.. Architectures-d-'un-r-eseau-de-neurones, 26 2.4.1 Les r eseaux proactifs, p.28

. Caract-eristiques-des-r-eseaux-de-neurones-mat-eriels........., 38 2.8.2.1 Sp eciaecations et crit eres de performance

A. Etat-de-l-'art-de-tol-erance-aux-fautes-des, 64 3.7.1 Tol erance durant la phase de rappel, Tol erance aux fautes survenant sur les stimuli d'entr ee 65 3.7.1.2 Tol erance aux fautes survenant sur les poids synaptiques 65

.. Tol-erance-durant-la-phase-d-'apprentissage, 66 3.7.2.2 Apprentissage avec restriction de poids 66 3.7.2.3 Apprentissage avec injection de fautes artiaecielles, p.69

.. Choix-des-r-eseaux-de-neurones-a-tester, 81 4.6.2 R eseaux d' evaluations des fonctions bool eennes, p.85

R. Esultats-obtenus-pour-le-r-eseau and E. , 95 5.3.1 R esultats obtenus pour la perturbation des stimuli d'entr ee . . 95 5.3.2 R esultats obtenus pour la perturbation des poids, p.96

R. Esultats-obtenus-pour-le-r-eseau and E. , 106 6.4.1 Cas du L-Neuro 1, p.106

T. Cas-du, 110 6.4.3.1 Injection de fautes dans la zone des donn ees, p.111

A. Implantations-digitales and .. , 127 A.1.1 Architectures en tranches, p.131

.. Mod-ele-g-en-eral-d-'un-neurone, 27 2.3 R eseau proactif monocouche perceptronn 28 2.4 R eseau proactif compl etement connect e avec une seule couche cach ee 29 2.5 R eseau r ecurrent avec neurones cach es, p.33

.. Buaeers-de-donn-ees, 162 E.4 G en eration des signaux de contr^ ole 1è22, p.165

R. Interconnexions-des, 173 F.7 G en eration des signaux de contr^ ole 1è33 174 F.8 G en eration des signaux de contr^ ole 2è33, p.178

M. F. Ëaugusteijn93ë-augusteijn and T. L. Et-skufca, í Identiaecation of Human Faces Through Texture-Based Feature Recognition and Neural Network Technology, Proc. of the IEEE ICNN'93 ëBarber95ë Barber J.C... í Neural Nets in Finance : An Overview. Risks and Rewards, the Newsletter of the Investment, pp.392-398, 1993.

C. Barillot and . Et-calvel-ph, Review of commercial spacecraft anomalies and single-event-effect occurrences, IEEE Transactions on Nuclear Science, vol.43, issue.2, pp.453-460, 1996.
DOI : 10.1109/23.490914

Y. Bartal, J. Lin, and R. E. Et-uhring, Nuclear power plants transient diagnostics using LVQ or some networks don't know that they don't know, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94), pp.3744-3749, 1994.
DOI : 10.1109/ICNN.1994.374805

M. D. Bedworth and D. Et-lowe, í Fault Tolerance in Multi- Layer Perceptrons : a Preliminary Study. RSRE : Pattern Recognition and Machine Intelligence Division. í Juil, 1988.

J. Beichter, N. Bruels, E. Sicheneder, U. Ramacher, and H. Et-klar, Design of a general-purpose neural signal processor, Neurocomputing, vol.5, issue.1, pp.17-23, 1993.
DOI : 10.1016/0925-2312(93)90020-4

D. Bessot, D. Binder, E. C. Smith, and A. B. Et-holman, í Radiation Hardening Technics Facing Total Dose, SEU and SEL in the Space Environment.íRapport technique n B465, Oxon, í Satellites Anomalies from Galactic Cosmics Rays, pp.2675-2680, 1975.

L. N. Binh and H. C. Chong, A neural-network contention controller for packet switching networks, IEEE Transactions on Neural Networks, vol.6, issue.6, pp.1402-1410, 1995.
DOI : 10.1109/72.471367

S. Ëbohn94ë-bohn and E. Et-thornton, í Environment Reconstruction for Robot Navigation, Proc. of the SPIE'94 ëBolt91ë Bolt G... í Investigating Fault ToleranceinArtiaecial Neural Networks. í Rapport technique n YCS 154, 1991.

B. E. Boser, E. Sackinger, J. Bromely, Y. Lecun, and L. D. Et-jackel, Hardware requirements for neural network pattern classifiers: a case study and implementation, IEEE Micro, vol.12, issue.1, pp.32-40, 1992.
DOI : 10.1109/40.124378

J. Bourrieau, í Irradiations í Doses Cumul ees í Ions Lourds, p.597, 1988.

J. Bourrieau, í L'environnement Spatial : Flux, Dose, Blindage, Eaeets des Ions Lourds

I. , R. Brown, R. Kharouf, P. Feng, X. Piessens et al., í Development of Feed-Forward Network Models to Predict Gas Consumption, Proc. of the IEEE ICNN'94, pp.3693-3696, 1991.

T. R. Damarla and P. K. Et-bhagat, Fault tolerance of neural networks, Proceedings. IEEE Energy and Information Technologies in the Southeast', pp.328-331, 1989.
DOI : 10.1109/SECON.1989.132388

L. E. Ëda-silva95ë-dasilva, G. L. Torres, E. C. Saturno, A. P. Dasilva, and X. D. Et-do, í Simulation of a Neural Net Controller for Motor Drives, Proc. of the IEEE ICNN'95, pp.205-209, 1995.

E. Davalo and P. Et-naim, í Des R eseaux de Neurones, 1990.

T. Denoeux and P. Et-rizand, Analysis of radar images for rainfall forecasting using neural networks, Neural Computing and Applications, pp.50-61, 1995.
DOI : 10.1007/BF01414176

P. Ëder-smagt95ë-van-der-smagt, F. C. Groen, and B. J. Et-krose, í A Monocular Robot Arm Can Be Neurally Positioned, Proc. of the International Conference on IntelligenceAutonomous Systems IAS'955, pp.123-130, 1995.

J. Ëder-spiegel94ë-van-der-spiegel, C. Donham, R. Etienne-cummings, S. Fernando, P. Mueller et al., Large scale analog neural computer with programmable architecture and programmable time constants for temporal pattern analysis, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94), pp.1830-1835, 1994.
DOI : 10.1109/ICNN.1994.374436

O. Devel, S. Wangsuya, and D. Et-coomans, í On Thai Character Recognition, Proc. of the IEEE ICNN'95, pp.2095-2098, 1995.

T. Ëfalas94ë-falas, A. Charitou, and C. Et-charalambous, í The Application of Artiaecial Neural Networks in the Prediction of Earnings, Proc. of the IEEE ICNN'94, 1994.

R. Feltham and G. Et-xing, í Pyramidal Neural Network for Mammogram Tumour Pattern Recognition, Proc. of the IEEE ICNN'94, pp.3546-3551, 1994.

M. J. Flynn, Very high-speed computing systems, Proceedings of the IEEE, 1966.
DOI : 10.1109/PROC.1966.5273

H. C. Fu, W. L. Tung, and L. J. Et-shen, í A Neural Network for the Automatic Diagnosis of the Telephone Switching Systems, Proc. of the IEEE ICNN'95, pp. 482í487. í Perth, Australie, 1995. ëGagn e90ë Gagn e G.. et Savaria Y... í Optimisation of Resistively Hardned Latches, pp.7-14, 1990.

S. C. Garth, í A Chipset for High-Speed Simulation of Neural Networks, Proc. of the IEEE ICNN'87, pp.443-452, 1987.

M. Glesner and W. Et-pochmuller, í Neurocomputers : An Overview of Neural Networks in VLSI, 1994.

A. Goh, í A Backpropagation Approach for Predicting Seismic Liquefaction Potentiel in Soils, Proc. of the IEEE ICNN'94, pp.3322-3325, 1994.

M. B. Gordon and D. Et-berchier, í Minimerror : A perceptron learning rule that aends the optimal weights, Proc. of the ESANN'93, 1993.

H. P. Graf, E. Sackinger, and L. D. Et-jackel, Recent developments of electronic neural nets in North America, 19í31. ëGreen95ë Green H.G.. et Pearson M.A... í Artiaecial Intelligence in Financial Markets. Proc. of the ICNN'95, pp.839-844, 1993.
DOI : 10.1007/BF01581956

M. S. Ëgussenhoven93ë-gussenhoven and E. G. Et-mullen, Space Radiation Effects Program: an overview, IEEE Transactions on Nuclear Science, vol.40, issue.2, pp.221-227, 1993.
DOI : 10.1109/23.212345

I. W. Habib, í Neurocomputing in High-Speed Networks, IEEE Communications Magazine, vol.33, issue.10, pp.38-40, 1995.

H. Ëhackbarth89ë-hackbarth and A. Et-krause, í Scaly Artiaecial Neural Network for Speaker-Independent Recognition of Isolated Words, Proc. of the IEEE ICASSP'89, pp.21-24, 1989.

T. Haitao and O. Et-simula, í Neural Aadptation for Optimal Traaec Shaping in Telephone Systems, Proc. of the IEEE ICNN'95, pp.1561-1565, 1995.

A. Hamilton, A. F. Murray, D. J. Baxter, S. Churcher, H. M. Reekie et al., Integrated pulse stream neural networks: results, issues, and pointers, IEEE Transactions on Neural Networks, vol.3, issue.3, pp.385-393, 1992.
DOI : 10.1109/72.129411

D. Hammerstrom and E. Et-means, í System Design for a Second Generation Neurocomputer, Proc. of the IJCNN'90, pp.80-83, 1990.

D. Hammerstrom, A VLSI architecture for high-performance, low-cost, on-chip learning, 1990 IJCNN International Joint Conference on Neural Networks, 1990.
DOI : 10.1109/IJCNN.1990.137621

P. Hancock, í Data Representation in Neural Nets : an Empirical Study, 1988.

M. Ëhayakawa89ë-hayakawa, í Satellite Observation of Low-Altitude VLF Radio Noises and their Association with Thunderstorms, Journal of Geomagnetics, vol.43, p.573, 1989.

S. Ëhaykin94ë-haykin, J. He, L. Liu, and G. Et-palm, í Neural Networks : a Comprehensive Foundation, í Speaker Identiaecation Using LVQ-SLP Networks. Proc. of the IEEE ICNN'95, pp.2052-2055, 1994.

A. J. Healy, A neural network approach to failure diagnostics for underwater vehicles, Proceedings of the 1992 Symposium on Autonomous Underwater Vehicle Technology, pp.131-134, 1992.
DOI : 10.1109/AUV.1992.225183

J. N. Heemskerk, í Overview of Neural Hardware, 1995.

A. Hiramatsu, í ATM Call Admission Control Using a Neural Network Trained with a Virtual Output Buaeer Method, Proc. of the IEEE ICNN'94, pp.3611-3616, 1994.

M. Ëholler89ë-holler, S. Tam, H. Castro, and R. Et-benson, í An Electrically Trainable Artiaecial Neural Network ETANNN with 10240 Floating Gate Synapses, Proc of the IJCNN'89, pp.191-196, 1989.

M. Ëholler91ë-holler, í VLSI Implementation of Learning and Memory Systems : A Review Advances in Neural Information Processing Systems, 1991.

L. Holmstrom and P. Et-koistinen, Using additive noise in back-propagation training, IEEE Transactions on Neural Networks, vol.3, issue.1, pp.24-38, 1992.
DOI : 10.1109/72.105415

A. Ëholmes85ë-holmes-siedle, Calibration and Flight Testing of a Low-Field pMOS Dosimeter, IEEE Transactions on Nuclear Science, vol.32, issue.6, pp.4425-4429
DOI : 10.1109/TNS.1985.4334136

K. Ichiyanagi, Y. Goto, K. Mizuno, Y. Yokomizu, and T. Et-matsumara, í An Artiaecial Neural Network to Predict River Flow Rate into a Dam for a Hydro-Power Plant, Proc. of the IEEE ICNN'95, 1992.

H. Ito, T. Hagiwara, and T. Et-furuya, Intelligent mobile robot, Proceedings of ICNN'95, International Conference on Neural Networks, 1995.
DOI : 10.1109/ICNN.1995.487838

H. Ëiwata95ë-iwata, T. Agui, and H. Et-nagahashi, í Boundary Detection of Color Images Using Neural Networks, Proc. of the IEEE ICNN'95, pp.1426-1431, 1995.

D. Jacquet and G. Et-saucier, Design of a digital neural chip: application to optical character recognition by neural network, Proceedings of European Design and Test Conference EDAC-ETC-EUROASIC, pp.256-260, 1994.
DOI : 10.1109/EDTC.1994.326868

B. Janusz and M. Et-riedmiller, Self-learning neural control of a mobile robot, Proceedings of ICNN'95, International Conference on Neural Networks, 1995.
DOI : 10.1109/ICNN.1995.487730

K. C. Jung, S. K. Kim, and K. J. Kim, í Recognition- Based Segmentation of on-Line Cursive Korean Character, Proc. of the IEEE ICNN'95, pp.3101-3106, 1995.

M. Ëkamijo93ë-kamijo, í Classifying Fingerprint Images Using Neural Networks : Deriving the Classiaecation State, Proc. of the IEEE ICNN'93, 1993.

B. Kerezsi and I. Howard, Vibration fault detection of large turbogenerators using neural networks, Proceedings of ICNN'95, International Conference on Neural Networks, pp.121-126, 1995.
DOI : 10.1109/ICNN.1995.488078

P. Ëkerlirzin93ë-kerlirzin and F. Vallet, Robustness in Multilayer Perceptrons, Neural Computation, vol.5, issue.3, pp.473-482, 1993.
DOI : 10.1088/0305-4470/22/12/022

S. Ëkeyvan93ë-keyvan, A. Durg, and L. C. Et-rabelo, í Evaluation of the Performance of Various Artiaecial Neural Networks to the Signal Faults Diagnosis in Nuclear Reactor Systems, Proc. of the IEEE ICNN'93, pp.1719-1723, 1993.

M. Ëkhalid95ë-khalid, S. Omatu, R. .. Et-yusof, L. J. Kangas, S. Hashem et al., í Temperature Regulation with Neural Networks and Alternative Control Schemes, í A Novel Approach to Modelling and Diagnosing the Cardiovascular System. Proc. of the World Conference of Neural Networks WCNN'955, pp.767-770, 1995.

D. Kilpatrick and R. Et-williams, í Unsupervised Classiaecation of Antarctic Satellite Imagery Using Kohonen's Selforganizing Feature Map, Proc. of the IEEE ICNN'95, pp.32-36, 1995.

Y. Kimura, A new scheme which incrementally generates neural networks for distorted handprinted Kanji pattern recognition, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94), pp.3852-3855, 1989.
DOI : 10.1109/ICNN.1994.374825

R. Koga, Single-event effect ground test issues, IEEE Transactions on Nuclear Science, vol.43, issue.2, pp.661-670, 1996.
DOI : 10.1109/23.490909

T. Ëkohonen88ë-kohonen, í Self-Organization and Association Memory .íHeidelberg, 1988.

T. Ëkohonen90ë-kohonen, í Unsupervised Learning Algorithms Neural Networks : Biological Computers or Electronic Brains, pp.29-36, 1990.

W. A. Kolasinski, R. Koga, J. B. Blake, and S. E. Diehl, Soft Error Susceptibility of CMOS RAMS: Dependence upon Power Supply Voltage, IEEE Transactions on Nuclear Science, vol.28, issue.6, pp.4013-4016
DOI : 10.1109/TNS.1981.4335665

H. Kong and L. Et-guan, í Detection and Removal of Impulse Noise by a Neural Network Guided Aadptive Median Filter, Proc. of the IEEE ICNN'95, pp.845-849, 1995.

J. H. Kong and G. P. Et-martin, A backpropagation neural network for sales forecasting, Proceedings of ICNN'95, International Conference on Neural Networks, pp.1007-1011, 1995.
DOI : 10.1109/ICNN.1995.487558

D. Ëkuhn95ë-kuhn, J. L. Buessler, and J. P. Et-urban, í Neural Approach to Visual Servoing for Robot Hand Eye Coordination, Proc. of the IEEE ICNN'95, pp.2364-2369, 1995.

H. T. Kung and C. E. Et-leiserson, í Systolic Arrays for VLSI. Introduction to VLSI Systems.íAddison-Wesly, 1980.

E. Kwiatkowska and I. S. Et-torsun, í Hybrid Neural Network System for Cloud Classiaecation from Satellite Images, Proc. of the IEEE ICNN'95, 1995.

P. K. Lala, í Fault Tolerant and Fault Testable Hardware Design, 1985.

D. X. Le, G. R. Thoma, and H. Et-wechsler, í Document Classiaecation Using Connexionist Models, Proc. of the IEEE ICNN'94, pp.3009-3014, 1994.

B. Lerner, H. Guterman, I. Dinstein, and Y. Et-romen, í Feature Selection and Chromosome Classiaecation Using a Multilayer Perceptron Neural Network, Proc. of the IEEE ICNN'94, pp.3540-3545, 1994.

F. L. Lewis, A. Yesildirek, and K. Et-liu, Multilayer neural-net robot controller with guaranteed tracking performance, IEEE Transactions on Neural Networks, vol.7, issue.2, pp.388-399, 1996.
DOI : 10.1109/72.485674

Q. Li, C. M. Lim, A. N. Poo, and M. Et-ang, í Neuro- Based AadptiveInternal Model Control for Robot Manipulators, Proc. of the IEEE ICNN'95, pp.2353-2357, 1995.

A. Ëlinde95ë-linde, M. Taveniku, and B. Et-svensson, í Using Neural Networks for AirèFuel Estimation in Two-Stroke Combustion Engines, Proc. of the International Conference on Engineering Applications of Neural Networks EANN'955, pp.327-334, 1995.

C. S. Lindsey and T. Et-lindblad, í Review of Hardware Neural Networks : A User's Perspective, Proc. of the third Workshop on Neural Networks : From Biology to High Energy Physics. í Marciana, 1994.

C. S. Lindsey and T. Et-lindblad, í Survey of Neural Networks Hardware, Proc. of Applications and Science of Artiaecial Neural Networks Conference, pp. 1194í1205. í, 1995.

H. J. Liu and Y. Et-sun, í Blind Bilevel Image Restoration Using Hopaeeld Neural Networks, Proc. of the IEEE ICNN'93, pp.1656-1661, 1993.

Y. L. Lu, M. W. Mak, and W. C. Siu, í Application of a Fast Real Time Recurrent Learning Algorithm to Textto-Phoneme Conversion, Proc. of the IEEE ICNN'95, pp.2853-2857, 1995.

W. Lucking, M. Darnell, and E. Et-chesmore, í Acoustic Condition Monitoring of a Mechanical Gearbox Using Artiaecial Neural Networks, Proc. of the IEEE ICNN'94, pp.3307-3311, 1994.

M. Ëmac-dermott89ë, E. Dermott, and S. Et-katagiri, í Shift-Invariant, Multi- Category Phoneme Recognition Using Kohonen LVQ2, Proc. of the IEEE ICASSP'89, pp.81-84, 1989.

M. Ëmac-conigal94ë and M. Gonigal, í A New Technic for Survival Prediction in Trauma Care Using a Neural Network, Proc. of the IEEE ICNN'94, pp.3495-3498, 1994.

L. Malferrari, R. Serra, and G. Et-valastro, í An Application of Neural Networks to Oil Well Drilling, Proc. of the International Neural Network Conference INNC'900, pp.127-130, 1990.

E. G. Mallach, í Emulator Architecture. Computer,Ao^ ut, pp.24-32, 1975.

P. Masa, K. Hoen, and H. Et-wallinga, A high-speed analog neural processor, IEEE Micro, vol.14, issue.3, pp.40-50, 1994.
DOI : 10.1109/40.285223

K. Matsuoka and M. Et-kawamoto, A neural net for blind separation of nonstationary signal sources, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94), pp.221-227, 1994.
DOI : 10.1109/ICNN.1994.374166

K. Matsuoka, Noise injection into inputs in back-propagation learning, IEEE Transactions on Systems, Man, and Cybernetics, vol.22, issue.3, pp.436-440, 1992.
DOI : 10.1109/21.155944

N. Mauduit, M. Duranton, J. Gobert, and J. A. Et-sirat, í Building up Neuromimetic Machines with L-Neuro 1.0, Proc. of the IJCNN'91, pp.602-607, 1991.

N. Mauduit, M. Duranton, and J. Et-gobert, í L-Neuro 1.0 : A Piece of Hardware LEGO for Building Neural Networks Systems, 414í422. ëMay79ë May T.C.. et Woods M.H... í AlphaíParticle Induced Soft Errors in Dynamic Memories. IEEE Transactions on Electron Device, pp.2-9, 1979.

S. K. Mazumdar and C. C. Lim, í The Application of Neural Networks to Anti-Skid Break System Design, Proc. of the IEEE ICNN'95 ëMc Lean84ë Mc Lean F. B... í A Framework of Understanding RadiationíInduced Interface in SiO2 MOS Structures, pp.1651-1657, 1984.

R. W. Means and L. Et-lisenbee, Extensible linear floating point SIMD neurocomputer array processor, IJCNN-91-Seattle International Joint Conference on Neural Networks, pp.587-592, 1991.
DOI : 10.1109/IJCNN.1991.155243

X. Ëmini-ere96ë-mini-ere, J. L. Pin-con, and F. Et-lefeuvre, í A Neural Network Approach to the Classiaecation of Electron and Proton Whistler, Journal of Atmospheric and Terrestrial Physics, vol.58, pp.911-924, 1996.

X. Ëmini-ere94ë-mini-ere, í Approche R eseaux de Neurones pour la Classiaecation d'Emissions Structur ees de Type Siaeements, 1994.

A. Mirsepassi, B. Cathers, and H. B. Et-dharmappa, í Application of Artiaecial Neural Networks to the Real Time Opertaion of Water Treatment Plant, Proc. of the IEEE ICNN'95, pp.516-521, 1995.

U. Mitra and H. V. Et-poor, Neural network techniques for multi-user demodulation, IEEE International Conference on Neural Networks, 1993.
DOI : 10.1109/ICNN.1993.298785

N. Ëmorgan92ë-morgan, J. Beck, P. Kohn, J. Bilmes, E. Allman et al., í The Ring Array Processor : A Multiprocessing Peripheral for Connectionest Applications, 248í 259. ëMotorola91ë DSP96002 IEEE Floating-Point Dual-Port Processor User's Manual, 1991.

U. A. Muller, A. Gunzinger, and W. Et-guggenbuhl, Fast neural net simulation with a DSP processor array, IEEE Transactions on Neural Networks, vol.6, issue.1, pp.203-213, 1995.
DOI : 10.1109/72.363436

A. F. Murray, D. Corso, D. Et-tarassenko, and L. , Pulse-stream VLSI neural networks mixing analog and digital techniques, Pulse Stream VLSI Neural Networks Mixing Analog and Digital Techniques, pp.193-204, 1991.
DOI : 10.1109/72.80329

A. F. Murray, S. Churcher, A. Hamilton, A. J. Holmes, G. B. Jackson et al., Pulse stream VLSI neural networks, Pulse Stream VLSI Neural Networks, pp.29-39, 1994.
DOI : 10.1109/40.285222

A. F. Murray and P. J. Edwards, Enhanced MLP performance and fault tolerance resulting from synaptic weight noise during training, IEEE Transactions on Neural Networks, vol.5, issue.5, pp.792-802, 1994.
DOI : 10.1109/72.317730

N. A. Murshed, F. Bortolozzi, and R. Et-sabourin, í Oae- Line Signature Veriaecation Using Fuzzy Artmap Neural Network The Intelligent Arc Furnance Controller, Proc. of the IEEE ICNN'95 ëN. A. Corp.ë La Soci et e Neural Applications Corporation, 1995.

R. Nekovei and Y. Et-sun, í Back-Propagation Network and its Conaeguration for Blood Vessel Detection in Angiograms

T. Nogami, Y. Yokoi, H. Ichiba, and Y. Et-atsumi, í Gas Discrimination Method for Detection Transformer Faults by Neural Network, Proc. of the IEEE ICNN'94, pp.3800-3805, 1994.

E. Nordstrom, J. Carlstrom, O. Gallmo, and L. Et-asplund, Neural networks for adaptive traffic control in ATM networks, í Neural Networks for Adaptive Traaec Control in ATM Networks, pp.43-49, 1995.
DOI : 10.1109/35.466218

E. Ënormand96ë-normand, í Single-Event Eaeects in Avionics, 461í474. ëNtl 95ë La Soci et e Neural Technology Limited, Neural Computing in Finance and Insurance, 1995.

Y. Ogawara, Feedback-error-learning neural network for the automatic maneuvering system of a ship, Proceedings of ICNN'95, International Conference on Neural Networks, pp.225-230, 1995.
DOI : 10.1109/ICNN.1995.488099

F. Ëpanetsos93ë-panetsos, A. Garcia, J. M. Et-zaldival, S. Park, J. .. Et-yang et al., í Using Neural Networks in the Control of Chemical Reactors. Proc í A hierarchical Neural Network approach to intelligent traaec Control, Proc. of the IEEE ICNN'94 Applications of Neural Networks in High-Speed Communications Networks. IEEE Communications Magazine Tarits P.. et Villain J.P... í High-Frequency Seismo-Electromagnetic Eaeetcts. Phys. Earth Plan. Int, pp.65-83, 1993.

C. R. Ëparten90ë-parten, R. M. Rap, and C. Et-thomas, í Neurocontrol Applied to Telerobotics for the Space Shuttle, Proc. of the International Neural Network Conference INNC'900, pp.229-236, 1990.

D. A. Patterson, Reduced instruction set computers, Communications of the ACM, vol.28, issue.1, pp.8-21, 1985.
DOI : 10.1145/2465.214917

J. Peter, T. Muller, and R. Et-freyer, Optimized constraint satisfaction neural network for medical image segmentation, Proceedings of ICNN'95, International Conference on Neural Networks, pp.2592-2595, 1995.
DOI : 10.1109/ICNN.1995.487817

E. L. Petersen, P. Shapiro, J. H. Adams, and E. A. Et-burke, Calculation of Cosmic-Ray Induced Soft Upsets and Scaling in VLSI Devices, IEEE Transactions on Nuclear Science, vol.29, issue.6, pp.2055-2063
DOI : 10.1109/TNS.1982.4336495

E. L. Petersen, Single event upsets in space, 21st Aerospace Sciences Meeting, 1983.
DOI : 10.2514/6.1983-164

E. L. Petersen, J. B. Langworthy, and S. E. Diehl, Suggested Single Event Upset Figure of Merit, IEEE Transactions on Nuclear Science, vol.30, issue.6, pp.4533-4539
DOI : 10.1109/TNS.1983.4333166

D. S. Phatak and I. Et-koren, Complete and partial fault tolerance of feedforward neural nets, IEEE Transactions on Neural Networks, vol.6, issue.2, pp.446-456, 1995.
DOI : 10.1109/72.363479

J. C. Pickel, í Single Event Upsets Mechanisms and Predictions . Tutorial Short Course, IEEE NSREC'83. í Juil, 1983.

R. Ëplamondon94ë-plamondon, Juin 1994. ëPottier94ë Pottier I.. et Burel G... í Identiaecation and Authentiaecation of Handwritten Signatures with a Connexionist Approach, Proc. of the IEEE ICNN'94, pp.2948-2951, 1994.

U. Ëramacher92ë-ramacher, SYNAPSE???A neurocomputer that synthesizes neural algorithms on a parallel systolic engine, Journal of Parallel and Distributed Computing, vol.14, issue.3, pp.306-318, 1992.
DOI : 10.1016/0743-7315(92)90070-4

N. M. Roehl and H. L. Et-teles-de-azevedo, í Fuzzy Artiaecial Neural Network Approach for Incipient Fault Detection and Isolation in Rotating Machines, Proc. of the IEEE ICNN'95, pp.538-542, 1995.

F. Ërosenblatt58ë-rosenblatt, The perceptron: A probabilistic model for information storage and organization in the brain., Psychological Review, vol.65, issue.6, pp.386-408, 1958.
DOI : 10.1037/h0042519

F. Ërosenblatt62ë-rosenblatt, í Principles of Neurodynamics.íWashington DC, Spartan Books, 1962.

H. Ëruan95ë-ruan and R. Et-sankar, í Applying Neural Network to Robust Keyword Spotting in Speech Recognition, Proc. of the IEEE ICNN'95, pp.2882-2886, 1995.

D. E. Ërumelhart86aë-rumelhart, G. E. Hinton, and R. J. Williams, Learning representations by back-propagating errors, Nature, vol.85, issue.6088, pp.533-536, 1986.
DOI : 10.1038/323533a0

D. E. Ërumelhart86bë-rumelhart, J. L. Mc-clelland, P. Et-group, and . Researchh, í Application of Wave- Nets to Modelling and Optimisation of a Multidimensional Chemical Process, Parallel DistributedP r ocessing : Foundations Proc. of the IEEE ICNN'95, pp.1724-1728, 1986.

Y. Sato, K. Shibata, M. Asai, M. Ohki, M. C. Et-sugie et al., í Development of a HighíPerformance General Purpose Neurocomputer Composed of 512 Digital Neurons, Proc. of the IJCNN'93 Artiaecial Neural Networks. Proc. of the IJCNN'90, pp.703-708, 1990.

O. N. Serebryakova, S. V. Bilichenko, V. M. Chmyrev, M. Parot, J. L. Rauch et al., Electromagnetic ELF radiation from earthquake regions as observed by low-altitude satellites, Geophysical Research Letters, vol.87, issue.2, pp.91-94, 1992.
DOI : 10.1029/91GL02775

R. Setiono and G. Lu, í Image Compression Using a Feed- Forward Neural Network, Proc. of the IEEE ICNN'94, pp.4176-4179, 1994.

D. L. Shaeaeer, J. R. Kimbrough, S. M. Denton, J. L. Kashmitter, J. W. Wilburn et al., í High Energy Proton SEU Test Results for the Commercially Available MIPS R3000 Microprocessors and R3010 Floating Point Unit, IEEE Transactions on Nuclear Science, vol.38, issue.6, pp.1421-1428, 1991.

Z. Shen, M. Clarke, R. Jones, and T. Et-alberti, A new neural network structure for detection of coronary heart disease, Neural Computing and Applications, pp.172-178, 1995.
DOI : 10.1007/BF01414079

K. Shinozawa, M. Fujii, and N. Et-sonehara, í A Weather Radar Image Prediction Method in Local Parallel Computing, Proc. of the IEEE ICNN'94 ëSIENA96ë Simulation Initiative for European Neural Applications, pp.4210-4215, 1994.

D. P. Siewiorek, í Architecture of Fault-Tolerant System, IEEE Transactions on Computers, p.9, 1984.

A. Sim, B. Parvin, and P. Et-keagy, í Invariant Representation and Hierarchical Network for Inspection of Nuts from X-Ray Images, Proc. of the IEEE ICNN'95 ëSNAP93ë High-Performance Parallel Computing : SIMD Numerical Array Processor Data Sheet, pp.738-743, 1993.

S. A. Solla, í Supervised Learning and Generalization, Neural Networks : Biological Computers or Electronic Brains. pp. 21í28, 1990.

S. L. Speidel, Neural adaptive sensory processing for undersea sonar, IEEE Journal of Oceanic Engineering, vol.17, issue.4, pp.341-350, 1992.
DOI : 10.1109/48.180303

S. K. Tso and N. L. Et-lin, í Aadptive Neural Network Controller for Robot Manipulator Systems, Proc. of the IEEE ICNN'95, pp.2320-2325, 1995.

C. Ulbricht, í Multi-Recurrent Networks for Traaec Forecasting, Proc. of the American National Conference on Artiaecial Intelligence AAAI'944, pp.883-888, 1994.

F. Valafar, H. Valafar, O. K. Ersoy, and R. G. Schwartz, Comparative studies of two neural network architectures for modeling of human speech production, Proceedings of ICNN'95, International Conference on Neural Networks, pp.2056-2061, 1995.
DOI : 10.1109/ICNN.1995.488991

M. M. Vanhulle, í Learning Rate Adaptation Achieved in Unsupervised Competitive Learning : An Application to Noise Cancelling, Proc. of the IEEE ICNN'95, pp.860-864, 1995.

R. Velazco, S. Karoui, and B. Et-martinet, í A Low Cost Functional Test System : The FUTE16 Tester, Proc. of the International Conference of Microelectronics ICM'922, 1992.

B. K. Verma, Handwritten Hindi character recognition using multilayer perceptron and radial basis function neural networks, Proceedings of ICNN'95, International Conference on Neural Networks, pp.2111-2115, 1995.
DOI : 10.1109/ICNN.1995.489003

A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. Lang, Phoneme recognition using time-delay neural networks, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.37, issue.3, pp.328-339, 1989.
DOI : 10.1109/29.21701

J. Waldemark, P. O. Dovner, and J. Et-karlsson, Hybrid neural network pattern recognition system for satellite measurements, Proceedings of ICNN'95, International Conference on Neural Networks, pp.195-199, 1995.
DOI : 10.1109/ICNN.1995.488092

J. Waldemark and P. Et-norqvist, Multiple neural network filtering for in-flight calibration of satellite measurements, Proceedings of ICNN'95, International Conference on Neural Networks, pp.507-510, 1995.
DOI : 10.1109/ICNN.1995.488229

J. H. Wang, J. H. Et-lin, R. C. Watt, C. Sisemore, A. Kanemoto et al., í Aadptive Spatiotemporal Neural Network for Speech Recognition, Proc. of the IEEE ICNN'95 Artiaecial Neural Networks Facilitate Bispectral Analysis of Electroencephalographic Data. Proc. of the IEEE ICNN'95, pp.2596-2599, 1995.

B. Widrow and R. G. Winter, í Neural Nets for Adaptive Filtering and AdaptivePattern Recognition, IEEE Computer, pp.25-39, 1988.

G. J. Wolae, í Sensory Fusion : Integrating Visual and Auditory Information for Recognizing Speech, Proc. of the IEEE ICNN'93, pp.672-677, 1993.

Z. M. Xu, J. S. Packer, and J. F. Et-cade, í A Hybrid Fuzzy-Neural Control System for Managment of Mean Arterial Pressure of Seriously Ill Patients, Proc. of the IEEE ICNN'95, pp.2281-2286, 1995.

Q. Xue, Y. H. Hu, and P. Et-milenkovic, í Analysis of the Hidden Units of the Multi-Layer Perceptron and its Application to Acoustic-to-Articulatory Mapping, Proc. of the IEEE ICASSP'90, pp.869-872, 1990.

I. Yamamoto, Application of neural network to marine vehicle, Proceedings of ICNN'95, International Conference on Neural Networks, pp.220-224, 1995.
DOI : 10.1109/ICNN.1995.488098

C. K. Yong, í Intact Egg Freshness Quality Inspection Using Neural Networks, Proc. of the IEEE ICNN'95, pp.1080-1085, 1995.

X. Yu, D. Dent, and C. Et-osborn, í The Selection of Weights Precision for Ballistocardiography Classiaecation

M. Ëzaradoshti95ë-zardoshti-kermani and A. Et-afshordi, í Classiaecation of Chromosomes Using Higher-Order Neural Networks, Proc. of the IEEE ICNN'95, pp.2587-2591, 1995.

M. Zhang and J. Et-fulcher, Face recognition using artificial neural network group-based adaptive tolerance (GAT) trees, IEEE Transactions on Neural Networks, vol.7, issue.3, pp.555-567, 1996.
DOI : 10.1109/72.501715

B. Zheng, W. Qian, and L. Et-clarke, í Multistage Neural Network for Pattern Recognition in Mammogram Screening, Proc. of the IEEE ICNN'94, pp.3437-3447, 1994.