of functions deaened by systems of algebraic diaeerential equations. Transaction of the, pp.569-598, 1930.

J. F. Ritt, On the singular solutions of algebraic diaeerential equations Analytical theory of singular solutions of partial diaeerential equations of the aerst order, Annals of Mathematics Annals of Mathematics, vol.37733, issue.46611, pp.552-617120, 1936.

J. F. Ritt and J. F. Ritt, On the manifold of partial diaeerential polynomial equations Diaeerential Algebra An elimination theory for diaeerential algebra, Annals of Mathematics, vol.46611, issue.3322, pp.102-112394, 1945.