Sur la vérification de systèmes infinis

Résumé : Cette thèse traite du problème de la vérification de systèmes ayant un nombre infini d'états. Ces systèmes peuvent être décrits par plusieurs formalismes tels que des algèbres de processus ou des automates finis munis de structures de données non-bornées (automates à pile, réseaux de Petri ou systèmes à files). Dans une première partie de la thèse nous nous intéressons à la caractérisation de classes de systèmes infinis et de propriétés pour lesquels le problème de vérification est décidable. Nous considérons d'abord la complexité de la vérification du mu-calcul linéaire pour les réseaux de Petri. Ensuite, nous définissons des logiques temporelles qui permettent d'exprimer des propriétés non-régulières comportant des contraintes linéaires sur le nombre d'occurrences d'événements. Ces logiques sont plus expressives que les logiques utilisées dans le domaine. Nous montrons en particulier que le problème de la vérification d'une logique qui est plus expressive que le mu-calcul linéaire est décidable pour des classes de systèmes infinis telles que les automates à pile et les réseaux de Petri. Une deuxième partie de la thèse est consacrée aux systèmes communicant par files d'attente, dont le problème de vérification est en général indécidable. Nous appliquons le principe de l'analyse symbolique à ces systèmes. Nous proposons des structures finies qui permettent de représenter et de manipuler des ensembles infinis de configurations de tels systèmes. Ces structures permettent de calculer l'effet exact d'une exécution répétée de tout circuit dans le graphe de transitions du système. Ainsi, chaque circuit peut être considéré comme une nouvelle "transition" du système. Nous utilisons ce résultat pour accélérer le calcul de l'ensemble des configurations atteignables d'un système afin d'augmenter les chances de terminaison de ce calcul.
Type de document :
Thèse
Autre [cs.OH]. Université Joseph-Fourier - Grenoble I, 1998. Français
Liste complète des métadonnées

https://tel.archives-ouvertes.fr/tel-00004890
Contributeur : Thèses Imag <>
Soumis le : jeudi 19 février 2004 - 14:45:57
Dernière modification le : vendredi 6 juillet 2018 - 10:08:02
Document(s) archivé(s) le : vendredi 2 avril 2010 - 20:33:41

Identifiants

  • HAL Id : tel-00004890, version 1

Collections

Citation

Peter Habermehl. Sur la vérification de systèmes infinis. Autre [cs.OH]. Université Joseph-Fourier - Grenoble I, 1998. Français. 〈tel-00004890〉

Partager

Métriques

Consultations de la notice

202

Téléchargements de fichiers

118