Théorie des spectres rovibroniques des molécules octaédriques: Hamiltonien et moments de transition
Michaël Rey

To cite this version:

HAL Id: tel-00004623
https://tel.archives-ouvertes.fr/tel-00004623
Submitted on 11 Feb 2004

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Thèse
présentée par

MICHAËL REY

pour obtenir le titre de
DOCTEUR en PHYSIQUE

Théorie des spectres rovibroniques des molécules octaédriques :
Hamiltonien et moments de transition

Soutenue le 24 octobre 2002, devant la commission d'examen composée de :

P. Asselin Chargé de Recherches à l'Université de Paris VI Examinateur
V. Boudon Chargé de Recherches à l'Université de Bourgogne Directeur de thèse
M. Loëte Professeur à l'Université de Bourgogne Directeur de thèse
M. Lombardi Directeur de Recherches à l'Université de Grenoble I Rapporteur
M. Quack Professeur à l'Ecole Polytechnique Fédérale de Zürich Président du jury
P. Senet Professeur à l'Université de Bourgogne Examinateur

Laboratoire de Physique de l'Université de Bourgogne (L PUB) - UMR CNRS 5027
BP 47870 - 21078 Dijon - FRANCE
Table des matières

Liste des tableaux ... 7
Liste des figures ... 9

Introduction .. 15

I Rappels et compléments 19

1 Généralités – Motivations 21
 1.1 Les molécules octaédriques 21
 1.1.1 Eléments de symétrie 21
 1.1.2 Modes normaux de vibration 22
 1.2 Propriétés électroniques des hexafluorures colorés 22
 1.2.1 Classification des hexafluorures de métaux de transition 22
 1.2.2 Illustration 24
 1.3 Les hexacarboxyles 24
 1.4 Les motivations de ce travail 25
 1.4.1 D’un point de vue fondamental 25
 1.4.2 Au niveau des applications 25
 1.4.3 Liste non-exhaustive de candidats potentiels 25

2 Formalisme tensoriel pour des systèmes moléculaires 27
 2.1 Formalisme dans les groupes $SO(3)$ et $SU(2)$ 28
 2.1.1 Les représentations de $SO(3)$ et de $SU(2)$ – paramètres d’une rotation 28
 2.1.2 Coefficients de couplages et métriques 32
 2.1.3 Théorème de Wigner-Eckart dans $SO(3)/SU(2) \supset SO(2)$ 34
 2.1.4 Extension aux groupes impairs $O(3)$ et $SU(2) \ltimes C_I$ 35
 2.2 Formalisme dans les chaînes de groupes $SO(3)/SU(2) \supset O_h/O_h^S$ 35
 2.2.1 Les représentations de O et de O^S 36
 2.2.2 Détermination de la similitude unitaire G 39
 2.2.3 Théorème de Wigner-Eckart dans $SO(3)/SU(2) \supset O_h/O_h^S$ 46
 2.2.4 Introduction de l’inversion 47
 2.3 Formalisme dans les groupes O_h et O_h^S 47
 2.3.1 Coefficients de couplages et métriques dans le groupe de l’octaèdre 47
 2.3.2 Théorème de Wigner-Eckart dans O/O^S 49
 2.3.3 Passage aux groupes O_h et O_h^S 53
 2.3.4 Application : spectre rotationnel du niveau de base de 32SF$_6$ 53
 2.4 Résumé du chapitre 55
TABLE DES MATIÈRES

2.4.1 Ce qu'il faut retenir .. 55
2.4.2 Les références à consulter 55

A Les représentations projectives 57
 A.1 Définition et propriétés des représentations projectives 57

B Extension à la chaîne SU(2) ⊗ CI ⊃ TdS 59
 B.1 Les représentations du groupe du tétraèdre 59
 B.2 Extension à la chaîne SU(2) ⊗ CI ⊃ TdS 59
 B.2.1 Coefficients G relatifs à la chaîne 60
 B.2.2 Conséquences sur les symboles de couplage 63

II Du traitement usuel des interactions rovibroniques 65

3 Interactions vibroniques dans l'approximation adiabatique 67
 3.1 Solution de l'équation de Schrödinger — Approximations 68
 3.1.1 Hamiltonien moléculaire général 68
 3.1.2 Cas d'un état électronique non dégénéré 68
 3.1.3 Cas d'un état électronique dégénéré 72
 3.2 Hamiltonien vibronique Jahn-Teller 75
 3.2.1 Formulation générale — Historique 75
 3.2.2 Le théorème Jahn-Teller généralisé 77
 3.3 Études de différents potentiels vibroniques 78
 3.3.1 Écriture du potentiel vibronique — Généralités 78
 3.3.2 Potentiel vibronique Jahn-Teller pour un système [E₇ × E₉] 79
 3.3.3 Potentiel vibronique Jahn-Teller pour un système [F₇ × E₉] (F = F₁ ou F₂) 86
 3.3.4 Potentiel vibronique Jahn-Teller pour un système [F₇ × F₉] 87
 3.3.5 Cas d'un état électronique quatre fois dégénéré 93
 3.3.6 Tentative d'un traitement perturbatif : application aux systèmes [E × E] et [G' × F₂] 95
 3.3.7 Quelques systèmes Jahn-Teller 98
 3.4 Résumé du chapitre .. 99
 3.4.1 Ce qu'il faut retenir 99
 3.4.2 Les références à consulter 99

4 Traitement dynamique de l'effet Jahn-Teller 101
 4.1 Définition de l'Hamiltonien vibronique 101
 4.2 Effet Jahn-Teller dynamique [E₇ × E₉] 102
 4.3 Effet Jahn-Teller dynamique [F₇ × E₉] (F = F₁ ou F₂) 107
 4.4 Effet Jahn-Teller dynamique [F₇ × F₉] (F = F₁ ou F₂) 108
 4.5 État électronique quadruplet 116
 4.6 Particularités de l'effet Jahn-Teller linéaire 116
 4.7 Introduction de la rotation — Hamiltonien rovibronique 120
 4.8 Résumé du chapitre .. 122
 4.8.1 Ce qu'il faut retenir 122
 4.8.2 Les références à consulter 122

C Réduction des interactions non-adiabatiques — ADT 123
 C.1 Transformation adiabatique-diabatique 123
 C.2 Technique de diagonalisation par bloc 125
III ... A un formalisme plus général

5 Développement d'un modèle effectif
5.1 Rappels sur l'Hamiltonien de rotation-vibration 130
5.1.1 Hamiltonien de Watson et Aliev 130
5.1.2 Hamiltonien de Moret-Bailly et Champion 131
5.1.3 emr rotationnels et vibrationnels 134
5.2 Modèle rovibronique effectif : formalisme octaédrique 134
5.2.1 Définition des opérateurs électroniques 134
5.2.2 Application à un état électronique dégénéré 136
5.2.3 Expression de l'Hamiltonien rovibronique effectif 139
5.2.4 Expression du moment dipolaire effectif 141
5.2.5 Expression du tenseur polarisabilité effectif 143
5.3 Modèle rovibronique effectif : formalisme sphérique 146
5.3.1 Hamiltonien rovibronique effectif dans $SU(2) \otimes C_I \supset O_h^s$ 146
5.3.2 Expression du moment dipolaire effectif 148
5.3.3 Expression du tenseur polarisabilité 150
5.3.4 Tenseur polarisabilité initial et transformé 150
5.3.5 Lien entre les deux formalismes 152
5.3.6 Application 1 : système Jahn-Teller linéaire $[G'_g \times F_{2g}]$ pour ReF$_6$ 152
5.3.7 Application 2 : système Jahn-Teller quadratique $[G'_g \times F_{1u}]$ pour ReF$_6$ 154
5.4 Implémentation informatique – Chaîne de programmes 155
5.4.1 Présentation et description 155
5.5 Résumé du chapitre 158
5.5.1 Ce qu'il faut retenir 158
5.5.2 Les références à consulter 158

6 Intensités pour les transitions rovibroniques 159
6.1 Généralités sur les calculs d'intensités 159
6.1.1 Coefficient d'absorption intégré 159
6.1.2 Constantes et systèmes d'unités 162
6.2 Fonction de partition rovibronique 162
6.2.1 Développement à l'ordre zéro 162
6.2.2 Corrections à la fonction de partition totale 165
6.2.3 Calcul numérique des erreurs sur la fonction de partition 168
6.3 Intensités dipolaires électriques 168
6.3.1 Intensité d'une sous-bande vibronique 168
6.3.2 Poids statistiques de spin nucléaire 171
6.3.3 Intensité d'une raie rovibronique 174
6.4 Intensité Raman 174
6.4.1 Intensité d'une sous-bande vibronique 174
6.4.2 Intensité d'une raie rovibronique 175
6.5 Résumé du chapitre 176
6.5.1 Ce qu'il faut retenir 176
6.5.2 Les références à consulter 176

7 Applications à V(CO)$_6$ et ReF$_6$ 177
7.1 Étude de la bande ν_6 de V(CO)$_6$ 178
7.1.1 Généralités .. 178
7.1.2 Écriture du modèle rovibronique pour V(CO)$_6$ 179
7.1.3 Discussion .. 182
7.1.4 Simulations à haute résolution .. 184
7.1.5 Modèle semi-classique ... 188
7.2 Étude de la bande ν_3 de ReF$_6$... 191
 7.2.1 Généralités .. 191
 7.2.2 Ecriture du modèle rovibronique pour ReF$_6$... 192
 7.2.3 Simulations à haute résolution .. 196
7.3 Résumé du chapitre ... 202
 7.3.1 Ce qu'il faut retenir .. 202
 7.3.2 Les références à consulter ... 202

8 Traitement algébrique de systèmes rovibroniques .. 203
 8.1 Rappels sur les tenseurs irréductibles de $U(n)$... 203
 8.1.1 Définitions et notations .. 204
 8.1.2 Les opérateurs maximaux de $U(n)$.. 205
 8.2 Traitement d'un état électronique deux fois dégénéré 209
 8.2.1 Constructions des opérateurs électroniques standards pour un état E 209
 8.2.2 Symétrisation du système de boson élémentaire – Orientation "usuelle" ... 212
 8.2.3 Changement de l'orientation de la représentation E 214
 8.2.4 Hamiltonien Jahn-Teller vibronique pour un mode ν_2 219
 8.2.5 Hamiltonien rovibronique effectif pour un mode ν_2 223
 8.3 Traitement d'un état électronique trois fois dégénéré 223
 8.3.1 Constructions des opérateurs électroniques standards pour un état F 224
 8.3.2 Symétrisation des tenseurs 3d gitos ... 226
 8.3.3 Hamiltoniens Jahn-Teller vibroniques pour les modes ν_2, ν_5 et ν_3 . 227
 8.4 Traitement d'un état électronique quatre fois dégénéré 229
 8.4.1 Etude de la chaîne $U(4) \supset SU(4) \supset Sp(4) \supset SU(2) \supset SO(2)$ 230
 8.4.2 Etude de la chaîne $U(4) \supset SU(2)^* \times SU(2) \supset SO(2)^* \times SO(2)$.. 232
 8.4.3 Hamiltoniens Jahn-Teller vibroniques dans la chaîne (II) 235
 8.5 Résumé du chapitre ... 238
 8.5.1 Ce qu'il faut retenir ... 238
 8.5.2 Les références à consulter .. 238

Conclusion ... 241

Bibliographie .. 245
Liste des tableaux

1.1 Activité des modes normaux de vibration pour une molécule XY₆ 22

2.1 Les premières matrices des RI de SO(3) et SU(2) .. 32
2.2 Table de caractères du groupe O° ... 37
2.3 Réduction des RI D(J) de SU(2) dans O° .. 38
2.4 Matrices D(C)(R) des générateurs de O° .. 39
2.5 Définition de quelques phases utiles ... 40
2.6 Valeurs propres λ de d(J)(₅) pour les composantes spécifiques............................... 42
2.7 Coefficients G jusqu’à j = 11/2 ... 44
2.8 Table de multiplication des RI de O° .. 50
2.9 Valeurs exactes de quelques facteurs isoscalaires .. 51

B.1 Table des caractères du groupe Td° .. 60
B.2 Matrices des générateurs de Td ... 61
B.3 Composantes et phases pour les représentations spinorielles G° 62

3.1 Expressions des coordonnées normales symétrisées des modes ν₁, ν₂, ν₃ et ν₅ pour les molécules XY₆ de symétrie Oh ... 77
3.2 Quelques matrices utiles ... 80
3.3 Solutions des équations de Opik-Pryce ... 87
3.4 Liste de quelques systèmes Jahn-Teller octaédriques .. 98

4.1 Eléments matriciels réduits pour un oscillateur deux fois dégénéré 103

5.1 Expression des premiers coefficients électroniques .. 136
5.2 Règles de sélection pour l’Hamiltonien, le moment dipolaire et le tenseur polarisabilité 146
5.3 Paramètres effectifs pour un mode ν₃ dans un état électronique quadruplet 149
5.4 Règles de sélection rovibroniques dans SU(2) ⊗ C₁ pour le mode ν₃(F₁u) 150
5.5 Paramètres effectifs pour un mode ν₅ dans un état électronique quadruplet 151
5.6 Règles de sélection rovibroniques dans SU(2) ⊗ C₁ pour le mode ν₅(F₂g) 152

6.1 Valeurs des coefficients α pour différents états électroniques 167
6.2 Corrections introduites pour un état électronique de type F 169
6.3 Liste de quelques poids statistiques de spin nucléaire pour chaque niveau de symétrie entière ou demi-entière jusqu’à I = 3/2 .. 173

7.1 Paramètres de l’Hamiltonien et de moment dipolaire effectifs pour la bande ν₆ de V(CO)₆ 180
7.2 Axes principaux stationnaires de Oh ... 189
7.3 Valeurs des paramètres vibroniques pour la bande ν₃ de ReF₆ 193
7.4 Paramètres de l’Hamiltonien et de moment dipolaire effectifs pour la bande ν₃ de ReF₆ 194
8.1 Symétries octaédriques et conventions de phases. 213
8.2 Valeurs exactes de quelques coefficients \bar{G} après changement de l'orientation 216
8.3 Valeurs exactes des CG non-nuls après changement de l'orientation 220
8.4 Valeurs exactes de quelques CGO non-nuls après changement de l'orientation où $p_i = l_i C_i \bar{\sigma}_i$. Seuls les coefficients avec les produits du type $[m_1, 0] \times [0, -m_2]$ sont présents. 221
Liste des figures

1.1 Axes de symétrie principaux d’une molécule octaédrique XY₆. Exemple d’une molécule X(YZ)₆. .. 21
1.2 Classification des hexafluorures colorés en fonction du nombre d’électrons non-liants et de la série de transition (la symétrie de l’état électronique de base est indiquée entre parenthèses). .. 22
1.3 .. 23
1.4 Domaines spectaux pour les hexafluorures “usuels” et colorés. Dans le premier cas, les transitions apparaissent essentiellement dans la région UV. .. 23
1.5 Spectres électroniques des hexafluorures de métaux de la troisième série de transition. .. 24
1.6 Exemple d’un nuage interstellaire dans la constellation d’Orion (image tirée du site : http://www.cnrs.fr/diffusion/fototheq/regard.htm) .. 25

2.1 Représentation graphique des angles d’Euler. .. 31
2.2 Énergies réduites pour l’état de base de 32SF₆ jusqu’à J = 96. .. 53
2.3 Extrapolation du spectre rotationnel de l’état de base de 32SF₆ jusqu’à J = 199.5. .. 54

3.1 Coordonnées cartésiennes pour une molécule XY₆. .. 71
3.2 Représentation matricielle de l’Hamiltonien électronique en présence de termes non-adiabatiques. .. 74
3.3 Potentiels vibroniques Jahn-Teller linéaires pour un système [E × E]. .. 81
3.4 Surfaces de Born-Oppenheimer avec (traits en gras) et sans (traits fins) le terme de Born-Huang. Les surfaces de Born-Huang sont données ici dans l’approximation linéaire (D₂ = 0.1) par E/ω₂ = ρ²/2 ± √2A₂ρ + 1/ρ. .. 83
3.5 Description schématique (figure de gauche) de la phase géométrique lorsque φ varie de 0 à 2π (chemin 1→2) et de 0 à 4π (chemin 1→2'). Sur la figure de droite sont représentées les deux surfaces de potentiel pour D₂ = 0.1 et κ₂ = 1 reliées par les quatre intersections coniques. .. 84
3.6 Potentiels vibroniques Jahn-Teller linéaires et quadratiques pour un système [E × E]. Les minima sont schématisés sur la figure en haut à droite. .. 85
3.7 Potentiels et équipotentiels vibroniques Jahn-Teller linéaires et quadratiques pour un système vibronique [F × E]. .. 88
3.8 Représentation du potentiel V₀ en fonction de θ et φ (figure de gauche) pour K = 0.7 et ωᵢ = 200 cm⁻¹. Sur la figure de droite sont représentées les projections des minima et maxima du potentiel dans le plan (θ, φ). .. 90
3.9 Potentiel vibronique linéaire pour K = 0.7 et ωᵢ = 283 cm⁻¹ (à gauche) avec les quatre lignes de dégénérescence partant de (0, 0, 0) et allant dans les directions (−1, −1, −1), (−1, 1, 1), (1, −1, 1) et (1, 1, −1). La figure de droite représente les deux premières surfaces de potentiel vibroniques. .. 91
3.10 Potentiels vibroniques Jahn-Teller linéaires et quadratiques pour un système $[F_{2g} \times F_{2g}]$. Les trois figurent sont données pour $(K, g_E, g_F) : (0.7,0.5,0)$ figure en haut à gauche ; $(0.7,0,0.5)$ figure en haut à droite et $(0.7,0,0.5)$ figure en bas. 92

3.11 Potentiels vibroniques Jahn-Teller pour le système $[F_{2g} \times G_{1g}']$ pour $(D_5, Q_E, Q_F) = (0.8,0.1,0), (0.8,0,0.1)$ et $(0.8,0.1,0.1)$ (de gauche à droite). 94

3.12 Potentiels vibroniques linéaires pour un état E après transformation. 97

4.1 Spectre vibronique Jahn-Teller linéaire en fonction de D_2 pour le système $[E_g \times E_g]$. Les pointillés symbolisent les niveaux E et les traits en gras symbolisent les niveaux $A_1 + A_2$ 104

4.2 Spectre vibronique Jahn-Teller en fonction de D_2 pour le système $[E_g \times E_g]$ et pour $\delta_2 = 0.05$. Les niveaux A_1 (gros pointillés), A_2 (tirets) et E (petits pointillés) y sont codés. 105

4.3 Spectre vibronique Jahn-Teller en fonction de δ_2 pour le système $[E_g \times E_g]$ et pour $D_2 = 0.5$. La légende est la même que la figure (4.2). 106

4.4 Spectres vibroniques Jahn-Teller pour le système $[E_g \times E_g]$ en fonction de D_2 et pour $D_2 = 0.1$ (à gauche) et $D_2 = 1$ (à droite). La légende est celle de la figure (4.2). Lorsque δ_2 augmente, la symétrie de l'état de base change. 107

4.5 Spectre vibronique Jahn-Teller linéaire en fonction de ℓ_2 pour le système $[F_{2g} \times E_g]$. Les pointillés symbolisent les niveaux F_1 et les tirets symbolisent les niveaux F_2. 109

4.6 Spectre vibronique Jahn-Teller en fonction de ℓ_2 pour le système $[F_{2g} \times E_g]$ et pour $\kappa_2 = 0.1$. La légende est celle de la figure 4.5. 110

4.7 Spectre vibronique Jahn-Teller en fonction de κ_2 pour le système $[F_{2g} \times E_g]$ et pour $\ell_2 = 1$. La légende est celle de la figure 4.5. 111

4.8 Spectre vibronique Jahn-Teller linéaire en fonction de K pour le système $[F_{1u} \times F_{2g}]$. Les niveaux sont codés comme suit : A_1 (tirets), A_2 (lignes continues), E (lignes mixtes avec gros points), F_1 (pointillés) et F_2 (lignes mixtes avec petits points). 114

4.9 Spectre vibronique Jahn-Teller quadratique en fonction de $\kappa_0(= \kappa_4)$ pour le système $[F_{2g} \times F_{1u}]$. Les niveaux sont codés comme suit : A_1 (lignes mixtes avec gros points), A_2 (tirets), E (pointillés), F_1 (lignes mixtes avec petits points) et F_2 (lignes continues). 115

4.10 Spectres vibroniques Jahn-Teller pour le système $[F_{1u} \times F_{2g}]$ en fonction de K_0 (à gauche) et de K_4 (à droite) et pour $K = 1$. La légende est celle de la figure 4.8. Dans certaines circonstances, la symétrie de l'état de base change. 116

4.11 Surfaces d'énergies vibroniques pour $v = 1$ et $v = 1,2$ pour le système $[F_{1u} \times F_{2g}]$. 117

4.12 Spectres vibroniques Jahn-Teller pour le système $[E_g \times E_g]$ en fonction de D_2. Les pointillés représentent le spectre calculé de manière exacte et les lignes continues sont les niveaux de l'Hamiltonien transformé. 118

4.13 Spectres vibroniques Jahn-Teller pour le système $[G_{1g} \times F_{2g}]$ en fonction de D_5. Les lignes en pointillé représentent les niveaux calculés exactement et les lignes continues sont les niveaux de l'Hamiltonien transformé. 119

4.14 Dimension des blocs rovibroniques à diagonaliser pour la bande v_3 de ReF$_6$ dans un état électronique quatre fois dégénéré. 121

5.1 Représentation matricielle de l'Hamiltonien rovibronique transformé. 139

5.2 Paramètres vibroniques effectifs $\tilde{\ell}_1$ (continue) et $\tilde{\ell}_2$ (tiret) en fonction du paramètre D_5 du modèle JT non-transformé (figure de gauche) et valeurs de ces mêmes paramètres pour la molécule ReF$_6$ (voir tableau de droite). Nous donnons aussi la structure vibronique résultante. 153
5.3 Paramètres vibroniques effectifs $\tilde{t}_1/100$ (pointillé), \tilde{t}_2 (mixte), \tilde{t}_3 (continue) et \tilde{t}_4 (tiret) en fonction du paramètre \tilde{t}_5 du modèle effectif (figure de gauche) et valeurs de ces mêmes paramètres pour la molécule ReF$_6$ pour $\tilde{t}_5 = -1$ cm$^{-1}$ ($\nu_3 = 719.3$ cm$^{-1}$, $Q_0 = 0.008$, $Q_4 = -0.006$, voir tableau de droite). Nous donnons aussi la structure vibronique résultante.

5.4 Description schématique de la chaîne de programmes calculant un spectre d'absorption infrarouge. Les spectres Raman s'obtiennent en remplaçant respectivement DIPMOD et DIPMAT par POLMOD et POLMAT.

5.5 Fichier de sortie "spect.t" donnant les fréquences et les intensités pour des transitions rovibroniques, ici pour un état électronique G'_2 et un mode $\nu_3(F_iu)$.

6.1 Exemple d'une forme de raie d'absorption de type Gaussien. $\Delta\sigma$ est la demi largeur à mi-hauteur qui caractérise chaque profil.

6.2 Populations des bandes fondamentales et harmoniques dans le cas de la molécule ReF$_6$. La température vibrationnelle a été fixée à $T_v = 300$ K.

6.3 Populations rotationnelles des niveaux J pour une molécule XY$_6$.

6.4 Exemple de transitions dipolaires électriques à partir de l'état de base. Les transition de type P, Q et R sont représentées.

7.1 Spectres expérimentaux de la bande ν_6 (a) de V(CO)$_6$ à température ambiante, (b) de V(CO)$_6$ en jet supersonique et (c) de Mo(CO)$_6$ en jet supersonique (déplacé de -16.6 cm$^{-1}$). Cette figure montre aussi une partie résolue de la branche R ($J = 10 - 16$) de Mo(CO)$_6$.

7.2 Structure vibronique calculée avec le modèle effectif

7.3 Profils spectraux calculé et observé pour V(CO)$_6$ à basse résolution (0.5 cm$^{-1}$).

7.4 Énergies réduites calculées pour la polyade vibronique ν_6 de V(CO)$_6$. Les symétries vibroniques du système $F_1 \times F_2$ sont aussi représentées.

7.5 Position des niveaux vibroniques en fonction de la variation d'un des paramètres vibroniques. Cette figure représente les sous-niveaux : A_2 (pointillé), E (trait en gras), F_1 (ligne mixte) et F_2 (ligne continue).

7.6 Influence des principaux paramètres vibroniques sur le profil spectral pour : (a) $\Delta \tilde{t}_1 = 4.6$ cm$^{-1}$, (b) $\Delta \tilde{t}_2 = 1.5$ cm$^{-1}$ et (c) $\Delta \tilde{t}_3 = -3.6$ cm$^{-1}$.

7.7 Simulation à haute résolution de la bande ν_6 de V(CO)$_6$. Deux portions de ce spectre autour de 1973 cm$^{-1}$ et 1989.5 cm$^{-1}$ sont également visibles sur cette figure.

7.8 Portion du spectre à haute résolution dans la région 1971-1977 cm$^{-1}$. Les pointeurs les plus hauts indiquent une branche R et ceux en dessous indiquent une branche Q.

7.9 Portion du spectre à haute résolution dans la région 1989.5-1989.7 cm$^{-1}$. Les pointeurs les plus hauts indiquent une branche R, ceux du milieu indiquent une branche Q et ceux les plus bas indiquent une branche P.

7.10 Portion du spectre à haute résolution dans la région 1990.5-1990.7 cm$^{-1}$. Les pointeurs les plus hauts indiquent une branche R, ceux du milieu indiquent une branche Q et ceux les plus bas indiquent une branche P.

7.11 Portion du spectre à haute résolution dans la région 2007-2008 cm$^{-1}$. Les pointeurs les plus hauts indiquent une branche R et ceux du milieu indiquent une branche Q et ceux les plus bas indiquent une branche P.

7.12 Portion du diagramme des énergies rovibroniques. Les traits représentent les niveaux quantiques et les lignes continues sont les trajectoires classiques autour d’un axe C_4. Il y a un transfert de niveaux rotationnels à $J \approx 14$, $J \approx 17$ et $J \approx 37$.

11
7.13 Portion du diagramme des énergies rovibroniques. Les traits représentent les niveaux quantiques et les lignes continues sont les trajectoires classiques autour d'un axe C_2. Il y a un transfert de niveaux rotationnels à $J \approx 32$. .. 190
7.14 Surfaces d'énergies rotationnelles et intersections coniques. La figure de gauche représente les deux surfaces $E_i^{37}(0, 0) - E_s$ avec $i = 2, 3$ et $E_s = 1987.87 \text{ cm}^{-1}$. La figure de droite représente les deux surfaces $E_i^{32}(\pi/2, \pi/4) - E_s$ avec $i = 7, 8$ et $E_s = 2007.16 \text{ cm}^{-1}$. .. 190
7.15 Energies réduites calcules par le modèle quantique effectif (barres) et par le modèle semi-classique : axes C_2 (lignes continues), axes C_3 (pointillés) et axes C_4 (lignes mixtes). 191
7.16 Comparaison entre les spectres de WF$_6$ et de ReF$_6$ à température ambiante et dans un jet supersonique. On observe une structure de type PQR pour WF$_6$ et une structure plus complexe pour ReF$_6$. Notons aussi l'étalement du spectre du réhénium pour le spectre de jet, avec des intensités très faibles. .. 192
7.17 Structures vibroniques calculées avec le modèle Jahn-Teller et le modèle effectif. .. 194
7.18 Profils spectrométriques calculés (modèle Jahn-Teller (pointillés) et modèle effectif (lignes continues)) et observés (trait en gras) à basse résolution. .. 195
7.19 Energies réduites calculées pour la polyade vibronique ν_3 de ReF$_6$. Deux portions autour de 722 et 727 cm$^{-1}$ (les deux sous-niveaux G') sont aussi représentées. .. 196
7.20 Simulation à haute résolution (0.0007 cm$^{-1}$) de la bande ν_3 de ReF$_6$ incluant les deux isotopes. .. 197
7.21 Portion du spectre à haute résolution dans la région 711.5-712.5 cm$^{-1}$. Les traits pointent une branche P. .. 198
7.22 Portion du spectre à haute résolution dans la région 714-715 cm$^{-1}$. Les pointeurs les plus hauts indiquent une branche R, ceux du milieu indiquent une branche Q et ceux les plus bas indiquent une branche P. .. 199
7.23 Portion du spectre à haute résolution dans les régions 715-716 cm$^{-1}$ (branche R) et 728-729 cm$^{-1}$ (branches Q et R). .. 200
7.24 Portion du spectre à haute résolution comparé aux spectres diode laser expérimentaux. .. 201

8.1 Structure vibronique de ReF$_6$ par le modèle algébrique. .. 236
8.2 Niveaux d'énergie du système Jahn-Teller linéaire en fonction de D_5 par l'approche algébrique. .. 237
Introduction
Les espèces à sous-couche électronique incomplète (molécules, ions ou radicaux) présentent un intérêt aussi bien dans le domaine de la planétologie que pour les applications dans le milieu industriel. En effet, beaucoup d’entre elles sont présentes dans les milieux interstellaires ou les atmosphères des planètes ou des comètes. De plus, d’autres sont utilisées en chimie, par exemple pour la réalisation de couches anti-corrosion. La spectroscopie de ces molécules est une technique qui, encore aujourd’hui, reste quasiment inexplorée, malgré son importance pour leur détection et les mesures de concentration. A cela, nous pouvons énoncer deux raisons principales.

La première raison est d’origine expérimentale. La plupart des espèces avec une sous-couche électronique externe exhibant une dégénérescence électronique sont des composés instables avec des propriétés chimiques particulières : grande réactivité avec l’eau, corrosives, ..., etc. De ce fait, leur synthèse est difficile et leur étude nécessite une spectroscopie avec un appareillage adapté. Les spectres existants ont été essentiellement enregistrés à basse résolution et leur structure fine n’a jamais vraiment été observée. Ce n’est que très récemment qu’un premier pas a été franchi dans ce sens sur un des hexafluorures de métaux de transition (appelés aussi hexafluorures colorés) : la molécule d’hexafluorure de rhénium ReF₆ dans son état électronique de base quatre fois dégénéré. Nous disposons d’ores et déjà de quelques portions du spectre à haute résolution enregistrées par diode laser dans la région autour de 14 μm (la bande fondamentale ν₃). Cette bande a également été enregistrée par transformée de Fourier à basse résolution. Dans ce contexte, les hexafluorures de métaux de transition et plus généralement les composés à symétrie octaédrique se sont avérés de “bons candidats” pour ce travail. Ainsi, le profil spectral à basse résolution de la bande fondamentale ν₆ de la molécule d’hexacarbonyle de vanadium V(CO)₆ dans un état électronique triplement dégénéré est également disponible.

La deuxième raison est d’origine théorique. En effet, il n’existe pas pour le moment d’outils théoriques adaptés permettant l’analyse et une meilleure compréhension de tels spectres. Ces espèces possèdent une sous-couche électronique non saturée impliquant que certains états électroniques, dont l’état de base, puissent être dégénérés. Ainsi, il y a couplage entre les degrés de liberté vibrationnel, électronique, voire rotationnel, ce qui rend l’étude particulièrement difficile. La connaissance et l’identification de telles espèces nécessite alors l’emploi d’un formalisme adéquat d’autant que l’approximation de Born-Oppenheimer ne permet plus, dans ce cas, de séparer les dynamiques nucléaires et électroniques. Cette particularité est plus connue sous le nom d’effet Jahn-Teller qui reste, à l’heure actuelle, une des plus étudiées dans la littérature. De récents travaux ont été effectués au laboratoire de Dijon sur les hexafluorures de métaux de transition dans un état électronique quadruplet. Ils font appel systématiquement à la théorie des groupes et à l’algèbre tensorielle ce qui, même si certains point délicats sont soulevés (choix de phase cohérents, ..., etc), simplifie considérablement les calculs. Cependant, nous verrons que l’introduction de la rotation moléculaire révèle les limites de ce type de traitement.

Nous proposons alors dans cette thèse, essentiellement théorique, un nouveau modèle rovibronique effectif qui est une extension du modèle rovibrationnel introduit au laboratoire et utilisé dans le cadre des molécules toupies sphériques dans un état électronique non dégénéré.

Auparavant, des points importants seront précisés ou introduits pour une meilleure compréhension
des phénomènes physiques observés. Ces différents points seront définis progressivement en trois parties.

Dans une première partie, nous rappellerons les principales caractéristiques des hexafluorures colorés ainsi que les différences qui existent avec les hexafluorures dans un état électronique non dégénéré. Ensuite, nous donnerons les outils mathématiques développés pour les toupies sphériques. Nous rappellerons ainsi les bases du formalisme sphérique dans \(SO(3) \) et \(SU(2) \), du formalisme dans les chaînes de groupes

\[O(3) \supset O_h \quad \text{et} \quad SU(2) \otimes C_I \supset O_h^S, \]

utilisées respectivement pour les molécules ayant un nombre pair et impair d’électrons, et du formalisme dans les groupes \(O_h \) et \(O_h^S \), où l’indice “\(S \)” désigne les représentations spinorielles du groupe \(O_h \).

Concernant l’orientation des tenseurs dans le sous-groupe \((O_h \text{ ou } O_h^S) \), nous serons amenés à définir une méthode générale de recherche de la transformation unitaire \(G \) la réalisant. Les principaux coefficients de couplage pourront alors être écrits afin de disposer de tout les outils nécessaires au développement d’un modèle rovibronique. Enfin, nous envisagerons pour la première fois une extension à la chaîne

\[SU(2) \otimes C_I \supset T_d^S. \]

Enfin, au cours de la troisième partie, nous développerons un modèle tensoriel rovibronique effectif afin d’éviter de manipuler des matrices de trop grande tailles qui peuvent apparaître dans le modèle Jahn-Teller. Pour cela, de nouveaux opérateurs électroniques seront introduits et reliés aux matrices usuelles de Pauli et de Dirac rencontrées lors du traitement Jahn-Teller. De plus, suivant que le mode vibrationnel est triplement dégénéré ou non, le couplage des opérateurs et des fonctions pourra s’effectuer soit dans la chaîne de groupe, soit dans le sous-groupe ; dans les deux cas, le modèle rendra compte des principaux types de couplages rencontrés dans un état électronique (autre que de symétrie \(E \)) donné. Ce modèle a nécessité entre autres :

- le développement d’un Hamiltonien rovibronique effectif dans les formalismes sphérique et orienté,
- le développement des moments de transition associés pour le calcul des intensités,
- l’adaptation d’un jeu de programmes utilisé pour la simulation de spectres.

Nous avons alors testé ce modèle sur les molécules \(V(CO)_6 \) et \(ReF_6 \), respectivement dans un état électronique triplet et quadruplet. La fin de cette partie sera consacrée au traitement des interactions vibroniques d’un point de vue algébrique. Contrairement au modèle effectif précédent,
l’approche algébrique permet le traitement d’un état électronique de symétrie \(E \). De plus, en réalisant un changement de l’orientation des représentations \(E \), les opérateurs électroniques associés à un tel état forment une algèbre usuelle \(u(2) \) de Pauli. Les différents coefficients de couplage après le changement de l’orientation ont été calculés. De la même manière, nous considérons des états électroniques triplet et quadruplet respectivement associés à l’algèbre de dégénerescence \(u(3) \) et \(u(4) \).
Première partie

Rappels et compléments
Généralités – Motivations

Nous présentons dans ce chapitre introductif les principales caractéristiques des hexafluorures et hexacarbonyles de métaux de transition ainsi que les principales raisons qui nous ont motivés à entamer un tel travail. L’accent sera mis sur les différences, notamment d’un point de vue électronique, entre les espèces à symétrie octaédrique ayant ou non une sous-couche saturée. Plus généralement, nous présentons succinctement nos motivations au niveau théorique ainsi que les différents types d’applications aux molécules, ions ou radicaux libres possédant un ou plusieurs états électroniques dégénérés.

1.1 Les molécules octaédriques

1.1.1 Éléments de symétrie

Les molécules octaédriques régulières s’inscrivent dans un cube et ont comme groupe de symétrie le groupe ponctuel O_h. Ce groupe contient trois axes C_4 (passant par le milieu des faces opposées du cube), quatre axes C_3 (diagonales principales du cube), six axes C_2 (passant par le milieu de deux arêtes opposées), deux plans σ_v, six plans σ_d et un centre d’inversion I. La figure 1.1 montre les axes de symétrie principaux pour des molécules XY_6 (SF$_6$, ReF$_6$, ...) et $X(YZ)_6$ (Mo(CO)$_6$, V(CO)$_6$, ...). La table de caractères (Tab. 2.2) du groupe O_h est rappelée dans le chapitre 2.

![Diagram](image)

Fig. 1.1 - Axes de symétrie principaux d’une molécule octaédrique XY_6. Exemple d’une molécule $X(YZ)_6$.
1.1.2 Modes normaux de vibration

Une molécule XY₆ possède 15 degrés de liberté vibrationnels qui se répartissent en six modes normaux de vibration : trois modes d’élongation et trois modes de pliage (la symétrie de chaque mode est indiquée entre parenthèses)

\[
\begin{align*}
\nu_1(A_{1g}), \nu_2(E_g), \nu_3(F_{1u}) \hspace{1cm} \text{(Élongation)} \\
\nu_4(F_{1u}), \nu_5(F_{2g}), \nu_6(F_{2u}) \hspace{1cm} \text{(Pliage)}
\end{align*}
\]

Les indices g et u sont les indices de parité dans l’inversion du fait de la structure produit direct \(O_h = O \times C_I\). La table 1.1 rappelle l’activité des bandes fondamentales en spectroscopie infrarouge et Raman.

<table>
<thead>
<tr>
<th>Modes</th>
<th>(\nu_1)</th>
<th>(\nu_2)</th>
<th>(\nu_3)</th>
<th>(\nu_4)</th>
<th>(\nu_5)</th>
<th>(\nu_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raman</td>
<td>Raman</td>
<td>Infrarouge</td>
<td>Infrarouge</td>
<td>Raman</td>
<td>Inactif</td>
<td></td>
</tr>
</tbody>
</table>

Par contre, une molécule de type X(YZ)₆ possède treize modes normaux de vibration. Parmi les modes supplémentaires, citons en particulier le mode \(\nu_6(F_{1u})\) d’élongation Y–Z que nous étudierons par la suite.

1.2 Propriétés électroniques des hexafluorures colorés

1.2.1 Classification des hexafluorures de métaux de transition

Dans ce travail, nous étudierons principalement les hexafluorures de métaux de transition dits colorés [1] présentant une dégénérescence électronique et la molécule d’hexacarboyne de vanadium V(CO)₆, dans un état électronique fondamental triplet. Les atomes X de métaux de transition se
distinguent des autres atomes par le fait qu’ils possèdent des orbitales 3d, 4d, 5d ou 5f partiellement remplies (voir Fig. 1.2). Il en résulte alors que la plupart de ces espèces ont des états électroniques qui peuvent être dégénérés. De plus, si le nombre d’électrons non-liants est impair, la symétrie électronique sera dans ce cas demi-entièrre (ce concept sera défini dans le prochain chapitre). Nous ne chercherons pas dans ce chapitre à faire une étude quantitative car dans cette optique, il nous faudrait définir la théorie du champ de coordinats (ligands) qui s’applique pour ce type d’espèce. Cette théorie intervient lorsque les coordinats (atomes ou groupes d’atomes liés à l’ion métallique central) interagissent fortement avec l’atome métallique de sorte qu’ils ne peuvent plus être traités comme des charges négatives ponctuelles. Néanmoins, il est possible d’expliquer, par un modèle simple, la structure électronique de ReF₆ dans une configuration d¹ et dans l’approximation du champ octaédrique fort. Nous pouvons écrire l’Hamiltonien électronique dans ce cas comme [2] :

\[
\hat{H}_e = H_0 + V_{oct} + H_{so},
\]

où \(H_0 \) représente l’énergie cinétique des électrons et la partie sphérique des potentiels, \(V_{oct} \) est le potentiel octaédrique et \(H_{so} \) l’interaction spin-orbite.

La structure électronique de ReF₆ est rappelée sur la figure 1.3. Le champ octaédrique éclate l’orbital d en une orbitale doublement dégénérée \(e_g \) et une orbitale triplet dégénérée \(f_{2g} \). L’orbitale \(e_g \) est la plus haute en énergie car elle présente une plus grande densité électronique le long des liaisons ligand-métal et subit plus de répulsion que l’orbitale \(f_{2g} \) [3]. Sous l’action du couplage spin-orbite, la configuration \(^2F_{2g} \) est éclatée pour donner deux états électroniques \(^2E_{2g} \) et \(G'_g \) séparés de 5000 cm⁻¹. Typiquement, la transition \(^2E_{2g} \leftarrow ^2G'_g \) conduit à une absorption dans le domaine visible voire même dans le proche infrarouge (voir Fig. 1.4). Cette absorption dans le visible explique la coloration fréquente des hexafluorures de métaux de transition. La transition \(G'_g \leftarrow G'_g \) conduit à une absorption dans l’UV, région où apparaissent essentiellement les transitions électroniques pour un hexafluorure dit “classique” dans un état électronique non dégénéré (voir Fig. 1.4).

Fig. 1.3 - Structure électronique de ReF₆.

Fig. 1.4 - Domaines spectraux pour les hexafluorures “usuels” et colorés. Dans le premier cas, les transitions apparaissent essentiellement dans la région UV.
1.2.2 Illustration

La figure 1.5 illustre les différences dans les spectres électroniques des hexafluorures de la troisième série de transition. Ces différents spectres ont été enregistrés à Dijon par Rotger et Boudon [2, 4, 5, 6]. On ne note pour WF₆ (sous-couche électronique saturée) qu’une transition électronique dans la région UV, qui correspond à un transfert de charge entre les ions fluor et l’atome central. Pour les autres espèces, des transitions électroniques de plus basse énergie sont observées.

![Figure 1.5 - Spectres électroniques des hexafluorures de métaux de la troisième série de transition.](image)

1.3 Les hexacarboxyliques

Les propriétés et la spectroscopie des hexacarboxyliques sont beaucoup moins connues. Nous rappelons ici les principaux hexacarboxyliques avec quelques références bibliographiques :

Cr(CO)₆ [7, 8, 9],
Mo(CO)₆ [7, 9, 10],
W(CO)₆ [7, 9, 11],
Sg(CO)₆ [12],
V(CO)₆ [13, 14, 15].
1.4 Les motivations de ce travail

1.4.1 D’un point de vue fondamental

Lorsque l’atome central possède une sous-couche électronique incomplète, des couplages complexes entre les mouvements des électrons et des noyaux (voire même avec la rotation moléculaire) doivent être considérés. Cependant, nous verrons tout au long de cette thèse que la plupart des modèles existants sont peu ou ne sont pas adaptés à ce genre de systèmes. Le but de ce travail est de fournir les outils nécessaires pour une meilleure compréhension des phénomènes physiques observés. Pour cela, nous devrons :

- étendre ou améliorer les modèles existants pour des états électroniques dégénérés,
- écrire des codes informatiques adaptés.

1.4.2 Au niveau des applications

Plus généralement, si l’on considère des molécules, ions moléculaires ou radicaux libres ayant ou non une géométrie octaédrique, les principales applications sont d’ordre atmosphérique, planétologique ainsi que dans le milieu interstellaire où sont contenues des espèces instables pouvant présenter des sous-couches électroniques non saturées. Le milieu interstellaire est très intéressant car c’est là que ce forment des espèces complexes et que naissent les étoiles. Ces dernières se forment par effondrement gravitationnel d’un nuage moléculaire dense, il est donc fondamental de pouvoir connaître la composition du milieu interstellaire afin d’en déduire celle de l’étoile. Ceci peut s’effectuer par des mesures en infrarouge lointain, par exemple, et afin d’analyser les données, des modèles théoriques doivent être mis en place. La figure 1.6 montre un nuage interstellaire dans la constellation d’Orion.

\[\text{Fig. 1.6 - Exemple d’un nuage interstellaire dans la constellation d’Orion (image tirée du site : http://www.cnrs.fr/diffusion/fototheg/regard.htm).}\]

1.4.3 Liste non-exhaustive de candidats potentiels

- Quelques exemples de molécules, ions ou radicaux libres présents dans le milieu interstellaire, l’atmosphère des comètes, les polluants atmosphériques, ...
• **Molécules** : HCO, NH₃, CH₃OH, CH₂=CHCN, CH₄, CF₄, SF₆, ...

• **Radicaux** : CH₃S, CH₃O, CF₃, NCO, HCCN, HCCO, CH₂, H₂SiNH, ...

• **Ions moléculaires** : OH⁺, NH⁺, CO⁺, CH₄⁺, H₂SiN⁺, ...

→ *Dans les milieux en combustion*

 H₂, O₂, CH₄, CH₃ (radical), ...

→ *Pour la séparation isotopique, les milieux industriels (micro-électronique, couches anti-corrosions),* ...

 UF₆, NpF₆, MoF₆, WF₆, ReF₆, IrF₆, Mo(CO)₆, ...
Formalisme tensoriel pour des systèmes moléculaires

Le rôle de la théorie des groupes dans l'étude des molécules polyatomiques n'est plus à prouver depuis l'apparition de la Physique Quantique. Ce concept permet de rendre compte soit des propriétés de l'Hamiltonien ou des fonctions d'ondes, soit des propriétés géométriques du système moléculaire considéré. A chaque groupe de symétrie (en supposant que l'on connaisse le groupe d'invariance de l'Hamiltonien effectif [16]) est associée une représentation unitaire ou anti-unitaire dans l'espace de Hilbert. La théorie des représentations des groupes continus ou ponctuels étant bien établie, le but de ce chapitre est de rappeler les concepts essentiels et fondamentaux nécessaires à la bonne compréhension des phénomènes physiques observés. Bien sûr, tout ce qui va suivre est écrit pour les systèmes que l'on souhaite étudier (notre but, par la suite, sera la construction d'un modèle rovibrionique complet) : les toupies sphériques (du type X_1, XY_4, XY_6, $X(YZ)_4$ ou $X(YZ)_6$). Ces trente dernières années ont vu l'apparition de divers formalismes tensoriels adaptés à la haute symétrie de ces molécules (formalismes sphérique [17], tétraédrique [18] et octaédrique [19]) d'abord pour des études en rotation-vibration dans un état électronique donné non dégénéré [20, 21, 22, 23], l'étude des interactions hyperfines dans un état vibronique non dégénéré [24], puis plus récemment en vue de traiter des systèmes moléculaires possédant une sous-couche électronique incomplète [5, 6, 2].

Dans les problèmes de spectroscopie moléculaire que l'on considère, on est souvent amené à travailler avec des Hamiltoniens effectifs du type $H = H_0 + H_1$ où H_1 peut, en première approximation, être considéré comme un terme de perturbation. Dans ce cas, si \mathcal{G} est le groupe ponctuel de la molécule, les fonctions de base symétrisées i.e. qui se transforment suivant les représentations irréductibles (RI) de \mathcal{G}, servent à classifier les niveaux d'énergie suivant leur symétrie ainsi qu'à déduire les règles de sélection pour les transitions. Le calcul des éléments matriciels s'en trouve facilité. Cependant, on est aussi souvent conduit à envisager des groupes plus vastes, comme par exemple le groupe d'invariance de H_0, noté \mathcal{H}, par exemple $U(n)$ pour l'oscillateur à n dimensions ou $SO(3)$ pour le rotateur. Dans ce cas, on introduit une chaine de groupes du type

$$\mathcal{H} \supset \mathcal{G}. \quad (2.1)$$

Pour les toupies sphériques possédant ou non une sous-couche électronique incomplète, le passage du groupe au sous-groupe se fera, soit à l'aide d'extensions tensorielles, soit à partir d'une transformation unitaire, souvent notée G [25, 26], qui permettra la symétrisation d'un tenseur de $\mathcal{H} = O(3)/SU(2) \otimes C_1$ dans $\mathcal{G} = O_h/O_h^S$ 1 suivant si l'état électronique est de symétrie entière (nombre pair d'électrons) ou demi-entière (nombre impair d'électrons) 2.

1 O_h^S est le groupe de l'octaèdre auquel on adjoint ses représentations spinorielles, notées RS.

2 Exception faite d'un état électronique de symétrie E_r, $\tau = g, u$ où la chaîne considérée ne permet pas de manière directe le traitement (nous y reviendrons ultérieurement lors du dernier chapitre).
Cependant, la méthode initialement proposée par Morel-Bailly [17, 25], qui consiste à construire une base diagonalisant un opérateur générique invariant dans \(G \), n’a jamais été explicitée en détail et mérite que l’on s’y intéresse de plus près. Notamment le problème du choix des phases des coefficients ainsi que de tous les problèmes numériques inhérents à cette méthode sont passés outre dans la littérature. Dans ce chapitre, nous nous proposons de pallier cela en décritvant une méthode générale (générale, dans le sens où cette méthode peut s’étendre à d’autres systèmes moléculaires) de recherche des coefficients de la matrice \(G \) [27] pour des symétries entières ou demi-entières. Nous rappellerons aussi les bases du formalisme sphérique puis celui dans la chaîne complète (coefficients de couplage, théorèmes fondamentaux, etc) et enfin dans le groupe de l’octaèdre lui-même (le cas du tétraèdre sera brièvement envisagé dans l’annexe B). Le groupe \(O_h^S \) étant non-simplement réductible (il y a apparition de multiplicités dans le produit de certaines représentations irréductibles), la déduction des symboles de couplages, de recoupages ainsi que des théorèmes fondamentaux n’est pas directe.

2.1 Formalisme dans les groupes \(SO(3) \) et \(SU(2) \)

Conventions

Dans un premier temps, on ne considérera que les groupes \(SO(3) \) et \(SU(2) \) sans l’inversion avant d’étendre finalement les expressions aux rotations impropres (groupes \(O(3) \) et \(SU(2) \otimes C_1 \)).

Notons que tous les états du type \(|j, m\rangle \) seront supposés standards et contravariants dans le repère moléculaire ; les états du type \(\langle j, m | \) seront eux pris standards et covariants \(^4\). En notation tensorielle, nous écrirons :

\[
\begin{align*}
| j, m \rangle & \equiv \Psi_m^{(j)} \iff \text{Ensemble contravariant} \\
\langle j, m | & \equiv \Psi_m^{(j)} \iff \text{Ensemble covariant}
\end{align*}
\]

L’attribution d’une variance sur les différentes quantités (opérateurs, fonctions de base,... etc) sert principalement à caractériser la symétrie d’un système de manière abrégée. De plus, en respectant la position ainsi que les règles de contraction des indices, l’écriture tensorielle devient automatique, même pour des expressions complexes.

Il nous reste encore à préciser un point important concernant l’adoption d’une convention. Toute rotation pourra être envisagée de deux manières possibles :

- soit d’un point de vue passif où le repère de référence est transformé en un nouveau repère.
- soit d’un point de vue actif où un point \(P(x, y, z) \) se transforme en un point \(P'(x', y', z') \) dans le repère de référence.

Ces deux interprétations sont malgré tout dépendantes. En effet, si l’on note \(R_a \) et \(R_p \) deux séquences de rotations, respectivement en représentation active et passive, nous aurons toujours la propriété \(R_a = R_p^{-1} \).

2.1.1 Les représentations de \(SO(3) \) et de \(SU(2) \) – paramètres d’une rotation

Nous allons maintenant définir les \(RI \) de \(SU(2) \) (et \(SO(3) \)) qui vont permettre de déterminer par la suite les \(RI \) de \(O_h^S \) (et \(O_h \)). On supposera pour l’instant que toutes les rotations, notées \(R \), sont parfaitement définies.

\(^3\)Notons que tous les choix de phases présents dans ce chapitre aussi bien au niveau des coefficients de couplage que des métriques, seront ceux des références [16, 26].

\(^4\)Au sens de Fano et Racah [28], les ensembles tensoriels sont qualifiés respectivement de contrastandard et standard.
Définition

Par définition, toute représentation D d’un groupe G (ici, $G = SO(3)$ ou $SU(2)$) est caractérisée par

$$D : G \rightarrow D(G)$$

$$R \sim D(R) = P_R : \varepsilon \rightarrow \varepsilon$$

$$D(R_i)D(R_j) = D(R_iR_j) \quad \forall R_i, R_j \in G,$$

avec ε l’espace porteur de la représentation.

La loi de transformation d’un ensemble covariant $\{\Psi_m^{(j)}\}$ sous l’action des opérations du groupe est alors donnée par :

$$P_R\Psi_m^{(j)} = \sum_{m'}[D^{(j)}(R)]_{m'm'}\Psi^{(j)}_{m'} \quad \forall R \in SO(3)/SU(2),$$

où $D^{(j)}(R)$ sont les représentations matricielles de $D(R)$. Ces représentations sont dites irréductibles si chaque sous-espace ε_j de dimension $(2j + 1)$ et porteur de la représentation $D^{(j)}(R)$ est invariant dans toutes les opérations du groupe. Ainsi, chaque ε_j sera appelé *sous-espace irréductible* et les $D^{(j)}(R)$ désigneront les représentations irréductibles du groupe des rotations. Bien sûr, dans la formule (2.2), l’opération P_R pourra être envisagée soit d’un point de vue actif (P_{R_m}) ou soit d’un point de vue passif (P_{R_p}) suivant les cas.

Opérateur Tensoriel Irréductible

Pour faciliter le calcul des éléments matriciels (théorème de Wigner-Eckart), il nous faut définir ce qu’est un *opérateur tensoriel irréductible* (OTI). Par analogie avec la loi (2.2), un OTI de rang k, noté $T^{(k)}_q$, est un opérateur dont les $(2k + 1)$ composantes se transforment linéairement dans les opérations du groupe. Traduit mathématiquement, cela donne

$$P_R T^{(k)}_q P_{R^{-1}} = \sum_{q'}[D^{(k)}(R)]_{q'q} T^{(k)}_{q'} .$$

Un tenseur sphérique *contravariant* est aussi caractérisé par les relations de commutation [24]

$$[J_z, T^{(k)}_q] = q T^{(k)}_q,$$

$$[J_\pm, T^{(k)}_q] = [k(k + 1) - q(q \pm 1)/2] T^{(k)}_{q\pm1},$$

(2.4)

et pour un tenseur sphérique *covariant*, nous avons [24] :

$$[J_\pm, T^{(k)}_q] = -q T^{(k)}_q,$$

$$[J_z, T^{(k)}_q] = -[k(k + 1) - q(q \mp 1)]^{1/2} T^{(k)}_{q\mp1} .$$

(2.5)

Jx, J_y et J_z sont les trois composantes d’un moment angulaire \mathbf{J}.

Maintenant que sont définies les RI et les OTI, il reste encore à répondre à la question : *comment décrire une rotation* ?

En fait, il existe diverses manières de paramétrer une rotation ou une séquence de rotations, la plus connue étant de décrire celle-ci en terme d’*angles Euler* [29] ; il existe une autre méthode développée par Altman [30] puis reprise récemment par Boudon *et al.* [26] faisant appel aux paramètres d’Euler-Rodrigues. Celle-ci s’avère très utile si on considère des représentations demi-entières (*i.e.* avec des moments cinétiques demi-entiers) car elle permet d’une manière simple et élégante de fournir un système de facteurs (voir Annexe A et paragraphe 1.2.1 pour le groupe O^S_d, voire T^S_d). Cependant, pour certaines de nos applications (notamment le calcul de la matrice d’orientation G), il apparaît plus simple de s’en tenir à la méthode “traditionnelle” des angles d’Euler. Voici un bref rappel de ces deux méthodes.
Rotations et angles d’Euler

Comme nous pouvons le voir sur la figure (2.1), toute rotation peut être décomposée en produit de trois rotations notées \(R(\alpha), R(\beta) \) et \(R(\gamma) \) transformant ainsi les coordonnées \((x, y, z)\) en \((X, Y, Z)\) :

\[
\begin{pmatrix}
X \\
Y \\
Z
\end{pmatrix} = R_a(\alpha, \beta, \gamma) \begin{pmatrix}
x \\
y \\
z
\end{pmatrix}, \quad R_p(\alpha, \beta, \gamma) = R^{-1}_a(\alpha, \beta, \gamma) \tag{2.6}
\]

avec

\[
R_a(\alpha, \beta, \gamma) = R_{z_2}(\gamma)R_{y_1}(\beta)R_z(\alpha) = R_z(\alpha)R_y(\beta)R_z(\gamma) = \begin{pmatrix}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
\cos \beta & 0 & \sin \beta \\
0 & 1 & 0 \\
-\sin \beta & 0 & \cos \beta
\end{pmatrix} \begin{pmatrix}
\cos \gamma & -\sin \gamma & 0 \\
\sin \gamma & \cos \gamma & 0 \\
0 & 0 & 1
\end{pmatrix} \tag{2.7}
\]

Si \(J \) désigne le moment angulaire total d’un système, on montre alors que la représentation unitaire d’une rotation passive est donnée par :

\[
D(\alpha, \beta, \gamma) = \exp \left(\frac{i\gamma}{\hbar} J_z \right) \exp \left(\frac{i\beta}{\hbar} J_y \right) \exp \left(\frac{i\alpha}{\hbar} J_x \right) = P_{R_p} = P_{R_a} . \tag{2.8}
\]

\(J_y \) et \(J_z \) sont deux des trois composantes du moment cinétique \(J \). Les éléments matriciels de \(D \) peuvent être écrits dans la base standard comme :

\[
[D^{(j)}(\alpha, \beta, \gamma)]_{m'}^m = \langle j, m' | D(\alpha, \beta, \gamma) | j, m \rangle = e^{im'\gamma}[d^{(j)}(\beta)]_{m}^{m'} \tag{2.9}
\]

\(d^{(j)}(\beta) \) étant les fonctions de Wigner dont les éléments matriciels s’expriment par [31] :

\[
[d^{(j)}(\beta)]_{m'}^m = [D^{(j)}(0, \beta, 0)]_{m'}^m = \left[\frac{(j + m')!(j - m')!}{(j + m)!(j - m)!} \right]^{1/2} \left(\begin{array}{c}
\frac{j + m}{2} \\
\frac{j - m}{2}
\end{array} \right) \left(\begin{array}{c}
\frac{j - m'}{2} \\
\frac{j + m'}{2}
\end{array} \right) \sum_r \left(\begin{array}{c}
j + m \\
j - m - r
\end{array} \right) \left(\begin{array}{c}
j - m \\
j + m
\end{array} \right) \cos^r \beta \\
\sin^r \beta
\right) \times (-1)^{j - m' - r} \cos^{2r + m' + m} \sin^{2j - 2r - m - m} , \tag{2.10}
\]

avec

\[
max(0, m - m') \leq r = \min(j - m', j + m) . \tag{2.11}
\]

Puisque \(J_y \) et \(J_z \) commutent avec \(J^2 \), il est évident que l’opérateur \(P_{R_p} \) commute aussi avec \(J^2 \), donc il n’y a pas d’élément matriciel coupant des états \(| j, \ldots \rangle \) et \(| j', \ldots \rangle \) avec \(j \neq j' \). De plus, si on effectue une rotation de \(2\pi \) autour d’un des trois axes, qui correspond géométriquement à l’identité, nous obtenons des matrices différentes suivant que \(j \) est entier ou demi-entier. Seule une rotation de \(4\pi \) laissera le repère inchangé pour tout \(j \).

En effet, nous avons par exemple

\[
[D^{(j)}(2\pi, 0, 0)]_{m'}^m = e^{-2\pi im'} \delta_{m,m'} = (-1)^{2j} I_d , \tag{2.12}
\]

qui est la traduction que toutes les représentations demi-entières sont bi-valuées ; on parlera par la suite de représentations vectorielles (mono-valuées) ou projectives (bi-valuées). De ce fait, une représentation demi-entière sera considérée :
2.1. Formalisme dans les groupes $SO(3)$ et $SU(2)$

![Diagramme des angles d'Euler](image.png)

Description de la séquence

(i) Rotation $R_z(\alpha)$ ($0 \leq \alpha < 2\pi$) telle que :
\[
(x, y, z) \mapsto (x_1, y_1, z_1 = z)
\]

(ii) Rotation $R_y(\beta)$ ($0 \leq \beta \leq \pi$) telle que :
\[
(x_1, y_1, z_1) \mapsto (x_2, y_2 = y_1, z_2)
\]

(iii) Rotation $R_x(\gamma)$ ($0 \leq \gamma < 2\pi$) telle que :
\[
(x_2, y_2, z_2) \mapsto (X, Y, Z = z_2)
\]

FIG. 2.1 - Représentation graphique des angles d'Euler.

- soit comme une **représentation irréductible vectorielle** (RIV) de $SU(2) = SO(3)^S$,
- soit comme une **représentation irréductible projective** (RIP) de $SO(3)$.

Nous utiliserons plus précisément les **représentations spinorielles** (RS) qui constituent une classe particulière de RIP [30, 26] (voir section 2.2.1 pour une définition plus précise). La notation G^S signifie que l'on considère le groupe G muni de ses RS.

Rotations et paramètres d'Euler-Rodrigues

Une rotation est caractérisée par un angle ϕ et un vecteur unitaire \vec{n} parallèle à l'axe de cette rotation. On la notera alors

\[
R(\phi, \vec{n})
\]

Il est pratique d'effectuer le changement de paramètres suivant :

\[
R(\phi, \vec{n}) = R(\lambda, \vec{\lambda}) \ , \ \text{avec} \ \lambda = \cos \frac{\phi}{2}, \ \vec{\lambda} = \sin \frac{\phi}{2} \vec{n} . \quad (2.13)
\]

Les nouveaux paramètres λ et $\vec{\lambda}$ sont appelés **paramètres d'Euler-Rodrigues** [32]. Bien que nous n'ayons pas encore défini ce qu'est une RS, nous pouvons déjà donner l'expression analytique des matrices de rotation $D^{(j)}(R)$ lorsque l'opération R est décrite en terme de paramètres d'Euler-Rodrigues.

Toujours en adoptant le point de vue passif, les matrices des RI (j entier) et des RS (j demi-entier)
de $SO(3)$ dans la base standard peuvent s’exprimer par :

$$[D^{(j)}(\rho, \tau)]_{m}^{m'} = \sqrt{(j + m)! (j - m)! (j + m')! (j - m')!} \times \frac{i^{m-m'} \times \rho^{j-m'-r} (\rho^{*})^{j+m-r} (\tau^{*})^{r} - \rho^{j-m'-r} (\rho^{*})^{j+m-r} (\tau^{*})^{r}}{(j - m' - r)! (j + m - r)! r! (m' - m + r)!},$$

(2.14)

où sont définis

$$\rho = \lambda + i \Lambda_{x}, \ \ \tau = \Lambda_{x} + i \Lambda_{y}$$

(2.15)

Ce sont ces matrices qui vont permettre de calculer les matrices des RI et des RS de O. Les matrices pour $j = 1/2, 1$ et $3/2$ sont calculées dans la table (2.1).

2.1.2 Coefficients de couplements et métriques

La section ci-après constituera un formulaire de relations très utiles pour toute la suite de notre travail.

Changement de variances

Le passage des composantes covariantes aux composantes contrariantes (et réciproquement) d’un tenseur sphérique se fait par l’intermédiaire d’un tenseur métrique

$$T_{m}^{(j)} = \varepsilon_{j} \left(\begin{array}{c} j \\ m \ m' \end{array} \right) T_{m'}^{(j)} \text{ et } T_{m}^{(j)} = \varepsilon'_{j} \left(\begin{array}{c} m' \\ j \ m \end{array} \right) T_{m'}^{(j)},$$

(2.16)

où ε_{j} et ε'_{j} sont deux facteurs de phases. Ils sont choisis de telle sorte que les transformations soient involutives, ce qui implique donc

$$\varepsilon_{j} = \varepsilon'_{j}, \ \ \varepsilon_{j}^{2} = 1.$$

(2.17)

Nous adopterons ici les choix effectués par Michelot [16] en prenant $\varepsilon_{j} = \varepsilon'_{j} = 1$, si bien que l’on pourra écrire :

$$\left(\begin{array}{c} j \\ m \ m' \end{array} \right) = \left(\begin{array}{c} m' \\ j \ m \end{array} \right) = (-1)^{j} \left(\begin{array}{c} j \\ m \ m' \end{array} \right) = (-1)^{j-m} \delta_{m, m'},$$

(2.18)

Ces tenseurs métriques sont aussi qualifiés de coefficients $1 - j$ au sens de Wigner.

Relations de coupleages

Le coupleage de deux opérateurs tensoriels s’effectue de la manière suivante :

$$[S^{(j_{1})} \times T^{(j_{2})}]_{m}^{(j)} = \sum_{m_{1}, m_{2}} F_{m_{1}}^{m_{2}} \left(\begin{array}{c} j_{1} \\ j_{2} \end{array} \right) \left(\begin{array}{c} m_{1} \\ m_{2} \end{array} \right) S_{m_{1}}^{(j_{1})} T_{m_{2}}^{(j_{2})},$$

(2.19)

où F est un coefficient de Clebsch-Gordan (CG) [31] qui est toujours réel. Différentes techniques d’obtention de ces coefficients sont à notre disposition, par exemple une méthode est décrite dans la

Tab. 2.1 - Les premières matrices des RI de SO(3) et SU(2)

<table>
<thead>
<tr>
<th>$[D^{(1/2)}(\rho, \tau)]$</th>
<th>$[D^{(1)}(\rho, \tau)]$</th>
<th>$[D^{(3/2)}(\rho, \tau)]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho^{}) (-i \tau^{}) (\rho) | (\rho^{}) (-i \sqrt{3} \rho^{} \tau) (-i \tau^{}) (-i \tau^{})</td>
<td>(\rho^{}) (-i \sqrt{3} \rho^{} \tau) (-i \tau^{}) (-i \tau^{}) | (\rho^{}) (-i \sqrt{3} \rho^{} \tau) (-i \tau^{}) (-i \tau^{})</td>
<td>(\rho^{}) (-i \sqrt{3} \rho^{} \tau) (-i \tau^{}) (-i \tau^{}) | (\rho^{}) (-i \sqrt{3} \rho^{} \tau) (-i \tau^{}) (-i \tau^{})</td>
</tr>
</tbody>
</table>
référence [33]. Puisque c’est un tenseur d’ordre trois, il est possible, à partir de l’équation (2.16) de changer les variances par les expressions ci-dessous :

\[
F_{m_1 m_2}^{m_1' m_2'} (j) = (-1)^{2j} \left(\begin{array}{l} m_1 \cr j \end{array} \right) \left(\begin{array}{l} m_2 \cr j \end{array} \right) \left(\begin{array}{l} m_1' \cr j \end{array} \right) \left(\begin{array}{l} m_2' \cr j \end{array} \right) F_{j_1 j_2}^{j_1' j_2'} (j) ,
\]

\[
F_{m_1 m_2}^{m_1' m_2'} (j) = \left(\begin{array}{l} m_1 \cr j_1 \end{array} \right) \left(\begin{array}{l} m_2 \cr j_2 \end{array} \right) \left(\begin{array}{l} m_1' \cr j \end{array} \right) \left(\begin{array}{l} m_2' \cr j \end{array} \right) F_{j_1 j_2}^{j_1' j_2'} (j) ,
\]

\[
F_{m_1 m_2}^{m_1' m_2'} (j) = (-1)^{2j_1} \left(\begin{array}{l} j \cr m' \end{array} \right) F_{j_1 j_2}^{j_1' j_2'} (j) ,
\]

\[
F_{m_1 m_2}^{m_1' m_2'} (j) = (-1)^{2j_2} \left(\begin{array}{l} j \cr m' \end{array} \right) F_{j_1 j_2}^{j_1' j_2'} (j) .
\]

(2.20)

Ces relations impliquent que l’on a gardé les choix de phases de Michelot. Comme d’habitude, on pose \([j] = 2j + 1\).

Wigner [34] a introduit un autre ensemble de coefficients de couplage, appelé “3 – \(j\)”. Ils sont reliés aux \(CG\) de \(SU(2)\) par

\[
\left(\begin{array}{l} j_1 \cr m_1 \end{array} \right) \left(\begin{array}{l} j_2 \cr m_2 \end{array} \right) \left(\begin{array}{l} j \cr m \end{array} \right) = (-1)^{j_1 + j_2 - m}[j]^{-\frac{1}{2}} F_{m_1 m_2}^{m_1' m_2'} (j) ,
\]

(2.21)

et sont invariants dans toutes permutations paires des colonnes et multipliés par le facteur \((-1)^{j_1 + j_2 + j}\) sinon. La non-nullité des \(3 - j\) est donnée par la relation triangulaire \([j_1 - j_2] \leq j \leq j_1 + j_2\) et par la condition supplémentaire \(m_1 + m_2 + m_3 = 0\). On est quelquefois amené à utiliser les symboles \(\bar{V}\) de Fano et Racah [28] (pour calculer par exemple les symboles \(3 - j\) cubiques ou orientés) liés aux \(3 - j\) par

\[
\bar{V} \left(\begin{array}{l} j_1 \cr m_1 \end{array} \right) \left(\begin{array}{l} j_2 \cr m_2 \end{array} \right) \left(\begin{array}{l} j \cr m \end{array} \right) = (-1)^{j_1 + j_2 + j} \left(\begin{array}{l} j_1 \cr m_1 \end{array} \right) \left(\begin{array}{l} j_2 \cr m_2 \end{array} \right) \left(\begin{array}{l} j \cr m \end{array} \right) .
\]

(2.22)

Il est alors possible d’écrire les matrices de rotation lorsqu’on additionne deux moments cinétiques. Nous choisissons de donner ici l’expression de la matrice de rotation résultante en fonction des symboles \(3 - j\) de Wigner :

\[
[D^{(j*)}(R)]^m_{m'} = \sum_{m_1, m_2, m_1', m_2'} [j] \left(\begin{array}{l} j_1 \cr m_1 \end{array} \right) \left(\begin{array}{l} j_2 \cr m_2 \end{array} \right) \left(\begin{array}{l} j \cr m \end{array} \right) [D^{(j)}(R)]^m_{m_1} [D^{(j_2)}(R)]^m_{m_2} \]

(2.23)

Dans cette relation, si on choisit de prendre \(j_2 = 0\) (i.e. \(j = j_1 = J\)) ainsi que \((\alpha, \beta, \gamma) = (0, \pi, 0)\), on obtient :

\[
[d^{(j)}(\pi)]_{M'}^{-M} = \sum_{M, M'} [j] \left(\begin{array}{l} J \cr M' \end{array} \right) \left(\begin{array}{l} J \cr -M' \end{array} \right) \left(\begin{array}{l} J \cr M \end{array} \right) \left(\begin{array}{l} J \cr -M \end{array} \right) [d^{(J)}(\pi)]_M^{M'} .
\]

(2.24)

Et sachant que

\[
[d^{(j)}(\pi)]_M^{M'} = (-1)^{M' - M}[d^{(J)}(\pi)]_{-M}^{-M'} = (-1)^{J+M}\delta_{M', -M} ,
\]

(2.25)

nous arrivons finalement au résultat suivant :

\[
\left(\begin{array}{l} J \cr M' \end{array} \right) = (-1)^{J-M}[J]^{-\frac{1}{2}}\delta_{M', -M} = [J]^{-\frac{1}{2}} \left(\begin{array}{l} J \cr M' \end{array} \right) .
\]

(2.26)
Expression algébrique des 3 – j

Il est possible d’évaluer numériquement ces coefficients à travers la formule bien connue de Racah [31, 35]

\[
\begin{pmatrix} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \end{pmatrix} = (-1)^{j_1 - j_2 - m_3} \sqrt{\frac{(-j_1 + j_2 + j_3)!(j_1 - j_2 + j_3)!(j_1 + j_2 - j_3)!}{(j_1 + j_2 + j_3 + 1)!}} \times \sqrt{\frac{(j_1 + m_1)!(j_1 - m_1)!(j_2 + m_2)!(j_2 - m_2)!(j_3 + m_3)!(j_3 - m_3)!}{(j_1 + m_1 + 1)!}} \times \sum_z \frac{z!(j_1 + j_2 - j_3 - z)!(m_1 - j_2 + j_3 + z)!}{(j_1 - m_1 - z)!(j_1 - m_2 + j_3 + z)!(j_2 + m_2 - z)!}.
\]

(2.27)

Des expressions algébriques plus générales pour les coefficients de \(SO(N) \) sont également disponibles dans la référence [36].

Relations de recouplage

Le recouplage de trois moments angulaires se fait par le biais des symboles 6 – j de Wigner qui sont définis comme un produit contracté de quatre symboles 3 – j :

\[
\begin{pmatrix} j_1 & j_2 & j_3 \\ j_4 & j_5 & j_6 \end{pmatrix} = \sum_{\text{tous les } m_1} (-1)^{\sum (j_i - m_i)} \begin{pmatrix} j_1 & j_2 & j_3 \\ -m_1 & -m_2 & -m_3 \end{pmatrix} \times \begin{pmatrix} j_1 & j_5 & j_6 \\ -m_1 & m_5 & m_6 \end{pmatrix} \begin{pmatrix} j_4 & j_2 & j_6 \\ m_4 & m_2 & -m_6 \end{pmatrix} \begin{pmatrix} j_4 & j_5 & j_3 \\ -m_4 & m_5 & m_3 \end{pmatrix}.
\]

(2.28)

Ce symbole est invariant dans une permutation arbitraire de ses trois colonnes ainsi que dans une permutation des deux lignes pour un couple de colonnes donné. Il est également possible d’exprimer ces mêmes coefficients par une formule analogue à (2.27) et donnée par exemple dans [35].

Le dernier coefficient que l’on utilisera est celui adapté pour le recouplage de quatre moments angulaires. Cette quantité, appelée 9 – j, est représentée par une somme de produits de trois 6 – j :

\[
\begin{pmatrix} j_1 & j_2 & j_3 \\ j_4 & j_5 & j_6 \\ j_7 & j_8 & j_9 \end{pmatrix} = \sum_{j_k} (-1)^{2j_k} \begin{pmatrix} j_1 & j_2 & j_3 \\ j_4 & j_5 & j_6 \\ j_7 & j_8 & j_9 \end{pmatrix} \begin{pmatrix} j_1 & j_4 & j_7 \\ j_2 & j_5 & j_8 \\ j_3 & j_6 & j_9 \end{pmatrix} \begin{pmatrix} j_1 & j_3 & j_6 \\ j_2 & j_4 & j_7 \\ j_3 & j_4 & j_5 \end{pmatrix}.
\]

(2.29)

Il est invariant dans l’échange des lignes et des colonnes et est multiplié par \(-1^{\sum j}\) lors de la permutation de deux lignes ou de deux colonnes. De plus, il est non-nul si les relations triangulaires sont vérifiées à la fois sur les lignes et sur les colonnes. Un article récent [37] concernant la démonstration mathématique de cette dernière formule peut être consulté.

2.1.3 Théorème de Wigner-Eckart dans \(\text{SO}(3)/\text{SU}(2) \supset \text{SO}(2) \)

Enoncé du théorème

Le calcul des éléments matriciels d’un \(OTI \) est donné par l’expression du théorème de Wigner-Eckart en accord avec les choix de phases réalisés dans la référence [16] :

\[
\langle (\gamma') j', m' | T^{(k)}_q (\gamma) j, m \rangle = (-1)^{j' - m'} \binom{\gamma}{j'} \binom{j}{-m'} \binom{k}{q} \binom{j}{m} \langle (\gamma') j' | T^{(k)}_q | (\gamma) j \rangle
\]

\[
= (-1)^{k - j + j' - m'} F \binom{k}{q} \binom{j}{m} \langle (\gamma') j' | T^{(k)}_q | (\gamma) j \rangle.
\]

(2.30)

\(\gamma \) représente l’ensemble des autres nombres quantiques et \(\langle \cdots | \cdots | \cdots \rangle \) est appelé élément matriciel réduit (e.m.r.) et est indépendant des étiquettes \(m, m' \) et \(q \) de \(\text{SO}(2) \).
Quelques relations utiles

- Élément matriciel d’un opérateur scalaire :

\[
\langle (\gamma') j', m' | T_0^{(0)} | (\gamma) j, m \rangle = [j]^{\frac{1}{2}} \langle (\gamma') j'||T^{(0)}||(\gamma) j \rangle \delta_{j,j'} \delta_{m,m'}.
\] (2.31)

- Produit tensoriel de deux opérateurs agissant sur le même espace :

\[
\langle (\gamma') j'\|S^{(k_1)} \times T^{(k_2)} \| (\gamma) j \rangle = \sum (-1)^{k+j+j'} [k]^{\frac{1}{2}} \begin{pmatrix} k_1 & k_2 & k \\ j & j' & j'' \end{pmatrix} \times \langle (\gamma') j'\|S^{(k_1)}\| (\gamma'') j'' \rangle \langle (\gamma'') j''\|T^{(k_2)}\| (\gamma) j \rangle.
\] (2.32)

- Produit tensoriel de deux opérateurs agissant sur des espaces différents :

\[
\langle (\gamma_1') j'_1 j'_2, j'\|S^{(k_1)} \times T^{(k_2)} \| (\gamma_2) j_1 j_2, j \rangle = ([k][j][j'])^{\frac{1}{2}} \begin{pmatrix} j_1 & j_2 & j \\ j'_1 & j'_2 & j' \end{pmatrix} \times \langle (\gamma_1') j'_1\|T^{(k_1)}\| (\gamma_1) j_1 \rangle \langle (\gamma_2') j'_2\|T^{(k_2)}\| (\gamma_2) j_2 \rangle.
\] (2.33)

Cas particuliers

* Simplication des symboles pour des opérateurs scalaires :

\[
\left\{ \begin{array}{ccc}
k_1 & k_2 & 0 \\
j & j' & j'' \end{array} \right\} = \frac{(-1)^{k_1+j+j''}}{([k][j])^{\frac{1}{2}}} \delta_{j,j'}, \quad \left\{ \begin{array}{ccc}
j_1 & j_2 & j \\
j'_1 & j'_2 & j' \end{array} \right\} = \frac{(-1)^{k_1+j_2+j_1}}{([k][j])^{\frac{1}{2}}} \left\{ \begin{array}{ccc}
j_1 & j_2 & k_1 \\
j'_1 & j'_2 & j \end{array} \right\}
\]

\[
\Rightarrow \langle (\gamma_1') j'_1 j'_2, j\|S^{(k_1)} \times T^{(k_1)} | (\gamma_1) j_1 j_2, j \rangle = (-1)^{k_1+j_2+j_1} \left[\begin{array}{c}
j \end{array} \right]^{\frac{1}{2}} \left\{ \begin{array}{ccc}
j_1 & j_2 & k_1 \\
j'_1 & j'_2 & j \end{array} \right\} \times \langle (\gamma_1') j'_1\|T^{(k_1)}\| (\gamma_1) j_1 \rangle \langle (\gamma_1) j_2\|T^{(k_2)}\| (\gamma_2) j_2 \rangle.
\] (2.34)

2.1.4 Extension aux groupes impropres \(O(3)\) et \(SU(2) \otimes C_I\)

Les groupes \(O(3)\) et \(SU(2) \otimes C_I\) sont simplement obtenus par produit direct des groupes \(SO(3)\) et \(SU(2)\) avec l’inversion ; on obtient alors aisément les matrices de \(RI\) de \(O(3)\) et de \(O(3)^S \equiv SU(2) \otimes C_I\) par les relations suivantes :

\[
R \in SU(2) = SO(3)^S \Rightarrow \begin{cases}
\mathcal{D}^{(j_\tau)}(R) = +\mathcal{D}^{(j)}(R), & \tau = g \text{ ou } u, \\
\mathcal{D}^{(j)}(IR) = +\mathcal{D}^{(j)}(R), \\
\mathcal{D}^{(j)}(IR) = -\mathcal{D}^{(j)}(R).
\end{cases}
\] (2.35)

De plus, les symboles de couplings restent inchangés i.e.

\[
F_{\begin{pmatrix} m_1 & m_2 \\ j_1 \end{pmatrix}}_{\begin{pmatrix} m_1 & m_2 \\ j_2 \end{pmatrix}} = F_{\begin{pmatrix} m_1 & m_2 \\ j_1 \end{pmatrix}}_{\begin{pmatrix} m_1 & m_2 \\ j_2 \end{pmatrix}} = 1,
\] (2.36)

avec \(\chi \otimes \nu \otimes \mu = g\). La relation (2.36) impose donc la condition \((-1)^{j_\tau} = (-1)^j\).

2.2 Formalisme dans les chaînes de groupes \(SO(3)/SU(2) \supseteq O_h/O_h^S\)

Après quelques rappels et quelques précisions sur la construction des états ainsi que des opérateurs non-standards de la chaîne (2.1), nous définirons une méthode permettant le calcul des coefficients de la matrice d’orientation \(G\) pour des grandeurs entières et/ou demi-entières.

2.2.1 Les représentations de O et de O^S

Définition des représentations projectives

Nous allons revenir brièvement sur les notions de représentations vectorielles et plus particulièrement de représentations projectives dans le cas de groupes ponctuels. Nous effectuerons dorénavant la distinction entre ces deux espèces.

Si l’on se donne un groupe G d’ordre $g = [G]$ d’éléments $\{R_i = E, R_i ; i = 2, \cdots, g\}$, alors les représentations entières (notées \hat{D}) aussi appelées *représentations vectorielles* comme nous l’avons vu, doivent satisfaire à la relation d’homomorphisme :

$$ \forall R_i, R_j \in G, \quad \hat{D}(R_i) \hat{D}(R_j) = \hat{D}(R_i R_j). \quad (2.37) $$

Le cas “entier” est bien connu depuis plusieurs années [38], par contre, le problème de la réduction des représentations de $SU(2)$ dans de tels groupes est un point délicat qui demande à être précisé. Pour le traitement de telles représentations, la plupart des auteurs utilisent le concept de *groupe double* [39, 40, 41, 42, 38] pour la réduction $SU(2) \supset O^*$ où O^* est le groupe double associé au groupe O et on utilise alors les RI de O^* [43]. Cependant, et comme il précisé dans les Refs. [30, 26], l’utilisation de tels groupes pose quelques difficultés (groupes à deux fois plus d’éléments que les groupes dits “simples”, signe des matrices des RI demi-entières) et ambiguïtés (règles de multiplication multiples, sens de la rotation R de 2π pas toujours très clair).

Nous préférons donc au concept de groupes doubles, celui de représentations projectives développé par Altmann *et al.* dans une série d’articles [30, 44, 32] et adapté au cas de l’octaèdre par Boudon et Michelot [26]. Plus généralement, les représentations projectives d’un groupe G sont caractérisées par la relation

$$ \forall R_i, R_j \in G, \quad \hat{D}(R_i) \hat{D}(R_j) = [R_i, R_j] \hat{D}(R_i R_j), \quad (2.38) $$

où $[[R_i, R_j]$ est un nombre, appelé *facteur projectif* et l’ensemble de ces g^2 facteurs constitue un *système de facteurs*. Quelques propriétés des facteurs projectifs sont rappelées en Annexe A, mais on peut déjà remarquer qu’une représentation vectorielle correspond à une représentation projective pour laquelle tous ses facteurs projectifs valent 1.

Comme nous l’avions précisé dans le paragraphe précédent, nous utiliserons par la suite une classe spéciale de représentations projectives irréductibles, appelée *représentations spinorielles*. Elles orientent les $RI \hat{D}^{(j)}$ de $SU(2)$ dans un de ses sous-groupes, et de plus doivent satisfaire aux relations

$$ [E, E] = 1 \quad \text{et} \quad [R_i, R_j] = \pm 1. \quad (2.39) $$

Les facteurs $[R_i, R_j]$ pour les RS de O sont donnés dans la Table 3 de [45]. Par la suite, nous utiliserons la notation O^S qui représente le groupe O muni de ses RS.

Notons enfin que le groupe O possède trois RS 5 : E_1', E_2' et G' respectivement de dimension deux, deux et quatre. De ce fait, $O^S = O \otimes C_4T$ possède 6 RS, notées E_{17}^r, E_{27}^r et G^r_τ ($\tau = g$ ou u). La table de caractères de O^S est rappelée dans la table 2.2. Par exemple, nous verrons que pour des systèmes moléculaires ayant un nombre impair d’électrons, les états vibroniques seront classifiés à l’aide de ces représentations. Par la suite, nous noterons D les RI de O^S (plus de ` o`, ``, c’est le fait que la RI soit entière ou demi-entière qui les distingue).

5Dans la littérature, on trouvera aussi les notations E_\pm, E_{\pm} et G_{\pm} (l’indice correspond à la première valeur demi-entière dans $SU(2)$ où la RS apparaît pour la première fois) ainsi que Γ_6, Γ_7 et Γ_8.

2.2. Formalisme dans les chaînes de groupes \(SO(3) / SU(2) \supset O_h / O^S_h \)

Table 2.2 - Table de caractères du groupe \(O^S \)

<table>
<thead>
<tr>
<th>(O^S_h)</th>
<th>(E)</th>
<th>(8C_3)</th>
<th>(3C_4^2)</th>
<th>(6C_4)</th>
<th>(6C_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(A_2)</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>(E)</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(F_1)</td>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>(F_2)</td>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>(E'_1)</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>(\sqrt{2})</td>
<td>0</td>
</tr>
<tr>
<td>(E'_2)</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>(-\sqrt{2})</td>
<td>0</td>
</tr>
<tr>
<td>(G')</td>
<td>4</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Connection groupe–sous-groupe

Pour l’instant, considérons seulement le cas de groupes propres i.e. examinons la chaîne

\[
SU(2) \supset O^S = SO(3)^S \supset O^S \quad .
\]

L’introduction de l’inversion se fera à la fin de cette sous-partie.

Généralement les représentations de \(SO(3) \) doivent être orientées par rapport au sous-groupe \(O \) (ou \(T_h \)) puisque \(SO(3) \) ne représente que le groupe d’invariance de l’Hamiltonien rovibronien d’ordre zéro. Cette orientation est réalisée au moyen d’une transformation unitaire notée \(G \) qui permet la réduction \(D^{(j)} \downarrow O^S = \oplus_i n_i C_i \) qui est rappelée Table 2.3. Ainsi, pour des grandeurs covariantes, le passage des composantes sphériques \(T^{(j)}_m \) aux composantes dites cubiques \(T^{(j,nC)}_\sigma \equiv T^{(j)}_{nC\sigma} \) sera donné par [46, 25, 47]:

\[
T^{(j)}_{nC\sigma} = \sum_m (j) G^m_{nC\sigma} T^{(j)}_m .
\]

Pour des quantités contravariantes, on écrira :

\[
T^{nC\sigma}_{(j)} = \sum_m (j) G^m_{nC\sigma} T^{(j)}_m .
\]

Dans ces deux dernières équations, \(C \) désigne une \(RI \) de \(O^S \) et \(\sigma \) une composante de \(C \). L’indice \(n \) caractérise la non-simple réductibilité de (2.40) ; cet indice permet de distinguer les états de même symétrie et prend les valeurs \(n = 0, 1, \ldots, \eta - 1 \) où \(\eta \) est la multiplicité de \(C \) dans \(D^{(j)} \).

Nous définissons alors les matrices des \(RI \) de \(O^S \) à l’aide de celles de \(SU(2) \) [25] :

\[
\forall R \in O^S, \quad \left[D^{(C)}(R) \right]^{\sigma'}_{\sigma} \delta^{n',n} \delta_{C',C} = \sum_{m,m'} (j) G^{n'C'}_{m'C'} (\sigma') [D^{(j)}(R)]^m_{m'} (j) G^{m}_{nC\sigma}.
\]

Dans cette expression, nous prenons en compte le fait que chaque élément \(R \) de \(O^S \) est aussi un élément de \(SU(2) \), ce qui se résume par la relation :

\[
[D^{(j)}(R)]^n_{nC\sigma} = [D^{(C)}(R)]^{\sigma'}_{\sigma} \delta^{n',n} \delta_{C',C}.
\]

Si on se réfère à la loi de transformation d’un tenseur irréductible

\[
\forall R \in O^S, \quad P_R T^{(j)}_{nC\sigma} P_{R^{-1}} = \sum_{n'C'\sigma'} [D^{(C)}(R)]^{\sigma'}_{\sigma} [D^{(j)}(R)]^{n'C'}_{nC\sigma} T^{(j)}_{n'C'\sigma'} \delta^{n',n} \delta_{C',C} .
\]

et à l’équation (2.44), les tenseurs cubiques ainsi engendrés dépendent très étroitement des conventions adoptées, pour les \(RI \) de \(SU(2) \) d’une part et pour la matrice \(G \), d’autre part. Dans toute la suite, nous désignerons par \(p \) le triplet \(nC\sigma \). Les matrices des générateurs de \(O^S \) sont données dans la table 2.4, les autres matrices sont rassemblées Table 4.7 de la référence [45].
Tab. 2.3 - Réduction des RI $D^{(j)}$ de $SU(2)$ dans O^5.

<table>
<thead>
<tr>
<th>j entier †</th>
<th>R.I. de O^5</th>
<th>j demi-entier ‡</th>
<th>R.I. de O^5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A_1</td>
<td>1/2</td>
<td>E'_1</td>
</tr>
<tr>
<td>1</td>
<td>F_1</td>
<td>3/2</td>
<td>G'</td>
</tr>
<tr>
<td>2</td>
<td>$E + F_2$</td>
<td>5/2</td>
<td>$E'_2 + G'$</td>
</tr>
<tr>
<td>3</td>
<td>$A_2 + F_1 + F_2$</td>
<td>7/2</td>
<td>$E'_1 + E'_2 + G'$</td>
</tr>
<tr>
<td>4</td>
<td>$A_1 + E + F_1 + F_2$</td>
<td>9/2</td>
<td>$E'_1 + 2G'$</td>
</tr>
<tr>
<td>5</td>
<td>$E + 2F_1 + F_2$</td>
<td>11/2</td>
<td>$E'_1 + E'_2 + 2G'$</td>
</tr>
<tr>
<td>6</td>
<td>$A_1 + A_2 + E + F_1 + 2F_2$</td>
<td>6$+ j'$</td>
<td>$E'_1 + E'_2 + 2G' + (j', E'_1 \leftrightarrow E'_2)$</td>
</tr>
<tr>
<td>7</td>
<td>$A_2 + E + 2F_1 + 2F_2$</td>
<td>12$k + j'$</td>
<td>$2k(E'_1 + E'_2 + 2G') + (j')$</td>
</tr>
<tr>
<td>8</td>
<td>$A_1 + 2E + 2F_1 + 2F_2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>$A_1 + A_2 + E + 3F_1 + 2F_2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>$A_1 + A_2 + 2E + 2F_1 + 3F_2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>$A_2 + 2E + 3F_1 + 3F_2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12$p + q$</td>
<td>$p(A_1 + A_2 + 2E + 3F_1 + 3F_2) + (q)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† p et q entiers, $(q) = D^{(q)}$; ‡ k entier, j' demi-entier, $(j') = D^{(j')}$.

Tenseur métrique orienté et propriétés de la matrice G

Avant de proposer une méthode pour déterminer les coefficients de la matrice G, regardons comment s’effectue le changement de variance co-contra pour les tenseurs cubiques. Nous pouvons écrire des relations analogues à celles utilisées dans le formalisme sphérique (les phases sont celles prises par la référence [16]):

$$T_p^{(j)} = \binom{j}{p} p' T_p^{(j')} \quad \text{et} \quad T_p^{(j)} = \binom{p'}{p} j' T_p^{(j)}. \quad (2.46)$$

Le tenseur métrique orienté est défini comme :

$$\binom{j}{p} \binom{p'}{m'} = \binom{j}{m} C_p^m \binom{j}{p'} C_{p'}^m. \quad (2.47)$$

De plus, on peut montrer que l’on doit avoir [26]

$$G_{m'\sigma}^{m\sigma} = (-1)^m C_{m'\sigma}^{m\sigma}, \quad G_{m'\sigma}^{m\sigma} = (-1)^{j+m} C_{m'\sigma}^{m\sigma} \quad (j \text{ entier}), \quad \delta_{m',n} \delta_{C',C} \delta_{\sigma,-\sigma} \quad (j \text{ demi-entier}), \quad (2.48)$$

et compte tenu de la relation (2.47), réarrangée comme

$$G_p^m = \binom{j}{p} \binom{m}{p'} \binom{j}{m'} \binom{m}{j} C_{m'}^m, \quad (2.49)$$

il devient alors facile de vérifier que le tenseur métrique orienté prend la forme suivante :

$$\binom{j}{p} \binom{p'}{m'} = (-1)^{2j} \binom{j}{p'} \binom{j}{p} = (-1)^{C+\sigma} (-1)^{\varphi(j)} \delta_{m',n} \delta_{C',C} \delta_{\sigma,-\sigma} \quad (2.50)$$

avec

$$\varphi(j) = \begin{cases} j & \text{si } j \text{ entier} \\ 2j & \text{si } j \text{ demi-entier} \end{cases}$$

Lorsque j est entier, nous avons $\sigma = -\sigma$ et $(-1)^{C+\sigma} = (-1)^{C-\sigma} = 1$. Sinon, lorsque j est demi-entier, les différentes phases utiles sont résumées dans la table (2.5).
2.2. Formalisme dans les chaînes de groupes \(SO(3)/SU(2) \supset O_h/O_h\)

![Tab. 2.4 - Matrices \(D^{(C)}(R)\) des générateurs de \(O^s\).](image)

<table>
<thead>
<tr>
<th>(C)</th>
<th>(R)</th>
<th>(C_3(1, 1, 1))</th>
<th>(C_4(0, 0, 1))</th>
<th>Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1)</td>
<td>1</td>
<td>1</td>
<td>(A_1, 1)</td>
<td></td>
</tr>
<tr>
<td>(A_2)</td>
<td>1</td>
<td>-1</td>
<td>(A_1, 1)</td>
<td></td>
</tr>
</tbody>
</table>
| \(E\) | \((-1/2, \sqrt{3}/2)
\(-\sqrt{3}/2, -1/2)\) | \((1 0)
(0 1)\) | \((E, 1)\) |
| \(F_1\) | \((0 1 0)
(0 1 0)\) | \((-1 0 0)
(0 1 0)\) | \((F_1, x)\) |
| \(F_2\) | \((0 1 0)
(0 1 0)\) | \((0 -1 0)
(0 1 0)\) | \((F_2, x)\) |
| \(E'_1\) | \(\sqrt{2}/2\)
\((-\omega^* \omega)\) | \((\omega^* 0)
(0 \omega)\) | \((E'_1, a)\)
\((E'_1, b)\) |
| \(E'_2\) | \(\sqrt{2}/2\)
\((-\omega^* \omega)\) | \((-\omega^* -\omega)\) | \((E'_2, a)\)
\((E'_2, b)\) |
| \(G'\) | \(\sqrt{2}/4\)
\((-\omega -\sqrt{3}\omega -\sqrt{3}\omega -\omega)
(-\omega^* -\omega^* \omega^* \sqrt{3}\omega^*)\) | \((-\omega 0 0 0)
(0 \omega 0 0)\) | \((G', k)\)
\((G', \lambda)\)
\((G', \mu)\)
| \(\omega = e^{i\tau}\) |

2.2.2 Détermination de la similitude unitaire \(G\)

Nous allons ici tenter d’exposer une méthode ⁶ pour déterminer les coefficients de la matrice \(G\) dans les cas \(j\) entiers et demi-entiers. Celle-ci n’est pas restreinte à la chaîne (2.1) et peut être utilisée, le cas échéant, pour d’autres chaînes.

La première partie de l’exposé est en tout point identique à celle proposée par Moret-Bailly [17] puis par Champion et al. [25]. Dans une deuxième partie, nous proposerons un moyen de lever l’arbitraire qui réside lors de l’identification des différentes symétries et composantes des \(\langle j\rangle G_{nC\sigma}^m\).

Obtention des coefficients \(\langle j\rangle G_{nC\sigma}^m\)

L’Hamiltonien moléculaire exprimé dans la chaîne (2.40) s’écrit comme une combinaison linéaire de tenseurs sphériques irréductibles totalement symétriques dans \(O^S\) :

\[
H^{(A_1)} = \sum_k t_k H^{(k, A_1)}.
\] \(2.51\)

Les valeurs de \(k\) permises sont celles pour qui la réduction donne une composante \(A_1\) (voir Tab. 2.3) \(i.e:\) \(k = 0, 4, 6, 8, \ldots\) etc. En fait, les opérateurs \(H^{(4, A_1)}\) et \(H^{(6, A_1)}\) forment une base d’intégralité où tous les autres \(H^{(k, A_1)}\) sont obtenus à partir de ceux-ci. De plus, ces deux opérateurs ne possèdent pas de valeurs propres dégénérées (valeurs propre de même symétrie et même énergie) si bien qu’une solution acceptable pour obtenir les \(G\) est de diagonaliser l’Hamiltonien

\[
H^{(A_1)} = t_4 H^{(4, A_1)} + t_6 H^{(6, A_1)}.
\] \(2.52\)

⁶Elle n’est pas unique ; il en existe d’autre [48].

<table>
<thead>
<tr>
<th>C</th>
<th>E'_1</th>
<th>E'_2</th>
<th>G'</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ</td>
<td>a</td>
<td>b</td>
<td>κ λ μ ν</td>
</tr>
<tr>
<td>$-\sigma$</td>
<td>b</td>
<td>a</td>
<td>ν μ λ κ</td>
</tr>
<tr>
<td>$(-1)^{C-\sigma}$</td>
<td>1</td>
<td>-1</td>
<td>1 -1 1 -1</td>
</tr>
<tr>
<td>$(-1)^{C+\sigma}$</td>
<td>-1</td>
<td>1</td>
<td>-1 1 -1 1</td>
</tr>
<tr>
<td>$(-1)^{2C}$</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Les éléments matriciels sont calculés dans la base standard $\{|j,m\rangle\}$ et sachant que la base cubique pour des grandeurs covariantes est définie par

$$|j,nC\sigma\rangle = \sum_m (j) G^{m}_{nC\sigma} |j,m\rangle,$$ \hspace{1cm} (2.53)

il est aisé de constater que la matrice des vecteurs propres (résulant de la diagonalisation) peut être reliée à la matrice G. Nous allons suivre les Refs. [25, 26, 27] en prenant $t_4 = 1$ et $t_6 = 0$ et ainsi une diagonalisation par bloc de l’opérateur 7

$$H^{(4,A_1)} = \left[(4) G^{q}_{A_1} H^{(4)} + (4) G^{q}_{A_1} H^{(4)} + (4) G_{A_1}^{-1} H^{(4)} \right],$$ \hspace{1cm} (2.54)

suffira à complétement caractériser la multiplicité n à l’intérieur d’un bloc (j,C). Les $(4) G_{A_1}^q$ ont été calculés par exemple par Moret-Bailly [17] :

$$ (4) G_{A_1}^0 = \sqrt{\frac{7}{12}}, \quad (4) G_{A_1}^{-1} = (4) G_{A_1}^4 = \sqrt{\frac{5}{24}},$$ \hspace{1cm} (2.55)

Nous pouvons alors écrire :

$$\langle j,nC\sigma | H^{(4,A_1)} | j,nC\sigma \rangle = \sum_{m,m',q} (j) G^{mC\sigma}_{nA_1} (4) G^{q}_{A_1} (j) G^{m'}_{nC\sigma} \langle j,m | H^{(4)} | j,m' \rangle.$$ \hspace{1cm} (2.56)

En appliquant Wigner-Eckart (formules (2.30,2.76)) à chaque membre de cette équation, il suffit de diagonaliser la matrice $A(j)$ d’éléments

$$A(j)_{m'} = (-1)^{j-m} \sum_q (4) G^{q}_{A_1} V \left(\begin{array}{ccc} 4 & j & j \\ q & -m & m' \end{array} \right),$$ \hspace{1cm} (2.57)

dont la matrice de passage est reliée à la matrice G. Plus précisément, les vecteurs propres (pour j et C fixés) associés aux valeurs propres

$$[j]^{-1/2} F_{A_1}^{(4) j} nC\sigma \langle j \rangle,$$ \hspace{1cm} (2.58)

nous fournissent un jeu de coefficients adaptés. L’indice n caractérise l’ordre des différentes valeurs propres d’un bloc (j,C). Les symboles cubiques F sont explicités dans le paragraphe (2.2.3).

Notons qu’il est nullement nécessaire de diagonaliser ces matrices pour toutes les valeurs de m et m'. Seules des valeurs spécifiques de m et m' permettent de générer tous les sous-espaces contenant les différentes composantes des symétries entières et demi-entières. De plus, pour un sous-espace donné, seule une composante sera considérée. Les autres composantes seront déduites en utilisant les matrices des RI de O^5, ce qui permettra d’avoir des phases cohérentes pour tous les vecteurs propres 8. Si l

\footnote{Ce terme est le principal responsable de l’éclatement octaédrique ou tétraédrique, visible dans les spectres.}

\footnote{Les vecteurs propres seront déterminés à une phase près sinon.}
désigne un entier, on vérifie simplement que :

- Les composantes A_1, E_1 et F_1z sont obtenues pour $m, m' = 4l$
- Les composantes A_2, E_2 et F_2z sont obtenues pour $m, m' = 4l + 2$
- Les composantes F_1x, y et F_2x, y sont obtenues pour $m, m' = 2l + 1$

et que

- Les composantes $E_1'a$ et $G'\lambda$ sont obtenues pour $m, m' = 4l + 1/2$
- Les composantes $E_1'b$ et $G'\mu$ sont obtenues pour $m, m' = 4l + 7/2$
- Les composantes $E_2'a$ et $G'\nu$ sont obtenues pour $m, m' = 4l + 5/2$
- Les composantes $E_2'b$ et $G'\kappa$ sont obtenues pour $m, m' = 4l + 3/2$

Les composantes spécifiques que nous considérerons seront :

$$A_1, A_2, E_1, F_1z, F_2z, E_1'a, E_2'a et G'\kappa.$$ (2.59)

Arrivé à ce stade, il subsiste des ambiguïtés lors de l’identification des différentes composantes présentes pour un jeu de $\{m, m'\}$ donné. Par exemple, comment différencier les termes $E_1'a$ des termes $G'\lambda$ pour le sous-espace $\{m, m' = 4l + 1/2\}$?

Afin d’extraire les “bons” vecteurs propres associés aux “bonnes” composantes, nous proposons maintenant une méthode. Cette procédure est générale et s’adapte aussi bien aux moments angulaires entiers que demi-entiers.

Identification des “bonnes” composantes

Tentons d’être le plus général possible dans notre démarche. Pour cela, nous allons partir, pour un j fixé, d’un jeu quelconque de $\{m, m' = 4l + p/2\}$ ($p = 0, 1, 3, 4 or 5^9$) de telle sorte que le sous-espace correspondant puisse s’écrire comme une somme directe

$$\langle j \rangle e^p = \sum_{i=1}^{i_M} \langle j \rangle C_{i_1}^p, \quad (i_M = 2 or 3),$$ (2.60)

avec la condition d’orthogonalité

$$\left\{ \forall u_p \in \langle j \rangle e^p, \forall u_{p'} \in \langle j \rangle e^{p'}, p \neq p' \Rightarrow < u_p | u_{p'} >= 0 \right\}.$$.

Si nous appelons η_i, la multiplicité de la $RI C_i$ dans la décomposition de $D^{(j)}$, il est facile de voir que

$$\dim \langle j \rangle e^p = \sum_{i=1}^{i_M} \eta_i = \eta_{tot},$$ (2.61)

et de vérifier que la dimension du bloc matriciel associé à $\langle j \rangle e^p$ est simplement donnée par $\eta_{tot} \times \eta_{tot}$.

Le but maintenant est d’extraire un jeu de coefficients G associé à une symétrie $C_0 \in \{C_i, i = 1, i_M\}$ de composante $\sigma_0 \in \{\sigma_i, i = 1, i_M\}$ et défini sur $\langle j \rangle C_{\sigma \sigma_0}^p$. Pour ce faire, nous allons considérer une rotation $10^9 C_4(0, 1, 0)$ (rotation de $\beta = \pi/2$ autour de l’axe y). Dans ce cas, la diagonalisation de la matrice de Wigner d’éléments $[d^{(j)}(\frac{\pi}{2})^m_{i_M}]$ donne i_M valeurs propres distinctes, notées λ_i et dégénérées η_i fois. La restriction de la matrice $[C_0] \times [C_0]$ de la $RI C_0$ pour la rotation $C_4(0, 1, 0)$ est juste la matrice $[D^{(C_0)}(C_4(0, 1, 0))]^\sigma_{\sigma_0}$ de dimension un et d’élément λ_0 qui est aussi une des valeurs propres

9 Les cas $\{m, m' = 2l + 1\}$ et $\{m, m' = 4l + 7/2\}$ ne sont pas pris en compte dans notre étude puisque ce ne sont pas les composantes recherchées (2.39).

10 Nous utiliserons les angles d’Euler ; la paramétrisation d’Euler-Rodrigues ne semble pas nécessaire dans ce cadre.
TABLE 2.6 — Valeurs propres λ de $d^{(j)}(\frac{3}{2})$ pour les composantes spécifiques.

<table>
<thead>
<tr>
<th>m, m'</th>
<th>Valeurs propres</th>
</tr>
</thead>
<tbody>
<tr>
<td>4l</td>
<td>$\lambda_{A_1} = 1, \lambda_{E_1} = -1/2, \lambda_{F_{1z}} = 0$</td>
</tr>
<tr>
<td>4l + 1/2</td>
<td>$\lambda_{E_1} = \sqrt{2}/2$</td>
</tr>
<tr>
<td>4l + 1/2</td>
<td>$\lambda_{E_2} = -\sqrt{2}/2$</td>
</tr>
<tr>
<td>4l + 3/2</td>
<td>$\lambda_{G_K} = \sqrt{2}/4$</td>
</tr>
</tbody>
</table>

de $d^{(j)}(\frac{3}{2})$ associée au couple (C_0, σ_0).

En résumé, nous sommes maintenant en mesure d’identifier les symétries et les composantes de tous les vecteurs propres de $d^{(j)}(\frac{3}{2})$ (pour un sous-espace $i.e.^{(j)} e^p$ donné) en comparant simplement les valeurs propres λ_i obtenues aux éléments de la diagonale de $D^{(C_0)}(C_4(0, 1, 0))$. Les valeurs des λ_i associées aux couples (C_1, σ_1) sont données Table 2.6.

Notons $T^{(C_0 \sigma_0)}$, la matrice formée des vecteurs propres de $d^{(j)}(\frac{3}{2})$ et correspondant à un système (C_0, σ_0). Cette matrice, de dimension $\eta_{\otimes} \times \eta_0$, est directement extraite de la matrice de passage P qui diagonalise $d^{(j)}(\frac{3}{2})$:

$$P = \left(\begin{array}{c} T^{(C_0 \sigma_0)} \end{array} \right) \ldots$$

Ainsi, l’Hamiltonien effectif i.e. l’Hamiltonien défini sur le sous-espace $^{(j)} e^P_{C_0 \sigma_0}$, est déduit en appliquant la transformation $T^{(C_0 \sigma_0)}$ sur le bloc $A^p(j)$ de $^{(j)} e^P$ (équation (2.57)) pour en final, avoir

$$H^{(C_0 \sigma_0)} = [T^{(C_0 \sigma_0)}] \dagger A^p(j) T^{(C_0 \sigma_0)}$$

$$= \left(\begin{array}{c} \eta_0 \times \eta_{\otimes} \end{array} \right) \dagger \left(\begin{array}{c} \eta_{\otimes} \times \eta_{\otimes} \end{array} \right) \left(\begin{array}{c} \eta_{\otimes} \times \eta_0 \end{array} \right)$$

(2.62)

La diagonalisation de cet Hamiltonien donne maintenant η_0 vecteurs propres que l’on range dans la nouvelle matrice de passage, notée $P^{(C_3 \sigma_0)}$. La matrice G désirée est alors déduite par la formule

$$(j)G^m_{n_0 C_0 \sigma_0} = \sum_{n_0' = 1}^{\eta_0} \left[T^{(C_0 \sigma_0)} \right]_{n_0'}^m \left[P^{(C_3 \sigma_0)} \right]_{n_0'}^{n_0}. \quad (2.63)$$

L’indice de multiplicité $n_0 = 0, \ldots, \eta_0 - 1$ est défini pour que les valeurs propres de $H^{(C_0 \sigma_0)}$ soient rangées dans l’ordre croissant.

Il reste à fixer les phases de ces coefficients ; pour cela, nous appliquons les règles établies auparavant et définissons la quantité [45]

$$\Xi(j, n, C, \sigma) = \frac{(j)G_{n C_0 \sigma}^{m_{\text{max}}}}{(j)G_{n C_0 \sigma}^{m_{\text{max}}}}$$

(2.64)

où m_{max} est la valeur maximale prise par m telle que $(j)G_{n C_0 \sigma}^{m}$ soit non-nul. Les phases sont fixées
comme suit [26] :

\[
(C = A_1, A_2, E) \rightarrow \begin{cases}
 \text{pour } j \text{ entier et pair}, & \exists(j, n, C, \sigma) = 1, \\
 \text{pour } j \text{ entier et impair}, & \exists(j, n, C, \sigma) = i, \\
 \text{pour } j \text{ entier et pair}, & \exists(j, n, C, \sigma) = i, \\
 \text{pour } j \text{ entier et impair}, & \exists(j, n, C, \sigma) = 1, \\
 \text{pour } j \text{ demi-entier}, & \exists(j, n, C, \sigma) = (-1)^{j-m_{\text{max}}}.
\end{cases}
\]

Déduction des autres composantes

Les autres composantes se déduisent simplement en utilisant les matrices de \(O^S\). Nous écrivons :

\[
(j) G_{nE_2}^{m} = \frac{2}{\sqrt{3}} \sum_{m'}^{(j) G_{nE_1}^{m'}} \left[D^{(j)}(C_3(1, 1, 1)) \right]_{m'}^m
\tag{2.65}
\]

\[
(j) G_{nC_x}^{m} = \sum_{m'}^{(j) G_{nC_z}^{m'}} \left[D^{(j)}(C_3(1, 1, 1)) \right]_{m'}^m
\tag{2.66}
\]

\[
(j) G_{nC_y}^{m} = \sum_{m'}^{(j) G_{nC_y}^{m'}} \left[D^{(j)}(C_3(1, 1, 1)^2) \right]_{m'}^m
\tag{2.67}
\]

\[
(j) G_{nE_1}^{m} = (j) G_{nE_2}^{m} \left[D^{(j)}(C_4(0, 1, 0)^2) \right]_{-m}^m
\tag{2.68}
\]

\[
(j) G_{nE_2}^{m} = (j) G_{nE_2}^{m} \left[D^{(j)}(C_4(0, 1, 0)^2) \right]_{-m}^m
\tag{2.69}
\]

\[
(j) G_{nG_\lambda}^{m} = \frac{4}{\sqrt{6}} \sum_{m'}^{(j) G_{nG_\lambda}^{m'}} \left[D^{(j)}(C_4(0, 1, 0)) \right]_{m'}^m
\tag{2.70}
\]

\[
(j) G_{nG_\mu}^{m} = \frac{4}{\sqrt{6}} \sum_{m'}^{(j) G_{nG_\mu}^{m'}} \left[D^{(j)}(C_4(0, 1, 0)) \right]_{m'}^m
\tag{2.71}
\]

\[
(j) G_{nG_\nu}^{m} = (j) G_{nG_\nu}^{m} \left[D^{(j)}(C_4(0, 1, 0)^2) \right]_{-m}^m
\tag{2.72}
\]

Pour illustrer la méthode, considérons le sous-espace \((j) \varepsilon^1 = \{m, m' = 4l + 1/2\} \) engendré par les composantes \(E_1^a\) et \(G^\lambda\). i.e. \((j) \varepsilon^1 = (j) \varepsilon^1_{E_1^a} \oplus (j) \varepsilon^1_{G^\lambda}\).

La diagonalisation de \(d^{(j)}(C_4)\) avec \(m, m' = 4l + 1/2\) donne deux valeurs propres distinctes : les vecteurs propres associés à la valeur propre \(\sqrt{2}/2\) sont de type \(E_1^a\) et ceux associés à \(-\sqrt{2}/4\) sont de type \(G^\lambda\). On obtient immédiatement le bloc matriciel à extraire pour l’une ou l’autre des composantes. Par exemple, si \(T(E_1^a)\) est la transformation permettant la réduction \((j) \varepsilon^1 \rightarrow (j) \varepsilon^1_{E_1^a}\), il suffira alors de diagonaliser l’opérateur

\[
H^{(E_1^a)} = T^{(E_1^a)} A^{1(j) T^{(E_1^a)}}
\]

et d’appliquer la formule (2.63) pour obtenir les coefficients \((j) G_{nE_1^a}^{m}\). Les coefficients \((j) G_{nE_1^b}^{m}\) se déduiront à partir de (2.68).
Tab. 2.7 - Coefficients G jusqu'à $j = 11/2$.

<table>
<thead>
<tr>
<th>j</th>
<th>n</th>
<th>C</th>
<th>σ</th>
<th>m</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0</td>
<td>E'_1</td>
<td>a</td>
<td>0.5</td>
<td>1.000000</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>F_1</td>
<td>x</td>
<td>-1</td>
<td>0.707107</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>F_1</td>
<td>y</td>
<td>-1</td>
<td>-0.707107</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>F_1</td>
<td>z</td>
<td>0</td>
<td>1.000000</td>
</tr>
<tr>
<td>1.5</td>
<td>0</td>
<td>G'_1</td>
<td>κ</td>
<td>1.5</td>
<td>1.000000</td>
</tr>
<tr>
<td>1.5</td>
<td>0</td>
<td>G'_1</td>
<td>λ</td>
<td>0.5</td>
<td>1.000000</td>
</tr>
<tr>
<td>1.5</td>
<td>0</td>
<td>G'_1</td>
<td>μ</td>
<td>-0.5</td>
<td>1.000000</td>
</tr>
<tr>
<td>1.5</td>
<td>0</td>
<td>G'_1</td>
<td>ν</td>
<td>-1.5</td>
<td>1.000000</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>E_1</td>
<td>1</td>
<td>0</td>
<td>0.707107</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>E_2</td>
<td>1</td>
<td>-2</td>
<td>0.408248</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>E_2</td>
<td>2</td>
<td>2</td>
<td>0.408248</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>F_2</td>
<td>x</td>
<td>-1</td>
<td>-0.707107</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>F_2</td>
<td>y</td>
<td>1</td>
<td>0.707107</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>F_2</td>
<td>z</td>
<td>2</td>
<td>0.707107</td>
</tr>
<tr>
<td>2.5</td>
<td>0</td>
<td>E'_2</td>
<td>a</td>
<td>-1.5</td>
<td>-0.912871</td>
</tr>
<tr>
<td>2.5</td>
<td>0</td>
<td>E'_2</td>
<td>a</td>
<td>2.5</td>
<td>0.408248</td>
</tr>
<tr>
<td>2.5</td>
<td>0</td>
<td>E'_2</td>
<td>b</td>
<td>-2.5</td>
<td>0.408248</td>
</tr>
<tr>
<td>2.5</td>
<td>0</td>
<td>E'_2</td>
<td>b</td>
<td>1.5</td>
<td>-0.912871</td>
</tr>
<tr>
<td>2.5</td>
<td>0</td>
<td>G'_1</td>
<td>κ</td>
<td>-2.5</td>
<td>-0.912871</td>
</tr>
<tr>
<td>2.5</td>
<td>0</td>
<td>G'_1</td>
<td>λ</td>
<td>0.5</td>
<td>-0.408248</td>
</tr>
<tr>
<td>2.5</td>
<td>0</td>
<td>G'_1</td>
<td>μ</td>
<td>-0.5</td>
<td>-1.000000</td>
</tr>
<tr>
<td>2.5</td>
<td>0</td>
<td>G'_1</td>
<td>ν</td>
<td>-1.5</td>
<td>0.408248</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>A_2</td>
<td></td>
<td>-2</td>
<td>-0.707107</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>A_2</td>
<td></td>
<td>2</td>
<td>0.707107</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>F_1</td>
<td>x</td>
<td>-3</td>
<td>0.559017</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>F_1</td>
<td>x</td>
<td>-1</td>
<td>-0.433013</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>F_1</td>
<td>x</td>
<td>3</td>
<td>0.559017</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>F_1</td>
<td>y</td>
<td>-3</td>
<td>0.559017</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>F_1</td>
<td>y</td>
<td>-1</td>
<td>0.433013</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>F_1</td>
<td>y</td>
<td>1</td>
<td>0.433013</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>F_1</td>
<td>z</td>
<td>3</td>
<td>0.559017</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>F_2</td>
<td>x</td>
<td>-3</td>
<td>-0.433013</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>F_2</td>
<td>x</td>
<td>-1</td>
<td>-0.559017</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>F_2</td>
<td>x</td>
<td>1</td>
<td>0.559017</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>F_2</td>
<td>y</td>
<td>-3</td>
<td>0.433013</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>F_2</td>
<td>y</td>
<td>-1</td>
<td>-0.559017</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>F_2</td>
<td>y</td>
<td>1</td>
<td>-0.559017</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>F_2</td>
<td>y</td>
<td>3</td>
<td>0.433013</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>F_2</td>
<td>z</td>
<td>-2</td>
<td>0.707107</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>j</th>
<th>n</th>
<th>C</th>
<th>σ</th>
<th>m</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>E_2</td>
<td>z</td>
<td>0</td>
<td>0.707107</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>E_2</td>
<td>x</td>
<td>3</td>
<td>0.433013</td>
</tr>
<tr>
<td>3.5</td>
<td>0</td>
<td>E'_1</td>
<td>a</td>
<td>-3.5</td>
<td>0.204124</td>
</tr>
<tr>
<td>3.5</td>
<td>0</td>
<td>E'_1</td>
<td>a</td>
<td>0.5</td>
<td>0.763763</td>
</tr>
<tr>
<td>3.5</td>
<td>0</td>
<td>E'_1</td>
<td>b</td>
<td>-0.5</td>
<td>0.645497</td>
</tr>
<tr>
<td>3.5</td>
<td>0</td>
<td>E'_1</td>
<td>b</td>
<td>3.5</td>
<td>0.645497</td>
</tr>
<tr>
<td>3.5</td>
<td>0</td>
<td>E'_2</td>
<td>a</td>
<td>-1.5</td>
<td>0.500000</td>
</tr>
<tr>
<td>3.5</td>
<td>0</td>
<td>E'_2</td>
<td>a</td>
<td>2.5</td>
<td>-0.866025</td>
</tr>
<tr>
<td>3.5</td>
<td>0</td>
<td>E'_2</td>
<td>b</td>
<td>-2.5</td>
<td>0.866025</td>
</tr>
<tr>
<td>3.5</td>
<td>0</td>
<td>E'_2</td>
<td>b</td>
<td>1.5</td>
<td>-0.500000</td>
</tr>
<tr>
<td>3.5</td>
<td>0</td>
<td>E'_2</td>
<td>b</td>
<td>2.5</td>
<td>0.500000</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>A_1</td>
<td></td>
<td>-4</td>
<td>0.456435</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>A_1</td>
<td></td>
<td>0</td>
<td>0.763763</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>A_1</td>
<td></td>
<td>4</td>
<td>0.456435</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>E_1</td>
<td>1</td>
<td>-4</td>
<td>0.540062</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>E_1</td>
<td>1</td>
<td>0</td>
<td>-0.645497</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>E_1</td>
<td>1</td>
<td>4</td>
<td>0.540062</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>E_1</td>
<td>2</td>
<td>-2</td>
<td>0.707107</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>E_2</td>
<td>2</td>
<td>2</td>
<td>0.707107</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>F_1</td>
<td>x</td>
<td>-3</td>
<td>0.250000</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>F_1</td>
<td>y</td>
<td>-3</td>
<td>-0.250000</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>F_1</td>
<td>y</td>
<td>1</td>
<td>0.661438</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>F_1</td>
<td>y</td>
<td>3</td>
<td>0.250000</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>F_2</td>
<td>x</td>
<td>-3</td>
<td>-0.661438</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>F_2</td>
<td>y</td>
<td>-3</td>
<td>-0.661438</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>F_2</td>
<td>y</td>
<td>1</td>
<td>0.250000</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>F_2</td>
<td>y</td>
<td>3</td>
<td>0.661438</td>
</tr>
<tr>
<td>4.5</td>
<td>0</td>
<td>E'_1</td>
<td>a</td>
<td>-3.5</td>
<td>0.204124</td>
</tr>
<tr>
<td>4.5</td>
<td>0</td>
<td>E'_1</td>
<td>a</td>
<td>0.5</td>
<td>0.763763</td>
</tr>
<tr>
<td>4.5</td>
<td>0</td>
<td>E'_1</td>
<td>b</td>
<td>-4.5</td>
<td>0.612372</td>
</tr>
<tr>
<td>4.5</td>
<td>0</td>
<td>E'_2</td>
<td>a</td>
<td>4.5</td>
<td>0.612372</td>
</tr>
<tr>
<td>j</td>
<td>n</td>
<td>C</td>
<td>σ</td>
<td>m</td>
<td>G</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>---------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>4.5</td>
<td>0</td>
<td>E_1^b</td>
<td>-0.3</td>
<td>0.706763</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>0</td>
<td>E_1^b</td>
<td>3.5</td>
<td>0.204124</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>0</td>
<td>G_κ</td>
<td>-2.5</td>
<td>-0.489190</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>1</td>
<td>G^κ</td>
<td>-2.5</td>
<td>0.872178</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>0</td>
<td>G^κ</td>
<td>1.5</td>
<td>-0.872178</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>1</td>
<td>G^κ</td>
<td>1.5</td>
<td>-0.489190</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>0</td>
<td>G^λ</td>
<td>-3.5</td>
<td>-0.223849</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>1</td>
<td>G^λ</td>
<td>-3.5</td>
<td>-0.953008</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>0</td>
<td>G^λ</td>
<td>0.5</td>
<td>-0.572554</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>1</td>
<td>G^λ</td>
<td>0.5</td>
<td>0.298075</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>0</td>
<td>G^λ</td>
<td>4.5</td>
<td>0.785716</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>1</td>
<td>G^λ</td>
<td>4.5</td>
<td>-0.054095</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>0</td>
<td>G^μ</td>
<td>-4.5</td>
<td>-0.788716</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>1</td>
<td>G^μ</td>
<td>-4.5</td>
<td>-0.489190</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>0</td>
<td>G^μ</td>
<td>-0.5</td>
<td>0.572554</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>1</td>
<td>G^μ</td>
<td>-0.5</td>
<td>-0.298075</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>0</td>
<td>G^μ</td>
<td>3.5</td>
<td>0.223849</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>1</td>
<td>G^μ</td>
<td>3.5</td>
<td>0.953008</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>0</td>
<td>G^ν</td>
<td>-1.5</td>
<td>0.872178</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>1</td>
<td>G^ν</td>
<td>-1.5</td>
<td>0.489190</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>0</td>
<td>G^ν</td>
<td>2.5</td>
<td>0.489190</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>1</td>
<td>G^ν</td>
<td>2.5</td>
<td>-0.872178</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>E_1^1</td>
<td>-4</td>
<td>-0.707107</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>E_2^1</td>
<td>1</td>
<td>0.707107</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>E_2^1</td>
<td>1</td>
<td>0.707107</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>E_2^1</td>
<td>-2</td>
<td>-0.707107</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>E_2^2</td>
<td>2</td>
<td>-0.707107</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>F_1^1</td>
<td>-5</td>
<td>0.513891</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>F_1^1</td>
<td>-5</td>
<td>-0.039253</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>F_1^1</td>
<td>-3</td>
<td>-0.153909</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>F_1^1</td>
<td>-3</td>
<td>0.655314</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>F_1^1</td>
<td>-1</td>
<td>0.460682</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>F_1^1</td>
<td>-1</td>
<td>0.262721</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>F_1^1</td>
<td>1</td>
<td>-0.460682</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>F_1^1</td>
<td>1</td>
<td>0.262721</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>F_1^2</td>
<td>3</td>
<td>0.153909</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>F_1^2</td>
<td>3</td>
<td>-0.655314</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>F_1^2</td>
<td>5</td>
<td>-0.513891</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>F_1^2</td>
<td>5</td>
<td>0.039253</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>F_1^2</td>
<td>-5</td>
<td>-0.513891</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>F_1^2</td>
<td>-5</td>
<td>0.039253</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>F_1^2</td>
<td>-3</td>
<td>-0.153909</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>F_1^2</td>
<td>-3</td>
<td>0.655314</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>F_1^2</td>
<td>-1</td>
<td>-0.460682</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>F_1^2</td>
<td>-1</td>
<td>-0.262721</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>F_1^3</td>
<td>1</td>
<td>-0.460682</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>F_1^3</td>
<td>1</td>
<td>-0.262721</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>F_1^3</td>
<td>3</td>
<td>-0.153909</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>F_1^3</td>
<td>3</td>
<td>0.655314</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>F_1^3</td>
<td>5</td>
<td>-0.513891</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>F_1^3</td>
<td>5</td>
<td>0.039253</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>F_2^1</td>
<td>-4</td>
<td>0.243021</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>F_2^1</td>
<td>-4</td>
<td>0.664034</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>F_2^2</td>
<td>0</td>
<td>0.939085</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>j</th>
<th>n</th>
<th>C</th>
<th>σ</th>
<th>m</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>F_1^1</td>
<td>z</td>
<td>0</td>
<td>-0.349684</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>F_1^1</td>
<td>z</td>
<td>4</td>
<td>0.243021</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>F_1^1</td>
<td>z</td>
<td>4</td>
<td>0.640344</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>F_2^1</td>
<td>x</td>
<td>-5</td>
<td>-0.484123</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>F_2^1</td>
<td>x</td>
<td>-3</td>
<td>-0.215606</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>F_2^1</td>
<td>x</td>
<td>-1</td>
<td>0.467707</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>F_2^2</td>
<td>x</td>
<td>1</td>
<td>-0.467707</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>F_2^2</td>
<td>x</td>
<td>3</td>
<td>0.215606</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>F_2^2</td>
<td>x</td>
<td>5</td>
<td>0.484123</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>F_2^2</td>
<td>y</td>
<td>-5</td>
<td>-0.484123</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>F_2^2</td>
<td>y</td>
<td>-3</td>
<td>-0.215606</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>F_2^2</td>
<td>y</td>
<td>-1</td>
<td>0.467707</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>F_2^2</td>
<td>y</td>
<td>1</td>
<td>-0.467707</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>F_2^2</td>
<td>y</td>
<td>3</td>
<td>0.215606</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>F_2^2</td>
<td>y</td>
<td>5</td>
<td>0.484123</td>
</tr>
</tbody>
</table>
Calculs numériques

Les coefficients G sont donnés dans la table 2.7 jusqu'à $j = 11/5$ et ont été calculés jusqu'à $j = 199.5$. En pratique, le calcul des coefficients G fait appel à une grande précision numérique. Par exemple, le calcul des fonctions de Wigner (2.10) pour $j > 70$ demande un très grand nombre de chiffres significatifs. Lorsque j devient très grand, la somme alternée sur r génère des erreurs si la précision de chaque terme de la somme n’est pas suffisante (typiquement, si les calculs sont effectués en FORTRAN). La formule (2.10) ainsi que les symboles \bar{V} ont alors été calculés en utilisant MAPLE® avec 100 digits. Les fichiers ainsi générés sont appelés par un programme principal écrit en FORTRAN 77 en utilisant des variables de type REAL*16 (quadruple précision) afin d’effectuer les différentes diagonalisations avec une grande précision.

Les coefficients sont d’ores et déjà disponibles à l’adresse URL suivante :

http://www.u-bourgogne.fr/LPUB/group.html

Cette page Web contient le package “GROUP” regroupant les coefficients G ainsi que d’autres coefficients de couplage (\bar{V}, 6C, ..., etc).

2.2.3 Théorème de Wigner-Eckart dans $SO(3)/SU(2) \supset O_h/O_h^S$

Coefficients de couplage orientés

Les symboles F orientés pour le couplage de moments angulaires sont définis à l’aide des symboles \bar{V} de Racah comme

$$F_{p_1 p_2}^{(j_1 j_2 j)} = (\bar{V} G_{p_1 p_2}^{m_1 m_2} G_{m_1 m_2}^p)^{(j_1 j_2 j)}.$$ (2.73)

La réduction du produit tensoriel de deux opérateurs s’effectue de manière analogue aux cas de $SO(3)$ et $SU(2)$ i.e. nous avons :

$$[S^{(j_1)} \times T^{(j_2)}]_p^{(j)} = \sum_{p_1, p_2} F_{p_1 p_2}^{j_1 j_2} S_p^{(j_1)} T_{p_2}^{(j_2)}.$$ (2.74)

Comme précédemment, le changement de variance des tenseurs d’ordre trois s’effectue à l’aide des relations :

$$F_{p_1 p_2}^{(j_1 j_2 j)} = (-1)^{2j} \left(p_1^{(j_1)} p_2^{(j_2)} \right) \left(p_2^{(j_2)} p_1^{(j_1)} \right) \left(j^{(j)} \right) F_{p_1 p_2}^{j_1 j_2} p'',$$

$$F_{p_1 p_2}^{(j_1 j_2 j)} = \left(p_1^{(j_1)} p_2^{(j_2)} \right) \left(p_2^{(j_2)} p_1^{(j_1)} \right) \left(j^{(j)} \right) F_{p_1 p_2}^{j_1 j_2} p'',$$

$$F_{p_1 p_2}^{(j_1 j_2 j)} = (-1)^{2j} \left[j^{(j)} \right]^2 \left(p_1^{(j)} p_2^{(j)} \right) \left(j^{(j)} \right) F_{p_1 p_2}^{j_1 j_2} p'',$$

$$F_{p_1 p_2}^{(j_1 j_2 j)} = \left(j^{(j)} \right)^2 \left(p_1^{(j)} p_2^{(j)} \right) \left(j^{(j)} \right) F_{p_1 p_2}^{j_1 j_2} p'.$$ (2.75)

Ces relations impliquent que nous ayons conservé les choix de phases de Michelot [16, 26].

Enoncé du théorème

Les éléments matriciels dans la base orientée s’écrivent [26] :

$$\langle \Psi_{p'}^{(j')} | T_{p_0}^{(k)} | \Psi_p^{(j)} \rangle = (-1)^{C' + \sigma'} (-1)^{2j + \varphi(j')} F_{n_0 \sigma_0 \sigma}^{k j j'} nC_{\sigma} n'C' - \sigma' \langle j' || T^{(k)} || j \rangle.$$ (2.76)

où $\langle \cdots || \cdots || \cdots \rangle$ est l’e.m.r. défini précédemment.
2.2.4 Introduction de l’inversion

Les groupes O_h et O_h^S sont simplement obtenus par produit direct $O_h \otimes C_I$ et $O_h^S \otimes C_I$, respectivement. Les règles de subduction deviennent alors

$$ D^{(i_+)} \downarrow O_h/O_h^S \left\{ \begin{array}{ll}
= \oplus_i nC_{\tau} & \text{si } \tau = g, \\
= \oplus_i nC_{u} & \text{si } \tau = u,
\end{array} \right. \quad (2.77) $$

et les phases des coefficients G peuvent être choisies de telle sorte que

$$(j^+G^{m}_{n\sigma \tau} \sigma) = (j)G^{m}_{n\sigma \tau}, \text{ avec } \tau = g \text{ ou } u. \quad (2.78)$$

Les symboles orientés restent alors inchangés, i.e.

$$ F n_{11}\sigma_{11} n_{22}\sigma_{22} (j_{11}) = F n_{11}\sigma_{11} n_{22}\sigma_{22} (j), \quad (2.79) $$

avec $\chi \otimes \nu \otimes \mu = g$. Cette dernière expression est vérifiée si l’on a $(-1)^{j \tau} = (-1)^j$ et $(-1)^{C \tau} = (-1)^C$.

2.3 Formalisme dans les groupes O_h et O_h^S

Nous effectuons ici les derniers rappels concernant les outils tensoriels mis à notre disposition. Cette dernière partie traite les couplages à l’intérieur du groupe de l’octaèdre. Aucune difficulté ne concerne le groupe O lui-même, mais plutôt le groupe O_h^S puisque qu’il est non-simpitement réductible, certaines représentations peuvent apparaître plus d’une fois dans le produit de deux RI. Un indice supplémentaire doit donc être introduit afin de distinguer les RI redondantes.

2.3.1 Coefficients de couplages et métriques dans le groupe de l’octaèdre

Changement de variances

Le passage d’une variance à une autre variance se résume par les relations (les choix de phases restent ceux de la référence [45]) :

$$ T^{(C)}_\sigma = \left(\begin{array}{c}
C \\
\sigma \\
\sigma'
\end{array} \right) T^{(C)}_{(\sigma')} \text{ et } T^{(C)}_{(\sigma')} = \left(\begin{array}{c}
\sigma' \\
\sigma
\end{array} \right) T^{(C)}_\sigma. \quad (2.80) $$

Les tenseurs métriques s’écritent

$$ \left(\begin{array}{cc}
C \\
\sigma \\
\sigma'
\end{array} \right) = \left(\begin{array}{cc}
\sigma \\
\sigma'
\end{array} \right) (-1)^{C \sigma} \left(\begin{array}{c}
C \\
\sigma'
\sigma
\end{array} \right) = (-1)^{C \sigma} \delta_{\sigma', -\sigma} \quad (2.81) $$

où les différentes phases (pour C demi-entière) sont recapitulées dans la table 2.5. Lorsque C est entière, les phases de la table 2.5 valent toute 1.

Relations de couplages

Le couplage tensoriel de deux opérateurs dans O_h^S s’écrit

$$ \left[S^{(C_1)}(C_2) \right]_{\sigma}^{(C)} = \sum_{\sigma_1, \sigma_2} F^{(C)}_{\sigma_1 \sigma_2} (C_1)_{\sigma_1} (C_2)_{\sigma_2} S^{(C_1)}_{\sigma_1} T^{(C_2)}_{\sigma_2}, \quad (2.82) $$
où β est l’indice de multiplicité de C dans le produit $C_1 \otimes C_2$ (voir Tab. 2.8). La référence [26] le définit comme :

\[
\begin{align*}
\beta &= 1 \text{ et } 3 \text{ si } F_1 \subset [G' \times G'] , \\
\beta &= s \text{ (resp. } a) \text{ si } F_2 \subset [G' \times G'] \text{ (resp. } \{G' \times G'\}) .
\end{align*}
\]

(2.83)

Dans les autres cas, elle sera simplement désignée par "1" (voir la Ref. [26] pour le sens de ces étiquettes).

Avec les choix de phases réalisés dans [26], on peut aussi donner des relations analogues aux équations (2.20)et (2.75) :

\[
\beta F \frac{\sigma_1}{(C_1)} \frac{\sigma_2}{(C_2)} \frac{(C)}{\sigma} = (-1)^{2\sigma_1} \delta_{\alpha, \beta} \left(\begin{array}{c} \sigma_1' \\ \sigma_1 \\ \sigma_2 \\ \sigma \\ \sigma' \end{array} \right) \left(\begin{array}{c} C \\ C \\ C \\ C \end{array} \right) \alpha F \frac{C_1}{(C_1)} \frac{C_2}{(C_2)} \frac{(C)}{\sigma'} .
\]

(2.84)

\[
\beta F \frac{\sigma_1}{(C_1)} \frac{\sigma_2}{(C_2)} \frac{(C)}{\sigma} = (-1)^{2\sigma_1}[C]^\frac{1}{2} \delta_{\alpha, \beta} \left(\begin{array}{c} \sigma_1' \\ \sigma_1 \\ \sigma_2 \\ \sigma \\ \sigma' \end{array} \right) \left(\begin{array}{c} C \\ C \\ C \end{array} \right) \alpha F \frac{\sigma_1}{(C_1)} \frac{\sigma_2}{(C_2)} \frac{(C)}{\sigma'} .
\]

(2.85)

L’obtention des coefficients $3C$ covariants de O^S (2ème ligne, membre de droite de (2.84)) à partir des symboles F orientés est décrite dans la référence [26] d’après une méthode développée par Lulek [49, 42, 50, 51].

Relations de recouplages

Par analogie aux symboles $6 - j$, les symboles $6C$ de O^S s’obtiennent suivant l’expression :

\[
\begin{align*}
\left\{ \begin{array}{c} C_1 \\ C_2 \\ C_3 \\ C_4 \\ C_5 \\ C_6 \\
\end{array} \right\} \beta_1 \beta_2 \beta_3 \beta_4 = (-1)^{C_1+C_2-C_4+C_5} \sum \text{ tous les } \sigma (-1)^{C_3-C_5} (-1)^{C_6-C_7} \\
\times \beta F \frac{\sigma_1}{(C_1)} \frac{\sigma_6}{(C_6)} \frac{\sigma_5}{(C_5)} \frac{\sigma_4}{(C_4)} \frac{\sigma_3}{(C_3)} \frac{\sigma_2}{(C_2)} \frac{\sigma_1}{(C_1)} \frac{\sigma}{(C_2)} \frac{\sigma_3}{(C_3)} \frac{\sigma_4}{(C_4)} \frac{\sigma_5}{(C_5)} \frac{\sigma_6}{(C_6)}
\end{align*}
\]

(2.86)

Les quatre relations triangulaires de non-nullité des $6C$ sont données par

\[
\left\{ \begin{array}{c} C_1 \\ C_2 \\ C_3 \\ C_4 \\ C_5 \\ C_6 \\
\end{array} \right\} \beta_1 \beta_2 \beta_3 \beta_4 \neq 0 \Rightarrow \left\{ \begin{array}{c} C_1 \otimes C_6 \ni \beta_1 C_5 \\ C_2 \otimes C_4 \ni \beta_2 C_6 \\ C_3 \otimes C_4 \ni \beta_3 C_5 \\ C_1 \otimes C_2 \ni \beta_4 C_3
\end{array} \right\}
\]

(2.87)

Toutes les propriétés de symétrie des $6C$ peuvent être trouvées à l’intérieur de [45].

Il convient aussi de rappeler comment sont définis les symboles $9C$ de O^S :

\[
\begin{align*}
\left\{ \begin{array}{c} C_1 \\ C_4 \\ C_7 \\
\end{array} \right\} \beta \beta_1 \beta_2 \beta_3 \beta_4 \beta_5 \beta_6 \\
\left\{ \begin{array}{c} C_2 \\ C_5 \\ C_8 \\
\end{array} \right\} \beta \beta_1 \beta_2 \beta_3 \beta_4 \beta_5 \beta_6 \\
\left\{ \begin{array}{c} C_3 \\ C_6 \\ C_9 \\
\end{array} \right\} \beta \beta_1 \beta_2 \beta_3 \beta_4 \beta_5 \beta_6
\end{align*}
\]

(2.88)
Les six relations de non-nullité des $9C$ sont :

$$\begin{bmatrix}
C_1 & C_2 & C_3 \\
C_4 & C_5 & C_6 \\
C_7 & C_8 & C_9
\end{bmatrix} \neq 0 \Rightarrow \begin{bmatrix}
C_1 \otimes C_2 & \beta_1 C_3 \\
C_4 \otimes C_5 & \beta_2 C_6 \\
C_7 \otimes C_8 & \beta_3 C_9
\end{bmatrix}$$

(2.89)

Comme pour les $6C$, les propriétés de symétrie de ces symboles sont données dans la référence citée ci-dessus.

2.3.2 Théorème de Wigner–Eckart dans O/O^S

Enoncé du théorème

Les éléments matriciels d'un opérateur tensoriel pour des grandeurs covariantes s'exprime comme

$$\langle \Psi_\sigma^{(C')} | T_{\sigma_0}^{(C_0)} | \Psi_\sigma^{(C)} \rangle = |C|^{-\frac{1}{2}} \sum_\beta \beta F (C_0 \sigma_0, C \sigma) \langle \beta C' | T^{(C_0)} | C \rangle \langle \beta C' | T^{(C_0)} | C \rangle = (-1)^{C'+\sigma'} (-1)^{-2C_0} \sum_\beta \beta F (C_0 \sigma_0, C \sigma) \langle \beta C' | T^{(C_0)} | C \rangle$$

(2.90)

Quelques relations utiles

- **Elément matriciel d'un opérateur scalaire** :
 $$\langle C', \sigma' | T^{(A_1)} | C, \sigma \rangle = |C|^{|C'|} \frac{1}{2} \langle \beta C' | T^{(C_0)} | C \rangle \delta_{C, C'} \delta_{\sigma, \sigma'} .$$
 (2.91)

- **Produit tensoriel de deux opérateurs agissant sur le même espace** :
 $$\langle \beta C' \parallel | T^{(C_1)} \otimes T^{(C_2)} \rangle^{(\beta C_0)} \parallel | C \rangle = \sum_{C'', \beta''_1, \beta''_2} (-1)^{C_1+C_2+C+C'} [C_0]^{1/2}$$

(2.92)

- **Produit tensoriel de deux opérateurs agissant sur des espaces différents** :
 $$\langle C_1 C_2, \beta \beta_2 C' \parallel | T^{(\Gamma_1)} \otimes U^{(\Gamma_2)} \rangle^{(\beta \beta_0)} \parallel | C_1 C_2, \beta_2 C \rangle = ([C]^{C'} [\Gamma_0])^{1/2}$$

(2.93)

Cas particuliers

Simplification des symboles $6C$ et $9C$ pour des opérateurs scalaires :

$$\begin{bmatrix}
A_1 & C_1 & C_1 \\
C_3 & C & C
\end{bmatrix} \overset{1, \beta' \beta_1}{=} (-1)^{C+C_0+C_3}$$

et

$$\begin{bmatrix}
\Gamma & C_1 & C_1 \\
\Gamma & C_2 & C_2 \\
A_1 & C & C
\end{bmatrix} \overset{\beta_1, \beta_2 \beta_3 \beta_4}{=} (-1)^{C+C_2+C}$$

(2.94)
Lien entre les différents formalismes

Il est possible, grâce au lemme de factorisation de Racah, de relier les différents formalismes par le biais des facteurs isoscalaires \(K \) (initialement, Racah a défini les \(K \) à partir des \(CG \) covariants \[52]\)

\[
\begin{align*}
F \left(\frac{j_1 \ j_2 \ j_3}{p_1 \ p_2 \ p_3} \right) &= \sum_{\beta} K_{j_1 j_2 j_3}^{j_1 j_2 j_3} C_{1}^{\sigma_1} C_{2}^{\sigma_2} C_{3}^{\sigma_3} .
\end{align*}
\] (2.94)

Vu que ces facteurs sont étroitement liés aux coefficients \(G \) calculés précédemment, ils sont aussi disponibles jusqu’à \(j = 199.5 \) \[27\] (http://www.u-bourgogne.fr/LPUB/group.html). Quelques valeurs exactes des facteurs \(K \) sont données dans la table 2.9.

En outre, nous pouvons maintenant faire le lien entre les e.m.r. d’un tenseur orienté et ceux d’un tenseur standard par la relation :

\[
\langle \beta j^n \mid T^{(k,n_0C_0)} \mid jnC \rangle = (-1)^{2C' + \varphi(j') \beta} K \left(\begin{array}{c}
k \\ j \end{array} \mid \begin{array}{c}
n_0C_0 \\ n' C' \end{array} \right) \langle \beta j' \mid T^{(k)} \mid j \rangle .
\] (2.95)

Les facteurs \(K \) sont inchangés par toutes permutations paires et multipliés par \((-1)^{\sum j_i + \sum C_i + \beta} \) pour toutes permutations impaires, avec \[26\] :

\[
\left\{ \begin{array}{l}
(-1)^{\delta} = -1 \text{ pour } (C_1 C_2 C_3) = (G'G'F_2), (G'F_2G') \text{ ou } (F_2 G'G') , \\
(-1)^{\beta} = 1 \text{ sinon}.
\end{array} \right.
\] (2.96)

Pour finir, nous donnons deux relations très utiles pour la suite. Tout d’abord, une formule qui relie un facteur \(K \) avec son conjugué :

\[
\begin{align*}
\beta K \left(\begin{array}{ccc}
j_1 & j_2 & j_3 \\
n_1C_1 & n_2C_2 & n_3C_3 \end{array} \right) &= (-1)^{\varphi(j_1) + \varphi(j_2) + \varphi(j_3)} \beta K \left(\begin{array}{ccc}
j_1 & j_2 & j_3 \\
n_1C_1 & n_2C_2 & n_3C_3 \end{array} \right) ,
\end{align*}
\] (2.97)

La dernière relation permet le passage de deux tenseurs symétrisés dans la chaîne à deux tenseurs couplés dans le sous-groupe :

\[
\begin{align*}
\left(A^{(j_1)} \otimes B^{(j_2)} \right)^{(j)}_{nC} &= (-1)^{2C + \varphi(j)} \left[\frac{j}{C} \right]^{1/2} \sum_{n_1C_1, n_2C_2, \beta_0} \beta_0 K \left(\begin{array}{ccc}
j_1 & j_2 & j \\
n_1C_1 & n_2C_2 & n_3C_3 \end{array} \right) \\
&\times \left(A^{(j_1, nC_1)} \otimes B^{(j_2, n_2C_2)} \right)^{(\beta_0 C)} .
\end{align*}
\] (2.98)
<table>
<thead>
<tr>
<th>j_1</th>
<th>j_2</th>
<th>j_3</th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
<th>β</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>A_1</td>
<td>A_1</td>
<td>A_1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0.5</td>
<td>0.5</td>
<td>A_1</td>
<td>E_2^*</td>
<td>E_2^*</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>A_1</td>
<td>F_1</td>
<td>F_1</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1.5</td>
<td>1.5</td>
<td>A_1</td>
<td>G_2</td>
<td>G_2</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>2</td>
<td>A_1</td>
<td>E</td>
<td>E</td>
<td>$\sqrt{3}/\sqrt{5}$</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>2</td>
<td>A_1</td>
<td>F_2</td>
<td>F_2</td>
<td>$\sqrt{3}/\sqrt{5}$</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>2.5</td>
<td>2.5</td>
<td>A_1</td>
<td>E_2^*</td>
<td>E_2^*</td>
<td>$\sqrt{3}/\sqrt{5}$</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>2.5</td>
<td>2.5</td>
<td>A_1</td>
<td>G_2</td>
<td>G_2</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>A_1</td>
<td>A_2</td>
<td>A_2</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>A_1</td>
<td>F_1</td>
<td>F_1</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>A_1</td>
<td>F_2</td>
<td>F_2</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>3.5</td>
<td>3.5</td>
<td>A_1</td>
<td>E_2^*</td>
<td>E_2^*</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>3.5</td>
<td>3.5</td>
<td>A_1</td>
<td>G_2</td>
<td>G_2</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
<td>A_1</td>
<td>G_2</td>
<td>G_2</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>A_1</td>
<td>F_1</td>
<td>A_1</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>A_1</td>
<td>F_1</td>
<td>F_1</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1.5</td>
<td>0.5</td>
<td>A_1</td>
<td>E_2^*</td>
<td>E_2^*</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1.5</td>
<td>1.5</td>
<td>A_1</td>
<td>F_1</td>
<td>E_2^*</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>A_1</td>
<td>E</td>
<td>F_1</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>A_1</td>
<td>F_2</td>
<td>F_2</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2.2</td>
<td>2.2</td>
<td>A_1</td>
<td>E_2^*</td>
<td>E_2^*</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2.5</td>
<td>1.5</td>
<td>A_1</td>
<td>E_2^*</td>
<td>E_2^*</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2.5</td>
<td>1.5</td>
<td>A_1</td>
<td>G_2</td>
<td>G_2</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2.5</td>
<td>2.5</td>
<td>A_1</td>
<td>E_2^*</td>
<td>E_2^*</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2.5</td>
<td>2.5</td>
<td>A_1</td>
<td>G_2</td>
<td>G_2</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>A_1</td>
<td>A_2</td>
<td>A_2</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>A_1</td>
<td>F_1</td>
<td>F_1</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>A_1</td>
<td>F_2</td>
<td>F_2</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3.5</td>
<td>3.5</td>
<td>A_1</td>
<td>E_2^*</td>
<td>E_2^*</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3.5</td>
<td>3.5</td>
<td>A_1</td>
<td>G_2</td>
<td>G_2</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>A_1</td>
<td>E_2^*</td>
<td>E_2^*</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>A_1</td>
<td>E_2^*</td>
<td>E_2^*</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1.5</td>
<td>0.5</td>
<td>A_1</td>
<td>E_2^*</td>
<td>E_2^*</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1.5</td>
<td>0.5</td>
<td>A_1</td>
<td>E_2^*</td>
<td>E_2^*</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1.5</td>
<td>1.5</td>
<td>A_1</td>
<td>E_2^*</td>
<td>E_2^*</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1.5</td>
<td>1.5</td>
<td>A_1</td>
<td>E_2^*</td>
<td>E_2^*</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>A_1</td>
<td>E</td>
<td>A_1</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>A_1</td>
<td>E</td>
<td>F_2</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>A_1</td>
<td>E</td>
<td>F_2</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>A_1</td>
<td>E_2^*</td>
<td>E_2^*</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>A_1</td>
<td>E_2^*</td>
<td>E_2^*</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2.5</td>
<td>0.5</td>
<td>A_1</td>
<td>E_2^*</td>
<td>E_2^*</td>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2.5</td>
<td>0.5</td>
<td>A_1</td>
<td>E_2^*</td>
<td>E_2^*</td>
<td>-1</td>
<td>2</td>
</tr>
</tbody>
</table>

Tab. 2.9 - Valeurs exactes de quelques facteurs isocahédriques
<table>
<thead>
<tr>
<th>j_1</th>
<th>j_2</th>
<th>j_3</th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
<th>β</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2.5</td>
<td>0.5</td>
<td>F_2</td>
<td>F_1</td>
<td>E_1</td>
<td>3</td>
<td>$2i/\sqrt{21}$</td>
</tr>
<tr>
<td>3</td>
<td>2.5</td>
<td>0.5</td>
<td>F_2</td>
<td>G_1</td>
<td>E_1</td>
<td>3</td>
<td>$i\sqrt{5}/\sqrt{21}$</td>
</tr>
<tr>
<td>3</td>
<td>2.5</td>
<td>1.5</td>
<td>A_2</td>
<td>G_1</td>
<td>G_1</td>
<td>1</td>
<td>$i\sqrt{7}$</td>
</tr>
<tr>
<td>3</td>
<td>2.5</td>
<td>1.5</td>
<td>F_1</td>
<td>E_1</td>
<td>G_1</td>
<td>1</td>
<td>$-i\sqrt{3}/\sqrt{7}$</td>
</tr>
<tr>
<td>3</td>
<td>2.5</td>
<td>1.5</td>
<td>F_1</td>
<td>G_1</td>
<td>G_1</td>
<td>3</td>
<td>$-i\sqrt{3}/\sqrt{7}$</td>
</tr>
<tr>
<td>3</td>
<td>2.5</td>
<td>1.5</td>
<td>F_2</td>
<td>E_1</td>
<td>G_1</td>
<td>3</td>
<td>$i\sqrt{5}/\sqrt{7}$</td>
</tr>
<tr>
<td>3</td>
<td>2.5</td>
<td>2</td>
<td>F_3</td>
<td>G_1</td>
<td>G_1</td>
<td>3</td>
<td>$-i\sqrt{5}/\sqrt{7}$</td>
</tr>
<tr>
<td>3</td>
<td>2.5</td>
<td>1.5</td>
<td>F_3</td>
<td>E_2</td>
<td>E_2</td>
<td>1</td>
<td>$i/\sqrt{7}$</td>
</tr>
<tr>
<td>3</td>
<td>2.5</td>
<td>1.5</td>
<td>F_3</td>
<td>G_1</td>
<td>G_2</td>
<td>3</td>
<td>$i/\sqrt{7}$</td>
</tr>
<tr>
<td>3</td>
<td>2.5</td>
<td>2</td>
<td>F_3</td>
<td>E_2</td>
<td>E_2</td>
<td>1</td>
<td>$i/\sqrt{7}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>j_1</th>
<th>j_2</th>
<th>j_3</th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
<th>β</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3.5</td>
<td>3.5</td>
<td>F_1</td>
<td>G_1</td>
<td>G_1</td>
<td>1</td>
<td>$13i\sqrt{2}/3\sqrt{3} \frac{1}{8}$</td>
</tr>
<tr>
<td>3</td>
<td>3.5</td>
<td>3.5</td>
<td>F_1</td>
<td>E_1</td>
<td>E_1</td>
<td>1</td>
<td>$-3i\sqrt{2}/3\sqrt{3} \frac{1}{8}$</td>
</tr>
<tr>
<td>3</td>
<td>3.5</td>
<td>3.5</td>
<td>F_2</td>
<td>E_1</td>
<td>E_1</td>
<td>3</td>
<td>$2i/\sqrt{3}$</td>
</tr>
<tr>
<td>3</td>
<td>3.5</td>
<td>3.5</td>
<td>F_3</td>
<td>E_1</td>
<td>E_1</td>
<td>3</td>
<td>$i/2\sqrt{3}$</td>
</tr>
<tr>
<td>3</td>
<td>3.5</td>
<td>3.5</td>
<td>F_3</td>
<td>G_1</td>
<td>G_1</td>
<td>1</td>
<td>$i/\sqrt{3}$</td>
</tr>
<tr>
<td>3</td>
<td>3.5</td>
<td>3.5</td>
<td>F_3</td>
<td>E_2</td>
<td>E_2</td>
<td>1</td>
<td>$i/2\sqrt{3}$</td>
</tr>
<tr>
<td>3</td>
<td>3.5</td>
<td>3.5</td>
<td>F_3</td>
<td>G_1</td>
<td>G_2</td>
<td>1</td>
<td>$i/\sqrt{3}$</td>
</tr>
<tr>
<td>3</td>
<td>3.5</td>
<td>3.5</td>
<td>F_3</td>
<td>E_2</td>
<td>E_2</td>
<td>1</td>
<td>$i/\sqrt{3}$</td>
</tr>
</tbody>
</table>
2.3. Passage aux groupes O_h et O^S_h

Là encore, l’introduction de l’inversion est triviale, les facteurs isoscalaires et a fortiori les symboles $3C$ sont choisis de telle sorte qu’ils restent inchangés dans l’opération d’inversion. On aura alors

$$
\beta K \begin{pmatrix}
 j_1 \\
 n_1 C_1 \\
 n_1 C_2 \\
 n_1 C_3
\end{pmatrix} = \beta K \begin{pmatrix}
 j \\\n n C_1 \\
 n C_2 \\
 n C
\end{pmatrix},
$$

(2.99)

et

$$
\beta F \begin{pmatrix}
 C_1 \\
 \sigma_1 \\
 \sigma_2 \\
 \sigma_3
\end{pmatrix} = \beta F \begin{pmatrix}
 C \\\n \sigma \sigma_2 \sigma_3
\end{pmatrix},
$$

(2.100)

avec $\chi \otimes \nu \otimes \mu = g$.

2.3.4 Application : spectre rotationnel du niveau de base de $^{32}\text{SF}_6$

Avant de conclure, nous illustrons par un exemple relativement simple, l’utilisation des différents coefficients considérés dans ce chapitre. Cette dernière partie est dédiée au calcul des niveaux purement rotationnels de l’état de base de $^{32}\text{SF}_6$ [23]. Nous anticipons donc sur le chapitre 5 concernant la construction d’un Hamiltonien effectif ne contenant que la partie rotationnelle.

Les opérateurs rotationnels définis par Moret-Bailly [17], sont construits comme un polynôme de degré Ω en opérateurs élémentaires de moments angulaires J_x, J_y et J_z. Les composantes symétrisées sont de la forme :

$$
R_{\gamma}^{\Omega(K,n,\Gamma)} = \sum_{m} K C_{n,\Gamma}^{m} R_{m}^{\Omega(K)}.
$$

(2.101)

Le calcul des éléments matriciels de ces opérateurs s’effectue à l’aide du théorème de Wigner-Eckart (2.76) une base du type $|J, nC\sigma\rangle$. L’Hamiltonien rotationnel est donné par

$$
\tilde{H}_{rot} = \sum_{\Gamma} \tilde{R}^{\Omega(K,nA_1)} R^{\Omega(K,nA_1)}
$$

où les paramètres \(i \) sont donnés par [23] :

\[
\begin{align*}
\hat{\mu}^{(4, A_1)} &= 0.1819694351 \times 10^{-9} \text{ cm}^{-1} \\
\hat{\mu}^{(6, A_1)} &= 0.1008338978 \times 10^{-13} \text{ cm}^{-1} \\
\hat{\mu}^{(6, A_1)} &= -0.1061525546 \times 10^{-15} \text{ cm}^{-1} \\
\hat{\mu}^{(8, A_1)} &= 0.65795734511 \times 10^{-19} \text{ cm}^{-1} \\
\hat{\mu}^{(6, A_1)} &= -0.89391941374 \times 10^{-20} \text{ cm}^{-1} \\
\hat{\mu}^{(8, A_1)} &= -0.96703402824 \times 10^{-21} \text{ cm}^{-1}
\end{align*}
\]

Les énergies réduites ont été tracées sur les figures 2.2 et 2.3 pour des valeurs entières et demi-entières de \(J \):

\[
E_{\text{red}} = E - \sum_{\Omega} \hat{\mu}(0, A_1) R_{\Omega}(0, A_1) = E - B_0 J (J + 1) + D_0 J^2 (J + 1)^2 - \cdots
\]

La figure 2.2, comme la référence [23] (seulement pour les \(J \) entiers), donne les énergies pour \(J_{\text{max}} = 96 \). Cependant, il s’avère qu’à température ambiante, des valeurs de \(J \) beaucoup plus élevées peuvent être observées. La figure 2.3 est alors une extrapolation jusqu’à \(J = 199.5 \) à partir du jeu de paramètres précédent. On remarque clairement la structure régulière des niveaux avec la formation de “clusters” pour des états rotationnels fortement excités [53]. Il est important d’ajouter que cet exemple est purement académique car : i) l’extrapolation à des \(J \) si élevés n’est pas à considérer comme “sérieuse” car les analyses n’ont pas été effectuées (parce que jusqu’à présent, nous n’avions pas les coefficients \(G \) pour \(j > 96 \)) et ii) on a mis aussi les valeurs demi-entière de \(J \) qui n’interviennent pas dans le cas de \(SF_6 \). Ceci est juste pour illustrer l’utilisation des \(G \).

![Graphique](image.png)

FIG. 2.3 - Extrapolation du spectre rotationnel de l’état de base de \(^{32}SF_6 \) jusqu’à \(J = 199.5 \).
2.4 Résumé du chapitre

2.4.1 Ce qu'il faut retenir ⋯

Nous venons de présenter trois formalismes utilisés pour les études spectroscopiques des molécules de types *toupies sphériques* placées dans un environnement à symétrie cubique. Les coefficients de couplage ainsi que d'autres relations ont été écrits dans les formalismes *I)* sphérique *II)* cubique orienté et *III)* octaédrique.

- L'orientation dans la chaîne se fait par une transformation unitaire G et ce, pour des états de moments angulaires (entiers ou demi-entiers) jusqu'à 199.5. La méthode détaillée pour l'obtention de la matrice a été présentée ici pour la première fois.
- Prise en compte des RS de O à la place du groupe double O^*.
- Le groupe O^S est non-simplement réductible.
- Les facteurs isoscalaires assurent le lien entre les différents formalismes.

2.4.2 Les références à consulter

Voici les principales références concernant les formalismes présentés ci-dessus.

M. Rey, V. Boudon, Ch. Wenger, G. Pierre et B. Sartakov. *Orientation of O(3) and SU(2) ⊗ C_I representations in cubic point groups (O_h, T_d) for application to molecular spectroscopy*. J. Mol. Spectrosc., (2002).
PARTIE I. — Chapitre 2. Formalisme tensoriel pour des systèmes moléculaires
Les représentations projectives

Nous collectons dans ce paragraphe les principaux résultats obtenus dans la série d’articles de Altmann [30, 44, 32] ainsi que dans la référence [26]. Quelques rappels ont été effectués dans le chapitre 1 ; nous les complétons ici par des définitions et propriétés supplémentaires.

A.1 Définition et propriétés des représentations projectives

Définition générale

Soit D (qui sera notée par la suite \hat{D} ou \tilde{D}) une représentation d’un groupe G ponctuel composée des éléments

$$\{R_1 = E, \ R_i \ ; \ i = 2, \cdots, g\} \in G$$

et telle que :

$$D : \ G \rightarrow D(G)$$
$$R \sim D(G) = P_R : V \rightarrow V$$

où V est l’espace porteur des représentations et g l’ordre du groupe.

- Par définition, une représentation \hat{D} sera dite vectorielle si l’on a :

$$\hat{D}(R_i)\hat{D}(R_j) = \hat{D}(R_iR_j) \ \forall R_i, R_j \in G . \quad (A.1)$$

On remarque immédiatement que $\hat{D}(R)\hat{D}(R^{-1}) = I_d$ (identité).

- Dans le cas contraire (cas non vectoriel), une représentation \tilde{D} sera dite projective (RP) si elle vérifie l’égalité :

$$\tilde{D}(R_i)\tilde{D}(R_j) = [R_i, R_j]\tilde{D}(R_iR_j) \ \forall R_i, R_j \in G . \quad (A.2)$$

Dans cette expression, le symbole $[\cdots]$ est un facteur projectif. L’ensemble des facteurs projectifs pour un groupe G donné définit alors un système de facteurs.

Quelques propriétés

Les conditions nécessaires et suffisantes pour qu’un jeu de facteurs projectifs forment un système de facteurs sont :

$$[R_i, R_j] \ [R_iR_j, R_k] = [R_i, R_jR_k] \ [R_j, R_k]$$
$$[E, R] = [R, E] = [E, E]$$
$$[R, R^{-1}] = [R^{-1}, R]$$

Ainsi d’après la première égalité, les g^2 facteurs projectifs $[\cdots]$ doivent satisfaire aux g^3 équations ci-dessus.

Notons qu’il existe encore un certain nombre de propriétés énoncées sous forme de théorèmes et que l’on peut trouver par exemple dans la référence [30].

57
Quelques remarques

- Le facteur \([E, E]\) est dans le cas général quelconque, mais on peut toujours faire en sorte, par un changement de jauge adéquat, qu’il soit égal à 1. On aura alors :

\[
\]

- Une deuxième remarque concerne les caractères des \(RP\). Par définition, le caractère d’un élément \(R_i\) de \(G\) dans la représentation \(\tilde{D}\) est donné par :

\[
\chi^\tilde{D}(R_i) = \text{Tr}\tilde{D}(R_i) = \sum_k \tilde{D}(R_i)_k^k .
\]

Si l’on donne maintenant un ensemble \(\tilde{R} = \{X \in G, Y \in G/X = Y R_i Y^{-1}\}\) (classe de conjugaison), on montre alors facilement que

\[
\chi^\tilde{D}(X) = [Y, R_i Y^{-1}] [R_i, Y^{-1}] [Y, Y^{-1}] \chi^\tilde{D}(R_i) .
\]

Une représentation vectorielle usuelle est une (RP) pour laquelle les facteurs projectifs valent tous 1. Nous avons alors pour les représentations vectorielles et \(\forall X \in \tilde{R}, \chi^\tilde{D}(X) = \chi^\tilde{D}(R_i)\).

- Pour notre problème, nous nous intéressons aux représentations irréductibles projectives (RIP) qui réduisent les \(RI\) de \(SU(2)\) dans \(G\). Celles-ci sont conventionnellement appelées \(représentations\ spinorielles\ (RS)\) et répondent aux conditions \([E, E] = 1\) et \([R_i, R_j] = \pm 1\). De plus, elles ne dépendent que de la classe de conjugaison et sont identiques pour tous les éléments d’une même classe \(\chi^\tilde{D}(X) = \chi^\tilde{D}(R_i) \forall X \in \tilde{R}\).
Extension à la chaîne $SU(2) \otimes C_I \supset T_d^S$

Nous effectuons ici une extension de la chaîne usuelle $O(3) \supset T_d$ rencontrée par exemple, dans le calcul d’énergies rovibrationnelles dans un état vibronique non-dégénéré (CH_4, P_A, ...), à une chaîne du type

$$SU(2) \otimes C_I \supset T_d^S,$$

où T_d^S représente le groupe T_d muni de ses RS (VCl_4, par exemple). Pour cela, nous partons des travaux effectués sur la chaîne $SU(2) \otimes C_I \supset O_h^S$ [26], en différenciant cette fois les opérations propres et impaires. Ainsi, certains coefficients de couplages se verront attribuer un facteur de phase.

B.1 Les représentations du groupe du tétraèdre

Le groupe T_d possède trois représentations spinorielles E'_1, E'_2 et G' (identiques à celles du groupe O du fait de l’isomorphisme) mais ses opérations ne contiennent pas l’inversion I. Notons T_d^S le groupe auquel sont attachées les RS. La table de caractères de T_d^S est définie dans le tableau B.1. De plus, les règles de multiplication des RS de T_d/T_d^S sont identiques à celles de O/O^S.

Si on considère une chaîne du type

$$G \supset H$$

avec $G = SO(3)$ ou $SU(2)$ et $H = T_d$ ou T_d^S, on montre que les matrices des représentations de G et H sont reliées par les matrices d’orientation [27]

$$[\tilde{D}^{(j)}(R)]_{\sigma'}^{\sigma} \delta_{nm, n\delta C\gamma, C} = \sum_{mn}^{(j)} \tilde{G}_{nm}^{\gamma C} \sigma' [D^{(j)}(R)]_{nm}^{\gamma C} \tilde{G}_{n\delta C\gamma} \forall R \in T_d,$$ \hspace{1cm} (B.1)

où nous avons distingué par des “tildes”, pour des raisons de clarté, les matrices se référant au groupe T_d^S. En pratique, ces matrices sont bien évidemment identiques à celles de O^S.

B.2 Extension à la chaîne $SU(2) \otimes C_I \supset T_d^S$

Nous avons rappelé la correspondance entre les orientations T_d^S/O^S. Distinguons maintenant les opérations propres et les opérations impaires. Ainsi, des facteurs de phases vont se greffer à nos coefficients G lors du passage de $SO(3)/SU(2)$ à $O(3)/SU(2) \otimes C_I$.

Les règles de subduction s’énoncent :

$$D^{(j')} \downarrow T_d^S = \bigoplus_i n_i \tilde{C}_i = \left\{ \begin{array}{ll}
= \bigoplus_i n_i C_i & \text{si } \tau = g, \\
= \bigoplus_i n_i (C_i \times A_2) & \text{si } \tau = u,
\end{array} \right.$$ \hspace{1cm} (B.2)
TAB. B.1 - Table des caractères du groupe T_d^S

<table>
<thead>
<tr>
<th>T_d</th>
<th>E</th>
<th>$8C_3$</th>
<th>$6\sigma_d$</th>
<th>$6S_4$</th>
<th>$3S^2_4 = 3C_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A_2</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>F_1</td>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>F_2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>E'_1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>$\sqrt{2}$</td>
<td>0</td>
</tr>
<tr>
<td>E'_2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>$-\sqrt{2}$</td>
<td>0</td>
</tr>
<tr>
<td>G'</td>
<td>4</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

où nous rappelons que les matrices des RI/RS de $O(3)$ sont définies par rapport à celles de $SO(3)$ par:

$$R \in SO(3) \Rightarrow \begin{cases} D^{(\tau g)}(R) = +D^{(\tau)}(R) & , \tau = g \text{ ou } u \\ D^{(jg)}(IR) = +D^{(j)}(R) \\ D^{(j)}(IR) = -D^{(j)}(R) \end{cases}$$

Par exemple, nous aurons maintenant les subductions naturelles $D^{(1/2g)} = E'_1$ et $D^{(1/2u)} = E'_2$ à partir desquelles toutes les autres symétries pourront être engendrées. Par la suite, nous utiliserons la notation simplifiée

$$\overline{C} = C \otimes A_2,$$

pour désigner les RI de T_d^S.

B.2.1 Coefficients G relatifs à la chaîne

Nous allons suivre le procédé de recherche des coefficients G pour des j entiers en calquant les travaux effectués pour le cas entier [25]. Dans ce qui va suivre, nous considérerons les générateurs de T_d^S, $R = C_3 = C_3(1,1,1)$ et $R = S_4 = S_4^0(0,0,1)$ (voir la table B.2).

i) Cas d’une représentation du type j_g

Pour les représentations de type $D^{(j_g)}$, $\tilde{C} = C$ et l’équation (B.1) s’écrit :

$$\left[D^{(C)}(R) \right]^{\sigma')}_{\sigma} = \sum_{m,m'} (j_g)\tilde{G}^m_{m'}^{\sigma'} \left[D^{(j)}(R) \right]_m^m (j_g)\tilde{G}^m_{nC^*}.$$ \hspace{1cm} (B.3)

D’après l’équation (B.3) en comparant à l’équation (B.1) ainsi que par l’utilisation du premier lemme de Schur [25], nous avons forcément pour tout C

$$(j_g)\tilde{G}^m_{nC^*} = \lambda(j_g,nC)G^m_{nC^*}. \hspace{1cm} (B.4)$$

Afin d’être cohérent avec les travaux [25], nous choisissons de prendre

$$\lambda(j_g,nC) = 1 \iff (j_g)\tilde{G}^m_{nC^*} = (j)G^m_{nC^*}. \hspace{1cm} (B.5)$$

ii) Cas d’une représentation du type j_u avec $C \neq E$ et G'

Pour les représentations du type $D^{(j_u)}$, nous avons $\tilde{C} = \overline{C}$ et d’après le tableau B.2, nous remarquons immédiatement que

$$D^{(C)}(C_3) \equiv \tilde{D}^{(C)}(C_3) = \tilde{D}^{(\overline{C})}(C_3),$$ \hspace{1cm} (B.6)

$$D^{(C)}(C_4) \equiv \tilde{D}^{(C)}(S_4) = -\tilde{D}^{(\overline{C})}(S_4) \equiv -D^{(\overline{C})}(C_4), \hspace{1cm} (B.7)$$
avec \(C = A_1, A_2, F_1, F_2, E'_1 \) ou \(E'_2 \). L’équation (B.1) est alors substituée par la relation :

\[
\left[\tilde{D}(C)(R) \right]_{\sigma}^{\sigma'} = \varepsilon(R) \sum_{m,m'} (j_u) \tilde{G}_{m\sigma}^{m\sigma'} [D^{(j)}(R)]_{m}^{m'} (j_u) \tilde{G}_{m\sigma}^{m\sigma'},
\]

(B.8)

avec \(\varepsilon(C_3) = 1 \) et \(\varepsilon(S_4) = -1 \).

Comme précédemment, nous pouvons déduire que

\[
(j_u) \tilde{G}_{nC\sigma}^{m} = \lambda(j_u, nC)^{(j)} G_{nC\sigma}^{m},
\]

(B.9)

et nous choisissons de fixer

\[
\lambda(j_u, nC) = 1 \iff (j_u) \tilde{G}_{nC\sigma}^{m} = (j) G_{nC\sigma}^{m}.
\]

(B.10)

iii) Cas d’une représentation du type \(j_u \) pour \(C = E \)

Comme il est souligné dans la référence [25], on est amené à chercher une transformation unitaire \(U^{(E)} \) telle que :

\[
U^{(E)-1} \tilde{D}(E)(C_3) U^{(E)} = \tilde{D}(E)(C_3) = D^{(E)}(C_3),
\]

(B.11)

\[
U^{(E)-1} \tilde{D}(E)(S_4) U^{(E)} = -\tilde{D}(E)(S_4) = -D^{(E)}(C_4).
\]

(B.12)
On montre que cette transformation est unique à une phase près :

\[\mathcal{U}(E) = e^{i\phi(E)} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}. \]

(B.13)

Toujours d’après (B.1), nous obtenons :

\[\sum_{\sigma} \mathcal{U}^{(E)\sigma}(j_u) \tilde{G}^m_{nE\sigma} = \lambda(j_u, nE) (j) G^m_{nE\sigma}. \]

(B.14)

Ainsi, en adoptant les choix \(\phi(E) = 0 \) et \(\lambda(j_u, nE) = 1 \), nous pouvons finalement écrire

\[(j_u) \tilde{G}^m_{nE1} = - (j) G^m_{nE2}, \]

(B.15)

\[(j_u) \tilde{G}^m_{nE2} = (j) G^m_{nE1}. \]

(B.16)

ou ce qui revient au même

\[(j_u) \tilde{G}^m_{nE\sigma} = \epsilon_E(\sigma) (j) G^m_{nE\sigma}, \]

(B.17)

avec \(\epsilon_E(1) = -1, \epsilon_E(2) = 1 \) et \(I = 2, \bar{I} = 1 \).

iv) Cas d’une représentation du type \(j_u \) pour \(C = G' \)

Il reste maintenant à traiter le cas quatre fois dégénéré et nous aurons ainsi un jeu complet de coefficients \(G \) pour les opérations propres et impropre.

Procédons encore de manière similaire à \(C = E \) et cherchons la transformation unitaire \(\mathcal{U}^{(G')} \) telle que :

\[\mathcal{U}^{(G')}^{-1} \tilde{D}^{(G')}(C_3) \mathcal{U}^{(G')} = \tilde{D}^{(G')}(C_3) = D^{(G')}(C_3), \]

(B.18)

\[\mathcal{U}^{(G')}^{-1} \tilde{D}^{(G')}(S_4) \mathcal{U}^{(G')} = - \tilde{D}^{(G')}(S_4) = - D^{(G')}(C_4). \]

(B.19)

Afin de résoudre ce système, la matrice \(\mathcal{U}^{(G')} \) doit être définie comme

\[\mathcal{U}^{(G')} = e^{i\phi(G')} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}. \]

(B.20)

et par des considérations similaires, nous pouvons écrire

\[\sum_{\tilde{\sigma}} \mathcal{U}^{(G')\tilde{\sigma}}(j_u) \tilde{G}^m_{nG'\sigma} = \lambda(j_u, nG') (j) G^m_{nG'\sigma}. \]

(B.21)

Si l’on choisit de prendre \(\phi(G') = 0 \) et \(\lambda(j_u, nG') = 1 \), nous aurons

\[(j_u) \tilde{G}^m_{nG'\sigma} = \epsilon_{G'}(\sigma) (j) G^m_{nG'\sigma}, \]

(B.22)

où \(\epsilon_{G'}(\sigma) \) and \(\tilde{\sigma} \) sont définis dans la table B.3.

Tab. B.3 - Composantes et phases pour les représentations spinorielles \(G' \).

<table>
<thead>
<tr>
<th>(\sigma)</th>
<th>(\kappa)</th>
<th>(\lambda)</th>
<th>(\mu)</th>
<th>(\nu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tilde{\sigma})</td>
<td>(\mu)</td>
<td>(\nu)</td>
<td>(\kappa)</td>
<td>(\lambda)</td>
</tr>
<tr>
<td>(\epsilon(\sigma))</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>
B.2.2 Conséquences sur les symboles de couplage

La conséquence directe de ces changements de signe apparaît dans le calcul des symboles F orientés. On peut maintenant montrer qu’ils s’expriment comme

$$
F \begin{pmatrix} j_{1τ} & j_{2v} & j_{3χ} \\ n_1 C_1 σ_1 & n_2 C_2 σ_2 & n_3 C_3 σ_3 \end{pmatrix} = \epsilon_{C_1}(σ_1)\epsilon_{C_2}(σ_2)\epsilon_{C_3}(σ_3) F \begin{pmatrix} j_1 & j_2 & j_3 \\ n_1 C_1 σ_1 & n_2 C_2 σ_2 & n_3 C_3 σ_3 \end{pmatrix},
$$

avec $σ = \bar{σ}$ et $\epsilon_C(σ) = 1$ si $C \neq E$ ou G'. De plus, nous avons toujours la condition $τ \otimes v \otimes χ = g$. Les facteurs isoscalaires ont aussi été recalculés pour de telles représentations et sont disponibles jusqu’à $J_{max} = 199.5$ sur la page :

http://www.u-bourgogne.fr/LPUB/group.html
PARTIE I. — Annexe B. Extension à la chaîne $SU(2) \otimes C_1 \supset T_3^S$
Deuxième partie

Du traitement usuel des interactions rovibroniques ...
Interactions vibroniques dans l’approximation adiabatique

Dans ce chapitre, nous considérons tous les types d’interactions vibroniques susceptibles de se produire en présence d’états électroniques dégénérés. Le but ici étant de présenter une étude systématique des couplages vibroniques pour tout mode vibrationnel couplé à un état électronique dégénéré quelconque (le cas non-dégénéré est en effet trivial car en général nous avons un seul minimum de potentiel). Nous verrons dans un prochain chapitre une méthode plus générale basée sur la construction d’Hamiltoniens effectifs, mais cette étude préalable nous a paru indispensable pour mieux resituer les origines physiques de ce problème. Dans ce chapitre seront considérés les couplages dits statiques avec l’investigation de la symétrie moléculaire. Un traitement dit dynamique (couplage des parties nucléaire et électronique) sera envisagé dans le prochain chapitre.

Considérons une molécule non-linéaire présentant une dégénérescence électronique pour une certaine configuration géométrique (généralement la configuration d’équilibre). Il est montré que tout déplacement d’un noyau ou d’un groupement de noyaux de cette configuration vers une autre configuration de symétrie moins élevée, lève la dégénérescence électronique des surfaces de potentiel. Ce phénomène est communément appelé “Effet Jahn-Teller” [54]. C’est actuellement un des plus étudiés dans la littérature pour des molécules non-linéaires1.

De nombreux travaux 2 théoriques [54–70] et expérimentaux [13–92] traitent des interactions vibroniques et plus particulièrement de l’effet Jahn-Teller. Les plus complets à ce sujet sont sans doute ceux de Engelman [93] et de Bersuker et Polinger [94]. Cependant, dans la plupart des cas, les outils tensoriels à disposition ne sont pas nécessairement pris en compte. De récentes études [72, 45] ont été effectuées dans ce sens mais uniquement pour des états électroniques quatre fois dégénérés. Nous avons alors jugé nécessaire de reformuler “tensoriellement” ces couplages (pour mieux tirer profit de la symétrie du problème) et de considérer cette fois-ci les termes quadratiques de certains systèmes comme la première contribution responsable de la non-séparabilité de la dynamique nucléaire sur chaque surface électronique. En effet, pour les bandes ν3 et ν1, bien que les termes linéaires par rapport aux coordonnées de vibration soient interdits par symétrie, leurs spectres présentent néanmoins des anomalies dues aux termes de couplages quadratiques. C’est le cas par exemple pour la bande ν3 de ReF6 [87].

Bien sûr, une telle étude ne serait pas possible sans aborder les différentes approximations nécessaires à la résolution de l’équation de Schrödinger. Il existe encore à l’heure actuelle de nombreuses discussions essentiellement liées à l’utilisation inadaptée de l’“approximation de Born-oppenheimer” et de l’“approximation adiabatique”. Nous tenterons de présenter ces deux notions le plus clairement possible en nous appuyant sur les nombreux travaux effectués à ce sujet.

1Pour des molécules dans une configuration linéaire et dans un état électronique dégénéré, on parlera plutôt d’“effet Renner-Teller” [43].
2Cette liste n’est pas exhaustive. Les références à l’intérieur de celles citées peuvent aussi être consultées.
3.1 Solution de l’équation de Schrödinger — Approximations

Nous proposons ici d’effectuer quelques rappels des deux principales approximations rencontrées typiquement dans un problème de spectroscopie. Ainsi les approximations de Born-Oppenheimer (BO) et adiabatique (AD) (appelée aussi approximation adiabatique de Born-Oppenheimer) abondamment utilisées dans la littérature sont resséées ici pour l’étude de niveaux électroniques dégénérés. L’influence des termes de non-adiabaticité et la notion de phase géométrique seront aussi mis à contribution dans ce chapitre et nous ferons un état des lieux des travaux dans ce domaine particulier.

3.1.1 Hamiltonien moléculaire général

L’Hamiltonien d’une molécule constituée de \(N \) noyaux \((n)\) de masses \(M_\alpha \) et de \(p \) électrons \((e)\) de masses \(m \) s’écrit sous la forme

\[
\mathcal{H} = -\sum_{i=1}^{p} \frac{\hbar^2}{2m} \Delta_i + \sum_{\alpha=1}^{N} \frac{\hbar^2}{2M_\alpha} + \mathcal{V}_{p-e} + \mathcal{V}_{e-n} + \mathcal{V}_{n-n},
\]

où les \(\mathcal{V}_{x-y} \) sont les termes de potentiel coulombien exprimés comme :

\[
\mathcal{V}_{p-e} = \sum_{j} \sum_{i \neq j} \frac{e^2}{r_{ij}} \quad \rightarrow \quad \text{interaction électron-électron}
\]

\[
\mathcal{V}_{e-n} = -\sum_{i} \sum_{\alpha} \frac{Z_\alpha e}{r_{i\alpha}} \quad \rightarrow \quad \text{interaction électron-noyau}
\]

\[
\mathcal{V}_{n-n} = \sum_{\alpha} \sum_{\beta \neq \alpha} \frac{Z_\alpha Z_\beta e^2}{R_{\alpha\beta}} \quad \rightarrow \quad \text{interaction noyau-noyau}
\]

avec

\[
\begin{align*}
 r_{ij} & : \text{distance entre l’électron } i \text{ et l’électron } j ; \\
 e & : \text{charge de l’électron de masse } m ; \\
 r_{i\alpha} & : \text{distance entre l’électron } i \text{ et le noyau } \alpha ; \\
 Z_\alpha & : \text{numéro atomique du noyau } \alpha \text{ de masse } M_\alpha ; \\
 R_{\alpha\beta} & : \text{distance entre le noyau } \alpha \text{ et le noyau } \beta .
\end{align*}
\]

Dans les notations de Bersuker et al. [94], nous pouvons réécrire l’Hamiltonien sous la forme

\[
\mathcal{H} = \mathcal{H}(v, Q) + \mathcal{V}(v, Q) + \mathcal{T}(Q),
\]

avec \(\mathcal{V}(v, Q) \) les coordonnées des électrons et \(Q \) celles des noyaux (Fig. 3.1). \(\mathcal{H}(v) \) inclut l’énergie cinétique des électrons ainsi que les termes d’interaction électron-électron. \(\mathcal{V}(v, Q) \) est l’opérateur d’interaction électron-noyau et noyau-noyau. Et enfin, \(\mathcal{T}(Q) \) représente l’énergie cinétique des noyaux.

3.1.2 Cas d’un état électronique non dégénéré

Notons \(\Psi(v, Q) \) la fonction d’onde du système (électrons + noyaux). Afin de résoudre l’équation de Schrödinger

\[
\mathcal{H}(v, Q) \Psi(v, Q) = \varepsilon \Psi(v, Q),
\]

où les \(\varepsilon \) sont les énergies du système, cherchons à écrire les fonctions propres de \(\mathcal{H}(v, Q) \) sous la forme [94]

\[
\Psi(v, Q) = \sum_{n=1}^{M} \Psi_n(v, Q) \chi_n(Q),
\]

où les \(\chi_n \) sont les fonctions propres de \(\mathcal{H}(v) \) et les \(\Psi_n \) sont des coordonnées des électrons.
Les $\Psi_n(\varrho, Q)$ forment un jeu de M fonctions électroniques supposées non dégénérées et les $\chi_n(Q)$ sont les fonctions d’ondes nucléaires relatives à l’état électronique n. Les fonctions d’ondes électroniques dépendent paramétriquement des coordonnées nucléaires.

Concentrons nous maintenant sur un seul niveau électronique n_0 ($n_0 \in n$) suffisamment isolé des $(M - 1)$ autres niveaux. L’équation électronique peut alors s’écrire

$$[H(\varrho) + V(\varrho, Q)] \Psi_{n_0}(\varrho, Q) = \varepsilon_{n_0}^{(e)}(Q) \Psi_{n_0}(\varrho, Q),$$

où les $\varepsilon_{n_0}^{(e)}$ sont les énergies électroniques.

Afin d’obtenir l’équation pour la fonction d’onde nucléaire $\chi_{n_0}(Q)$, développons l’équation de Schrödinger (3.3) sous forme différentielle, puis multiplions par $\Psi_{n_0}^*(\varrho, Q)$ (m_0 est un état électronique différent de n_0) et enfin, intégrons par rapport à ϱ. Il vient finalement

$$- \sum_a \frac{\hbar^2}{2M_\alpha} \left[2\frac{\partial \chi_{n_0}(Q)}{\partial Q_a} \int \Psi_{m_0}^*(\varrho, Q) \frac{\partial \Psi_{n_0}(\varrho, Q)}{\partial Q_a} d\varrho + \chi_{n_0}(Q) \int \Psi_{m_0}^*(\varrho, Q) \frac{\partial^2 \Psi_{n_0}(\varrho, Q)}{\partial Q_a^2} d\varrho \right]$$

$$+ T_{m_0 n_0} \delta_{m_0 n_0} \chi_{n_0}(Q) + U_{m_0 n_0} \chi_{n_0}(Q) = \varepsilon \chi_{n_0}(Q).$$

Il est commode de poser [95, 96, 97]:

$$\mathbf{\overline{F}}_{m_0 n_0}(Q) = \int \Psi_{m_0}^*(\varrho, Q) \mathbf{\overline{\nabla}}_{Q_a} \Psi_{n_0}(\varrho, Q) d\varrho,$$ \hspace{1cm} (3.7)

$$G_{m_0 n_0}(Q) = \int \Psi_{m_0}^*(\varrho, Q) \mathbf{\overline{\nabla}}_{Q_a}^2 \Psi_{n_0}(\varrho, Q) d\varrho,$$ \hspace{1cm} (3.8)

$$U_{m_0 n_0}(Q) = \int \Psi_{m_0}^*(\varrho, Q) [H(\varrho) + V(\varrho, Q)] \Psi_{n_0}(\varrho, Q) d\varrho = \varepsilon_{n_0}^{(e)}(Q) \delta_{m_0 n_0},$$ \hspace{1cm} (3.9)

où le gradient s’exprime de manière traditionnelle :

$$\mathbf{\overline{\nabla}}_{Q_a} = \left(-\frac{i}{\hbar} \frac{\partial}{\partial Q_1}; \ldots; -\frac{i}{\hbar} \frac{\partial}{\partial Q_N} \right).$$

Le terme $U_{m_0 n_0}(Q)$ exprimé dans la base adiabatique est diagonal pour une position donnée des noyaux (se référer au sous-paragraphe suivant) alors que les termes non-diagonaux associés à $\mathbf{\overline{F}}_{m_0 n_0}(Q)$ et à $G_{m_0 n_0}(Q)$ sont les principaux responsables des interactions dites non-adiabatiques. Le problème sera de connaître les conditions qui permettront de négliger ces deux termes.

A partir de (3.7), (3.8) et (3.9), les éléments de la matrice de l’Hamiltonien moléculaire (3.2) s’expriment maintenant comme :

$$- \sum_a \frac{\hbar^2}{2M_\alpha} \left[2\frac{\mathbf{\overline{F}}_{m_0 n_0}(Q) \mathbf{\overline{\nabla}}_{Q_a} + G_{m_0 n_0}(Q)}{\partial Q_a} \right] \chi_{n_0}(Q) + (T_{m_0 n_0}(Q) + \varepsilon_{n_0}^{(e)}(Q) - \varepsilon) \chi_{n_0}(Q) = 0.$$ \hspace{1cm} (3.11)

\(^3\)Nous avons pris en compte le relation d’orthogonalité des fonctions électroniques :

$$\int \Psi_{m_0}^*(\varrho, Q) \Psi_{n_0}(\varrho, Q) d\varrho = \delta_{m_0 n_0}.$$
Approximation de Born-Oppenheimer

L’approximation BO se base sur le fait que le rapport \((m/M_0)^{1/4}\) est petit i.e. sur la séparation des variables nucléaires et électroniques. Les noyaux effectuent des mouvements de faible amplitude autour d’une position d’équilibre, notée \(Q_0\). On écrit alors \(\Psi_{n_0}(\mathbf{r},Q) = \Psi_{n_0}(\mathbf{r},Q_0)\) et de ce fait [98]

\[
\vec{F}_{n_0}(Q) = G_{n_0}(Q) = 0.
\]

Chaque état électronique est défini pour une configuration fixe des noyaux ; la configuration nucléaire \(Q_0\) peut, par exemple, être déterminée à partir de données expérimentales.

L’équation nucléaire (3.6) se réécrit donc :

\[
\left[T_{n_0}(Q) + \varepsilon_{n_0}^{(e)}(Q_0) \right] \chi_{n_0}(Q) = \varepsilon \chi_{n_0}(Q) \quad \text{et} \quad \Psi(\mathbf{r},Q) = \Psi_{n_0}(\mathbf{r})\chi_{n_0}(Q).
\] (3.12)

Au voisinage de \(Q_0\), l’énergie électronique varie peu, de sorte que \(\varepsilon_{n_0}^{(e)}\) joue le rôle d’énergie potentielle pour le mouvement des noyaux. Notons enfin que pour un même état électronique \(n_0\), il peut exister \(a \text{ pri} \text{o} \text{ri}\) plusieurs fonctions \(\chi_{n_0}(Q)\) correspondantes à différents états vibrationnels de la molécule. Ainsi, nous avons :

\[
\chi_{n_0}(Q) = \sum_v a_v \chi_{n_0}^v(Q).
\]

En conclusion, l’approximation BO reste très bonne pour des molécules isolées où les coordonnées nucléaires varient peu mais s’avère limitée lors d’effets collisionnels ou bien en présence d’états électroniques dégénérés puisqu’il résulte un couplage entre différents états électroniques.

Approximation adiabatique

L’approximation adiabatique aussi appelée approximation adiabatique de BO, consiste cette fois-ci à considérer les noyaux dans leurs vraies positions mais à négliger les interactions entre les différents niveaux électroniques [99, 100]. La distribution électronique est décrite cette fois par \(\Psi_{n_0}(\mathbf{r},Q)\) qui va maintenant dépendre paramériquement des coordonnées nucléaires. Il est souvent d’usage de poser [101] :

\[
\Lambda_{n_0}(Q) = -\sum_a \frac{\hbar^2}{2M_a} \left[2\vec{F}_n(Q) \cdot \nabla_{Q_a} + G_{n_0}(Q) \right].
\] (3.13)

L’approximation adiabatique repose sur les deux conditions suivantes

\[
\vec{F}_{n_0}(Q) = \vec{F}_{n_0}(Q) \delta_{n_0} \quad \text{et} \quad G_{n_0}(Q) = G_{n_0}(Q) \delta_{n_0},
\]

et l’équation (3.6) devient

\[
\left[T_{n_0}(Q) + \Lambda_{n_0}(Q) + \varepsilon_{n_0}^{(e)}(Q) \right] \chi_{n_0}(Q) = \varepsilon \chi_{n_0}(Q) \quad \text{et} \quad \Psi(\mathbf{r},Q) = \Psi_{n_0}(\mathbf{r})\chi_{n_0}(Q).
\] (3.14)

Les fonctions électroniques sont prises comme les fonctions propres de l’Hamiltonien électronique d’énergie \(\varepsilon_{n_0}(Q_0)\). Pour chaque position instantanée des noyaux, on obtient une distribution électronique stationnaire dans la base adiabatique. Cependant comme nous le verrons, en présence d’états électroniques dégénérés, les termes dynamiques de couplage décrits par \(\vec{F}_{n_0}(Q)\) et \(G_{n_0}(Q)\) ne peuvent être éliminés [102]. En pratique, des bases quasi-adiabatiques [103] sont utilisées visant à minimiser les valeurs des éléments matriciels de \(\vec{F}_{n_0}(Q)\) et \(G_{n_0}(Q)\) près des intersections de surfaces électroniques (intersections coniques).

En conclusion générale, ni l’approximation BO, ni l’approximation adiabatique ne sont valides en présence d’une dégénérescence électronique.
3.1. Solution de l'équation de Schrödinger — Approximations

Transformation de jauge – Potentiel abélien

Nous allons montrer rapidement que les termes différentiels qui accompagnent les effets non-adiabatiques jouent le rôle de potentiel de jauge dans l'équation de Schrödinger. Toutefois, ces termes peuvent être éliminés sous certaines conditions.

Traitons tout d'abord le cas trivial où les fonctions électroniques $\Psi_{no}(q, Q)$ sont choisies réelles. Il est alors facile de vérifier que le potentiel vecteur $\mathcal{F}_{no}(Q)$ s'annule et que dans ce cas, le potentiel adiabatique va pouvoir s'écrire :

$$ U_{ad} = \varepsilon_{no}(Q) - \sum_{\alpha} \frac{\hbar^2}{2M_\alpha} g_{\alpha n o}(Q). $$

Dans le cas général, l'équation de Schrödinger peut être vue en terme de transformation de jauge. Pour cela, il suffit de réécrire le terme de non-adiabaticité G comme

$$ G(Q) = \nabla_{Q_q} \mathcal{F}(Q) - \mathcal{F}(Q) \cdot \nabla_{Q_q} + \mathcal{F}(Q) \cdot \mathcal{F}(Q), $$

ce qui définit un potentiel de jauge non-adiabatique $\mathcal{F}'(Q)$.

L'équation de Schrödinger devient alors

$$ \left[- \sum_{\alpha} \frac{\hbar^2}{2M_\alpha} \left(\nabla_{Q_q} + \mathcal{F}(Q) \right) \cdot \left(\nabla_{Q_q} + \mathcal{F}(Q) \right) + \varepsilon_{no}^{(c)}(Q) - \varepsilon \right] \chi_{no}(Q) = 0, $n

1 où $\mathcal{F}(Q)$ se comporte comme un potentiel vectoriel abélien. Le terme $\mathcal{F}(Q)$ ne permet plus de

4Ceci est valable uniquement pour des états électroniques non dégénérés où nous avons une transformation de jauge de $U(1)$.

\textbf{Fig. 3.1 - Coordonnées cartésiennes pour une molécule XY}_6.
séparer les mouvements électroniques et nucléaires. Ce terme affecte aussi bien la partie nucléaire de l’Hamiltonien que les états propres électroniques qui, lorsqu’ils sont transportés le long d’un circuit fermé \(\mathcal{C} \) dans l’espace de configuration (espace des paramètres), acquièrent une phase géométrique
\[
\gamma(\mathcal{C}) = \oint_{\mathcal{C}} i \frac{\mathcal{F}}{\hbar} (\mathcal{Q}) d\mathcal{Q} .
\]
(3.18)

Ce type de phase est connu depuis plusieurs années [56, 104, 105], mais c’est Berry [106] qui a été le premier à trouver la relation entre la phase acquise par les fonctions d’ondes adiabatiques lors d’une variation lente d’un paramètre autour d’une intersection conique et la géométrie de l’espace de configuration. Cependant, l’évaluation de l’intégrale (3.18) sera difficile si les fonctions sont bi-valuées (si elles changent de signe après un contour fermé). On effectue généralement une transformation du type
\[
\Psi_n(\mathcal{Q}) \rightarrow \Psi_n(\mathcal{Q}) e^{i\gamma(\mathcal{Q})} = \tilde{\Psi}_n(\mathcal{Q}) ,
\]
(3.19)

où \(e^{i\gamma(\mathcal{Q})} \) est une phase qui rend \(\tilde{\Psi}_n(\mathcal{Q}) \) mono-valuée. Mais comme l’a souligné Mead [107], il n’est généralement pas possible d’annuler le potentiel vecteur \(\langle \tilde{\Psi}_n | \nabla \mathcal{Q} \tilde{\Psi}_n \rangle \) et de rendre les fonctions mono-valuées en même temps.

Remarque

Si l’on effectue un traitement perturbatif de l’équation (3.6), nous remarquons que la correction au premier ordre
\[
\epsilon^{(1)} = -\sum_{\alpha} \frac{\hbar^2}{2M_\alpha} \int \Psi_n(\mathcal{Q}) \frac{\partial^2 \Psi_n(\mathcal{Q})}{\partial \mathcal{Q}_\alpha^2} d\mathcal{Q} ,
\]

s’apparente à \(G_{n\alpha n}(\mathcal{Q}) \). Ainsi, la première correction à l’approximation \(BO \) n’est autre que la correction adiabatique [108, 109]. Beaucoup de calculs supposés être basés sur l’approximation adiabatique sont en fait effectués dans le cadre de l’approximation \(BO \). Cette dernière suppose généralement qu’on puisse développer le potentiel autour d’une position d’équilibre notée \(\mathcal{Q}_0 \) et que la première correction aux fonctions propres soit relativement négligeable.

Notons que la première contribution non-adiabatique de (3.6) est d’ordre \(\kappa^6 \) \((\kappa = (m_\mathcal{Q}/M_\mathcal{Q})^{1/4}) \) [109] où \(\kappa \) est le paramètre de perturbation que l’on peut définir comme \(\kappa q = \mathcal{Q} - \mathcal{Q}_0 \) et qui est proportionnel aux déplacements nucléaires autour de la position d’équilibre.

3.1.3 Cas d’un état électronique dégénéré

Supposons maintenant que les \(M \) niveaux électroniques considérés soient dégénérés ou quasi-dégénérés de sorte que les fonctions propres vibroniques de l’Hamiltonien (3.2) s’écrit maintenant [95]
\[
\Psi(\mathcal{Q}) = \sum_{n=1}^{M} g_n \Psi_n(\mathcal{Q}) \quad \text{et} \quad \Psi_n(\mathcal{Q}) = \sum_{k_n=1}^{g_n} \Psi_{n,k_n}(\mathcal{Q}) \chi_n(\mathcal{Q}) ,
\]
(3.20)

\(g_n \) étant la dégénérescence du niveau \(n \).

L’équation de Schrödinger s’écrit
\[
\mathcal{H}(\mathcal{Q}) \Psi(\mathcal{Q}) = \epsilon \Psi(\mathcal{Q}) ,
\]
(3.21)

et l’équation électronique devient
\[
\sum_{n=1}^{M} \sum_{k_n=1}^{g_n} \left[\mathcal{H}(\mathcal{Q}) + V(\mathcal{Q}) - \epsilon_{n}^{(e)}(\mathcal{Q}) \right] \Psi_{n,k_n}(\mathcal{Q}) = 0 ,
\]
(3.22)
où les différentes valeurs propres $\varepsilon_n^{(c)}$ décrivent des surfaces de potentiel adiabatiques (SPA) définies sur l'espace des coordonnées nucléaires engendré par $\{Q_1, Q_2, \ldots, Q_N\}$.

Procérons alors comme pour le cas non dégénéré et calculons les éléments matriciels de l'Hamiltonien moléculaire entre deux états dégénérés respectivement g_n et g_m fois. Les termes de non-adiabaticité vont pouvoir s'écrire d'une manière générale :

$$\Lambda_{mn} = -\sum_a \frac{\hbar^2}{2M_a} \left[2\hat{F}_{mn}(Q)\hat{\nabla}_a + g_{mn}(Q) \right].$$

Nous distinguerons dorénavant deux types d'interactions non-adiabatiques :

- les interactions de type inter-électronique $(m \neq n)$
- les interactions de type intra-électronique $(m = n)$

Dans les deux cas, il nous faut définir qualitativement et quantitativement un moyen de les traiter. La figure 3.2 illustre de manière schématique ces deux types de couplages.

Hypothèses d'étude

- Nous supposerons ici négligeables les couplages entre les deux sous-espaces ε_{g_n} et ε_{g_m} de dimensions respectives g_n et g_m, i.e. en supposant que les g_n niveaux sont suffisamment éloignés des autres niveaux afin de négliger les interactions entre les groupements électroniques $\Lambda_{mn} = 0$ si $(m \neq n)$. Nous ne considérerons ainsi que des termes du type $\Lambda_n \equiv \Lambda_{nn}$ rangés dans une matrice

$$\Lambda_n = \begin{pmatrix}
| 1 \rangle & | 2 \rangle & \cdots & | g_n \rangle \\
\vdots & \vdots & \ddots & \vdots \\
& & & \\
\vdots & & & \\
\end{pmatrix}.$$

Les termes $\Lambda_n^{ij} = \langle i | \Lambda_n | j \rangle$ représentent les corrections diagonales de type Born-Huang et si nous choisissons de fixer $\Lambda_n^{ij} = 0$ pour $i \neq j$, nous serons alors placés dans l'approximation adiabatique de Born-Huang [98, 110]. De tels termes divergent au voisinage d'une intersection conique.

- Il existe (en principe) une configuration moyenne d'équilibre Q_0 et ceci malgré les distorsions vibroniques. En dépit de tout, nous plaçons dans l'approximation de Born-Oppenheimer tout en considérant des termes de non-adiabaticité Λ_n dans le sous-espace ε_{g_n}, par exemple. L'approximation BO « rude » consisterait à négliger de telles contributions et à traiter ainsi la dynamique des noyaux de chaque surface séparément.

Dans le cas général où l'on considère k groupements électroniques $(k \geq 2)$ agissant respectivement sur les sous-espaces de Hilbert $\varepsilon(u^0)$ et $\varepsilon(U^0)$, l'Hamiltonien électronique va être donné par

$$\mathcal{H}^{(e)} = \begin{pmatrix}
u^0 & \Lambda_{mn}^{\dagger} \\
\Lambda_{mn} & U^0 \end{pmatrix},$$

où ν^0 est la sous-matrice pour le 1er groupement $(\dim \varepsilon(u^0) \geq 1)$, U^0 est la sous-matrice des $k - 1$ autres groupements de niveaux $(\dim \varepsilon(U^0) \geq 1)$ et Λ_{mn} le couplage entre ces deux sous-espaces (voir figure (3.2)).

Dans certains cas, il n'est plus possible de négliger les termes Λ_{mn} et Λ_{mn}^{\dagger} (qui restent néanmoins perturbatifs) si bien que l'on est amené à chercher une transformation unitaire T qui diagonalise par
bloc la matrice $\mathcal{H}^{(e)}$ telle que

$$\tilde{\mathcal{H}}^{(e)} = T^{-1}\mathcal{H}^{(e)} T$$

$$= \begin{pmatrix} u & 0 \\ 0 & U \end{pmatrix}$$

(3.26)

Un tel traitement sera envisagé en Annexe C. Nous présenterons aussi une autre alternative où le système d'équations couplées (3.7) et (3.8) peut être simplifié en utilisant un nouveau jeu de fonctions propres $\{\phi(\varrho, Q)\}$ définies à partir des fonctions adiabatiques par la relation

$$\phi_n(\varrho, Q) = \sum_{n'} A_{nn'}^{(e)}(Q)\Psi_{n'}(\varrho, Q)$$

(3.27)

où la matrice A devra satisfaire certaines conditions [111, 112].

Transformation de jauge – Potentiel non-abelien

Précédemment, nous avons vu qu'une transformation de jauge sur les fonctions électroniques adiabatiques était représentée par un facteur de phase géométrique de Berry [106, 107]. La généralisation à un système dégénéré consiste cette fois à remplacer le facteur de phase par une transformation unitaire

$$\Psi_n(\varrho, Q) \rightarrow \Psi_n(\varrho, Q)\mathcal{U}(Q) = \bar{\Psi}_n(\varrho, Q)$$

(3.28)
et ainsi avoir
\[\overrightarrow{\mathcal{F}}(\mathcal{Q}) \rightarrow U^\dagger(\mathcal{Q}) \overrightarrow{\mathcal{F}}(\mathcal{Q}) U(\mathcal{Q}) + U^\dagger(\mathcal{Q}) \nabla_{Q_a} U(\mathcal{Q}). \] (3.29)

Par exemple, pour des systèmes possédant un nombre impair d'électrons avec une dégénérescence de Kramers pour toute configuration nucléaire, Mead [113] a montré que cette transformation a la symétrie SU(2) et les propriétés d'un potentiel de jauge non-abélien [114, 115, 116]. Notons que l'étude de la phase géométrique pour des doublets de Kramers a été effectuée récemment par Koizumi et Sugano [117]. Plus généralement, pour des états \(n \) fois dégénérés, Wilczek et Zee montrent que la transformation engendrée est une matrice de \(U(n) \) [118]. Des expressions explicites de la phase de Berry ont même été formulées mathématiquement pour des groupes de Lie compacts et appliquées aux cas concrets de \(SU(2) \) et \(SU(3) \) [119, 120].

Il est également possible d'établir une condition en terme de jauge pour obtenir les états quasi-adiabatiques (C.15). En effet, Pacher \textit{et al.} ont défini la condition [103]

\[\nabla \cdot \overrightarrow{\mathcal{F}}(\mathcal{Q}) = 0, \] (3.30)

pour que la relation (C.17) soit satisfaite. Cette condition correspond à la jauge de Lorentz et devient alors un moyen naturel de définir des états quasi-adiabatiques.

3.2 Hamiltonien vibronique Jahn-Teller

3.2.1 Formulation générale – Historique

En 1937, Jahn et Teller [54] ont montré que pour une molécule polyatomique non linéaire, il n'était pas possible d'associer les notions de stabilité et de dégénérescence orbitale. Réformulé différemment, une configuration nucléaire ne peut pas être stable si l'énergie électronique au voisinage de cette configuration dépend linéairement des déplacements asymétriques des noyaux. Ces déplacements linéaires suffisent à lever la dégénérescence orbitale et à rendre le système instable là où la symétrie de la molécule se brise. En 1957 Opik et Pryce [57], en réalisant des études sur des ions moléculaires à symétrie octaédrique, sont arrivés à la conclusion qu'un système moléculaire pouvait présenter plusieurs configurations stables géométriquement équivalentes. Si on développe, comme nous allons le voir par la suite, la partie électronique au moins jusqu'aux termes quadratiques dans les déplacements nucléaires, on observe une série de minima symétriques où pour chaque minimum la molécule est déformée. Si ces minima sont très prononcés (couplages quadratiques élevés), alors la molécule reste piégée dans un des puits et reste dans une déformation permanente ; le groupe moléculaire est alors un sous-groupe de \(O_h \) (\(D_{4h}, D_{2h}, \ldots \)) pour notre étude. On parle alors d'effet \textit{Jahn-Teller statique}. Dans le cas contraire, si les minima sont “peu” profonds, la molécule est déformée mais reste en moyenne dans une configuration maximale (= stable). Ceci se vérifie pour des molécules en phase gazeuse où aucune direction particulière n’est privilégiée. On qualifie ce phénomène d’effet \textit{Jahn-Teller dynamique} et l’on assiste à un couplage entre les parties électronique et nucléaire.

Pour traiter l’effet \textit{Jahn-Teller dynamique}, Moffit, Thorson et Liehr [58, 59, 63] ont considéré l’Hamiltonien électronique effectif

\[\hat{\mathcal{H}}(e, \mathcal{Q}) = \hat{\mathcal{H}}(e) + \hat{V}(e, \mathcal{Q}) \] (3.31)

restreint au sous-espace \(\mathcal{G}(n) \) de dégénérescence \(g_n \), i.e. en négligeant les termes inter-électroniques. Par la suite, afin de simplifier le problème, nous travaillerons directement avec les coordonnées normales de vibration qui se transforment suivant les RI du groupe. Les expressions des coordonnées normales symétrisées pour les modes infra-rouge et Raman des molécules XY₆, sont rappelées dans la table 3.1.
Nous pouvons écrire l’équation électronique

\[
\tilde{H}^{(e)}(\varrho, \Omega) \Psi_{n'}^{(e)}(\varrho, \Omega) = \sum_{n} \tilde{H}^{(e)}(\varrho, \Omega)^n \Psi_n^{(e)}(\varrho, \Omega) \quad (n, n' = 1, \ldots, g_n),
\]

où les éléments de la matrice électronique de dimension \((g_n \times g_n)\) sont développés en série de puissance des coordonnées normales \(^{5}\) de vibration \(Q_{ai}\) autour de la position \(Q_0\), choisie comme étant nulle (\(\alpha\) représente un mode de vibration et \(i\) distingue les différentes composantes d’un mode dégénéré).

L’Hamiltonien électronique (3.31) peut donc être réexpressé comme

\[
\tilde{H}^{(e)}(\varrho, \Omega) = \tilde{H}(\varrho) + \frac{1}{2} \sum_{\alpha i} k_{\alpha} Q_{\alpha i}^2 \mathcal{T}_{\alpha i} + \sum_{\alpha i} l_{\alpha} Q_{\alpha i} \mathcal{T}_{\alpha i} + \frac{1}{2} \sum_{\alpha_1, \alpha_2, i_1, i_2} l_{\alpha_1, \alpha_2} Q_{\alpha_1 i_1} Q_{\alpha_2 i_2} \mathcal{T}_{\alpha_1 i_1, \alpha_2 i_2} + \ldots
\]

avec

\[
\begin{align*}
{k_{\alpha} \mathcal{T}_{\alpha i} &= \left(\frac{\partial^2 \tilde{V}(\varrho, \Omega)}{\partial Q_{\alpha i}^2} \right)_{Q_0=0},} \\
l_{\alpha} \mathcal{T}_{\alpha i} &= \left(\frac{\partial \tilde{V}(\varrho, \Omega)}{\partial Q_{\alpha i}} \right)_{Q_0=0}, \\
(l_{\alpha_1, \alpha_2} \mathcal{T}_{\alpha_1 i_1, \alpha_2 i_2} &= \left(\frac{\partial^2 \tilde{V}(\varrho, \Omega)}{\partial Q_{\alpha_1 i_1} \partial Q_{\alpha_2 i_2}} \right)_{Q_0=0},
\end{align*}
\]

\(\alpha_1 i_1 \neq \alpha_2 i_2\) et \(\mathcal{T}_{\alpha_1 i_1, \alpha_2 i_2} \neq I_d\).

Les opérateurs \(\mathcal{T}\) sont des opérateurs électroniques et \((k, l)\) sont des paramètres. Les coordonnées \(Q_{\alpha i}\) pour lesquelles \(\mathcal{T} \neq 0\) sont dites actives et le mode correspondant est appelé “mode Jahn-Teller”. Notons aussi que les déplacements JT sont généralement plus faibles que les distances interatomiques et que dans ce cas, tronquer la série à l’ordre quadратique reste satisfaisant.

Finalement, les énergies vibroniques du système (électrons + noyaux) s’obtiennent à partir de l’Hamiltonien vibronique (énergie cinétique des noyaux inclus)

\[
\tilde{H}(\varrho, \Omega) = H_0(\Omega) + \tilde{H}_1^{(e)}(\varrho, \Omega) + \ldots = H_0(\Omega) + \sum_{\alpha i} l_{\alpha} Q_{\alpha i} \mathcal{T}_{\alpha i} + \ldots,
\]

avec \(H_0(\Omega)\) l’Hamiltonien de l’oscillateur harmonique.

Comme l’ont souligné Moffit et Liehr [59], l’utilisation de cet Hamiltonien dans un état électronique dégénéré revient en fait à se placer dans l’approximation BO, considérée jusqu’ici pour des états non dégénérés, cette fois pour l’ensemble des \(g_n\) niveaux. Le terme \(\tilde{H}_1^{(e)}(\varrho, \Omega)\) est appelé terme Jahn-Teller linéaire [54] et est responsable des principaux couplages vibroniques dans les systèmes moléculaires. Il peut être considéré à juste titre comme la correction limite à BO lorsque celle-ci est comparable à l’énergie vibrationnelle \(^6\). Ainsi tout déplacement autour de la position d’équilibre \(Q_0\) lève complètement ou partiellement \(^7\) la dégénérescence électronique.

\(^5\)“Normales” au sens où elles ont la même expression par rapport aux coordonnées internes (Tab. 3.1) que pour les molécules “normales”. Mais ce ne sont pas des coordonnées normales au sens strict \((\frac{\partial \tilde{V}(\varrho, \Omega)}{\partial Q_{\alpha i}})_{Q_0=0} = 0\) et diagonalisation de \(\left(\frac{\partial^2 \tilde{V}(\varrho, \Omega)}{\partial Q_{\alpha i}^2}\right)_{Q_0=0}\).

\(^6\)Il convient donc de traiter ce type de terme de manière exacte (diagonalisation) et non perturbativement.

\(^7\)Nous verrons que pour un état électronique quatre fois dégénéré, on obtient en fait deux surfaces de potentiel chacune deux fois dégénérée correspondant au degré de liberté du spin de l’électron.
3.2. Hamiltonien vibronique Jahn-Teller

<table>
<thead>
<tr>
<th>Modes</th>
<th>Symétrie du mode</th>
<th>Composantes</th>
<th>Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_1 (Ra.)</td>
<td>A_{1g}</td>
<td>Q_1</td>
<td>$\left(Q_{1x} - Q_{4z} + Q_{2y} - Q_{5y} + Q_{3x} - Q_{6x}\right)/\sqrt{6}$</td>
</tr>
<tr>
<td>ν_2 (Ra.)</td>
<td>E_g</td>
<td>Q_1</td>
<td>$\left(-Q_{1x} + Q_{4x} - Q_{2y} + Q_{5y} + 2Q_{3x} - 2Q_{6x}\right)/\sqrt{12}$</td>
</tr>
<tr>
<td>ν_3 (Ra.)</td>
<td>F_{2g}</td>
<td>Q_x</td>
<td>$\left(Q_{3y} - Q_{6y} + Q_{2z} - Q_{5z}\right)/2$</td>
</tr>
<tr>
<td>ν_3 (IR)</td>
<td>F_{1u}</td>
<td>Q_y</td>
<td>$\left(Q_{3y} - Q_{6y} + Q_{1z} - Q_{4z}\right)/2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q_z</td>
<td>$\left(Q_{2x} - Q_{5x} + Q_{1y} - Q_{4y}\right)/2$</td>
</tr>
</tbody>
</table>

3.2.2 Le théorème Jahn-Teller généralisé

La condition d’existence du terme Jahn-Teller linéaire $\tilde{H}_1^{(e)}(\varrho, Q)$ repose sur la non nullité des éléments matriciels entre deux états vibroniques $\Psi_{n'}^{(e)} \chi_\rho$ et $\Psi_n^{(e)} \chi_\gamma$

$$< \tilde{H}_1^{(e)}(\varrho, Q) > = \sum_{ai} \lambda_i (Q_{ai}) \rho \gamma \int \Psi_{n'}^{(e) \ast}(\varrho, Q) T_{ai} \Psi_n^{(e)}(\varrho, Q) d\varrho, \quad (3.36)$$

Pris entre deux états vibroniques.

Ceci est la traduction du théorème Jahn-Teller que l’on peut énoncer comme suit :

Théorème : Pour toute molécule non-linéaire, et pour tout état électronique dégénéré, il existe au moins un mode de vibration nucléaire Q_{ai}, pour lequel $\tilde{H}_1^{(e)}(\varrho, Q)^{n'}_n$ est non-nul.

Jahn et Teller ont vérifié que ce théorème était toujours vrai excepté en présence des doublets de Kramers 8 où la dégénérescence est uniquement due au spin 9 [55].

En ce qui concerne les représentations, si Γ désigne la symétrie de l’état électronique et si C représente la symétrie du mode de vibration, alors $\tilde{H}_1^{(e)}(\varrho, Q)^{n'}_n$ sera non-nul si $C \subset [\Gamma \times \Gamma]$ pour Γ entière et si $C \subset \{ \Gamma \times \Gamma \}$ pour Γ demi-entière, avec $\Gamma \neq E_{1u}, E_{1g}, E_{2u}^1$ ou E_{2g}^1 correspondant aux doublets de Kramers [55]. Il ressort que les seules RI vibrationnelles C possibles de O_h sont

$$C = A_{1g}, E_g, ou F_{2g}.$$

Cependant, nous avons considéré jusqu’ici uniquement des opérateurs invariants individuellement par renversement du temps (les coordonnées de vibrations, entre autres). Nous verrons dans un autre chapitre qu’une construction différente des opérateurs vibroniques peut entraîner que les termes vibrationnels et électroniques ne sont plus invariants dans l’opération de renversement du temps, à condition que l’Hamiltonien le soit. Plus généralement, des termes de la forme

$$\langle \bar{a}, \Gamma \gamma | ^e \mathcal{O}^{(C)} | \bar{a}, \Gamma \gamma \rangle \quad (e = \pm)$$

8On parle aussi de dégénérescence de Kramers. Celle-ci se produit pour des systèmes possédant la symétrie par renversement du temps et à nombre impair d’électrons.

9Rappelons que l’effet Jahn-Teller est d’origine purement électrostatique.
peuvent aussi être envisagés. \(\epsilon \) représente la symétrie par renversement du temps et \(\tilde{\alpha} \) désigne l'ensemble des autres nombres quantiques. Des règles de symétrie plus générales peuvent alors s'énoncer [121, 43] :

- Si \(\Gamma \) est une représentation vectorielle (ou entière) et si \(\epsilon = + \) (resp. \(- \)), alors \(C \subset \{ \Gamma \times \Gamma \} \) (resp. \(\{ \Gamma \times \Gamma \} \)).
- Si \(\Gamma \) est une représentation spinorielle (ou demi-entièrée) et si \(\epsilon = + \) (resp. \(- \)), alors \(C \subset \{ \Gamma \times \Gamma \} \) (resp. \(\{ \Gamma \times \Gamma \} \)).
- Si \(\Gamma \) est une représentation spinorielle ou vectorielle et si \(\epsilon \neq \pm \), alors \(C \subset \Gamma \times \Gamma \).

3.3 Études de différents potentiels vibroniques

Nous allons nous intéresser ici à ce qui est habituellement défini comme le traitement statique de l'effet Jahn-Teller. Cela désigne i) l'étude du potentiel électronique dans le repère lié aux noyaux ainsi que ii) l'abaissement de la symétrie due aux déplacements nucléaires.

3.3.1 Écriture du potentiel vibronique — Généralités

Afin de tirer pleinement avantage de la symétrie du problème, la partie potentielle de l'Hamiltonien (3.35) doit être réécrite sous une forme mieux adaptée :

\[
\hat{V}(\theta, Q) = \frac{1}{2} \sum_{C,\sigma} \omega_C^2 Q^{(C)2} \mathcal{I}^C_{\sigma} + \sum_{C \neq A_1} \sum_{\sigma, \beta} \beta^{(C)}_C Q^{(C)2} \mathcal{I}^{(\beta C)}_{\sigma} + \frac{1}{2} \sum_{C \neq A_1, C_1, C_2} \sum_{\sigma, \beta} \beta^{(C)}_{C_1, C_2} \left[Q^{(C_1)2} \otimes Q^{(C_2)2} \right]_{\sigma}^{(C)} \mathcal{I}^{(\beta C)}_{\sigma} + \ldots
\]

(3.38)

Les opérateurs électroniques \(\mathcal{I}^{(\beta C)}_{\sigma} \) exprimés dans la base \(| \tilde{\alpha}, \Gamma \gamma \rangle \) sont reliés aux \(CG \) covariants de \(O^S_h \)

\[
\mathcal{I}^{(\beta C)}_{\sigma} = \sum_{\gamma \gamma'} [C]^{-1/2} \beta^{(C)}_{\Gamma \gamma} \left(\Gamma \gamma \right)_{\sigma}^{\sigma} | \tilde{\alpha}, \Gamma \gamma \rangle \langle \tilde{\alpha}, \Gamma \gamma' |
\]

(3.39)

De plus, le théorème de Wigner-Eckart nous a amené à poser \(^{10}\)

\[
\beta^{(C)} = l_C \langle \tilde{\alpha}, \Gamma | T^{(C)} || \Gamma \rangle \text{ et } \beta^{(C)}_{C_1, C_2} = l_{C_1} l_{C_2} \langle \tilde{\alpha}, \Gamma | T^{(C)} || \Gamma \rangle \]

(3.40)

On rappelle que l'on se place dans un état électronique dégénéré donné ((\(\alpha, \Gamma \)) fixés), c'est pourquoi les quantités \(\beta^{(C)} \) et \(\beta^{(C)}_{C_1, C_2} \) peuvent être considérées comme des paramètres.

Rôle de l'opération de renversement du temps

Le terme “renversement du temps” (RT) pour des systèmes stationnaires peut paraître ambigu à première vue. Il s'agit en fait du renversement des vitesses (moment conjugué \(\mathcal{P} \)) et des spins laissant les coordonnées \(Q \) inchangées. Tous les systèmes ne possèdent pas obligatoirement la symétrie par renversement du temps, par exemple, lors qu’un champ magnétique externe est présent, celle-ci se brise. Mead [122] donne les propriétés de la matrice hamiltonienne pour des systèmes ayant ou non cette symétrie. Soit \(\hat{T}_p \) l'opération de renversement du temps. Cet opérateur est involutif et anti-unitaire avec \(\hat{T}_p^2 = \pm 1 \) mais d'autres propriétés sont décrites dans l’article complet de Truhlar et al. [123].

\(^{10}\)Dans l'expression (3.34), nous écrivons \(T_{\alpha i} = T_{\alpha}^{(C)} \) et \(l_{\alpha} = l_C \).
Pour des systèmes possédant l’invariance par RT, il nous faut alors distinguer les deux cas suivants : $\hat{T}_p^2 = 1$ (\hat{T}_{p+}, nombre pair d’électrons) et $\hat{T}_p^2 = -1$ (\hat{T}_{p-} nombre impair d’électrons).

- Pour \hat{T}_{p+}, si $|\varphi >$ et $|\phi >$ désignent deux états (d’une base électronique, par exemple), on montre facilement que ces deux états peuvent être choisis comme étant les vecteurs propres de \hat{T}_p. On a $\hat{H}\hat{T}_p = \hat{T}_p\hat{H}$ et Mead [122] a alors montré que tous les éléments matriciels étaient réels dans ce cas i.e.

$$\langle \phi|\hat{H}|\varphi \rangle = \langle \varphi|\hat{H}|\phi \rangle^* .$$

(3.41)

- Pour \hat{T}_{p-}, si on désigne par $|u >$ un état du système, la ref. [123] montre que $|u >$ et $|\hat{T}_p u >$ sont orthogonaux i.e.

$$\langle u|\hat{T}_p u \rangle = 0 .$$

L’invariance par RT induit une dégénérescence de Kramers (états de deux fois dégénérés). Considérons alors les deux paires de Kramers suivantes : $\{\varphi_1, \varphi_2\}$ et $\{\phi_1, \phi_2\}$. On peut montrer que [122]

$$\langle \varphi_2|\hat{H}|\varphi_1 \rangle = \langle \varphi_1|\hat{H}|\varphi_2 \rangle = 0 , \ \langle \varphi_1|\hat{H}|\varphi_1 \rangle = \langle \varphi_2|\hat{H}|\varphi_2 \rangle ,$$

$$\langle \varphi_1|\hat{H}|\phi_1 \rangle = \langle \varphi_2|\hat{H}|\phi_2 \rangle^* , \ \langle \varphi_1|\hat{H}|\phi_1 \rangle = -\langle \varphi_2|\hat{H}|\phi_1 \rangle^* .$$

(3.42)

Pour les systèmes ne possédant pas la symétrie par RT, aucune restriction n’est imposée aux éléments matriciels si ce n’est la condition d’hermiticité.

Application au groupe de l’octaèdre

Les symétries Γ de l’état électronique que nous allons considérer sont $\Gamma = E_r, F_r$ et G'_r ($F = F_1$ ou $F_2, \tau = u$ ou g). Jusqu’à présent, nous avons examiné des systèmes où étaient autorisés les termes linéaires par rapport aux coordonnées de vibration i.e. donnant lieu à un effet Jahn-Teller linéaire mais cependant, dans certains cas ($C = F_{1u}$, correspondant aux modes ν_3 et ν_4 de O_h) ces termes sont interdits pour des raisons de symétrie et les premiers termes d’interaction sont alors quadratiques. Nous allons réexaminer succinctement [11] les couplages écrits sous forme tensorielle, en invitant le lecteur à se reporter aux références bibliographiques citées ci-après.

Pour notre étude, nous nous focaliserons essentiellement sur trois systèmes vibroniques [$\Gamma \times C$] :

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>i)</td>
<td>couplages vibroniques linéaires et quadratiques du type $[E_r \times E_g]$</td>
</tr>
<tr>
<td>ii)</td>
<td>couplages vibroniques linéaires et quadratiques du type $[F_r \times E_g]$</td>
</tr>
<tr>
<td>iii)</td>
<td>couplages vibroniques linéaires et quadratiques du type $[F_r \times F_g]$</td>
</tr>
</tbody>
</table>

Pour les systèmes $[G'_r \times E_g]$ et $[G'_r \times F_g]$, nous rappellerons les principaux résultats (cf. Ref. [45, 72]).

3.3.2 Potentiel vibronique Jahn-Teller pour un système $[E_r \times E_g]$

Il est aisé de montrer que le potentiel (3.38) avec $C = E_g$ et $\sigma = 1, 2$ peut se mettre sous la forme

$$\tilde{V}(Q_1, Q_2) = \frac{\hbar \omega_2}{2} (Q_1^2 + Q_2^2) I_2 + \frac{t_E}{2} (Q_2 \sigma_1 - Q_1 \sigma_3) + \frac{\sqrt{2t_E^2}}{8} ((Q_1^2 - Q_2^2) \sigma_3 + 2Q_1 Q_2 \sigma_1) + \cdots$$

(3.43)

où σ_1 et σ_2 sont les matrices 2×2 usuelles de Pauli données dans la table 3.2. A partir de là, il est facilement envisageable d’associer à l’état électronique E_r un “pseudo-spin” $1/2_r$ [65]. Prenons par exemple l’expression (3.39) dans le cas $\Gamma = E_r$, nous avons alors comme symétries autorisées :

$$C = E_r \times E_r = [A_{1g} + E_g] + [A_{2g}] .$$

11L’effet Jahn-Teller a été abondamment traité dans la littérature ces cinquante dernières années. Nous ne chercherons donc pas à établir un nouveau modèle pour les interactions vibroniques mais simplement à resituer celles-ci d’un point de vue tensoriel.
Les opérateurs électroniques correspondants sont alors donnés par :

\[
\begin{align*}
\hat{T}^{(A_{1g})} &= \frac{1}{\sqrt{2}}(|\bar{\alpha}, E 1 \rangle \langle \bar{\alpha}, E 1 | + |\bar{\alpha}, E 2 \rangle \langle \bar{\alpha}, E 2 |) \\
\hat{T}^{(A_{2g})} &= \frac{1}{\sqrt{2}}(|\bar{\alpha}, E 2 \rangle \langle \bar{\alpha}, E 1 | - |\bar{\alpha}, E 1 \rangle \langle \bar{\alpha}, E 2 |) \\
\hat{T}_1^{(E_g)} &= \frac{1}{\sqrt{2}}(|\bar{\alpha}, E 1 \rangle \langle \bar{\alpha}, E 1 | - |\bar{\alpha}, E 2 \rangle \langle \bar{\alpha}, E 2 |) \\
\hat{T}_2^{(E_g)} &= \frac{-i}{\sqrt{2}}(|\bar{\alpha}, E 1 \rangle \langle \bar{\alpha}, E 2 | + |\bar{\alpha}, E 2 \rangle \langle \bar{\alpha}, E 1 |)
\end{align*}
\]

Il est facile de montrer que les quantités $\hat{S}_1 = -\hat{T}_2^{(E_g)}/\sqrt{2}$, $\hat{S}_3 = \hat{T}_1^{(E_g)}/\sqrt{2}$ et $\hat{S}_2 = i\hat{T}^{(A_{2g})}/\sqrt{2}$ vérifient les relations usuelles d’une algèbre $su(2)$ [124]. Ainsi, les quatre opérateurs électroniques (3.44) sont les générateurs d’une algèbre $u(2)$ 12. En règle générale, si l’état électronique considéré est n fois dégénéré alors l’algèbre de dégénérescence est $u(n)$. Mentionnons que l’opérateur \hat{S}_2 est diagonal dans la base du pseudo-spin 1/2 définie par 13

\[
\left| \frac{1}{2} \pm \frac{1}{2} \right\rangle = -\frac{1}{\sqrt{2}}(|\bar{\alpha}, E 2 \rangle \mp i |\bar{\alpha}, E 1 \rangle) .
\]

Nous verrons dans le dernier chapitre de cette thèse, qu’il sera possible de changer l’orientation de la $RI E$ afin que la base symétrisée $|E \sigma\rangle$ (oublions par la suite l’étiquette $\bar{\alpha}$) soit la base propre de \hat{S}_2. Revenons maintenant plus précisément sur l’étude du potentiel vibronique pour un doublet électronique.

12 La chaîne de groupe que l’on utilise pour un état E est $U(2) \supset SU(2) \supset O$ ou plus précisément la chaîne $U(2) * \supset SU(2) \supset O$. T4m indique le caractère non-canonique de la descente pour une représentation E contrairement à la subduction naturelle $D(\frac{1}{2}) \downarrow E_2$.

13 En toute rigueur, nous devrions noter ces états $|[10,\frac{1}{2}], m > 0]$ [10] est la RI totalement symétrique de $U(2)$ [125].
Dans l’espace des coordonnées normales \(\{Q_1, Q_2\} \), il est commode de passer en représentation polaire \((\rho, \phi)\) définie par

\[
Q_1 = \rho \cos \phi \quad \text{et} \quad Q_2 = \rho \sin \phi ,
\]

ceci afin de tirer profit de la symétrie du problème. \(\rho \) correspond à l’amplitude du mouvement nucléaire et \(\phi \) à une phase. De plus, nous choisissons de poser

\[
\sqrt{2D_2 \hbar \omega_2} = \frac{1}{2} t^E \quad \text{et} \quad \kappa_2 \hbar \omega_2 = \frac{\sqrt{2} t^E_{EE}}{8},
\]

afin de manipuler des paramètres \(D_2 \) et \(\kappa_2 \) sans dimension et de conserver les notations “usuelles” [93, 72]. L’indice “2” se réfère au mode \(\nu_2 \).
La matrice de potentiel dans la base \(| E; 1 >, | E; 2 >\) prend alors la forme suivante :

\[
\tilde{V}(\rho, \phi) = \hbar \omega_2 \begin{pmatrix}
\frac{\rho^2}{2} - \sqrt{2D_2 \rho} \cos \phi + \kappa_2 \rho^2 \cos 2\phi & \sqrt{2D_2 \rho} \sin \phi + 2\kappa_2 \rho^2 \cos \phi \sin \phi \\
\sqrt{2D_2 \rho} \sin \phi + 2\kappa_2 \rho^2 \cos \phi \sin \phi & \frac{\rho^2}{2} + \sqrt{2D_2 \rho} \cos \phi - \kappa_2 \rho^2 \cos 2\phi
\end{pmatrix}
\] (3.46)

La diagonalisation de cette matrice donne deux valeurs propres distinctes (voir Fig. 3.3)

\[
V(\rho, \phi) = \frac{\hbar \omega_2}{2} \rho^2 \pm \hbar \omega_2 \sqrt{2D_2 \rho^2 + \kappa_2^2 \rho^4 - 2 \sqrt{2D_2 \kappa_2^2 \rho^2} \cos 3\phi},
\] (3.47)

associées aux deux vecteurs propres adiabatiques

\[
\begin{align*}
\Psi_+(\rho, \phi) &= \left(\cos \left(\frac{\alpha}{2} \right) | E; 1 > + \sin \left(\frac{\alpha}{2} \right) | E; 2 > \right) \\
\Psi_- (\rho, \phi) &= \left(-\sin \left(\frac{\alpha}{2} \right) | E; 1 > + \cos \left(\frac{\alpha}{2} \right) | E; 2 > \right)
\end{align*}
\] (3.48)

Nous avons posé :

\[
\alpha = \arctan \left(-\frac{\sqrt{2D_2} \sin \phi + \kappa_2 \rho \sin 2\phi}{\sqrt{2D_2} \cos \phi - \kappa_2 \rho \cos 2\phi} \right).
\] (3.49)

Lien avec les matrices de Wigner

Deux cas particuliers vont maintenant être étudiés. Dans un premier temps, on se placera dans l’approximation linéaire (\(\kappa_2 = 0\)) avant d’entreprendre l’étude où \(D_2 = 0\). Dans les deux cas, nous verrons le lien avec les matrices de Wigner associées à un “spin” 1/2.

Tout d’abord, nous écrivons d’après l’équation (3.49) que dans l’approximation linéaire \(\alpha = -\phi\) (\(\kappa_2 = 0\)). La figure 3.3 illustre les deux surfaces de potentiel reliées entre elles à l’intersection conique. Les expressions (3.48) donnant les fonctions propres adiabatiques peuvent alors être réécrites

\[
\begin{pmatrix}
\Psi_+ \\
\Psi_-
\end{pmatrix} = \left[\mathcal{D}^{(1)}(0, \phi, 0) \right] \begin{pmatrix}
| E; 1 > \\
| E; 2 >
\end{pmatrix}.
\] (3.50)

En anticipant sur le dernier chapitre, on pourrait également réexprimer les fonctions de base adiabatiques symétrisées dans la base standard (3.45) à partir de la transformation unitaire \(G\) [125] afin de voir clairement le lien entre les fonctions adiabatiques et le pseudo-spin.

D’après la définition (2.10) des fonctions de Wigner, les fonctions adiabatiques ne sont pas mono-valuées puisqu’elles changent de signe quand \(\phi \rightarrow \phi + 2\pi\). Dans le cas général, après une excursion \(1 \rightarrow 2\), i.e.

\[
\phi_2 - \phi_1 = 2\pi n,
\] (3.51)

les fonctions propres changent de signe si \(n\) est impair et restent inchangées si \(n\) est pair. La figure 3.5 (schéma à gauche) illustre ces deux cas pour \(n = 1\) et \(n = 2\). Afin d’obtenir des fonctions électroniques invariantes pour tout \(n\), il suffit de définir des nouveaux vecteurs propres par une transformation de jauge qui change leur comportement asymptotique

\[
\tilde{\Psi}_m = e^{i\phi} \Psi_m,
\] (3.52)

où cette fois, par cette transformation, les vecteurs \(\tilde{\Psi}_m\) sont toujours mono-valués [110]. Par contre, Mead [107] a signalé qu’il n’était plus possible d’annuler les termes non-adiabatiques de jauge, par exemple :

\[
\begin{align*}
\left(\mathcal{F}_{m'm}^\phi \right) &= -ie^{-i\phi} \frac{\rho}{\rho^2} \partial_\rho \Psi^*_{m'} \frac{\partial}{\partial \phi} \left(e^{i\phi} \Psi_m \right) \neq 0, \\
\mathcal{G}_{m'm} &= -ie^{-i\phi} \frac{\rho}{\rho^2} \Psi^*_{m'} \frac{\partial^2}{\partial \phi^2} \left(e^{i\phi} \Psi_m \right) \neq 0.
\end{align*}
\] (3.53)
Dans ce cas, il existe des termes diagonaux non-adiabatiques ~ \(1/\rho^2\) qui divergent au voisinage de l'intersection conique ainsi que d'autres termes non-diagonaux non-adiabatiques qui mélangent les deux surfaces et ~ \(1/\rho^2 \partial^2 / \partial \phi^2\) qui viennent se greffer au potentiel. Comme nous l'avons vu, l'approximation de Born-Huang consiste à négliger ce dernier terme. Il apparaît aussi un terme centrifuge ~ \(1/\rho^2 \partial^2 / \partial \phi^2\) \(\sim j^2\) qui se comporte comme une pseudo-rotation. Ce terme représente une barrière qui croît avec \(j^2\) et qui empêche aux noyaux de pénétrer dans la région où les couplages non-adiabatiques sont importants (\(R\) petit, voir Fig. 3.4) [96]. Koizumi et Sugano [126] ont séparé le potentiel de jauge en deux parties distinctes : une partie topologique (\(\mathcal{F}\)^top) et une partie magnétique (\(\mathcal{F}\)^mag). La partie topologique donne lieu au facteur de phase géométrique [110] tandis que la partie magnétique dépend du caractère local de la trajectoire et n'existe que pour des systèmes ne possédant pas la symétrie par renversement du temps. Ainsi, à partir des équations (3.48), (3.51) et (3.53), il est facile de voir que la phase topologique est donnée par

\[
\int \phi(\mathcal{F})^\text{top} d\phi = n\pi .
\]

Considérons maintenant seulement le terme quadratique (\(D_2 = 0\)), nous avons alors

\[
\begin{pmatrix}
\Psi_+ \\
\Psi_-
\end{pmatrix} = \left[D^{(\frac{1}{2})}(0, -2\phi, 0) \right] \begin{pmatrix}
|E; 1> \\
|E; 2>
\end{pmatrix},
\]

(3.55)

donc les fonctions propres restent inchangées après un circuit complet. Nous pouvons alors énoncer des règles générales [71] :

Les fonctions propres adiabatiques changent ou ne changent pas de signe suivant que le terme principal de couplage est de degré impair ou pair dans les déplacements nucléaires.

Formulé différemment, le signe ne change pas si le contour fermé enlace un nombre pair d'intersections coniques. Par ces considérations Koizumi et Bersuker [127] ont montré que lorsque le terme quadratique était suffisamment élevé, tel que les quatre intersections coniques des deux surfaces (3.47) se rapprochent entre elles, le chemin “parcouru” peut encercer ces quatre intersections coniques (voir
Fig. 3.5), et alors la symétrie de l’état vibronique de base devient non-dégénérée. Comme ils l’ont si bien souligné et comme il est souvent pensé à tort, la symétrie de l’état de base n’est donc pas nécessairement celle de l’état électronique dégénéré. En conclusion de leur article, l’état de base peut ne pas être dégénéré si la phase géométrique topologique est égale à 1 pour des systèmes possédant la symétrie par renversement du temps. Nous illustrerons ce fait dans le chapitre suivant en traçant le diagramme d’énergies vibroniques.

FIG. 3.5 - Description schématique (figure de gauche) de la phase géométrique lorsque φ varie de 0 à 2π (chemin 1→2) et de 0 à 4π (chemin 1→2'). Sur la figure de droite sont représentées les deux surfaces de potentiel pour \(D_2 = 0.1 \) et \(\kappa_2 = 1 \) reliées par les quatre intersections coniques.

Symétrie du potentiel vibronique

Nous pouvons remarquer (Fig. 3.3) que si \(\kappa_2 = 0 \), les deux solutions ne dépendront alors que de \(\rho \). Ainsi le potentiel

\[
V(\rho, \phi) \rightarrow V(\rho)
\]

est invariant dans le groupe \(O(2) \). Il y a donc une infinité de minima localisés sur le cercle de rayon \(\rho_0 = \sqrt{2}D_2 \) dans l’espace \(\{Q_1, Q_2\} \). L’écart énergétique entre les deux surfaces de potentiel pour ces minima se calcule aisément :

\[
V(\rho_0)^+ - V(\rho_0)^- = 4\hbar \omega_2 D_2.
\]

Si cet écart est significatif (\(D_2 \) non négligeable) alors les termes de non-adiabaticité \(\Lambda_{+-} \) et \(\Lambda_{-+} \) sont relativement faibles et l’approximation adiabatique reste valide. Dans le cas contraire, les mouvements sont localisés autours de la position d’équilibre et l’approximation adiabatique doit être corrigée. Baer argumente sur les effets non-adiabatiques d’un tel système [128].

Lorsque le terme quadratique est non-nul (\(\kappa_2 \neq 0 \)), la symétrie cylindrique est perturbée et se brise. En effet, comme il est illustré sur la figure 3.6, on observe une invariance du potentiel dans une transformation

\[
V(\rho, \phi) \rightarrow V \left(\rho, \phi + \frac{2\pi}{3} \right),
\]

qui correspond à une invariance dans \(C_{3v} \). Les minima de ce potentiel correspondent aux trois directions

\[
- \phi = \pi/3, \pi \text{ et } 5\pi/3 \text{ si } \kappa_2 \text{ positif}
\]
- $\phi = 0$, $2\pi/3$ et $4\pi/3$ si κ_2 négatif

Si les paramètres sont relativement élevés, alors les minima sont assez prononcés et la déformation reste permanente. Par contre, pour des paramètres inférieurs, les minima sont moins profonds et la déformation moyenne de la molécule reste à symétrie octaédrique. Pour des molécules en phase gaseuse, on sera plutôt confronté à la deuxième hypothèse.

Notons enfin le cas $D_2 = 0$ et $\kappa_2 \neq 0$ qui correspond encore à une invariance dans $O(2)$ mais où la partie harmonique se transforme en $\hbar \omega_0 \rho^2 (1 \pm \kappa_2)/2$.

Symétrie de la molécule

Afin de déterminer la configuration de symétrie de la molécule, nous procédons de manière analogue à la référence [94] pour les molécules de type X_3 en supposant que toutes les coordonnées donnent une contribution nulle excepté celles correspondant à la symétrie E (voir Table 3.1). En se servant de
la table 2.1 de la référence [94] qui rassemble l’ensemble des coordonnées normales pour une molécule XY₆, il nous faut résoudre un système de 18 équations à 18 inconnues. Le résultat du système est donné ci-dessous :

\[Q_{1z} = -Q_{4z} = \frac{\rho}{\sqrt{3}} \cos \left(\phi - \frac{\pi}{3} \right), \quad Q_{2y} = -Q_{5y} = \frac{\rho}{\sqrt{3}} \cos \left(\phi + \frac{\pi}{3} \right), \quad Q_{3x} = -Q_{6x} = \frac{\rho}{\sqrt{3}} \cos \phi. \]

Pour une valeur de \(\rho \) fixée (valeur estimée à \(10^{-8} \sim 10^{-9} \) cm dans la Ref. [94]), la symétrie peut être identifiée. Pour \(\kappa_2 \) positif, la molécule est *compressée* le long de l’axe tétraédral ; dans l’autre cas (\(\kappa_2 \) négatif) on a une *elongation* le long de cet axe. Ainsi, pour chaque minimum, la symétrie moléculaire est abaissée au groupe \(D_{4h} \). Cependant, dans la limite de petits déplacements, la configuration reste en *moyenne* octaédrique : c’est ce qu’on observe pour des molécules en phase gazeuse.

3.3.3 Potentiel vibronique Jahn-Teller pour un système \([F_\tau \times E_g]\) \((F = F_1 \text{ ou } F_2)\)

Comme précédemment pour un état \(E_\tau \), nous pouvons définir le potentiel vibronique suivant :

\[
\mathcal{V}(Q_1, Q_2) = \frac{\hbar \omega_2}{2}(Q_1^2 + Q_2^2) \hat{T}_3 + t^E(Q_1 \hat{C}_1 + Q_2 \hat{C}_2) + \frac{\sqrt{2} t^E_{[EE]}}{4}((Q_2^2 - Q_1^2) \hat{C}_1 + 2Q_1 Q_2 \hat{C}_2) + \cdots
\]

où nous avons posé :

\[
\hat{C}_1 = \frac{1}{2\sqrt{3}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix} \quad \text{et} \quad \hat{C}_2 = \frac{1}{2} \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.
\]

Nous pouvons déjà remarquer que la matrice de potentiel est purement diagonale et donc que les opérateurs non-adiabatiques sont nuls. La base adiabatique des fonctions propres est simplement la base des fonctions d’onde électroniques.

Ainsi qu’auparavant, nous choisissons de poser

\[
l_2 \hbar \omega_2 = t^E \quad \text{et} \quad \kappa_2 \hbar \omega_2 = \frac{\sqrt{2} t^E_{[EE]}}{4},
\]

où \(l_2 \) et \(\kappa_2 \) sont des paramètres sans dimension. Les trois surfaces d’énergie potentiel adiabatiques résultantes (pour \((l_2, \kappa_2) = (0.5, 0) \text{ et } (0.5, 1)\)) sont trois paraboloides comme on peut le vérifier sur la figure 3.7. Notons aussi que les symétries permises des opérateurs électroniques (3.39) sont données par \(F \times F = A_1 + E + F_1 + F_2 \). On montrera alors dans le dernier chapitre que les 8 opérateurs \(\hat{T}_1^{(E)} \), \(\hat{T}_2^{(F_1)} \) et \(\hat{T}_3^{(F_2)} \) sont les générateurs d’une algèbre \(su(3) \); \(\hat{T}^{(A_1)} \) étant l’invariant linéaire de \(u(3) \).

Méthode des points stationnaires

Nous allons décrire brièvement la méthode de recherche des minima du potentiel proposée par Öpik et Pryce [57]. Cette méthode, fort élégante, ne présuppose aucune forme analytique des surfaces de potentiel adiabatiques puisqu’il n’est pas nécessaire de diagonaliser la matrice \(\mathcal{V}(Q) \).

La méthode consiste à résoudre le système d’équations couplées suivant :

\[
\mathcal{V}(Q) \hat{a}(Q) = \varepsilon(Q) \hat{a}(Q), \quad \hat{a}^\dagger(Q) \hat{a}(Q) = 1, \quad \hat{a}^\dagger(Q) \frac{\partial \mathcal{V}(Q)}{\partial Q_i} \hat{a}(Q) = 0.
\]

\(\hat{a}(Q) \) représente une fonction propre (supposée réelle) de la base adiabatique et \(\varepsilon(Q) \) la valeur propre associée. La première étape consiste à rechercher les solutions

\[
(\hat{a}_1 \ldots \hat{a}_n) \begin{pmatrix} \frac{\partial \mathcal{V}_{11}}{\partial Q_i} & \cdots & \frac{\partial \mathcal{V}_{1n}}{\partial Q_i} \\ \vdots & \ddots & \vdots \\ \frac{\partial \mathcal{V}_{n1}}{\partial Q_i} & \cdots & \frac{\partial \mathcal{V}_{nn}}{\partial Q_i} \end{pmatrix} \begin{pmatrix} \hat{a}_1 \\ \vdots \\ \hat{a}_n \end{pmatrix} = 0
\]
puis ensuite à les remplacer dans l’équation aux valeurs propres. Nous obtiendrons ainsi les composantes \(\hat{a}(Q) \) et la valeur de \(\varepsilon(Q) \). \(n \) représente ici la dégénérescence de l’état électronique. En substituant le potentiel (3.56) dans (3.59), nous obtenons les deux solutions

\[
Q_1 = \frac{-1}{2} \frac{l_2(y^2 \kappa_2 - 4 \kappa_2 z^2 - 2z)}{1 + 4 \kappa_2^2 z^2 + \kappa_2^2 y^2} \quad \text{et} \quad Q_2 = \frac{1}{2} \frac{l_2 y (-1 + 4 \kappa_2 z)}{1 + 4 \kappa_2^2 z^2 + \kappa_2^2 y^2},
\]

où nous avons posé :

\[
y = (\hat{a}_1^2 - \hat{a}_2^2) \quad \text{et} \quad z = \frac{\sqrt{3}}{6} (\hat{a}_1^2 + \hat{a}_2^2 - 2 \hat{a}_3^2).
\]

Ainsi, à partir de ces deux solutions, nous pouvons résoudre le système de quatre équations à quatre inconnues (les équations du système s’obtiennent à partir des deux premiers termes de (3.58)). Les solutions sont données dans la table 3.3.

Tab. 3.3 - Solutions des équations de Õik-Pryce

<table>
<thead>
<tr>
<th>(\hat{a}_1)</th>
<th>(\pm 1)</th>
<th>0</th>
<th>0</th>
<th>(\pm \frac{1}{\sqrt{2}})</th>
<th>(\pm \frac{1}{\sqrt{2}})</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{a}_2)</td>
<td>0</td>
<td>(\pm 1)</td>
<td>0</td>
<td>(\pm \frac{1}{\sqrt{2}})</td>
<td>0</td>
<td>(\pm \frac{1}{\sqrt{2}})</td>
</tr>
<tr>
<td>(\hat{a}_3)</td>
<td>0</td>
<td>0</td>
<td>(\pm 1)</td>
<td>(\pm \frac{1}{\sqrt{2}})</td>
<td>(\pm \frac{1}{\sqrt{2}})</td>
<td>(\pm \frac{1}{\sqrt{2}})</td>
</tr>
<tr>
<td>(\varepsilon)</td>
<td>(-1/2 \omega_2 \beta_3^2)</td>
<td>(1/2 \omega_2 \beta_3^2)</td>
<td>(\sqrt{3} \beta_3)</td>
<td>0</td>
<td>(\sqrt{3} \beta_3)</td>
<td>(\sqrt{3} \beta_3)</td>
</tr>
</tbody>
</table>

Dans ce tableau, la ligne correspondant à \(\varepsilon \) représente l’énergie de stabilisation Jahn-Teller. Elle nous renseigne sur la profondeur des minima. La deuxième colonne est relative à une déformation tétragonale abaissant la symétrie à \(D_{4h} \). Pour la troisième colonne, la configuration devient orthorhombique et la symétrie moléculaire est dans ce cas \(D_{2h} \). On remarque immédiatement dans la quatrième colonne que \(\varepsilon = 0 \), c’est-à-dire que seule l’excitation d’un mode triplement dégénéré fait passer la molécule vers une configuration trigonale \(D_{3d} \). Enfin dans la dernière colonne (qui n’existe que pour des effets quadratiques non-nuls), on a une configuration intermédiaire aux colonnes 2 et 3 qui se traduit par une symétrie moins élevée.

3.3.4 Potentiel vibronique Jahn-Teller pour un système [\(F_r \times F_v \)]

Le potentiel d’interaction à l’ordre quadratique entre un triplet électronique \(f_r \) et les vibrations de type \(F_v \) d’une molécule octaédrique est donné par :

\[
\hat{V}(Q_x, Q_y, Q_z) = \frac{\hbar \omega_i}{2} (Q_x^2 + Q_y^2 + Q_z^2) \hat{I}_3 + \frac{1}{\sqrt{6}} \sum_{\sigma = x, y, z} Q_\sigma \hat{C}_\sigma + \frac{\sqrt{2} l^F_1}{4} (Q_x^2 + Q_y^2 - 2Q_z^2) \hat{C}_1 + (Q_y^2 - Q_x^2) \hat{C}_2 + \frac{\sqrt{3} l^F_3}{6} (Q_y Q_x \hat{C}_x + Q_x Q_z \hat{C}_y + Q_y Q_z \hat{C}_z) + \cdots
\]

(3.60)

où les matrices \(\hat{C}_{1,2} \) sont données par (3.57) et les matrices \(\hat{C}_{x,y,z} \) sont définies dans la table 3.2. D’après le théorème Jahn-Teller, le terme de couplage linéaire n’existe que pour des modes vibrationnels de symétrie \(F_{2g} \) puisque la symétrie des opérateurs électroniques doit être contenue dans la partie symétrique \([F \times F] \).
Passons maintenant en coordonnées sphériques

\[Q_x = r \sin \theta \cos \varphi, \quad Q_y = r \sin \theta \sin \varphi, \quad Q_z = r \cos \theta, \quad (3.61) \]

avec \(\varphi \in [0, 2\pi] \) et \(\theta \in [0, \pi] \). La matrice potentielle peut alors s'écrire à l'aide de cette représentation comme

\[
\hat{V}(r, \theta, \varphi) = \hbar \omega_i \\
\times \begin{pmatrix}
 r^2 \left(\frac{1}{2} + (3 \sin^2 \theta \cos^2 \varphi - 1) g_E \right) & rK \cos \theta + \frac{r^2 g_\varphi}{2} \sin^2 \theta \sin 2\varphi & rK \sin \theta \sin \varphi + \frac{r^2 g_\varphi}{2} \sin 2\theta \cos \varphi \\
 rK \cos \theta + \frac{r^2 g_\varphi}{2} \sin^2 \theta \sin 2\varphi & r^2 \left(\frac{1}{2} + (3 \sin^2 \theta \sin^2 \varphi - 1) g_E \right) & rK \sin \theta \sin \varphi + \frac{r^2 g_\varphi}{2} \sin 2\theta \sin \varphi \\
 rK \sin \theta \sin \varphi + \frac{r^2 g_\varphi}{2} \sin 2\theta \cos \varphi & rK \sin \theta \cos \varphi + \frac{r^2 g_\varphi}{2} \sin 2\theta \sin \varphi & r^2 \left(\frac{1}{2} + (3 \cos^2 \theta - 1) g_E \right)
\end{pmatrix}
\]

\[
(3.62)
\]
Afin de manipuler des paramètres vibroniques linéaires [64] et quadratiques sans dimension, nous avons posé :
\[K\hbar\omega_i = -\frac{t_{F_2}^2}{\sqrt{6}}, \quad g_E\hbar\omega_i = \frac{\sqrt{2}t_{F_1}^{FF}}{12}, \quad g_F\hbar\omega_i = \frac{\sqrt{3}t_{F_2}^{FF}}{6}. \] (3.63)

Effets Jahn-Teller linéaires

Considérons tout d’abord les seuls termes linéaires en supposant que \(g_E = g_{F_2} = 0 \). Pour le calcul des valeurs et vecteurs propres, nous suivons la méthode proposée par Cocolicchio et Viggiano [129]. Pour cela, nous devons considérer les deux nouvelles quantités suivantes :
\[
\begin{align*}
 u &= -\frac{1}{18} \left(3 \text{ Tr} \left(\hat{V}^2 \right) - \left(\text{ Tr} \left(\hat{V} \right) \right)^2 \right) = -\frac{r^2K^2}{3} \\
 v &= \frac{1}{54} \left(-2 \left(\text{ Tr} \left(\hat{V} \right) \right)^3 + \frac{9}{2} \text{ Tr} \left(\hat{V} \right) \left(\text{ Tr} \left(\hat{V} \right)^2 - \text{ Tr} \left(\hat{V}^2 \right) \right) - 27 \det \hat{V} \right) = -\frac{r^3K^3}{2} \sin^2\theta \sin 2\varphi \cos \theta.
\end{align*}
\] (3.64)

Afin d’obtenir des solutions réelles, les conditions \(u < 0 \) et \(v^2 + u^3 < 0 \), i.e.
\[
-\frac{r^2K^2}{3} < 0, \quad \sin^2\theta \sin 2\varphi \cos \theta < \frac{2}{\sqrt{27}}
\]
doivent être satisfaites. Dans ce cas, les trois valeurs propres sont données par
\[
\begin{align*}
 V_0 &= \frac{\hbar\omega_r^2}{2} - \frac{2\hbar\omega_rK}{\sqrt{3}} \cos \left(\frac{\Theta}{3} \right), \\
 V_1 &= \frac{\hbar\omega_r^2}{2} + \frac{\hbar\omega_rK}{\sqrt{3}} \left[\cos \left(\frac{\Theta}{3} \right) \pm \sqrt{3} \sin \left(\frac{\Theta}{3} \right) \right] = \frac{\hbar\omega_r^2}{2} - \frac{2\hbar\omega_rK}{\sqrt{3}} \cos \left(\frac{\Theta}{3} \pm \frac{2\pi}{3} \right),
\end{align*}
\] (3.65)
avec
\[\Theta = \text{Arccos} \left(-\frac{3\sqrt{3}}{2} \sin^2\theta \sin 2\varphi \cos \theta \right). \]

Les composantes des vecteurs propres associés à chaque valeur propre \(V_I \) \((I = 0, \pm)\) et exprimés dans la base électronique \(\{|I;\sigma >\} \) sont données par
\[
\Psi_I = \frac{1}{N(r, \theta, \varphi)} \begin{bmatrix}
 A_I \sin \theta \sin \varphi - \frac{r^2K^2}{2} \sin 2\theta \cos \varphi \\
 - (A_I \sin \theta \cos \varphi + \frac{r^2K^2}{2} \sin 2\theta \sin \varphi) \\
 A_I^2 + r^2K^2 \cos^2\theta
\end{bmatrix}
\] (3.66)

où nous avons posé \(A_I = (V_I - \frac{2}{3}) \) et \(N(r, \theta, \varphi) \) est un facteur de normalisation.

Lorsque \(K \neq 0 \), nous obtenons trois sphères déformées de \(S^2 \) reliées en différents points de dégénérescence (intersections coniques) dans les trois directions de l’espace. En considérant les domaines de déﬁnition de \(\theta \) et \(\phi \) et en supposant \(K \) positif, on montre facilement que les valeurs propres sont rangées dans l’ordre suivant : \(V_0 \leq V_- \leq V_+ \). Lorsque \(K \) est négatif, il suffit simplement d’inverser l’ordre des valeurs propres. Examinks maintenant la surface de potentiel \(V_0 \) pour \(K \) positif et cherchons les minima de cette surface. A partir de (3.65), on remarque que l’on obtient une série de minima pour les valeurs \(\Theta = 0; 6\pi \), ce qui signifie que
\[
\sin^2\theta \sin 2\varphi \cos \theta = -\frac{2}{3\sqrt{3}}.
\] (3.67)

Une étude succincte de la fonction \(f(\theta) = \sin^2\theta \cos \theta \) pour \(\theta \in [0, \pi] \) nous montre que celle-ci
possède deux extrema : \(f(\arcsin(\sqrt{2/3})) = 2/3\sqrt{3} \) et \(f(\pi - \arcsin(\sqrt{2/3})) = -2/3\sqrt{3} \). Dans ce cas, il devient évident à l’aide de l’équation (8.31) pour \(\varphi \in [0, 2\pi] \), nous avons quatre minima dans les quatre directions \((\theta, \varphi)\) suivantes :

\[
\left(\arcsin \left(\frac{2}{3} \right), \frac{3\pi}{4} \right), \left(\arcsin \left(\frac{2}{3} \right), \frac{7\pi}{4} \right), \left(\pi - \arcsin \left(\frac{2}{3} \right), \frac{\pi}{4} \right), \left(\pi - \arcsin \left(\frac{2}{3} \right), \frac{5\pi}{4} \right).
\]

La figure 3.8 représente la projection du potentiel \(V_0 \) dans le plan \((\theta, \varphi)\). On peut visualiser les quatre minima (et maxima) pour les valeurs de \((\theta, \varphi)\) attendues et on montre que la profondeur des minima ainsi que la hauteur maximale des pics sont simplement données par

\[
V_0^{\text{min}} = \frac{\hbar \omega_i r^2}{2} - \frac{2\hbar \omega_i r K}{\sqrt{3}} \quad \text{et} \quad V_0^{\text{max}} = \frac{\hbar \omega_i r^2}{2} + \frac{2\hbar \omega_i r K}{\sqrt{3}}.
\]

Notons ainsi que la profondeur des puits va dépendre de la valeur du paramètre vibronique linéaire. Koizumi \textit{et al.} [130] ont montré que la prise en compte du terme de Born-Huang affectait la position et la profondeur de ces puits (il est bon de rappeler que ce terme diverge au voisinage d’une intersection conique).

A partir des quatre couples \((\theta, \varphi)\), nous pouvons alors déduire les valeurs du triplet \((Q_x, Q_y, Q_z)\) correspondants aux quatre directions privilégiées du tétraèdre\(^{14}\) (voir Fig. 3.9):

\[
\frac{\sqrt{3}}{3}(-1, 1, 1), \quad \frac{\sqrt{3}}{3}(1, -1, 1), \quad \frac{\sqrt{3}}{3}(1, 1, -1), \quad \frac{\sqrt{3}}{3}(-1, -1, -1).
\]

Chacune des quatre trajectoires traverse à la fois un minimum et une intersection conique et il est montré que ces quatre minima, appartenant au tétraèdre régulier, abaissent la symétrie initiale \(O_h\) en la symétrie trigonale \(D_{3d}\) [94].

Nous avons aussi représenté sur la figure 3.9 les deux premières surfaces de potentiel \(V_0 \) et \(V_\perp \) tracées en dimension 4 pour \(K = 0.7 \) et \(\omega_i = 283 \text{ cm}^{-1} \) (RuF\(_6\), [1]). La surface centrale non

\(^{14}\)Nous obtenons des directions opposées à celles obtenues dans la référence [64]. Si l’on veut avoir les mêmes conventions, il suffit simplement de considérer le nouveau paramètre vibronique \(K' = -K \).
3.3. Études de différents potentiels vibroniques

Fig. 3.9 - Potentiel vibronique linéaire pour \(K = 0.7 \) et \(\omega_i = 283 \text{ cm}^{-1} \) (à gauche) avec les quatre lignes de dégénérescence partant de \((0,0,0)\) et allant dans les directions \((-1,-1,-1)\), \((-1,1,1)\), \((1,-1,1)\) et \((1,1,-1)\). La figure de droite représente les deux premières surfaces de potentiel vibroniques.

“tronquée” représente \(V_0 \). Nous voyons clairement les quatre minima distincts que nous avions calculés précédemment et séparés par six points de selle orthorhombiques ainsi que les quatre intersections coniques, points de contact des deux premières surfaces. Ces quatre points coniques sont en fait les quatre maxima du potentiel \(V_0 \) et peuvent être calculés à partir de l’équation (3.65). Nous avons donc

\[
\left(\arcsin \left(\frac{\sqrt{2}}{3} \right), \frac{\pi}{4} \right), \left(\arcsin \left(\frac{\sqrt{2}}{3} \right), \frac{5\pi}{4} \right), \left(\pi - \arcsin \left(\frac{\sqrt{2}}{3} \right), \frac{3\pi}{4} \right), \left(\pi - \arcsin \left(\frac{\sqrt{2}}{3} \right), \frac{7\pi}{4} \right).
\]

Ces quatre lignes d’intersections coniques ont bien des directions opposées à celles des minima (voir Fig. (3.8)).

Rôle de la phase de Berry

Il y a quelques années, O’Brien [64] a examiné le problème de la phase de Berry sur les fonctions propres \(\Psi_0 \) d’un tel système. Elle est arrivée à la conclusion, confirmée ensuite par Ham [131], que si un chemin entourait une intersection conique, la phase de Berry était donnée par

\[
\exp \left(i \oint \mathcal{F} \, dV \right) = -1 ,
\]

car les fonctions propres changeaient de signe sur un tel contour. Ces deux auteurs ont vérifié (par deux méthodes différentes) que, d’une manière générale, la phase de Berry est un multiple pair ou impair de \(\pi \) suivant que le contour enlace un nombre pair ou impair d’intersections coniques. Par contre, lorsque le chemin considéré entoure un minimum, aucun changement de signe n’apparaît puisque pour la surface minimale, il n’y a pas de point de contact avec les autres surfaces. Par ces considérations, Ham [131] et plus récemment Koizumi et al. ont prédit, en complète analogie avec le système \([E \times E]\) [61, 127] que la symétrie de l’état vibronique de base devait rester toujours triplement dégénérée en présence des seuls termes linéaires.
FIG. 3.10 - Potentiels vibroniques Jahn-Teller linéaires et quadratiques pour un système \([F_{2g} \times F_{2g}]\). Les trois figures sont données pour \((K, g_E, g_{F_2}) : (0.7, 0.5, 0)\) figure en haut à gauche ; \((0.7, 0.5, 0.5)\) figure en haut à droite et \((0.7, 0.5, 0.5)\) figure en bas.

Effets Jahn-Teller quadratiques

Nous considérons maintenant l’inclusion des deux termes quadratiques dans le potentiel vibronique. Vu la complexité d’un tel problème, une forme analytique des solutions propres deviendrait vite imposante. Nous choisissons donc de diagonaliser numériquement la matrice (3.62). Nous avons fixé le paramètre linéaire \(K = 0.7\) ainsi que la fréquence \(\omega_5 = 283\ \text{cm}^{-1}\) qui correspond au mode \(\nu_5\) de la molécule RuF₆ dans son état électronique de base trois fois dégénéré \(F_{2g}\) [1]. La figure 3.10 rassemble trois potentiels vibroniques en fonction des deux paramètres quadratiques \(g_E\) et \(g_{F_2}\).
3.3.5 Cas d’un état électronique quatre fois dégénéré

Nous rappelons ici brièvement le cas d’un mode deux ou trois fois dégénéré en interaction avec un
quadruplet électronique. Les principaux résultats sont collectés dans la thèse de Boudon [45].

Cas d’un mode \(\nu_2(E_g) \)

Il est aisé de vérifier, à partir de l’expression (3.38), que le terme d’interaction du potentiel fait
intervenir les matrices de Dirac définies dans la table 3.2 :

\[
\left[\begin{array}{cc}
F (E & \gamma' \\
1, 2 & G')
\end{array} \right] \gamma' = \frac{1}{2\sqrt{2}} \times \hat{\rho}_{1,2} \gamma' .
\] (3.72)

Par conséquent, nous pouvons écrire la partie potentiel comme :

\[
\bar{V}(Q_1, Q_2) = \frac{\hbar \omega_2}{2} (Q_1^2 + Q_2^2) \hat{I}_1 + \frac{1 t_E}{2\sqrt{2}} (Q_1 \hat{\rho}_1 + Q_2 \hat{\rho}_2) + \frac{1 t_{EE}}{8} ((Q_2^2 - Q_1^2) \hat{\rho}_1 + 2Q_1 Q_2 \hat{\rho}_2) + \cdots
\] (3.73)

Afin d’être cohérent avec l’expression de Boudon et avec la littérature en général [1], nous posons :

\[
\frac{1 t_E}{2\sqrt{2}} = \sqrt{2D_2 \hbar \omega_2} \quad \text{et} \quad \frac{1 t_{EE}}{4} = \delta_2 \hbar \omega_2 .
\] (3.74)

Il est possible de faire l’analogie entre ce système et celui d’un doublet électronique. En effet, l’idée
principale (que nous développerons un peu plus lors du dernier chapitre) est que la symétrie \(G' \) peut
etre écrite comme le produit \(E_1^* \times E \). Ainsi, un réarrangement de l’expression (3.43) laisse apparaître
une forme analogue au potentiel ci-dessus où simplement, dans le cas présent, les matrices \(2 \times 2 \) de
Pauli ont été substituées par les matrices \(4 \times 4 \) de Dirac. On obtient deux surfaces de potentiel chacune
deux fois dégénérées et correspondant aux doublets de Kramers (correspondant à \(E_{1,2}^* \) inhérents pour
un système possédant la symétrie par \(RT \) et un moment angulaire demi-entier. La molécule est encore
déformée vers trois configurations \(D_4h \) mais reste, en moyenne, à symétrie octaédrique. Notons pour
finir que la présence des doublets de Kramers complique la formulation de la phase géométrique. Mead
[113] montre que ceux-ci induisent un facteur de phase de \(SU(2) \) qui n’est plus simplement +1 ou -1
mais peut être choisi de manière arbitraire [117, 132].

Cas d’un mode \(\nu_5(F_{2g}) \)

Il n’est plus possible de faire le lien avec un état \(E \) puisque les systèmes du type \([E \times F_2] \) sont
interdits. Cependant, il est encore envisageable de relier ce modèle au formalisme matriciel de Dirac
en remarquant que :

\[
\left[\begin{array}{cc}
aF (F_2 & \gamma' \\
\alpha & G')
\end{array} \right] \gamma' = \frac{1}{2\sqrt{3}} \times \hat{\rho}_{3} \gamma' \sigma_{\alpha} .
\] (3.75)

Nous en déduisons :

\[
\bar{V}(Q_x, Q_y, Q_z) = \frac{\hbar \omega_5}{2} (Q_x^2 + Q_y^2 + Q_z^2) \hat{I}_1 + \frac{a t_{F_2}}{2\sqrt{3}} \rho_3 \sum_{x,y,z} Q_x \sigma_{\alpha} \\
+ \frac{1 t_{F_3F_2}}{4} \left(\frac{1}{2\sqrt{3}} (Q_x^2 + Q_y^2 - 2Q_z^2) \hat{\rho}_1 + \frac{1}{2} (Q_x^2 - Q_y^2) \hat{\rho}_2 \right) \\
+ \frac{a t_{F_3F_2}}{2\sqrt{6}} \rho_3 (Q_y Q_z \sigma_x + Q_x Q_z \sigma_y + Q_x Q_y \sigma_z) + \cdots
\] (3.76)
et les 15 opérateurs (3.39) $\hat{T}(F_2)$, $\hat{T}(E)$, $\hat{T}(F_1)$, $\hat{T}(F_3)$, $\hat{T}(F_4)$ et $\hat{T}(F_5)$ sont les générateurs de $su(4)$. Nous rappelons les propriétés suivantes concernant l’algèbre de Dirac :

$$[\hat{\rho} , \hat{\sigma}] = 0 , \hat{\rho} \wedge \hat{\rho} = 2i \hat{\rho} , \hat{\sigma} \wedge \hat{\sigma} = 2i \hat{\sigma} .$$

Toujours par souci de clarté, nous pouvons relier nos paramètres à ceux utilisés par Boudon

$$\frac{\alpha_{1F_2}}{2\sqrt{3}} = \sqrt{2D_5 \hbar \omega_5} , \quad \frac{t^{(E)}_{F_2 F_5}}{8\sqrt{3}} = \sqrt{6Q_E \hbar \omega_5} \quad \text{et} \quad \frac{\alpha_{1F_2}}{2\sqrt{3}} = \frac{2}{\sqrt{3}} Q_{F_2} \hbar \omega_5 . \quad (3.77)$$

Même s’il n’est pas possible d’associer directement ce système à un autre, nous pouvons toutefois remarquer que ce potentiel se rapproche de (3.60) par une substitution du type

$$\hat{C}_\alpha \longleftrightarrow \hat{\rho}_3 \hat{\sigma}_\alpha , \quad \hat{C}_{1,2} \longleftrightarrow \hat{\rho}_{1,2} . \quad (3.78)$$

à la différence près que le système triplet (3.60) n’a pas la symétrie sphérique dans l’approximation linéaire i.e. les matrices \hat{C}_α ne forment pas un système de générateurs et donc aucun moment angulaire ne peut lui être associé. Par contre, pour des systèmes quatre fois dégénérés, la symétrie est telle, que l’on peut leurs associer un moment angulaire électronique dans $O(3)$ appelé aussi “pseudo-spin” (du fait qu’il satisfait aux mêmes règles de commutation qu’un spin). Lorsque les termes d’ordre supérieurs (quadratiques, cubiques, ... etc) sont présents, la symétrie sphérique de l’Hamiltonien se brise et le groupe d’invariance devient O_h. Illustrons ceci en tracant les surfaces d’énergies potentielle minimale pour différentes configurations (voir Figs. 3.11). Le potentiel linéaire seul n’est pas représenté ici, il serait simplement décrit par une sphère non déformée dans l’espace de configuration. Notons que chaque surface est doublement dégénérée en accord avec le théorème de Kramers et que cette dégénérescence ne peut être levée par les distorsions Jahn-Teller.

Fig. 3.11: Potentiels vibroniques Jahn-Teller pour le système $[F_{2g} \times G^t_{5g}]$ pour $(D_5, Q_E, Q_{F_2}) = (0.8, 0, 1, 0), (0.8, 0, 1) \text{ et } (0.8, 0, 1, 0) \ (\text{de gauche à droite}).$

Voici comment peuvent s’interpréter ces différentes figures [45] :

- Si seul Q_E est non-nul, alors le potentiel est invariant dans le groupe D_{2h}
- Si seul Q_{F_2} est non-nul, alors le potentiel est invariant dans le groupe T_d
- Si Q_E et Q_{F_2} sont non-nuls, alors le potentiel est invariant dans le groupe D_2.

Nous arrêterons ici l’étude des différents potentiels vibroniques et l’ouvrage de Bersuker et Polinger [94] est fortement conseillé pour plus de détails.
3.3.6 Tentative d’un traitement perturbatif : application aux systèmes \([E \times E]\) et
\([G' \times F_2]\)

Par un procédé de type perturbatif, nous allons transformer notre Hamiltonien J.T. initial d’un
système \([E \times E]\) et \([G'_g \times F_{2g}]\) en un Hamiltonien effectif. Ce nouvel Hamiltonien est obtenu en
appliquant une série de transformations unitaires \(e^{i\lambda^k[S^{(k)}]_a}\), dites de contact ou de Van Vleck, sur
l’Hamiltonien initial non transformé. Pour les systèmes considérés, nous nous sommes orientés sur
les travaux de Sugny et Joyeux [133] qui proposent une méthode élégante, nommée CPT (comme
“Canonical Perturbative Theory”), pour traiter la dynamique non adiabatique des noyaux sur des
surfaces électroniques. Nous exposerez donc succinctement leur méthode retranscrite dans ce travail
à notre système.

Notre Hamiltonien de départ \(H\) s’écrit comme :

\[
H = \frac{1}{2} \sum_{i}^{d} (p_i^2) + \hat{V}(Q_1, Q_2, \ldots, Q_d) = H_0 + V. \tag{3.79}
\]

\(V\) est la partie relative aux interactions vibroniques et à laquelle nous pouvons greffer (de manière
virtuelle) un paramètre de perturbation \(\lambda\). Ainsi, l’Hamiltonien effectif \(\hat{H}\) pour \(n\) transformations
successives, s’écrit

\[
\hat{H} = e^{i\lambda[S^{(n)}]_a} \ldots e^{i\lambda^2[S^{(2)}]_a} e^{i\lambda[S^{(1)}]_a} H, \tag{3.80}
\]

où les \(S\) sont les générateurs de chaque transformation avec la notation \([S, a] = [S, a]\). Nous nous
limiterons volontairement à \(S^{(1)}\) pour nos calculs car pour les autres contributions, il devient vite
difficile d’extraire la partie potentielle. Ainsi, nous aurons :

\[
\hat{H} = e^{i\lambda[S^{(1)}]_a} H = H + i\lambda[S^{(1)}, H] - \frac{\lambda^2}{2!}[S^{(1)}, [S^{(1)}, H]] + \ldots
= \sum_k \lambda^k \hat{H}^{(k)} \tag{3.81}
\]

A partir des equations (3.79) et (3.81), les premiers termes du développement sont donnés par

\[
\begin{align*}
\hat{H}^{(0)} &= H_0 \\
\hat{H}^{(1)} &= V + i[S^{(1)}, H_0] \\
\hat{H}^{(2)} &= i[S^{(1)}, V] - \frac{1}{2}[S^{(1)}, [S^{(1)}, H_0]]
\end{align*} \tag{3.82}
\]

Comme usuuellement, nous cherchons l’expression de \(S^{(1)}\) qui annule la contribution purement non
diagonale \(H^{(1)}\), ce qui revient à déterminer une solution de l’équation

\[
[S^{(1)}, H_0] = iV \tag{3.83}
\]

Sugny et al. [133] propose d’écrire \(H_0\) et \(V\) sous une forme générale [133]:

\[
H_0 = \sum_{k-1}^{d} \omega_i (a_k^+ a_k + \frac{1}{2})(g + e) \quad \text{et} \quad V = g \sum_{m,n} \alpha_i (a_j^+)^m_j (a_j)^n_j
\]

\[
+ e \sum_{m,n} \beta_i (a_j^+)^m_j (a_j)^n_j
+ j_i \sum_{m,n} (a_j^+)^m_j (a_j)^n_j
+ j_- \sum_{m,n} (a_j^+)^m_j (a_j)^n_j \tag{3.84}
\]

\(^{15}\)Dans leur formulation est inclus un terme de séparation \(E_0\) entre les deux surfaces électroniques.
La forme des matrices g, e, j_+ et j_- doit être définie suivant la symétrie du problème.

Il est alors possible de chercher des solutions de l'équation (3.83) à partir des formes bilinéaires connues de H_0 et de V. Le générateur $S^{(1)}$ peut alors être formulé comme :

$$
S^{(1)} = g \sum_{m,n} \frac{e_m}{\Sigma_{m,n}} \prod_{j=1}^d (a_j^+)^{m_j} (a_j)^{n_j}
+ e \sum_{m,n} \frac{e_m}{\Sigma_{m,n}} \prod_{j=1}^d (a_j^+)^{m_j} (a_j)^{n_j}
+j_+ \sum_{m,n} \frac{e_m}{\Sigma_{m,n}} \prod_{j=1}^d (a_j^+)^{m_j} (a_j)^{n_j}
+j_- \sum_{m,n} \frac{e_m}{\Sigma_{m,n}} \prod_{j=1}^d (a_j^+)^{m_j} (a_j)^{n_j}
$$

(3.85)

avec $\Sigma_{m,n} = \sum_{k=1}^2 (m_k - n_k)\omega_k$. Notons que les termes tels que $\Sigma_{m,n} \approx 0$ doivent être extraits de V. Physiquement, ils correspondent soit à des contributions diagonales ($m = n$), à des interactions intra-électroniques (Born-Huang) soit à des interactions de type Fermi ($m \neq n$).

Application au système $[E \times E]$ linéaire

Nous appliquons maintenant ce modèle au système (3.79). Formulé sous la forme souhaitée (3.84), notre Hamiltonien s'exprime :

$$
H = H_0 + \sqrt{D_2} \omega_2 ((a_2^+ + a_2) (j_+ + j_-) + (a_1^+ + a_1) (g - e))
$$

(3.86)

où les matrice g, e, j_+ et j_- sont de la forme :

$$
g = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \quad e = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \\

j_+ = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad j_- = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}
$$

Il est aisé de montrer que le générateur $S^{(1)}$ doit s'écrire

$$
S^{(1)} = -\frac{\sqrt{2D_2}}{\omega_2} (P_2\hat{\sigma}_1 - P_1\hat{\sigma}_3) = -\sum_{\alpha} \frac{\sqrt{2D_2}}{\omega_2} p^{(E)}_\alpha T^{(E)}_\alpha
$$

(3.87)

de sorte que la contribution au premier ordre s'annule. Nous aurons ainsi la contribution linéaire à l'ordre deux :

$$
\tilde{H}^{(2)} = -2D_2\omega_2 \left(\hat{\sigma}_0 - \frac{L_3\hat{\sigma}_2}{2} \right)
$$

(3.88)

Afin de rendre cet Hamiltonien complètement diagonal dans la base électronique, nous lui appliquons une transformation unitaire du type

$$
U = \frac{1}{\sqrt{2}} \begin{pmatrix} -i & 1 \\ i & 1 \end{pmatrix}
$$

(3.89)

de sorte que

$$
\tilde{H}^{(2)} = U \tilde{H}^{(2)} U^\dagger = -2D_2\omega_2 \left(\hat{\sigma}_0 + \frac{L_3\hat{\sigma}_3}{2} \right)
$$

(3.90)
FIG. 3.12 - Potentiels vibroniques linéaires pour un état E après transformation.

Mais un autre problème apparaît : le développement de L_3 fait apparaître des formes bilinéaires $P_i Q_j$ dans l’Hamiltonien si bien qu'il est impossible d’en extraire la partie potentiel. Pour ce faire, nous effectuons la transformation canonique

$$Q_1 = \frac{1}{\sqrt{2}} \left(\bar{Q}_2 - \bar{P}_1 \right) \quad P_1 = \frac{1}{\sqrt{2}} \left(\bar{Q}_1 + \bar{P}_2 \right)$$
$$Q_2 = \frac{1}{\sqrt{2}} \left(\bar{Q}_1 - \bar{P}_2 \right) \quad P_2 = \frac{1}{\sqrt{2}} \left(\bar{Q}_2 + \bar{P}_1 \right)$$

Nous obtenons ainsi deux surfaces de potentiels (voir Figure 3.12) visualisées cette fois dans l’espace des coordonnées (\bar{Q}_1, \bar{Q}_2)

$$\tilde{V}_\pm (\bar{Q}_1, \bar{Q}_2) = \frac{\omega_2}{2} \left(\bar{Q}_1^2 + \bar{Q}_2^2 \pm 2D_2 \left(\bar{Q}_1^2 - \bar{Q}_2^2 \pm 2 \right) \right) \quad (3.91)$$

Nous montrerons à la fin du chapitre suivant qu’en pratique, le terme (3.90) n’est pas perturbatif et que l’on doit diagonaliser l’Hamiltonien exact.

Application au système $[F_2 \times G']$ linéaire

Notre Hamiltonien Jahn-Teller pour le système quatre fois dégénéré s’écrit :

$$H = H_0 - \sqrt{D_5 \omega_5} p_3 \left((a_x^+ + a_x)(j_+ + j_-) - i(a_y^+ + a_y)(j_+ - j_-) + (a_z^+ + a_z)(e - g) \right) \quad (3.92)$$

avec :

$$g = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad e = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

$$j_+ = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad j_- = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$

Le générateur $S^{(1)}$ s’obtient de manière identique au problème précédent et nous avons :

$$H^{(2)} = -4D_5 \omega_5 \left(\tilde{\sigma}_0 + \tilde{L} \Sigma \right) \quad \text{avec} \ \Sigma = \sigma/2. \quad (3.93)$$

Il est cependant très difficile d’extraire la partie potentielle car la transformation canonique le permettant n’est pas intuitive.
3.3.7 Quelques systèmes Jahn-Teller

Le tableau 3.4 donne quelques exemples de systèmes Jahn-Teller pour des molécules appartenant au groupe O_h.

<table>
<thead>
<tr>
<th>Systèmes</th>
<th>Niveaux électroniques (cm$^{-1}$)</th>
<th>Modes de vibration (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[E_r \times E_g]$</td>
<td>$X(E_g) \ (0, \text{OsF}_6)$</td>
<td>$\nu_2 \ (668)$</td>
</tr>
<tr>
<td></td>
<td>$c(E_g) \ (8482, \text{OsF}_6)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$c(E_g) \ (5400, \text{PtF}_6)$</td>
<td>$\nu_2 \ (601)$</td>
</tr>
<tr>
<td></td>
<td>$a(E_g) \ (? , \text{RuF}_6)$</td>
<td>$\nu_2 \ (624)$</td>
</tr>
<tr>
<td>$[F_r \times E_g], [F_r \times F_u]$</td>
<td>$X(F_{2g}) \ (0, \text{RuF}_6)$</td>
<td>$\nu_2 \ (624), \nu_3 \ (735), \nu_4 \ (275), \nu_5 \ (283), \nu_6 \ (186)$</td>
</tr>
<tr>
<td></td>
<td>$b(F_{1g}) \ (1400, \text{RuF}_6)$</td>
<td>$\nu_2 \ (601), \nu_3 \ (705), \nu_4 \ (273), \nu_5 \ (242), \nu_6 \ (211)$</td>
</tr>
<tr>
<td></td>
<td>$a(F_{1g}) \ (3300, \text{PtF}_6)$</td>
<td>$\nu_2 \ (668), \nu_3 \ (720), \nu_4 \ (268), \nu_5 \ (276), \nu_6 \ (205)$</td>
</tr>
<tr>
<td></td>
<td>$b(F_{2g}) \ (5200, \text{PtF}_6)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$a(F_{2g}) \ (100, \text{OsF}_6)$</td>
<td>$\nu_2 \ (524), \nu_3 \ (619.76), \nu_4 \ (201), \nu_5 \ (206), \nu_6 \ (178)$</td>
</tr>
<tr>
<td></td>
<td>$b(F_{1g}) \ (4316, \text{OsF}_6)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$a(F_{1g}) \ (4376, \text{PuF}_6)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$c(F_{2g}) \ (5940, \text{PuF}_6)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$d(F_{1g}) \ (9926, \text{PuF}_6)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$X(F_{2g}) \ (0, \text{V(CO)}_6)$</td>
<td>$\nu_6 \ (2000)$</td>
</tr>
<tr>
<td>$[G_r' \times E_g], [G_r' \times F_u]$</td>
<td>$X(G'_{2g}) \ (0, \text{TcF}_6)$</td>
<td>$\nu_2 \ (639), \nu_3 \ (748), \nu_4 \ (275), \nu_5 \ (297), \nu_6 \ (145)$</td>
</tr>
<tr>
<td></td>
<td>$X(G'_{2g}) \ (0, \text{RhF}_6)$</td>
<td>$\nu_2 \ (592), \nu_3 \ (724), \nu_4 \ (283), \nu_5 \ (269), \nu_6 \ (189)$</td>
</tr>
<tr>
<td></td>
<td>$a(G'_{g}) \ (8762, \text{RhF}_6)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$b(G'_{g}) \ (9078, \text{RhF}_6)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$X(G'_{2g}) \ (0, \text{ReF}_6)$</td>
<td>$\nu_2 \ (671), \nu_3 \ (715), \nu_4 \ (257), \nu_5 \ (295), \nu_6 \ (147)$</td>
</tr>
<tr>
<td></td>
<td>$b(G'_{g}) \ (32500, \text{ReF}_6)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$X(G'_{2g}) \ (0, \text{IrF}_6)$</td>
<td>$\nu_2 \ (646), \nu_3 \ (719.8), \nu_4 \ (276), \nu_5 \ (258), \nu_6 \ (206)$</td>
</tr>
<tr>
<td></td>
<td>$a(G'_{g}) \ (6261, \text{IrF}_6)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$b(G'_{g}) \ (8333, \text{IrF}_6)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$a(G'_{u}) \ (7711, \text{NpF}_6)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$c(G'_{u}) \ (23500, \text{NpF}_6)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$X(G'_{u}) \ (0, \text{AmF}_6)$</td>
<td>$\nu_2 \ (530), \nu_3 \ (626), \nu_4 \ (195), \nu_5 \ (205), \nu_6 \ (165)$</td>
</tr>
<tr>
<td></td>
<td>$b(G'_{u}) \ (6179, \text{AmF}_6)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$d(G'_{u}) \ (8554, \text{AmF}_6)$</td>
<td>$\nu_2 \ (515), \nu_3 \ (605), \nu_4 \ (205), \nu_5 \ (207), \nu_6 \ (195)$</td>
</tr>
</tbody>
</table>
3.4 Résumé du chapitre

3.4.1 Ce qu'il faut retenir ...

Les différents types d’approximation (adiabatique et BO) pour résoudre un problème de spectroscopie moléculaire ont été rappelés. Tout au long de ce travail, nous nous sommes placés dans le cadre de l’approximation BO en prenant en compte les interactions intra-électroniques mais en négligeant les couplages non-adiabatiques inter-électroniques.

- Différents potentiels Jahn-Teller ont été considérés.
- Apparition d’une phase géométrique autour d’une intersection conique mais pas d’un minimum.
- Molécule déformée par les distorsions Jahn-Teller mais qui reste en moyenne octaédrique.
- Traitement dynamique de l’effet Jahn-Teller pour les molécules en phase gazeuse.

3.4.2 Les références à consulter

Voici les principales références concernant ce chapitre. Cette liste n’est pas exhaustive.

Traitement dynamique de l’effet Jahn-Teller

Dans le chapitre précédent, nous avons considéré les interactions vibroniques, relatives à un état électronique dégénéré, par une approche dite statique. Cette approche ne permet cependant pas de traiter de manière satisfaisante des couplages plus généraux (quadratiques, cubiques, ... etc, ou alors inclusion de la partie rotationnelle) au sein d’un système moléculaire. Nous allons réexaminer ces couplages par la méthode tensorielle développée par Boudon et al. [45, 72], cette fois pour des états électroniques quelconques. Les différents termes de l’Hamiltonien seront alors écrits de manière systématique. La partie rotationnelle sera incluse dans ce modèle, permettant ainsi de voir clairement ses limites.

4.1 Définition de l’Hamiltonien vibronique

- La contribution Jahn-Teller pour un mode vibrationnel $\nu_i(C)$ quelconque peut s’écrire comme une combinaison linéaire d’opérateurs vibroniques, invariants dans le groupe de recouvrement moléculaire (O_h, ici). Boudon [72] propose l’écriture suivante d’une telle contribution

$$H_{JT} = \sum_{\beta,\Omega,\Gamma} \beta T^{\Omega (\Gamma)} \left(V^{\Omega (\Gamma)} \otimes \beta T^{(C)} \right)^{(A_i)} , \quad (4.1)$$

où $V^{\Omega (\Gamma)}$ est un opérateur vibrationnel de degré Ω dans les coordonnées normales :

$$V^{\Omega (\Gamma)} = \left[\cdots Q^{(C_i)} \otimes Q^{(C_j)} \otimes \cdots Q^{(C_k)} \right]^{(r\Gamma)}_{\sigma} . \quad (4.2)$$

Dans cette définition très générale, il apparaît, aussi bien les termes relatifs à un mode isolé, que les termes d’interaction entre différents modes.

La partie $\beta T^{(C)}$ est un opérateur électronique développé sur la base (3.39). Pour un système sans échanges inter-électroniques, nous pouvons imposer la condition

$$\langle \sigma' , \beta ' \Gamma' \mid \beta T^{(C)} \mid \sigma , \Gamma \rangle = \delta_{\sigma',\sigma} \delta_{\Gamma',\Gamma} \delta_{\beta',\beta} ,$$

aux éléments matriciels réduits. β est un indice de multiplicité pour $C \subset \Gamma \times \Gamma'$.

- Pour des modes trois fois dégénérés (Tab. 1.1), nous pouvons aussi utiliser la descente naturelle :

$$Q^{(C_{i \rightarrow} F_{1u})}_{i \sigma} = I^{(A_{1g})} Q^{(F_{1u})}_{i \sigma} = \begin{cases} I^{(A_{1g})} Q^{(F_{1u})}_{i \tau} & (i = 3, 4), \\ I^{(A_{2g})} Q^{(F_{2u})}_{i \tau} & (\tau = g, u ; \tau = u, g ; i = 5, 6). \end{cases} \quad (4.3)$$
avec la propriété suivante :

\[[f^{(A_r)}]^2 = f^{(A_{1g})} = I_d. \]

La symétrie vibrationnelle \(C_v \) d’un état est donnée par la règle de branchement :

\[D^{(l)} \supset n \tilde{C}_v \quad \text{et} \quad C_v = \tilde{C}_v \otimes (A_r)^n. \]

(4.4)

Ainsi, l’Hamiltonien vibronique couplé dans la chaîne va prendre la forme

\[H_{\text{JT}} = \sum_{\Omega, n, k, k, k} t^{\Omega(k, k, k, k, n(A_r))} \left[T(A_r) \right]^{\Omega} \left[V^{(\Omega(k, k, k, k, n(A_r)) \otimes T(k, k))^{(A_r)}} \right], \]

(4.5)

avec la condition \(k_v = \Omega, \Omega - 2, \cdots, 1 \text{ ou } 0 \).

Il est possible d’établir un lien entre les paramètres des modèles (4.1) et (4.5) à l’aide des facteurs isoscalaires :

\[t^{\Omega(k, k, k, n(A_{1g}))} = (-1)^{\varphi(k)}[k^{1/2} \sum_{r, n, C} K \left(\frac{rC}{k_v} n_{eC} n_{A_{1g}} \right) \times \beta^r C}. \]

(4.6)

4.2 Effet Jahn-Teller dynamique \([E_\tau \times E_g] \)

Écriture de l’Hamiltonien

L’Hamiltonien Jahn-Teller développé à l’ordre quadratique pour un mode \(\nu_2(E_g) \) s’écrit comme une somme de trois contributions

\[H = H_0 + H_{\text{JT}} + H_{\text{JTQ}}, \]

avec

\[
\begin{align*}
H_0 &= \hbar \omega_2 \left(a_2^+ + E_g \right) + 1 \\
H_{\text{JT}} &= 4 \hbar \omega_2 \sqrt{D_2(Q_2(E_g) \otimes T(E_g))^2} \\
H_{\text{JTQ}} &= 2 \hbar \omega_2 \delta_2 ([Q_2(E_g) \otimes T(E_g)]^2) \\
\end{align*}
\]

(4.7)

\(D_2 \) et \(\delta_2 \) sont les paramètres linéaires et quadratiques. \([\cdots] \) signifie que le couplage tensoriel est symétrisé, c’est-à-dire :

\[[A^{(C_1)} \otimes B^{(C_2)}](C) = \frac{1}{2} \left((A^{(C_1)} \otimes B^{(C_2)})(C) + (-1)^{C_1+C_2} + C (B^{(C_2)} \otimes A^{(C_1)})(C) \right). \]

Calcul des éléments matriciels

Le calcul des éléments matriciels s’effectue dans une base couplée du type :

\[
\left\{ \begin{array}{c} \left[\psi_{\nu,v_2,|\nu_2\rangle} \otimes \phi_{(E'_r)\langle C_0|_{\sigma_0}} \right] \end{array} \right\}.
\]

(4.8)

Les énergies du système peuvent être calculées à l’aide du théorème de Wigner-Eckart. Le terme harmonique s’obtient de manière très simple

\[E_0 = \hbar \omega_2 (N_2 + 1), \]

(4.9)

et les éléments matriciels liés au terme Jahn-Teller linéaire s’écritent comme :

\[
\begin{align*}
&\left\langle \left[\psi_{\nu_2,|\nu_2\rangle} \otimes \phi_{(E'_r)\langle C_0|_{\sigma_0}} \right] | H_{\text{JT}} \left[\psi_{\nu_2,|\nu_2\rangle} \otimes \phi_{(E'_r)\langle C_0|_{\sigma_0}} \right] \right\rangle = \\
&\quad = 2\hbar \omega_2 \sqrt{2D_2}(-1)^{C_v-C_0} \left\{ C_v E \quad C_0 \quad E \quad C_v' \right\} \left\langle \left[\psi_{\nu_2,|\nu_2\rangle} \otimes \phi_{(E'_r)\langle C_0|_{\sigma_0}} \right] \right\rangle.
\end{align*}
\]

(4.10)
4.2. Effet Jahn-Teller dynamique \([E_2 \times E_g]\)

Tab. 4.1 - Eléments matriciels réduits pour un oscillateur deux fois dégénéré

| \(l_2\) | \(C_v\) | \(l'_2\) | \(C'_v\) | \(\langle v_2 \, l_2 \; ; \; C_v | a^{(E_g)}_2 \rangle || v_2 + 1 \, l'_2 \; ; \; C'_v \rangle \) |
|---|---|---|---|---|
| 0 | \(A_{1g}\) | 1 | \(E_g\) | \(\sqrt{v_2 + 2}\) |
| 6p \(\neq 0\) | \(\Gamma\) | 6p + 1 | \(E_g\) | \(\sqrt{(v_2 + l_2 + 2)/2}\) |
| 6p \(\neq 0\) | \(\Gamma\) | 6p - 1 | \(E_g\) | \((1)^\Gamma \sqrt{(v_2 - l_2 + 2)/2}\) |
| 6p + 1 | \(E_g\) | 6p + 2 | \(E_g\) | \(-\sqrt{v_2 + l_2 + 2}\) |
| 1 | \(E_g\) | 0 | \(A_{1g}\) | \(-\sqrt{v_2 + 1}\) |
| 6p + 1 | \(E_g\) | 6p \(\neq 0\) | \(\Gamma\) | \(-\Gamma \sqrt{(v_2 - l_2 + 2)/2}\) |
| 6p + 2 | \(E_g\) | 6p + 3 | \(\Gamma\) | \(-\Gamma \sqrt{(v_2 + l_2 + 2)/2}\) |
| 6p + 2 | \(E_g\) | 6p + 1 | \(E_g\) | \(\sqrt{v_2 - l_2 + 2}\) |
| 6p + 3 | \(E_g\) | 6p + 4 | \(E_g\) | \(-\Gamma \sqrt{(v_2 + l_2 + 2)/2}\) |
| 6p + 3 | \(E_g\) | 6p + 2 | \(E_g\) | \(\sqrt{v_2 - l_2 + 2}\) |
| 6p + 4 | \(E_g\) | 6p + 5 | \(E_g\) | \(-\sqrt{v_2 + l_2 + 2}\) |
| 6p + 4 | \(E_g\) | 6p + 3 | \(\Gamma\) | \(\sqrt{v_2 - l_2 + 2}\) |
| 6p + 5 | \(E_g\) | 6p + 6 | \(\Gamma\) | \(-\sqrt{v_2 + l_2 + 2}\) |
| 6p + 5 | \(E_g\) | 6p + 4 | \(E_g\) | \(-\sqrt{v_2 - l_2 + 2}\) |

\(\dagger\) \(\langle v_2 \, l_2 \; ; \; C_v | a^{(E_g)}_2 \rangle || v_2 + 1 \, l'_2 \; ; \; C'_v \rangle = (-1)^{C_v + C'_v} \langle v_2 \, l_2 \; ; \; C_v | a^{(E_g)}_2 \rangle || v_2 + 1 \, l'_2 \; ; \; C'_v \rangle \)

\(p\) entier, \(\Gamma = A_{1g}, A_{2g}\)

avec \(v'_2 = v_2 \pm 1\) et \(l'_2 = l_2 \pm 1\).

Les éléments matriciels de \(H_{JTQ}\) sont calculés de manière similaire

\[
\left< \left[\Psi^{(C_v)}_{v'_2,l'_2} \otimes \Phi^{(E_g)}_{l_2} \right]_{|0\rangle} \right| H_{JTQ} \left| \left[\Psi^{(C_v)}_{v_2,l_2} \otimes \Phi^{(E_g)}_{l_2} \right]_{|0\rangle} \right> =
\]

\[
= 2\hbar \omega \delta_2 (-1)^{C_v-C_0} \left\{ \begin{array}{ccc} C_v & C_0 & E \\ E & E & C'_v \end{array} \right\} \sum_{v'_2,l'_2} \left\{ \begin{array}{ccc} E & E & E \\ C_v & C'_v & C''_v \end{array} \right\} \times (4.11)
\]

\[
\times \langle \Psi^{(C_v)}_{v'_2,l'_2} || Q^{(E_g)}_2 || \Psi^{(C'_v)}_{v'_2,l'_2} \rangle \langle \Psi^{(C''_v)}_{v'_2,l'_2} || Q^{(E_g)}_2 || \Psi^{(C'_v)}_{v_2,l_2} \rangle,
\]

avec \(v'_2 = v_2 \pm 1\), \(l'_2 = l_2 \pm 1\), \(v'_2 = v_2, v_2 \pm 2\) et \(l'_2 = l_2, l_2 \pm 2\). Les valeurs des e.m.r. vibrationnels de \(a^{(E_g)}_2\) et \(a^{(E_g)}_2\) (sachant que \(Q^{(E_g)}_2 = (a^{(E_g)}_2 + a^{(E_g)}_2)/\sqrt{2}\) sont rappelées dans le tableau 4.1.

Commentaires et remarques

Nous avons représenté sur les figures suivantes les premiers niveaux vibroniques (tracés jusqu’à \(v_2 = 4\)) d’un oscillateur deux fois dégénéré placé à l’intérieur d’un doublet électronique. En pratique, l’Hamiltonien Jahn-Teller n’est pas un terme perturbatif (voir paragraphe 4.5), on doit alors tronquer la matrice hamiltonienne pour calculer les énergies vibroniques. Les niveaux ont été calculés en tronquant la matrice hamiltonienne à \(v_2 = 12\) puis en la diagonalisant, et ceci pour une valeur \(v_2 = 668\) cm\(^{-1}\) (OsF\(_6\), \(X(E_g)\), [45]). Notons cependant que lorsque les paramètres d’interaction sont suffisamment petits (\(D_2 \leq 0.1\) et \(\delta_2 \leq 0.01\)), il n’est pas utile de tronquer la matrice hamiltonienne pour \(v\) si élevé, si on ne s’intéresse qu’à la première polyade vibronique \(v_2 = 1\).

La figure 4.1 décrit le comportement dynamique de l’Hamiltonien limité au terme linéaire en fonction du paramètre vibronique \(D_2\). Les deux figures 4.2 et 4.3 relaient l’influence du terme quadratique
Fig. 4.1 - Spectre vibronique Jahn-Teller linéaire en fonction de D_2 pour le système $[E_g \times E_g]$. Les pointillés symbolisent les niveaux E et les traits en gras symbolisent les niveaux $A_1 + A_2$.
FIG. 4.2 - Spectre vibronique Jahn-Teller en fonction de D_2 pour le système $[E_g \times E_g]$ et pour $\delta_2 = 0.05$. Les niveaux A_1 (gros pointillés), A_2 (tirets) et E (petits pointillés) y sont codés.
FIG. 4.3 - Spectre vibronique Jahn-Teller en fonction de δ_2 pour le système $[E_g \times E_g]$ et pour $D_2 = 0.5$. La légende est la même que la figure (4.2).
Fig. 4.4 - Spectres vibroniques Jahn-Teller pour le système \([E_g \times E_g]\) en fonction de \(\delta_2\) et pour \(D_2 = 0.1\) (à gauche) et \(D_2 = 1\) (à droite). La légende est celle de la figure (4.2). Lorsque \(\delta_2\) augmente, la symétrie de l’état de base change.

sur le spectre vibronique. Il a pour effet de lever la dégénérance des niveaux \(A_{1g} + A_{2g}\) et de les séparer en deux sous-niveaux vibroniques distincts de symétrie \(A_{1g}\) et \(A_{2g}\), respectivement. Nous avons aussi montré, comme l’avaient prédit Koizumi et al. [127], que si le paramètre quadratique est suffisamment élevé, alors la symétrie de l’état de base (pour certaines valeurs de \(\delta_2\)) n’est plus la même que celle de l’état électronique (voir Fig. 4.4). Ce comportement est directement lié à la présence d’intersections coniques qui influent sur la phase géométrique des fonctions d’ondes, comme l’indique la relation (3.54).

4.3 Effet Jahn-Teller dynamique \([F_\tau \times E_g]\) \((F = F_1\) ou \(F_2)\)

Écriture de l’Hamiltonien

L’Hamiltonien Jahn-Teller développé à l’ordre quadratique pour un mode \(\nu_2(E_g)\) dans un état électronique triplet s’écrit comme une somme de trois contributions

\[
H = H_0 + H_{JTL} + H_{JTQ}
\]
avec

\[
\begin{align*}
H_0 &= \hbar \omega_2 \left(\frac{a_2^+}{a_2} + (E_g) \right), \\
H_{\text{JTL}} &= \hbar \omega_2 \sqrt{\delta} \ell_2 (Q_2^{E_g} \otimes T(E_g))^{(A_{1g})}, \\
H_{\text{JTO}} &= 2\hbar \omega_2 \kappa_2 (Q_2^{E_g} \otimes Q_2^{E_g}) (E_g) \otimes T(E_g))^{(A_{1g})}
\end{align*}
\]

(4.12)

\[\ell_2 \text{ et } \kappa_2 \text{ sont les paramètres linéaires et quadratiques.}\]

Calcul des éléments matriciels

Le calcul des éléments matriciels pour un mode \(\nu_2(E_g)\) s'effectue encore dans une base couplée du type :

\[
\left\{ \left. \Psi^{(C_0)}_{v_2,|l_2|} \otimes \Phi^{(F_r)}_{v_1}\right| \sigma_0 \right\},
\]

et à l'aide du théorème de Wigner-Eckart, nous obtenons :

\[
E_0 = \hbar \omega_2 (N_2 + 1).
\]

Les éléments matriciels pour le terme Jahn-Teller linéaire s'écrivent comme :

\[
\left\langle \left[\Psi^{(C_0)}_{v_2,|l_2|} \otimes \Phi^{(F_r)}_{v_1}\right| \sigma_0 \right| H_{\text{JTL}} \left| \Psi^{(C_0)}_{v_2,|l_2|} \otimes \Phi^{(F_r)}_{v_1}\right| \sigma_0 \right\rangle =
\]

\[
= \hbar \omega_2 \ell_2 (-1)^{F+C_v-C_0} \left\{ \begin{array}{ccc}
C_v & C_0 & F \\
F & E & C_v' \\
\end{array} \right\} \left\langle \Psi^{(C_0')}_{v_2,|l_2'|} \parallel \right| Q_2^{E_g} \parallel \left| \Psi^{(C_0)}_{v_2,|l_2|} \right\rangle .
\]

(4.15)

Les éléments matriciels de \(H_{\text{JTO}}\) sont donnés par :

\[
\left\langle \left[\Psi^{(C_0)}_{v_2,|l_2|} \otimes \Phi^{(F_r)}_{v_1}\right| \sigma_0 \right| H_{\text{JTO}} \left| \Psi^{(C_0)}_{v_2,|l_2|} \otimes \Phi^{(F_r)}_{v_1}\right| \sigma_0 \right\rangle =
\]

\[
= 2\hbar \omega_2 \delta_2 (-1)^{F+C_v-C_0} \left\{ \begin{array}{ccc}
C_v & C_0 & F \\
F & E & C_v' \\
\end{array} \right\} \sum_{v_2',|l_2'|,C_v''} \left\{ \begin{array}{ccc}
E & E & E \\
C_v & C_0' & C_v'' \\
\end{array} \right\} \times
\]

\[
\left\langle \Psi^{(C_0')}_{v_2,|l_2'|} \parallel \right| Q_2^{E_g} \parallel \left| \Psi^{(C_0'')}_{v_2,|l_2''|} \parallel \right| Q_2^{E_g} \parallel \left| \Psi^{(C_0)}_{v_2,|l_2|} \right\rangle .
\]

(4.16)

Afin d'illustrer la méthode, nous avons choisi la molécule RuF_6 dans un état électronique \(E_{2g}\) pour \(\nu_2 = 624\) cm\(^{-1}\). Nous avons tracé les énergies vibroniques tout d’abord pour le système linéaire seul en fonction de \(\ell_2 (\kappa_2 = 0, \text{Fig. 4.5})\) puis en fixant \(\kappa_2 = 0.1 (\text{Fig. 4.6})\) et enfin en faisant varier la valeur de \(\kappa_2\) pour une valeur \(\ell_2 = 1\) fixée (Fig. 4.7).

4.4 Effet Jahn-Teller dynamique \([F_\tau \times F_\nu]\) (\(F = F_1\) ou \(F_2\))

Écriture de l'Hamiltonien

Dans ce cas, nous choisissons de construire les opérateurs et les fonctions vibroniques dans \(O(3) \supset O_h\), en associant à l’état électronique trois fois dégénéré un moment électronique effectif \(l'_e = 1\), à l’aide de règles similaires à (4.3). Les opérateurs électroniques possibles sont alors de symétrie \([1 \times 1] = 0\) ou 2 dans \(SO(3)\).
Fig. 4.5 - Spectre vibronique Jahn-Teller linéaire en fonction de ℓ_2 pour le système $[F_{2g} \times E_g]$. Les pointillés symbolisent les niveaux F_1 et les tirets symbolisent les niveaux F_2.
FIG. 4.6 - Spectre vibronique Jahn-Teller en fonction de l_2 pour le système $[F_{2g} \times E_g]$ et pour $\kappa_2 = 0.1$. La légende est celle de la figure 4.5.
4.4. Effet Jahn-Teller dynamique $[F_7 \times F_\nu]$ ($F = F_1$ ou F_2)

Fig. 4.7 - Spectre vibronique Jahn-Teller en fonction de κ_2 pour le système $[F_{2g} \times E_g]$ et pour $\ell_2 = 1$. La légende est celle de la figure 4.5.
Ainsi, l’Hamiltonien Jahn-Teller le plus général développé à l’ordre quadratique pour un mode \(\nu_i(F_v) \) (\(i = 3, 4, 5 \) ou 6) dans un état électronique de symétrie \(F_r \) (\(F = F_1 \) ou \(F_2 \)) est donné par

\[
H = H_0 + H_{JTL} + H_{JTL}^{(0, A_{1g})} + H_{JTL}^{(4, A_{1g})}
\]

avec

\[
\begin{align*}
H_0 &= \hbar \omega_i (A_i^{+}(\nu_i) A_i^{(\nu_i)} + \frac{3}{2}) \\
H_{JTL} &= \hbar \omega_i \sqrt{3}K I_v^{(A_{2u})} (Q_i^{(\nu_i)} \otimes T^{(2g)}(3u, A_{2u}) I_e^{(A_{1g})}) \\
H_{JTL}^{(0, A_{1g})} &= \hbar \omega_i \kappa_0 I_v^{(A_{1g})} ([Q_i^{(\nu_i)} \otimes Q_i^{(\nu_i)}(2g) \otimes T^{(2g)}(0_g, A_{1g}) I_e^{(A_{1g})}] \\
H_{JTL}^{(4, A_{1g})} &= \hbar \omega_i \kappa_4 I_v^{(A_{1g})} ([Q_i^{(\nu_i)} \otimes Q_i^{(\nu_i)}(2g) \otimes T^{(2g)}(4_g, A_{1g}) I_e^{(A_{1g})}]
\end{align*}
\] (4.17)

\(K, \kappa_0 \) et \(\kappa_4 \) sont les paramètres linéaires et quadratiques ; ils sont reliés aux paramètres \(t^{(1)(1, A_2)} \), \(t^{(2)(2, 0, A_1)} \) et \(t^{(2)(2, 4, A_1)} \), respectivement. Les opérateurs \(I_v \) et \(I_e \) sont ceux définis par la relation (4.3) et permettent de retrouver la “bonne” symétrie vibrationnelle et électronique.

Notons que le terme \(H_{JTL} \) n’est pas présent pour tous les systèmes. Par exemple, l’Hamiltonien pour les systèmes \([F_1 \times F_v] \) ne présente pas de termes linéaires, ce qui est une conséquence directe du théorème Jahn-Teller.

Calcul des éléments matriciels

Les fonctions de base sont ici couplées dans \(O(3) \) et symétrisées dans \(O_h \) :

\[
\left\{ \left[(I_v^{(A_r)})^{\nu_i} \otimes \left[\Psi_{v_i}^{(l, l_r)} \otimes \Phi^{(l_g)}(\theta_{r, n_b C_0} \otimes I_v^{(A_r)}) \otimes (\tilde{C}_{0})_{||} C_{0_i} \right] \right] \right\} = \left\{ \Psi [\nu] \right\}
\] (4.18)

Certains e.m.r. doivent être précisés pour le calcul des éléments matriciels. Pour l’opérateur électronique identité, nous avons

\[
\langle I_e^{(A_{1g})} \mid I_e^{(A_{1g})} \rangle = 1 ,
\]

alors que l’e.m.r. relatif à la partie électronique effective est évalué comme

\[
\langle \Phi^{(l_g)} \mid T^{(2g)} \mid \Phi^{(l_g)} \rangle = \frac{\Phi(F_{1g}) \mid T(F_{2g}) \mid \Phi(F_{1g})}{K (1_g 2_g 2_g) (F_{2g} F_{1g} F_{1g})} = -\sqrt{\frac{5}{3}} ,
\]

par exemple.

Enfin, pour la partie vibrationnelle, nous suivons la référence [72] en posant

\[
\left\langle \left(I_v^{(l_r)} \right)^{\nu_i} \mid I_v^{(A_{1g})} \right\rangle \left(I_v^{(l_r)} \right)^{\nu_i} = \delta(1)_{\nu_i, \nu_i \pm 1} .
\]

Nous sommes maintenant en mesure de calculer les éléments matriciels dans la base (4.18) des différents Hamiltoniens. Pour la partie harmonique, nous avons simplement

\[
E_0 = \hbar \omega_i \left(N_\nu + \frac{3}{2} \right) .
\] (4.19)

Les éléments matriciels des autres contributions sont obtenus grâce aux différentes formules présentées.
dans le chapitre 1. Ainsi, nous avons :

\[
\langle \Psi' | H_{JTL} | \Psi \rangle = i \hbar \omega_i \sqrt{35} K \left(|C_0| |\tilde{C}_0| |\tilde{j}_i| |\tilde{j}_i| \right)^{\frac{1}{2}} (-1)^{j_i + v_i + 1} \times \\
\times \left\{ A_{2u} (A_{2u})^\dagger (A_{2u}^\dagger) v_i \right\} \left\{ A_{2u} \tilde{C}_0 \tilde{C}_0' \right\} \left\{ l_{ir} \ u \ g \ j_{ir} \right\} \times \\
\times K \left(3_{u} j_{ir} j_{ir} \right) \left(v_i', l_i' ||Q^{(1u)}_i||v_i, l_i \right)
\]

avec \(v_i = v_i' + 1 \) et \(l_i = l_i' + 1 \). Pour les termes quadratiques, on a :

\[
\langle \Psi' | H_{JTL}^{(0;A_1)} | \Psi \rangle = \hbar \omega_i \kappa_0 \sqrt{\frac{5}{3}} |C_0| |\tilde{C}_0| (-1)^{j_i + l_i'} \delta_{j_i, j_i'} \delta_{n_0, n_0'} \delta_{C_0, C_0'} \times \\
\times \left\{ A_{1g} (A_{1g})^\dagger (A_{1g}^\dagger) v_i \right\} \left\{ A_{1g} \tilde{C}_0 \tilde{C}_0' \right\} \left\{ l_{ir} \ u \ g \ j_{ir} \right\} \times \\
\times \sum v_i' v_i'' \left(v_i', l_i' ||Q^{(1u)}_i||v_i'', l_i'' \right) \left(v_i'' ||Q^{(1u)}_i||v_i, l_i \right)
\]

\[
\langle \Psi' | H_{JTL}^{(k;A_1)} | \Psi \rangle = 5 \hbar \omega_i \kappa_4 \sqrt{3} \tilde{C}_0 \left(|C_0| |\tilde{C}_0| |\tilde{j}_i| |\tilde{j}_i| \right)^{\frac{1}{2}} (-1)^{j_i + l_i' + 1} \times \\
\times \left\{ A_{1g} (A_{1g})^\dagger (A_{1g}^\dagger) v_i \right\} \left\{ A_{1g} \tilde{C}_0 \tilde{C}_0' \right\} \left\{ l_{ir} \ u \ g \ j_{ir} \right\} \times \\
\times K \left(4_{g} j_{ir} j_{ir} \right) \sum v_i' v_i'' \left(v_i', l_i' ||Q^{(1u)}_i||v_i'', l_i'' \right) \left(v_i'' ||Q^{(1u)}_i||v_i, l_i \right)
\]

avec \(v_i'' = v_i + 1 \), \(l_i'' = l_i + 1 \), \(v_i' = v_i, v_i + 2 \) et \(l_i' = l_i, l_i + 2 \).

Les

\(emr \) vibrationnels \((v_i', l_i' ||Q^{(1u)}_i||v_i, l_i) \) pour un mode triplement dégénéré se calculent aisément sachant que

\[
Q^{(1u)}_i = \frac{1}{\sqrt{2}} (A^{(1u)}_i + A^{+(1u)}_i),
\]

avec :

\[
\langle v_i + 1, (l_i + 1) || A^{+(1u)}_i || v_i, l_i \rangle = -[(l_i + 1)(v_i + l_i + 3)]^{\frac{1}{2}}, \\
\langle v_i + 1, (l_i - 1) || A^{+(1u)}_i || v_i, l_i \rangle = [l_i(v_i - l_i + 2)]^{\frac{1}{2}}, \\
\langle v_i - 1, (l_i + 1) || A^{(1u)}_i || v_i, l_i \rangle = -[(l_i + 1)(v_i - l_i)]^{\frac{1}{2}}, \\
\langle v_i - 1, (l_i - 1) || A^{(1u)}_i || v_i, l_i \rangle = [l_i(v_i + l_i + 1)]^{\frac{1}{2}}.
\]

Commentaires et remarques

Nous avons programmé ces différentes formules et calculé les énergies vibroniques relatives à plusieurs systèmes. Dans tous les cas, nous avons trouqué les matrices à \(v = 12 \). La figure 4.8 donne l’allure des premiers niveaux vibroniques pour le système \([F_{1x} \times F_{2y}] \) en fonction du paramètre linéaire \(K \). Comme nous l'avions souligné lors de l'étude statique, le niveau de base reste toujours triplement dégénéré, même pour des valeurs de \(K \) élevées. Les deux spectres représentés sur la figure 4.10 sont tracés pour \(K = 1 \) et \(\kappa_4 = 0.05 \) (figure de gauche) et pour \(K = 1 \) et \(\kappa_0 = 0.05 \) (figure de droite) en fonctions de \(\kappa_0 \) et \(\kappa_4 \), respectivement.
FIG. 4.8 - Spectre vibronique Jahn-Teller linéaire en fonction de K pour le système $[F_{1u} \times F_{2g}]$. Les niveaux sont codés comme suit : A_1 (tirés), A_2 (lignes continues), E (lignes mixtes avec gros points), F_1 (pointillés) et F_2 (lignes mixtes avec petits points).
4.4. Effet Jahn-Teller dynamique \([F_\pi \times F_\nu]\) (\(F = F_1\) ou \(F_2\))

Figure 4.9 - Spectre vibronique Jahn-Teller quadratique en fonction de \(\kappa_0(=\kappa_4)\) pour le système \([F_{2g} \times F_{1u}]\). Les niveaux sont codés comme suit : \(A_1\) (lignes mixtes avec gros points), \(A_2\) (tirés), \(E\) (pointillés), \(F_1\) (lignes mixtes avec petits points) et \(F_2\) (lignes continues).
On s’aperçoit alors que sous certaines conditions (κ_0 négatif et élevé), le niveau de base devient non dégénéré pour une plage de valeurs particulières de κ_0. Koizumi et al. [130] ont interprété ce phénomène en observant l’apparition d’intersections coniques (en plus des quatre initialement présentes et dues au problème linéaire) lorsque κ_0 croît ainsi que leurs conséquences directes sur la phase de Berry. Cependant, un traitement quantitatif complet de ce phénomène ferait appel à des outils mathématiques complexes (théorie des fibrés vectoriels, par exemple) qui sortent largement de notre contexte. Nous nous sommes ensuite intéressés au problème $[F_{2g} \times F_{1u}]$ qui est celui par exemple de la bande ν_6 de V(CO)$_6$ placé dans un triplet électronique et sur lequel nous reviendrons ultérieurement. La symétrie de ce système interdit la prise en compte de termes linéaires. La figure 4.9 montre les premiers états vibroniques en présence des deux termes quadratiques lorsque $\kappa_0 = \kappa_4$ alors que la figure 4.11 trace quelques surfaces d’énergie en fonction de ces deux mêmes paramètres.

4.5 État électronique quadruplet

Concernant l’étude d’un état électronique quadruplet, le principe reste le même et le lecteur est donc invité à consulter les références complètes [59, 69, 45, 72].

4.6 Particularités de l’effet Jahn-Teller linéaire

Nous venons de présenter succinctement un modèle théorique rendant compte de couplages vibroniques généraux pour un état électronique quelconque. Nous allons maintenant examiner, en complément aux travaux de Boudon et al. [72, 45, 5], la possibilité d’exploiter la symétrie particulière de certains systèmes Jahn-Teller linéaires. Le cas d’un état électronique doublet et quadruplet sera envisagé ici, car i) les systèmes linéaires considérés sont très interessants et ii) nous verrons dans le
dernier chapitre un moyen de retrouver les résultats établis à partir du formalisme du pseudo-spin.

Système linéaire \([E_g \times E_g]\)

L’Hamiltonien permettant de rendre compte des couplages vibroniques dans un doublet électronique s’écrit :

\[
H(\nu_2) = H_0 + \sqrt{2D_2}h\omega_2 (Q_2 \hat{\sigma}_1 - Q_1 \hat{\sigma}_3) .
\]

(4.25)

Cependant, il est plus judicieux de transformer la base électronique initiale en une base mieux appropriée (voir la transformation 3.89)

\[
\{|E; 1\rangle, |E; 2\rangle\} \rightarrow \left\{ \frac{1}{\sqrt{2}} (|E; 2\rangle - i|E; 1\rangle), \frac{1}{\sqrt{2}} (|E; 2\rangle + i|E; 1\rangle) \right\} ,
\]

(4.26)

de sorte à écrire l’Hamiltonien transformé comme :

\[
\tilde{H}(\nu_2) = H_0 + \sqrt{2D_2}h\omega_2 (Q_2 \hat{\sigma}_1 + Q_2 \hat{\sigma}_2) .
\]

(4.27)

Si l’on pose [45]

\[
Q_{\pm} = \frac{1}{\sqrt{2}} (Q_1 \pm iQ_2) , \quad S_{\pm} = \frac{1}{2} \hat{\sigma}_i ,
\]

(4.28)

\[
S_\pm = S_1 \pm iS_2 \quad \Rightarrow [S_\alpha, S_\beta] = i\varepsilon_{\alpha\beta\gamma} S_\gamma ,
\]

on obtient la nouvelle expression

\[
\tilde{H}(\nu_2) = H_0 + 2\sqrt{D_2}h\omega_2 (Q_+ S_- + Q_- S_+) .
\]

(4.29)

L’association d’un état \(E\) avec un spin 1/2 (appelé aussi “pseudo-spin” [94]) devient claire mais nous rappelons qu’il ne faut cependant pas confondre cette association avec la subduction naturelle \(D(1/2) = E_1\). Chaque état vibronique peut être classifié à l’aide du moment angulaire vibronique \(j_2 = \ell_2 \pm 1/2\). Pour tester la validité du modèle perturbatif présenté dans le chapitre précédent, nous avons tracé (Fig. 4.12) les niveaux de l’Hamiltonien perturbatif (3.90) à l’ordre deux afin de les comparer à ceux de l’Hamiltonien (4.29), calculés exactement. Le résultat est celui que l’on prévoyait,
c'est à dire que l'Hamiltonien vibronique Jahn-Teller n'est pas un terme perturbatif comparé au terme harmonique. Lorsque le paramètre augmente, on observe la limite du modèle effectif qui ne reproduit que la partie du spectre où $D_2 \to 0$ (ou très faible). Bien sûr, de telles valeurs pour D_2 sont physiquement peu probables. Sur la figure 4.12 de droite, sont notées les valeurs prises par j_2 avec les symétries correspondantes de O. Sur cette même figure, les niveaux vibroniques sont relativement bien reproduits pour $v_2 = 1$ et $D_2 \in [0, 0.05]$; ce qui correspond, par exemple, au cas de la molécule OsF$_6$ où $D_2 = 0.031$ [1].

Système linéaire [$G'_g \times E_g$]

D’après les différentes remarques faites précédemment, l’Hamiltonien obtenu est identique à (4.29) avec cette fois :

$$S_i = \frac{\hat{p}_i}{2}.$$ \hspace{1cm} (4.30)

Notons ainsi que les niveaux obtenus après diagonalisation de la matrice correspondante, sont identiques à ceux du système [$E_g \times E_g$] mais sont doublement dégénérés (doublets de Kramers).

Système linéaire [$G'_g \times F_{2g}$]

Ce dernier cas est très intéressant aussi puisque, en introduisant certaines quantités, la symétrie sphérique du système apparaît naturellement. Boudon [45, 72] améliore ainsi la formulation (3.76) et
4.6. Particularités de l’effet Jahn-Teller linéaire

![Diagram](image)

FIG. 4.13 - Spectres vibroniques Jahn-Teller pour le système \([O'_{g} \times F_{2g}]\) en fonction de \(D_{5}\). Les lignes en pointillé représentent les niveaux calculés exactement et les lignes continues sont les niveaux de l’Hamiltonien transformé.

Écrit le nouvel Hamiltonien linéaire dans \(O(3)\) comme :

\[
H(\nu_{5}) = \hbar \omega_{5} \left(N_{5} + \frac{3}{2} \right) - 2\hbar \omega_{5} \sqrt{6D_{5}} \left[q^{(1)} \otimes \Sigma^{(1)} \right]^{(0)}_{0}.
\]

(4.31)

Dans cette expression figurent les quantités suivantes :

\[
\begin{align*}
\Sigma_{\alpha} &= \frac{\hat{\sigma}_{\alpha}}{2} \quad (\alpha = x, y, z) \quad \Rightarrow [\Sigma_{\alpha}, \Sigma_{\beta}] = i\epsilon_{\alpha\beta\gamma} \Sigma_{\gamma} \\
\Sigma^{(1)}_{\pm 1} &= \mp \frac{1}{\sqrt{2}}(\Sigma_{x} \pm i\Sigma_{y}) , \quad \Sigma^{(1)}_{0} = \frac{\hat{\sigma}_{x}}{2} \\
q^{(1)}_{\pm 1} &= \mp \frac{1}{\sqrt{2}}\hat{\rho}_{3}(Q_{x} \pm iQ_{y}) , \quad q^{(1)}_{0} = \hat{\rho}_{3}Q_{z}.
\end{align*}
\]

(4.32)

L’opérateur \(\Sigma\) est aussi qualifié de “pseudo-spin” au sens de Bersuker et Polinger [94]. Cette fois, les niveaux vibroniques vont être étiquetés par le moment angulaire vibronique

\[
j_{5} = l_{5} \pm \frac{1}{2},
\]

(4.33)

qui reste un “bon” nombre quantique si l’on se restreint uniquement au terme linéaire. Par contre, si l’on poursuit le développement de l’Hamiltonien, la symétrie sphérique se brise et les états vibroniques seront caractérisés par les \(RI\) de \(O^{5}\). Un calcul perturbatif a aussi été effectué sur l’Hamiltonien (4.31).
à l’ordre quatre. Nous obtenons un nouvel Hamiltonien effectif
\[
\hat{H}^{(4)} = \hbar \omega_5 \left\{ \left(N_5 + \frac{3}{2} \right) \left(1 + 8D_5^2(\hat{L}, \hat{\Sigma} + \Sigma^2) - 2D_5^2 \right) - 4D_5(\hat{L}, \hat{\Sigma} + \Sigma^2) \right\} . \tag{4.34}
\]
Ses niveaux d’énergie sont tracés sur la figure 4.13 et on remarque une fois encore la divergence du modèle effectif en dehors du régime perturbatif \((D_5 < 0.1)\). Cependant, ce modèle reste très satisfaisant pour certains systèmes, par exemple pour l’état de base de IrF₆, où \(D_5\) a été estimé à 0.001 [1]. Pour ReF₆, le paramètre \(D_5\) a été estimé à 0.083 [85] et dans ce cas, le modèle transformé commence à diverger.

4.7 Introduction de la rotation – Hamiltonien rovibrionique

Cette dernière section est dédiée à l’introduction de la rotation moléculaire ainsi que ses limites, ceci pour nous rendre compte de la nécessité d’un formalisme mieux adapté. La partie rotationnelle que nous greffons sur les Hamiltoniens vibroniques (4.1) ou (4.5) est celle initialement définie par Moret-Bailly [17]. Une fois encore, deux schémas de couplage s’offrent à nous. Le premier schéma est ce qu’on pourrait appeler “le cas général” où toutes les grandeurs tensorielles sont couplées dans \(O_h\) ou \(O_h^3\). L’Hamiltonien rovibronionique est alors donné par
\[
H_{rovibro} = \sum_{\text{tous les indices}} t_{\Omega, (k_r, \Gamma_r, \Omega_0, (R_{\Gamma_r}) \otimes (V_{\Omega_0} \otimes T_{(\Gamma_0)})(A_{1g})}, \tag{4.35}
\]
et les fonctions de base s’écrivent :
\[
\left\{ \left[\Psi_r^{(J_g, nC_r)} \otimes \Psi_C^{(C_r)} \otimes \Phi^{(C_r)} \right] \notag \right\} . \tag{4.36}
\]
Le deuxième schéma considéré est celui où la bande vibrationnelle étudiée est triplement dégénérée et où l’état électronique est trois ou quatre fois dégénéré. Nous étendons l’écriture de l’Hamiltonien vibronique (4.5) en y ajoutant la partie rotationnelle
\[
H_{rovibro} = \sum_{\text{tous les indices}} \tilde{t}_{\Omega, (k_r, \Omega_0, (R_{\Gamma_r}) \otimes (V_{\Omega_0} \otimes T_{(\Gamma_0)})(A_{1g})}, \tag{4.37}
\]
avec les fonctions de base rovibroniques associées :
\[
\left\{ \left[(I_{\Omega_0}^{(A_{1g})})^{(\Omega_0)} \otimes \left[\Psi_r^{(J_g)} \otimes \Psi_C^{(\Gamma_r, nC_r)} \otimes \Phi^{(\Gamma_r)} \right] \notag \right\} . \tag{4.38}
\]

Commentaires et remarques

Nous venons de formuler un modèle rovibronionique non transformé qui permet de calculer les énergies rovibroniques d’une molécule possédant un nombre pair ou impair d’électrons. Cependant nous avions déjà remarqué que le problème était très complexe pour la partie vibronique pure. Il faut en effet manipuler des matrices de très grandes tailles, on peut alors aisément diviser les tailles des matrices avec la rotation moléculaire. Pour le voir, prenons l’exemple de la bande fondamentale \(v_3\) de la molécule ReF₆ dans son état électronique de base quatre fois dégénéré \(G_g\). La figure 4.14 nous renseigne sur la taille des blocs rovibroniques à diagonaliser lorsque \(J\) et la valeur de \(v_3\) où l’on trace la matrice, augmentent simultanément. On remarque très vite la limite de ce modèle quand \(J\) croît, avec des tailles de blocs \(\sim 10^4\). De plus, les valeurs prises ici par \(J\) ne correspondent pas aux valeurs observées en pratique. Les hexafluorures colorés sont des espèces très lourdes et nous devons considérer des valeurs de \(J\) au moins \(\geq 60.5\) pour ReF₆.

Nous sommes donc amenés à introduire un modèle rovibronionique mieux adapté à l’étude des hexafluorures de métaux de transition dans un état électronique dégénéré.
FIG. 4.14 - Dimension des blocs rovibroniques à diagonaliser pour la bande v_3 de ReF$_6$ dans un état électronique quatre fois dégénéré.
4.8 Résumé du chapitre

4.8.1 Ce qu’il faut retenir

Un modèle vibronique et un modèle rovibronique non transformé ont été écrits pour un état électronique quelconque à l’aide du formalisme tensoriel rappelé dans le chapitre 2. Les extensions au groupe T_d (sur les bases de l’annexe B) ainsi qu’à d’autres groupes (C_{3v}, C_{4v}, \ldots) pourraient être envisagées.

- Les couplages sont effectués soit dans O_h/O_h^S, soit dans $O(3) \supset O_h/SU(2) \otimes C_I \supset O_h^S$.
- Manipulation de matrices très grandes.
- Introduction de la rotation délicate – problèmes numériques.
- Nécessité d’un autre formalisme.

4.8.2 Les références à consulter

Voici les principales références concernant ce chapitre. Cette liste n’est pas exhaustive.

Réduction des interactions non-adiabatiques – ADT

Nous allons exposer ici deux méthodes permettant de minimiser, voire d’annuler, la partie non-adiabatique d’un potentiel électronique. La première méthode, nommée ADT (comme Adiabatic to Diabatic Transformation), permet le passage d’une base adiabatique à une base strictement diabatique, assurant ainsi aux termes de couplages non-adiabatiques, inhérents au problème vibronique, de s’annuler [112]. La seconde méthode est basée sur une technique de diagonalisation par bloc de l’Hamiltonien électronique, en considérant une base quasi-adiabatique qui élimine partiellement les interactions entre les différents sous-blocs [103].

C.1 Transformation adiabatique-diabatique

Comme nous avons pu le voir, l’équation de Schrödinger pouvait être écrite sous une forme plus compacte

\[\left[-\sum_a \frac{\hbar^2}{2M_a} \left(\nabla \mathcal{A}_a + \tilde{\mathcal{F}}(\mathcal{Q}) \right)^2 + \mathcal{U}(\mathcal{Q}) - \varepsilon \right] \psi_n(\mathcal{Q}) = 0 , \]

où \(\mathcal{U}(\mathcal{Q}) \) est une matrice diagonale \((M \times M)\) contenant les différents potentiels adiabatiques et \(\tilde{\mathcal{F}}(\mathcal{Q}) \) sont les termes non-adiabatiques. Appliquons une transformation unitaire \(\mathcal{A}(\mathcal{Q}) \) sur les fonctions électroniques et regardons quelles conditions doit satisfaire \(\mathcal{A}(\mathcal{Q}) \) pour éliminer la matrice non-adiabatique.

La nouvelle base diabatique est reliée à la base initiale par \(^2\)

\[\tilde{\psi}_n(\mathcal{Q}) = \mathcal{A}(\mathcal{Q}) \psi_n(\mathcal{Q}) . \]

Les expressions (3.7) et (3.9) calculées dans la nouvelle base sont alors substituées par :

\[\tilde{\mathcal{F}}(\mathcal{Q}) \rightarrow \mathcal{A}^\dagger(\mathcal{Q}) \tilde{\mathcal{F}}(\mathcal{Q}) \mathcal{A}(\mathcal{Q}) + \mathcal{A}^\dagger(\mathcal{Q}) \nabla \mathcal{A}_a \mathcal{A}(\mathcal{Q}) , \]

\[\mathcal{U}(\mathcal{Q}) \rightarrow \mathcal{A}^\dagger(\mathcal{Q}) \mathcal{U}(\mathcal{Q}) \mathcal{A}(\mathcal{Q}) = \mathcal{W}(\mathcal{Q}) . \]

avec \(\mathcal{W}(\mathcal{Q}) \) le nouveau potentiel diabatique [112, 135, 136, 137].

A partir de là, il est aisé de constater que la matrice \(\mathcal{A}(\mathcal{Q}) \), supposée régulière, doit être choisie pour être solution de l’équation

\[\tilde{\mathcal{F}}(\mathcal{Q}) \mathcal{A}(\mathcal{Q}) + \nabla \mathcal{A}_a \mathcal{A}(\mathcal{Q}) = 0 . \]

\(^1\)On supposera ici que les opérateurs et les fonctions d’ondes sont définis sur un espace de Hilbert de dimension \(M \).

\(^2\)Dans la référence [134], la transformation peut prêter à confusion dans le sens où les auteurs l’effectuent sur les fonctions nucléaires. De plus, ils parlent plutôt de “potentiel diabatique” que de “base diabatique”, ce qui revient à la même chose.

123
Dans cette optique, l'équation de Schrödinger (C.1) devient :

$$-\sum_a \frac{\hbar^2}{2M_a} \nabla_{Q_a}^2 \chi_n(Q) + (\mathcal{W}(Q) - \epsilon) \chi_n(Q) = 0.$$ \hspace{1cm} (C.5)

Puisque les propriétés de $\mathcal{A}(Q)$ sont en partie déterminées par celles de $\mathcal{F}(Q)$, et afin que les matrices $\mathcal{F}(Q)$ soient des fonctions analytiques bien définies dans l'espace de configuration considéré, elles doivent remplir la condition [111]

$$\nabla_{Q_\beta} \mathcal{F}(Q_\beta) - \nabla_{Q_\gamma} \mathcal{F}(Q_\gamma) = \left[\mathcal{F}(Q_\gamma), \mathcal{F}(Q_\beta) \right],$$

souvent dénommée “Curl condition”. Q_β et Q_γ sont deux coordonnées nucléaires et $\mathcal{F}(Q_\gamma)$ et $\mathcal{F}(Q_\beta)$ les deux composantes correspondantes de $\mathcal{F}(Q)$. $[., .]$ est simplement le commutateur.

En supposant cette condition bien remplie, l'équation (C.4) a pour solution [103]

$$\mathcal{A}(Q(0), Q) = 1 - \sum_{n=1}^\infty \int_{Q(0)}^Q \mathcal{F}(Q_1).dQ_1 \int_{Q(n)}^Q \mathcal{F}(Q_2) \times dQ_2 \cdots \int_{Q(n-1)}^Q \mathcal{F}(Q_n).dQ_n,$$

qui s'exprime aussi comme une exponentielle ordonnée :

$$\mathcal{A}(Q(0), Q) = \varphi \exp \left(- \int_{Q(0)}^Q \mathcal{F}(Q).dQ \right).$$ \hspace{1cm} (C.7)

φ indique le caractère ordonné de cette intégrale. L'intégration est effectuée le long d'un contour Γ et $(Q(0), Q)$ sont deux points de l'espace de configuration $\{Q_i\}$ définis sur Γ. Notons que l'intégration dépend généralement du chemin suivi, c'est à dire que pour un même couple $(Q(0), Q)$, le résultat peut différer suivant le contour.

Quelle doit être la condition sur l'unicité de $\mathcal{W}(Q(0), Q)$?

Considérons le contour Γ fermé défini par un paramètre continu λ (par exemple, l'angle polaire φ pour des états deux fois dégénéré) où le point de départ $Q_{(0)}$ est tel que $\lambda = 0$ et la valeur maximale atteinte est $\lambda = \beta$. Afin que le potentiel diabatique soit défini de manière unique i.e. _mono-value_, la condition nécessaire et suffisante est donnée par :

$$\mathcal{W}(\lambda = 0) = \mathcal{W}(\lambda = \beta).$$ \hspace{1cm} (C.9)

Il est alors aisé de vérifier que la connection entre $\mathcal{U}(0)$ et $\mathcal{U}(\beta)$ se fait par l'intermédiaire d'une transformation unitaire \mathcal{D}

$$\mathcal{U}(\beta) = \mathcal{D} \mathcal{U}(0) \mathcal{D}^\dagger,$$

avec \mathcal{D}, appelée aussi _matrice topologique_

$$\mathcal{D} = \varphi \exp \left(- \int_{\Gamma} \mathcal{F}(Q).dQ \right) \equiv \mathcal{A}(Q(0), Q(0)).$$ \hspace{1cm} (C.10)

Puisque les surfaces adiabatiques sont définies de manière unique ($\mathcal{U}(\beta) \equiv \mathcal{U}(0)$), Baer et al. [136] ont montré que cette transformation devait être diagonale et d’éléments dont les normes valent 1 :

$$\mathcal{D}_{jk} = e^{i\chi_k} \delta_{j,k}.$$ \hspace{1cm} (C.11)
Finalement, et après des étapes intermédiaires, ces mêmes auteurs ont montré que la transformation adiabatique-diabatique pouvait s’écrire

$$A(Q) = G \left(\delta_{jk} \exp \left(-\lambda_j \int_0^1 t(Q) dQ \right) \right) G^\dagger,$$

(C.13)

avec G la matrice de passage (formée des composantes de la base adiabatique) qui diagonalise la le potentiel de valeurs propres λ_j et $t(Q)$ un vecteur contenant les coordonnées de l'espace de configuration

$$t(Q) = \begin{pmatrix} Q_1 \\ Q_2 \\ \vdots \\ Q_N \end{pmatrix}.$$

(C.14)

Commentaire sur la méthode ADT

La méthode de recherche d'une base strictement diabatique présentée ci-dessus a fait l'objet de nombreuses controverses. En effet, comme l'ont souligné Mead et Truhar [98], il n'existe en général aucune solution à l'équation (C.4) excepté dans le cas trivial où la configuration nucléaire est fixe (BO). L'article de Pacher *et al.* [101] laisse penser qu'il n'y a pas de bases strictement diabatiques à part pour des molécules diatomiques, car il reste toujours des couplages résiduels après transformation. Ces auteurs définissent alors des états quasi-adiabatiques pour lesquels ces couplages ne s'annulent pas exactement. Cette méthode fera l'objet du paragraphe suivant.

Plus récemment, Kendrick *et al.*, dans un article critique [102], argumentent sur le fait que Baer et Alijah [136] puissent confondre la condition de *non-existence* avec celle d'unicité. Il s'avère en effet que c'est un point délicat que Baer [138], dans une réponse à l'article de Kendrick, éclaire en affirmant que “même si la condition d’existence est satisfaite (Curl condition), il existe néanmoins des conditions supplémentaires portant sur le potentiel diabatique ”.

C.2 Technique de diagonalisation par bloc

Nous présentons ici brièvement une méthode, initiée par Cederbaum *et al.*, permettant de ramener l'Hamiltonien sous une forme “plus” diagonale à l'aide d'une transformation unitaire.

Le but est de transformer la partie couplant différents sous-blocs électroniques due aux déplacements nucléaires en considérant cette fois, non plus une base “strictement” diabatique, mais “presque” diabatique ou quasi-adiabatique [101]:

$$\Phi_n(q, Q) = T(Q) \Psi_n(q, Q).$$

(C.15)

Dans toute la suite, nous définirons :

- $\{\Psi_n(q, Q)\}$ & \Rightarrow base électronique de référence ,
- $\{\psi_n(q, Q)\}$ & \Rightarrow base de vecteurs propres pour l'Hamiltonien initial ,
- $\{\Phi_n(q, Q)\}$ & \Rightarrow base quasi-adiabatique .

En terme d'opérateurs, nous aurons :

$$\mathcal{H}(e) = \begin{pmatrix} u^0 & \Lambda_m^\dagger \\ \Lambda_m & U^0 \end{pmatrix} \quad \rightarrow \quad \hat{\mathcal{H}}(e) = \begin{pmatrix} u & 0 \\ 0 & U \end{pmatrix} = T^{-1} \mathcal{H}(e) T$$

(C.16)

$$\{\Psi_n(q, Q)\} \quad \rightarrow \quad \{\Phi_n(q, Q)\}$$
Une partie de Λ_{mn} est ainsi réinjectée dans les sous-blocs u et U sous la forme de couplages intra-électroniques et une autre partie est éliminée définitivement. Notons aussi que les valeurs propres dégénérées devront appartenir à un même bloc. Aussi il est facile de voir que la transformation qui diagonalise $H^{(e)}$ par bloc est de la forme $\mathcal{T}(Q) = S(Q) * (Q)$, avec $S(Q)$ la matrice qui diagonalise $H^{(e)}$ et $*(Q)$ un matrice unitaire diagonale par bloc.

Les états quasi-adiabatiques sont définis par la condition supplémentaire

$$\int_Q \| \Lambda_{mn} \|^2 dQ^3 \text{ minimum}, \tag{C.17}$$

qui est utilisée pour caractériser des couplages faibles. $\| . \|^2$ est la norme Euclidienne matricielle définie par :

$$\| \Lambda_{mn} \|^2 = \text{Tr}(\Lambda_{mn} \Lambda_{mn}). \tag{C.18}$$

Pour la suite et pour des soucis de clarté, nous omettrons la dépendance en Q dans toute les quantités, par exemple $\mathcal{T}(Q) \equiv \mathcal{T}$.

Quelle doit être la condition sur la transformation \mathcal{T} ?

Dans leurs deux articles [139, 101], Cederbaum et al. imposent à \mathcal{T} de ne “faire” rien d’autre que de diagonaliser par bloc. En d’autres termes, les bases de vecteurs propres de $H^{(e)}$ et de $\tilde{H}^{(e)}$ doivent être les plus proches possibles.

Cette condition s’énonce sous la forme de deux théorèmes :

Théorème 1 Soient S la matrice de passage de $H^{(e)}$ et S_{db} la partie diagonale par bloc non-singulière de S. La transformation \mathcal{T} qui diagonalise $H^{(e)}$ est telle qu’elle soit la plus proche possible de l’identité, i.e

$$\| \mathcal{T} - 1 \| \text{ minimum}$$

ce qui impose

$$\mathcal{T} = SS_{db}^\dagger (S_{db} S_{db}^\dagger)^{-\frac{1}{2}}.$$

Théorème 2 Pour chaque $H^{(e)}$, il existe exactement une transformation \mathcal{T} qui diagonalise l’Hamiltonien par bloc et qui est totalement déterminée par S.

Ecrivons la matrice S sous la forme

$$S = \begin{pmatrix} S_{nn} & S_{nm} \\ S_{mn} & S_{mm} \end{pmatrix}, \tag{C.19}$$

après quelques calculs, la transformation cherchée prend la forme [139]

$$\mathcal{T} = U(U^\dagger U)^{-\frac{1}{2}}, \tag{C.20}$$

avec

$$U = S \begin{pmatrix} S_{mn}^{-1} & 0 \\ 0 & S_{mm}^{-1} \end{pmatrix} = \begin{pmatrix} 1 & X \\ -X^\dagger & 1 \end{pmatrix} \equiv SZ, \tag{C.21}$$

et $X = S_{nm} S_{mm}^{-1} = -(S_{mn} S_{nn}^{-1})^\dagger$.

Il est également possible de faire le lien entre la base propre adiabatique et la base quasi-adiabatique à partir des relations (C.15) et (C.21). On obtient :

$$\Phi_n = SZ(Z^\dagger Z)^{-\frac{1}{2}} \psi_n$$

$$= Z(Z^\dagger Z)^{-\frac{1}{2}} \psi_n. \tag{C.22}$$
Troisième partie

... A un formalisme plus général
Développement d’un modèle effectif

Lors du précédent chapitre, nous avons vu comment il était possible de construire un Hamiltonien rovibrion non-transformé à l’aide des formalismes sphérique et octaédrique. Dans ces deux modèles, la partie vibrationnelle a été développée en série de polynômes inhomogènes en opérateurs création et annihilation, d’où le traitement de matrices infinies que l’on doit tronquer pour des valeurs de \(n \) raisonnables (cela dépend en fait de l’ordre de grandeur des différents paramètres) puis ensuite diagonaliser. Il en est assez vite ressorti les limites de ces modèles ; le problème s’accentuant en présence de la rotation moléculaire.

Nous nous proposons dans ce chapitre d’étendre les modèles tensoriels effectifs développés à Dijon et utilisés en spectroscopie de rotation-vibration pour des molécules (toupies sphériques [140, 20, 141, 18, 19, 142], quasi-sphériques ou symétriques) dans un état électronique non-dégénéré. Pour cela, nous devons définir un jeu d’opérateurs électroniques associés à un état électronique donné. Notons cependant, que dans ce chapitre, les états électroniques deux fois dégénérés de type \(E \) ne seront pas traités étant donné, comme nous le verrons, la construction particulière des opérateurs électroniques. Le dernier chapitre de cette thèse sera consacré au traitement d’un état \(E \). Une fois la partie électronique définie, nous pourrons formuler un Hamiltonien effectif vibronique voire rovibronique restreint à une polyade vibronique donnée \(^1\). Suivant le même principe, nous construirons les opérateurs de moments de transition (moment dipolaire et tensor polarisabilité) nécessaires aux calculs des intensités. Comme précédemment, le couplage des opérateurs et des fonctions de base pourra s’effectuer de deux manières différentes :

- soit dans les groupes \(O_h \) ou \(O_h^S \) (nombre pair ou impair d’électrons, respectivement) où nous nous pourrons alors à étendre les formalismes tétraédrique et octaédrique [143],

- soit dans les chaînes \(O(3) \supset O_h \) ou \(SU(2) \otimes C_1 \supset O_h^S \) où toutes les quantités sont couplées dans le groupe et symétrisées dans le sous-groupe. Ceci peut être fait quand l’oscillateur deux fois dégénéré n’est pas excité. On trouve les couplages vibroniques à l’aide du formalisme sphérique [144].

Nous examinerons les deux cas et nous écrirons un Hamiltonien rovibronique effectif complet ainsi que ses moments de transition associés, en nous appuyant sur les travaux antérieurs portant sur des molécules dans un état vibronique de symétrie \(A_{1g} \). De plus, afin de simuler un spectre vibronique en fréquence et en intensité, nous présenterons une chaîne de programmes permettant le calcul des fréquences de transition ainsi que des forces de raies (listing des opérateurs, calcul des éléments matriciels, ... etc). Toute la partie portant sur les intensités sera traitée en détail dans le prochain chapitre. Nous rappellerons aussi brièvement l’expression d’un Hamiltonien rovibronnel écrit de

\(^1\)Dans les études en rotation-vibration des molécules toupies sphériques, sont pris en compte dans le modèle de l’Hamiltonien effectif les groupements des niveaux (appelés aussi polyades) vibrationnels. En ce qui nous concerne, nous étendons cela aux polyades vibroniques.
manière "usuelle" [145, 146, 147]; la forme tensorielle faisant systématiquement appel à la théorie des groupes.

5.1 Rappels sur l’Hamiltonien de rotation-vibration

5.1.1 Hamiltonien de Watson et Aliev

Nous donnons ici la forme générale d’un Hamiltonien rovibrationnel pour une molécule non-linéaire. On admettra ici que les noyaux restent au voisinage d’une position de référence en effectuant des mouvements de faible amplitude autour de cette position : approchement de Born-Oppenheimer.

Écriture de l’Hamiltonien

L’Hamiltonien (non-transformé) de vibration-rotation écrit sous sa forme simplifiée est dû à Watson et Aliev [145] et s’exprime, d’une manière générale, comme [67]

\[H = \frac{1}{2} \sum_{k=1}^{3N-6} \left(-i\hbar \frac{\partial}{\partial Q_k} \right)^2 + \sum_{\alpha, \beta} (J_{\alpha} - l_{\alpha}) B_{\alpha\beta} (J_{\beta} - l_{\beta}) - \frac{\hbar^2}{8} \sum_{\alpha} \mu_{\alpha\alpha} + V, \]

(5.1)

avec :

- \(J \) : moment angulaire total
- \(I \) : moment angulaire vibrationnel sans dimension
- \(B_{\alpha\beta} = \hbar^2 \mu_{\alpha\beta}/2hc = \hbar^2/2hc I_{\alpha\beta} \) : composantes du tenseur rotationnel
- \(\mu_{\alpha\beta} \) : composantes de l’inverse du tenseur d’inertie \(I \)
- \(V \) : énergie potentielle

Le tenseur \(\mu_{\alpha\beta} \) (donc aussi \(B_{\alpha\beta} \)) ainsi que le potentiel \(V \) ne dépendent que des coordonnées normales de vibration \(Q_{s\sigma} \) et dans la limite des faibles oscillations peuvent être développés en série de puissances des coordonnées normales par rapport à la configuration de référence \(Q_{s\sigma}^0 \), choisie comme étant nulle (\(Q_{s\sigma}^0 = 0 \)). On écrit alors :

\[V = \frac{1}{2} \sum_{s\sigma} \lambda_{s\sigma} Q_{s\sigma}^2 + \frac{1}{3!} \sum_{s\sigma s' \sigma'' s'''} K_{s\sigma s' \sigma'' s'''} Q_{s\sigma}Q_{s' \sigma'}Q_{s'' \sigma''} + \cdots \]

\[\mu_{\alpha\beta} = \mu_{\alpha\beta}^0 + \sum_{s\sigma} \left(\frac{\partial \mu_{\alpha\beta}}{\partial Q_{s\sigma}} \right)_0 Q_{s\sigma} + \cdots \]

(5.2)

Mentionnons qu’à l’équilibre, nous pouvons choisir les axes du repère moléculaire pour qu’ils coïncident avec les axes principaux d’inertie i.e. [67] :

\[\begin{align*}
I_{\alpha\beta}^0 & \rightarrow I_{0\delta\alpha\beta} \\
B_{\alpha\beta}^0 & \rightarrow B_{0\delta\alpha\beta} \quad , \quad B_{\alpha} = \hbar^2/2hc I_{\alpha}.
\end{align*} \]

(5.3)

Il devient alors possible d’établir la forme de l’Hamiltonien rovibrationnel en classifiant les différents termes du développement en fonction des coordonnées normales, des moments conjugués et des composantes du moment angulaire total. A l’ordre deux, on montre que [148]

\[H = H_0 + \lambda H_1 + \lambda^2 H_2 + \cdots \]

(5.4)

avec

\[\begin{align*}
H_0 &= \frac{1}{2} \sum_{s\sigma} \omega_s (P_{s\sigma}^2 + Q_{s\sigma}^2) \quad \rightarrow \text{Oscillateur Harmonique} \\
+ \sum_{\alpha} B_{\alpha} J_{\alpha}^2 & \quad \rightarrow \text{Rotateur rigide},
\end{align*} \]

(5.5)
H_1 = \sum_{\sigma \alpha} \sum_{\beta \beta} B_{\sigma \alpha}^{\beta} J_\alpha J_\beta Q_{\sigma \sigma} \rightarrow \text{Distorsion centrifuge,}

-2 \sum_{\sigma \alpha' \sigma' \alpha'} \left(\frac{\omega_{\alpha'}}{\omega_{\alpha}} \right)^{1/2} Q_{\sigma \sigma} P_{\sigma' \sigma'} \sum_{\alpha} B_{\alpha}^{\alpha} P_{\sigma \sigma} P_{\sigma' \sigma'} J_\alpha \rightarrow \text{Interactions de Coriolis,}

+ \sum_{\sigma \alpha' \sigma' \sigma' \alpha''} K_{\sigma \alpha' \alpha''} Q_{\sigma \sigma} Q_{\sigma' \sigma'} Q_{\sigma'' \sigma''} \rightarrow \text{Interactions de Fermi,}

et

H_2 = \frac{3}{8} \sum_{\sigma \sigma' \sigma' \alpha \beta} \left(B_{\alpha}^{\alpha} B_{\sigma' \sigma'}^{\beta} + B_{\alpha}^{\alpha} B_{\sigma' \sigma'}^{\beta} \right) Q_{\sigma \sigma} Q_{\sigma' \sigma'} J_\alpha J_\beta

- \sum_{\sigma \alpha} B_{\alpha}^{\alpha} \left(l_\alpha Q_{\sigma \sigma} + Q_{\sigma} l_\alpha \right) J_\beta

+ \sum_{\sigma \alpha} B_{\alpha}^{\alpha} - \frac{1}{4} \sum_{\sigma} B_{\sigma} + \sum_{\sigma \sigma' \sigma' \sigma''} K_{\sigma \sigma' \sigma' \sigma''} Q_{\sigma \sigma} Q_{\sigma' \sigma'} Q_{\sigma'' \sigma''} Q_{\sigma'' \sigma''}

Dans ces expressions, \(\zeta_{\sigma \theta}^{\alpha} \) sont les constantes de Coriolis et \(B_{\sigma \alpha}^{\beta} = \frac{h^2}{2m}(\partial \mu_{\alpha} / \partial Q_{\sigma \sigma})_0 \).

Remarques

- Pour les systèmes possédant un spin électronique, le moment angulaire total \(\mathbf{J} \) doit être remplacé par le moment angulaire rovibrionique \(\mathbf{N} = \mathbf{J} - \mathbf{S} \).

- Pour des états électroniques dégénérés, le moment angulaire vibrationnel \(\mathbf{l} \) doit être remplacé par le moment angulaire vibronique \(\mathbf{j} = \mathbf{J} + \mathbf{l} \) où \(\mathbf{J} \) est le moment angulaire électronique. Dans ce cas, la contribution Jahn-Teller à l'Hamiltonien de Coriolis va s'écrire [67] :

\[
H_{\text{JT}} = -2 \sum_{\alpha} B_{\alpha} J_\alpha J_\alpha .
\]

5.1.2 Hamiltonien de Moret-Bailly et Champion

Rappelons maintenant l'expression générale d'un Hamiltonien rovibrationnel effectif dans un état électronique non-dégénéré. La méthode a été initialement proposée par Moret-Bailly [17] et Champion [140], même si il est un peu réducteur de ne citer que de ces deux auteurs. De nombreux travaux théoriques ont été consacrés à l'étude des spectres de rotation-vibration des molécules toupies sphériques et notamment, les bandes de vibration triplement dégénérées des molécules XY_4 ([149], par exemple) où Hecht [150] et Moret-Bailly [17] réalisent une extension tensorielle \(D^{(1u)} = F_2 \). Ce procédé ne permet cependant pas de traiter une symétrie \(E' \) de manière directe (nous discuterons d'une méthode dans le dernier chapitre). Champion propose alors de coupler toutes les quantités dans le groupe de recouvrement \(G \) de la molécule (\(T_d \) [140] ou \(O_h \) [19]) et construit un Hamiltonien adapté à tous les types d'interaction. Nous rappellerons ici uniquement la construction de l'Hamiltonien ; concernant les moments de transition (moment dipolaire et polarisabilité), le principe de construction reste identique et le lecteur est invité à consulter les références [141, 148, 151, 18].

Écriture de l'Hamiltonien initial

L'Hamiltonien rovibrationnel initial (non-transformé) est construit par couplage d'une partie rotationnelle avec une partie vibrationnelle. La partie rotationnelle est celle définie par Moret-Bailly [17] et construite par couplings successifs dans \(O(3) \) de l'opérateur rotationnel élémentaire

\[
R_{\alpha}^{(1u)} = 2 J_\alpha \quad (\alpha = x, y, z) ,
\]

ou
 où J_α désigne les composantes du moment angulaire total (sans spin nucléaire) de la molécule (en fait J_α/\hbar qui est noté J_α, moment angulaire sans dimension).

Les opérateurs rotationnels non-symétrisés sont donnés par la formule récursive suivante

$$
R^{\Omega}(K) = ((R^{1}_{1}(\gamma) \otimes R^{1}_{1}(\delta))((\gamma_\alpha \rightarrow -\gamma_\alpha/2)(R^{K\rightarrow -1}(\gamma_\alpha \rightarrow \gamma_\alpha/2) \otimes R^{1}_{1}(\gamma_\alpha \rightarrow \gamma_\alpha/2)))_{\gamma_\alpha},
$$

où Ω_γ est le degré dans les opérateurs J_α et $K = \Omega_\gamma, \Omega_\gamma - 2, ..., 0$ ou 1 est le rang du tenseur dans $O(3)$.

L'expression d'un tenseur symétrisé dans O_h est simplement donnée à l'aide de la matrice d'orientation G [25, 27] définie lors du deuxième chapitre de ce travail :

$$
R^{\Omega}(K, n\Gamma_g) = \sum_n (K_g)G^m_{n\Gamma_g}R^{\Omega}(K_g).
$$

La partie vibrationnelle est construite à partir des opérateurs création et annihilation définis par :

$$
a^{(C)}_{\sigma\sigma} = \frac{1}{\sqrt{2}}(Q_{\sigma\sigma}^{(C)} + iP_{\sigma\sigma}^{(C)}),
$$

$$
a^{(+)(C)}_{\sigma\sigma} = \frac{1}{\sqrt{2}}(Q_{\sigma\sigma}^{(C)} - iP_{\sigma\sigma}^{(C)}).
$$

La forme générale d'un opérateur vibrationnel de degré Ω_v en Q est [140, 141]

$$
\varepsilon T^{\Gamma_{1\mu}(\Gamma_{2\nu})} = \frac{1}{N} e^{i\phi}(A^{(\Gamma_{1\mu})}_{\{m_1\}} \otimes A^{(\Gamma_{2\nu})}_{\{m_2\}} + \varepsilon (-1)^{\Gamma_{1\mu} + \Gamma_{2\nu}}(A^{(\Gamma_{1\mu})}_{\{m_1\}} \otimes A^{(\Gamma_{2\nu})}_{\{m_2\}}))_{\sigma_1},
$$

avec

$$
A^{(\Gamma_{1\mu})}_{\{m_1\}} = (\prod_{s} a^{(C)}_{\sigma_1})^{(\alpha_1\Gamma_{1\mu})}_{\sigma_1}, \quad A^{(\Gamma_{2\nu})}_{\{m_2\}} = (\prod_{s} a^{(C)}_{\sigma_2})^{(\alpha_2\Gamma_{2\nu})}_{\sigma_2}
$$

$$
a^{(C)}_{\sigma_1} = a^{(+)(C)}_{\sigma_1} \cdots a^{(+)(C)}_{\sigma_1}, \quad a^{(C)}_{\sigma_2} = a^{(C)}_{\sigma_2} \cdots a^{(C)}_{\sigma_2}
$$

ε indique la parité par rapport aux $P_{\sigma\sigma}$ et vaut ± 1. Nous avons $e^{i\phi} = 1$ si $\varepsilon = 1$ et $e^{i\phi} = -i$ si $\varepsilon = -1$. N est un facteur de normalisation. Il convient de préciser que Champion utilise un schéma de couplage non symétrisé qui limite à une valeur finie le nombre de termes du développement de l'Hamiltonien pour un état vibrationnel donné. Par conséquent, ces opérateurs sont des polynômes inhomogènes par rapport aux variables $Q_{\sigma\sigma}$ et $P_{\sigma\sigma}$; ils ne contiennent que des termes du type $a^{(C)} \cdot a$.

L'Hamiltonien doit être totalement symétrique dans le groupe de recouvrement de la molécule, hermitique et invariant dans le renversement du temps. Il est construit comme une combinaison linéaire d'opérateurs vibrationnels

$$
H = \sum_{\text{tous les indices}} \eta T^{\Omega_v}(K_g, n\Gamma_g)\Gamma_{1\mu}\Gamma_{2\nu},
$$

dont la forme générale est la suivante :

$$
T^{\Omega_v}(K_g, n\Gamma_g) = (R^{\Omega_v}(K_g, n\Gamma_g) \otimes (-1)^{\kappa} V^{\Gamma_{1\mu}\Gamma_{2\nu}}(\{m_1\}\{m_2\}))_{\Gamma_{1\mu}\Gamma_{2\nu}}.
$$

L'ordre du développement de l'Hamiltonien est donné par $\Omega = \Omega_v + \Omega_\gamma - 2$. η est un facteur numérique qui permet de faire coïncider les notations standards et tensorielles à l'ordre zéro. Nous avons

$$
\eta = [\Gamma_1]^{1/2}(-\sqrt{3/4})(\Omega_v)^2,
$$

si $(K_g, n\Gamma) = (0_g, A_{1\Gamma})$ et $\eta = 1$ sinon.

Les fonctions de base vibrationnelles suivent le même schéma de couplage que les opérateurs i.e.

$$
|\Psi_{\sigma}^{(J_\gamma, C_\gamma)}\rangle = |\Psi_{\sigma}^{(J_g, n_\gamma C_\gamma, C_\gamma)}\rangle \otimes |\Psi_{\sigma}^{(C_\gamma)}\rangle_{\sigma},
$$

où les fonctions de base vibrationnelle s'écrivent [142] :

$$
|\Psi_{\sigma}^{(C_\gamma)}\rangle = |\Psi_{\sigma_1}^{(A_{1\gamma})}\rangle \otimes |\Psi_{\sigma_2}^{(2_{\gamma} C_{2\gamma})}\rangle \otimes |\Psi_{\sigma_3}^{(4_{\gamma} C_{3\gamma})}\rangle \otimes |\Psi_{\sigma_4}^{(4_{\gamma} n_\gamma C_{4\gamma})}\rangle \otimes |\Psi_{\sigma_5}^{(5_{\gamma} n_\gamma C_{5\gamma})}\rangle \otimes |\Psi_{\sigma_6}^{(6_{\gamma} n_\gamma C_{6\gamma})}\rangle \otimes |\Psi_{\sigma_7}^{(7_{\gamma} n_\gamma C_{7\gamma})}\rangle \otimes |\Psi_{\sigma_8}^{(8_{\gamma} n_\gamma C_{8\gamma})}\rangle \otimes |\Psi_{\sigma_9}^{(9_{\gamma} n_\gamma C_{9\gamma})}\rangle \otimes |\Psi_{\sigma_{10}}^{(10_{\gamma} n_\gamma C_{10\gamma})}\rangle \langle \Psi_{\sigma_{10}}^{(C_{10\gamma})} |.
$$
Une écriture de l'Hamiltonien transformé

Dans la plupart des problèmes de mécanique quantique, il est souvent plus judicieux de travailler avec des opérateurs ayant une forme diagonale ou diagonale par bloc. Les interactions sont généralement traitées par transformations de contact pour être rejetées à un ordre plus élevé. Comme nous l’avons vu lors des précédents chapitres, l’Hamiltonien initial est transformé via une transformation unitaire \(T = e^{iS} \) (afin de conserver les mêmes valeurs propres) en un Hamiltonien \(\tilde{H} \) diagonal ou partiellement diagonal par rapport aux nombres quantiques vibrationnels \(v \):

\[
\tilde{H} = e^{iS} H e^{-iS} .
\]

L’Hamiltonien transformé possède bien évidemment les mêmes propriétés que l’Hamiltonien initial. L’opérateur \(S \) est un opérateur rovibrationnel totalement symétrique dans le groupe de recouvrement et de degré impair dans les moments \(J_\alpha \). Il s’écrit [152]

\[
S = \sum_{\text{tous les indices}} s^{\Omega_r (K_p, n \Gamma_p) \Gamma_1 \Gamma_2} (R^{\Omega_r (K_p, n \Gamma_p) \otimes (-1)^{K_p+1} V_{\Gamma_1 \Gamma_2} (\Gamma_g)} (A_{1g})) ,
\]

et est, en pratique, choisi de sorte à rendre complètement diagonal l’Hamiltonien transformé au premier ordre (voir formule 3.82):

\[
\tilde{H} = H_1 + i [S, H_0] .
\]

Nous écrivons l’Hamiltonien rovibrationnel effectif comme

\[
\tilde{H} = \tilde{H}(J_\alpha, q_{\sigma}, p_{\sigma}) = \sum_{\text{tous les indices}} \tilde{t}_{\{n_x\},\{m_x\}} T_{\{\{i\}\}} (\{\{i\}\})
\]

D’après (5.20), les paramètres \(\tilde{t} \) de l’Hamiltonien transformé sont reliés aux paramètres \(t \) de l’Hamiltonien initial ainsi qu’aux paramètres \(s \) du générateur [148]:

\[
\tilde{t}_k = t_k + \sum_{ij} c_{ijk} s_j t_j .
\]

Si l’on considère une molécule (XY₄ ou XY₆) dont les niveaux vibrationnels sont groupés en une série de \(n \) polyades \(P_k \) (\(k = 0, 1, \cdots , n \), \(P_0 \equiv \) niveau de base), alors l’Hamiltonien rovibrationnel effectif pour une polyade donnée pourra s’écrire:

\[
\tilde{H}^{<\text{polyade}>} = \mathcal{P}^{<\text{polyade}>} e^{iS} H e^{-iS} \mathcal{P}^{<\text{polyade}>} ,
\]

\(\mathcal{P}^{<\text{polyade}>} \) étant le projecteur sur le sous-espace de Hilbert considéré. L’Hamiltonien effectif pour une polyade \(P_n \) donnée va contenir toute les contributions des polyades inférieures par extrapolation vibrationnelle i.e.:

\[
\tilde{H}^{<P_n>} = \tilde{H}^{<P_{\text{base}>}} + \tilde{H}^{<P_1>} + \cdots + \tilde{H}^{<P_{n-1}>} + \tilde{H}^{<P_n>} .
\]

Chaque terme de la somme s’écrit comme la combinaison linéaire (5.21). L’intérêt de cette méthode réside dans l’utilisation, pour une polyade \(P_n \) donnée, des paramètres ajustés de l’Hamiltonien des \((n - 1)\) polyades inférieures \(^2\) mais surtout dans le fait que les paramètres des ordres supérieurs sont en principe des "petites" corrections. Cette écriture est censée donner une meilleure convergence.

\(^2\)Prenez le cas de l’icosade du méthane [153] (20 niveaux vibrationnels et 772 paramètres pour l’Hamiltonien à l’ordre quatre !), une partie des paramètres permettant de reproduire la région correspondante est celle qui a récemment été utilisée pour analyser la tétraédecade (14 niveaux) [154, 155]. Il ressort ainsi un nombre beaucoup moins grand (bien qu’important, tout de même) de paramètres à évaluer.
5.1.3 *emr* rotationnels et vibrationnels

emr rotationnels

Les éléments matriciels réduits rotationnels sont donnés par l’expression suivante établie par Moret-Bailly [17]

\[
\langle J_g || R_{\Omega_c(K_s)} || J_g \rangle = \left[\frac{-4J(J+1)}{\sqrt{3}} \right]^{(\Omega_c - K_s) / 2} \left[\frac{K!(2J + K + 1)!}{(2K - 1)!!(2J - K)!} \right]^{1/2},
\]

où \((2K - 1)!! = (2K - 1)(2K - 3) \cdots 2\) ou 1.

Il est également possible de déduire l’expression des *emr* orientés à partir de cette dernière relation à l’aide des facteurs isoscalaires et de la formule (2.95) :

\[
\langle J_g, n_r C^\prime_r || R_{\Omega_c(K_s, n_{1r})} || J_g, n_r C_r \rangle = (-1)^J K \begin{pmatrix} K_g \\ n_{1r} \end{pmatrix} \begin{pmatrix} J_g \\ n_r C^\prime_r \end{pmatrix} \begin{pmatrix} J_g \\ n_r C_r \end{pmatrix} \langle J_g || R_{\Omega_c(K_s)} || J_g \rangle.
\]

emr vibrationnels

Les seuls *emr* vibrationnels non-nuls sont obtenus pour les valeurs \(v^i_s \geq n_s, v_s \geq m_s\) et \(v^i_s - v_s = n_s - m_s\), pour tout \(s\). De plus, grâce à leurs propriétés, Champion normalise les opérateurs vibrationnels par la relation :

\[
e^{-i\phi} \left\langle \left(\prod_s \Psi_{v^i_s - n_s}^{(C^\prime_r)} \right) \left| V_{\{n_s\}}^{\Gamma_1 \Gamma_2 (\Gamma_v)} \right| \left(\prod_s \Psi_{v^i_s - m_s}^{(C_r)} \right) \right\rangle = \delta_{C^\prime_r \Gamma_1} \delta_{C_r \Gamma_2}.
\]

5.2 Modèle rovibronique effectif : formalisme octaédrique

Nous venons de présenter brièvement un modèle rovibronicen effectif qui a largement contribué à l’analyse et au succès de molécules telles que CH₄ [140, 20, SF₆ [142] ou CH₃D [156]. Depuis, ce modèle a été étendu à d’autres systèmes possédant la symétrie moléculaire \(C_{2v}, C_{4v}\) [157, 158] et très récemment \(D_{2h}\), pour l’étude de \(C_2H_4\) adsorbé dans les zéolites [159]. Cependant, tous ces modèles, incluant l’Hamiltonien ainsi que les moments de transition, supposent que l’on se place dans un état électronique non-dégénéré i.e. ne sont pas adaptés à l’étude des hexafluorures de métaux de transition. Pour pallier cela, nous allons étendre au cas dégénéré, tous les travaux antérieurs (même si nous nous focaliserons seulement sur des systèmes octaédriques ; l’extension à d’autres groupes pourrait s’envisager mais n’est pas indispensable pour ce travail). La première étape consiste à définir un jeu d’opérateurs électroniques agissant sur le sous-espace associé à un état électronique donné (nous rappelons encore une fois que les états de type \(E\) ne sont pas considérés dans ce chapitre). Cette étape effectuée, nous disposons d’un jeu d’opérateurs rotationnels, vibrationnels et électroniques et pourrons formuler un modèle rovibronique effectif pour une polyade vibronique donnée.

La plupart des résultats présentés ci-dessous sont tirés des références [144, 143].

5.2.1 Définition des opérateurs électroniques

Nous avons choisi de construire nos opérateurs électroniques en conservant le même schéma de construction que les opérateurs rotationnels (5.10) de Moret-Bailly. Ainsi, tous nos opérateurs électroniques, notés \(\hat{E}_{\Omega_c(K_s)}\) dans \(O(3)\), sont construits par couplages successifs du tenseur élémentaire [144]

\[
\hat{E}^{1(1_s)}_{\alpha} = 2J_{\alpha \alpha} \quad (\alpha = x, y, z) \quad J_{\alpha} \text{ sans dimension},
\]

d’où :

\[
\hat{E}_{\Omega_c(K_s)} = \left(\hat{E}^{1(1_s)}_{\alpha} \otimes \hat{E}^{1(1_s)}_{\alpha} \right)^{(\Omega_c - K_s) / 2}
\]

\[
\times \left(\hat{E}^{K_c-1((K_c-1)s)}_{\alpha} \otimes \hat{E}^{1(1_s)}_{\alpha} \right)^{(K_s)}. \]

(5.28)
J_e est un moment angulaire électronique défini pour un état donné par des considérations de symétrie (voir paragraphe suivant). La valeur de ce moment angulaire étant fixée, on note immédiatement d’après (5.29), où le premier terme est diagonal en J_e, que

$$E^{\Omega_e}(K_{eg}) = \text{constante} \times E^{K_e}(K_{eg}),$$ \hspace{1cm} (5.30)

donc les opérateurs $E^{\Omega_e}(K_{eg})$ et $E^{K_e}(K_{eg})$ ne sont pas linéairement indépendants. De plus, en utilisant les propriétés du produit tensoriel étendu, nous avons la relation

$$E^{\Omega_e}(K_{eg}) \sim \left(E^{1(1_g)}\right)^{K_e},$$ \hspace{1cm} (5.31)

où $E^{1(1_g)}$ est proportionnel à $J_{e+} = J_{ex} + iJ_{ey}$. Ainsi, en définissant la base du moment angulaire $\varepsilon_{\text{elec}} = \{|J_e, -J_e\}, \cdots, |J_e, J_e\}$ de dimension $2J_e + 1$, nous avons :

$$(J_{e+})^{2J_e} |J_e, -J_e) \sim |J_e, J_e) \quad \text{et} \quad (J_{e+})^{2J_e+1} |J_e, -J_e) = 0.$$ \hspace{1cm} (5.32)

En définitive, les conditions d’indépendance et de non-nullité des tenseurs électroniques sont

$$\Omega_e = K_e \leq 2J_e,$$

et un jeu complet de tenseurs non-symétrisés nous est donné par [143] :

$$E^{K_e}(K_{eg}) = (E^{K_e-I(1_g)} \otimes E^{1(1_g)}) (K_{eg}).$$ \hspace{1cm} (5.34)

L’orientation dans le groupe O_h ne pose aucune difficulté et est réalisée à l’aide de la matrice G :

$$E^{K_e}(K_{eg}, n_\Gamma \Gamma_{eg}) = \sum_{m_\sigma} (K_{eg}) G_{n_\Gamma \Gamma_{eg} \sigma e}^{m_\sigma} E^{K_e}_{m_\sigma}(K_{eg}).$$ \hspace{1cm} (5.35)

Il est parfois utile d’exprimer ces opérateurs en termes du moment angulaire $J_{\alpha\alpha} (\alpha = x, y, z)$ en écrivant la relation

$$E^{K_e}_{p_e}(K_{eg}) = (K_{eg}) G_{n_\Gamma \Gamma_{eg} \sigma e}^{m_\sigma} \{J_{\alpha_1\alpha_1}J_{\alpha_2\alpha_2} \cdots J_{\alpha_K\alpha_K}\},$$

$$= (E^{1(1_g)}_{p_1} \times E^{1(1_g)}_{p_2} \cdots \times E^{1(1_g)}_{p_n_\Gamma})_{K_{eg}},$$ \hspace{1cm} (5.36)

où p_i correspond au triplet $(n_\Gamma \Gamma_{i\sigma_i})$.

Pour les toupies sphériques, la subduction naturelle $E^{1(1_g)}_{p_e} = E^{1(1_g)}_{F_1 \alpha} = 2J_{\alpha\alpha}$ nous permet de reformuler l’équation (5.36) comme

$$E^{K_e}_{p_e}(K_{eg}) = F_{p_1} F_{p_2} \cdots F_{p_n} \frac{(2g_{1_g}) (2g_{1_g}) (2g_{1_g}) \cdots (2g_{1_g})}{(2g_{1_g}) (2g_{1_g}) (2g_{1_g}) \cdots (2g_{1_g})} \times \frac{(2K_e)}{J_{\alpha_1\alpha_1}J_{\alpha_2\alpha_2} \cdots J_{\alpha_K\alpha_K}},$$ \hspace{1cm} (5.37)

avec $p_j = F_{1\alpha_j}$. En utilisant des notations similaires à celles de la référence [160], cette dernière relation va s’écrit sous une forme plus compacte [143]

$$E^{K_e}_{\sigma e}(K_{eg}, n_\Gamma \Gamma_{eg}) = [K_{eg}] E^{(n_\sigma \Gamma_{eg})}_{\sigma e}^{\alpha_1 \cdots \alpha_K} J_{\alpha_1\alpha_1}J_{\alpha_2\alpha_2} \cdots J_{\alpha_K\alpha_K},$$ \hspace{1cm} (5.38)

où les coefficients $[K_{eg}] E^{(n_\sigma \Gamma_{eg})}_{\sigma e}^{\alpha_1 \cdots \alpha_K}$ sont donnés dans la table 5.1.

Notons pour finir avec ce paragraphe que la parité ε_e des opérateurs électroniques dans l’opération de renversement du temps est donnée par :

$$\varepsilon_e = (-1)^{\Omega_e} = (-1)^{K_e}.$$
5.2.2 Application à un état électronique dégénéré

Dans cette partie, nous considérons le cas de différents états électroniques supposés isolés et nous construisons les opérateurs associés. Pour ce faire, à chaque état est associé un moment angulaire électronique à l’aide des règles de descente dans O_h^S.

État électronique non dégénéré

Il n’y a aucun problème ici puisqu’il est toujours possible de se ramener à un état A_{1g} :

$$
A_{1x} = A_{1g} \times A_{1x} \quad (\chi = g, u), \\
A_{2x} = A_{1g} \times A_{2x},
$$

et nous avons la descente naturelle $D^{(0_9)} \downarrow O_h^S = A_{1g}$. Par conséquent, seul l’opérateur identité

$$E^{0(0_9, A_{1g})} = I_d$$

est présent et aucun couplage rovibronique n’intervient. Nous avons un problème rovibrationnel usuel.

État électronique triplement dégénéré

Comme il est mentionné dans la référence [160], tout état $\Phi^{(C_\chi)}$ d’une molécule octaédrique peut être traité comme un état F_{1u} à travers les relations

$$
F_{1x} = F_{1u} \times A_{1x} \quad (\chi = g, u ; \ \bar{\chi} = u \times \chi = u, g), \\
F_{2x} = F_{1u} \times A_{2x}.
$$

\[^3\text{C'est pourquoi on ne considère pas d'états } E \text{ puisqu'il n'y a pas de moyen de lui associer un moment angulaire (de manière directe) mis à part dans certains cas particuliers. Par exemple, le niveau de base de OsF}_6 \text{ est de symétrie } E \text{ mais il n'est séparé que de } 100 \text{ cm}^{-1} \text{ par rapport au premier état excité qui est lui de symétrie } F_2 [6]. \text{ Il existe alors un moyen d'associer aux deux états un moment angulaire électronique effectif } J_e = 2 \text{ (en analogie avec les travaux de Berger sur les oscillateurs cinq fois dégénérés [161]).}
Nous avons alors à considérer un moment angulaire électronique effectif \(\mathbf{J}_e \) avec \(J_e = 1 \). De plus, \(J_e \times J_e = [0 + 2] + \{1\} \) et les seules valeurs de \(K_e \) possibles sont \(K_e = 0, 1, 2 \) ; nous écrivons donc

\[
E^{0(0_y,A_{1g})} = I_d, \]

\[
E^{1(1_g,F_{1g})} = \left[(1_g)E(F_{1g}) \right]_{\sigma_1} J_{\alpha_1}, \]

\[
E^{2(2_g,F_{2g})} = \left[(2_g)E(F_{2g}) \right]_{\sigma_2} J_{\alpha_1} J_{\alpha_2}, \]

\[
E^{3(2_g,F_{2g})} = \left[(2_g)E(F_{2g}) \right]_{\sigma_3} J_{\alpha_1} J_{\alpha_2},
\]

avec \(\sigma_1, \sigma_2, \alpha, \alpha_1, \alpha_2 = x, y \) ou \(z \) et \(\sigma_2 = 1 \) or \(2 \). Les coefficients \([E]\) sont donnés dans la table 5.1.

Dans la base électronique \([F_1, \sigma]\), nous pouvons donner les représentations matricielles de ces différents opérateurs :

\[
E^{0(0_y,A_{1g})} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad E^{1(1_g,F_{1g})} = \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \quad E^{1(1_g,F_{1g})} = \frac{1}{2} \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix},
\]

\[
E^{2(2_g,F_{2g})} = \frac{1}{2\sqrt{2}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}, \quad E^{2(2_g,F_{2g})} = \frac{1}{2\sqrt{2}} \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}, \quad E^{2(2_g,F_{2g})} = \frac{1}{2\sqrt{2}} \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}.
\]

Exemple d’application : Hamiltonien JT non-transformé pour un système \([F_2 \times F_2]\)

Il est aisé de constater à partir des formes matricielles précédentes, que nos opérateurs électroniques sont reliés aux matrices \(\hat{C}_{x,y,z} \) et \(\hat{C}_{1,2} \), définis respectivement dans le tableau 3.2 et dans l’équation (3.57) par :

\[
E^{2(2_g,F_{2g})}_{1,2} = 4\sqrt{2} \hat{C}_{1,2} \quad \text{et} \quad E^{2(2_g,F_{2g})}_{x,y,z} = 2\sqrt{2} \hat{C}_{x,y,z}.
\]

L’Hamiltonien Jahn-Teller non-transformé pour un mode \(\nu_5 \) développé jusqu’aux termes quadratiques s’écrit dans ce cas

\[
H = H_0 + \alpha(Q^{F_{2g}} \otimes E^{2(2_g,F_{2g})})(A_{1g}) + \beta_1((Q^{F_{2g}} \otimes Q^{F_{2g}})(E_{2g}) \otimes E^{2(2_g,F_{2g})})(A_{1g}) + \beta_2((Q^{F_{2g}} \otimes Q^{F_{2g}})(F_{2g}) \otimes E^{2(2_g,F_{2g})})(A_{1g}) + \cdots
\]

où \(\alpha, \beta_1 \) et \(\beta_2 \) sont des paramètres.

État électronique demi-entier doublement dégénéré

Dans le cas d’une symétrie demi-entière \(E'_{1\chi} \) ou \(E'_{2\chi} \), nous pouvons toujours nous ramener à la symétrie \(E'_{1g} \) à l’aide des relations :

\[
E'_{1\chi} = E'_{1g} \times A_{1\chi}, \quad E'_{2\chi} = E'_{1g} \times A_{2\chi}.
\]

Dans ce cas, nous pouvons associer à de tels états, un moment angulaire électronique \(\mathbf{J}_e \) avec \(J_e = \frac{1}{2} \). Comme nous avons \(\frac{1}{2} \times \frac{1}{2} = [1] + \{0\} \), les seuls opérateurs électroniques sont

\[
E^{0(0_y,A_{1g})} = I_d \quad \text{et} \quad E^{1(1_g,F_{1g})} \sim \hat{\sigma}_\alpha,
\]

où \(\hat{\sigma}_\alpha \) est l’opérateur de spin.
où σ_α sont les matrices de Pauli.

Si l'on considère un Hamiltonien vibronique non-transformé, la seule contribution sera proportionnelle à $J_{\text{ca}}(F_{1g})$ $Q_{\text{sa}}(F_{1g})$ qui n'est pas permise pour des molécules XY₆ (il n'y a pas de modes vibrationnels ayant cette symétrie) et il n'y aura donc pas d'effet Jahn-Teller. Ceci est cohérent avec le fait, que les états E_{i}^{1} and E_{i}^{2} correspondent aux doublets de Kramers dont l'origine est purement de spin. L'effet Jahn-Teller étant d'origine électrostatique, la dégénérescence électronique n'est donc pas levée.

État électronique quatre fois dégénéré

Il nous reste encore à considérer un état quadruplet et nous aurons ainsi un jeu d'opérateurs électroniques permettant de définir un Hamiltonien vibronique ou rovibronique effectif. Pour cela, on se ramènera toujours à un état G_{g}^{i} de O_{h}^{g} par

$$G_{X}^{i} = G_{g}^{i} \times A_{1X}.$$ \hspace{1cm} (5.48)

En se rappelant que $D^{(\frac{3}{2})} \downarrow O^{S} = G'$, nous pouvons définir un moment angulaire électronique J_{e} avec $J_{e} = \frac{3}{2}$. Nous avons alors $\frac{3}{2} \times \frac{3}{2} = [1 + 3] + \{0 + 2\}$ et seuls les opérateurs électroniques avec $K_{e} = 0, 1, 2, 3$ seront permis :

$$E_{0}^{0}(0_{g}, A_{1g}), \ E_{1}^{1}(1_{g}, F_{1g}), \ E_{2}^{2}(2_{g}, E_{g}) \quad \text{et} \quad E_{3}^{3}(3_{g}, \Gamma_{e}) = [3_{g}] \ E_{e}^{(\Gamma_{e})}$$ \hspace{1cm} (5.49)

avec

$$D^{(3)} \supset \Gamma_{e} = A_{2} + F_{1} + F_{2}.$$ \hspace{1cm} (5.50)

Les coefficients $[\{K_{ca}\}E_{e}^{(\Gamma_{e})}]^{a_{1}...a_{K_{e}}}_{\sigma_{e}}$ sont rappelés dans la table 5.1 (l'indice n_{e} sera omis dans toute la suite puisqu'il n'y a jamais de multiplicité pour les opérateurs électroniques considérés).

Dans la base (G', σ'), nous pouvons aussi donner les représentations matricielles de quelques opérateurs électroniques ; le but étant de retrouver des formes matricielles connues. Nous avons :

$$E_{0}^{0}(0_{g}, A_{1g}) = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad E_{1}^{1}(1_{g}, F_{1g}) = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$ \hspace{1cm} (5.51)

$$E_{2}^{2}(2_{g}, E_{g}) = \frac{1}{\sqrt{3}} \begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -3 \end{pmatrix}, \quad E_{3}^{3}(3_{g}, \Gamma_{e}) = [3_{g}] \ E_{e}^{(\Gamma_{e})}.$$ \hspace{1cm} (5.52)
Exemple d’application : Hamiltonien JT non-transformé pour un système \([G’ \times F_2]\)

A partir des formes matricielles précédentes, nous pouvons remarquer la correspondance entre nos opérateurs électroniques et les matrices \(\hat{\rho}_{2,3}\) et \(\hat{\sigma}_{x,y,z}\) définies dans le tableau 3.2. On écrit :

\[
E_{1,2}^{2(2p,F_2)} = 2\sqrt{6} \hat{\rho}_{1,2} \quad \text{et} \quad E_{x,y,z}^{2(2p,F_2)} = 2\sqrt{6} \hat{\sigma}_{x,y,z}.
\] (5.52)

On retrouve la forme usuelle de l’Hamiltonien Jahn-Teller non-transformé pour un système \([G’ \times F_2]\) (voir formule (8.30) de la référence [45]) développé ici jusqu’aux termes quadratiques :

\[
H = H_0 + \alpha'(Q^{(F_2)}) \otimes E_{x,y,z}^{2(2p,F_2)}(A_{1g}) + \beta_1'(Q^{(F_2)}) \otimes E_{x,y,z}^{2(2p,F_2)}(E_g) + \beta_2'(Q^{(F_2)}) \otimes E_{x,y,z}^{2(2p,F_2)}(A_{1g}) + \ldots
\] (5.53)

où \(\alpha’, \beta_1’\) et \(\beta_2’\) sont des paramètres.

5.2.3 Expression de l’Hamiltonien rovibronique effectif

A ce stade, nous pouvons maintenant formuler un Hamiltonien rovibronique en étendant les travaux antérieurs de rotation-vibration. Partant d’un Hamiltonien non-transformé \(H\) (voir les rappels au début de ce chapitre), nous définissons un Hamiltonien rovibronique transformé \(\bar{H}\) en appliquant une transformation unitaire \(e^{iS}\) sur \(H\) :

\[
H = H(J_\alpha, J_\beta, q_{0\sigma}, P_{\sigma}) \downarrow e^{iS}
\]

\[
\bar{H} = \bar{H}(J_\alpha, J_\beta, q_{0\sigma}, P_{\sigma})
\] (5.54)

et l’Hamiltonien rovibronique pour une polyade vibronique donnée contient les contributions des polyades inférieures (Fig. 5.1) :

\[
\bar{H}^{<P_\alpha>} = \bar{H}^{<P_\alpha>}_G + \bar{H}^{<P_\alpha>}_F + \ldots + \bar{H}^{<P_\alpha>}_{n-1} + \bar{H}^{<P_\alpha>}_{n}.
\] (5.55)

Fig. 5.1 - Représentation matricielle de l’Hamiltonien rovibronique transformé.
Chaque terme de la somme s'écrit comme une combinaison linéaire d'opérateurs rovibroniques
\[
\hat{H} = \sum_{\text{tous les indices}} i \langle t \| i \rangle \eta T \langle t \| i \rangle T_i \text{n} \quad T_i \text{m} ,
\]
(5.56)

où \(i \langle t \| i \rangle \) sont les paramètres effectifs et \(T \langle t \| i \rangle T_i \text{n} \quad T_i \text{m} \) sont les opérateurs rovibroniques [143] :
\[
T \langle t \| i \rangle T_i \text{n} \quad T_i \text{m} = (R \Omega \varepsilon (K_{eg} n_{T_{eg}} T_{eg}) \otimes (E K_{eg} T_{eg}) \otimes \varepsilon V_{t_{T_{eg}}} T_{eg}) (A_{eg}) .
\]
(5.57)

\(\eta \) est un facteur numérique permettant de faire correspondre les écritures usuelles et tensorielles lorsqu'il n'y a pas de couplage :
\[
\eta = [T_{1}]^{1/2} (-\sqrt{3}/4)^{(N_{e})/2} ,
\]
(5.58)

si \((K_{eg}, E_{eg}) = (0_{g}, 0_{g})\) et \(\eta = 1 \) sinon.

Cet Hamiltonien, comme l'Hamiltonien rovibrationnel, doit être totalement symétrique, hermitique et invariant dans le renversement du temps. Cette dernière condition impose aux opérateurs \(V, E \) et \(R \) d'avoir les mêmes parités dans les moments élémentaires \((J, p)\) ; on a donc [143] :
\[
\varepsilon = (-1)^{\Omega_{e} + K_{e}} .
\]
(5.59)

Il nous reste encore à définir l'ordre de chaque terme. Pour cela, on a deux possibilités différentes : soit supposer que tous les opérateurs électroniques ont la même contribution, ou soit, comme la partie rotationnelle, les classer par rapport aux puissances de \(J_{e} \). Ce choix est a priori arbitraire et nous choisissons la deuxième possibilité en fixant l'ordre du développement à
\[
\Omega = \Omega_{e} + \Omega_{r} + K_{e} - 2 .
\]
(5.60)

Notons qu'en conservant ce choix, nous nous limitons volontairement à un nombre moins important de termes rovibroniques par rapport à la première possibilité, pour un même ordre.

Pour le calcul des éléments matriciels et afin d'utiliser le théorème de Wigner-Eckart, la base rovibronique doit suivre le même schéma de couplage que l'Hamiltonien, c'est à dire que nous écrivons
\[
| \Psi^{(J_{e}, n_{C_{eg}})} \rangle \otimes | \Phi^{(J_{eg}, C_{eg})} \rangle \otimes | \Psi^{(C_{eg}, d)} \rangle \rangle \text{C}_{\sigma},
\]
(5.61)

avec :
\[
| \phi^{(J_{eg}, C_{eg})} \rangle = | \phi^{(J_{eg}, C_{eg})} \rangle | \langle A^{(A)} \rangle .
\]
(5.62)

où \(\beta \) est une multiplicité permettant de distinguer les symétries redondantes du groupe non-simplement réductible \(O_{h}^{S} \). Nous avons aussi la descente
\[
D^{(J_{eg})} \downarrow \quad O_{h}^{S} = \quad C_{eg} \quad et \quad C_{eg} = A \times C_{\sigma}
\]
(5.63)

avec :
\[
A = \left| \begin{array}{c}
A_{1} \chi \text{ si } C_{\chi} = A_{1}, F_{1}, E_{1} \text{ ou } G'_{\chi} , \\
A_{2} \chi \text{ si } C_{\chi} = A_{2}, F_{2} \text{ ou } E_{2} \text{.}
\end{array} \right.
\]
(5.64)

Chaque opérateur électronique est implicitement multiplié par l'opérateur identité \(I_{e}^{(A_{eg})} \) associé à la fonction d'onde \(| I^{(A)} \rangle \).

Notons encore un point important : dans l'équation (8.31) \(J \) est par définition le moment angulaire rovibronique total incluant le spin électronique, donc si le système possède un nombre impair d'électrons, \(J \) sera demi-entier, tout comme \(J_{e} \). En définitive, \(J_{e} \) et \(J \) seront entiers (resp. demi-entier) si le nombre d'électrons est pair (resp. impair) et dans ce cas la symétrie de la fonction d'onde totale (rovibronique + spin nucléaire) sera \(A_{1} \) ou \(A_{2} \) (principe d'exclusion de Pauli, voir chapitre suivant).
Eléments matriciels de l’Hamiltonien

L’expression des éléments matriciels de l’Hamiltonien rovibronique se calcule aisément avec le théorème de Wigner-Eckart. Nous obtenons [143]

\[
\begin{aligned}
&\langle \beta_2 \beta_4 \mid \Psi_r \rangle \otimes [\Phi_e (J_g, n_C) \otimes \Psi_{v', \nu'} (C'_{v' \nu'})]^{(C_{v' \nu'})}_{|\sigma|} \mid T^{(1)}_{\{m_a\} \{m_b\}} \\
&\times \mid \beta_1 \beta_3 \mid \langle \beta_g \rangle \otimes [\Phi_e (J_g, C_C) \otimes \Psi_{v, \nu} (C_{v \nu})]^{(C_{v \nu})}_{|\sigma|} = \\
&= (-1)^{\nu_g + \nu_{eg}} (-1)^{C_{eg} + C_{C} + 2C_C} C^{-C_{eg} - C_{C} - C_{eg} - C_{C}} \left[(C_{v \nu})^{(C_{v' \nu'})}_{|\sigma|} \right]^{1/2} \sum_{\beta_g} \beta_g K_{eg} \frac{J_g}{n_{eg}} J_g \frac{J_g}{n_{C_C}} J_g \frac{J_g}{n_{C_C}'} J_g \frac{J_g}{n_{C_C}''} J_g \frac{J_g}{n_{C_C}'''},
\end{aligned}
\]

où nous avons posé :

\[
e^{i\Psi (\Gamma_C, \Gamma_{C'}, \Gamma_{C''}, \Gamma_{C'''})} = [C_C^{(C_{v \nu})}_{|\sigma|}]^{1/2} \left\{ \begin{array}{cccc}
A_{1g} & A & A & A \\
\Gamma_{eg} & \Gamma_{eg} & \Gamma_{eg} & \Gamma_{eg} \\
\Gamma_{eg} & \Gamma_{eg} & \Gamma_{eg} & \Gamma_{eg} \\
\Gamma_{eg} & \Gamma_{eg} & \Gamma_{eg} & \Gamma_{eg} \\
\end{array} \right\}^{\beta_1 \beta_2 \beta_3 \beta_4} = \delta_{\beta_1, \beta_2} \delta_{\beta', 1}.
\]

Cette dernière expression est en relation avec l’opérateur électronique identité dont nous avons volontairement omis les emr dans la formule des éléments matriciels (5.65) puisque

\[
\langle J^{(A)} \mid J^{(A)} \rangle = F (A_{1g} \ A) (A) = 1.
\]

5.2.4 Expression du moment dipolaire effectif

Nous présentons maintenant une approche systématique pour construire l’opérateur moment dipolaire pour des transitions (ro)vibroniques en étendant les travaux de Loët [141, 148, 162]. Cela nous permettra, dans le prochain chapitre, de calculer les intensités de transition des modes actifs en infrarouge (\(\nu_3\) et \(\nu_4\)).

Écriture usuelle

La vibration moléculaire modifie la densité électronique et induit un moment dipolaire électrique. Les composantes du moment dipolaire \(\mu_{\theta} (\theta = x, y, z)\), dans le repère moléculaire et dans le repère du laboratoire \((\mu_{\theta}, \Theta = X, Y, Z)\), sont reliées entre elles par la relation

\[
\mu_{\theta} = \sum_{\theta} \lambda_{\theta \theta} \mu_{\theta},
\]

où les \(\lambda_{\theta \theta}\) sont les cosinus directeurs.

Si l’on se place dans la limite des faibles oscillations, chaque composante \(\mu_{\theta}\) peut être développée en série de puissances des coordonnées normales de vibration

\[
\mu_{\theta} = \mu_{\theta}^{(c)} + \sum_{s, \sigma} \left(\frac{\partial \mu_{\theta}}{\partial Q_{s\sigma}} \right) Q_{s\sigma} + \frac{1}{2} \sum_{s, s', \sigma, \sigma'} \left(\frac{\partial^2 \mu_{\theta}}{\partial Q_{s\sigma} \partial Q_{s'\sigma'}} \right) Q_{s\sigma} Q_{s'\sigma'} + \ldots,
\]

ou

\[
5.2. Modèle rovibronique effectif : formalisme octaédrique
\]
avec μ_0^g le moment dipolaire permanent (si il existe). Les autres termes du développement sont induits par vibration moléculaire.

En appliquant la même série de transformation de contact que sur l’Hamiltonien non-transformé, le moment dipolaire transformé (que l’on utilisera dans le calcul des intensités (ro)vibroniques) dans le repère lié au laboratoire va s’écrire [141, 19]

$$\tilde{\mu}_\theta = \frac{1}{2} \sum_\theta (\lambda_\theta \tilde{\mu}_\theta + \tilde{\mu}_\theta \lambda_\theta) ,$$

avec

$$\tilde{\mu} = e^{iS} \mu e^{-iS} .$$

Écriture tensorielle

Nous formulons dans ce paragraphe le moment dipolaire dans $SU(2) \otimes C_I \supset O_h^S$ pour des états électroniques dégénérés. Nous rappellerons les résultats de la référence [143].

Les composantes cartesiennes peuvent être reliées aux composantes sphériques à l’aide d’une transformation unitaire

$$\mu_\theta = \sum_k \langle 1; k | \theta \rangle \mu_k^{(1)} ,$$

$$\mu_\theta = \sum_m \langle 1; m | \Theta \rangle \mu_m^{(1)} ,$$

où $\langle 1; k | \theta \rangle$ et $\langle 1; m | \Theta \rangle$ sont les coefficients de Stone [163]. Pour les toupies sphériques, ces coefficients sont calculés par Pascaud et Poussigue [164] et ils montrent que dans l’orientation standard, $\langle 1; k | \theta \rangle = (1)_{F_1}^k$ et $\langle 1; m | \Theta \rangle = (1)_{F_1}^m$.

Dans le repère moléculaire, chaque composante du moment dipolaire non-transformé s’écrit comme une somme d’opérateurs vibroniques de symétrie $F_1 u$ dans O_h [143] :

$$\mu_\theta^{(F_1 u)} = \sum_{\{i\}} \mu_{\{n}_\{m\}^{(i)} F_1 u (E^{K_e (K_{eg}, \Gamma_{eg}) \otimes e V_{\{n}_\{m\}^{(i)}} \Gamma_{1u} (\Gamma_{vu}) \} (F_1 u) .$$

Si l’on effectue maintenant une série de transformations unitaires et si l’on se souvient que les opérateurs S comportent une partie rotationnelle, le moment dipolaire transformé dans le repère moléculaire s’écrit comme une combinaison linéaire d’opérateurs rovibroniques [143]

$$\tilde{\mu}_\theta^{(F_1 u)} = \sum_{\{i\}} \tilde{\mu}_{\{n}_\{m\}^{(i)} F_1 u M^{(i)} (\{i\}, F_1 u) ,$$

avec :

$$M^{(i)} (\{i\}, F_1 u) = M_{\{n}_\{m\}^{(i)} F_1 u (E^{K_e (K_{eg}, \Gamma_{eg}) \otimes e V_{\{n}_\{m\}^{(i)}} \Gamma_{1u} (\Gamma_{vu}) \} (F_1 u) .$$

Dans le repère lié au laboratoire, nous utilisons les tenseurs des cosinus directeurs $C^{(F_1 e)}$ afin de réécrire l’équation (5.69) sous la forme :

$$\tilde{\mu}_\theta^{(A_1 u)} = \frac{1}{2} \sum_\theta \sum_m \langle 1, m | \Theta \rangle (C^{(F_e)} (F_1 u) + C^{(F_1 u)} F_1 e \tilde{\mu}_\theta^{(F_1 u)} .$$

En remplaçant cette dernière relation et en utilisant la définition d’un produit symétrisé, le moment dipolaire transformé s’exprime comme :

$$\tilde{\mu}_\theta^{(A_1 u)} = \sqrt{3} \sum_m \langle 1, m | \Theta \rangle \sum_{\{i\}} \tilde{\mu}_{\{n}_\{m\}^{(i)} F_1 u (C^{(F_e)} \otimes M^{(i)} (\{i\}, F_1 u) (A_1 u) .$$
Eléments matriciels du moment dipolaire

\[
\langle \beta_2 \beta_1 | \Psi_r^{(j_g, n^c C_{g'})} \otimes [\Psi_e^{(j_g, C_{1x})} \otimes \Psi_u^{(C_{1x})} \otimes (C_{1x})] (C_{1x}) \rangle [C^{(F_{1g})} \otimes T(i, F_{1u})] (A_{1u}) \\
\times | \beta_1 \beta_3 | [\Psi_r^{(j_g, n C_{g'})} \otimes [\Psi_e^{(j_g, C_{1x})} \otimes \Psi_u^{(C_{1x})} \otimes (C_{1x})] (C_{1x}) \rangle \beta_1 \beta_3 \beta_4 \\
= \frac{1}{2} (-1)^{\varphi(J)} (-1)^{\varphi(J') - \varphi(J') - 1} [C_{1xv}] [C_{1xv}]^{1/2} [\Gamma_{1xv}] \\
\times \sum_{\beta, \beta', \beta''} \beta' K (K_{eg} J_{eg} J_{eg}) \left\{ \begin{array}{l}
\Gamma_{eg} C_{rg} C_{rg}' \\
\Gamma_{eg} C_{r'g} C_{r'g}'
\end{array} \right\} \beta_{1, \beta_1, \beta_2, \beta_3} \\
\times \Psi_u^{(C_{1xv})} \mid V \{\nu_{1a}\} \{\mu_{1a}\} \mid \psi_u^{(C_{1xv})} \rangle (J_g) \mid E^{K_x} (K_{1g}) \rangle \langle J_g (J_g) \mid C^{(1g)} \rangle (J_g) \\
\times e^{i\Psi (\Gamma_x, C_{xv}, \beta, \beta')} \left\{ \begin{array}{l}
\langle J_g \mid R^{1x} (K_{1g}) \rangle \mid J_g' \rangle \\
\sum_{\beta_1, \beta_2} \left\{ \begin{array}{l}
\Gamma_{rg} C_{rg} C_{rg}' \\
\Gamma_{rg} C_{r'g} C_{r'g}'
\end{array} \right\} \beta_{1, \beta_1, \beta_2, \beta_3}
\end{array} \right\} \\
\times \sum_{\nu_{1x}} \beta_1 K (1_{1g} J_{1g} J_{1g}') \left\{ \begin{array}{l}
K_{rg} J_{rg} J_{rg}' \\
J_{rg} J_{rg} J_{rg}'
\end{array} \right\} \beta_{1, \beta_1, \beta_2, \beta_3} \\
\times \langle J_g \mid C^{(1g)} \rangle \langle J_g \rangle + (-1)^{\varphi(J) + \varphi(J') - 1} F_{1g} \left\{ \begin{array}{l}
\Gamma_{rg} C_{rg} C_{rg}' \\
\Gamma_{rg} C_{r'g} C_{r'g}'
\end{array} \right\} \beta_{2, \beta_1, \beta_2, \beta_3} \\
\times \sum_{\nu_{1x}} \beta_2 K (1_{1g} J_{1g} J_{1g}') \left\{ \begin{array}{l}
K_{rg} J_{rg} J_{rg}' \\
J_{rg} J_{rg} J_{rg}'
\end{array} \right\} \beta_{2, \beta_1, \beta_2, \beta_3}.
\]

Les \(\text{enr}\) des cosinus directeurs sont donnés par :

\[
\langle J_g \mid C^{(1g)} \rangle \langle J_g \rangle = (-1)^{J-M} ([J][J'])^{1/2} \left(\begin{array}{cc}
\frac{(J_g)}{M_L} & \frac{(J_g)}{M'}
\end{array} \right).
\]

5.2.5 Expression du tenseur polarisabilité effectif

Il est également possible de raisonner de manière analogue sur les composantes du tenseur polarisabilité pour le calcul des intensités Raman.

Ecriture usuelle

Sous l'action d'un champ électrique \(\mathbf{E} \), chaque molécule développe un moment dipolaire induit, dont les composantes s'écritent :

\[
\mu_{\Theta_1} = \sum_{\Theta_2} \alpha_{\Theta_1 \Theta_2} E_{\Theta_2}.
\]

Le tenseur \(\alpha_{\Theta_1 \Theta_2} \) (appelé tenseur polarisabilité) est responsable des diffusions Raman et Rayleigh et ses composantes (\(\Theta_1, \Theta_2 = X, Y, Z\)), dans le repère du laboratoire, sont reliées à celles du repère de la
molécule \(\theta_1, \theta_2 = x, y, z \):

\[
\alpha_{\theta_1,\theta_2} = \sum_{\theta_1,\theta_2} \lambda_{\theta_1,\theta_2} \lambda_{\theta_1,\theta_2} \alpha_{\theta_1,\theta_2} .
\] (5.80)

De même, dans la limite des petits déplacements, \(\alpha_{\theta_1,\theta_2} \) peut être développé en série des coordonnées normales comme

\[
\alpha_{\theta_1,\theta_2} = \alpha_{\theta_1,\theta_2}^\varepsilon + \sum_{s,\sigma} \left(\frac{\partial \alpha_{\theta_1,\theta_2}}{\partial Q_{s\sigma}} \right) Q_{s\sigma} + \frac{1}{2} \sum_{s,s',\sigma'} \left(\frac{\partial^2 \alpha_{\theta_1,\theta_2}}{\partial Q_{s\sigma} \partial Q_{s'\sigma'}} \right) Q_{s\sigma} Q_{s'\sigma'} + \ldots ,
\] (5.81)

\(\alpha_{\theta_1,\theta_2}^\varepsilon \) étant la polarisabilité permanente.

Comme pour le moment dipolaire, le tenseur polarisabilité transformé dans le repère du laboratoire va être donné par :

\[
\tilde{\alpha}_{\theta_1,\theta_2} = \frac{1}{2} \sum_{\theta_1,\theta_2} \left(\lambda_{\theta_1,\theta_2} \lambda_{\theta_1,\theta_2} \tilde{\alpha}_{\theta_1,\theta_2} + \alpha_{\theta_1,\theta_2} \lambda_{\theta_1,\theta_2} \lambda_{\theta_1,\theta_2} \right).
\] (5.82)

Écriture tensorielle

Nous considérons ici un modèle complet pour la prédiction et le calcul des intensités de transition Raman (voir chapitre suivant pour l'expression explicite des intensités).

Le lien entre les composantes cartésiennes et sphériques est donné par une transformation unitaire

\[
\alpha_{\theta_1,\theta_2} = \sum_{L,k} \langle L; k \mid \theta_1 \theta_2 \rangle \alpha_k^{(L)} ,
\] (5.83)

\[
\alpha_{\theta_1,\theta_2} = \sum_{L,m} \langle L; m \mid \theta_1 \theta_2 \rangle \alpha_m^{(L)} ,
\] (5.84)

où \(\langle L; k \mid \theta_1 \theta_2 \rangle \) et \(\langle L; m \mid \Theta_1 \Theta_2 \rangle \) sont les coefficients de Stone [163] et nous avons entre autres :

\[
\langle L; m \mid \Theta_1 \Theta_2 \rangle = \sum_{m_1,m_2} \langle 1; m_1 \mid \Theta_1 \rangle \langle 1; m_2 \mid \Theta_2 \rangle F^{(1)}_{m_1 m_2} (L) ,
\]

\[
= \sum_{m_1,m_2} \langle 1; m_1 \mid F^{(1)}_{m_1 m_2} \rangle \langle 1; m_2 \mid F^{(1)}_{m_1 m_2} \rangle (L) .
\]

Ces coefficients sont rappelés dans la référence [165].

Le tenseur non-transformé exprimé dans le repère moléculaire s'écrit [143]

\[
\alpha^{(L_g, \Gamma_g)}_\theta = \sum_{\{i\}} \alpha^{(\{i\}, \Gamma_g)}_{\{n_s\} \{m_s\}} (E^{K_{e\Gamma}}_{e\Gamma} \otimes V_{\{n_s\} \{m_s\}}^{\Gamma_{m_1 \Gamma_{m_2}} \Gamma_{v_1 \Gamma_{v_2}}}) \Gamma_g ,
\] (5.85)

où \(L_g \) est le rang dans \(O(3) \) et \(\alpha^{(\{i\}, \Gamma_g)}_{\{n_s\} \{m_s\}} \) sont les paramètres. De plus :

\[
\Gamma_g = A_{1g} \oplus E_g \oplus F_{2g} \Leftrightarrow L_g = 0_g, 2_g .
\] (5.86)

Le tenseur \(\tilde{\alpha}^{(0_g, A_{1g})} \) correspond à la partie isotrope et le tenseur \(\tilde{\alpha}^{(2_g, E_g \text{ ou } F_{2g})} \) à la partie anisotrope.

En considérant la polarisabilité transformée

\[
\tilde{\alpha} = e^{iS} \alpha e^{-iS} ,
\] (5.87)

nous écrivons alors

\[
\tilde{\alpha}^{(L_g, \Gamma_g)} = \sum_{\{i\}} \tilde{\alpha}_{\{n_s\} \{m_s\}}^{(\{i\}, \Gamma_g)} \Gamma_g^{(\{i\}, \Gamma_g)} ,
\] (5.88)
où \(P_{(i),\Gamma_g} \) sont des opérateurs rovibrioniques :

\[
P_{(i),\Gamma_g} = P_{(i),\Gamma_g}^{\Omega_r(K_g, n_{\text{r}}, \Gamma_g)}(K_{cg}, \Gamma_{cg})_{\Gamma_g} \Gamma_{1_g} \Gamma_{2_g} (\Gamma_{v_g})(\Gamma_g)
\]

(5.89)

\((R_{(i),\Gamma_g}^{\Omega_r(K_g, n_{\text{r}}, \Gamma_g)}) \otimes (E_{K_g,\Gamma_g}) \otimes \nu^{\Gamma_{1_g}} \Gamma_{2_g} (\Gamma_{v_g})(\Gamma_g) \).

Concernant les composantes transformées dans le repère du laboratoire, nous écrivons l’analogue de la formule (5.82) :

\[
\alpha^{(A_{1g})} \Theta_1 \Theta_2 = \sum_{L, \Gamma, m} \left[\Gamma \right]^{1/2} \langle L, m \mid \Theta_1, \Theta_2 \rangle
\]

\[
\times \sum_{(i)} \alpha^{(A_{1g})}_{(i),\Gamma_g} \left[C(L_g, \Gamma_g) \otimes P_{(i),\Gamma_g}(A_{1g}) \right].
\]

Eléments matriciels du tenseur polarisabilité

\[
\langle \beta_2 \beta_4 \left[\Psi_r^{(J_g)} \otimes \Phi_c^{(J_g, C_{cg})} \otimes \Psi_v^{(C_{eg})} \right] \mid \left[C_{ev}^{(\sigma)} \right] \mid [C_{ev}]^{1/2} \rangle =
\]

\[
= \frac{1}{2} (-1)^{G_r + 2C_e + C_v - C_{-1}} \langle \left[\Gamma_{ev} \right] [C_{ev}] \rangle \left[C_{ev}^{(\sigma)} \right]^{1/2}
\]

\[
\times \sum_{\beta_2, \beta_4} \frac{1}{2} (-1)^{G_r + 2C_e + C_v - C_{-1}} \langle \left[\Gamma_{ev} \right] [C_{ev}] \rangle \left[C_{ev}^{(\sigma)} \right]^{1/2}
\]

(5.91)

Les \(\text{emr} \) des cosinus directeurs sont donnés par :

\[
\langle J_g^{(L_g)} \mid \left[C_{ev} \right] \rangle = (-1)^{L - J - M} \left[\left[J \right] \left[J' \right] \right]^{1/2}
\]

(5.92)
Tab. 5.2 - Régles de sélection pour l’Hamiltonien, le moment dipolaire et le tenseur polarisabilité

<table>
<thead>
<tr>
<th></th>
<th>ΔJ</th>
<th>ΔM</th>
<th>Symétrie</th>
<th>Composantes</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0</td>
<td>0</td>
<td>$C' = C$</td>
<td>$\sigma' = \sigma$</td>
</tr>
<tr>
<td>$\hat{\mu}$</td>
<td>0, ±1</td>
<td>0, ±1</td>
<td>g</td>
<td>$\sigma = \sigma'$</td>
</tr>
<tr>
<td>$\hat{\alpha}^{(0)}$</td>
<td>0, ±1, ±2</td>
<td>0, ±1, ±2</td>
<td>u</td>
<td>$\sigma = \sigma'$</td>
</tr>
<tr>
<td>$\hat{\alpha}^{(2)}$</td>
<td>0, ±1, ±2</td>
<td>0, ±1, ±2</td>
<td>g</td>
<td>$\sigma = \sigma'$</td>
</tr>
</tbody>
</table>

Ordre du développement et règles de sélection

Afin d’être cohérent avec l’Hamiltonien, nous avons fixé l’ordre du développement des deux moments de transition à :

$$\Omega = \Omega_v + \Omega_r + K_c - 1.$$

(5.93)

De plus, à partir des différentes expressions des éléments matriciels, les règles de sélection en découlent immédiatement et sont données dans la table 5.2

5.3 Modèle rovibronique effectif : formalisme sphérique

Nous présentons dans ce paragraphe, en complément du formalisme octaédrique, un formalisme sphérique adapté aux couplages (ro)vibroniques. Cette extension tensorielle est réalisable quand l’oscillateur associé au mode ν_2 n’est pas excité et dans ce cas, tous les couplages peuvent être effectués dans $O(3)$ ou $SU(2) \otimes C_I$. Les résultats que nous allons maintenant présenter ont fait l’objet d’un article [144] ; initialement, ce modèle fut élaboré afin d’éviter de manipuler des matrices infinies, notamment pour les systèmes Jahn-Teller linéaire [$G'_g \times F_{2g}$] et quadratique [$G'_g \times F_{1u}$]. Le premier système est le cas le plus simple présentant un effet linéaire et le deuxième système, un peu plus compliqué, possède l’avantage d’avoir des données expérimentales (la bande ν_3 de Ref $[166]$). Nous traiterons ainsi ces deux exemples d’application au cours de ce paragraphe, mais avant cela, nous écrirons un Hamiltonien rovibronique effectif général pour un mode ν_5 et un mode ν_3. Les moments de transition associés seront aussi développés.

5.3.1 Hamiltonien rovibronique effectif dans $SU(2) \otimes C_I \supset O_h$

Hamiltonien rovibronique effectif pour un mode ν_5

Avant d’entreprendre la construction d’un Hamiltonien général, il faut définir la partie vibrationnelle relative à $O(3)$. En utilisant l’extension tensorielle [160]

$$Q^{(1_u,F_{1u})}_{5\sigma} = I(A_{2u}) Q^{(F_{2g})}_{5\sigma},$$

(5.94)

les opérateurs vibrationnels possibles pour un mode ν_5 vont s’écrit

$$\varepsilon_{K_1 \nu K_2 \nu}(K_{vy}) = \varepsilon^{i\phi}_{[K_5]} \left((A_{5}^{+(K_1 \nu)} \otimes A_{5}^{(K_2 \nu)}) (K_{vy}) + \varepsilon(-1)^{K_1 + K_2 + K_5} (A_{5}^{+(K_2 \nu)} \otimes A_{5}^{(K_1 \nu)}) (K_{vy}) \right),$$

(5.95)

avec

$$A_{5}^{(K_1 \nu)} = (I(A_{2u}) \Omega_{u}^{\phi} (a_{5}^{(1_u)} \otimes a_{5}^{(1_u)}) \otimes a_{5}^{(1_u)} ...)(K_{1 \nu}),$$

$$A_{5}^{+(K_1 \nu)} = (I(A_{2u}) \Omega_{u}^{\phi} (a_{5}^{+(1_u)} \otimes a_{5}^{+(1_u)}) \otimes a_{5}^{+(1_u)} ...)(K_{1 \nu}).$$

(5.96)
Les notations sont identiques à celles utilisées dans le formalisme octaédrique.

La construction des opérateurs rotationnels et électroniques non symétrisés restant inchangée, l'Hamiltonien rovibronique effectif va s'écrire comme une combinaison linéaire d'opérateurs rovibroniques tous couplés dans $O(3)$ et symétrisés dans O_h [144]

\[
\hat{H} = \sum_{\text{tous les indices}} \tilde{t}^{(i)}_{\{n_5\}} K_{g,n_0 A_{1g}} \eta \ T^{(i)}_{\{n_5\}} \{m_5\} \ ,
\]

où les \tilde{i} sont des paramètres et

\[
T^{(i)}_{\{n_5\}} \{m_5\} = T_{\{n_5\}} \{m_5\} \Omega_r \ K_{g} K_{eg} K_{1g} K_{2g} \ K_{eg} (K_{g,n_0 A_{1g}})
\]

\[
= (R^{\Omega_r}(K_{rg}) \otimes (E^{\Omega_r}(K_{eg}) \otimes \epsilon^{V_{K_{1g} K_{2g}}(K_{eg})} (K_{g,n_0 A_{1g}}) .
\]

Le facteur η est un facteur numérique valant 4

\[
\eta = (-1)^K_1 \{K_{1g}\}^{1/2} (-\sqrt{3}/4) (\Omega_r)/2 \ ,
\]

si $(\Omega_r(K_{rg}), K_{eg}) = (0(0_g), 0_g)$ et 1 sinon. L'Hamiltonien rovibronique est toujours invariant dans le renversement du temps, hermitien et totalement symétrique dans O_h.

La calcul des éléments matriciels s'effectue dans une base qui suit le même schéma de couplage que l'Hamiltonien, afin d'appliquer le théorème de Wigner-Eckart

\[
| \Psi_{\sigma}^{(J_r,n \tilde{C}_r)} = | \Psi_{\sigma}^{(J_g)} \otimes (\Phi_{J_g}) \otimes (\Psi_{\tilde{C}_r})^{(J_r)} (J_r,n \tilde{C}_r) ,
\]

et nous obtenons :

\[
\langle \Psi_{\sigma}^{(J_r,n \tilde{C}_r)} | T^{(i)}_{\{n_5\}} \{m_5\} | \Psi_{\sigma}^{(J_r,n \tilde{C}_r)} \rangle = (-1)^{2C+2J'} [C]^{-1/2} \sqrt{[K][K_{cc}][J_5][J_{\tilde{C}_r}][J'_{\tilde{C}_r}][J_r]}
\]

\[
\times \left\{ \begin{array}{ccc}
J_g & J_5 & J_r \\
K_{rg} & K_{eg} & K_g \\
J_g & J_{5T'} & J_{rT'}
\end{array} \right\} \left\{ \begin{array}{ccc}
J_g & I_{5T'} & J_g \\
K_{eg} & K_{eg} & K_{eg} \\
J_{eg} & I_{5T'} & J_{5T'}
\end{array} \right\} K_{rg} (n_0 A_{1g} n \tilde{C}_r n \tilde{C}_r) .
\]

\[
\times \langle \Psi_{\tilde{C}_r}^{(J_r)} \rangle \langle \epsilon^{V_{K_{1g} K_{2g}}(K_{eg})} \rangle \langle \Phi_{J_g} \rangle \langle E^{\Omega_r}(K_{eg}) \rangle \langle \Psi_{\tilde{C}_r}^{(J_r)} \rangle \langle \Phi_{J_g} \rangle \langle R^{\Omega_r}(K_{rg}) \rangle \langle \Psi_{\tilde{C}_r}^{(J_r)} \rangle .
\]

La “vraie” symétrie des états est donnée par $C_{\chi} = (A_{2g})^{\otimes} \otimes \tilde{C}_r$.

Les enmr vibrationnels doivent maintenant être définis. Comme dans O_h, les enmr vibrationnels généraux (pas obligatoirement pour ν_5) peuvent être normalisés à travers la relation [141] :

\[
e^{-i\phi} \left(\prod_s \Psi_{\tilde{C}_r}^{(l_{\nu_5})} \right) \left(\epsilon^{V_{K_{1g} K_{2g}}(K_{eg})} \right) \left(\prod_s \Psi_{\tilde{C}_r}^{(l_{\nu_5})} \right) = \delta_{\nu_1 \nu_2} \delta_{\nu_1 \nu_2} .
\]

Dans l'expression (5.100), sont définis le moment angulaire vibronique

\[
J_5 = l_5 + J_e ,
\]

ainsi que le moment angulaire “total” qui est toujours entier :

\[
J_5 = J + l_5 + J_e .
\]

Pour le système Jahn-Teller linéaire par exemple, les états vibroniques seront étiquetés à l'aide des valeurs du moment angulaire vibronique J_5 puisque ce système particulier est invariant dans $SU(2) \otimes C_I$ [72].

\footnote{Notons une erreur dans la référence [144] où le terme $(-1)^{K_1}$ a été oublié.}
Hamiltonien rovibrionique effectif pour un mode \(\nu_3 \)

Ce cas est plus simple que le précédent, puisque nous avons directement la réduction \(1_u \leftrightarrow F'_{1u} \). L'Hamiltonien rovibrionique effectif \(\tilde{H} = THT^{-1} \) est toujours donné par

\[
\tilde{H} = \sum_{\text{tous les indices}} \overline{\langle (i), K_{\mu}, n_0 A_{1g} \rangle} \ T \langle (i), K_{\mu}, n_0 A_{1g} \rangle,
\]

(5.103)

et le calcul des éléments matriciels reste identique. Ils s'expriment comme :

\[
\langle (\psi_r^{(J_g)} \otimes (\Phi(J_g) \otimes \psi_v^{(J'_r,n' C_r)}) | T^{(i), K_{\mu}, n_0 A_{1g}} | (\psi_r^{(J_g)} \otimes (\Phi(J_g) \otimes \psi_v^{(J'_r,n C_r)})) = \]

\[
(-1)^{2C + 2J'_r} |C|^{-1/2} \sqrt{|K||K_{eg}| |J_3||J_3'||J'_3|} \left\{ \begin{array}{ccc} J_g & J_3 & J'_3 \\ K_g & K_{eg} & K_g \\ J'_g & J'_3 & J'_3' \end{array} \right\} \left\{ \begin{array}{ccc} J_g & l_3 & J_3 \\ K_g & K_{eg} & K_{eg} \\ J'_g & l'_3 & J'_3' \end{array} \right\}
\]

\[
\times K \left(\begin{array}{c} K_g \ J_r \\ n C_r \end{array} \right) \left(\begin{array}{c} J_r' \\ n' C_r \end{array} \right) \left\langle \psi_v^{(J'_r,n'C_r)} \right| \varepsilon \ V_{k_{1g}}^{K_{1g}} (K_{eg}) \left| \psi_v^{(J_g)} \right\rangle \left| \Phi(J_g) \right\rangle | E_{K_{eg}} (k_{1g}) | \Phi(J_g) \right\rangle \left| \psi_v^{(J'_r,n'C_r)} \right\rangle
\]

\[
\times \langle \psi_r^{(J_g)} \rangle \left| \mathcal{P}_{\theta} (K_{eg}) \right| \left| \psi_r^{(J_g)} \right\rangle.
\]

(5.104)

\(C \) est cette fois-ci la vraie symétrie.

Insistons tout de même sur un point important. Ce modèle rovibrionique est formellement identique à celui proposé pour un mode \(\nu_3 \), la différence réside dans la transformation unitaire \(T \) faisant passer de l'Hamiltonien initial non-transformé à l'Hamiltonien effectif. En effet, pour un mode \(\nu_3 \), il n'y a pas de terme Jahn-Teller linéaire donc au final, la transformation \(T \) sera différente. Cependant, cette transformation n'étant pas une transformation de contact perturbative, il n'est pas possible de trouver sa forme explicite.

5.3.2 Expression du moment dipolaire effectif

Nous allons entamer ici la partie concernant la construction du moment dipolaire pour des transitions rovibrioniques. Nous serons brefs car la démarche suit scrupuleusement celle des paragraphes précédents.

Moment dipolaire initial et transformé

Chaque composante du moment de transition considéré s'écrit, dans le repère moléculaire, comme une combinaison linéaire d'opérateurs vibroniques orientés dans \(O_{h} \) [144]

\[
\mu_\theta^{(F_{1u})} = \sum_{\text{tous les indices}} \mu^{(i), K_{v u}, n_0 F_{1u}} M_\theta^{(i), K_{v u}, n_0 F_{1u}}
\]

\[
= \sum_{\text{tous les indices}} \mu^{(i), K_{v u}, n_0 F_{1u}} (E_{K_\mu} (K_{eg}) \otimes \varepsilon V_{k_{1g}}^{K_{1g}} (K_{eg})) (K_{v u}, n_0 F_{1u})
\]

(5.105)

tandis que le moment dipolaire transformé

\[
\tilde{\mu} = T \mu T^{-1},
\]

s'exprime à partir d'opérateurs rovibrioniques :

\[
\tilde{\mu}_\theta^{(F_{1u})} = \sum_{\text{tous les indices}} \tilde{\mu}^{(i), L'_\mu, n_0 F_{1u}} M_\theta^{(i), L'_\mu, n_0 F_{1u}}.
\]

(5.106)
TAB. 5.3 - Paramètres effectifs pour un mode ν_3 dans un état électronique quadruplet.

<table>
<thead>
<tr>
<th>Paramètre $\mu^{(11)}{(3){(3)}} (K_{u'0}, n_0 A_{1u})$</th>
<th>Moment dipolaire $\mu^{(11)}{(0){(3)}} (K_{u'0} A_{1u})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niveau</td>
<td>Ordre</td>
</tr>
<tr>
<td>Base ($K_1 = K_2 = 0$)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ordre</th>
<th>Ω (K_u)</th>
<th>$K_{u'}$</th>
<th>K_u</th>
<th>$K_{u''}$</th>
<th>K_u'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0(0)</td>
<td>0(0)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0(0)</td>
<td>0</td>
<td>0(0)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

A titre d’exemple, nous avons listé Tab. 5.3 quelques paramètres effectifs de l’Hamiltonien et du moment dipolaire pour la transition ν_3 dans un état électronique quadruplet.

Le développement des composantes transformées dans le repère du laboratoire est donné par :

$$
\tilde{\mu}_0 = \sqrt{3} \sum_{L',K',m,(i)} [K']^{1/2} (-1)^K ' \langle L', m | \Theta \rangle (L'_u) G_{m_1}^{m_0 F_1 w_0} \mu^{(11)}_{(3)_{(3)}} (K_{u'0} A_{1u}) K \frac{1_g}{K_{uv}} \frac{L'_u}{L_u} \frac{K_{u'}}{K_u} \times \left[C(1_g) \otimes M_{(i)(i')}(K_{u'0} n_0 A_{1u}) \right].
$$

Eléments matriciels du moment dipolaire transformé

$$
\langle \Phi_{n_{(i)(i')} C_{(i')}} \rangle | \langle C(1_g) \otimes M_{(i)(i')}(L_u n_0 F_1 w_0) | (K_{u'0} n_0 A_{1u}) \rangle = \lim_{x \to 1} \frac{1}{2} \sum_{L'''} (-1)^{2J'' + 2C + K' + K'' + L' + L'' + J + J'} \times [C^{-1/2}(L'') \sqrt{2} | (J'' || K'') || J'_u || J''_u || K_{uv} || J_{uv} \rangle \left\{ \begin{array}{ccc} 1_g & K_{rg} & L'_g \\ J' \end{array} \right\} \left\{ \begin{array}{ccc} J_{g} & J' & 1_g \\ K_u & K_{g} & L'_u \\ J' & J'_g & J''_g \\ 1_g & K_{u'} & L'_u \\ J' & J'_{g} & J''_{g} \end{array} \right\} \times K'_{u'} \frac{J}{n_0 A_{1u}} \frac{J'_{s'}}{n'_{C_{(i')}}} \langle \Phi_{n_{(i')(i'')}} C_{(i'')} \rangle | \langle C(1_g) \otimes M_{(i')(i'')(i)'}(K_{u'0} n_0 A_{1u}) \rangle | \langle \Phi_{n_{(i')(i'')}} C_{(i'')} \rangle | \langle C(1_g) \otimes M_{(i')(i'')(i)'}(K_{u'0} n_0 A_{1u}) \rangle.
$$

Les règles de sélection dipolaires électroniques sont déduites à partir des éléments matriciels ci-dessus et sont rassemblées dans le tableau 5.4.
5.3.3 Expression du tenseur polarisabilité

5.3.4 Tenseur polarisabilité initial et transformé

Dans le repère lié à la molécule, nous écrivons le tenseur polarisabilité transformé comme [144]

\[a_{\sigma}(\Gamma_g) = \sum_{\text{tous les indices}} a^{\{(i), K_{ev}, n_0 \tilde{\Gamma}_{\nu}, \Gamma_{\nu}\}}_{\{m_3\}} P_{\sigma}^{\{(i), K_{ev}, n_0 \tilde{\Gamma}_{\nu}, \Gamma_{\nu}\}} (I(A_{2u})_{\nu} \otimes O_{ev}^{(K_{ev}, n_0 \tilde{\Gamma}_{\nu})}(\Gamma_{\nu})) , \tag{5.109} \]

où \(a^{\{(i), K_{ev}, n_0 \tilde{\Gamma}_{\nu}, \Gamma_{\nu}\}}_{\{m_3\}} \) sont les paramètres et \(O_{ev} \) les opérateurs vibroniques. Nous avons \(\Gamma_g = A_{1g}, E_g \) ou \(F_{2g} \), avec \(A_{1g} \) qui correspond à la partie isotrope et \(E_g, F_{2g} \) qui correspondent à la partie anisotrope. De plus, \(\Gamma_g \) est obtenu en accord avec les règles de branche.

\[D(\tilde{\Gamma}_{\nu}) \supset n_0 \tilde{\Gamma}_{\nu} \quad \text{and} \quad \Gamma_g = \tilde{\Gamma}_{\nu} \otimes (A_{2u})_{\Omega_{\nu}} \text{.} \tag{5.110} \]

avec \(\nu = u \) si \(\Omega_{\nu} \) est impair et \(\nu = g \) sinon.

La polarisabilité effective

\[\tilde{a} = T a T^{-1} , \tag{5.111} \]

s'écrit à l'aide d'opérateurs rovibroniques \(P \):

\[a^{\{(i), L'_g, n_0 \tilde{\Gamma}_{\nu}, \Gamma_{\nu}\}}_{\{m_3\}} P_{\sigma}^{\{(i), L'_g, n_0 \tilde{\Gamma}_{\nu}, \Gamma_{\nu}\}} . \tag{5.112} \]

Dans le repère du laboratoire, le tenseur polarisabilité transformé est de la forme

\[\tilde{a}_{\Theta_1 \Theta_2} = \sum_{\kappa', \Gamma', L', m', \Theta_2, \{i\}} (-1)^{K_{\nu}} ([\Gamma']^{1/2} [K_{\nu}]^{1/2} \langle L' ; m | \Theta_2 \rangle) K \left(L_{\nu}^{L'_{\nu}} n_0 \tilde{\Gamma}_{\nu} K_{\nu}' \right) \tag{5.113} \]

\[\times (L'_g) C_{m_0 \tilde{\Gamma}_{\nu} \Theta}^{(i), L'_g, n_0 \tilde{\Gamma}_{\nu}, \Gamma_{\nu}} \left(I(A_{2u})_{\Omega_{\nu}} \otimes C(L_{\nu}) \otimes P^{\{(i), L'_g\}}_{\nu}(K_{\nu}', n_0 \tilde{\Gamma}_{\nu}) \right)(A_{1g}) , \]

avec les règles de subduction :

\[D(\tilde{\Gamma}_{\nu}) \supset n_\tilde{\Gamma}_{\nu} \quad \text{et} \quad \tilde{\Gamma}_{\nu} \otimes (A_{2u})_{\Omega_{\nu}} = A_{1g} \text{.} \tag{5.114} \]

Quelques paramètres effectifs de l'Hamiltonien et de la polarisabilité sont listés dans la table 5.5.
Tab. 5.5 - Paramètres effectifs pour un mode \(v_5 \) dans un état électronique quadruplet.

<table>
<thead>
<tr>
<th>Paramètre (t_{{0,5}}^{\langle 1 \rangle, K_{\nu}, n, \bar{\nu}_1, \bar{\nu}_2, \bar{\nu}_3, \bar{\nu}_4, \bar{\nu}_5})</th>
<th>Paramètre (\bar{c}{{0,5}}^{\langle 1 \rangle, K{\nu}, n, \bar{\nu}_1, \bar{\nu}_2, \bar{\nu}_3, \bar{\nu}_4, \bar{\nu}_5})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamilitonien</td>
<td>Polarabilité</td>
</tr>
<tr>
<td>Niveau</td>
<td>Ordre</td>
</tr>
<tr>
<td>Base</td>
<td>0</td>
</tr>
<tr>
<td>((K_1 = K_2 = 0))</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>4(0)</td>
</tr>
<tr>
<td>2</td>
<td>4(4)</td>
</tr>
<tr>
<td>2</td>
<td>3(1)</td>
</tr>
<tr>
<td>2</td>
<td>3(3)</td>
</tr>
<tr>
<td>2</td>
<td>2(2)</td>
</tr>
<tr>
<td>2</td>
<td>2(2)</td>
</tr>
<tr>
<td>2</td>
<td>1(1)</td>
</tr>
<tr>
<td>(v_5 = 1)</td>
<td>0</td>
</tr>
<tr>
<td>((K_1 = K_2 = 1))</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0(0)</td>
</tr>
<tr>
<td>2</td>
<td>2(0)</td>
</tr>
<tr>
<td>2</td>
<td>2(2)</td>
</tr>
<tr>
<td>2</td>
<td>2(2)</td>
</tr>
<tr>
<td>2</td>
<td>1(1)</td>
</tr>
<tr>
<td>2</td>
<td>1(1)</td>
</tr>
<tr>
<td>2</td>
<td>1(1)</td>
</tr>
</tbody>
</table>

Eléments matriciels du tenseur polarisabilité transformé

\[
\langle (\Psi^{(A_{2u})} v_5^{\gamma} \| I(A_{2u})^{\Omega_{\alpha}} \| \Psi^{(A_{2u})} v_5^{\gamma}) \rangle \times \langle (J_{\rho}, n, \tilde{\nu}_1, \tilde{\nu}_2, \tilde{\nu}_3, \tilde{\nu}_4, \tilde{\nu}_5) \rangle^{(C_{n})} | (I(A_{2u})^{\Omega_{\alpha}} \| C(L_{\rho}) \| P\{J\}, L_{\rho}'\}^{(K_{\nu}, n, \tilde{\nu}_1, \tilde{\nu}_2, \tilde{\nu}_3, \tilde{\nu}_4, \tilde{\nu}_5)^{\Omega_{\alpha}} \| (A_{2u})^{\gamma}_{\nu} \rangle \rangle \times \langle \Psi^{(A_{2u})} v_5^{\gamma} \| \Psi^{(A_{2u})} v_5^{\gamma} \rangle^{(C_{n})} \times (L_{\rho})^{(K_{\nu}, n, \tilde{\nu}_1, \tilde{\nu}_2, \tilde{\nu}_3, \tilde{\nu}_4, \tilde{\nu}_5)^{\Omega_{\alpha}} \| (A_{2u})^{\gamma}_{\nu} \rangle \rangle \times \langle \Psi^{(J_{\rho})} \| C(L_{\rho}) \| \Psi^{(J_{\rho})} \rangle \times \langle (J_{\rho}, n, \tilde{\nu}_1, \tilde{\nu}_2, \tilde{\nu}_3, \tilde{\nu}_4, \tilde{\nu}_5) \rangle^{(C_{n})} \times \langle \Psi^{(J_{\rho})} \| R^{(K_{\nu}, n, \tilde{\nu}_1, \tilde{\nu}_2, \tilde{\nu}_3, \tilde{\nu}_4, \tilde{\nu}_5)^{\Omega_{\alpha}} \| \Psi^{(J_{\rho})} \rangle \rangle \times (-1)^{L+K_{\nu}+L''} \left\{ \begin{array}{c} L_g' \cr J_g' \end{array} \right\} \langle \Psi^{(J_{\rho})} \| R^{(K_{\nu}, n, \tilde{\nu}_1, \tilde{\nu}_2, \tilde{\nu}_3, \tilde{\nu}_4, \tilde{\nu}_5)^{\Omega_{\alpha}} \| \Psi^{(J_{\rho})} \rangle \rangle \right. \]

Nous posons

\[
\langle \Psi^{(A_{2u})} v_5^{\gamma} \| I(A_{2u})^{\Omega_{\alpha}} \| \Psi^{(A_{2u})} v_5^{\gamma} \rangle = (-i)^{\Omega_{\alpha}} \delta_{\nu_5, n_0 \pm \Omega_{\alpha}},
\]

afin d’avoir d’avoir des matrices réelles et symétriques.

Les règles de sélection pour l’Hamiltonien et le tenseur polarisabilité sont données dans la table 5.6.
Tab. 5.6 - Règles de sélection vibroniques dans SU(2) ⊕ C_I pour le mode ν_5(F_2g).

<table>
<thead>
<tr>
<th>ΔJ</th>
<th>H</th>
<th>Δ(J)</th>
<th>D_1(ν_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,±1,±2</td>
</tr>
<tr>
<td>ΔM</td>
<td>0</td>
<td>±1</td>
<td>0,±1,±2</td>
</tr>
<tr>
<td>ΔJ_L</td>
<td>0,±1,,...,±K_v</td>
<td>0,±1,,...,±K_v</td>
<td></td>
</tr>
<tr>
<td>ΔJ_S</td>
<td>0,±1,,...,±K_v</td>
<td>0,±1,,...,±K_v</td>
<td></td>
</tr>
<tr>
<td>ΔJ</td>
<td>0,±1,,...,±K_v</td>
<td>0,±1,,...,±K_v</td>
<td></td>
</tr>
<tr>
<td>τ ⊗ τ'</td>
<td>g</td>
<td>ν</td>
<td>ν</td>
</tr>
</tbody>
</table>

5.3.5 Liens entre les deux formalismes

Les paramètres des formalismes octaédrique et sphérique ne sont pas indépendants, il est possible de les relier à l'aide des facteurs isoscalaires. Ainsi, en prenant l'inverse de la relation (2.98), par exemple, nous aurons :

\[t_{n_0 \nu_5} = \sum_{K_{v5},K_{v5}} (-1)^{K+K_{v5}} \left(\frac{[K][K_{v5}]}{[\Gamma_{v5}]} \right)^{1/2} K (K_{v5} K_{v5} K_{v5}) (\Gamma_{v5} \nu_5 \Gamma_{v5} \nu_5) \]

Nous pouvons illustrer cette méthode en reliant les paramètres purement vibroniques des deux modèles, pour un mode ν_3, et pour un état électronique quadruplet. On montre alors que :

\[t_{000,011,100}^{(0, A_1), (1, F_1), (1, F_1)} = -t_{010,011,100}^{(0, A_1), (1, F_1), (1, F_1)} \]

5.3.6 Application 1 : système Jahn-Teller linéaire [G'_g × F_2g] pour ReF_6

Nous montrons ci-dessous comment, le modèle JT linéaire pour un mode ν_5 et le modèle effectif, peuvent être reliés. Connaissant la valeur du paramètre vibronique JT de ReF_6, celle du modèle effectif va pouvoir être déduite.

Dans un premier, nous rappelons l'expression de l'Hamiltonien JT linéaire pour un mode ν_5 :

\[H(\nu_5) = \hbar \omega_5 (N_5 + \frac{3}{2}) - 2\hbar \omega_5 \sqrt{6} D_6(Q_5^{(1)} \otimes \Sigma^{(1)})^{0} \]

Σ est le pseudo-spin avec Σ = 1/2 [5].

L'Hamiltonien (5.119) est un invariant de SU(2) et commute avec le moment angulaire vibronique

\[J_5 = I_5 + \Sigma \]

les états du systèmes sont alors caractérisés par la j_5. De plus, pour ReF_6 (ν_5 = 286 cm⁻¹) la valeur du paramètre D_6 pour l'état X(G'_g) a été estimée à 0.103 [2] ; la structure vibronique, en tronquant puis diagonalisant la matrice Hamiltonienne, peut être trouvée (voir Chap. 4).
En ce qui concerne la partie vibronique effective, les deux seuls opérateurs présents dans le développement pour le pseudo-spin sont [144]

\[E^{0(0)} = I \quad \text{et} \quad E^{1(1)} = 2\Sigma^{(1)} \]

les autres opérateurs électroniques leur étant proportionnels. L'Hamiltonien vibronique est invariant dans \(O(3) \) et est donné par

\[
\tilde{H}_{\text{ev}} = \mathcal{P}<\text{polyade}> T H_{\text{ev}} T^{-1} \mathcal{P}<\text{polyade}>
= \sum_{\text{tous les indices}} \tilde{\iota} \Omega_cK_1K_2(K_{\text{eg}}) \eta(E_{K_c(K_{\text{eg}})} \otimes \varepsilon V_{\{5\}}^{K_1K_2}(K_{\text{eg}}))(0_y) .
\]

Afin de comparer les deux modèles, il faut calculer les valeurs propres dans une base identique, i.e.

\[
| (\Phi^{1/2}_{\{5\}} \otimes \Psi_{v_5}^{(l_5\sigma)}(j_{5\sigma})) ,
\]

la différence est que l'Hamiltonien effectif est diagonal en \(v_5 \). Les éléments matriciels de (5.121) s'expriment alors comme :

\[
\langle (\Phi^{1/2}_{\{5\}} \otimes \Psi_{v_5}^{(l_5\sigma)}(j_{5\sigma})) | (E_{K_c(K_{\text{eg}})} \otimes \varepsilon V_{\{5\}}^{K_1K_2}(K_{\text{eg}}))(0_y) | (\Phi^{1/2}_{\{5\}} \otimes \Psi_{v_5}^{(l_5\sigma)}(j_{5\sigma})) \rangle = (-1)^{K_c + l_5 + j_5 + 1/2}
\times [K_c]^{-1/2} \{ 1/2_g \ j_{5\sigma} \ l_{5\sigma} \ 1/2_g \} \langle \Psi_{v_5}^{(l_5\sigma)} || \varepsilon V_{\{5\}}^{K_1K_2}(K_{\text{eg}}) || \Psi_{v_5}^{(l_5\sigma)} \langle \Phi^{1/2}_{\{5\}} || E_{K_c(K_{\text{eg}})} || \Phi^{1/2}_{\{5\}} \rangle .
\]

En égalant les valeurs propres des Hamiltoniens (5.119) et (5.121) calculées dans la base vibronique \(\{ v_5, \ l_5, \ \frac{1}{2}_z, \ j_5, \ m_5 \} \) \((v_5 = 0, 1) \), nous avons les deux paramètres effectifs \(\tilde{t}_1 \) (fréquence) et \(\tilde{t}_2 \) (couplage) en fonction de \(D_5 \). Le résultat est montré sur la figure 5.2 ; pour une valeur donnée de \(D_5 \), ces deux paramètres sont totalement déterminés. Notons que le paramètre \(\tilde{t}_2 \) peut être associé à un Coriolis vibronique responsable de l'éclatement entre les différentes composantes de \(j_5 \) (1/2 et 3/2 ; fig. 5.2).

Fig. 5.2 - Paramètres vibroniques effectifs \(\tilde{t}_1 \) (continue) et \(\tilde{t}_2 \) (tiret) en fonction du paramètre \(D_5 \) du modèle JT non-transformé (figure de gauche) et valeurs de ces mêmes paramètres pour la molécule \(\text{ReF}_6 \) (voir tableau de droite). Nous donnons aussi la structure vibronique résultante.
5.3.7 Application 2 : système Jahn-Teller quadrature \([G'_g \times F_{1a}]\) pour ReF\(_6\)

D’après le théorème Jahn-Teller, l’Hamiltonien non-transformé pour un mode \(\nu_3\) ne possède pas de terme(s) linéaire(s). Cependant, nous avons vu dans les chapitres précédents que d’autres couplages (quadratiques, etc.) sont permis provoquant des effets visibles sur les spectres observés. En effet, McDowell et Aspley [87] ont noté une structure étrange sur le spectre infrarouge de ReF\(_6\) pour la bande \(\nu_3\) dans l’état \(X(G'_g)\). Cette structure particulière (absence de la structure usuelle \(PQR\)) a récemment été confirmée [166] et attribuée aux interactions entre les quatre sous-niveaux vibroniques

\[
F_{1u} \otimes G'_g = E'_{1u} \oplus E'_{2u} \oplus 2G'_{1u}
\]

Rappelons la forme de l’Hamiltonien quadratique JT pour \(\nu_3\) (voir Chap. 4). Nous avons

\[
H(\nu_3) = H_0 + H_{JTQ}^{(0_3, A_{1g})} + H_{JTQ}^{(4_3, A_{1g})},
\]

avec

\[
\begin{align*}
H_0 &= \hbar \omega_3 (N_3 + 3/2), \\
H_{JTQ}^{(0_3, A_{1g})} &= 2\sqrt{6} \hbar \omega_3 Q_0 (Q_3^2 (2_g) \otimes T(2_g)) (0_3, A_{1g}), \\
H_{JTQ}^{(4_3, A_{1g})} &= 2\sqrt{6} \hbar \omega_3 Q_4 (Q_3^2 (2_g) \otimes T(2_g)) (4_3, A_{1g}).
\end{align*}
\]

Cette Hamiltonien n’étant plus invariant dans \(O(3)\), si nous définissons le moment angulaire vibronique

\[
j_3 = l_3 + \frac{3}{2},
\]

les niveaux seront étiquetés par \((j_3, nC)\) (\(C\) demi-entière).

L’Hamiltonien effectif va s’écrire

\[
\hat{H} = \sum_{\text{tous les indices}} \tilde{l}_{\{3\}} K_{1\mu} K_{2\mu} K_{e\nu} K_{e\nu} (K_{e\nu}, n_0 A_{1g}) \times \eta \left(E^K_{e\nu}(K_{e\nu}) \otimes e V^K_{1\mu} K_{2\mu} (K_{e\nu}) (K_{e\nu}, n_0 A_{1g}) \right),
\]

avec \(D(K_{e\nu}) \downarrow O^T \supset n_0 A_{1g}\) et \(K_e = 0, 1, 2, 3\).

Les éléments matriciels, calculés dans la base vibronique

\[
| (\Phi_{3g}^2) \otimes \Psi_{3s}^{(l_3)}(J_3, nC) \rangle,
\]

sont donnés par

\[
\langle (\Phi_{3g}^2) \otimes \Psi_{3s}^{(l_3)}(J_3, nC) | (E^K_{e\nu}(K_{e\nu}) \otimes e V^K_{1\mu} K_{2\mu} (K_{e\nu}) (K_{e\nu}, n_0 A_{1g})) | (\Phi_{3g}^2) \otimes \Psi_{3s}^{(l_3)}(J_3, nC) \rangle =
\]

\[
(-1)^{2C + 2l_3} \left(\frac{|K_{e\nu}| J_3 [J_3^2]}{|C|} \right)^{1/2} K \begin{pmatrix} J_{3\epsilon} & J_{3\epsilon} & J_{3\epsilon} \\ (n_0 A_{1g}) & nC & nC \end{pmatrix} \left\{ \begin{array}{ccc} l_3 & 3/2 & J_3 \\ K_{e\nu} & K_{e\nu} \end{array} \right\}
\]

\[
\times \langle \Psi_{3s}^{(l_3)} | e V^K_{1\mu} K_{2\mu} (K_{e\nu}) | \Phi_{3s}^{(l_3)} \rangle \langle \Phi_{3g}^2 \rangle | E^K_{e\nu}(K_{e\nu}) | \Phi_{3g}^2 \rangle.
\]

Tentons de relier ces deux modèles pour \(\nu_3 = 1\). Nous avons cinq paramètres effectifs pour quatre sous-niveaux, c’est pourquoi un des paramètres, \(l_3\) \((K_e = 3)\) par exemple, doit être fixé. La figure 5.3 montre la variation des quatre autres paramètres effectifs en fonction de \(l_3\), obtenus en égalant les valeurs propres des deux modèles vibroniques et en prenant \(\nu_3 = 719.3\) cm\(^{-1}\), \(Q_0 = 0.008\), \(Q_4 = -0.006\) [166]. Ces valeurs ont été estimées à partir du profil à base résolution de ReF\(_6\) à 300 K. Notons que le domaine de variation des quatre paramètres effectifs est choisi de telle sorte qu’ils soient tous réels. Comme pour \(\nu_5\), le paramètre \(l_2\) \((K_e = 1)\) joue le rôle d’un Coriolis vibronique \(J_e l_3\) qui éclate le niveau \(\nu_3 = 1\) en trois composantes \((j_3 = 1/2, 3/2\) et \(5/2\)). Une première ébauche d’analyse de la structure rovibronique sera tentée dans le prochain chapitre.
5.4 Implémentation informatique – Chaîne de programmes

Pour clôre ce chapitre, nous présentons maintenant une chaîne de programme permettant de simuler un spectre rovibrionique à partir des résultats établis dans ce chapitre. Nous anticiperons sur les intensités dipolaires électroniques et Raman; leurs expressions sont données dans (6.57) et (6.63) du prochain chapitre.

5.4.1 Présentation et description

Présentation

Nous sommes partis de la chaîne HTDS (Highly-spherical Top Data System) [167] utilisée pour le calcul et la simulation de spectres rovibrationnels pour des toupies XY₆, dans un état électronique non-dégradé. Nous avons dû inclure la partie électronique (5.34) dans cette chaîne en utilisant le formalisme octaédrique, puisque les parties vibrationnelle et rotationnelle étaient initialement couplées dans O₆ pour HTDS. Bien sûr, la chaîne modifiée ne permettra pas de traiter des états électroniques E, mais permettra par contre, de calculer des spectres infrarouge et Raman pour toutes les polyades vibroniques, par extrapolation vibrationnelle.
Description

Voici les principales modifications apportées à HTDS par l’ajout [143] :

- des opérateurs électroniques (5.34) symétrisés (5.35) avec leurs fonctions propres associées (5.62),
- des représentations demi-entières E'_1, E'_2 et G' et leurs propriétés (table de multiplication, etc),
- des coefficients de recouplage ($6C$, $9C$) et des facteurs K de $SU(2) \otimes C_I \supset O_h^R$ pour le calcul des éléments matriciels (5.65), (5.77) et (5.91),
- des indices de multiplicité pour les fonctions de base.

Une description schématique de la chaîne HTDS modifiée est montrée sur la figure 5.4. La première partie “énergie” comprend le programme HMODEL qui liste les opérateurs rovibroniques possibles pour un ordre donné et qui calcule les enmr vibroniques. Ensuite, nous avons ROVBAS qui construit les fonctions de base jusqu’à $J_{max} \leq 199.5$ et HMATRIX qui calcule les éléments matriciels (5.65). Enfin, HDI diagonalise la matrice hamiltonienne pour un jeu de paramètres fixé.

Pour la partie "intensité", nous avons DIPMOD (resp. POLMOD) qui liste les opérateurs du moment dipolaire (resp. du tenseur polarisabilité). Les éléments matriciels (5.77) (resp.(5.91)) sont calculés par DIPMAT (resp. POLMAT) et les programmes TRA et TRM calculent les moments de transition dans la base propre. Finalement, SPECT donne les fréquences de transition ainsi que les intensités. La figure 5.5 est un aperçu du fichier de sortie "spect.t" de SPECT.

Fig. 5.4 - Description schématique de la chaîne de programmes calculant un spectre d’absorption infrarouge. Les spectres Raman s’obtiennent en remplaçant respectivement DIPMOD et DIPMAT par POLMOD et POLMAT.
Exemple du fichier de sortie "spect.t" de SPECT

Hamiltonian Parameters in Octahedral Formalism

2988 Data ; Jmax 46 ; St Dev previous 1.2 , predicted 1.2
2. 10. 8. 6. 6. 20. 20. 44. .5 Spin Statistics , Spin Y
nu1 nu2 nu3 nu4 nu5 nu6 (J=0) B0 D0
771.0 677.2 713.3 258.0 320.0 127.0 0.0661000 .000000000
21 8.+20 7 Para Number ; Model Accuracy Parameters
Ref 000000 et 001000 Ordre 3
Fri Jun 21 10:43:40 MET DST 1996

Transition Moment Parameters in Octahedral Formalism

* *
1 Arbitrary Units
12 1d-1
* *
1 0(0,0A1g) 1(1,0F1g) 000000A1g 001000F1u F1u 101 0.24800000000E+00 0.0000000E+00
2 0(0,0A1g) 2(2,0F2g) 000000A1g 001000F1u F1u 102 -0.27000000000E-01 0.0000000E+00
11 2(2,0 Eg) 0(0,0A1g) 000000A1g 001000F1u F1u 120 0.00000000000E+00 0.0000000E+00
12 2(2,0F2g) 0(0,0A1g) 000000A1g 001000F1u F1u 120 0.00000000000E+00 0.0000000E+00

4 Upper Vibronic States

v1 v2 v3 v4 v5 v6 Cv Ce Cev
1 [1 0(0,0A1g)* 0(0,0A1g)* 1(1,0F1u)]F1u* 0(0,0A1g)]F1u* 0(0,0A1g)]F1u* 0(0,0A1g)]F1u* [1(0 E1u)] [1(0 E1u)]
2 [1 0(0,0A1g)* 0(0,0A1g)* 1(1,0F1u)]F1u* 0(0,0A1g)]F1u* 0(0,0A1g)]F1u* 0(0,0A1g)]F1u* [1(0 E1u)] [1(0 E1u)]
3 [1 0(0,0A1g)* 0(0,0A1g)* 1(1,0F1u)]F1u* 0(0,0A1g)]F1u* 0(0,0A1g)]F1u* 0(0,0A1g)]F1u* [1(0 E1u)] [1(0 E1u)]
4 [1 0(0,0A1g)* 0(0,0A1g)* 1(1,0F1u)]F1u* 0(0,0A1g)]F1u* 0(0,0A1g)]F1u* 0(0,0A1g)]F1u* [1(0 E1u)] [1(0 E1u)]

1 Lower Vibronic States

v1 v2 v3 v4 v5 v6 Cv Ce Cev
1 [1 0(0,0A1g)* 0(0,0A1g)* 0(0,0A1g)]A1g* 0(0,0A1g)]A1g* 0(0,0A1g)]A1g* [1(0 E1u)] [1(0 E1u)]

Spectroscopic Data Calculated through J = 7.5
Imposed Frequency Range: 700.000000 - 750.000000
Vibrational Temperature: 50.00 Kelvin
Rotational Temperature: 50.00 Kelvin
Intensity Lower Limit 0.83E+00 Arbitrary Units

Calculated Transitions

Frequency Intensity J* C* n* #vib* J C n #vib Lower Energy
713.91048 2.0895 P 1.5 A1 1 1 100% 0.5 A1 1 1 100% 0.250127
726.46844 2.3317 P 1.5 E 1 1 100% 0.5 E 1 4 78% 0.249551
726.91125 1.0189 P 1.5 E 1 1 100% 0.5 E 2 3 78% 0.2488325
725.75521 1.1383 P 7.5 F2 3 1 100% 6.5 F2 15 3 68% 4.212524
725.79316 1.3958 P 7.5 F2 4 1 100% 6.5 F2 16 3 70% 4.212524
725.97544 1.4760 P 7.5 F2 6 1 100% 6.5 F2 17 3 78% 4.217328
726.36168 1.3967 P 7.5 F2 5 1 100% 6.5 F2 18 3 77% 4.217328
726.50417 0.9217 P 7.5 F2 7 1 100% 6.5 F2 19 3 81% 4.221531

Number of Calculated Transitions 578
First Transition -> 712.493033 13.8500 P 7.5 A2
Strongest Transition -> 713.538212 35.7961 P 7.5 A2
Last Transition -> 728.699842 0.8904 R 5.5 F1
Effective Jo range -> 0.5 - 7.5
Strongest Tr at Jmax -> 713.5382123.7961 P 6.5 A2
Intensity summations:
0.19E+04 Arbitrary Units with threshold = 0.83E+00
0.2E+04 Arbitrary Units without threshold

Fig. 5.5 - Fichier de sortie "spect.t" donnant les fréquences et les intensités pour des transitions vibroniques, ici pour un état électronique G'g et un mode v3(F1u).
5.5 Résumé du chapitre

5.5.1 Ce qu’il faut retenir · · ·

Deux formalismes tensoriels (octaédrique et sphérique) ont été mis en place afin de traiter des couplages rovibroniques généraux. Pour cela, nous avons étendu les travaux sur les toupies sphériques dans un état électronique non-dégénéré et ayant uniquement des symétries entières. Nous avons considéré une extension de $O(3) \supset O_h$ à $SU(2) \otimes C_I \supset O^{\frac{5}{2}}_h$ pour prendre en compte des moments angulaires demi-entiers.

- Introduction d’une partie électronique.
- Construction d’un Hamiltonien rovibronique et de ses moments de transition associés par le formalisme octaédrique.
- Construction d’un Hamiltonien rovibronique et de ses moments de transition associés par le formalisme sphérique.
- Adaptation et écriture d’une chaîne de programmes pour le calcul de spectres rovibroniques.

5.5.2 Les références à consulter

Voici les principales références concernant ce chapitre. Cette liste n’est pas exhaustive.

M. REY, V. BOUDON, M. LOËTE ET F. MICHELOT, _A Tensorial Formalism Adapted to the Rovibronic Couplings in the Colored Hexafluorides: Application to the $\nu_5(F_{2g})$ and $\nu_3(F_{1u})$ Modes_, J. Mol. Spectrosc., 204, 106-119, (2000).
Intensités pour les transitions rovibroniques

Dans cette partie, nous rappellerons le modèle théorique permettant de calculer les intensités des raies de transitions (IR ou Raman) tout en gardant à l’esprit le problème des états électroniques dégénérés. Nous nous attarderons plus particulièrement sur le calcul de la fonction de partition et de sa définition en présence de couplages complexes (vibronique voire rovibronique). La nouvelle fonction de partition sera alors comparée à la fonction de partition découpée qui reste, comme nous le verrons, une très bonne approximation.

6.1 Généralités sur les calculs d’intensités

L’objet de ce paragraphe est de rappeler, de manière brève, les expressions utilisées dans les calculs d’intensité.

6.1.1 Coefficient d’absorption intégré

L’intensité lumineuse transmise à la fréquence σ (exprimée en cm$^{-1}$) par une couche homogène de gaz d’épaisseur l et à la pression P est donnée par la loi de Beer-Lambert

$$I(\sigma, P) = I_0(\sigma) e^{-\alpha(\sigma,P)l}$$

(6.1)

avec $I_0(\sigma)$: intensité du rayonnement incident,

et $\alpha(\sigma,P)$: coefficient d’absorption (exprimé en cm$^{-1}$).

Soit σ_{if}, la fréquence de transition entre un niveau d’énergie E_i et un niveau d’énergie E_f. Pour de telles transitions, on est amené à définir le coefficient d’absorption intégré (exprimé en cm$^{-2}$)

$$S_{if} = \int_0^{\infty} \alpha_{if}(\sigma,P)d\sigma,$$

(6.2)

où dans le cas général, le profil $g(\sigma - \sigma_{if})$ est pris en considération afin de rendre compte de l’aspect général de la raie ; c’est à dire que nous avons maintenant :

$$\alpha_{if}(\sigma,P) = S_{if}.g(\sigma - \sigma_{if}).$$

(6.3)

Afin d’obtenir la forme de l’équation (6.2), le profil doit être normalisé :

$$\int_0^{\infty} g(\sigma' - \sigma_{if})d\sigma' = 1.$$

(6.4)
Essentiellement trois facteurs contribuent à la largeur et à la forme d’une raie :

- les élargissements naturel et radiatif (profils lorentzien),
- l’élargissement Doppler (profil gaussien),
- l’élargissement dû à la pression (profil lorentzien).

L’élargissement naturel et l’élargissement radiatif (relativement faibles par rapport aux autres causes d’élargissement) sont de type *homogène* et résultent respectivement, de la désexcitation par émission spontanée et par les processus d’absorption et d’émission stimulée. Le principe d’incertitude d’Heisenberg $\tau \Delta E \geq \hbar /2$, qui relie la durée de vie à l’élargissement en énergie, traduit le fait qu’un état aura une énergie parfaitement définie que si τ est infini, ce qui n’est jamais le cas, d’où un élargissement des raies [3]. L’élargissement Doppler est lié à l’agitation thermique des molécules et est prépondérant aux basses et très basses densités [168]. Ce type d’élargissement est *inhomogène* puisque les atomes ou les molécules ne se comportent pas de la même manière en absorbant à des fréquences différentes. Quant au dernier type d’élargissement, il est *homogène* et conduit à un étalonnage des niveaux d’énergies dû aux collisions [169, 170] entre les atomes ou les molécules en phase gazeuse. Ce régime est opposé au précédent puisqu’il opère dans les hautes densités.

Généralement, plusieurs effets sont pris en compte et il existe alors un régime intermédiaire où l’on doit considérer les élargissements Doppler et collisionnel. Le profil caractéristique est alors celui de Voigt qui est une convolution des deux profils précédents. En résumé, l’introduction du profil $g(\sigma - \sigma_{if})$ signifie que les raies ne sont jamais infiniment étroites (voir Fig. 6.1) même si l’on suppose qu’aucun élargissement n’est dû à la fonction d’appareil. Les molécules absorbent alors le rayonnement au voisinage de σ_{if}.

Le coefficient d’absorption étant proportionnel à la pression (on montre en effet que $\alpha_{if}(\sigma, P) = \alpha_{if}(\sigma).P$), on introduit le coefficient d’absorption intégré par unité de pression (cm$^{-1}$.atm$^{-1}$) qui
définit l’intensité d’une raie:
\[
S_{if}^P = \frac{S_{if}}{P} = \frac{L T_0}{TN} S_{if} .
\]
(6.5)

L est le nombre de Loschmit (cm\(^{-3}\)) et \(N\) est le nombre de molécules par unité de volume (densité).
On montre que \(S_{if}\) peut se mettre sous la forme
\[
S_{if} = \frac{N \hbar \sigma_{if}}{c} \left(\rho_{ii} - \frac{g_i}{g_f} \rho_{ff} \right) B_{if} ,
\]
(6.6)
où sont définis ici les termes :
\[
- B_{if} = \frac{8\pi^3}{(4\pi \varepsilon_0)^2 \hbar^2} \mid R_{if} \mid^2 \text{ appelé coefficient d’Einstein.} \quad \mid R_{if} \mid^2 \text{ est l’élément matriciel au carré du moment de transition.}
\]
- \(\rho_{ii}\) et \(\rho_{ff}\) qui sont les populations des niveaux \(E_i\) et \(E_f\) définies à partir de l’opérateur densité \(\rho\). Ces termes représentent en fait la probabilité moyenne de trouver le système dans un état \(i\) ou \(f\) donné. \(g_i\) et \(g_f\) sont les dégénérescences respectives de ces niveaux.

Si l’on suppose que les molécules ne sont pas « trop » perturbées tel que le système reste en équilibre thermodynamique à la température \(T\), on peut alors montrer que l’opérateur densité est donné par [171]:
\[
\rho = Q^{-1} e^{-\hbar \hbar c/kT} .
\]
(6.7)

\(Q\) est un facteur de normalisation (appelé fonction de partition) choisi de telle sorte que la trace de \(\rho\) soit égale à 1. Il s’exprime alors comme :
\[
Q = \text{Tr} \left\{ e^{-\hbar \hbar c/kT} \right\} .
\]
(6.8)

Le formalisme de l’opérateur densité va s’avérer commode pour notre étude. Il va être plus facile de travailler directement avec les opérateurs plutôt que sur les énergies du système, qu’il n’est pas toujours trivial de calculer, notre but étant d’évaluer par la suite la fonction de partition \(Q\) pour la population d’états rovibrioniques.

A partir de l’Eq. (6.7), les populations des états inférieurs et supérieurs peuvent être calculées dans une base du type \(\{ \mid n; \alpha_n \}\) (les \(\alpha_n\) représentent tous les nombres quantiques secondaires) :
\[
\rho_{ii} = Q^{-1} \langle i; \alpha_i \mid e^{-\hbar \hbar c/kT} \mid i; \alpha_i \rangle = Q^{-1} g_i e^{-\beta E_i} ,
\]
\[
\rho_{ff} = Q^{-1} \langle f; \alpha_f \mid e^{-\hbar \hbar c/kT} \mid f; \alpha_f \rangle = Q^{-1} g_f e^{-\beta E_f} .
\]
(6.9)

On retrouve ainsi les expressions bien connues de la statistique de Maxwell-Boltzmann pour un système en équilibre thermodynamique. Nous avons posé comme il est d’usage \(\beta = \hbar \hbar c/kT\).

Finalement, l’intensité d’une transition entre un état initial \(i\) et un état final \(f\) s’écrit
\[
S_{if}^P = \frac{8\pi^3}{(4\pi \varepsilon_0)^2 \hbar^2 c Q} \frac{L T_0}{T} \sigma_{if} e^{-\beta E_i} (1 - e^{-\beta \sigma_{if}}) \sum_{\alpha_i, \alpha_f} | \langle i; \alpha_i \mid \mathbf{R} \mid f; \alpha_f \rangle |^2 ,
\]
(6.10)
où le moment de transition \(\mathbf{R}\) s’exprime dans le repère du laboratoire. On remarque que l’intensité d’une transition est proportionnelle à la population du niveau inférieur.
6.1.2 Constantes et systèmes d’unités

Les constantes de l’équation (6.10) sont les suivantes :

\[\begin{align*}
4\pi\varepsilon_0 &= 1, \\
L &= 2.686754 \times 10^{19} \text{ cm}^{-3}, \\
T_0 &= 273.15 \text{ K}, \\
\frac{hc}{k} &= \beta T = 1.438833 \text{ cm.K}.
\end{align*}\]

Afin d’alléger les expressions, nous allons noter \(S_{if} \equiv S_{i_f}^P\) et poser :

\[K_{if}(T) = \frac{8\pi^3}{3h\alpha Q} \frac{L}{T} \sigma_{if} (1 - e^{-\beta\sigma_{if}}) .\]

En définitive, l’intensité d’une transition s’écritra simplement

\[S_{if} = K_{if}(T) e^{-\beta E_i} | R_{if} |^2 ,\]
(6.11)

avec :

\[| R_{if} |^2 = | R_{if} |_x^2 + | R_{if} |_y^2 + | R_{if} |_z^2 .\]
(6.12)

6.2 Fonction de partition rovibronique

Nous étendons dans ce paragraphe, les travaux déjà effectués sur les fonctions de partition des toupies sphériques dans un état électronique non dégénéré [172–176]. Nous évaluerons alors la fonction de partition lorsque ces états sont dégénérés, en se restreignant néanmoins seulement aux corrections dûes aux termes vibroniques qui, en première approximation, semblent les plus influentes. Les corrections dûes à l’anharmonicité, aux couplages rovibronnels et rovibroniques ne seront pas considérées.

6.2.1 Développement à l’ordre zero

D’une manière générale, l’équation (6.8) permet d’écrire la fonction de partition d’un système « non perturbé » comme

\[Q^{(0)} = \text{Tr} \left\{ e^{-\beta H^{(0)}} \right\} ,\]
(6.13)

où

\[\tilde{H}^{(0)} = H^{(0)}_\text{elec} + H^{(0)}_\text{vib} + H^{(0)}_\text{rot} .\]
(6.14)

À l’ordre 0, les énergies du système sont connues et la fonction de partition s’exprime dans ce cas comme :

\[Q^{(0)} = \sum_{\eta} g_{\eta} e^{-\beta_{\eta} E^{(0)}_\eta} , \quad (g_{\eta} = g_{\text{elec}} \cdot g_{\text{vib}} \cdot g_{\text{rot}}) .\]
(6.15)

Les facteurs \(g_{\eta}\) sont les poids statistiques des niveaux électroniques, vibrationnels et rotationnels, respectivement. Notons qu’en première approximation, la fonction de partition est totalement découplée :

\[Q^{(0)} = Q^{(0)}_\text{elec} \cdot Q^{(0)}_\text{vib} \cdot Q^{(0)}_\text{rot} .\]
(6.16)
6.2. Fonction de partition rovibronique

Fig. 6.2 - Populations des bandes fondamentales et harmoniques dans le cas de la molécule ReF₆. La température vibrationnelle a été fixée à $T_v = 300 \, K$.

Partie électronique

C’est le cas le plus simple et la fonction de partition électronique s’écrit

$$Q_{\text{elec}}^{(0)} = g_0^{(e)} + g_1^{(e)} e^{-\beta_1 E_1} + g_2^{(e)} e^{-\beta_2 E_2} + \cdots,$$ \hspace{1cm} (6.17)

où E_1, E_2, etc., sont les premiers niveaux électroniques excités qui sont généralement éloignés de plusieurs milliers de cm$^{-1}$ (approximation adiabatique) les uns par rapport aux autres. On obtient alors une expression approchée de l’expression (6.17) :

$$Q_{\text{elec}}^{(0)} \approx g_0^{(e)} = 2J_e + 1.$$ \hspace{1cm} (6.18)

La fonction de partition est simplement donnée par la dégénérescence du niveau électronique de base et se réduit à l’unité dans l’étude des molécules XY₆ « normales ».

Partie vibrationnelle

Les énergies des états vibrationnels sont données en considérant approximativement ¹ les Hamiltoniens des différents oscillateurs harmoniques. Pour une molécule XY₆ ceux-ci s’écrivent comme

$$\hat{H}_{\text{vib}}^{(0)} = \sum_{s=1}^{6} \omega_s \sum_{\sigma} a_{s\sigma}^{(C)} a_{s\sigma}^{(C)} .$$ \hspace{1cm} (6.19)

¹On se place ici dans l’approximation harmonique. Dans le cas général, il faut tenir compte en plus des effets anharmoniques quadratiques, cubiques, ..., en N. L’Hamiltonien devient

$$\hat{H}_{\text{vib}} = \hat{H}_{\text{vib}}^{(0)} + \sum_{s<s'} \chi_{s\sigma} \sum_{\sigma'\sigma''} a_{s\sigma}^{(C)} a_{s\sigma}^{(C)} a_{s'\sigma'}^{(C)} a_{s''\sigma''}^{(C)} + \cdots.$$.
Les \(\omega_s \) sont les nombres d’onde des six modes normaux de vibration. Les énergies correspondantes sont simplement données par
\[
E_{\text{vib}}^{(0)} = \sum_{s=1}^{6} \omega_s N_s \quad , \quad N_s = \sum_{\sigma} N_{s\sigma} .
\]
(6.20)
Cette dernière relation, bien qu’anodine, se révèlera d’une grande importance par la suite. La formule de la fonction de partition vibrationnelle donnée par l’équation (6.8) est celle d’une série géométrique ; elle se note alors :
\[
Q_{\text{vib}}^{(0)} = \prod_{s=1}^{6} \left(1 - e^{-\beta_s \omega_s} \right)^{-g_s} .
\]
(6.21)
Le terme \(g_s \) est la dégénérescence du mode \(s \). Notons que si la température vibrationnelle \(T_v \) est de quelques dizaines de Kelvin, alors \(Q_{\text{vib}}^{(0)} \) reste très voisin de 1. La figure 6.2 illustre les populations des niveaux vibrationnels \(N_s \)
\[
n_{\text{vib}}(N_s) = g_s e^{-\beta_s E_{\text{vib}}^{(0)}} / Q_{\text{vib}}^{(0)} ,
\]
(6.22)
pour la molécule ReF\(_6\). À température normale, les intensités des transitions décroissent très rapidement lorsque \(N_s \) augmente ce qui est un comportement typique en absorption. Pour voir la population des niveaux excités augmenter, il faudrait atteindre des températures élevées ou bien que la molécule soit particulièrement lourde, i.e. que les nombres d’ondes \(\omega_s \) soient relativement faibles.

Partie rotationnelle

L’Hamiltonien rotationnel tenant compte du caractère « non rigide » des molécules pour le niveau de base est donné par
\[
\tilde{H}_{\text{rot}} = -\sqrt{3} B_0/4 R^{2(0,0,1)} - 3 D_0/16 R^{4(0,0,1)} ,
\]
(6.23)
 où \(B_0 \) et \(D_0 \) sont les constantes rotationnelles usuelles. Les énergies correspondantes sont alors :
\[
E_{\text{rot}} = B_0 J(J+1) - D_0 J^2(J+1)^2 .
\]
(6.24)
De nombreux travaux ont été consacrés aux calculs des fonctions de partition rotationnelles. Kassel a écrit la fonction de partition sous la forme d’une série d’Euler-McLaurin [177, 178] pour les XY\(_4\) puis Fox [179] a inclu les facteurs dus aux poids statistiques de spin nucléaire. McDowell a ensuite considéré la distortion centrifuge et a finalement montré que l’on pouvait écrire la fonction de partition rotationnelle des molécules XY\(_6\) sous la forme [172] :
\[
Q_{\text{rot}}^{(0)} \approx \sigma^* \pi^{1/2}(\beta_r B_0)^{-3/2} e^{\beta_r B_0/4} (1 + \delta) \left(1 + 15 D_0/4 \beta_r B_0^2 \right) .
\]
(6.25)
Dans le cas des molécules octahédriques, \(\sigma^* = [I]^6/24 \) (\(I \) est le spin nucléaire des noyaux Y) et la correction aux basses températures s’écrit
\[
\delta = \pi[I]^{-4} \left\{ \kappa(3/\sqrt{2})[I] e^{-\pi^2/16 \beta_r B_0} + (16/3 \sqrt{3}) e^{-\pi^2/\beta_r B_0} + 3[I]([I] + 2\kappa) e^{-\pi^2/4 \beta_r B_0} \right\} ,
\]
(6.26)
avec \(\kappa = 1 \) pour des bosons et \(\kappa = -1 \) pour des fermions.
Nous sommes alors capables de calculer la population rotationnelle d’un niveau \(J \), qui est
\[
n_{\text{rot}}(J) = (2J + 1) e^{-\beta_r E_{\text{rot}}^{(0)}} / Q_{\text{rot}}^{(0)} ,
\]
(6.27)
avec \((2J + 1) \) la dégénérescence du niveau \(J \) en l’absence de champ électrique ou magnétique. La figure 6.3 donne les populations pour différentes températures rotationnelles.
6.2. Fonction de partition rovibrionale

6.2.2 Corrections à la fonction de partition totale

Examinons maintenant l’influence des principaux termes vibroniques, en supposant les couplages rovibrationnels et roibroniques négligeables. Witschel [180] a montré en effet que les interactions de Coriolis n’affectaient que très peu la fonction de partition découpée. Nos hypothèses permettent alors d’écrire la fonction de partition vibronique comme

$$Q = Q^{(0)} + Q’, \quad (6.28)$$

avec

$$Q’ = Q_{\text{vibro}, Q_{\text{rot}}}^{(0)}. \quad (6.29)$$

La fonction $Q^{(0)}$ est définie à partir de l’équation (6.13) et la fonction $Q’$ est le résultat du couplage vibronique et de la partie rotationnelle.

L’Hamiltonien peut aussi être séparé en deux parties, notées

$$\tilde{H} = \tilde{H}^{(0)} + \tilde{H’}, \quad (6.30)$$

où $\tilde{H’}$ est relatif aux différents termes de couplages vibroniques pour les différents modes normaux de vibrations. Si on se limite à l’ordre 2 dans le développement de l’Hamiltonien, on a alors :

$$\tilde{H’} = \sum_{s=3}^{6} \left\{ \frac{1}{\sqrt{3}} \sum_{\sigma} t^{(F_1)}_{s} E^{1(1,F_1)}_{\{s\}\{s\}\sigma} + V_{\{s\}\{s\}\sigma}^{F_{(1)}} + \frac{1}{\sqrt{2}} \sum_{\sigma} t^{(E)}_{s} E^{2(2,E)}_{\{s\}\{s\}\sigma} + V_{\{s\}\{s\}\sigma}^{F_{(2)}} + \frac{1}{\sqrt{3}} \sum_{\sigma} t^{(F_2)}_{s} E^{2(2,F_2)}_{\{s\}\{s\}\sigma} + V_{\{s\}\{s\}\sigma}^{F_{(2)}} \right\} + \frac{1}{\sqrt{2}} \sum_{\sigma} t^{(E)}_{2} E^{2(2,E)}_{\{2\}\{2\}\sigma} + V_{\{2\}\{2\}\sigma}^{E_{(2)}}. \quad (6.31)$$

Fig. 6.3 - Populations rotationnelles des niveaux J pour une molécule XY_6.
avec $F = F_1$ ou F_2 suivant les modes, l’Hamiltonien d’interaction comporte 13 paramètres ; la fonction de partition va être évaluée en utilisant plusieurs jeux de ces paramètres à une température donnée. Nous aurons alors une estimation des erreurs par rapport à la fonction découpée.

Reprenons la méthode utilisée par Witshel pour traiter l’effet du Coriolis [180] en l’adaptant pour notre étude. Il a montré que la fonction de partition pour le système (6.30) pouvait s’écrire à l’ordre 2 des perturbations\(^2\) comme :

$$Q = \text{Tr} \left\{ e^{-\beta \hat{H}^{(0)}} \right\} - \beta \text{Tr} \left\{ e^{-\beta \hat{H}^{(0)}} \hat{H} \right\} + \frac{\beta^2}{2} \text{Tr} \left\{ e^{-\beta \hat{H}^{(0)}} \hat{H}^2 \right\} + \cdots .$$ \hspace{1cm} (6.32)

Le premier argument n’est autre que la fonction $Q^{(0)}$ et les deux autres sont les termes d’ordre 1 et 2 respectivement. Cette expression peut être factorisée par $Q^{(0)}_{\text{rca}}$, ce qui nous autorise à prendre $\beta \equiv \beta_v$ pour nos calculs.

Pour rendre compte de la méthode, nous allons considérer seulement un terme en détail ; les calculs seront similaires pour les autres contributions.

Pour cela, prenons l’opérateur $E^{1(1,F_1)}_{\sigma} - V_{\{3\} \{3\}} F_1 (F_1)$ et regardons les corrections que ce terme apporte.

** Corrections à l’ordre 1**

L’opérateur d’interaction considéré s’écrit comme une somme de trois contributions

$$i_3^{(F_1)} \frac{\beta_v}{\sqrt{3}} \left(E^{1(1,F_1)}_x - V_{\{3\} \{3\}} F_1 (F_1) + E^{1(1,F_1)}_y - V_{\{3\} \{3\}} F_1 (F_1) + E^{1(1,F_1)}_z - V_{\{3\} \{3\}} F_1 (F_1) \right) .$$ \hspace{1cm} (6.33)

Chacune de ces contributions étant identique en terme de trace, considérons alors seulement la composante en x. À l’ordre 1, la correction s’écrit

$$Q^{(1)} = -i_3^{(F_1)} \beta_v \frac{\sqrt{2}}{3} \text{Tr} \left\{ e^{-\beta \hat{H}^{(0)}} J_{\text{ex}} (a_{3y}^{(F_1)} a_{3z}^{(F_1)} - a_{3y}^{(F_1)} a_{3z}^{(F_1)}) \right\} = i_3^{(F_1)} \beta_v \frac{\sqrt{2}}{3} \text{Tr} \left\{ e^{-\beta \hat{H}^{(0)}} J_{\text{ex}} i_3 \right\} .$$

La deuxième écriture fait apparaître le *Coriolis vibronique* que nous avions défini précédemment.

La structure de produit direct permet de séparer les opérateurs n’agissant pas sur le même espace ou sous-espace\(^3\). On obtient ainsi à l’aide de (6.20) :

$$Q^{(1)} = -i_3^{(F_1)} \beta_v \frac{\sqrt{2}}{3} \text{Tr} \left\{ e^{-\beta \hat{H}^{(0)}} J_{\text{ex}} \right\} \text{Tr} \left\{ e^{-\beta_v \omega_3 N_3} (a_{3y}^{(F_1)} e^{\beta_v \omega_3 N_3} a_{3z}^{(F_1)} - a_{3y}^{(F_1)} e^{-\beta_v \omega_3 N_3}) \right\} ,$$ \hspace{1cm} (6.34)

or $J_{\text{ex}} = (J_{e^+} + J_{e^-})/2$ ce qui implique que la trace de J_{ex} (ainsi que celle de J_{ey}) est toujours nulle quelque soit l’état électronique considéré\(^4\). Ainsi, tout opérateur dont le degré électronique est impair ne fournira aucune contribution à l’ordre 1.

On peut arriver au même résultat en s’intéressant cette fois à la partie vibrationnelle et en remarquant la non homogénéité dans les opérateurs créations et annihilations.

Pour conclure, on peut alors montrer que le jeu d’opérateurs (6.31) n’apporte pas de *corrections* à l’ordre 1.

\(^2\)Il faut distinguer l’ordre de développement de la fonction de partition et l’ordre de développement de l’Hamiltonien.

\(^3\)Dans ce cas, la trace d’un produit d’opérateur est simplement le produit des traces de ces opérateurs.

\(^4\)Pour J_{ez}, le résultat est identique si on considère que $\text{Tr} \left\{ J_{ez} \right\} = \sum_{m_e} m_e = 0$.

Tab. 6.1 - Valeurs des coefficients α pour différents états électroniques.

<table>
<thead>
<tr>
<th>C,</th>
<th>A₁</th>
<th>A₂</th>
<th>F₁</th>
<th>F₂</th>
<th>E₁</th>
<th>E₂</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>α₁(1)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1/8</td>
<td>1/8</td>
<td>17/4</td>
</tr>
<tr>
<td>α₂(1)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1/2</td>
<td>1/2</td>
<td>5</td>
</tr>
<tr>
<td>α₃(1)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1/8</td>
<td>1/8</td>
<td>41/4</td>
</tr>
</tbody>
</table>

Corrections à l’ordre 2

La correction au deuxième ordre s’écrit

\[
Q^{(2)} = i_3^{(F₁)} \frac{β_0^2}{9} \text{Tr} \left\{ e^{-βH^{(0)}} \left(J_{cx}^2 l_{3x}^2 + J_{cy}^2 l_{3y}^2 + J_{cz}^2 l_{3z}^2 \right) \right\}, \tag{6.35}
\]

et comme précédemment, nous ne considérons que les termes en \(x\). L’opérateur \(l^2\) est diagonal et sa composante en \(x\) est :

\[
l_{3x}^2 = -(N_{3x}(N_{3y} + 1) + N_{3y}(N_{3x} + 1)) .
\]

On obtient alors l’expression suivante :

\[
-\frac{2β_0^2 i_3^{(F₁)} g_0^{(c)}}{9} \text{Tr}_e \left\{ J_{cx}^2 \right\} \text{Tr} \left\{ e^{-βω_3 N_{3x}} (N_{3y} e^{-βω_3 N_{3y}} N_{3x} e^{-βω_3 N_{3z}} + e^{-βω_3 N_{3y}} N_{3x} e^{-βω_3 N_{3z}}) \right\} . \tag{6.36}
\]

Finalement, nous pouvons écrire la contribution à l’ordre deux (en incluant les parties \(y\) et \(z\)) en remarquant que

\[
\text{Tr} \left\{ N_{3x} e^{-βω_3 N_{3x}} \right\} = - \frac{∂\text{Tr} \left\{ e^{-βω_3 N_{3x}} \right\}}{∂βω_3} \text{ et } \sum_{σ} \text{Tr} \left\{ J_{σ}^2 \right\} = (2J_e + 1)J_e (J_e + 1),
\]

ce qui donne

\[
Q^{(2)} = -Q^{(0)} i_3^{(F₁)} \frac{2β_0^2}{9} J_e (J_e + 1) g_0^{(c)} Q_3, \tag{6.37}
\]

où nous avons posé :

\[
Q_3 = \frac{e^{βω_3}}{(e^{βω_3} - 1)^2}. \tag{6.38}
\]

Les calculs étant similaires pour les autres opérateurs, on montre alors que l’expression finale de la fonction de partition est

\[
Q = Q^{(0)} \left\{ 1 - β_0^2 \sum_{s=3}^{6} Q_s \left(\frac{2i_3^{(F₁)} J_e(j_e + 1) g_0^{(c)} + 16i_3^{(F₂)} g_0^{(c)}}{9} \left(α^{(1)}_{[G₁]} + J_e (J_e + 1) g_0^{(c)} (α^{(2)}_{[G₁]} - 1) - \right) \right) \right\} - 4 \left(\frac{β_0^2}{9} Q_2 + \frac{β_0^2}{9} \right) \left(α^{(3)}_{[G₁]} + \frac{1}{2} J_e^2 (J_e + 1)^2 g_0 - J_e (J_e + 1) g_0^{(c)} (α^{(2)}_{[G₁]} - α^{(1)}_{[G₁]}) \right), \tag{6.39}
\]

ou de manière plus simple

\[
Q = Q^{(0)} \left\{ 1 + Q(T ; \bar{t}_i ; ω_i) \right\}. \tag{6.40}
\]

Les coefficients α sont définis dans le tableau 6.1.
6.2.3 Calcul numérique des erreurs sur la fonction de partition

Nous venons d’évaluer les corrections introduites dans l’équation (6.39) pour des jeux de paramètres \(\{t_s^{(F_1)}, t_s^{(F_2)}, t_s^{(E)}, t_s^{(E)}\} \) à une température fixe de 300 K : voir Table 6.2. Ce tableau nous informe sur la nature de ces corrections. Dans la plupart des cas, elles sont relativement faibles (\(\lesssim 2\% \)) et peuvent alors ne pas être prises en compte pour les calculs d’intensité à moins que l’on recherche une grande précision (les mesures d’intensité sont rarement à mieux que 5\%). Notons que l’on considèrera dans toute la suite de ce travail que les intensités relatives (en spectroscopie de jet, par exemple) et dans ce cas là, l’étude en fréquence sera d’avantage privilégiée.

6.3 Intensités dipolaires électriques

Nous disposons maintenant des outils nécessaires pour le calcul des intensités d’une bande (vibrationnelle ou vibronique) ou des raies pour des transitions rovibrationnelles ou rovibroniques. Notre étude va s’articuler étroitement autour des travaux effectués par Loëte et al [162, 141, 181] sur les intensités dipolaires électriques et Raman.

Lorsque les interactions s’effectuent avec la composante électrique du champ, le moment de transition à considérer est le moment dipolaire électrique \(\mu \). Nous utiliserons celui développé précédemment à l’aide du formalisme octaédrique.

6.3.1 Intensité d’une sous-bande vibronique

Pour des transitions purement vibroniques \(i.e. \) sans tenir compte de la rotation, il est possible de faire coincider le repère moléculaire avec le repère du laboratoire. Les intensités seront donc calculées en écrivant les opérateurs de transitions dans le repère de la molécule.

De plus, depuis le début de notre exposé, nous nous sommes attachés à resituer notre travail, notamment par rapport aux notations employées usuellement. Nous allons faire de même ici pour les opérateurs de transition.

Écriture usuelle

Nous avons vu que la fonction d’onde vibronique totale s’exprimait, dans le cas d’un état électronique dégénéré, comme :

\[
\sum_n \Psi_n^{(e)}(\theta, Q)\chi_n(Q) \quad (n = 1, ..., g_n).
\]

Ainsi, les éléments matriciels pour une transition vibronique sont donnés par

\[
R_{ev'ev} = \int \int \Psi_n^{(e)*}(\theta, Q)\chi_n^{(e)*}(Q)M\Psi_n^{(e)}(\theta, Q)\chi_n(Q)d\theta dQ,
\]

et nous savons que l’intensité dépend de \(|R_{ev'ev}|^2 \). Le moment dipolaire \(M \) est la somme d’un terme électronique et d’un terme nucléaire :

\[
M = M_e + M_N
\]

A partir des deux expressions précédentes et compte tenu de l’orthogonalité des fonctions électroniques, nous avons

\[
R_{ev'ev} = \int \chi_n^{(e)*}(Q)\mu\chi_n(Q)dQ,
\]

avec le moment dipolaire dans le repère de la molécule

\[
\mu = R_{ee} + M_N\delta_{nn'}
\]
Tab. 6.2 - Corrections introduites pour un état électronique de type F

<table>
<thead>
<tr>
<th>$t^{(1)}_a$</th>
<th>$t^{(2)}_a$</th>
<th>$t^{(3)}_a$</th>
<th>Erreurs</th>
<th>Suite</th>
<th>Suite</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>3.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>4.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

suite

0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	1.0	0.0	0.0
0.0	0.0	0.0	2.0	0.0	0.0
0.0	0.0	0.0	3.0	0.0	0.0
0.0	0.0	0.0	4.0	0.0	0.0

suite

0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	1.0	0.0	0.0
0.0	0.0	0.0	2.0	0.0	0.0
0.0	0.0	0.0	3.0	0.0	0.0
0.0	0.0	0.0	4.0	0.0	0.0
où nous avons posé :

\[R_{ee} = \int \Psi^*_n(\theta, Q) M_e \Psi^*_n(\theta, Q) d\theta . \]

(6.46)

Comme le potentiel, on a vu que le moment dipolaire \(\mu \) pouvait être développé en série de coordonnées normales au voisinage de la configuration de référence \(Q_0 \); finalement l'équation (6.42) devient :

\[R_{ev'ev} = (R_{ee})_{Q_0} \int \chi_n^*(Q) \chi_n(Q) dQ_{ai} + \sum_{ai} \frac{\partial R_{ee}}{\partial Q_{ai}} \int \chi_n^*(Q) Q_{ai} \chi_n(Q) dQ_{ai} + \cdots \]

(6.47)

Le second terme peut être non nul pour certaines vibrations non totalement symétriques et est donc à l’origine des transitions vibroniques, par analogie avec l’effet Jahn-Teller.

Écriture tensorielle

A partir des résultats du chapitre 5 et étant donné l’isotropie de l’espace (Eq. (6.12)), l’intensité d’une sous-bande vibronique se réduit au calcul des éléments matriciels de la composante \(z \) du moment dipolaire dans le repère de la molécule

\[S_{ev'ev} = 3 \mathcal{K}_{ev'ev}(T) e^{-\beta E_{ev'}} | R_{ev'ev} |_z^2 . \]

(6.48)

L’élément matriciel au carré du moment dipolaire est donné par :

\[| R_{ev'ev} |_z^2 = \sum_{\sigma_e, \sigma_{ev}} | \langle \Psi_{\sigma_e}^C | e^{-iQ_{ev'}} | \Psi_{\sigma_{ev}}^C \rangle |^2 , \]

(6.49)
avec

\[\mu_z = \sum_k \langle 1; k \mid z \rangle \sum_i \mu_{\{i\}, \Gamma_{1u}}(E_{K_{1u}(\Gamma_{1u}, \Gamma_{1u})} \otimes \varepsilon_{\Gamma_{1u}(\Gamma_{1u}, \Gamma_{1u})}(F_{1u}), \]

\[= \sum_i \mu_{\{i\}, \Gamma_{1u}}(E_{K_{1u}(\Gamma_{1u}, \Gamma_{1u})} \otimes \varepsilon_{\Gamma_{1u}(\Gamma_{1u}, \Gamma_{1u})}(F_{1u}), \]

(6.50)
car \(\langle 1; k \mid z \rangle = 0 \) si \(k \neq 0 \) et \(\mu_{\{i\}}^{(1)} = \mu_{\{i\}}^{(F_{1u})} \).

Les règles de sélection dipolaires électriques sont \(\tau' \times \tau = u \) et \(C'_{ev} \times F_1 \supset C_{ev} \). A l’aide du théorème de Wigner-Eckart, on peut vérifier que la sommation sur \(\sigma'_{ev} \) et \(\sigma_{ev} \) ne porte que sur le symbole de couplage \(F \) et on pourrait montrer que l’intensité d’une transition prise entre deux états vibroniques s’exprime uniquement à partir des \(ev \) vibroniques.

Nous pouvons définir l’intensité sommée d’une bande vibronique comme la somme des intensités de toutes les sous-bandes

\[S = \sum S_{ev'ev}. \]

(6.51)

6.3.2 Poids statistiques de spin nucléaire

Ce paragraphe a pour but de déterminer le facteur de spin nucléaire intervenant lors de transitions rovibrationnelles ou rovibroniques.

Symétrie de la fonction d’onde

Comme il a été mentionné lors de la construction des opérateurs de moments de transition effectifs (Chap 5), les fonctions d’onde intervenant dans les calculs d’intensités ne sont autres que les fonctions propres de l’Hamiltonien transformé. Cependant, même si les effets superfins ont été négligés dans notre travail, nous devons, en toute rigueur, considérer les fonctions propres de l’Hamiltonien total. Il peut être noté par exemple :

\[\bar{H}_{tot} = \left(\bar{H}^{(A_1g)} \otimes T_{SN}^{(A_1g)} \right) \]

(6.52)

L’opérateur \(T_{SN}^{(A_1g)} \) est l’opérateur identité portant sur la partie de spin nucléaire.

La contribution du spin nucléaire apparaît dans le poids statistique \(g_N \) des noyaux. Ceci permet d’écrire la fonction d’onde totale comme

\[\Psi_{tot} = \left(\Psi(C_T) \otimes \Psi(C_{SN}) \right) \]

(6.53)

ou bien, en termes de représentations de \(O_h^S \) :

\[\mathcal{D}_e \otimes \mathcal{D}_{ev} \otimes \mathcal{D}_{SN} = \sum_{i=1}^5 n_i C'_i \]

(6.54)

Contrairement aux études faites auparavant en vibration-rotation, l’état électronique peut être dégénéré et doit être pris en compte dans les calculs.

Si l’on envisage la permutation des noyaux identiques (particule de spin \(I_T \)), alors le principe de Pauli stipule que la fonction d’onde totale doit être antisymétrique si les particules sont des fermions (spin demi-entier). Pour des particules de spin entier (bosons), la fonction d’onde doit être symétrique dans l’échange de deux noyaux. En d’autres termes, le poids statistique total est \(g = n_1 \) \((C' = A_1) \) pour des bosons et \(g = n_2 \) \((C' = A_2) \) pour des fermions.
FIG. 6.4 - Exemple de transitions dipolaires électriques à partir de l'état de base. Les transitions de type P, Q et R sont représentées.
6.3. Intensités dipolaires électriques

Détermination du poids de spin nucléaire

Nous venons de voir que la fonction d’onde rovibronique totale d’un système se décomposait en RI entières de \(O \) (ou de \(O_h \)). Si l’on considère des moments angulaires électroniques \(J_e \) demi-entiers alors, pour garder les propriétés de la fonction totale, la partie rovibrationnelle doit se décomposer en RS de \(O^2 \) (ou de \(O^2_h \)) afin d’avoir la symétrie rovibronique \(C \) entière (voir la construction des états de base dans le chapitre précédent).

En distinguant les deux espèces de noyaux, nous pouvons écrire :

\[
\mathcal{D}(I_X) \otimes \left\{ \mathcal{D}(I_Y^j) \right\}_{(j=1, \ldots, 6)} = \mathcal{D}(I_X) \otimes \sum_{i=1}^{5} g_{N_i} \{I_Y\} C'_{SN_i} = \sum_{k=1}^{5} g_{N_k} \{I_Y, I_X\} C_{SN_k},
\]

Les \(g_{N_i} \{I_Y, I_X\} \) sont les poids statistiques du spin nucléaire. Galbraith [182] détermine les \(g_{N_i} \{I_Y\} \) de façon systématique \(^5\) jusqu’à \(I_Y = 11/2 \). Landau et Lischitz [183] propose une méthode, reprise ensuite par Berger [184] pour les molécules toupies sphériques, qui détermine le caractère de la représentation de spin suivant laquelle les noyaux s’échangent dans une opération \(G \) du groupe. Ces caractères sont donnés par :

\[
\chi_{SN}(G) = \prod_{\varepsilon} (2I_{\varepsilon} + 1).
\]

\(\varepsilon \) indice les groupes de noyaux qui permettent dans l’opération \(G \).

Les \(g_{N_i} \{I_Y\} \) sont déterminés en réduisant alors la représentation. On obtient les symétries possibles avec leur multiplicité. Le poids statistique de spin pour chaque niveau est alors déduit à partir des valeurs des multiplicités [184].

Nous pouvons déduire les \(g_{N_k} \{I_Y, I_X\} \) qui sont calculés dans la table 6.3 jusqu’à \(I = 3/2 \). L’atome central apporte toujours la contribution \((2I_X + 1) \) dans la formule (6.56) et sa contribution pourrait alors être négligée si l’on s’intéresse uniquement aux intensités relatives. Par contre, elle devient cruciale pour des études en absolu.

Tab. 6.3 - Liste de quelques poids statistiques de spin nucléaire pour chaque niveau de symétrie entière ou demi-entière jusqu’à \(I = 3/2 \)

<table>
<thead>
<tr>
<th>Spin (I_X)</th>
<th>Spin (I_Y)</th>
<th>(A_1)</th>
<th>(A_2)</th>
<th>(E)</th>
<th>(F_1)</th>
<th>(F_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/2</td>
<td>1</td>
<td>2</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>57</td>
<td>240</td>
<td>400</td>
<td>480</td>
<td>480</td>
<td></td>
</tr>
<tr>
<td>3/2</td>
<td>176</td>
<td>240</td>
<td>400</td>
<td>480</td>
<td>480</td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/2</td>
<td>4</td>
<td>20</td>
<td>16</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>114</td>
<td>60</td>
<td>156</td>
<td>162</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>3/2</td>
<td>352</td>
<td>480</td>
<td>800</td>
<td>960</td>
<td>960</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/2</td>
<td>6</td>
<td>30</td>
<td>24</td>
<td>18</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>171</td>
<td>90</td>
<td>234</td>
<td>243</td>
<td>243</td>
<td></td>
</tr>
<tr>
<td>3/2</td>
<td>528</td>
<td>720</td>
<td>1200</td>
<td>1440</td>
<td>1440</td>
<td></td>
</tr>
<tr>
<td>3/2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/2</td>
<td>8</td>
<td>40</td>
<td>32</td>
<td>24</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>228</td>
<td>120</td>
<td>312</td>
<td>324</td>
<td>324</td>
<td></td>
</tr>
<tr>
<td>3/2</td>
<td>704</td>
<td>960</td>
<td>1600</td>
<td>1920</td>
<td>1920</td>
<td></td>
</tr>
</tbody>
</table>

\(^5\) Il utilise des groupe unitaires \(SU(2I_Y + 1) \) pour résoudre le problème.
6.3.3 Intensité d'une raie rovibronique

Nous sommes maintenant en mesure de calculer l'intensité d'une transition rovibronique à l'aide du formalisme tensoriel dans le groupe O_h^S.

Cette fois, les forces de raie se calculent avec le moment dipolaire transformé exprimé dans le repère du laboratoire. Comme dans le cas de transition vibronique, on ne s'intéresse qu'à la composante Z du moment dipolaire. L'intensité de la transition entre deux niveaux rovibroniques s'écrit :

$$ S_{J'C'JC} = 3K_{J'C'JC}(T) g_{J'C'}\{I_Y, I_X\} e^{-\beta E_{J'C'}} \sum_{M', M} \left| \langle \beta \tilde{\Phi}_{M' \sigma'}(J_r, C_r) | \bar{\mu}_Z | \beta \tilde{\Phi}_{M \sigma}(J_c, C_c) \rangle \right|^2. \tag{6.57} $$

La sommation sur M' et M ne porte que sur les cosinus directeurs et α numérote les niveaux par énergie croissante pour un bloc (J, C) donné.

Les règles de sélection rotationnelles sont $\Delta J = 0, \pm 1$ et $\Delta M = 0, \pm 1$ et les règles de sélection rovibroniques sont $\Delta C = 0$ et $\tau = \tau' \times u$. Les fonctions

$$ | \beta \tilde{\Phi}_{M \sigma}(J_r, C_r) \rangle, $$

sont les fonctions propres de l'Hamiltonien transformé $[141]$ et sont reliées aux fonctions de base initiales par la similitude unitaire U qui diagonalise ce même Hamiltonien. On a alors :

$$ \beta \tilde{\Phi}_{M \sigma}(J_r, C_r) = \sum_{nC_r, lC_r, \nuC_r} \beta U_{J_r, C_r, \nuC_r, nC_r} \left(\Psi_{l}^{(J_r, nC_r)} \otimes \left(\Psi_{\nu}^{(J_r, nC_r)} \otimes \Psi_{\nu'}^{(C_r)} \right)^{(C_{nu})} \right)^{(\beta C_r)}.$$

L'élément matriciel de l'opérateur moment dipolaire dans le base propre s'écrit alors

$$ \langle \beta \tilde{\Phi}_{M \sigma}(J_r, C_r) | \bar{\mu}_Z | \beta \tilde{\Phi}_{M \sigma}(J_r, C_r) \rangle = \sum_{\{i', i\}} \beta U^{-1}_{\{i'\} \{i\}} \beta U_{\{i\} \{i'\}} \langle \beta \tilde{\Phi}_{M \sigma}(J_r, nC_r) \rangle | \bar{\mu}_Z | \beta \tilde{\Phi}_{M \sigma}(J_r, nC_r) \rangle, \tag{6.59} $$

où l'expression de l'élément matriciel dans le membre de droite est donnée par la formule (5.77).

6.4 Intensité Raman

Le calcul des intensités pour des transitions Raman $[181]$ est similaire à celui des transitions dipolaires électriques. Nous rappelons donc uniquement les expressions utiles pour ce genre de calculs.

6.4.1 Intensité d'une sous-bande vibronique

Dans ce cas, nous pouvons faire correspondre le repère moléculaire avec le repère du laboratoire et travailler avec le tenseur polarisabilité exprimé dans le repère de la molécule.

Écriture usuelle

Si l'on développe le tenseur polarisabilité $\alpha_{\theta_1, \theta_2}$ en série des coordonnées normales, les éléments matriciels pris entre deux états vibroniques sont donnés par la relation

$$ R_{\nu'\nu} = \int \Psi_{\nu'}^{(c)}(\rho, Q)(\alpha_{\theta_1, \theta_2})_{\nu'0} \Psi_{\nu}^{(c)}(\rho, Q) d\rho \int \chi_{\nu'}^{(c)}(Q) \chi_{\nu}^{(c)}(Q) dQ_{\alpha i} + \sum_{\alpha i} \int \Psi_{\nu'}^{(c)}(\rho, Q) \left(\frac{\partial \alpha_{\theta_1, \theta_2}}{\partial Q_{\alpha i}} \right)_{\nu'0} \Psi_{\nu}^{(c)}(\rho, Q) d\rho \int \chi_{\nu'}^{(c)}(Q) Q_{\alpha i} \chi_{\nu}^{(c)}(Q) dQ_{\alpha i} + \ldots \tag{6.60} $$
Ecriture tensorielle

Sous forme tensorielle et à partir des résultats obtenus dans le chapitre 5, l’intensité d’une sous-bande vibronique pour une transition Raman est donnée par l’expression (dans le repère moléculaire)

\[S_{e\nu'\nu} = \mathcal{K}_{e\nu'\nu}(T) \ e^{-\beta E_{e\nu'}} \sum_{\theta_1,\theta_2} |\mathcal{R}_{e\nu'\nu}|^2_{\theta_1,\theta_2} , \]

(6.61)
où l’élément matriciel au carré du tenseur polarisabilité s’écrit :

\[|\mathcal{R}_{e\nu'\nu}|^2_{\theta_1,\theta_2} = \sum_{\sigma'_{e\nu}} |\langle \Psi_{\sigma'_{e\nu}} | \alpha_{\theta_1,\theta_2} | \Psi_{\sigma_{e\nu}} \rangle|^2 . \]

(6.62)

Les règles de sélection Raman sont \(C'_{e\nu} \times C \supset C_{e\nu} \) (\(C = A_1, E \) ou \(F_2 \)) et \(\tau = \tau' \).

6.4.2 Intensité d’une raie rovibronique

L’intensité d’une raie rovibronique s’exprime à partir du tenseur polarisabilité transformé dans le repère de laboratoire comme

\[S_{IJ'C'JC} = \mathcal{K}_{IJ'C'JC}(T) \ g_{IJ'}(I_Y, I_X) \ e^{-\beta E_{IJ'C'}} \sum_{\theta_1,\theta_2,\theta_{M',M}} |\langle \tilde{\Phi}_{\sigma'_{e\nu}}^{(J,I,C)} | \tilde{\alpha}_{\theta_1,\theta_2} | \tilde{\Phi}_{\sigma_{e\nu}}^{(J',I',C')} \rangle|^2 , \]

(6.63)
où les éléments de la base propre sont reliés à la base initiale par :

\[\langle \tilde{\Phi}_{\sigma_{e\nu}}^{(J',I',C')} | \tilde{\alpha}_{\theta_{1,2}} | \tilde{\Phi}_{\sigma_{e\nu}}^{(J,I,C)} \rangle = \sum_{\{i\} \{i'\} \beta U_{\{i'\} \beta U_{\{i\}}} \langle \tilde{\Phi}_{\sigma_{e\nu}}^{(J,I',C')} | \tilde{\alpha}_{\theta_{1,2}} | \tilde{\Phi}_{\sigma_{e\nu}}^{(J',I',C')} \rangle . \]

(6.64)

Les éléments matriciels du membre de droite sont calculés dans (5.91).

Les règles de sélection rotationnelles sont \(\Delta J = 0, \pm 1, \pm 2 \) et \(\Delta M = 0, \pm 1, \pm 2 \) et les règles de sélection rovibroniques sont \(\Delta C = 0 \) et \(\tau = \tau' \).
6.5 Résumé du chapitre

6.5.1 Ce qu'il faut retenir

Les expressions nécessaires pour le calcul des intensités des transitions (vibroniques et rovibroniques) dipolaires électriques et Raman ont été rappelées. Nous avons aussi mesuré l'influence des termes d'interactions vibroniques sur la fonction de partition.

- La fonction de partition peut, en première approximation, rester découpée.

- Expression des intensités de transition en infrarouge.

- Expression des intensités de transition en Raman.

6.5.2 Les références à consulter

Voici les principales références concernant ce chapitre. Cette liste n'est pas exhaustive.

Applications à V(CO)$_6$ et ReF$_6$

Un modèle rovibronique effectif vient d'être développé en détail depuis le début de la troisième partie de ce travail. La validité de ce modèle va maintenant être testée sur deux candidats potentiels dont les spectres infrarouges respectifs montrent que des couplages complexes sont présents.

- Le premier candidat est la molécule d'hexacarbonyle de vanadium V(CO)$_6$. Cette molécule possède 107 électrons et présente donc une sous-couche électronique incomplète. Il n'y a que très peu d'informations concernant la symétrie de V(CO)$_6$; d'après Haas et Sheline [13], cette molécule est un composé octaédrique qui appartient au groupe O_h et le terme électronique de l'état de base est $^2F_{2g}$. Cependant, ces auteurs ne donnent aucune indication sur la valeur de la constante de couplage spin-orbite, mais suggèrent néanmoins que ce couplage est faible, contrairement aux hexafluorures colorés pour lesquels les états sont classifiés à partir du moment angulaire total (spin + orbit). Barton et al. [185] ont estimé que le couplage spin-orbite était de l'ordre de 100 cm$^{-1}$. Pour ce travail, nous suivrons Haas et Sheline en négligeant le couplage spin-orbite et en supposant que l'état électronique de base est F_{2g}. Pour la partie vibrationnelle, V(CO)$_6$ possède 13 modes de vibration ; nous allons étudier ici la bande ν_6 de symétrie F_{1u} (l'équivalent de la bande ν_3 pour une molécule XY$_6$). Son spectre infrarouge à transformée de Fourier refroidi par un jet supersonique a récemment été enregistré au Laboratoire de Spectrochimie Moléculaire (LADIR, Paris) à une résolution de 0.1 cm$^{-1}$ [186]. Comme nous allons le constater, ce spectre exhibe une structure particulière avec trois sous-bandes très bien définies et très larges. L'absence de la structure usuelle de type PQR, contrairement à d'autres composés carbonyles de la même espèce mais avec une sous-couche saturée (W(CO)$_6$ [11, 166] et Mo(CO)$_6$ [187], par exemple), a été attribuée à un effet Jahn-Teller dynamique $F_{2g} \otimes F_{1u}$ [13, 186]. Pour la première fois, nous présentons les spectres calculés de V(CO)$_6$ à basse et haute résolution. Celui à basse résolution sera comparé avec le spectre expérimental et celui à haute résolution nous indiquera le degré de complexité d'un tel système.

- Le deuxième candidat est la molécule d'hexafluorure de rhénium ReF$_6$. Cette molécule possède 129 électrons et, à la différence de V(CO)$_6$, présente un couplage spin-orbite élevé. Cela implique, entre autres, que son état électronique de base est de symétrie G_{1}^0 dans O_h^F. Pour ce travail, nous étudierons la bande ν_3 de symétrie F_{1u}. Le spectre infrarouge à transformée de Fourier résolu à 0.5 cm$^{-1}$ (jet supersonique) ainsi que quelques portions de spectres à 0.0007 cm$^{-1}$ (jet supersonique + diodes lasers) ont été enregistrés au laboratoire de Chimie-Physique (ETH, Zürich) par Quack et Hollestein [166]. Comme nous l'avions déjà signalé dans le chapitre 5, la structure inhabituelle des spectres fut attribuée par McDowell et Asprey [87] puis récemment par Boudon et al. [166] à un effet Jahn-Teller dynamique $G_{1}^0 \otimes F_{1u}$. Nous présentons dans ce travail le spectre calculé à basse résolution en le comparant à l'expérience, ainsi que quelques simulations à haute résolution.

Pour ces deux molécules, nous reporterons les énergies réduites. Une interprétation classique
[53, 188] de la structure rotationnelle sera aussi envisagée pour V(CO)₆. Nous verrons que l’apparition de "clusters" (groupe-ments de niveaux) 6, 8 et 12 fois dégénérés est due à la rotation de la molécule autour des axes C₄, C₃ et C₂, respectivement.

7.1 Etude de la bande ν₆ de V(CO)₆

7.1.1 Généralités

Nous allons considérer notre modèle rovibronique effectif pour un état électronique triplet auquel est associé un moment angulaire électronique Jₑ = 1 [143], couplé à un oscillateur triplement dégénéré. Par souci de commodité, nous choisissons le formalisme octaédrique où tous les couplings sont effectués dans O₈, puisque les programmes informatiques sont écrits à l’aide de ce même formalisme.

Concernant la partie expérimentale, le spectre de jet de V(CO)₆ a été enregistré par Pierre Asselin, Pascale Soulard et Laurent Manceron à l’université Paris 6 (LADIR) et pour plus de détails, le lecteur est invité à consulter la référence [186]. Revenons plus particulièrement sur l’allure de ce spectre. La figure 7.1 montre deux spectres expérimentaux de la bande d’étirement ν₆ de la liaison CO. La figure (a) est un spectre enregistré par Haas et Sheline [13] à température ambiante et à une résolution de 0,3 cm⁻¹ tandis que (b) est un spectre de jet enregistré par Asselin et al. [186] à une résolution de 0,1 cm⁻¹. Le spectre (c) est celui de Mo(CO)₆, toujours enregistré par Asselin et al., mais à une résolution de 0,004 cm⁻¹ et à une température rotationnelle de 13 K ; ce spectre a été déplacé de-16.6 cm⁻¹ afin de mieux pouvoir le comparer aux deux autres. On note immédiatement l’aspect général différent entre ces trois spectres. Pour (a), il n’y a qu’une seule bande centrée autour de 1980 cm⁻¹ et de largeur à mi-hauteur 20 cm⁻¹ alors que pour (b), nous observons trois sous-bandes de largeur à mi-hauteur 6 cm⁻¹ et centrées respectivement autour de 1972, 1989 et 2008 cm⁻¹. L’absence de la structure PQR, comparé au spectre (c), beaucoup moins étalé, prouve en partie l’existence d’un effet Jahn-Teller dynamique.

![Image of spectrum](image_url)

FIG. 7.1 - Spectres expérimentaux de la bande ν₆ (a) de V(CO)₆ à température ambiante, (b) de V(CO)₆ en jet supersonique et (c) de Mo(CO)₆ en jet supersonique (déplacé de -16.6 cm⁻¹). Cette figure montre aussi une partie résolue de la branche R (J = 10 - 16) de Mo(CO)₆.
7.1.2 Écriture du modèle rovibrонique pour V(CO)₆

L’Hamiltonien effectif pour la bande fondamentale ν₆ s’écrit comme

\[
\hat{H}^{<\nu_6>} = \hat{H}^{<\nu_6>}_{\text{Base}} + \hat{H}^{<\nu_6>}_{\text{Rovib}},
\]

où les deux termes de la somme sont une combinaison linéaire d’opérateurs rovibroniques (voir les expressions 5.56 et 5.57).

La base rovibronique nécessaire au calcul des éléments matriciels pour un état \(F_{2g} \) est donnée par

\[
| \Psi_r(J_g,n_{C_{1g}}) \otimes | \Phi_{\nu}^{(J_g,F_{2g})} \otimes \Psi_{\nu}(F_{1u}) |(C_{1v}) \rangle_{\sigma},
\]

où, afin de faire la connexion entre un état \(F_{2g} \) et un moment angulaire \(J_e = 1 \), nous avons posé [143, 186]

\[
| \Phi_{\nu}^{(1g,F_{2g})} \rangle = | \Phi_{\nu}^{(1g,F_{1g})} \rangle \otimes I(A_{2g})\rangle.
\]

Les seuls "bons" nombres quantiques sont \(J \) et \(C \) et les états propres de l’Hamiltonien seront étiquetés par

\[
| \Psi_r(J_g,n_{C_{1g}}) \rangle_{\sigma},
\]

avec \(\tau = g \) pour l’état de base et \(u \) pour l’état \(\nu_6 = 1 \).

Structure vibronique

La première étape consiste à s’intéresser aux opérateurs responsables de la structure vibronique dans le spectre. Ce sont ces opérateurs vibroniques qui vont être déterminants pour reproduire le profil spectral de V(CO)₆ i.e. pour ajuster la position des trois sous-bandes \(^1\). Le premier terme responsable de l’éclatement vibronique est le terme associé au paramètre

\[
\hat{t}_{(6)}^{(0)(0_{g},A_{1g})(1_{g},F_{1g})F_{1u}(F_{1g})J_{e}\cdot l_{6}} = \tilde{t}_{1} \cdot J_{e}\cdot l_{6},
\]

où \(l_{6} \) est le moment angulaire vibrationnel avec \(l_{6} = 1 \). Nous appellerons cet opérateur le "Coriolis vibronique" en comparaison au Coriolis en rotation-vibration, puisqu’il éclate le niveau \(\nu_6 = 1 \) en trois composantes, chacune caractérisée par la valeur du moment vibronique total

\[
\hat{j}_{6} = \hat{J}_{e} + \hat{l}_{6},
\]

avec \(j_{6} = 0, 1 \) et 2.

\(^1\) En fait, nous avons quatre sous-bandes vibroniques à cause du système \(F_{2} \times F_{1} = A_{2} + E + F_{1} + F_{2} \). En regardant le spectre (7.1)b, on peut déjà deviner que deux des quatre sous-niveaux seront très proches.
Tab. 7.1 - Paramètres de l’Hamiltonien et de moment dipolaire effectifs pour la bande \(\nu_6 \) de \(\text{V(CO)}_6 \)

<table>
<thead>
<tr>
<th>Niveau (\Omega)</th>
<th>(\Omega_b(K_{Q_g}, n_{v_{CO}}))</th>
<th>(\Omega_e(K_{Q_g}, \Gamma_{CO}))</th>
<th>(\Gamma_{1 \nu})</th>
<th>(\Gamma_{2 \nu})</th>
<th>(\Gamma_{3 \nu})</th>
<th>Valeurs/cm(^{-1})</th>
<th>Commentaires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base 0 (\nu_6 = 1)</td>
<td>0 (1,0,1,1)</td>
<td>0 (0,1,1)</td>
<td>(A_{1g})</td>
<td>(A_{1g})</td>
<td>(A_{1g})</td>
<td>8.9 \times 10^{-5}</td>
<td>(B_0)</td>
</tr>
<tr>
<td>(\nu_6 = 1)</td>
<td>1 (t_1)</td>
<td>0 (0,0,1)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>1.95 \times 10^{-2}</td>
<td>(\nu_6)</td>
</tr>
<tr>
<td></td>
<td>1 (t_2)</td>
<td>2 (2,0,0)</td>
<td>(2)</td>
<td>(2)</td>
<td>(2)</td>
<td>-7.51</td>
<td>(3\sqrt{2}B \xi_0)</td>
</tr>
<tr>
<td></td>
<td>2 (t_3)</td>
<td>0 (0,0,1)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>1.94</td>
<td>(3\sqrt{2}B \xi_0)</td>
</tr>
<tr>
<td></td>
<td>2 (2,0,0)</td>
<td>0 (0,0,1)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>1.32 \times 10^{-5}</td>
<td>(B_6 - B_0)</td>
</tr>
</tbody>
</table>

Niveau \(\Omega \)	\(\Omega_b(K_{Q_g}, n_{v_{CO}}) \)	\(\Omega_e(K_{Q_g}, \Gamma_{CO}) \)	\(\Gamma_{1 \nu} \)	\(\Gamma_{2 \nu} \)	\(\Gamma_{3 \nu} \)	Valeurs/\(u.a. \)		
\(\nu_6 \)	0 (0,0,1)	0 (0,0,1)	\(A_{1g} \)	\(\Gamma_{1u} \)	\(\Gamma_{1u} \)	1.0 \times 10^{-2}	\(\nu_6 \)	
1 \(\nu_6 \)	0 (0,0,1)	1 (1,0)	\(A_{1g} \)	\(\Gamma_{1u} \)	\(\Gamma_{1u} \)	1.8 \times 10^{-2}	\(\nu_6 \)	
	1 (1,0)	0 (0,0,1)	\(A_{1g} \)	\(\Gamma_{1u} \)	\(\Gamma_{1u} \)	2.5 \times 10^{-2}	\(\nu_6 \)	
	1 (0,0,0)	2 (2,0)	\(A_{1g} \)	\(\Gamma_{1u} \)	\(\Gamma_{1u} \)	7.5 \times 10^{-2}	\(\nu_6 \)	
	1 (0,0,1)	2 (2,0,0)	\(A_{1g} \)	\(\Gamma_{1u} \)	\(\Gamma_{1u} \)	-2.0 \times 10^{-1}	\(\nu_6 \)	
2 \(\nu_6 \)	1 (1,0)	1 (1,0)	\(A_{1g} \)	\(\Gamma_{1u} \)	\(\Gamma_{1u} \)	1.0 \times 10^{-3}	\(\nu_6 \)	
	2 (2,0)	1 (1,0)	\(A_{1g} \)	\(\Gamma_{1u} \)	\(\Gamma_{1u} \)	0.0	\(\nu_6 \)	
	2 (2,0)	1 (1,0)	\(A_{1g} \)	\(\Gamma_{1u} \)	\(\Gamma_{1u} \)	0.0	\(\nu_6 \)	
	2 \(\nu_6 \)	2 (2,0,0)	0 (0,0,0)	\(A_{1g} \)	\(\Gamma_{1u} \)	\(\Gamma_{1u} \)	0.0	\(\nu_6 \)
	2 (2,0,0)	0 (0,0,0)	\(A_{1g} \)	\(\Gamma_{1u} \)	\(\Gamma_{1u} \)	0.0	\(\nu_6 \)	

Deux autres opérateurs vibroniques agissent sur le profil spectral et sont associés aux paramètres

\[
\tilde{t}_2 = i^{(0)}(q_{A_{1g}})(2_g E_g) F_{1u} F_{1u} \]

et

\[
\tilde{t}_3 = i^{(0)}(q_{A_{1g}})(2_g E_g) F_{1u} F_{1u} \).

Ces termes éclatent la composante \(j_6 = 2 \) en deux sous-niveaux vibroniques \(E \) et \(F_2 \) pour obtenir finalement les quatre sous-niveaux vibroniques attendus, en multipliant par \(A_2 \) afin de retablir la “ vraie” symétrie :

\[
(D^{(0)} + D^{(1)} + D^{(2)}) \times A_2 = A_2 + F_2 + (E + F_1) = F_2 \times F_1.
\]

Nous avons estimé la valeur de ces trois paramètres ainsi que la valeur de la fréquence \(\nu_6 \) à partir du profil à basse résolution de \(\text{V(CO)}_6 \). Ces quatre paramètres sont donnés dans la table 7.1 et serviront de base pour la suite de notre étude. La structure vibronique apparaît sur la figure 7.2 en fonction des paramètres \(\tilde{t}_1, \tilde{t}_2 \) et \(\tilde{t}_3 \). Il s’avère aussi que le jeu de paramètres vibroniques de la table 7.1 semble cohérent avec la structure globale du spectre (7.1b).
Structure rovibronique

Considérons maintenant les termes d'interactions rovibroniques. Pour cela, nous avons développé $\tilde{H}_{<\text{Base}>}^{\nu_6}$ à l'ordre zéro et $\tilde{H}_{<\nu_6>}$ à l'ordre trois (formule (5.60)), ce qui donne 20 paramètres pour l'Hamiltonien effectif [186]. Pour le calcul des intensités, le moment dipolaire a été développé à l'ordre deux (formule (5.93)) et nous avons 12 paramètres effectifs [186]. Notons que toutes les simulations ont été effectuées avec le package HTDS [167] modifié en conséquence [143] (voir Chap. 5). Au départ, ces programmes sont écrits pour des molécules octaédriques de type XY₆, cependant, la bande $\nu_6(F_{1u})$ d'une molécule X(YZ)₆ peut être traitée comme une bande $\nu_3(F_{1u})$ ou $\nu_4(F_{1u})$ d'une molécule XY₆.

Au début de ce travail, nous n'avions aucun paramètre disponible pour V(CO)₆, il nous a alors semblé raisonnable d'utiliser les paramètres rotationnels et rovibrationnels déterminés dans la Ref. [187] pour Mo(CO)₆ qui, avec W(CO)₆, est l'hexacarbonyle le "plus proche" de V(CO)₆ dont les paramètres (rovibrationnels) sont connus. Seule la fréquence ν_6 a été déplacée à 1994.48 cm⁻¹. Ces différents paramètres sont présents dans la table 7.1, où nous avons indiqué aussi quelques paramètres rovibrationnels "classiques". Par exemple, B_0 est la constante rotationnelle de l'état de base et $(B_\xi)_6$ décrit l'interaction de Coriolis.

Il nous reste plus alors qu'à évaluer les paramètres purement rovibroniques de l'Hamiltonien ainsi que ceux du moment dipolaire, en les ajustant à la main. Pour cela, plusieurs simulations "test" ont été effectuées jusqu'à $J = 70$ et à différentes températures rotationnelles T_R. Après de nombreux essais, il est apparu que le jeu de paramètres de la table 7.1 pour une température rotationnelle $T_R = 15$ K semble correct (même si il n'est pas unique!) si on compare le spectre simulé au spectre expérimental [186]. La figure 7.3 montre le "bon" accord en fréquence entre la simulation et l'expérience ; pour les intensités, les paramètres du moment dipolaire doivent encore être améliorés. En effet, certains d'entres eux ont été fixés à zéro afin de limiter volontairement le nombre d'essais.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{spectre.png}
\caption{Profils spectraux calculé et observé pour V(CO)₆ à basse résolution (0.5 cm⁻¹).}
\end{figure}
La figure 7.4 montre les énergies réduites calculées

\[E_{\text{red}} = E - B_0 J(J + 1) \]

(7.7)

pour \(v_6 = 1 \) et avec \(B_0 = \frac{2}{2^2(0_j, A_{1g})(0_j, A_{1g}) A_{1g} A_{1g} (A_{1g})} \). Nous observons les quatre sous-niveaux vibroniques ainsi que l’éclatement octaédrique dû aux couplages entre les différents degrés de liberté. Lorsque \(J \) augmente, on observe la formation de "clusters" et pour certaines valeurs de \(J \), on peut remarquer une redistribution des niveaux rovibroniques entre les différents sous-niveaux. Nous reparlerons de ceci en présentant brièvement un modèle semi-classique. Evidemment, la position des niveaux d’énergie sur la figure 7.4 est seulement indicative puisqu’il existe, a priori, d’autres jeux de paramètres donnant un profil spectral similaire.

7.1.3 Discussion

Afin d’illustrer l’influence des termes purement vibroniques, nous avons changé la valeur des paramètres vibroniques de l’Hamiltonien et avons pu observer les conséquences. Pour cela, les valeurs propres de l’Hamiltonien ont été recalculées en substituant un paramètre \(t_i \) (\(i = 1, 2 \) ou 3, voir Tab.7.1) par la valeur \(t_i + \Delta t_i \) où \(\Delta t_i \) représente une variation du paramètre \(t_i \) autour de sa valeur optimale (donnée dans la table 7.1). La figure 7.5 renseigne sur l’influence de chaque paramètre. Dans chaque cas, seulement un des trois paramètres peut varier ; les autres sont fixés aux valeurs de la table 7.1. Cette figure nous donne alors la position des quatre sous-niveaux vibroniques résultant du changement.

Afin d’illustrer ces différents changements, nous avons calculé les profils spectraux pour trois cas :
• cas (a) : Comme nous l’avons mentionné précédemment, le paramètre \tilde{t}_1 s’identifie à un Coriolis vibronique. Il agit donc sur la position des quatre sous-niveaux comme il est montré sur la figure 7.6(a).
• cas (b) : Le paramètre \tilde{t}_2 agit également sur les sous-niveaux (E, F_2) et les deux autres sont aussi déplacés (voir Fig.7.6(b)).
• cas (c) : Enfin, Le paramètre \tilde{t}_3 agit essentiellement sur les sous-niveaux (A_2, F_1) et n’a pas une grande influence sur les sous-niveaux (E, F_2) (voir Fig.7.6(c)).

Fig. 7.5 - Position des niveaux vibroniques en fonction de la variation d’un des paramètres vibroniques. Cette figure représente les sous-niveaux : A_2 (pointillés), E (trait en gris), F_1 (ligne mixte) et F_2 (ligne continue).

Fig. 7.6 - Influence des principaux paramètres vibroniques sur le profil spectral pour : (a) $\Delta \tilde{t}_1 = 4.6$ cm$^{-1}$, (b) $\Delta \tilde{t}_2 = 1.5$ cm$^{-1}$ et (c) $\Delta \tilde{t}_3 = -3.6$ cm$^{-1}$.
7.1.4 Simulations à haute résolution

N'ayant pas de spectres résolus à notre disposition, nous avons tout de même tenté de simuler un spectre rovibronique à haute résolution (7.10^{-4} cm$^{-1}$, une résolution typique pour une diode laser). La résultat donné sur la figure 7.7 est ce à quoi *pourrait* ressembler un spectre enregistré à une telle résolution ; le spectre est très étalé à cause des couplages rovibroniques. L'intensité est distribuée sur un très grand nombre de raies et sur une zone spectrale très large (contrairement à Mo(CO)$_6$, fig. 7.1c). De ce fait, les intensités sont très faibles et le spectre n'a pas pu être enregistré à haute résolution par transformée de Fourier. Il est donc important de noter que cette étude est vraiment la première tentative afin de mieux comprendre la structure rovibronique complexe de V(CO)$_6$. La connaissance de structure précises demanderait une analyse plus détaillée ; nous avons cependant grossi certaines portions du spectre calculé et identifié quelques raies. Notamment, dans la région 1971-77 cm$^{-1}$, des structures régulières apparaissent en comparaison à la structure chaotique autour de 1990 cm$^{-1}$ avec un nombre conséquent de transitions. Ceci peut directement se voir sur le diagramme des énergies réduites 7.4 où pour la portion autour de 1971 cm$^{-1}$ il y a très peu d'interactions comparée à la région centrale où il y a une forte interaction entre les sous-niveaux E et F_2. Les figures 7.8, 7.9, 7.10 et 7.11 nous enseignent un peu plus sur la structure très complexe du spectre.

Il convient aussi de noter que l'introduction du couplage spin-orbite compliquerait encore certainement le spectre, en détruisant le peu de structures régulières visibles sur la figure 7.7.

FIG. 7.7 - Simulation à haute résolution de la bande v_6 de V(CO)$_6$. Deux portions de ce spectre autour de 1973 cm$^{-1}$ et 1989.5 cm$^{-1}$ sont également visibles sur cette figure.
FIG. 7.8 - Portion du spectre à haute résolution dans la région 1971-1977 cm\(^{-1}\). Les pointeurs les plus hauts indiquent une branche R et ceux en dessous indiquent une branche Q.
Fig. 7.9 - Portion du spectre à haute résolution dans la région 1989.5-1989.7 cm\(^{-1}\). Les pointeurs les plus hauts indiquent une branche R, ceux du milieu indiquent une branche Q et ceux les plus bas indiquent une branche P.
FIG. 7.10 - Portion du spectre à haute résolution dans la région 1990.5-1990.7 cm\(^{-1}\). Les pointeurs les plus hauts indiquent une branche R, ceux du milieu indiquent une branche Q et ceux les plus bas indiquent une branche P.
7.1.5 Modèle semi-classique

Nous allons présenter ici brièvement un modèle semi-classique permettant de tirer des informations qualitatives sur le comportement des niveaux rovibroniques calculés avec le modèle effectif. Nous ne voulons pas faire une étude poussée sur l’approche semi-classique mais juste décrire une méthode élégante basée sur la recherche des surfaces d’énergies rotationnelles pour une polyade vibronique donnée. Il serait tout de même intéressant de poursuivre ce type d’approche (semi-classique, voire purement classique) dans un travail ultérieur et dans un contexte plus quantitatif. À notre connaissance, Faure et Zhilinskii tentent actuellement une approche purement classique pour analyser la structure rovibronique de V(CO)\textsubscript{6}.

Présentation du modèle semi-classique

Nous avons signalé précédemment qu’il pouvait exister plusieurs jeux de paramètres rovibroniques donnant un profil similaire. Cependant, dans tous les cas, la structure rovibronique reste certainement très complexe ; nous pouvons néanmoins regarder ce qu’un modèle semi-classique pourrait nous apporter.

Depuis une vingtaine d’années, la Mécanique Classique a permis de mieux comprendre et d’analyser qualitativement la structure rotationnelle d’un spectre. Les travaux les plus décisifs furent effectués par Harter et al. [53, 189] (et références à l’intérieur) puis plus récemment par Sadowskii, Zhilinskii et al. [188, 190, 191, 192, 193] (et références à l’intérieur). Notamment, ils expliquent la formation de "clusters" en termes de rotation classique autour des axes stationnaires de la molécule. La structure fine rotationnelle peut alors être analysée par une approche semi—classique. Dans notre cas, la partie rotationnelle est traitée classiquement et la partie vibronique à l’aide de la Mécanique Quantique.
L’Hamiltonien semi-classique s’écrit alors

\[\mathcal{H}_{s.c.} = \sum_i l_i R(J_x, J_y, J_z) \times O_{vibronique}, \]

(7.8)

où les opérateurs rotationnels \(J_x, J_y \) et \(J_z \) sont convertis en variables dynamiques classiques par [191]

\[(J_x, J_y, J_z) = J(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta) \]

\(\theta \in [0, \pi] \) et \(\phi \in [0, 2\pi] \) sont les angles sphériques et \(J = \sqrt{J(J+1)} \) est l’amplitude du moment angulaire classique (qui est une intégrale du mouvement). L’Hamiltonien semi-classique est un polynôme en \((J_x, J_y, J_z) \) et on note \(E_i^J(\theta, \phi) \), ses valeurs propres calculées dans la base vibronique. Les \(E_i^J(\theta, \phi) \) sont aussi appelées *Surfaces d’Energies Rotationnelles* (SER) et sont paramétrées par \(J \). Ces surfaces sont \(i \) sphères déformées de \(S_2 \) tracées dans l’espace des phases \((\theta, \phi) \) où l’indice \(i \) parcourt toutes les composantes vibroniques \((i = 1, \ldots, 9 \) pour V(CO)\(_6\)). L’essentiel de l’information qualitative est contenue dans les SER et en particulier dans le nombre de maxima et de minima équivalents sur les axes stationnaires de \(O_h : C_2 \) (points de selle ou extrema), \(C_3 \) (minima ou maxima : points stables) et \(C_4 \) (minima ou maxima : points stables).

En effet, l’éclatement des multiplets rotationnels est délimité par les minima et les maxima des SER et on montre que les trajectoires autour des axes stationnaires correspondent à des séquences de groupes de niveaux quantiques quasi-dégénérés ("clusters"). Le tableau 7.2 nous informe sur ces trois types d’axes stationnaires. Physiquement, les rotations autour des axes \(C_2 \) correspondent dans

Tab. 7.2 - Axes principaux stationnaires de \(O_h \)

<table>
<thead>
<tr>
<th>Axe stationnaire</th>
<th>((\theta, \phi))</th>
<th>([J_x, J_y, J_z])</th>
<th>Dégénérescence</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_4)</td>
<td>(0,0)</td>
<td>[0,0,1]</td>
<td>6</td>
</tr>
<tr>
<td>(C_3)</td>
<td>(\arctan \sqrt{2}, \pi/4)</td>
<td>[1,1,1]/\sqrt{3}</td>
<td>8</td>
</tr>
<tr>
<td>(C_2)</td>
<td>(\pi/2, \pi/4)</td>
<td>[1,1,0]/\sqrt{2}</td>
<td>12</td>
</tr>
</tbody>
</table>

le spectre à une région intermédiaire (formée d’amas de niveaux 12 fois dégénérés) qui sépare deux régions "composées" de clusters 8 et 6 fois dégénérés.

Exemple :

\[E_3^{17}(0,0) \approx 1990.358 \text{ cm}^{-1} \]
\[E_4^{17}(0,0) \approx 1990.359 \text{ cm}^{-1} \]

\(\Rightarrow \) 6 points diaboliques
Transfert de clusters six fois dégénérés à \(J \approx 17 \)

Fig. 7.12 - Portion du diagramme des énergies vibroniques. Les traits représentent les niveaux quantiques et les lignes continues sont les trajectoires classiques autour d’un axe \(C_4 \). Il y a un transfert de niveaux rotationnels à \(J \approx 14, J \approx 17 \) et \(J \approx 37 \).
Si nous définissons le nouveau nombre quantique \(R = J - 1 - J_e \), alors le nombre de niveaux pour un \(J \) donné sera simplement \(2R + 1 \). Généralement, \(R \) reste un “bon” nombre quantique dans la limite des \(J \) petits ; quand \(J \) augmente, les lignes semi-classiques peuvent se croiser et la structure rovibronique est réorganisée. On observe alors des transferts de niveaux rotationnels d’un sous-niveau vibronique à un autre. Ces transferts sont dus à l’apparition d’intersections coniques qui relient deux ou plusieurs SER. Ces points singuliers sont aussi appelés points diaboliques [190].

Exemple :

\[
E_{32}^{32}(\pi/2, \pi/4) \approx 2006.807 \text{ cm}^{-1} \\
E_{8}^{32}(\pi/2, \pi/4) \approx 2006.822 \text{ cm}^{-1}
\]

\(\Rightarrow \) 12 points diaboliques

Transfert de clusters douze fois dégénérés à \(J \approx 32 \)

Les figures 7.12 et 7.13 illustrent ces points diaboliques dans certaines régions du spectre. Lorsque deux SER sont connectés, on observe clairement le transfert de niveaux d’un groupe de niveaux vers un autre groupe. La figure 7.14 montre les intersections coniques de deux SER pour les axes \(C_4 \) et pour \(J = 37 \) et de deux SER pour les axes \(C_2 \) et pour \(J = 32 \).

Fig. 7.13 - Portion du diagramme des énergies rovibroniques. Les traits représentent les niveaux quantiques et les lignes continues sont les trajectoires classiques autour d’un axe \(C_2 \). Il y a un transfert de niveaux rotationnels à \(J \approx 32 \).

Fig. 7.14 - Surfaces d’énergies rotationnelles et intersections coniques. La figure de gauche représente les deux surfaces \(E_i^{37}(0,0) - E_s \) avec \(i = 2, 3 \) et \(E_s = 1987.87 \text{ cm}^{-1} \). La figure de droite représente les deux surfaces \(E_i^{32}(\pi/2, \pi/4) - E_s \) avec \(i = 7, 8 \) et \(E_s = 2007.16 \text{ cm}^{-1} \).
Diagramme des énergies réduites

Nous pouvons aussi tracer les énergies réduites semi-classiques pour l’ensemble du spectre rovi-
bronique i.e. pour les neufs composantes vibroniques. On remarque ainsi clairement sur la figure
7.15 que les trajectoires classiques délimitent les multiplets rotationnels. Notons que le modèle semi-
classique peut servir de modèle prédictif pour mieux comprendre le comportement des niveaux pour
des J rotationnels très élevés [193].

![Diagramme des énergies réduites](image)

Fig. 7.15 - Énergies réduites calculées par le modèle quantique effectif (barres) et par le modèle
semi-classique : axes C_2 (lignes continues), axes C_3 (pointillés) et axes C_4 (lignes mixtes).

7.2 Étude de la bande ν_3 de ReF$_6$

7.2.1 Généralités

Après nous être intéressés à un état électronique triplet, nous nous tournons maintenant vers la
bande fondamentale ν_3 de ReF$_6$ dans son état électronique fondamentale quadruplet G'. Un moment
angulaire électronique $J_e = 3/2$ sera donc introduit dans le modèle rovibronique effectif [144].

Nous reportons dans cette sous-partie le spectre de jet à transformée de Fourier de la bande ν_3 à
basse résolution ainsi que quelques portions de spectres résolus à l’aide de diodes lasers. Ces différents
spectres ont été enregistrés dans le groupe du Professeur Martin Quack à l’ETH de Zürich et tout ce
qui concerne la partie expérimentale peut être consulté dans la référence [166].
Nous présentons ici les premiers résultats et une première ébauche d’analyse concernant cette molécule, à l’aide d’un modèle rovibronique effectif complet. Quelques résultats ont récemment été obtenus mais à l’aide d’un Hamiltonien rovibronique simplifié non-transformé [166] qui ne prend pas en compte toutes les interactions dans le spectre. La figure 7.16 nous renseigne sur la nature complexe de ces interactions ; sur cette figure, nous pouvons comparer les spectres respectifs des molécules WF₆ (état électronique A₁g) et ReF₆ à température ambiante puis dans un jet à une température rotationnelle de 50 K. Notons de plus que les spectres de ReF₆ comportent deux isotopes : ¹⁸⁵ReF₆ (37.40 %, ν₃ = 720.13 cm⁻¹) et ¹⁸⁷ReF₆ (62.60 %, ν₃ = 719.5 cm⁻¹), ce qui rend l’analyse encore plus compliquée. Nous retrouvons la structure usuelle de type PQR pour WF₆ alors qu’on observe une structure irrégulière et un étalement du spectre pour ReF₆.

7.2.2 Ecriture du modèle rovibronique pour ReF₆

L’Hamiltonien effectif pour la bande fondamentale ν₃ s’écrit comme

\[
\tilde{H}^{\nu_3} = \tilde{H}^{\nu_3}_{\text{Base}} + \tilde{H}^{\nu_3}_{\text{Isotopes}},
\]

(7.9)

![Figure 7.16](image.png)

Fig. 7.16 - *Comparaison entre les spectres de WF₆ et de ReF₆ à température ambiante et dans un jet supersonique. On observe une structure de type PQR pour WF₆ et une structure plus complexe pour ReF₆. Notons aussi l’étalement du spectre du rhénium pour le spectre de jet, avec des intensités très faibles.*
et la base rovibronique nécessaire au calcul des éléments matriciels pour un état G' est donnée par
\[
[\Psi_r^{(J_g,nC_{3g})} \otimes [\Phi_z^{(3/2)} G'^g} \otimes \Psi_v^{(F_{1u})(G_{1v})}(C_{3v})(C_{3v})].
\] (7.10)

Structure vibronique

Nous allons suivre le même raisonnement que pour V(CO)$_6$, *i.e.* en s'intéressant tout d'abord à la structure vibronique puis à sa structure rovibronique. Les opérateurs purement vibroniques responsables de l'éclatement et de l'étalement du spectre sont au nombre de quatre. On retrouve le "Coriolis vibronique"
\[
\tilde{t}_{ij}^{(0_g,A_{1g})(1_g,F_{1g})F_{1u}(F_{1g})} \tilde{t}_{jz} = \tilde{t}_1, \tilde{t}_3,
\]
qui scinde le niveau $v_3 = 1$ en trois composantes : $j_3 = 1/2, 3/2$ et $5/2$ avec $j_3 = J_0 + l_3$.

Les trois autres opérateurs vibroniques agissant sur le profil spectral sont associés aux paramètres
\[
\tilde{t}_2 = \tilde{t}_{ij}^{(0_g,A_{1g})(2_g,F_{2g})F_{1u}(F_{2g})},
\]
et
\[
\tilde{t}_4 = \tilde{t}_{ij}^{(0_g,A_{1g})(3_g,F_{1g})F_{1u}(F_{1g})},
\]
Ces termes éclatent la composante $j_3 = 5/2$ en deux sous-niveaux vibroniques E' et G' pour obtenir finalement les quatre sous-niveaux vibroniques attendus :
\[
(D^{(1/2)} + D^{(3/2)} + D^{(5/2)}) = E' + G' + 2G'.
\] (7.11)

Lors du chapitre 5, nous avions calculé les paramètres vibroniques dans le formalisme sphérique à partir des paramètres $Q_0 = 0.008$ et $Q_4 = -0.006$ du modèle JT non-transformé (5.124) et évalué à partir du profil à basse résolution de ReF$_6$ (voir Fig.7.16). Ces paramètres sont donnés sur la figure 5.3 et peuvent être recalculés dans le cadre du formalisme octaedrique suivant les relations (5.118). Nous obtenons :
\[
\tilde{t}_0 = v_3 = 719.2778 \text{ cm}^{-1}, \quad \tilde{t}_1 = 0.3902 \text{ cm}^{-1}, \quad \tilde{t}_2 = -0.8277 \text{ cm}^{-1}, \quad \tilde{t}_3 = -2.6465 \text{ cm}^{-1}
\] et
\[
\tilde{t}_4 = -1 \text{ cm}^{-1}.
\] (7.12)

Seulement, lors de notre précédente étude, nous n’avions pas tenu compte des deux isotopes et fait aucune simulation sur le profil de bande. A partir de ce même profil, nous avons alors pu réajuster ces paramètres avec les deux isotopes cette fois ; les valeurs des paramètres après réexamen de (7.12) sont données dans la table 7.3. Notons que les deux isotopes sont séparés de 0.27 cm$^{-1}$ contrairement

<table>
<thead>
<tr>
<th>Niveau</th>
<th>(K_c, Γ_c)</th>
<th>T_v</th>
<th>Valeur/cm$^{-1}$ (Refs. [144])</th>
<th>Valeur/cm$^{-1}$ (ce travail)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$v_3 = 1$</td>
<td>$(0,A_1)$</td>
<td>A_1</td>
<td>$\tilde{t}_0 = 719.2778$</td>
<td>721.5028 (ReF$_6$), 721.2328 (ReF$_6$)</td>
</tr>
<tr>
<td></td>
<td>$(1,F_1)$</td>
<td>F_1</td>
<td>$\tilde{t}_1 = 0.3902$</td>
<td>-0.8113</td>
</tr>
<tr>
<td></td>
<td>$(2,E)$</td>
<td>E</td>
<td>$\tilde{t}_2 = -0.8277$</td>
<td>-0.8249</td>
</tr>
<tr>
<td></td>
<td>$(2,F_2)$</td>
<td>F_2</td>
<td>$\tilde{t}_3 = -2.6465$</td>
<td>-2.4040</td>
</tr>
<tr>
<td></td>
<td>$(3,F_1)$</td>
<td>F_1</td>
<td>$\tilde{t}_3 = -1$</td>
<td>-1.0580</td>
</tr>
</tbody>
</table>

aux 0.63 cm$^{-1}$ de la référence [166].

La structure vibronique peut facilement se déduire à l'aide de ces paramètres. Nous l'avons déterminée tout d'abord par le modèle JT (5.124) avec les paramètres de la référence [166] puis par notre modèle vibronique effectif avec les paramètres de la dernière colonne du tableau 7.3. Les deux résultats sont donnés Fig. 7.17. Une chose importante doit être signalée : au final, ces deux structures sont très similaires mais entre temps, il a fallu diagonaliser des matrices environ dix fois plus grandes pour le modèle Jahn-Teller ; d'où l'avantage de notre modèle effectif.
Tab. 7.4 - Paramètres de l'Hamiltonien et de moment dipolaire effectifs pour la bande ν_3 de ReF$_6$

<table>
<thead>
<tr>
<th>Niveau</th>
<th>Ω</th>
<th>Paramètres de l'Hamiltonien $\tilde{H}{\Omega}^{\nu_3}(K{2g}, n_{L2g})$</th>
<th>$K_{\Gamma}(K_{2g}, \Gamma_{2g})$</th>
<th>Γ_{1u}</th>
<th>Γ_{2u}</th>
<th>Γ_{3u}</th>
<th>Valeurs/cm$^{-1}$</th>
<th>Commentaires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>0</td>
<td>$1(\Omega F_{1g})$</td>
<td>1(1,F_{1g})</td>
<td>A_{1g}</td>
<td>A_{1g}</td>
<td>A_{1g}</td>
<td>2.6$\times 10^{-4}$</td>
<td>B_0</td>
</tr>
<tr>
<td>$\nu_3 = 1$</td>
<td>0</td>
<td>$0(0, A_{1g})$</td>
<td>0(0,A_{1g})</td>
<td>A_{1g}</td>
<td>A_{1g}</td>
<td>A_{1g}</td>
<td>6.6$\times 10^{-4}$</td>
<td>ν_3 (ReF$_6$)</td>
</tr>
<tr>
<td>1</td>
<td>\tilde{t}_0</td>
<td>0(0,A_{1g})</td>
<td>0(0,A_{1g})</td>
<td>F_{1u}</td>
<td>A_{1g}</td>
<td>A_{1g}</td>
<td>721.2328</td>
<td>ν_3</td>
</tr>
<tr>
<td>1</td>
<td>\tilde{t}_1</td>
<td>0(0,A_{1g})</td>
<td>1(1,F_{1g})</td>
<td>F_{1u}</td>
<td>F_{1u}</td>
<td>F_{1g}</td>
<td>-0.8113</td>
<td>ν_3</td>
</tr>
<tr>
<td>2</td>
<td>\tilde{t}_2</td>
<td>0(0,A_{1g})</td>
<td>2(2,E_g)</td>
<td>F_{1u}</td>
<td>F_{1u}</td>
<td>E_g</td>
<td>-0.8294</td>
<td>ν_3</td>
</tr>
<tr>
<td>2</td>
<td>\tilde{t}_3</td>
<td>0(0,A_{1g})</td>
<td>2(2,E_g)</td>
<td>F_{1u}</td>
<td>F_{1u}</td>
<td>E_g</td>
<td>-2.404</td>
<td>ν_3</td>
</tr>
<tr>
<td>1</td>
<td>\tilde{t}_4</td>
<td>0(0,A_{1g})</td>
<td>3(3,F_{1g})</td>
<td>F_{1u}</td>
<td>F_{1u}</td>
<td>F_{1g}</td>
<td>-1.058</td>
<td>ν_3</td>
</tr>
<tr>
<td>1</td>
<td>$\nu_3 = 1$</td>
<td>0(0,A_{1g})</td>
<td>0(0,A_{1g})</td>
<td>F_{1u}</td>
<td>F_{1u}</td>
<td>F_{1g}</td>
<td>0.4125$\times 10^{-4}$</td>
<td>$3\sqrt{2}(B\xi)_3$</td>
</tr>
<tr>
<td>2</td>
<td>$\nu_3 = 1$</td>
<td>0(0,A_{1g})</td>
<td>1(1,F_{1g})</td>
<td>F_{1u}</td>
<td>F_{1u}</td>
<td>A_{1g}</td>
<td>5.9$\times 10^{-5}$</td>
<td>$\nu_3 - B_0$</td>
</tr>
<tr>
<td>2</td>
<td>$\nu_3 = 1$</td>
<td>0(0,A_{1g})</td>
<td>1(1,F_{1g})</td>
<td>F_{1u}</td>
<td>F_{1u}</td>
<td>E_g</td>
<td>1.2$\times 10^{-5}$</td>
<td>ν_3</td>
</tr>
<tr>
<td>2</td>
<td>$\nu_3 = 1$</td>
<td>0(0,A_{1g})</td>
<td>1(1,F_{1g})</td>
<td>F_{1u}</td>
<td>F_{1u}</td>
<td>F_{2g}</td>
<td>2.4$\times 10^{-5}$</td>
<td>ν_3</td>
</tr>
<tr>
<td>2</td>
<td>$\nu_3 = 1$</td>
<td>0(0,A_{1g})</td>
<td>0(0,A_{1g})</td>
<td>F_{1u}</td>
<td>F_{1u}</td>
<td>E_g</td>
<td>5.4$\times 10^{-5}$</td>
<td>ν_3</td>
</tr>
<tr>
<td>2</td>
<td>$\nu_3 = 1$</td>
<td>1(1,F_{1g})</td>
<td>0(0,A_{1g})</td>
<td>F_{1u}</td>
<td>F_{1u}</td>
<td>F_{2g}</td>
<td>2.994$\times 10^{-5}$</td>
<td>ν_3</td>
</tr>
<tr>
<td>3</td>
<td>$\nu_3 = 1$</td>
<td>2(2,E_g)</td>
<td>1(1,F_{1g})</td>
<td>F_{1u}</td>
<td>F_{1u}</td>
<td>E_g</td>
<td>-2.5$\times 10^{-3}$</td>
<td>ν_3</td>
</tr>
<tr>
<td>3</td>
<td>$\nu_3 = 1$</td>
<td>2(2,E_g)</td>
<td>2(2,F_{1g})</td>
<td>F_{1u}</td>
<td>F_{1u}</td>
<td>F_{1g}</td>
<td>-4.97$\times 10^{-3}$</td>
<td>ν_3</td>
</tr>
<tr>
<td>3</td>
<td>$\nu_3 = 1$</td>
<td>2(2,E_g)</td>
<td>2(2,F_{1g})</td>
<td>F_{1u}</td>
<td>F_{1u}</td>
<td>F_{1g}</td>
<td>0.5$\times 10^{-3}$</td>
<td>ν_3</td>
</tr>
<tr>
<td>3</td>
<td>$\nu_3 = 1$</td>
<td>2(2,E_g)</td>
<td>1(1,F_{1g})</td>
<td>F_{1u}</td>
<td>F_{1u}</td>
<td>F_{1g}</td>
<td>-1.71$\times 10^{-4}$</td>
<td>ν_3</td>
</tr>
<tr>
<td>3</td>
<td>$\nu_3 = 1$</td>
<td>2(2,E_g)</td>
<td>1(1,F_{1g})</td>
<td>F_{1u}</td>
<td>F_{1u}</td>
<td>F_{1g}</td>
<td>1.085$\times 10^{-4}$</td>
<td>ν_3</td>
</tr>
<tr>
<td>3</td>
<td>$\nu_3 = 1$</td>
<td>0(0,A_{1g})</td>
<td>0(0,A_{1g})</td>
<td>F_{1u}</td>
<td>F_{1u}</td>
<td>F_{1g}</td>
<td>6.4$\times 10^{-8}$</td>
<td>ν_3</td>
</tr>
<tr>
<td>3</td>
<td>$\nu_3 = 1$</td>
<td>0(0,A_{1g})</td>
<td>0(0,A_{1g})</td>
<td>F_{1u}</td>
<td>F_{1u}</td>
<td>F_{1g}</td>
<td>0.0</td>
<td>ν_3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trans.</th>
<th>Ω</th>
<th>Paramètres du moment dipolaire $\tilde{\mu}{\Omega}^{(\nu_3)}(K{2g}, n_{L2g})$</th>
<th>$K_{\Gamma}(K_{2g}, \Gamma_{2g})$</th>
<th>Γ_{1u}</th>
<th>Γ_{2u}</th>
<th>Valeurs/u.a.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_3</td>
<td>0</td>
<td>$0(0, A_{1g})$</td>
<td>0(0,A_{1g})</td>
<td>A_{1g}</td>
<td>F_{1u}</td>
<td>F_{1u}</td>
</tr>
<tr>
<td>1</td>
<td>ν_3</td>
<td>$0(0, A_{1g})$</td>
<td>1(1,F_{1g})</td>
<td>A_{1g}</td>
<td>F_{1u}</td>
<td>F_{1u}</td>
</tr>
<tr>
<td>1</td>
<td>ν_3</td>
<td>$0(0, A_{1g})$</td>
<td>0(0,A_{1g})</td>
<td>A_{1g}</td>
<td>F_{1u}</td>
<td>F_{1u}</td>
</tr>
<tr>
<td>1</td>
<td>ν_3</td>
<td>$0(0, A_{1g})$</td>
<td>2(2,E_g)</td>
<td>A_{1g}</td>
<td>F_{1u}</td>
<td>F_{1u}</td>
</tr>
<tr>
<td>1</td>
<td>ν_3</td>
<td>$0(0, A_{1g})$</td>
<td>2(2,E_g)</td>
<td>A_{1g}</td>
<td>F_{1u}</td>
<td>F_{1u}</td>
</tr>
<tr>
<td>2</td>
<td>ν_3</td>
<td>$1(1,$F$_{1g}$)</td>
<td>1(1,F_{1g})</td>
<td>A_{1g}</td>
<td>F_{1u}</td>
<td>F_{1u}</td>
</tr>
<tr>
<td>2</td>
<td>ν_3</td>
<td>$1(1,$F$_{1g}$)</td>
<td>1(1,F_{1g})</td>
<td>A_{1g}</td>
<td>F_{1u}</td>
<td>E_g</td>
</tr>
<tr>
<td>2</td>
<td>ν_3</td>
<td>$1(1,$F$_{1g}$)</td>
<td>1(1,F_{1g})</td>
<td>A_{1g}</td>
<td>F_{1u}</td>
<td>F_{1u}</td>
</tr>
<tr>
<td>2</td>
<td>ν_3</td>
<td>$1(1,$F$_{1g}$)</td>
<td>1(1,F_{1g})</td>
<td>A_{1g}</td>
<td>F_{1u}</td>
<td>F_{1u}</td>
</tr>
<tr>
<td>2</td>
<td>ν_3</td>
<td>$2(0,$A$_{1g}$)</td>
<td>0(0,A_{1g})</td>
<td>A_{1g}</td>
<td>F_{1u}</td>
<td>F_{1u}</td>
</tr>
<tr>
<td>2</td>
<td>ν_3</td>
<td>$2(2,$E$_g$)</td>
<td>0(0,A_{1g})</td>
<td>A_{1g}</td>
<td>F_{1u}</td>
<td>F_{1u}</td>
</tr>
<tr>
<td>2</td>
<td>ν_3</td>
<td>$2(2,$E$_g$)</td>
<td>0(0,A_{1g})</td>
<td>A_{1g}</td>
<td>F_{1u}</td>
<td>F_{1u}</td>
</tr>
</tbody>
</table>

Fig. 7.17 - Structures vibroniques calculées avec le modèle Jahn-Teller et le modèle effectif.
Structure rovibronique

Afin d’inclure les principaux termes de couplage, nous avons développé $\tilde{H}_{\text{<Base>}}^{\nu_3}$ à l’ordre zéro et $\tilde{H}_{\text{<Base>}}^{\nu_3}$ à l’ordre trois, ce qui donne 21 paramètres pour l’Hamiltonien effectif. Pour le calcul des intensités, le moment dipolaire a été développé à l’ordre deux et nous avons 12 paramètres effectifs.

Comme $V(\text{CO})_6$, nous n’avions pas de paramètres rovibroniques disponibles pour ReF_6 au début de ce travail (si ce n’est les deux paramètres vibroniques du modèle JT), nous sommes donc partis des paramètres rotationnels et rovibrationnels de $^{182}\text{WF}_6$ légèrement modifiés. Concernant les paramètres rovibroniques restants, plusieurs simulations ont été réalisées avec plusieurs jeux de paramètres (Hamiltonien et moment dipolaire) jusqu’à $J = 64.5$ et à une température rotationnelle $T_R = 50$ K. En effet, la simulation pour WF_6 [166] (enregistré dans les mêmes conditions que ReF_6) pour laquelle l’analyse rovibrationnelle détaillée a pu être réalisée donne $T_R = 50$. Après de nombreux essais, il est apparu que le jeu de paramètres de la table 7.4 semblait satisfaisant si l’on compare sur la figure 7.18 les profils calculé et observé. De plus, nous pouvons remarquer sur cette même figure que le modèle rovibronique effectif est beaucoup plus efficace que le modèle rovibronique non-transformé (la simulation étant celle de la référence [166]). Notons cependant que les “ailes” de notre spectre simulé sont moins larges que celles du spectre observé. Ceci est principalement dû à J_{max} qui prend la valeur 64.5 dans nos simulations ; pour ce faire il aurait fallu considérer des J de l’ordre de $\sim 75.5-80.5$ qui posent de gros problèmes numériques (en temps CPU et en taille de fichiers).

La figure 7.19 montre les énergies réduites calculées

$$E_{\text{red}} = E - B_0 J (J + 1)$$

(7.13)

pour $\nu_3 = 1$. Nous observons les quatre sous-niveaux vibroniques ainsi que l’éclatement octaédrique.

FIG. 7.18 - Profils spectraux calculés (modèle Jahn-Teller (pointillés) et modèle effectif (ligne continue)) et observé (trait en gras) à basse résolution.
7.2.3 Simulations à haute resolution

Contrairement à V(CO)₆, nous disposons d’ores et déjà de quelques portions de spectres résolus à 0.0007 cm⁻¹ (spectres par diodes lasers). Seulement, ces portions de spectres sont très denses et sont très difficiles à analyser ; il nous faudrait une plus grosse partie du spectre (avec par exemple d’autres diodes balayant d’autres régions !)². Nous avons tout de même simulé le spectre entier à haute résolution (0.0007 cm⁻¹, voir Fig. 7.20) et pointé quelques raies dans différentes régions afin de mettre l’accent sur la complexité de ce système. Pour cela, nous avons calculé puis tracé les spectres

²Le problème des faibles intensités demeure toujours, c’est pourquoi le spectre n’a pas pu être enregistré à haute résolution en TF (voir les remarques sur V(CO)₆).
pour chacun des isotopes. On retrouve ainsi l'excès de 0.27 cm⁻¹ visible dans les spectres (voir Figs. 7.21, 7.22 et 7.23). Enfin, nous avons comparé les portions de spectres expérimentaux et théoriques (Fig. 7.24). La région qui semble la plus satisfaisante est celle au voisinage de 728 cm⁻¹ où l'on observe une structure périodique analogue entre la simulation et l'expérience.

Fig. 7.20 - Simulation à haute résolution (0.0007 cm⁻¹) de la bande ν₃ de ReF₆ incluant les deux isotopes.
Fig. 7.21 - Portion du spectre à haute résolution dans la région 711.5-712.5 cm⁻¹. Les traits pointent une branche P.
Fig. 7.22 - Portion du spectre à haute résolution dans la région 714-715 cm\(^{-1}\). Les pointeurs les plus hauts indiquent une branche R, ceux du milieu indiquent une branche Q et ceux les plus bas indiquent une branche P.
FIG. 7.23 - Portion du spectre à haute résolution dans les régions 715-716 cm⁻¹ (branche R) et 728-729 cm⁻¹ (branches Q et R).
Fig. 7.24 - Portion du spectre à haute résolution comparé aux spectres diode laser expérimentaux.
7.3 Résumé du chapitre

7.3.1 Ce qu'il faut retenir •••

Nous venons de présenter deux applications de notre modèle rovibronique effectif : V(CO)\textsubscript{6} et ReF\textsubscript{6}. Pour ces deux molécules, les spectres expérimentaux et théoriques à basse résolution ont été confrontés. Nous avons aussi présenté quelques portions de spectres simulées à haute résolution.

- Correspondance correcte entre la simulation et l'expérience à basse résolution.
- Evaluation des principaux paramètres rovibroniques pour ces deux molécules.
- Les résultats concernant V(CO)\textsubscript{6} laissent penser que le couplage spin-orbite est faible. On peut évoquer la construction d'un modèle plus complet incluant la partie spin-orbite pour V(CO)\textsubscript{6} avec des opérateurs du type
 \[(R^{(k_s)} \otimes (S^{(k_s)} \otimes E^{(k_e)})^{(k_{se})} \otimes V^{(k_v)})(k_\sigma)\, , \, (k_s = 0, 1)\, ,\]
et une base \(|(J_1, (s = 1/2, j_e = 1) j_{se}, l; j, n, \sigma)\).

- Présentation d'un modèle rovibronique semi-classique pour une analyse qualitative.

7.3.2 Les références à consulter

Voici les principales références concernant ce chapitre. Cette liste n'est pas exhaustive.

Traitement algébrique de systèmes rovibroniques

Ce dernier chapitre est consacré à la construction d’un jeu d’opérateurs électroniques, à partir d’un système d’opérateurs de bosons (fermions) élémentaires \(\{b_i^+, b_i\} \) de \(U(n) \) (ou \(u(n) \)), associé à un état donné. Il est important aussi de préciser que, de part les objectifs que l’on s’était fixés au début de ce travail, cette dernière partie s’inscrit plutôt dans les perspectives de travaux ultérieurs pouvant déboucher par exemple sur un autre travail de thèse. Ainsi durant ce chapitre, les outils seront précisés sans pour autant être développés en détail.

Lors des deux chapitres précédents, nous avons vu qu’il n’était pas possible de considérer un état électronique deux fois dégénéré en lui associant un moment cinétique ; la raison est qu’il n’existe pas de descente naturelle dans la chaîne \(\text{SO}(3) \supset \text{O} \) permettant cela. Ainsi le schéma construction des opérateurs électroniques (Chap. 5) pour un état \(E \) n’est plus envisageable. Le formalisme sphérique orienté ne permettant pas une telle approche, nous allons considérer ici la chaîne algébrique \(u(2) \supset su(2) \supset \text{so}(2) \) dite “3d standard” [194, 125]. Boujut et Michelot ont initialement opté pour cette chaîne pour traiter les degrés de liberté vibrationnels des modes de pliage d’une molécule tétraédrique. Cette approche ne se limitant pas à de tels systèmes, nous verrons que dans le cadre d’une réalisation bosonique, nos opérateurs électroniques seront obtenus à partir des quantités élémentaires \(\{b_i^+, b_i\} \). La plupart des choix de phases seront ceux des références [194, 125]. En pratique, les opérateurs engendrés doivent posséder la symétrie du groupe moléculaire, c’est à dire \(O_h \) dans notre cas. Dans un premier temps, on considérera le formalisme “3d orienté” dans le groupe ponctuel \(O \). L’extension au groupe \(O_h \) sera triviale du fait de la structure produit direct \(O \times C_1 = O_h \).

8.1 Rappels sur les tenseurs irréductibles de \(U(n) \)

Nous rappelons ici quelques résultats concernant les groupes unitaires \(U(n) \) ainsi que leur réalisation en terme d’opérateurs de bosons. Pour plus de détails, le lecteur est invité à consulter les références [198, 194] qui adoptent les conventions de Gel’fand et Zeitlin (GZ) et de Louck [199, 200]. Dans nos rappels, nous considérons la chaîne canonique \(U(n) \supset U(n-1) \supset \cdots \supset U(1) \) car elle permet de définir les opérateurs de poids maximal de \(U(n) \).
8.1.1 Définitions et notations

Les groupes $U(n)$ et $SU(n)$

Le groupe $U(n)$ est l’ensemble des matrices unitaires $n \times n \{ U / UU^t = I_n \}$. On montre que l’opérateur O_U auquel correspond U peut toujours s’écrire comme
\[
O_U = e^{i\alpha^k_j E_{kj}} ,
\]
(où α^k_j sont des nombres complexes tels que $\alpha^* \ k^j = \alpha^j_k$ et où E_{kj} constituent un système de n^2 générateurs de l’algèbre de Lie $u(n)$ associée à $U(n)$. Les E_{kj} obéissent aux relations de commutation
\[
[E_{ij}, E_{kl}] = \delta_{jk} E_{il} - \delta_{il} E_{kj} , \quad E_{ij}^t = E_{ji} .
\]
Dans le cas où $\det(U) = 1$, le groupe à considérer est le sous-groupe spécial unitaire $SU(n)$ de $U(n)$. Les générateurs de $su(n)$, au nombre de $n^2 - 1$, s’obtiennent à partir de ceux de $u(n)$ en considérant les nouvelles quantités
\[
E_{ij}' = E_{ij} - \delta_{ij} \frac{1}{n} \sum_{k=1}^n E_{kk} ,
\]
qui vérifient les mêmes relations de commutation que les E_{ij}.

Représentations irréductibles de $U(n)$ – États de Gel’fand

Une représentation irréductible de $U(n)$ est caractérisée à l’aide de n entiers positifs, négatifs ou nuls et définie par la partition
\[
[m_1n, m_2n, \ldots, m_n] \equiv [m]_n ,
\]
avec la convention
\[
m_{in} \geq m_{2n} \geq \cdots \geq m_{nn} .
\]
Au niveau de $SU(n)$, puisque les $RI [m]_n$ et $[m]_n + [k]_n$ (partition composée de n valeurs k identiques avec k quelconque) sont rigoureusement identiques [199], les RI de $SU(n)$ sont caractérisées par la partition de Young-Weyl $[m_1n - m_{nn}, m_{nn} - m_{nn}, \ldots, m_{nn} - m_{nn}] = 0$. Par exemple, la $RI \begin{bmatrix} 1, 0, -1 \end{bmatrix}$ de $U(4)$ s’écrit au niveau de $SU(4)$ comme $[2, 1, 1, 0]$. Afin d’être cohérent dans nos notations, nous choisirons, tout au long de ce chapitre, toujours celles relatives à $U(n)$.

Une base adaptée à la décomposition canonique $U(n) \supset U(n-1) \supset \cdots \supset U(1)$ est donnée par la “table de Gel’fand” ou “état de Gel’fand”, qui se note usuuellement [201]
\[
[(m)_n] = \begin{bmatrix}
 m_{1n} & \cdots & m_{1r} & \cdots & m_{12} & m_{22} \\
 \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\
 \cdots & \ddots & m_{rr} & \ddots & \cdots & \cdots \\
 \cdots & \ddots & \cdots & \ddots & \ddots & \cdots \\
 m_{12} & \cdots & \cdots & \cdots & m_{1n} \\
 m_{11} & m_{22} & \cdots & \cdots & m_{nn}
\end{bmatrix} = \begin{pmatrix}
 [m]_n \\
 (m)_{n-1}
\end{pmatrix}
\]
(8.5)

Les états de Gel’fand sont de plus définis par les conditions d’encadrement suivantes :
\[
m_{kj} \geq m_{kj-1} \geq m_{k+1j} \quad (j = 1, 2, \ldots, n; k = 1, 2, \ldots, j - 1) .
\]
(8.6)

L’intérêt d’un tel étiquetage est que la r^e rangée correspond à une RI de $U(r)$ et qu’elle n’apparait qu’une seule fois dans la décomposition de $U(r + 1)$ du fait des conditions (8.6). La dimension de l’espace porteur d’une RI de $U(n)$ est donnée par la formule de Weyl [199, 201] :
\[
D([m_{1n}, m_{2n}, \ldots, m_{nn}]) = \frac{1}{12!} \cdots \frac{1}{(n-1)!} \cdots \frac{p_{in}}{12!} \cdots (n-1)! , \quad (p_{ij} = m_{ij} + j - i) .
\]
(8.7)
De plus les éléments de la base de Gel’fand et Zetlin \(\{|(m)\rangle\} \) ne sont rien d’autre que les vecteurs propres des opérateurs diagonaux \(E_{ii} \) associés aux opérateurs de poids \([W(m)]_{n} \equiv [W_{1n}, W_{2n}, \cdots, W_{nn}] \) dont les \(n \) composantes sont données par la formule :

\[
W_{in} = \sum_{i=1}^{i} m_{ii} - \sum_{i=1}^{i-1} m_{ii-1}.
\] (8.8)

Nous pouvons alors écrire :

\[
\langle (m) | E_{ii} | (m) \rangle = W_{in}.
\] (8.9)

Le poids défini par (8.8) est utilisé dans la détermination de la série de Clebsch-Gordan du produit de deux représentations de \(U(n) \) [199].

Concernant l’action d’un opérateur de montée, les éléments matriciels des opérateurs du type \(E_{ii+1} \) s’écrivent [201] :

\[
\langle (m') | E_{ii+1} | (m) \rangle = \left[\frac{\prod_{s=1}^{i-1} (p_{si} - p_{ki})}{\prod_{s=1}^{i} (p_{si} - p_{ki})} \right]^{1/2} \times \left[\frac{-\prod_{s=1}^{i} (p_{si} - p_{ki-1} - 1)}{\prod_{s=1}^{i-1} (p_{si} - p_{ki-1} - 1)} \right]^{1/2}.
\] (8.10)

Dans cette dernière relation, nous avons \((m') = (m) + \varepsilon_{k}(i) \) et \(p_{ij} = m_{ij} + j - i \). \(\varepsilon_{k}(i) \) est un vecteur unité qui ajoute 1 sur la \(k \)ème entrée de la \(i \)ème rangée \(i.e. m_{ki} \rightarrow m_{ki} + 1 \). Les éléments matriciels des opérateurs de descentes \(E_{ii-1} \) sont obtenus simplement à partir de la condition d’hermiticité \(E_{ij} = E_{ji} \) où cette fois on aura \(m_{ki} \rightarrow m_{ki} - 1 \). D’une manière générale, l’action d’un opérateur quelconque \(E_{ij} \) sur un état de GZ va s’écrire

\[
E_{ij} |(m)\rangle = \sum_{(m')} \langle (m') | E_{ij} | (m) \rangle |(m')\rangle,
\] (8.11)

où les éléments matriciels \(\langle (m') | E_{ij} | (m) \rangle \) sont explicités dans la référence [200].

Il reste maintenant à définir un OTI de symétrie \([K]_{n} \) dans \(U(n) \). Par définition, un OTI noté \(T([K]_{n}) \) doit vérifier les relations de commutation [198] :

\[
\left[E_{ij}, T\left(\left(\frac{[K]_{n}}{(K)_{n-1}} \right) \right) \right] = \sum_{(K')} \left\langle \left(\frac{[K']_{n}}{(K')_{n-1}} \right) | E_{ij} | \left(\frac{[K]_{n}}{(K)_{n-1}} \right) \right\rangle T\left(\left(\frac{[K']_{n}}{(K')_{n-1}} \right) \right).
\] (8.12)

8.1.2 Les opérateurs maximaux de \(U(n) \)

Nous ne considérons plus ici les tenseurs généraux définis précédemment mais nous nous focaliserons sur un problème plus précis qui est celui de la réalisation bosonique. Nous évoquerons aussi très brièvement le cas où la réalisation est de type fermionique. Les générateurs de l’algèbre sont maintenant décrits par les formes bilinéaires \(E_{ij} = b_{i}^{+}b_{j} \) (réalisation bosonique) ou \(E_{ij} = f_{i}^{+}f_{j} \) (réalisation fermionique) et induisent des simplifications sur le choix des fonctions de base de GZ. Nous donnerons ainsi l’expression des opérateurs de poids maximal de \(U(n) \) qui permettront de définir un ensemble d’OTI linéairement indépendants par l’action d’opérateurs d’échelle.
La réalisation bosonique

Supposons que les représentations d’une algèbre de Lie $u(n)$ sont caractérisées par un jeu de n nombres entiers positifs ou nuls cette fois 1. Nous pouvons alors former le tableau de Young suivant :

$$[m_{1n}, m_{2n}, \ldots, m_{nn}] = \begin{cases}
\begin{array}{c}
\square \square \square \cdots \square \\
\square \square \square \\
\vdots \\
\square \square \square
\end{array}
\end{cases} \quad (8.13)$$

Cependant, si l’on considère maintenant un système de bosons $\{b_i^+, b_i\}_{i=1, \ldots, n}$ tel que

$$[b_i, b_j^+] = \delta_{ij},$$
$$[b_i, b_j] = [b_i^+, b_j^+] = 0 \quad (8.14)$$

la fonction d’onde totale doit être symétrique dans l’échange de deux bosons et les seules RI possibles de $U(n)$ sont celles à 1 rangée, c’est à dire de la forme

$$[N_b, 0^{n-1}] = \begin{array}{c}
\square \square \square \cdots \square
\end{array}$$

A titre d’exemple, considérons la $RI [N_b, 0]$ de $U(2)$ et voyons comment se rearrangent les expressions (8.9) et (8.10). Il devient aisé de vérifier, à l’aide de l’expression (8.12), les relations suivantes :

$$[E_{11}, T \left(\begin{array}{c}
N_b \\
0 \\
m_{11}
\end{array} \right) \right] = m_{11} T \left(\begin{array}{c}
N_b \\
0 \\
m_{11}
\end{array} \right)$$

$$[E_{22}, T \left(\begin{array}{c}
N_b \\
0 \\
m_{11}
\end{array} \right) \right] = (N_b - m_{11}) T \left(\begin{array}{c}
N_b \\
0 \\
m_{11}
\end{array} \right)$$

$$[E_{12}, T \left(\begin{array}{c}
N_b \\
0 \\
m_{11}
\end{array} \right) \right] = \sqrt{(m_{11} + 1)(N_b - m_{11})} T \left(\begin{array}{c}
N_b \\
0 \\
m_{11} + 1
\end{array} \right)$$

$$[E_{21}, T \left(\begin{array}{c}
N_b \\
0 \\
m_{11}
\end{array} \right) \right] = \sqrt{m_{11}(N_b - m_{11} + 1)} T \left(\begin{array}{c}
N_b \\
0 \\
m_{11} - 1
\end{array} \right)$$

avec la condition d’encadrement

$$N_b \geq m_{11} \geq 0 \quad (8.15)$$

Si l’on considère les générateurs $E'_{11} = (E_{11} - E_{22})/2$, $E'_{12} = E_{12}$ et $E'_{21} = E_{21}$ (relation 8.3), le lien entre les relations (8.15) et les formules usuelles des tenseurs de type contravariant $T^m_{(j)}$ de $SU(2)$ devient clair si l’on fait la correspondance

$$m = m_{11} - \frac{N_b}{2} \quad , \quad N_b = 2j \quad (-j \leq m \leq j \ , \ \text{relation} \ (8.16))$$

On retrouve alors les expressions usuelles d’un moment cinétique en réalisation de Schwinger

$$\left\{ \begin{array}{l}
J_+ = E'_{12} \ , \ J_\times = \frac{1}{2}(N_1 - N_2) = E'_{11} \\
J_- = E'_{21} \ , \ (N_i = E_{ii})
\end{array} \right. \quad (8.17)$$

1Il existe toujours à priori un vecteur $[k^n]$ se ramenant à une représentation équivalente si $m_{ij} < 0$.
Cette parenthèse étant refermée, il s’avère que les OTI que nous aurons toujours à considérer résultent d’un couplage entre un état \([N_b, 0^{n-1}]\) et de son adjoint \([0^{n-1}, -N_b]\). Les seuls opérateurs de \(U(n)\) possibles pour une réalisation bosonique seront alors donnés par [194] :

\[
[0^{n-1}, -N_b] \times [N_b, 0^{n-1}] = \sum_{z=0}^{N_b} [z, 0^{n-2}, -z] .
\] (8.18)

Leroy [198] montre alors qu’un opérateur maximal (de poids maximum), permettant d’engendrer un opérateur quelconque linéairement indépendant, est nécessairement de la forme

\[
T \begin{bmatrix} \left[z, 0^{n-2} \right] (\text{max}_c) \\ \end{bmatrix} = T \begin{bmatrix} z & 0 & \cdots & 0 & -z \\ z & 0 & \cdots & \cdots & \cdots \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ z & 0 & \cdots & 0 & z \\ \end{bmatrix} ,
\] (8.19)

et s’explicite, en réalisation bosonique, comme :

\[
T \begin{bmatrix} \left[z, 0^{n-2} \right] (\text{max}_c) \\ \end{bmatrix} = \alpha_{z,N_b} b_1^{\dagger} b_n^z .
\] (8.20)

Ces tenseurs remplissent par définition les deux conditions suivantes :

- \([E_{ij}, \alpha_{z,N_b} b_1^{\dagger} b_n^z] = 0 \) pour \(i < j = 1, \cdots, n\),
- \([E_{ii}, \alpha_{z,N_b} b_1^{\dagger} b_n^z] = \alpha_{z,N_b} W_{in} b_1^{\dagger} b_n^z \).

\(\alpha_{z,N_b}\) est un coefficient numérique à déterminer. La notation \(\text{max}_c\) indique le caractère maximal dans la chaîne canonique. A partir de là, le schéma logique que nous utiliserons dans toute la suite (on considérera les groupes \(U(2), U(3)\) et \(U(4)\)) sera toujours le même : tout d’abord \((i)\) on identifie une composante extrême par l’action d’un opérateur de montée \(E_{ij}\) \((i < j = 1, \cdots, n)\) à partir des expressions (8.21) puis, \((ii)\) on extrait les autres composantes en appliquant les opérateurs d’échelle \(E_{ij}\) \((i > j = 1, \cdots, n)\) sur la composante extrême.

Afin d’être plus général par rapport à la relation (8.20) et afin de considérer par la suite des états du type \([N_b, 0^{n-1}]\), Boujut [194] propose des opérateurs de la forme

\[
T \begin{bmatrix} \left[m_{1n}, 0^{n-2} \right] (\text{max}_c) \\ \end{bmatrix} = \mathcal{G}_n b_1^{\dagger} m_{1n} b_n^{m_{nn}} ,
\] (8.22)

où \(\mathcal{G}_n\) est une fonction d’opérateurs qui commutent avec les générateurs de \(u(n)\) et \(m_{1n}\) n’est pas obligatoirement égale à \(m_{nn}\). Par suite, tous les états du système peuvent facilement être engendrés en imposant les conditions \(m_{1n} = N_b\), \(m_{nn} = 0\) et \(\mathcal{G}_n = \sqrt{N_b}\), c’est à dire que l’on aura par actions successives des tenseurs (8.22) sur l’état vide :

\[
| N_b, 0, \cdots, 0 > = \mathcal{G}_n b_1^{\dagger N_b} | 0^n > = T \begin{bmatrix} \left[N_b, 0^{n-1} \right] (\text{max}_c) \\ \end{bmatrix} | 0^n > .
\] (8.23)

La réalisation fermionique

Nous présentons ici succintement une alternative au formalisme bosonique lorsque le système considéré possède un moment angulaire demi-entier. L’approche fermionique (moins répandue que la
réalisation bosonique) méritait éventuellement que l'on s'y intéresse. Nous proposons dans ce sous-paragraphe quelques suggestions concernant cette réalisation en relation avec les interactions de type vibronique.

Le modèle des bosons a eu un intérêt majeur dans la physique de ces cinquante dernières années. Notamment, en physique des particules, il a permis et permet encore aujourd'hui de traiter des systèmes nucléaires possédant un nombre pair de protons et de neutrons. Cependant, la moitié des espèces rencontrées ont un nombre impair de protons et de neutrons. Le modèle des fermions, initialement introduit en physique atomique [202, 203], a été étendu pour traiter ces systèmes qui obéissent à la statistique de Fermi-Dirac. Il est ainsi envisageable de considérer des opérateurs de fermion pour traiter un état électronique quatre fois dégénéré \(G' \) par exemple. Mais soyons plus général en prenant le système fermionique \(\{ f_i^+, f_i \} \) suivant. Les opérateurs créations \(f_i^+ \) et annihilations \(f_i \) satisfont aux relations d’anticommutation usuelles :

\[
\{ f_i, f_j^+ \} = \delta_{ij} \\
\{ f_i, f_j \} = \{ f_i^+, f_j^+ \} = 0 .
\]

Notons aussi que les opérateurs bosoniques et fermioniques commutent :

\[
[b_i, f_j^+] = [b_i, f_j] = [b_i^+, f_j^+] = 0 .
\]

De plus les générateurs \(E_{ij} = f_i^+ f_j \) obéissent aux mêmes règles (8.2) et sont donc des générateurs de l’algèbre de Lie \(u(n) \). La fonction d’onde totale du système fermionique doit être antisymétrique et on note sa représentation comme

\[
\{ N_f, 0^{n-N_f} \} \equiv [1, 1, \cdots, 0, 0, \cdots] = \begin{cases} N_f \\ \vdots \\ \square \end{cases}
\]

Les symétries permises des tenseurs de \(U(n) \) pour une réalisation fermionique sont les mêmes que dans le cas d’une réalisation bosonique. En effet, il est simple de vérifier que la représentation adjointe \([N_f, 0^{n-N_f}]^* \) est équivalente à une représentation du type \(\{ N_f, 0^{n-1} \} \) i.e. les symétries données par (8.18) sont identiques. La différence majeure entre les deux réalisations réside dans la construction des états du système. La base est encore construite par applications successives d’opérateurs de montée

\[
f_i^+ f_j^+ \cdots f_k^+ \big| 0^n > , (i, j, k = 1, \cdots, n) ,
\]

mais nous avons la condition supplémentaire

\[
(f_i^+)^2 \big| 0^n >= 0 ,
\]

qui traduit le fait que deux fermions ne peuvent se trouver dans le même état. Il faut donc obligatoirement que \(i \neq j \neq \cdots \neq k \) dans l’expression (8.27).

Avant de conclure sur la réalisation fermionique \(^2\) voici quelques propositions pour rendre compte des couplages vibroniques pour un système Jahn-Teller. Prenons le cas du système \(\{ F_2 \times G' \} \) et traitons le dans le cadre du modèle IBFM (the Interacting Boson-Fermion Model) de Iachello et de Van Isacker. Par exemple, nous avons les deux chaînes de groupes possibles \(^3\) :

\[
\begin{array}{c}
\supset SO_b(3) \times Sp_f(4) \supset SO_b(3) \times SU_f(2) \supset SU_{bf}(2) \supset O_h^S \\
\downarrow \quad \quad \quad \downarrow \quad \quad \quad \downarrow \\
\{ N_6, \delta^3 \} \quad \quad \quad SU_f(4) \quad \quad \quad SU_{bf}(2) \quad \quad \quad O_h^S
\end{array}
\]

\(^2\) Il faudrait s'intéresser par exemple à la construction d’opérateurs tensoriels maximaux du type (8.22) dans la chaîne canonique, ce qui sort des objectifs de notre travail.

\(^3\) Le groupe \(U_b(4) \), dont l’algèbre associée est \(u_b(4) \), décrit la dynamique d’un mode trois dégénéré [204]. Nous présentons ici deux chaînes, ce qui, bien entendu, est non exhaustif.
La théorie des superalgèbres [205, 206], dans laquelle les degrés de liberté bosoniques et fermioniques sont mélangés, pourrait aussi être considérée. Dans l’hypothèse d’un travail ultérieur, nous aurions alors à considérer des chaînes du type :

\[
U(4/4) \supset U_b(4) \times U_f(4) \supset \cdots \supset O^\delta_h_{[n_{bh}]}
\]

Dans ces différentes chaînes, l’indice “b” est attaché à la partie vibrationnelle et l’indice “f” est attaché à la partie électronique. Le symbole \([\cdots]\) désigne une \(RI\) d’une superalgèbre [205].

8.2 Traitement d’un état électronique deux fois dégénéré

Nous appliquons maintenant le formalisme “2\(d\) standard” à la construction d’états électroniques deux fois dégénérés. Par ailleurs, ce paragraphe sera plus détaillé que les paragraphes suivants (états trois et quatre fois dégénérés).

8.2.1 Constructions des opérateurs électroniques standards pour un état \(E\)

États électroniques dans \(u(2) \supset su(2) \supset so(2)\)

Soit \(\{b^+_i, b_i\}_{i=1,2}\) un système de bosons associé à l’algèbre \(u(2)\). Les états du système sont obtenus en appliquant des puissances d’opérateurs créations sur l’état vide

\[
| n_1, n_2 > = (n_1!n_2!)^{-1/2} b_1^{n_1} b_2^{n_2} | 0, 0 > .
\]

Dans le membre de gauche, les états \(| n_1, n_2 >\) sont aussi notés \(| j - m, j + m >\). Pour un état électronique \(E\) donné, la symétrie dans \(u(2)\) est fixée et se note \([1,\hat{0}]\); on peut ainsi faire la correspondance entre les états (8.31) “usuels” et les états covariants \(| [1,\hat{0}]_1/2, m >\) par la relation [125]

\[
[1,\hat{0}] T^{(\hat{1})} \equiv [1,\hat{0}]_1/2, m = e^{i\theta} (-1)^{1/2-m} | 1/2 - m, 1/2 + m > .
\]

\(e^{i\theta}\) est un facteur de phase à déterminer. Si l’on se souvient des relations de commutation d’un tenseur covariant de \(SU(2)\) (en réalisation de Schwinger)

\[
[J_\pm, T^{(\hat{0})}_m] = -j(j + 1) - m(m \mp 1)]^{1/2} T^{(\hat{0})}_{m\pm 1}
\]

et si l’on utilise la relation (8.22) d’un tenseur maximal, il est facile de constater que

\[
\left[J_\pm, T \left[\begin{array}{c}
1 \\
0
\end{array} \right] \right] = 0 .
\]

Il apparaît alors que ce tenseur est de composante minimale dans \(SU(2)\) i.e. :

\[
[1,\hat{0}] T^{(\hat{1})}_1 = \mathcal{N}(1,0)b^+_1 .
\]

L’action de l’opérateur de montée \(J_+\) \(^4\) sur ce tenseur permet de définir l’autre composante covariante du tenseur :

\[
[1,\hat{0}] T^{(\hat{1})}_2 = -\mathcal{N}(1,0)b^+_2 .
\]

En utilisant les équations (8.31) et (8.32), le facteur de phase \(\mathcal{N}(1,0)\) peut facilement être relié au facteur \(e^{i\theta}\); en effet, \(\mathcal{N}(1,0) = -e^{i\theta}\).

\(^4\)Dans un formalisme de type contravariant, \(J_-\) (resp. \(J_+\)) correspond à un opérateur de descente (resp. montée).
États électroniques adjoints

Les états considérés ici sont les états adjoints de (8.32) et la symétrie dans $u(2)$ devient donc $[1,0]^* = [\hat{0}, -1]$. Nous notons ces états de la manière suivante :

$$[\hat{0}, -1]T_m^{(j)} \equiv \langle [1,0] \frac{1}{2}, m |.$$

(8.36)

En procédant de manière similaire, il est aisé de vérifier que nous avons la relation de commutation suivante :

$$[J_-, T \left[\begin{array}{cc} 0 & -1 \\ 0 & 1 \end{array} \right]] = 0.$$

Le tenseur adjoint est donc de composante maximale dans $SU(2)$ et nous pouvons écrire

$$[\hat{0}, -1]T_{\frac{1}{2}}^{m} = \mathcal{N}(0,1)b_1.$$

(8.37)

L’action de l’opérateur de descente J_- sur un état $\langle [1,0] \frac{1}{2}, m |$ permet d’obtenir la deuxième composante de l’opérateur (ou du bra). Nous avons

$$[\hat{0}, -1]T_{-\frac{1}{2}}^{m} = \mathcal{N}(0,1)b_2,$$

(8.38)
où $\mathcal{N}(0,1)$ est un facteur de phase. En prenant l’adjoint hermitique des opérateurs (8.34) et (8.35), on obtient une relation unique entre les tenseurs covariants et leurs adjectifs :

$$\left([1,0]T_{m}^{(j)} \right) \dagger = \frac{\mathcal{N}(1,0)^*}{\mathcal{N}(0,1)} (-1)^{\frac{1}{2} + m} [\hat{0}, -1]T_{-m}^{(j)}$$

$$= \frac{\mathcal{N}(1,0)^*}{\mathcal{N}(0,1)} [\hat{0}, -1]T_{m}^{(j)}.$$

(8.39)

Par souci de clarté, nous préférons laisser l’étiquette de $u(2)$, tout d’abord parce qu’elle nous renseigne sur la nature bosonique du système et aussi parce qu’elle permet de différencier les opérateurs de leurs adjoints respectifs.

Opérateurs électroniques standards covariants et contravariants

Pour construire un opérateur électronique arbitraire, il suffit de coupler un opérateur “purement création” de symétrie $[1,0]$ avec un opérateur “purement annihilation” de symétrie $[\hat{0}, -1]$. Un tel couplage s’écrit d’une manière générale

$$[1,-1]c^{(j)}_m = e^{i\psi(j)} [1,0]T_{\frac{1}{2}}^{(j)} \otimes [\hat{0}, -1]T_{\frac{1}{2}}^{m}$$

$$= e^{i\psi(j)} F_{m_1, m_2} \frac{m_1}{m} \frac{m_2}{m} [1,0]T_{\frac{1}{2}}^{(j)} [\hat{0}, -1]T_{m}^{(j)}.$$

(8.40)

e$^{i\psi(j)}$ désigne un facteur de phase dépendant uniquement de j.

L’invariant linéaire de $u(2)$ est obtenu lorsque $j = 0$, c’est à dire que l’on a :

$$[1,-1]c^{(0)}_0 = -e^{i\psi(0)}\mathcal{N}(1,0)\mathcal{N}(0,1)\sqrt{2}(N_1 + N_2).$$

(8.41)

Les générateurs de $su(2)$ s’obtiennent pour $j = 1$. Nous avons alors (en réalisation de Schwinger)

$$[1,-1]c^{(0)}_{-1} = e^{i\psi(1)}\mathcal{N}(1,0)\mathcal{N}(0,1) b_1^+ b_2 = [1,-1]c^{(1)}_{-1} \sim J_+,$$

$$[1,-1]c^{(1)}_{-1} = e^{i\psi(1)}\mathcal{N}(1,0)\mathcal{N}(0,1) (N_1 - N_2) = -[1,-1]c^{(0)}_{-1} \sim J_z,$$

(8.42)

$$[1,-1]c^{(1)}_{1} = -e^{i\psi(1)}\mathcal{N}(1,0)\mathcal{N}(0,1) b_2^+ b_1 = [1,-1]c^{(1)}_{1} \sim J_-.$$
Nous fixons d’ores et déjà les phases $e^{i\psi(0)} = -i$ et $e^{i\psi(1)} = 1$. Ce choix de phase est celui proposé par Boujut [125]. A ce stade, il reste à choisir les phases $\mathcal{N}(1, 0)$ et $\mathcal{N}(0, 1)$.

Calcul des emr électroniques

Le calcul des emr électroniques s’effectue via le théorème de Wigner-Eckart traduit pour les opérateurs 2d standards. L’expression usuelle dans $SU(2)$ [16] s’écrit maintenant :

$$< [1, \hat{0} \hat{1} \frac{1}{2}, M'] | [1, \hat{0} \hat{1} \frac{1}{2}, M] > = (-1)^{j+3/2+M'} \left(\begin{array}{c}
\frac{1}{2} \\
-M'
\end{array} \right) \left(\begin{array}{c}
j \\
m
\end{array} \right) \left([1, \hat{0} \hat{1} \frac{1}{2}, M] | [1, \hat{0} \hat{1} \frac{1}{2}, M] \right)$$

(8.43)

Lorsque $j = 0$ et $M = 1/2$ par exemple, nous avons

$$< [1, \hat{0} \frac{1}{2}, 1/2] | [1, \hat{0} \frac{1}{2}, 1/2] > = i e^{\theta} \mathcal{N}(1, 0) \mathcal{N}(0, 1) \sqrt{2}$$

En appliquant le bra $< [1, \hat{0} \frac{1}{2}, 1/2] |$ sur l’expression précédente, il est facile d’obtenir

$$\left([1, \hat{0} \frac{1}{2}] | [1, \hat{0} \frac{1}{2}] \right) = i \mathcal{N}(1, 0) \mathcal{N}(0, 1)$$

(8.44)

Si l’on considère cette fois l’opérateur diagonal $\mathcal{E}^{(1)}_0$ et une composante particulière ($M = 1/2$ par exemple), nous pouvons écrire :

$$< [1, \hat{0} \frac{1}{2}, 1/2] | [1, \hat{0} \frac{1}{2}, 1/2] > = -e^{\theta} \mathcal{N}(1, 0) \mathcal{N}(0, 1) \sqrt{2}$$

Nous obtenons alors l’expression de l’emr correspondant :

$$\left([1, \hat{0} \frac{1}{2}] | [1, \hat{0} \frac{1}{2}] \right) = \mathcal{N}(1, 0) \mathcal{N}(0, 1) \sqrt{3}$$

(8.45)

Si l’on impose à l’emr (8.44) de valoir 1, de sorte à retrouver les éléments matriciels de l’invariant linéaire de $U(2)$, un choix possible de phase consiste à prendre 5

$$\mathcal{N}(1, 0) = i \quad \text{et} \quad \mathcal{N}(0, 1) = -1.$$

(8.46)

Les phases étant désormais fixées, nous avons à notre disposition un jeu complet d’opérateurs de boson élémentaires non symétrisés résumé ci-dessous :

$$\begin{cases}
[1, \hat{0} \hat{1} \frac{1}{2}] T^{(\frac{1}{2})} = ib_1^+ \\
[1, \hat{0} \hat{1} \frac{1}{2}] T^{(\frac{3}{2})} = -ib_2^+ \\
[0, \hat{0} \hat{1} \frac{1}{2}] T^{(\frac{1}{2})} = -b_2 \\
[0, \hat{0} \hat{1} \frac{1}{2}] T^{(\frac{3}{2})} = -b_1
\end{cases}$$

(8.47)

Cependant, l’utilisation de ce formalisme dans le cadre d’états électroniques deux fois dégénérés nécessite au préalable une symétrisation des opérateurs bosoniques adaptée au sous-groupe O_h. Le paragraphe suivant est donc dédié à l’orientation des tenseurs 2d standards.

5En imposant ce choix particulier, nous avons alors $e^{i\theta} = -i$ qui correspond au “choix a” dans la table (4.6) de la référence [194].
8.2.2 Symétrisation du système de boson élémentaire – Orientation “usuelle”

Nous procédons ici à la symétrisation des opérateurs création et annihilation élémentaires dans la chaîne d'algèbres \(u(2) \supset su(2) \supset O \). Les opérateurs engendrés nous permettront d'attacher directement la symétrie octaédrique au système de générateurs. Notre démarche va consister à suivre deux schémas d'orientations. Le premier schéma est celui usuellement utilisé pour orienter un tenseur de \(u(2) \). Le deuxième schéma consiste à modifier l'orientation d'une \(RI \) afin que les nouveaux générateurs symétrisés forment une algèbre usuelle de Pauli. Nous discuterons des conséquences directes de ce changement d'orientation, notamment au niveau des métriques ainsi que des coefficients de couplage. Après avoir considéré le groupe \(O \), l'introduction de l'inversion se fera naturellement et nous aurons la chaîne de groupes \(U(2)^* \supset SU(2)^* \otimes C_I \supset O_h \) où \(^* \) indique le caractère non-canonical de l'orientation pour une symétrie de type \(E \) contrairement à descente naturelle \(D(\frac{1}{2}) \downarrow O_h = E_{17}^1 \).

Orientation “usuelle” des tenseurs élémentaires dans \(u(2) \supset su(2) \supset O \)

La symétrisation dans \(O \) d'un tenseur élémentaire s'effectue à l'aide d'une similitude \(G \) et peut se noter sous une forme semblable à celle proposée dans \(SO(3) \supset O \) [25, 27]. On a alors la relation

\[
[m_1, -m_2] \ddot{T}_{l\sigma}^{(j)} = \sum_m [m_1, -m_2] G_{l\sigma}^{m} [m_1, -m_2] \ddot{T}_{m}^{(j)},
\]

(8.48)

pour les composantes covariantes. \(\Gamma \) est une \(RI \) de \(O \) de composante \(\sigma \) et \(l \) est un entier valant \(2|m| \) et qui prend les valeurs :

\[l = m_1 + m_2, m_1 + m_2 - 2,\ldots, 1 \text{ ou } 0. \]

Rappelons que pour les tenseurs de type création, nous avons \([m_1, -m_2] = [1, 0] \) et pour les tenseurs de type annihilation \([m_1, -m_2] = [0, -1] \). La symétrisation des composantes contravariantes s'écrit :

\[
[m_1, -m_2] \dddot{T}_{l\sigma}^{(j)} = \sum_m [m_1, -m_2] \dddot{G}_{l\sigma}^{m} [m_1, -m_2] \dddot{T}_{m}^{(j)}. \]

(8.49)

Les matrices \(G \) et \(\ddot{G} \) peuvent être reliées à l'aide des métriques usuelles 6 :

\[
[m_1, -m_2] G_{l\sigma}^{m} = (-1)^{m_1+m_2+m} |m_1, -m_2| \dddot{G}_{l\sigma}^{m}. \]

(8.50)

Il est montré que les matrices unitaires \(G \) de dimension \(2j + 1 \), qui réalisent l'orientation “usuelle”, sont données pour \(m = \pm l/2 \) par les deux relations suivantes [125] :

\[
\begin{cases}
[m_1, -m_2] G_{l\sigma}^{l/2} = \mathcal{N}(l)_{\mu}^{(l\sigma)}(l)_{\delta}^{(m_1, -m_2)} \dddot{G}_{l\sigma}^{(m_2 - m_1 - l)/2} \\
[m_1, -m_2] G_{l\sigma}^{l/2} = \pi(\Gamma(1))_{m_1, -m_2}^{(-1)^{m_1}} \dddot{G}_{l\sigma}^{l/2}.
\end{cases}
\]

(8.51)

Nous préservons, dans ce travail, les conventions de phases établies par Boujut qui sont rappelées, ainsi que les étiquettes \(l, \Gamma \) et \(\sigma \), de la table 8.1. Le facteur \(\delta_{l\sigma}^{(m_1, -m_2)} \) est égal à 1 si la symétrie \(\Gamma \) est autorisée pour des valeurs fixes de \(m_1, m_2 \) et \(l \); il est égal à 0 sinon.

A partir des relations (8.51) et (8.47), il est aisé d'obtenir un jeu d'opérateurs de bosons élémentaires

6Cela suppose au préalable que l'on ait considéré les choix de phases effectués par Michelot [16] pour les métriques. De plus, on note qu'en toute rigueur, un facteur de phase du type \((-1)^{l-\sigma}\) doit venir se greffer sur l'expression (8.50) ; cependant ce facteur vaut toujours 1 pour des représentations entières.
8.2. Traitement d’un état électronique deux fois dégénéré

| Tab. 8.1 - Symétries octaédriques et conventions de phases. |
|----------------|-------------|-------------|-------------|-------------|
| l | $\Gamma \sigma$ | $\mu^{(\Gamma \sigma)}(l)$ | $\pi(\Gamma \sigma)$ | $\mathcal{N}(l)$ |
| 0 (m₁ et m₂ pairs) | A₁ | 1 | 1 | 1 |
| 0 (m₁ et m₂ impairs) | A₂ | $-i$ | -1 | 1 |
| 3p (p ≠ 0) | A₁ | 1 | 1 | $\sqrt{2}$ |
| | A₂ | $-i$ | -1 | $\sqrt{2}$ |
| 3p + 1 | E₁ | 1 | 1 | $\sqrt{2}$ |
| | E₂ | $-i$ | -1 | $\sqrt{2}$ |
| 3p + 2 | E₁ | 1 | 1 | $\sqrt{2}$ |
| | E₂ | i | -1 | $\sqrt{2}$ |

Syétrisés dans l’orientation que nous qualifions d’usuelle. Nous avons alors :

\[
\begin{align*}
|1,0|T_{1E1}^{(\frac{1}{2})} &= -\frac{1}{\sqrt{2}} (b_1^+ + b_2^+) , \\
|1,0|T_{1E2}^{(\frac{1}{2})} &= -\frac{i}{\sqrt{2}} (b_1^+ - b_2^+) , \\
|0,1|T_{1E1}^{(\frac{1}{2})} &= -\frac{1}{\sqrt{2}} (b_1 + b_2) , \\
|0,1|T_{1E2}^{(\frac{1}{2})} &= \frac{i}{\sqrt{2}} (b_1 - b_2) .
\end{align*}
\]

(8.52)

La base 2d symétrisée pour un état E se déduit de l’action du tenseur élémentaire création sur l’état vide comme suit : $|[1,0]1/2,1E\sigma >= |[1,0]T_{1E\sigma}^{(\frac{1}{2})}|0,0 >$.

Opérateurs électroniques symétrisés – 1ère méthode

Nous présentons ici brièvement une première méthode pour obtenir des opérateurs électroniques symétrisés dans la chaîne $u(2) \supset su(2) \supset O$. Celle-ci consiste à symétriser directement les composantes standards (8.41) et (8.42) à l’aide de la matrice d’orientation (8.51). Il existe néanmoins une différence au niveau de la formule (8.48) qui oriente des tenseurs de poids maximaux j_{max} ; dans le cas général où $\frac{|m_1-m_2|}{2} \leq j \leq \frac{m_1+m_2}{2}$, i.e lorsque l’on recherche également les invariants, les composantes non-standards sont données par

\[
[m_1,-m_2]_m^{\mathcal{C}(j)} = \sum_{m} [m',-m'_2]_m^{\mathcal{C}(m)} [m_1,-m_2]_m^{\mathcal{C}(j)} ,
\]

(8.53)

avec

\[
\begin{align*}
m'_1 &= m_1 - m_2 + j , \\
m'_2 &= \frac{m_1 + m_2}{2} + j .
\end{align*}
\]

Nous obtenons ainsi les opérateurs électroniques souhaités en fonction des générateurs de $SU(2)$:

\[
\begin{align*}
|1,-1|\mathcal{C}^{(0)}_{041} &= |1,-1|\mathcal{C}^{(0)}_{042} = \frac{1}{\sqrt{2}} (N_1 + N_2) , \\
|1,-1|\mathcal{C}^{(1)}_{041} &= \frac{1}{\sqrt{2}} (N_2 - N_1) = -\sqrt{2} J_z , \\
|1,-1|\mathcal{C}^{(1)}_{2E1} &= \frac{1}{\sqrt{2}} (b_1^+ b_2 + b_2^+ b_1) = \frac{1}{\sqrt{2}} (J_+ + J_-) , \\
|1,-1|\mathcal{C}^{(1)}_{2E2} &= -\frac{i}{\sqrt{2}} (b_1^+ b_2 - b_2^+ b_1) = -\frac{i}{\sqrt{2}} (J_+ - J_-).
\end{align*}
\]

(8.54)
Les représentations matricielles associées à chaque opérateur et calculées dans la base de la RI fondamentale \((1, \hat{0}) \{ [(1, \hat{0})]^1/2, 1, E1 >, [(1, \hat{0})]^1/2, 1, E2 > \} \equiv \{-\frac{i}{\sqrt{2}}(10 > |01 >), -\frac{i}{\sqrt{2}}(|10 > |01 >)\}\) sont données par :

\[
\begin{align*}
[1, -1] \xi_{0A}^{(0)} &= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\
[1, -1] \xi_{0A}^{(1)} &= \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \\
[1, -1] \xi_{2E1}^{(1)} &= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \\
[1, -1] \xi_{2E2}^{(1)} &= \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ -i & 0 \end{pmatrix}
\end{align*}
\] (8.55)

Opérateurs électroniques symétrisés – 2ème méthode

Une autre méthode pour déterminer les opérateurs électroniques symétrisés consiste à coupler dans le groupe \(O\) les opérateurs de bosons élémentaires symétrisés. On obtient alors

\[
[1, -1] \xi_{\sigma}^{(C)} = \mu_C [1, -1] \left(\left[[1, \hat{0}] T_{\frac{1}{2}, E} \right] \times \left[0, -1 \right] T_{\frac{1}{2}, E} \right)^{(C)}_{\sigma} = \mu_C \sum_{\sigma_1, \sigma_2} F_{\sigma_1, \sigma_2} \sigma_1 \sigma_2 (C) [1, \hat{0}] T_{\sigma_1}^{\frac{1}{2},1E} \left[0, -1 \right] T_{\sigma_2}^{\frac{1}{2},1E},
\] (8.56)

où \(\mu_C\) est un facteur de phase à déterminer. Afin de retrouver les expressions (8.54), nous fixons \(\mu_A_1 = -\mu_E = 1\) et \(\mu_A_2 = -i\).

Opérateurs électroniques symétrisés – 3ème méthode

Nous présentons enfin une troisième et dernière méthode où nous couplons les opérateurs non symétrisés élémentaires dans \(SU(2)\) et où nous orientons ensuite les composantes résultantes dans \(O\). Le résultat est le suivant:

\[
[1, -1] \xi_{IC\sigma}^{(j)} = M_j [1, -1] \left(\left[[1, \hat{0}] T_{\frac{1}{2}} \right] \times \left[0, -1 \right] T_{\frac{1}{2}} \right)^{(j)}_{IC\sigma} = M_j \sum_{\sigma_1, \sigma_2} F_{\sigma_1, \sigma_2} \left([1, -1] j \right)_{IC\sigma} [1, \hat{0}] T_{\sigma_1}^{\frac{1}{2},1E} \left[0, -1 \right] T_{\sigma_2}^{\frac{1}{2},1E}.
\] (8.57)

\(M_j\) est un facteur de phase. Le symbole "\(F\)" est un coefficient de couplage orienté que l’on définit comme:

\[
F_{\sigma_1, \sigma_2} \left([1, -1] j \right)_{IC\sigma} = \sum_{m_1, m_2} [1, \hat{0}] g_{m_1}^{E\sigma_1} \left[0, -1 \right] g_{m_2}^{E\sigma_2} [j, -j] g_{iC\sigma}^m F m_1 m_2 \left([1, -1] j \right)_{m}.
\] (8.58)

Il est aisé de vérifier que les résultats précédents peuvent être retrouvés si l’on choisit de poser \(M_0 = -i\) et \(M_1 = -1\).

8.2.3 Changement de l’orientation de la représentation \(E\)

Nous suggérons dans ce paragraphe de changer l’orientation usuelle d’une représentation \(E\) afin, entre autres, de rendre diagonal l’opérateur électronique de symétrie \(A_2\) et de pouvoir l’exprimer comme la composante \(z\) des matrices de Pauli \(\sigma\). Nous allons voir que ce changement consiste en fait à considérer la base symétrisée comme la base standard. De plus, il permettra une adaptation au formalisme du pseudo-spin (notamment pour un état électronique quatre fois dégénéré) présent dans le chapitre 3.

Pour l’instant concentrons nous sur un doublet électronique et cherchons la transformation unitaire qui diagonalise l’opérateur \([1, -1] \xi_{0A}^{(1)}\). Cette similitude est définie (à un facteur de phase près) par

\[
(U)_{E} = \frac{e^{i\mu}}{\sqrt{2}} \begin{pmatrix} i & -i \\ -1 & -1 \end{pmatrix}.
\] (8.59)
Le tenseur covariant de symétrie A_2 s'écrit après transformation comme :

$$
\begin{align*}
[1,-1][\xi_{042}^{(1)}]_{\bar{\sigma}} &= \left[(E)U^{-1}\right]_{\bar{\sigma}} [1,-1][\xi_{042}^{(1)}]^\sigma \left[(E)U \right]^\sigma_ar{\sigma} \\
&= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} .
\end{align*}
$$

(8.60)

Dans cette expression, σ est une composante dans l'ancienne orientation alors que $\bar{\sigma}$ est une composante dans la nouvelle orientation et qui correspond de plus à un indice de colonne dans $(E)U$. A partir de la forme de la transformation (8.59), on vérifie rapidement la propriété :

$$
\left[(E)U \right]^{\sigma \bar{\sigma}} = e^{-2i\mu} \left[(E)U \right]^{\sigma \bar{\sigma}} \quad \text{avec} \quad \bar{\sigma} = 1, 2 \quad \text{et} \quad -\bar{\sigma} = 2, 1 .
$$

(8.61)

Cherchons maintenant la base symétrisée qui sera aussi la base propre de $[1,-1][\xi_{042}^{(1)}]$ dans la nouvelle orientation. Pour cela, de nouveaux coefficients G doivent être trouvés.

Recherche des états symétrisés covariants et contravariants

Nous écrivons maintenant des états symétrisés covariants de composante $\bar{\sigma}$ sous la forme :

$$
[m_1,-m_2]T_{1E\bar{\sigma}}^{(j)} = \sum_{m,\sigma} \left[(E)U \right]^{\sigma \bar{\sigma}} [m_1,-m_2] C_{1E\sigma}^{m} [m_1,-m_2] T_{ij}^{(j)}
$$

$$
= \sum_{m} [m_1,-m_2] G_{1E\bar{\sigma}}^{m} [m_1,-m_2] T_{ij}^{(j)} .
$$

(8.62)

La matrice \tilde{G} est la matrice qui réalise la nouvelle orientation de la RI E et dont les coefficients s'expriment comme :

$$
\begin{align*}
[m_1,-m_2] \tilde{G}_{1E1}^{m} &= \frac{i}{\sqrt{2}} [m_1,-m_2] G_{1E1}^{m} - \frac{1}{\sqrt{2}} [m_1,-m_2] G_{1E2}^{m} \\
[m_1,-m_2] \tilde{G}_{1E2}^{m} &= -\frac{i}{\sqrt{2}} [m_1,-m_2] G_{1E1}^{m} + \frac{1}{\sqrt{2}} [m_1,-m_2] G_{1E2}^{m} ,
\end{align*}
$$

(8.63)

soit explicitement, en posant $\Theta = i^{(m_2-m_1-1)/2}$:

$$
\begin{align*}
&m_1,-m_2] G_{1E1}^{l/2} = i\Theta e^{i\mu} , & [m_1,-m_2] G_{1E2}^{l/2} = 0 \\
&m_1,-m_2] G_{1E2}^{-l/2} = 0 , & [m_1,-m_2] G_{1E1}^{-l/2} = (-i)(-1)^{m_1} \Theta e^{i\mu} \\
&m_1,-m_2] G_{1E2}^{-l/2} = (-1)^{m_1} \Theta e^{i\mu} , & [m_1,-m_2] G_{1E1}^{-l/2} = 0 .
\end{align*}
$$

(8.64)

et

$$
\begin{align*}
&m_1,-m_2] G_{1E1}^{l/2} = 0 , & [m_1,-m_2] G_{1E2}^{l/2} = -i\Theta e^{i\mu} \\
&m_1,-m_2] G_{1E2}^{-l/2} = -i(1)^{m_1} \Theta e^{i\mu} , & [m_1,-m_2] G_{1E1}^{-l/2} = 0 .
\end{align*}
$$

(8.65)

Les premiers coefficients ont été calculés et sont données dans la table 8.2.

Pour des grandeurs contravariantes, on peut aussi écrire :

$$
[m_1,-m_2] T_{jE\bar{\sigma}}^{(j)} = \sum_{m} [m_1,-m_2] G_{jE\bar{\sigma}}^{m} [m_1,-m_2] T_{ij}^{(j)} .
$$

(8.66)

La nouvelle matrice \tilde{G} qui symétrise les composantes contravariantes doit satisfaire à la relation

$$
[m_1,-m_2] \tilde{G}_{mE\bar{\sigma}}^{lE\bar{\sigma}} = \sum_{\sigma} \left[(E)U \right]^{\sigma \bar{\sigma}} [m_1,-m_2] G_{mE\sigma}^{lE\sigma} ,
$$

(8.67)

où la similitude $(E)U$ change l'orientation des grandeurs contravariantes. De plus, la transformation unitaire $(E)U$ doit satisfaire à la condition $(E)U = (E)U^{-1}$. Définissons maintenant, à partir de
Tab. 8.2 - Valeurs exactes de quelques coefficients \tilde{G} après changement de l’orientation

<table>
<thead>
<tr>
<th>$[m_1, -m_2]$</th>
<th>l</th>
<th>$\Gamma \tilde{\sigma}$</th>
<th>m</th>
<th>$[m_1, -m_2]G_{\Gamma\tilde{\sigma}}^m$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[0, 0]$</td>
<td>0</td>
<td>A_1</td>
<td>0</td>
<td>$[2, -2] \ E 1 \ -1$</td>
</tr>
<tr>
<td>$[0, -1]$</td>
<td>1</td>
<td>$E 2$</td>
<td>$-1/2$</td>
<td>$[2, -2] \ E 2 \ 1$</td>
</tr>
<tr>
<td>$[0, -1]$</td>
<td>1</td>
<td>$E 1$</td>
<td>$1/2$</td>
<td>$[2, -2] \ 0 \ A_1 \ 0$</td>
</tr>
<tr>
<td>$[0, -2]$</td>
<td>2</td>
<td>$E 1$</td>
<td>-1</td>
<td>$[2, -3] \ 5 \ E 1 \ -5/2$</td>
</tr>
<tr>
<td>$[0, -2]$</td>
<td>2</td>
<td>$E 2$</td>
<td>-1</td>
<td>$[2, -3] \ 5 \ E 2 \ 5/2$</td>
</tr>
<tr>
<td>$[0, -2]$</td>
<td>0</td>
<td>A_1</td>
<td>0</td>
<td>$[2, -3] \ 3 \ A_1 \ -3/2$</td>
</tr>
<tr>
<td>$[0, -3]$</td>
<td>3</td>
<td>A_1</td>
<td>$-3/2$</td>
<td>$1/\sqrt{2}$</td>
</tr>
<tr>
<td>$[0, -3]$</td>
<td>3</td>
<td>A_1</td>
<td>$-3/2$</td>
<td>$-1/\sqrt{2}$ i</td>
</tr>
<tr>
<td>$[0, -3]$</td>
<td>3</td>
<td>A_2</td>
<td>$3/2$</td>
<td>$1/\sqrt{2}$</td>
</tr>
<tr>
<td>$[0, -3]$</td>
<td>3</td>
<td>A_2</td>
<td>$3/2$</td>
<td>$-1/\sqrt{2}$ i</td>
</tr>
<tr>
<td>$[0, -3]$</td>
<td>1</td>
<td>$E 2$</td>
<td>$-1/2$</td>
<td>1</td>
</tr>
<tr>
<td>$[0, -3]$</td>
<td>1</td>
<td>$E 1$</td>
<td>$1/2$</td>
<td>-1</td>
</tr>
<tr>
<td>$[1, 0]$</td>
<td>1</td>
<td>$E 2$</td>
<td>$-1/2$</td>
<td>1</td>
</tr>
<tr>
<td>$[1, 0]$</td>
<td>1</td>
<td>$E 1$</td>
<td>$1/2$</td>
<td>1</td>
</tr>
<tr>
<td>$[1, -1]$</td>
<td>2</td>
<td>$E 1$</td>
<td>-1</td>
<td>$3/0$</td>
</tr>
<tr>
<td>$[1, -1]$</td>
<td>2</td>
<td>$E 2$</td>
<td>1</td>
<td>$[3, 0] \ 1 \ E 2 \ -1/2$</td>
</tr>
<tr>
<td>$[1, -1]$</td>
<td>0</td>
<td>A_2</td>
<td>0</td>
<td>$[3, 0] \ 1 \ E 1 \ -1/2$</td>
</tr>
<tr>
<td>$[1, -2]$</td>
<td>3</td>
<td>A_1</td>
<td>$-3/2$</td>
<td>$1/\sqrt{2}$ i</td>
</tr>
<tr>
<td>$[1, -2]$</td>
<td>3</td>
<td>A_2</td>
<td>$3/2$</td>
<td>$1/\sqrt{2}$ i</td>
</tr>
<tr>
<td>$[1, -2]$</td>
<td>3</td>
<td>A_2</td>
<td>$3/2$</td>
<td>$-1/\sqrt{2}$ i</td>
</tr>
<tr>
<td>$[1, -2]$</td>
<td>1</td>
<td>$E 2$</td>
<td>$-1/2$</td>
<td>i</td>
</tr>
<tr>
<td>$[1, -2]$</td>
<td>1</td>
<td>$E 1$</td>
<td>$1/2$</td>
<td>-1</td>
</tr>
<tr>
<td>$[1, -3]$</td>
<td>4</td>
<td>$E 2$</td>
<td>-2</td>
<td>$[3, 2] \ 5 \ E 1 \ -5/2$</td>
</tr>
<tr>
<td>$[1, -3]$</td>
<td>4</td>
<td>$E 1$</td>
<td>2</td>
<td>$[3, 2] \ 5 \ E 2 \ 5/2$</td>
</tr>
<tr>
<td>$[1, -3]$</td>
<td>2</td>
<td>$E 1$</td>
<td>-1</td>
<td>$[3, 2] \ 3 \ A_1 \ -3/2$</td>
</tr>
<tr>
<td>$[1, -3]$</td>
<td>2</td>
<td>$E 2$</td>
<td>1</td>
<td>$[3, 2] \ 3 \ A_2 \ -3/2$</td>
</tr>
<tr>
<td>$[1, -3]$</td>
<td>0</td>
<td>A_2</td>
<td>0</td>
<td>$[3, 2] \ 3 \ A_2 \ 3/2$</td>
</tr>
<tr>
<td>$[2, -2]$</td>
<td>2</td>
<td>$E 1$</td>
<td>-1</td>
<td>$[3, 2] \ 1 \ E 2 \ -1/2$</td>
</tr>
<tr>
<td>$[2, -2]$</td>
<td>0</td>
<td>$E 2$</td>
<td>1</td>
<td>$[3, 2] \ 1 \ E 1 \ -1/2$</td>
</tr>
<tr>
<td>$[2, -2]$</td>
<td>0</td>
<td>A_1</td>
<td>0</td>
<td>$[3, 2] \ 6 \ A_1 \ -3/2$</td>
</tr>
<tr>
<td>$[2, -1]$</td>
<td>3</td>
<td>A_1</td>
<td>$-3/2$</td>
<td>$-1/\sqrt{2}$ i</td>
</tr>
<tr>
<td>$[2, -1]$</td>
<td>3</td>
<td>A_2</td>
<td>$3/2$</td>
<td>$1/\sqrt{2}$ i</td>
</tr>
<tr>
<td>$[2, -1]$</td>
<td>3</td>
<td>A_1</td>
<td>$3/2$</td>
<td>$-1/\sqrt{2}$ i</td>
</tr>
<tr>
<td>$[2, -1]$</td>
<td>3</td>
<td>A_2</td>
<td>$3/2$</td>
<td>$1/\sqrt{2}$ i</td>
</tr>
<tr>
<td>$[2, -1]$</td>
<td>1</td>
<td>$E 2$</td>
<td>$-1/2$</td>
<td>-1</td>
</tr>
<tr>
<td>$[2, -1]$</td>
<td>1</td>
<td>$E 1$</td>
<td>$1/2$</td>
<td>1</td>
</tr>
<tr>
<td>$[2, -2]$</td>
<td>4</td>
<td>$E 2$</td>
<td>-2</td>
<td>$[3, 3] \ 2 \ E 1 \ -1$</td>
</tr>
<tr>
<td>$[2, -2]$</td>
<td>4</td>
<td>$E 1$</td>
<td>2</td>
<td>$[3, 3] \ 2 \ E 2 \ 1$</td>
</tr>
</tbody>
</table>

L’équation (8.75), la nouvelle métrique qui effectue le changement co-contra. Pour la RI entière E, cette métrique se réduit simplement à

\[
\left(\frac{E}{\tilde{\sigma}} \right) = \left(\frac{\tilde{\sigma}'}{E} \right) = \left[(E)U \right]^{\sigma}_{\sigma'} \left[(E)U \right]^{\sigma'}_{\sigma} = \delta_{\sigma, -\sigma'}.
\]

\[\text{Cela suppose, en analogie avec la métrique de l’"ancienne" orientation, que l'on choisisse de fixer les phases } (-1)^{E-\sigma} = (-1)^{E+\sigma} = 1.\]
Nous pouvons alors reformuler l’équation (8.67) sous la forme
\[
|m_{1}, -m_{2}| \tilde{G}_{m}^{E \bar{E}} = \sum_{\sigma} \left(\begin{array}{c} E \\ \bar{E} \end{array} \right) \left(\begin{array}{c} \sigma' \\ \bar{\sigma} \end{array} \right) \left[(E) U \right]_{\sigma'}^{\sigma} \left(-1 \right)^{m_{1}+m_{2}+m} [m_{1}, -m_{2}] G_{m}^{E \bar{E}} \right)_{\bar{\sigma}} \]
(8.69)
qui se réduit finalement comme :
\[
|m_{1}, -m_{2}| \tilde{G}_{m}^{E \bar{E}} = \left(-1 \right)^{m_{1}+m_{2}+m} [m_{1}, -m_{2}] G_{m}^{E \bar{E}} \]
(8.70)
Nous disposons donc d’un jeu complet de coefficients \(G \) relatifs à la descense que nous noterons maintenant \(U(2) \supset SU(2) \supset \bar{O} \) dans la nouvelle orientation.

Les tenseurs élémentaires symétrisés peuvent alors être déterminés pour la \(RI \) fondamentale \([1, 0] \) et son adjointe \([0, -1] \) à l’aide des formules précédentes. On obtient :
\[
\begin{align*}
[1, 0] T_{1E1}^{\left(\frac{1}{2} \right)} &= -ib_{2}^{+} e^{\mu} \\
[1, 0] T_{1E2}^{\left(\frac{1}{2} \right)} &= ib_{1}^{+} e^{\mu} \\
[0, -1] T_{1E1}^{\left(\frac{1}{2} \right)} &= -ib_{1} e^{\mu} \\
[0, -1] T_{1E2}^{\left(\frac{1}{2} \right)} &= ib_{2} e^{\mu} .
\end{align*}
\]
(8.71)
La base symétrisée dans la nouvelle orientation s’écrit de manière simple
\[
\begin{align*}
\left[[1, 0] 1/2, 1E1 \right] &= -ie^{\mu} |01] = \left(i \left[[1, 0] 1/2, 1E1 \right] - \left[[1, 0] 1/2, 1E2 \right] \right) / \sqrt{2} , \\
\left[[1, 0] 1/2, 1E2 \right] &= ie^{\mu} |10] = \left(-i \left[[1, 0] 1/2, 1E1 \right] + \left[[1, 0] 1/2, 1E2 \right] \right) / \sqrt{2} .
\end{align*}
\]
(8.72)
En accord avec la relation (8.32) où \(e^{\mu} = -i \), le choix de phase \(\mu = 0 \) permet de définir la base symétrisée \(\left(\left[[1, 0] 1/2, 1E1 \right] = \left[\frac{1}{2}, \frac{1}{2} \right], \left[[1, 0] 1/2, 1E2 \right] = \left[\frac{1}{2}, -\frac{1}{2} \right] \) comme étant la base standard et la base propre de \(J_{z} \). Les états contravariantes peuvent être déduits à partir de l’équation (8.70). En résumé, nos tenseurs éléctroniques élémentaires symétrisés s’écrivent :
\[
\begin{align*}
[1, 0] T_{1E1}^{\left(\frac{1}{2} \right)} &= -ib_{2}^{+} \\
[1, 0] T_{1E2}^{\left(\frac{1}{2} \right)} &= ib_{1}^{+} \\
[0, -1] T_{1E1}^{\left(\frac{1}{2} \right)} &= -ib_{1} \\
[0, -1] T_{1E2}^{\left(\frac{1}{2} \right)} &= ib_{2} .
\end{align*}
\]
(8.73)

Remarque

Le passage des composantes covariantes aux composantes contravariantes symétrisées peut s’effectuer à l’aide d’une métrique orientée
\[
|m_{1}, -m_{2}| T_{iC}^{(j)} = \left(\begin{array}{c} m_{1}, -m_{2} \end{array} \right) \left(\begin{array}{c} \bar{C} \\ C \end{array} \right) \left(\begin{array}{c} \sigma' \\ \sigma \end{array} \right) \right) \left[[m_{1}, -m_{2}] T_{iC}^{\sigma' \sigma} \right]_{j} .
\]
(8.74)
définie de manière traditionnelle comme \(^{8}\) :
\[
\begin{align*}
\left(\begin{array}{c} m_{1}, -m_{2} \end{array} \right) & = \sum_{m, m'} [m_{1}, -m_{2}] \tilde{G}_{m}^{E \bar{E}} \left(\begin{array}{c} m_{1}, -m_{2} \end{array} \right) \left[m_{1}, -m_{2} \right] \tilde{G}_{m}^{E \bar{E}} \left(\begin{array}{c} \sigma' \\ \sigma \end{array} \right) \right) \left[[m_{1}, -m_{2}] T_{iC}^{\sigma' \sigma} \right]_{j} , \\
& = \sum_{m} \left(-1 \right)^{m_{1}+m_{2}+m} [m_{1}, -m_{2}] \tilde{G}_{m}^{E \bar{E}} \left(\begin{array}{c} m_{1}, -m_{2} \end{array} \right) \left[[m_{1}, -m_{2}] T_{iC}^{\sigma' \sigma} \right]_{j} ,
\end{align*}
\]
(8.75)

\(^{8}\)Pour cela, nous nous sommes appuyés sur la relation liant la matrice \(G \) à sa conjugée à l’aide de la formule (4.72) de la référence [194] en l’adaptant à notre problème.

\[
[m_{1}, -m_{2}] G_{iI}^{E \bar{E}} = \left(-1 \right)^{m_{1}+m_{2}+m} \left[[m_{1}, -m_{2}] G_{iI}^{E \bar{E}} \right]_{j} .
\]
Il nous reste maintenant à obtenir un jeu d’opérateurs électroniques symétrisés en suivant le même raisonnement que pour nos tenseurs élémentaires. Il sera alors possible de reformuler l’Hamiltonien Jahn-Teller pour le système vibronique \([E \times E]\).

Construction des opérateurs symétrisés

Les opérateurs de symétries \(A_1\) et \(A_2\) restent inchangés et sont définis par les deux premiers termes de l’équation (8.54). Concernant la symétrie \(E\), les opérateurs électroniques se déduisent des formules (8.65) et (8.42) ; on obtient ainsi les grandeurs covariantes et contravariantes correspondantes :

\[
\begin{align*}
\mathcal{E}_{0A_1}^{(1)} &= \frac{\hat{I}_2}{\sqrt{2}} & [1,-1] \mathcal{E}_{0A_2}^{(1)} &= \frac{\hat{I}_2}{\sqrt{2}} \\
[1,-1] \mathcal{E}_{2A_1}^{(1)} &= -\hat{\sigma}_z / \sqrt{2} & [1,-1] \mathcal{E}_{2A_2}^{(1)} &= -\hat{\sigma}_z / \sqrt{2} \\
[1,-1] \mathcal{E}_{2E_1}^{(1)} &= i\hat{\sigma}_+ / 2 & [1,-1] \mathcal{E}_{2E_2}^{(1)} &= -i\hat{\sigma}_- / 2 \\
[1,-1] \mathcal{E}_{2E_2}^{(1)} &= -i\hat{\sigma}_- / 2 & [1,-1] \mathcal{E}_{2E_2}^{(1)} &= i\hat{\sigma}_+ / 2 \\
\end{align*}
\tag{8.76}
\]

Si l’on renormalise les différents opérateurs électroniques par \(\sqrt{2}\), il est facile de vérifier les relations de commutations

\[
\begin{align*}
\left[[1,-1] \mathcal{E}_{042}^{(1)}, [1,-1] \mathcal{E}_{2E_1}^{(1)} \right] &= -[1,-1] \mathcal{E}_{2E_1}^{(1)} , \quad \left[[1,-1] \mathcal{E}_{042}^{(1)}, [1,-1] \mathcal{E}_{2E_2}^{(1)} \right] = [1,-1] \mathcal{E}_{2E_2}^{(1)} \\
\left[[1,-1] \mathcal{E}_{2E_1}^{(1)}, [1,-1] \mathcal{E}_{2E_2}^{(1)} \right] &= -2 [1,-1] \mathcal{E}_{042}^{(1)} \\
\end{align*}
\tag{8.77}
\]

qui sont les relations usuelles de commutation (à une phase près) que vérifient les générateurs de \(SU(2)\) (8.17).

En résumé, nous disposons de tenseurs électroniques obtenus à partir de la réalisation de Schrödinger de \(SU(2)\) et associés à un état électronique deux fois dégénéré. Ces tenseurs sont exprimés soit dans la base standard, soit dans la base symétrisée où l’orientation de cette dernière a été modifiée afin de retrouver l’algèbre de Pauli pour un spin \(\frac{1}{2}\).

Conséquences du changement d’orientation — Formulaire

Pour être complet, il nous faut définir quelques symboles de couplages après changement de l’orientation ainsi que les facteurs isoscalaires adaptés à la descente \(\hat{U}(2) \supset SU(2) \supset \hat{O}\).

Nous définissons tout d’abord les coefficients de Clebsch-Gordan orientés (CGO) dans le cas général par :

\[
F(l_1 \Gamma_1 \sigma_1, l_2 \Gamma_2 \sigma_2, [m_1', -m_2'], [m_1', -m_2']) = \sum_{m_1, m_2} \left[m_{1', m_2'} \right] \mathcal{G}^{(1)}_{l_1, \sigma_1} \mathcal{G}^{(2)}_{l_2, \sigma_2} \mathcal{C}_{l_1 l_2 \sigma_1 \sigma_2} \mathcal{C}_{q_{l_1} q_{l_2} q_{\sigma_1} q_{\sigma_2}} \left[m_1, m_2 \right] \mathcal{C}_{q_{l_1} q_{l_2} q_{\sigma_1} q_{\sigma_2}} \times \mathcal{C}_{q_{l_1} q_{l_2} q_{\sigma_1} q_{\sigma_2}} \left[m_1, m_2 \right] \mathcal{C}_{q_{l_1} q_{l_2} q_{\sigma_1} q_{\sigma_2}} \left[m_1, m_2 \right] \\
\times F(q_1 q_2, [m_1', -m_2'], [m_1, -m_2]) \\
\tag{8.78}
\]

avec

\[
F(q_1 q_2, [m_1', -m_2'], [m_1, -m_2]) = \begin{cases}
0 & \text{si } [m_1', -m_2'] \notin [m_1, -m_2] \otimes [m_1', -m_2] \\
F(q_1 q_2, [j_1 j_2]) & \text{sinon}
\end{cases}
\]

et

\[
\begin{align*}
m_1'' &= \frac{m_1' - m_2'}{2} + j \\
m_2'' &= \frac{m_1' - m_2'}{2} + j
\end{align*}
\]

Quelques CGO (Eq. (8.78)) sont listés dans la table 8.4.
Concernant les nouveaux symboles de couplage de Clebsch-Gordan (CG) du sous-groupe \(O \), nous avons, après modification de l'orientation, la relation

\[
F \left(\begin{array}{c} \tilde{\sigma}_1 \\ \tilde{\sigma}_2 \\ (C) \end{array} \right)_{\sigma} = \sum_{\sigma,\sigma_1,\sigma_2} \left[(c_1)U \right]_{\sigma_1} \left[(c_2)U \right]_{\sigma_2} \tilde{\sigma}_1 \tilde{\sigma}_2 (c) \left[(c)U \right]_{\bar{\sigma}},
\]

avec \((A_1)U = (A_2)U = I_d \).

D'autres relations utiles peuvent être déduites de la formule (8.68) ainsi que de la propriété \(\left((c)U \right)^* = \left((c)U \right) \). Les coefficients de différentes variances s'écrit alors dans le sous-groupe :

\[
F (C_1 C_2) \tilde{\sigma} = F (C_1 C_2) \tilde{\sigma}.
\]

Les valeurs de quelques CG non-nuls

\[
F \left(\begin{array}{c} \tilde{\sigma}_1 \\ \tilde{\sigma}_2 \\ (C) \end{array} \right)_{\sigma}
\]

sont données dans la table 8.3. Nous avons calculé les CG comportant au moins une symétrie \(E \); les autres restant inchangés. Notons aussi que les coefficients ne figurant pas dans cette table peuvent être déduits à partir des relations (8.80) ainsi qu'à partir des propriétés dans la permutation des colonnes.

En utilisant le lemme de factorisation de Racah, nous définissons les facteurs isoscalaires par :

\[
F \left(\begin{array}{c} l_1 \Gamma_1 \tilde{\sigma}_1 \\ l_2 \Gamma_2 \tilde{\sigma}_2 \\ (m_1', -m_2')j_1 \\ (m_1', -m_2')j_2 \\ \Gamma \sigma \end{array} \right) = K \left(\begin{array}{c} l_1 \Gamma_1 \\ l_2 \Gamma_2 \\ (m_1', -m_2')j_1 \\ (m_1', -m_2')j_2 \\ \Gamma \sigma \end{array} \right) F \left(\begin{array}{c} \tilde{\sigma}_1 \\ \tilde{\sigma}_2 \\ (C) \end{array} \right)_{\sigma} \tag{8.81}
\]

Introduction de l'inversion

L'introduction de l'inversion (extension à \(O_h \)) est dans ce cas triviale du fait de la structure de produit direct \(O_h = O \otimes C_I \). Pour un mode vibrationnel (ou pour un état électronique, pour ce qui nous concerne) de type \(E_\tau \), Boujut [125] montre que

\[
[m_1, -m_2]G_{\sigma_1, \sigma_2}^{m} = [m_1, -m_2]G_{\sigma_1, \sigma_2}^{m} \text{ avec } l = 6p + 3 \left(A_{1u}, A_{2u} \right), \quad \text{et } l = 6p + 1, 6p + 5 \left(E_{1,2u} \right).
\]

Les symétries correspondantes pour les opérateurs tensoriels (produit \(E_\tau \times E_\tau \)) sont données pour les valeurs cycliques de \(l \) suivantes : \(l = 3p \left(A_{1g}, A_{2g} \right) \) et \(l = 3p + 1, 3p + 2 \left(E_{1,2g} \right) \).

Les coefficients de couplages relatifs à la chaine de groupes \(\tilde{U}(2) \supset SU(2) \otimes C_I \supset \tilde{O}_h \) restent inchangés.

8.2.4 Hamiltonien Jahn-Teller vibronique pour un mode \(\nu_2 \)

Présentons brièvement la forme de l'Hamiltonien vibronique relatif au système \([E \times E] \). Nous pouvons construire les opérateurs vibrationnels généraux, définis par Boujut [194], suivant la même orientation que nos opérateurs électroniques.
TAB. 8.3 - Valeurs exactes des CG non-nuls après changement de l'orientation

<table>
<thead>
<tr>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
<th>β</th>
<th>$\bar{\sigma}_1$</th>
<th>$\bar{\sigma}_2$</th>
<th>$\bar{\sigma}_3$</th>
<th>CG</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>E</td>
<td>E</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>E E_1 G^*</td>
</tr>
<tr>
<td>A_1</td>
<td>E</td>
<td>E</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td>E E'_1 G^*</td>
</tr>
<tr>
<td>A_2</td>
<td>E</td>
<td>E</td>
<td>1</td>
<td>1</td>
<td>i</td>
<td></td>
<td>E E'_1 G^*</td>
</tr>
<tr>
<td>A_2</td>
<td>E</td>
<td>E</td>
<td>2</td>
<td>2</td>
<td>$-i$</td>
<td></td>
<td>E E'_1 G^*</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>E</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>$-i$</td>
<td>E E'_2 G^*</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>E</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>i</td>
<td>E E'_2 G^*</td>
</tr>
<tr>
<td>E</td>
<td>F_1</td>
<td>F_1</td>
<td>-1</td>
<td>x</td>
<td>x</td>
<td>$e^{-i\frac{\pi}{2}}/\sqrt{2}$</td>
<td>E E'_2 G^*</td>
</tr>
<tr>
<td>E</td>
<td>F_1</td>
<td>F_1</td>
<td>-1</td>
<td>y</td>
<td>y</td>
<td>$e^{-i\frac{\pi}{2}}/\sqrt{2}$</td>
<td>E E'_2 G^*</td>
</tr>
<tr>
<td>E</td>
<td>F_1</td>
<td>F_1</td>
<td>-1</td>
<td>z</td>
<td>z</td>
<td>$i/\sqrt{2}$</td>
<td>E E'_2 G^*</td>
</tr>
<tr>
<td>E</td>
<td>F_1</td>
<td>F_1</td>
<td>-2</td>
<td>x</td>
<td>x</td>
<td>$e^{i\frac{\pi}{2}}/\sqrt{2}$</td>
<td>E E'_2 G^*</td>
</tr>
<tr>
<td>E</td>
<td>F_1</td>
<td>F_1</td>
<td>-2</td>
<td>y</td>
<td>y</td>
<td>$e^{-i\frac{\pi}{2}}/\sqrt{2}$</td>
<td>E E'_2 G^*</td>
</tr>
<tr>
<td>E</td>
<td>F_1</td>
<td>F_1</td>
<td>-2</td>
<td>z</td>
<td>z</td>
<td>$-i/\sqrt{2}$</td>
<td>E E'_2 G^*</td>
</tr>
<tr>
<td>E</td>
<td>F_2</td>
<td>F_2</td>
<td>-1</td>
<td>x</td>
<td>x</td>
<td>$e^{i\frac{\pi}{2}}/\sqrt{2}$</td>
<td>E G'_1 G^*</td>
</tr>
<tr>
<td>E</td>
<td>F_2</td>
<td>F_2</td>
<td>-1</td>
<td>y</td>
<td>y</td>
<td>$e^{-i\frac{\pi}{2}}/\sqrt{2}$</td>
<td>E G'_1 G^*</td>
</tr>
<tr>
<td>E</td>
<td>F_2</td>
<td>F_2</td>
<td>-1</td>
<td>z</td>
<td>z</td>
<td>$-1/\sqrt{2}$</td>
<td>E G'_1 G^*</td>
</tr>
<tr>
<td>E</td>
<td>F_2</td>
<td>F_2</td>
<td>-2</td>
<td>x</td>
<td>x</td>
<td>$e^{i\frac{\pi}{2}}/\sqrt{2}$</td>
<td>E G'_1 G^*</td>
</tr>
<tr>
<td>E</td>
<td>F_2</td>
<td>F_2</td>
<td>-2</td>
<td>y</td>
<td>y</td>
<td>$e^{i\frac{\pi}{2}}/\sqrt{2}$</td>
<td>E G'_1 G^*</td>
</tr>
<tr>
<td>E</td>
<td>F_2</td>
<td>F_2</td>
<td>-2</td>
<td>z</td>
<td>z</td>
<td>$-1/\sqrt{2}$</td>
<td>E G'_1 G^*</td>
</tr>
<tr>
<td>E</td>
<td>F_2</td>
<td>F_2</td>
<td>-1</td>
<td>x</td>
<td>x</td>
<td>$i/\sqrt{2}$</td>
<td>E G'_1 G^*</td>
</tr>
<tr>
<td>E</td>
<td>F_2</td>
<td>F_2</td>
<td>-2</td>
<td>x</td>
<td>x</td>
<td>$e^{i\frac{\pi}{2}}/\sqrt{2}$</td>
<td>E G'_1 G^*</td>
</tr>
<tr>
<td>E</td>
<td>F_2</td>
<td>F_2</td>
<td>-1</td>
<td>y</td>
<td>y</td>
<td>$e^{-i\frac{\pi}{2}}/\sqrt{2}$</td>
<td>E G'_1 G^*</td>
</tr>
<tr>
<td>E</td>
<td>F_2</td>
<td>F_2</td>
<td>-1</td>
<td>z</td>
<td>z</td>
<td>$i/\sqrt{2}$</td>
<td>E G'_1 G^*</td>
</tr>
<tr>
<td>E</td>
<td>F_2</td>
<td>F_2</td>
<td>-2</td>
<td>y</td>
<td>y</td>
<td>$e^{-i\frac{\pi}{2}}/\sqrt{2}$</td>
<td>E G'_1 G^*</td>
</tr>
<tr>
<td>E</td>
<td>F_2</td>
<td>F_2</td>
<td>-2</td>
<td>z</td>
<td>z</td>
<td>$-i/\sqrt{2}$</td>
<td>E G'_1 G^*</td>
</tr>
<tr>
<td>E</td>
<td>E'_1</td>
<td>G'^*</td>
<td>-1</td>
<td>a</td>
<td>ν</td>
<td>$-1/\sqrt{2}$</td>
<td>E G'_1 G^*</td>
</tr>
<tr>
<td>E</td>
<td>E'_1</td>
<td>G'^*</td>
<td>-1</td>
<td>a</td>
<td>λ</td>
<td>$-i/\sqrt{2}$</td>
<td>E G'_1 G^*</td>
</tr>
<tr>
<td>E</td>
<td>E'_1</td>
<td>G'^*</td>
<td>-1</td>
<td>b</td>
<td>μ</td>
<td>$i/\sqrt{2}$</td>
<td>E G'_1 G^*</td>
</tr>
<tr>
<td>E</td>
<td>E'_1</td>
<td>G'^*</td>
<td>-1</td>
<td>b</td>
<td>κ</td>
<td>$1/\sqrt{2}$</td>
<td>E G'_1 G^*</td>
</tr>
</tbody>
</table>

Ceci nous amène à considérer la contribution vibrationnelle symétrisée comme

$$ [m_3, -m_4] \nu_{E}^{(k_v)} = \mu_{E}^{(k_v)} \left[[m_3, 0] \mathcal{T}(K_{1v}) \times [0, -m_4] \mathcal{T}(K_{2v}) \right]_{E}^{(k_v)}, \quad (8.83) $$

où $\mu_{C}^{(v)}$ est un facteur de phase et v est le nombre quantique vibrationnel. Ces opérateurs sont construits à l'aide de la réalisation bosonique $\{b_3^+, b_3^-, b_3^0, b_4^0\}$ associée au mode normal $\nu_2(E)$. Nous utilisons ici des indices "3" et "4" afin de ne pas confondre la partie vibrationnelle et la partie électronique.

Hamiltonien vibronique effectif

L'Hamiltonien, écrit dans la chaîne vibronique

$$ U(2)^* \times U(2)^* \supset SU(2)^* \times SU(2)^* \supset O $$

$$ \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow $$

$$ [1, 0] \quad [v, 0] \quad \frac{1}{7} \quad \frac{v}{7} \quad C_{vu} \bar{\sigma} \quad (8.84) $$
8.2. Traitement d’un état électronique deux fois dégénéré

<table>
<thead>
<tr>
<th>[m_1,0]</th>
<th>[m_2,0]</th>
<th>(p_x)</th>
<th>(p_y)</th>
<th>(p_z)</th>
<th>(Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0]</td>
<td>[0]</td>
<td>[0]</td>
<td>[0]</td>
<td>[0]</td>
<td>[1]</td>
</tr>
<tr>
<td>[1/2]</td>
<td>[0 - 1/2]</td>
<td>[0 - 0]</td>
<td>[1]</td>
<td>[0]</td>
<td>[-1/\sqrt{2}]</td>
</tr>
<tr>
<td>[1/2]</td>
<td>[0 - 1/2]</td>
<td>[0 - 0]</td>
<td>[1]</td>
<td>[0]</td>
<td>[-1/\sqrt{2}]</td>
</tr>
<tr>
<td>[1/2]</td>
<td>[0 - 1/2]</td>
<td>[1 - 1]</td>
<td>[1]</td>
<td>[0]</td>
<td>[-1/\sqrt{2}]</td>
</tr>
<tr>
<td>[1/2]</td>
<td>[0 - 1/2]</td>
<td>[1 - 1]</td>
<td>[1]</td>
<td>[0]</td>
<td>[-1/\sqrt{2}]</td>
</tr>
<tr>
<td>[1/2]</td>
<td>[0 - 1/2]</td>
<td>[1 - 1]</td>
<td>[1]</td>
<td>[0]</td>
<td>[-1/\sqrt{2}]</td>
</tr>
<tr>
<td>[1/2]</td>
<td>[0 - 1/2]</td>
<td>[1 - 1]</td>
<td>[1]</td>
<td>[0]</td>
<td>[-1/\sqrt{2}]</td>
</tr>
<tr>
<td>[1/2]</td>
<td>[0 - 1/2]</td>
<td>[1 - 1]</td>
<td>[1]</td>
<td>[0]</td>
<td>[-1/\sqrt{2}]</td>
</tr>
<tr>
<td>[1/2]</td>
<td>[0 - 1/2]</td>
<td>[1 - 1]</td>
<td>[1]</td>
<td>[0]</td>
<td>[-1/\sqrt{2}]</td>
</tr>
</tbody>
</table>

Tab. 8.4 - Valeurs exactes de quelques CGO non-nuls après changement de l'orientation où \(p_i = l_i G \sigma_i\). Seuls les coefficients avec les produits du type \([m_1,0] \times \{0, -m_2\}\) sont présents.
est une combinaison linéaire d’opérateurs vibrationnels hermitiques \((\Gamma_{ev} = A_1)\)
\[
\hat{H}_{vib} = \sum_{\omega} \alpha_{\omega} T_{\omega}
\]
où les opérateurs du développement sont donnés par
\[
T_{\omega} \equiv [m_3, -m_4, [1, -1]]T(k_v, k_e \Gamma_e \Gamma_v)A_1 = \left([1, -1] \mathcal{E}(k_e \Gamma_e) \otimes [m_3, -m_4] \mathcal{Y}(k_e \Gamma_e \Gamma_v) \right)^{(A_1)} \quad (8.85)
\]
Compte tenu de la forme de l’hamiltonien (8.85), il est possible de récrire l’Hamiltonien Jahn-Teller pour un mode \(E\) comme
\[
\hat{H}_{vib}(\nu_2) = \alpha_1 [1, 0, 1] \mathcal{Y}_{0, 1}^{(0)} \left(\frac{\alpha^2}{\sqrt{2}} \left[[1, -1] \mathcal{Y}_{2E}^{(1)} \mathcal{E}_{2E}^{(1)} + [1, -1] \mathcal{Y}_{2E}^{(1)} \mathcal{E}_{2E}^{(1)} \right] \right) \quad (8.86)
\]
Le calcul des éléments matriciels d’un opérateur vibrationnel général \((\Gamma_{ev} = A_1, A_2\) ou \(E\)) s’effectue à l’aide du théorème de Wigner-Eckart dans une base du type :
\[
\left| \Psi_{\sigma}^{(C_{ev})} \right\rangle = \left[[1, 0] \Psi_{\sigma}^{(\frac{\nu_v}{2}, 1E)} \otimes [v, 0] \Psi_{\sigma}^{(\frac{\nu_v}{2}, m_v C_v)} \right]^{(C_{ev})} \quad (8.87)
\]
Nous obtenons ainsi la formule générale suivante :
\[
\left\langle \Psi_{\sigma}^{(C_{ev})} \left| \left[m_3, -m_4, [1, -1]]T(k_v, k_e \Gamma_e \Gamma_v)C_{ev} \right| \Psi_{\sigma}^{(C_{ev})} \right\rangle = \left(\left[C_{ev} \right] \left[C_{ev} \right] \left[\Gamma_{ev} \right] \right)^{1/2} \left[(\nu_v')^{1/2} F \right] \left[(\nu_v')^{1/2} F \right]^* \left(\Gamma_{ev} \right) \left(C_{ev} \right) \left(C_{ev} \right)^* \left(\Gamma_{ev} \right) \left(C_{ev} \right)
\]
\times \left\{ \begin{array}{cc}
\Gamma_e & E \\
\Gamma_v & E \\
C_v & C_{ev} \\
C_{ev} & C_{ev}
\end{array} \right\} K \left[\begin{array}{cc}
l_\nu \Gamma_e & 1E \\
l_\nu \Gamma_v & 1E \\
[n_\nu C_v] & [n_\nu C_v]
\end{array} \right] K
\times \left[[1, 0] \frac{1}{2} \right] \left[[1, 0] \frac{1}{2} \right]
\left[(\nu_v')^{1/2} F \right] \left[(\nu_v')^{1/2} F \right]^*
\times \left[[1, 0] \frac{1}{2} \right] \left[[1, 0] \frac{1}{2} \right]
\left[[m_3, -m_4] \mathcal{Y}(k_v) \right] \left[[v, 0] \frac{1}{2} \right]
\left[(\nu_v')^{1/2} F \right] \left[(\nu_v')^{1/2} F \right]^*
\quad (8.88)
\]
Les \(enr\) vibrationnels sont calculés dans la référence [125].

Hamiltonien Jahn-Teller linéaire non transformé

L’Hamiltonien Jahn-Teller linéaire peut également être déduit du formalisme 2d. Il ne contient pas de termes croisés (créations et annihiliations) pour la partie vibrationnelle et s’écrit donc comme :
\[
H_{JTL} = H_0 + \alpha \left(\left[[1, -1] \mathcal{E}(1, 2E) \otimes [1, 0] \mathcal{Y}(\frac{\nu_v}{2}, 1E) \right]^{(A_1)} + \left([1, -1] \mathcal{E}(1, 2E) \otimes [0, -1] \mathcal{Y}(\frac{\nu_v}{2}, 1E) \right)^{(A_1)} \right) + \cdots \quad (8.89)
\]
En découplant les opérateurs vibrationnels, on obtient la contribution
\[
H_{JTL} = H_0 - \frac{\alpha}{\sqrt{2}} \left([1, -1] \mathcal{E}(1) \left([1, 0] \mathcal{Y}(\frac{\nu_v}{2}) - i [0, -1] \mathcal{Y}(\frac{\nu_v}{2}) \right) + [1, 0] \mathcal{Y}(\frac{\nu_v}{2}) + i [0, -1] \mathcal{Y}(\frac{\nu_v}{2}) \right) + \cdots \quad (8.90)
\]
qui est analogue à la forme usuelle pour le terme linéaire 10 :
\[
H_{JTL}(\nu_2) = H_0 + \alpha' \left(Q_+ \sigma_+ + Q_- \sigma_- \right) + \cdots \quad (8.91)
\]
Les termes quadratiques s’obtiennent à partir des opérateurs vibrationnels de symétries [2, 0] et [0, -2] dans \(\Gamma(2)\).

9Dans le cas général où \(\Gamma_{ev}\) n’est pas \(A_1\), on doit considérer des opérateurs hermitiques de la forme \((T_\sigma + T_\sigma^+)\)/2 et \(i(T_\sigma - T_\sigma^+)\)/2. Ceci est vrai par exemple lorsque l’on s’intéresse aux moments de transition où \(\Gamma_{ev} = E\) en Raman.
10L’Hamiltonien Jahn-Teller effectif peut être défini comme \(\hat{H} \sim [1, -1] \mathcal{Y}_0^{(1)} [1, -1] \mathcal{Y}_0^{(1)} \sim \ell \sigma_z\).
8.2.5 Hamiltonien rovibronique effectif pour un mode \(\nu_2 \)

Plus généralement, nous pouvons maintenant définir un Hamiltonien rovibronique effectif où les fonctions de base rovibroniques sont de la forme :

\[
\left[\varphi_r^{(n_i C_r)} \otimes \left[[1,0] \varphi_e^{(1E)} \otimes [v,0] \varphi_v^{(n_v C_v)} \right] \right]^{(C)}_{\sigma}.
\]

L'Hamiltonien effectif (restreint à une polyade vibronique donnée) est construit suivant le même schéma de couplage comme une combinaison linéaire d'opérateurs rovibroniques 11 :

\[
\tilde{H} = \sum_{\{i\}} ^{\{i\}} \tilde{t}_{\{i\}} (R_{O_e} (K_e, m_e, \Gamma_e) \otimes (\frac{1}{1} \xi(k_e, \mathcal{e} \Gamma_e) \otimes [m_0, m_0 \mathcal{e} \mathcal{e}] \gamma(k_e, \mathcal{e} \Gamma_e))) (A_1) .
\]

Ainsi le traitement simultané des trois sous-niveaux vibroniques

\[E \times E = A_1 + A_2 + E \]

en présence de la structure rotationnelle est possible. Nous disposons donc maintenant d'un jeu d'opérateurs rovibroniques relatifs à un état électronique de type \(E \). Le calcul des éléments matriciels s'effectue de manière semblable par rapport à tout ce qui a été fait jusqu'à présent, c'est pourquoi les calculs ne seront pas développés.

8.3 Traitement d'un état électronique trois fois dégénéré

Dans cette section, nous allons considérer le traitement d'un état électronique triplet sur les bases du formalisme dit "3d" [195]. Comme précédemment, les tenseurs relatifs à cet état seront construits en terme d'opérateurs de bosons création et annihilation \(\{b_i^+, b_i\}_{i=1,2,3} \) tout d'abord dans la chaîne standard \(u(3) \supset so(3) \supset so(2) \) (comme nous le verrons, ce choix n'est pas unique) puis dans \(u(3) \supset so(3) \supset O \). Nous attacherons moins d'importance cette fois-ci à l'orientation des tenseurs dans le sous-groupe \(O \) puisqu'elle sera réalisée grâce à la matrice usuelle \(\mathcal{G}^{(\mathcal{G})}_{n \mathcal{C}} \) définie dans le chapitre 2 [27]. Nous pourrons alors, une fois les opérateurs symétrisés construits, considérer par exemple les systèmes Jahn-Teller \([E \times F] \) et \([F \times F] \) \((F = F_1 \text{ ou } F_2) \).

Discutons maintenant le choix de la chaîne à considérer. L'algèbre \(u(3) \) admet deux chaînes de sous-algèbres

\[
\begin{align*}
\text{u}(\nu + 1) & \supset so(\nu + 1) \supset so(\nu) \quad \text{(I)} \\
\text{u}(\nu + 1) & \supset \text{u}(\nu) \supset so(\nu) \quad \text{(II)}
\end{align*}
\]

avec \(\nu = 2 \) dans notre cas 12. Iachello et Oss considèrent l'algèbre \(u(3) \) comme l'algèbre dynamique \(u(p + 1) \) [209] d'un oscillateur doublement dégénéré \((p = 2) \). Pour notre étude, \(u(3) \) est pris comme l'algèbre de dégénérescence d'un état électronique triplet et la chaîne (I) semble être en ce cas la mieux adaptée et la plus "physique". En effet, les états standards de (I) sont étiquetés par la valeur du moment angulaire électronique \(J_e \) [144] et sont notés \([[N, 0]^2, J_e, m_e] \) avec \(J_e = N, N - 2, \ldots, 1 \) ou 0 et \(m_e = -J_e, -J_e + 1, \ldots, J_e \). Les états de base de la chaîne (II) sont notés \([[N, 0]^2, n, m_e] \) avec les règles de branchement : \(n = 0, 1, \cdots, N \) et \(m_e = -n, -n + 2, \cdots, n \) pour \(\nu = 2 \) (\(m_e = n, n - 2, \cdots, 1 \)

\[11 \text{Il n'existe a priori aucun opérateur électronique prépondérant par rapport à un autre, nous fixons alors l'ordre du développement comme } \Omega = \Omega_0 + \Omega_e - 2. \]

\[12 \text{Le cas particulier } \nu = 1 \text{ est traité dans la référence [205]. Les cas } \nu = 3, 5, 6, \text{ surtout utilisés pour la physique des particules, sont considérés à l'intérieur des références [207, 208].} \]
ou 0 pour \(\nu > 2 \)). Ces deux différentes chaînes peuvent être reliées via une transformation adaptée, ce que montrent Santopinto et al. [210] en écrivant

\[
\|[N, 0^2], J_e, m_e\| = \sum_n c_n^{m_e} ||[N, 0^2], n, m_e\|,
\]

où les coefficients \(c_n^{m_e} \) du développement sont donnés explicitement dans [210].

Intéressons nous plus particulièrement à l'étude de la chaîne \(\langle J \rangle \) pour un état triplement dégénéré porteur de la représentation symétrique \([1, 0^2] \).

8.3.1 Constructions des opérateurs électroniques standards pour un état \(F \)

États électroniques dans \(u(3) \supset so(3) \supset so(2) \)

A partir de la relation (8.22), il apparaît que les opérateurs maximaux au niveau de \(u(3) \) sont de la forme

\[
T \begin{bmatrix} \{m_1, 0, -m_3\} \end{bmatrix} = \mathcal{N}(m_1, m_3) b_1^{m_1} b_3^{m_3},
\]

où \(\mathcal{N}(m_1, m_3) \) est une phase. La partie "crétion" est obtenue en posant \(m_1 = 1 \) et \(m_3 = 0 \) et la partie "annihilation" en posant \(m_1 = 0 \) et \(m_3 = 1 \). Les tenseurs covariants respectifs seront notés : \([1, 0^3]T_m^{(1)} \) et \([0^3 - 1]T_m^{(1)} \).

De plus nous définissons les générateurs de la sous-algèbre de la sous-algèbre \(so(3) \) comme [195] :

\[
\begin{align*}
J_+ &= N_1 - N_3 = b_1^+ b_1 - b_3^+ b_3 \\
J_0 &= \sqrt{2} (b_3^+ b_2 - b_1^+ b_2) \\
J_- &= \sqrt{2} (b_1^+ b_3 - b_2^+ b_3)
\end{align*}
\]

Dans cette configuration, il est aisé de vérifier que \([J_+, \mathcal{N}(1, 0) b_1^+] = 0 \), c'est à dire, en se référant aux équations (8.33), que le tenseur création correspondant est de composante minimale dans \(SO(3) \) :

\[
[1, 0^3]T_{-1}^{(1)} = \mathcal{N}(1, 0) b_1^+.
\]

Nous voyons de plus que :

\[
\begin{align*}
[J_-, [1, 0^3]T_{-1}^{(1)}] &= -\mathcal{N}(1, 0) \sqrt{2} b_2^+ \Rightarrow [1, 0^3]T_0^{(1)} = \mathcal{N}(1, 0) b_2^+ \\
[J_-, [1, 0^3]T_0^{(1)}] &= -\mathcal{N}(1, 0) \sqrt{2} b_3^+ \Rightarrow [1, 0^3]T_1^{(1)} = -\mathcal{N}(1, 0) b_3^+
\end{align*}
\]

De même, on montre que :

\[
\begin{align*}
[0^3 - 1]T_1^{(1)} &= \mathcal{N}(0, 1) b_1 \\
[0^3 - 1]T_0^{(1)} &= -\mathcal{N}(0, 1) b_2 \\
[0^3 - 1]T_{-1}^{(1)} &= -\mathcal{N}(0, 1) b_3.
\end{align*}
\]

L'espace porteur de la \(RI \) totalement symétrique est engendré par l'action des opérateurs de montée sur l'état vide : \([[1, 0^2], 1, m] = [[1, 0^2], 1, m] = [1, 0^3]T_m^{(1)}|000\rangle \). Pour les grandeurs contravariantes, nous avons : \([[1, 0^2], 1, m] = [1, 0^3]T_m^{(1)}|000\rangle = \left(\begin{array}{c} m' \\ m \\ 1 \end{array} \right) [1, 0^3]T_m^{(1)}|000\rangle \).
Opérateurs électroniques standards

Il est possible de déduire un jeu d’opérateurs standards à l’aide des quantités définies précédemment. Comme Boujut [195], nous commençons par définir des opérateurs particuliers, appelés *pitos* (comme “Particular Irreducible Tensors Operators” qui, comme nous le verrons, ne nous permettent pas d’extraire tous les invariants de $u(3)$ (excepté l’identité). Ces opérateurs sont notés d’une manière générale comme

$$[m_1, \hat{0}_1, -m_3]E_q^{\sigma(j)},$$

où σ est un indice de multiplicité car la chaîne 3d standard est non-canonical. En considérant les conventions de Sharp et Von Baeyer [211], Boujut [194, 195] écrit ces opérateurs comme une combinaison linéaire d’opérateurs purement créatifs couplés à une partie purement annihilation :

$$[m_1, \hat{0}_1, -m_3]E_q^{\sigma(j)} = \sum_{j'} A_{\sigma,j}^{m_1,m_3}(j', j'') \left([m_1, \hat{0}_1^2]T(j') \times [\hat{0}_1^2, m_3]T(j'') \right)_{m}^{(j)}.$$

(8.99)

Les règles concernant l’obtention de σ ainsi que les coefficients A sont donnés par exemple dans [194]. Pour nos applications, $m_1 = m_3 = 1$ et dans ce cas le problème devient “moins” complexe puisqu’il n’y a pas de multiplicité i.e. $A_{\sigma,11}^{11}(1,1) = A_{\sigma,13}^{13}(1,1) = 1$.

Mis à part l’opérateur identité $[\hat{0}_1^3]E_0^{0(0)} \equiv I_d$, les opérateurs électroniques seront :

$$[1, \hat{0}_1, -1]E_q^{1(1)} , [1, \hat{0}_1, -1]E_q^{1(2)}.$$

Cependant cette construction ne permet pas d’extraire tous les invariants de $u(3)$, c’est pourquoi il faut définir des opérateurs plus généraux, appelés *gitos* (comme “General Irreducible Tensors Operators”) définis à partir des tenseurs *pitos* [195] :

$$\Omega^{[m_1, \hat{0}_1, -m_3]}E_q^{\sigma(j)} = (N_1 + N_2 + N_3 - m_1)^{[\sigma]} [m_1, \hat{0}_1, -m_3]E_q^{\sigma(j)},$$

(8.100)

avec $X^{[0]} = 1$ et $X^{[p]} = X \times (X - 1) \times \cdots \times (X - (p - 1))$ pour $p > 0$. D’une part, lorsque $\Omega = 0$, nous retrouvons les opérateurs particuliers précédents et d’autre part, l’invariant linéaire va pouvoir s’écrire

$$[1, \hat{0}_1^3]E_0^{0(0)} = N_1 + N_2 + N_3.$$

(8.101)

A partir des relations (8.99) et (8.100), les générateurs de l’algèbre $su(3)$ sont donc :

$$\begin{cases}
0[1, \hat{0}_1, -1]E_0^{1(1)} = -\frac{N(1, 1)}{\sqrt{3}} (b_2^+ b_1 - b_3^+ b_2) = -\frac{N(1, 1)}{2} J_{-} \\
0[1, \hat{0}_1, -1]E_0^{1(1)} = -\frac{N(1, 1)}{\sqrt{2}} (b_1^+ b_1 - b_3^+ b_3) = -\frac{N(1, 1)}{2} J_{z} \\
0[1, \hat{0}_1, -1]E_0^{1(1)} = -\frac{N(1, 1)}{\sqrt{2}} (b_2^+ b_3 - b_1^+ b_2) = -\frac{N(1, 1)}{2} J_{+} \\
0[1, \hat{0}_1, -1]E_2^{1(2)} = -\frac{N(1, 1)}{\sqrt{3}} b_3^+ b_1 \\
0[1, \hat{0}_1, -1]E_1^{1(2)} = -\frac{N(1, 1)}{\sqrt{6}} (b_2^+ b_2 + b_1^+ b_1) \\
0[1, \hat{0}_1, -1]E_0^{1(2)} = -\frac{N(1, 1)}{\sqrt{6}} (N_1 + N_3 - 2 N_2) \\
0[1, \hat{0}_1, -1]E_{-2}^{1(2)} = -\frac{N(1, 1)}{\sqrt{2}} (b_1^+ b_2 + b_2^+ b_3) \\
0[1, \hat{0}_1, -1]E_{-1}^{1(2)} = -\frac{N(1, 1)}{\sqrt{2}} b_1^+ b_3
\end{cases}$$

(8.102)

Nous avons posé $N(1, 1) = N(1, 0)N(0, 1)$.

8.3. Traitement d’un état électronique trois fois dégénéré
Le calcul des éléments matriciels s’effectue de manière très simple à partir du théorème de Wigner-Eckart ainsi que de l’utilisation de la formule des \(emr \) pour des opérateurs agissant sur le même espace. Rappelons juste les expressions des \(emr \) pour les tenseurs élémentaires :

\[
\begin{align*}
\left([v + 1, 0^2], j + 1 \right) [1,0^2] T^{(1)} \left(\left[v, 0^2 \right], j \right) &= \sqrt{(j + 1)(v + j + 3)} \left([v, 0^2], j \right) [0^2, -1] T^{(1)} \left(\left[v + 1, 0^2 \right], j + 1 \right) \\
\left([v + 1, 0^2], j - 1 \right) [1,0^2] T^{(1)} \left(\left[v, 0^2 \right], j \right) &= -\sqrt{j(v - j + 2)} \\
\end{align*}
\]

8.3.2 Symérisation des tenseurs \(3d \) gitos

L’orientation des tenseurs dans le groupe \(O \) ne pose ici aucune difficulté puisqu’elle utilise la matrice \(G \) de la chaîne \(SO(3) \supset O \) [25]. Les tenseurs symétrisés élémentaires s’obtiennent à partir des composantes standards :

\[
[m_1, 0, -m_3] T^{(j)}_{m_1 \sigma} = \sum_m (j) G^{m}_{m_1 \sigma} [m_1, 0, -m_3] T^{(j)}_m,
\]

En utilisant la Table (coef \(G \)), nous obtenons les tenseurs créations et annihilations symétrisés

\[
\begin{align*}
[1,0^2] T^{(1)}_{F_1x} &= \frac{\mathcal{N}(1,0)}{\sqrt{2}} (b_1^+ + b_3^+) \\
[0^2, -1] T^{(1)}_{F_1x} &= -\frac{\mathcal{N}(0,1)}{\sqrt{2}} (b_1 + b_3) \\
[1,0^2] T^{(1)}_{F_1y} &= -\frac{i\mathcal{N}(1,0)}{\sqrt{2}} (b_1^+ - b_3^+) \\
[0^2, -1] T^{(1)}_{F_1y} &= -\frac{i\mathcal{N}(0,1)}{\sqrt{2}} (b_1 - b_3) \\
[1,0^2] T^{(1)}_{F_1z} &= \mathcal{N}(1,0) b_2^+ \\
[0^2, -1] T^{(1)}_{F_1z} &= -\mathcal{N}(0,1) b_2
\end{align*}
\]

Les états covariants symétrisés sont alors obtenus par l’action \([1, 0^2], 1, F_1 \sigma \) = \([1,0^2] T^{(1)}_{F_1 \sigma} |000\)).

Concernant les opérateurs, nous définissons tout d’abord l’invariant linéaire de \(u(3) \) comme

\[
[10^2] \mathcal{E}^{0(0)}_{A_1} = N_1 + N_2 + N_3
\]

Les autres opérateurs se déduisent aussi simplement. Nous avons alors :

\[
\begin{align*}
0[1,0,-1] \mathcal{E}^{(1)}_{F_{1x}} &= -\frac{\mathcal{N}(1,1)}{2\sqrt{2}} (J_+ + J_-) \\
0[1,0,-1] \mathcal{E}^{(1)}_{F_{1y}} &= \frac{i\mathcal{N}(1,1)}{2\sqrt{2}} (J_+ - J_-) \\
0[1,0,-1] \mathcal{E}^{(1)}_{F_{1z}} &= \frac{\mathcal{N}(1,1)}{2} J_z \\
0[1,0,-1] \mathcal{E}^{(2)}_{E_{1x}} &= \frac{\mathcal{N}(1,1)}{6} (N_1 + N_3 - 2N_2) \\
0[1,0,-1] \mathcal{E}^{(2)}_{E_{2x}} &= \frac{i\mathcal{N}(1,1)}{\sqrt{2}} (b_1^+ b_3 + b_3^+ b_1) \\
0[1,0,-1] \mathcal{E}^{(2)}_{E_{1y}} &= \frac{\mathcal{N}(1,1)}{2} (b_3^+ b_2 + b_2^+ b_1 - b_1^+ b_2 - b_2^+ b_3) \\
0[1,0,-1] \mathcal{E}^{(2)}_{E_{2y}} &= \frac{i\mathcal{N}(1,1)}{\sqrt{2}} (b_3^+ b_2 + b_2^+ b_1 + b_1^+ b_2 + b_2^+ b_3) \\
0[1,0,-1] \mathcal{E}^{(2)}_{E_{1z}} &= \frac{i\mathcal{N}(1,1)}{\sqrt{2}} (b_1^+ b_3 - b_3^+ b_1)
\end{align*}
\]

La forme matricielle de chaque opérateur peut être trouvée à partir de l’expression de la base symétrisée

\[
\left\{ \frac{\mathcal{N}(1,0)}{\sqrt{2}} (|100 > +|001 > : -\frac{i\mathcal{N}(1,0)}{\sqrt{2}} (|100 > -|001 > ; \mathcal{N}(1,0)|010 > \right\}
\]
Les matrices des générateurs de $SU(3)$ se traduisent par :

\[
0 \hat{1}, 0, -1 \mathcal{E}^{(1)}_{F_{1z}} = \frac{\mathcal{N}(1, 1)}{\sqrt{2}} \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & i \\
0 & -i & 0
\end{pmatrix},
\]

\[
0 \hat{1}, 0, -1 \mathcal{E}^{(1)}_{F_{1y}} = \frac{\mathcal{N}(1, 1)}{\sqrt{2}} \begin{pmatrix}
0 & 0 & -i \\
i & 0 & 0 \\
i & 0 & 0
\end{pmatrix},
\]

\[
0 \hat{1}, 0, -1 \mathcal{E}^{(1)}_{E_2} = \frac{\mathcal{N}(1, 1)}{\sqrt{2}} \begin{pmatrix}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix},
\]

\[
0 \hat{1}, 0, -1 \mathcal{E}^{(2)}_{F_{2x}} = \frac{\mathcal{N}(1, 1)}{\sqrt{2}} \begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{pmatrix},
\]

\[
0 \hat{1}, 0, -1 \mathcal{E}^{(2)}_{F_{2y}} = \frac{\mathcal{N}(1, 1)}{\sqrt{2}} \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{pmatrix}.
\]

Choix des phases

En utilisant les matrices \hat{C}_x, \hat{C}_y et \hat{C}_z définies dans la table (3.2) ainsi que les matrices \hat{C}_1 et \hat{C}_2 de l'équation (3.57), il est alors possible, si $\mathcal{N}(1, 1) = 1$, de faire les associations suivantes :

\[
0 \hat{1}, 0, -1 \mathcal{E}^{(1)}_{F_{1x}} = \frac{\hat{S}_x}{\sqrt{2}}, \quad 0 \hat{1}, 0, -1 \mathcal{E}^{(1)}_{F_{2x}} = \frac{\hat{C}_x}{\sqrt{2}}, \quad 0 \hat{1}, 0, -1 \mathcal{E}^{(2)}_{E_1} = \sqrt{2} \hat{C}_1,
\]

\[
0 \hat{1}, 0, -1 \mathcal{E}^{(1)}_{F_{1y}} = \frac{\hat{S}_y}{\sqrt{2}}, \quad 0 \hat{1}, 0, -1 \mathcal{E}^{(1)}_{F_{2y}} = \frac{\hat{C}_y}{\sqrt{2}}, \quad 0 \hat{1}, 0, -1 \mathcal{E}^{(2)}_{E_2} = \sqrt{2} \hat{C}_2,
\]

\[
0 \hat{1}, 0, -1 \mathcal{E}^{(1)}_{F_{1z}} = \frac{\hat{S}_z}{\sqrt{2}}, \quad 0 \hat{1}, 0, -1 \mathcal{E}^{(2)}_{F_{2z}} = \frac{\hat{C}_z}{\sqrt{2}}.
\]

Les matrices \hat{S}_σ sont celles associées à un spin $S = 1$ ($[\hat{S}_\alpha, \hat{S}_\beta] = -i \varepsilon_{\alpha\beta\gamma} \hat{S}_\gamma$) et introduites dans la formule (3.3.3) de la référence [94]. De plus, avec le choix de phase précédent, on doit obligatoirement avoir $\mathcal{N}(1, 0) = \mathcal{N}(0, 1)^*$. On choisira par exemple $\mathcal{N}(1, 0) = \mathcal{N}(0, 1) = 1$.

8.3.3 Hamiltoniens Jahn-Teller vibroniques pour les modes ν_2, ν_5 et ν_3

Nous décrivons ici brièvement la forme des Hamiltoniens vibroniques linéaires (modes ν_2 et ν_5) et quadratique (mode ν_3) dans un état électronique triplet.

Hamiltonien vibronique effectif pour un système $[F \times E]$

A partir des formalismes $2d$ et $3d$, nous pouvons définir un Hamiltonien Jahn-Teller effectif pour le système $[E \times F]$ ($F = F_1$ ou F_2). On utilise alors la chaîne vibronique générale, relative à l'orientation usuelle des tenseurs de $SU(2)$ dans O

\[
\begin{array}{cccccc}
U(3) & \times & U(2)^* & \supset & SO(3) & \times & SU(2)^* & \supset & O \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
[1, \hat{0}] & & [v, \hat{0}] & & j_\epsilon = 1 & & \frac{v}{2} & & (F_1, lC_v)\hat{C}_{\epsilon v}\sigma
\end{array}
\]

pour pouvoir écrire

\[
\hat{H}_{vib}(\nu_2) = \alpha_1 [1, -1] \psi_{041}^{(0)} + \alpha_2 \left([0, \hat{1}, -1] \mathcal{E}^{(1)}_{2(E)} \otimes \mathcal{E}^{(1)}_{1(2E)} \right) + \ldots
\]

\[
= \alpha_1 [1, -1] \psi_{041}^{(0)} + \alpha_2 \left([0, \hat{1}, -1] \mathcal{E}^{(1)}_{E_1} \mathcal{E}^{(1)}_{E_1} + [0, \hat{1}, -1] \mathcal{E}^{(2)}_{E_2} \mathcal{E}^{(2)}_{E_2} \right) + \ldots
\]

\[
\text{Dans le cas où } F = F_2, \text{ la base électronique symétrisée est simplement construite comme le produit } [1, \hat{0}^2] = [1, \hat{0}^2, 1, F(\sigma)] A_2.
\]
Pour le calcul des éléments matriciels, la base vibronique à considérer sera de la forme

\[
\left| \Psi_{ev}^{(A)} \right\rangle = \left| T^{(A)} \right| \left[[1, \hat{\theta}^2]_{1E1} \otimes [v, \hat{\theta}^2]_{1E2} \left(\hat{C}_{ev} \right) \right]_{\sigma} \left(C_{ev} \right),
\]

avec \(A = A_1 \) (resp. \(A_2 \)) si l’état électronique est \(F_1 \) (resp. \(F_2 \)) et \(\hat{C}_{ev} = C_{ev} \times A \).

Il est aussi envisageable de considérer un Hamiltonien Jahn-Teller non-transformé. En se plaçant dans l’approximation linéaire, l’Hamiltonien Jahn-Teller correspondant va s’écrire

\[
H_{JTL}(\nu_2) = \alpha_1 \left[\hat{\nu}_0 \right]_{A_1} + \alpha_2' \left(\left[\hat{1}, \hat{\theta} \right]_{1E1} + \left[\hat{\theta}, \hat{1} \right]_{1E2} \right) C_1 + \left(\left[\hat{1}, \hat{\theta} \right]_{1E2} + \left[\hat{\theta}, \hat{1} \right]_{1E1} \right) C_2 + \cdots,
\]

et cette dernière expression est l’analogue de l’expression (2.41).

Hamiltonien Jahn-Teller pour un système \([F \times F]\)

Intéressons-nous ici au système vibronique \([F_2 \times F]\). Cette fois, deux schémas de couplage s’offrent à nous et sont caractérisés par les deux chaînes vibroniques suivantes :

\[
\begin{array}{cccc}
U(3) & \times & U(3) & \supset \ SO(3) \times SO(3) \supset O \\
\downarrow & & \downarrow & \downarrow \\
[1, \hat{\theta}^2] & \otimes & [v, \hat{\theta}^2] & j_e = 1 \\
\end{array}
\]

\(nC_v, n'C_v \) \(C_{ev} \sigma \)

et

\[
\begin{array}{cccc}
U(3) & \times & U(3) & \supset \ SO(3) \times SO(3) \supset O \\
\downarrow & & \downarrow & \downarrow \\
[1, \hat{\theta}^2] & \otimes & [v, \hat{\theta}^2] & j_e = 1 \\
\end{array}
\]

\(nC_v \) \(nC_{ev} \sigma \)

Prenons par exemple la chaîne (II), l’Hamiltonien vibronique effectif va s’écrire dans ce cas (nous greffons les indices 4,5 et 6 à la partie vibrationnelle afin de la distinguer de la partie électronique)

\[
\hat{H}_{vib} = \sum_{\omega} \alpha_{\omega} \left(\Omega[m_1, \hat{\theta}, \hat{\theta}, \nu_0] \mathcal{E}^{\tau}(k_e) \otimes \Omega'[m_4, \hat{\theta}, \hat{\theta}, \nu_0] \mathcal{E}^{\tau}(k_v) \right)^{(k, A_1)}.
\]

La forme générale des états de base vibroniques sera dans ce cas

\[
\left| \Psi_{ev}^{(A)} \right\rangle = \left| T^{(A)} \right| \left[[1, \hat{\theta}^2]_{1E1} \otimes [v, \hat{\theta}^2]_{1E2} \left(\hat{C}_{ev} \right) \right]_{\sigma} \left(C_{ev} \right),
\]

avec \(A = A_1 \) (resp. \(A_2 \)) pour un mode \(F_1 \) (resp. \(F_2 \)) et \(A' = A_1 \) (resp. \(A_2 \)) pour un état électronique \(F_1 \) (resp. \(F_2 \)). De plus, nous avons la règle \(\hat{C}_{ev} = \left(A \right)^{v} \times A' \times C_{ev} \). Par exemple, si l’on veut étudier la bande \(\nu_6 \) de la molécule \(V(CO)_6 \), nous aurons \(A = A_1, A' = A_2 \) et les trois opérateurs purement vibroniques seront

\[
\left(\left[0[1, \hat{\theta}, \hat{\theta}, \nu_0] \mathcal{E}^{1}(k) \otimes 0[1, \hat{\theta}, \hat{\theta}, \nu_0] \mathcal{E}^{1}(2) \right)^{(0, A)} \right) \quad \text{et} \quad \left(\left[0[1, \hat{\theta}, \hat{\theta}, \nu_0] \mathcal{E}^{1}(2) \otimes 0[1, \hat{\theta}, \hat{\theta}, \nu_0] \mathcal{E}^{1}(2) \right)^{(k, A_1)} \right) (k = 0, 4).
\]

Notons que l’écriture d’un Hamiltonien rovibronique effectif ne poserait ici aucune difficulté majeure.

Pour conclure sur le traitement d’un état électronique trois fois dégénéré, considérons maintenant le modèle Jahn-Teller non-transformé. L’Hamiltonien relatif au mode vibrationnel \(\nu_5 \) \(^{14}\) va s’écrire à partir des résultats obtenus précédemment

\[
H_{JTL}(\nu) = \alpha_1 \left[[1, \hat{\theta}^2]_{A_1} \otimes [1, \hat{\theta}^2]_{A_1} \right] \left(\hat{C}_{ev} \right) + \alpha_2' \sum_{\sigma} \left[[1, \hat{\theta}^2]_{A_2} \otimes [1, \hat{\theta}^2]_{A_2} \right] \left(\hat{C}_{ev} \right) + \cdots.
\]

\(^{14}\) On pourrait également envisager le cas où les oscillateurs de dimensions deux et trois \((\nu_2 \text{ et } \nu_5) \) sont exactement dégénérés \([69, 212]\) en leurs associant un moment angulaire \(l = 2 \) qui correspond à un boson \(d \). Les opérateurs vibrationnels seraient alors construits dans une chaîne du type \(U(3) \supset SU(5) \supset SO(5) \supset SO(3) \supset O \).
avec $\tilde{V} = V \times A_2$. On retrouve bien la contribution linéaire usuelle formulée dans l’équation (2.45).

Si l’on considère maintenant un mode ν_3 isolé, nous devons pousser le développement de l’Hamiltonien à l’ordre quadratique en vibration puisque la partie linéaire n’est pas autorisée par symétrie. On ob
tient alors aisément :

$$
H_{TQ}(\nu_3) = \alpha_1 \ |0^0\rangle_{A_1} + \alpha_2 \sum_{\sigma=1,2} \left(|2,0^2\rangle_{E_\sigma} + |-2,0^2\rangle_{E_\sigma} \right) \tilde{C}_\sigma \\
+ \alpha_3 \sum_{\sigma'=x,y,z} \left(|2,0^2\rangle_{F_{2\sigma'}} + |-2,0^2\rangle_{F_{2\sigma'}} \right) \tilde{C}_{\sigma'} + \ldots .
$$

(8.118)

8.4 Traitement d’un état électronique quatre fois dégénéré

Après avoir envisagé des états électroniques deux et trois fois dégénérés, nous arrivons finalement au terme de ce travail en considérant un état électronique quadruplet G' (oublions l’indice de parité). L’algèbre de dégénérescence d’un tel état est $u(4)$ et l’espace des états électroniques engendre la RI fondamentale $[1,0^3]$. Au niveau des groupes, différentes chaînes possédant $U(4)$ comme groupe de tête sont envisageables :

$$
U(4) \supset SU(4) \supset Sp(4) \approx O(5) \supset SU(2) \supset SO(2) (I) \\
U(4) \supset SU(4) \supset SU(2)^* \times SU(2) \approx SO(4) \supset SO(2)^* \times SO(2) (II) \\
U(4) \supset SO(4) \supset SO(2) \times SO(2) \supset SO(2) (III) \\
U(4) \supset U(2) \times U(2) \supset SO(2) \times SO(2) \supset SO(2) (IV)
$$

Bien entendu, il n’est pas du tout question d’étudier ces quatre chaînes de groupes en détail si bien que pour notre étude, nous sélectionnerons uniquement les deux premières (chaînes I et II). Concernant les chaînes (III et IV), notons juste que leurs structures algébriques du type $u(N) \supset so(N) \supset so(N_a) \oplus so(N_b)$ et $u(N) \supset u(N_a) \oplus u(N_b) \supset so(N_a) \oplus so(N_b)$ apparaissent dans divers domaines de la physique, notamment dans le modèle IBM (Interacting Boson Model $N = 6$, $N_a = 5$ et $N_b = 1$) [207], dans le modèle des vibrations d’une molécule diatomique ($N = 4$, $N_a = 3$ et $N_b = 1$) [205] mais aussi dans le modèle des baryons ($N = 7$, $N_a = 6$ et $N_b = 1$) [208]. De plus, si nous caractérisons ces deux chaînes d’une manière générale par $|n\omega (\omega_\alpha \omega_\beta)\alpha\rangle$ (chaîne (III)) et $|n(n_a n_b)(\omega_\alpha \omega_\beta)\alpha\rangle$ (chaîne (IV)), il existe la correspondance

$$
|n\omega (\omega_\alpha \omega_\beta)\alpha\rangle = \sum_{n_a(n_b)} C_{n_a(n_b)}^{n\omega(\omega_\alpha \omega_\beta)} |n(n_a n_b)(\omega_\alpha \omega_\beta)\alpha\rangle
$$

où les coefficients “C” du développement sont donnés par Kota [213].

Cette parenthèse étant refermée, revenons sur la structure algébrique des chaînes (I) et (II). La première chaîne a récemment été utilisée par Moshinsky et al. [214] pour reformuler l’équation de Bhabha décrivant une particule libre relativiste de spin arbitraire ($s = n/2$, n entier) à l’aide des générateurs de l’algèbre symplectique $Sp(4)$ 15. Nous utiliserons sa structure pour traiter un état électronique de symétrie G'. La deuxième chaîne est plus intéressante puisqu’elle fait directement apparaître la structure produit direct $G' = E \times E_1$ lié au formalisme du pseudo-spin [45]. Il existe l’analogue en physique des particules donnant lieu aux supermultiplets de Wigner [221, 214, 197, 222] due à la structure de la chaîne $SU(4) \supset SU_s(2) \times SU_l(2)$. Dans celle-ci, l’indice “s” identifie le spin ordinaire et l’indice “l” le “sign spin” ou isospin, et qui permettent de retrouver l’algèbre des matrices de Dirac γ^ν par simple produit direct. En identifiant ces indices à notre problème, cela consiste à considérer implicitement $SU(4) \supset SU_{pse}(2) \times SU_{pse}(2)$, où “$pse$” est le pseudo-spin associé à E et

15La descente $SU(4) \supset Sp(4)$ ne pose aucun problème pour la RI fondamentale de $SU(4)$ et donc les propriétés d’une algèbre symplectique ne nous seront pas utiles. Pour plus de détails, le lecteur est invité à consulter les références [215, 216, 217, 218]. Une réalisation fermionique de $Sp(4)$ peut aussi être envisagée [219, 220].
“psel” les pseudo-spin associé à E'_1. Notons pour finir que Michielot [223] utilise une chaîne de type (II) pour construire les opérateurs rotationnels d’une toupie sphérique, à la différence près que les “a^m” sont omis car elle considère uniquement des moments angulaires rotationnels.

8.4.1 Étude de la chaîne $U(4) \supset SU(4) \supset Sp(4) \supset SU(2) \supset SO(2)$

Construction des états de base

Dans la chaîne (I), nous avons les règles de branchement $^{16} [1,0^3] \downarrow Sp(4) = < 10 > \downarrow SU(2) = [m \frac{3}{2}]^3$. Nous utiliserons uniquement les notations dans $U(4)$ et oublierons les notations redondantes au niveau de $SU(4)$. Dans cette dernière partie, le détail des calculs sera omis car le principe est le même que précédemment.

A partir de la relation (8.22), les opérateurs maximaux de $u(4)$ se notent

$$T \left[\begin{array}{c} m_1, 0^2, -m_4 \\ (maxc) \end{array} \right] = \mathcal{N}(m_1, m_4) b^+_1 m_1 b^+_4 m_4,$$

ou $\mathcal{N}(m_1, m_4)$ est une phase. Lorsque $m_4 = 0$ (opérateurs créations), on remarque aisément que le terme $\mathcal{N}(1,0) b^+_1$ commute avec les opérateurs de montée $E_{ij} \ (i < j)$; on obtient donc (en notations complètes)

$$[1,0^3]^{10>}_{T_3} = \mathcal{N}(1,0) b^+_1.$$ \hspace{1cm} (8.120)

Les autres composantes sont déduites à partir des opérateurs de montée. Le même raisonnement étant effectué sur la partie annihilation ($m_1 = 0$), on arrive finalement au résultat suivant :

$$[1,0^3]^{10>}_{T_3} = \mathcal{N}(1,0) b^+_1, \quad [0^3,-1]^{10>}_{T_3} = \mathcal{N}(0,1) b_1$$

$$[1,0^3]^{10>}_{T_3} = \mu_2 \mathcal{N}(1,0) b^+_2, \quad [0^3,-1]^{10>}_{T_3} = \nu_2 \mathcal{N}(0,1) b_2$$

$$[1,0^3]^{10>}_{T_3} = \mu_3 \mathcal{N}(1,0) b^+_3, \quad [0^3,-1]^{10>}_{T_3} = \nu_3 \mathcal{N}(0,1) b_3$$

$$[1,0^3]^{10>}_{T_3} = \mu_4 \mathcal{N}(1,0) b^+_4, \quad [0^3,-1]^{10>}_{T_3} = \nu_4 \mathcal{N}(0,1) b_4.$$ \hspace{1cm} (8.121)

ν_i et μ_i sont des phases à déterminer. Celles-ci peuvent être calculées en imposant la condition

$$\left([1,0^3]^{10>}_{T_3} \times [0^3,-1]^{10>}_{T_3} \right)^{00} = \frac{1}{2} (N_1 + N_2 + N_3 + N_4).$$

Une solution acceptable est : $\mathcal{N}(1,0) = -\mathcal{N}(0,1) = -1$, $\nu_1 = 1$ et $\mu_2 = \mu_4 = -\mu_3 = -1$. En résumé, nous avons :

$$[1,0^3]^{10>}_{T_3} = -b^+_1, \quad [1,0^3]^{10>}_{T_3} = b_1$$

$$[1,0^3]^{10>}_{T_3} = b^+_2, \quad [1,0^3]^{10>}_{T_3} = b_2$$

$$[1,0^3]^{10>}_{T_3} = -b^+_3, \quad [1,0^3]^{10>}_{T_3} = b_3$$

$$[1,0^3]^{10>}_{T_3} = b^+_4, \quad [1,0^3]^{10>}_{T_3} = b_4.$$ \hspace{1cm} (8.122)

Les états de base standards covariants seront engendrés par :

$$\left[[1,0^3]^{10>}_{T_3} , \frac{3}{2} , m \right] = [1,0^3]^{10>}_{T_m} 0000 > .$$

Les composantes contravariantes s’obtiennent à partir de $[1,0^3]^{10>}_{T_m} \frac{3}{2} m = (-1)^{\frac{3}{2} - m} [1,0^3]^{10>}_{T_m} m.$

16Dans la littérature, les étaquettes (ω_1, ω_2) de $O(5)$ remplacent quelquefois les étaquettes $< p, q >$ de $Sp(4)$. Dans notre cas, les seules représentations de $Sp(4)$ à considérer sont du type $< p + q, q >$; on a alors les règles $\omega_1 = q + \frac{p}{2}$ et $\omega_2 = \frac{p}{2}$ [224, 225].
Construction des générateurs

Les symétries autorisées pour les générateurs sont données par les règles de branchement

\[[1, \hat{0}^2, -1] \downarrow Sp(4) = \downarrow SU(2) = 2 \]
\[= \downarrow 20 \rightarrow SU(2) = 1, 3 \]

D’une manière générale, les tenseurs correspondants s’écrivent comme le couplage d’un tenseur élémentaire création et d’un tenseur élémentaire annihilation

\[
[1, \hat{0}^2, -1] < p^+ r, r > \varepsilon^{(k)}_q = \mathcal{M}_k \left([1, 0^3] < 10 > T^{(2)} \times [0^3, -1] < 10 > T^{(2)} \right)_q^{(k)}
\]

(8.123)

avec d’après ce qui précède, \(\mathcal{M}_0 = 1 \). Les 15 générateurs de \(SU(4) \) s’écrivent :

\[
\begin{align*}
[1, \hat{0}^2, -1] < 20 > \varepsilon_1^{(1)} &= \frac{\mathcal{M}_1 \sqrt{2}}{2\sqrt{5}} \left(2b_3^+ b_2 + \sqrt{3}(b_2^+ b_1 + b_1^+ b_3) \right), \\
[1, \hat{0}^2, -1] < 20 > \varepsilon_1^{(2)} &= \frac{\mathcal{M}_1}{2\sqrt{5}} (N_3 + 3N_4 - 3N_1 - N_2), \\
[1, \hat{0}^2, -1] < 20 > \varepsilon_{-1}^{(1)} &= \frac{\mathcal{M}_1 \sqrt{2}}{2\sqrt{5}} \left(2b_2^+ b_3 + \sqrt{3}(b_1^+ b_2 + b_3^+ b_4) \right), \\
[1, \hat{0}^2, -1] < 11 > \varepsilon_{-2}^{(2)} &= \frac{\mathcal{M}_2}{\sqrt{2}} (b_1^+ b_3 + b_3^+ b_1), \\
[1, \hat{0}^2, -1] < 11 > \varepsilon_{-2}^{(2)} &= \frac{\mathcal{M}_2}{2\sqrt{5}} (N_1 - N_2 - N_3 + N_4), \\
[1, \hat{0}^2, -1] < 11 > \varepsilon_{-1}^{(2)} &= \frac{\mathcal{M}_2}{\sqrt{2}} (b_1^+ b_2 - b_2^+ b_1), \\
[1, \hat{0}^2, -1] < 11 > \varepsilon_{-1}^{(2)} &= \frac{\mathcal{M}_2}{2\sqrt{5}} (b_1^+ b_4 + b_4^+ b_1), \\
[1, \hat{0}^2, -1] < 20 > \varepsilon_3^{(3)} &= \frac{\mathcal{M}_3}{\sqrt{2}} b_1^+ b_1, \\
[1, \hat{0}^2, -1] < 20 > \varepsilon_2^{(3)} &= \frac{\mathcal{M}_3}{\sqrt{2}} (b_1^+ b_2 - b_2^+ b_1), \\
[1, \hat{0}^2, -1] < 20 > \varepsilon_1^{(3)} &= \frac{\mathcal{M}_3}{\sqrt{5}} (b_2^+ b_1 + b_4^+ b_3 - \sqrt{3}b_3^+ b_2), \\
[1, \hat{0}^2, -1] < 20 > \varepsilon_{-1}^{(3)} &= -\frac{\mathcal{M}_3}{2\sqrt{5}} (N_1 - 3N_2 + 3N_3 - N_4), \\
[1, \hat{0}^2, -1] < 20 > \varepsilon_{-2}^{(3)} &= -\frac{\mathcal{M}_3}{\sqrt{2}} (b_1^+ b_2 + b_3^+ b_4 - \sqrt{3}b_2^+ b_3), \\
[1, \hat{0}^2, -1] < 20 > \varepsilon_{-2}^{(3)} &= -\frac{\mathcal{M}_3}{\sqrt{2}} (b_1^+ b_4 - b_4^+ b_1), \\
[1, \hat{0}^2, -1] < 20 > \varepsilon_{-3}^{(3)} &= -\mathcal{M}_3 b_1^+ b_4.
\end{align*}
\]

(8.124)

Les 10 générateurs de \(Sp(4) \) sont donnés par les tenseurs de rang 1 et 3.

En utilisant le théorème de Wigner-Eckart et en prenant une composante particulière pour chaque tenseur, on calcule aisément les \(emr \) électroniques :

\[
\begin{align*}
(\frac{3}{2}| [1, \hat{0}^2, -1] < 20 > \varepsilon^{(1)} | \frac{3}{2}) &= -\mathcal{M}_1 \sqrt{3}, & (\frac{3}{2}| [1, \hat{0}^2, -1] < 20 > \varepsilon^{(2)} | \frac{3}{2}) &= -\mathcal{M}_2 \sqrt{5}, \\
(\frac{3}{2}| [1, \hat{0}^2, -1] < 20 > \varepsilon^{(3)} | \frac{3}{2}) &= -\mathcal{M}_3 \sqrt{7}.
\end{align*}
\]
Symérisation des tenseurs de $U(4)$

La base symétrisée est simplement la base standard dans ce cas. Nous avons :

$$\left\{ [1,0^3] < 10 >, \frac{3}{2}, G'i \lambda >; [1,0^3] < 10 >, \frac{3}{2}, G' \mu >; [1,0^3] < 10 >, \frac{3}{2}, G' \nu > \right\} = \left\{ [1,0^3] < 10 >, \frac{3}{2}, \frac{3}{2} >; [1,0^3] < 10 >, \frac{3}{2}, -\frac{1}{2} >; [1,0^3] < 10 >, \frac{3}{2}, -\frac{3}{2} > \right\}$$

Les générateurs symétrisés sont obtenus en appliquant les similitudes $(1)G$, $(2)G$ et $(3)G$. Dans ce cas, les opérateurs intéressants peuvent être exprimés en fonction des matrices de Dirac comme il est montré ci-dessous :

$$\begin{align*}
\mathcal{E}^{(2)}_{E_1} = \frac{\mathcal{M}_2}{2} \hat{\rho}_1 \\
\mathcal{E}^{(2)}_{E_2} = \frac{\mathcal{M}_2}{2} \hat{\rho}_2 \\
\mathcal{E}^{(3)}_{A_2} = -\frac{\mathcal{M}_3}{2} \hat{\sigma}_3
\end{align*}$$

(8.125)

En fixant les phases $\mathcal{M}_2 = -\mathcal{M}_3 = 1$, nous retrouvons les matrices de pseudo-spin \mathcal{S}_i introduite pour le système Jahn-Teller $[G' \times E']$. Concernant le pseudo-spin $\mathcal{S}i$ associé au système $[F_2 \times G']$, Michelot [226] a défini récemment des nouveaux générateurs obtenus par combinaison linéaire des tenseurs de symétrie F_1 (rang 1 et 3 dans $SU(2)$). On montre ainsi qu’un opérateur du type

$$U^{(F_1)}_a = a [1,0^3,-1] < 10 > \mathcal{E}^{(1)}_{F_1} - 2\mathcal{M}_1 a [1,0^3,-1] < 20 > \mathcal{E}^{(3)}_{F_1}$$

(8.126)

où a est une constante, permet d’avoir

$$U^{(F_1)}_a = \frac{\sqrt{5}\mathcal{M}_1 a}{2} \hat{\sigma}_a$$

(8.127)

Afin d’aboutir à la forme des matrices de pseudo-spin \mathcal{S}_i, nous devons poser $\mathcal{M}_1 a = 1/\sqrt{5}$.

En résumé, nous retrouvons les matrices de pseudo-spin \mathcal{S}_i associées aux symétries A_1 et E (analogie avec un état électronique deux fois dégénéré où les matrices $\hat{\rho}_i$ sont substituées par les matrices $\hat{\sigma}_i$) alors que les matrices associées au pseudo-spin \mathcal{S} s’exprime comme une combinaison linéaire de tenseur de rang 1 et 3. Michelot [226] a montré que, même si par un changement de l’orientation des $RI G'$ et E, l’opérateur de symétrie A_2 est maintenant diagonal mais, le problème demeure.

8.4.2 Étude de la chaîne $U(4) \ni SU(2)^* \times SU(2) \ni SO(2)^* \times SO(2)$

Construction des états de base

Les états standards covariants adaptés à la chaîne (II) pour la RI totalement symétrique de $U(4)$ sont de la forme

$$|[1,0^3,\frac{1}{2} m, -\frac{1}{2} m']\rangle,$$

où $(\frac{1}{2} m)$ est associé à l’état E et $(\frac{1}{2} m')$ à l’état E'. De ce fait, la forme générale d’un tenseur symétrisé dans $SU(2) \times SU(2)$ sera $|m_1,0^3,-m_4|T_{(m_1,m_2)}^{(j_1,j_2)}$ et pourra s’exprimer en fonction des opérateurs de bosons $\{b^+_i, b_j\}_{i,j=1,\ldots,4}$ de $SU(4)$. En suivant le même schéma logique que tout ce qui précède, on montre

17Smirnov et Sharma [196] utilisent un jeu d’opérateurs de bosons doublements indiqués : $\{b^+_{m_1 m_2}, b_{m_1' m_2'}\}$ $m_1,m_2\pm 1/2$

Les générateurs de l’algèbre $u(4)$ s’expriment alors comme

$$A_{m_1 m_2, \frac{1}{2} m'_1 \frac{1}{2} m'_2} = b^+_{m_1 m_2} b_{m_1' m_2'}^{(\frac{1}{2} \frac{1}{2})}.$$
que les opérateurs élémentaires sont donnés par :

\[
\begin{align*}
[1,0^3]T_1^1(1,0) b_1^+ & = \mathcal{N}(1,0) b_1^+ , \\
[1,0^3]T_2^1(1,0) b_2^+ & = \mu_2 \mathcal{N}(1,0) b_2^+ , \\
[1,0^3]T_3^1(1,0) b_3^+ & = \mu_3 \mathcal{N}(1,0) b_3^+ , \\
[1,0^3]T_4^1(1,0) b_4^+ & = \nu_4 \mathcal{N}(1,0) b_4^+ , \\
[0^3,-1]T_1^1(1,0) b_1^- & = \mathcal{N}(0,1) b_1^- , \\
[0^3,-1]T_2^1(1,0) b_2^- & = \nu_2 \mathcal{N}(0,1) b_2^- , \\
[0^3,-1]T_3^1(1,0) b_3^- & = \nu_3 \mathcal{N}(0,1) b_3^- , \\
[0^3,-1]T_4^1(1,0) b_4^- & = \nu_4 \mathcal{N}(0,1) b_4^- ,
\end{align*}
\]

(8.128)

avec \(\mu_i\) et \(\nu_i\), des phases à déterminer.

En imposant la condition

\[
\begin{align*}
[1,0^3]T_1^1(1,0) b_1^+ \times [0^3,-1]T_1^1(1,0) b_1^- = \frac{1}{2} (N_1 + N_2 + N_3 + N_4) ,
\end{align*}
\]

on arrive aux choix suivants : \(\mathcal{N}(1,0) = \mathcal{N}(0,1) = 1\), \(\nu_i = 1\) et \(\mu_2 = \mu_3 = -\mu_4 = -1\). En résumé, nous avons :

\[
\begin{align*}
[1,0^3]T_1^1(1,0) b_1^+ = b_1^+ , & \quad [0^3,-1]T_1^1(1,0) b_1^- = b_1^- , \\
[1,0^3]T_2^1(1,0) b_2^+ = -b_2^+ , & \quad [0^3,-1]T_2^1(1,0) b_2^- = b_2^- , \\
[1,0^3]T_3^1(1,0) b_3^+ = -b_3^+ , & \quad [0^3,-1]T_3^1(1,0) b_3^- = b_3^- , \\
[1,0^3]T_4^1(1,0) b_4^+ = b_4^+ , & \quad [0^3,-1]T_4^1(1,0) b_4^- = b_4^- .
\end{align*}
\]

(8.129)

On déduit alors les états covariants qui sont construits par applications successives des opérateurs création

\[
\begin{align*}
|[1,0^3]^{1/2} m, 1/2 m'| = [1,0^3]T^{1/2} m m' |0000> .
\end{align*}
\]

Construction des générateurs non symétrisés

Nous définissons les générateurs de \(u(4)\) comme

\[
\begin{align*}
[1,0^3,-1]E_{q q'}^{(k,k')} & = \mathcal{M}_{kk'} \left([1,0^3]T^{1/2} \times [0^3,-1]T^{1/2} \right)_{q q'}^{(k,k')} \\
& = \mathcal{M}_{kk'} F_{m_1 m_2}^{m_1' m_2'} (k) \quad F_{q q'}^{q q'} (k') \quad [1,0^3]T^{1/2} m_1 m_1' \quad [0^3,-1]T^{1/2} m_2 m_2'.
\end{align*}
\]

(8.130)
et ainsi les générateurs de $SU(4)$ sont donnés par :

\[
\begin{align*}
[1, 0, -1] \mathcal{E}^{(1, 0)}_{1, 0} &= \frac{M_{10}}{\sqrt{2}} (b_3^+ b_1 + b_4^+ b_2), \\
[1, 0, -1] \mathcal{E}^{(0, 0)}_{0, 0} &= -\frac{M_{10}}{2} (N_1 + N_2 - N_3 - N_4), \\
[1, 0, -1] \mathcal{E}^{(0, 0)}_{-1, 0} &= -\frac{M_{10}}{2} (b_1^+ b_3 + b_2^+ b_4), \\
[1, 0, -1] \mathcal{E}^{(0, 1)}_{0, 1} &= \frac{M_{01}}{\sqrt{2}} (b_2^+ b_1 + b_4^+ b_3), \\
[1, 0, -1] \mathcal{E}^{(0, 1)}_{0, 0} &= -\frac{M_{01}}{2} (N_1 - N_2 + N_3 - N_4), \\
[1, 0, -1] \mathcal{E}^{(0, -1)}_{0, -1} &= -\frac{M_{01}}{2} (b_1^+ b_2 + b_3^+ b_4), \\
[1, 0, -1] \mathcal{E}^{(1, 1)}_{1, 1} &= M_{11} b_1^+ b_1, \quad [1, 0, -1] \mathcal{E}^{(1, 1)}_{-1, -1} = M_{11} b_1^+ b_4, \\
[1, 0, -1] \mathcal{E}^{(1, 1)}_{-1, 1} &= -M_{11} b_2^+ b_3, \quad [1, 0, -1] \mathcal{E}^{(1, 1)}_{1, -1} = -M_{11} b_3^+ b_2, \\
[1, 0, -1] \mathcal{E}^{(1, 1)}_{0, 1} &= \frac{M_{11}}{\sqrt{2}} (b_2^+ b_1 - b_4^+ b_3), \\
[1, 0, -1] \mathcal{E}^{(1, 1)}_{0, 0} &= -\frac{M_{11}}{2} (N_1 - N_2 - N_3 + N_4), \\
[1, 0, -1] \mathcal{E}^{(1, 1)}_{0, -1} &= \frac{M_{11}}{2} (b_1^+ b_3 - b_2^+ b_4), \\
[1, 0, -1] \mathcal{E}^{(1, 1)}_{-1, 0} &= -\frac{M_{11}}{\sqrt{2}} (b_3^+ b_1 - b_4^+ b_2), \\
[1, 0, -1] \mathcal{E}^{(1, 1)}_{-1, -1} &= -\frac{M_{11}}{2} (b_1^+ b_3 - b_2^+ b_4), \\
[1, 0, -1] \mathcal{E}^{(1, 1)}_{0, 0} &= -\frac{M_{11}}{2} (N_1 - N_2 - N_3 + N_4).
\end{align*}
\]

(8.131)

Construction des générateurs symétrisés

Nous allons traiter ici la symétrie E dans la nouvelle orientation i.e. en considérant la matrice $[m_1, -m_2] \mathcal{E}_{\Gamma \sigma}^{\text{lm}}$ définie par (8.62). La symétrisation des autres composantes sera réalisée de manière usuelle de sorte qu’un tenseur orienté s’exprimera comme :

\[
[m_1, 0, -m_2] \mathcal{E}_{\Gamma \sigma}^{(k, k')} = \sum_{q, q'} [m_1, -m_2] \mathcal{G}_{\Gamma \sigma}^{(k') q} \mathcal{G}_{U \sigma}^{q q'} [m_1, 0, -m_2] \mathcal{E}_{\Gamma \sigma}^{(k, k') q q'}
\]

(8.132)

Nous pouvons donc construire tous les opérateurs de la chaîne (II) dans la base symétrisée mais nous allons nous retenir les opérateurs importants pour traiter l’effet Jahn-Teller par exemple. Ceux qui nous intéressent sont reliés aux matrices des pseudo-spin \mathcal{S} et Σ et on montre que :

\[
[1, 0, -1] \mathcal{E}_{1\Gamma A_1}^{(1, 0)} = \frac{M_{10}}{\sqrt{2}} \mathcal{S}_+ , \quad [1, 0, -1] \mathcal{E}_{0 A_1}^{(0, 1)} = M_{01} \Sigma_x ,
\]

(8.133)

\[
[1, 0, -1] \mathcal{E}_{2\Gamma A_2}^{(1, 0)} = \frac{M_{10}}{\sqrt{2}} \mathcal{S}_- , \quad [1, 0, -1] \mathcal{E}_{0 A_1}^{(0, 1)} = M_{01} \Sigma_y ,
\]

Concernant les différentes phases, nous décidons de fixer $M_{01} = 1$. Pour la phase M_{10}, nous faisons en sorte que l’opérateur de symétrie A_2, prépondérant dans le terme Jahn-Teller linéaire du système $[F_2 \times G']$, coïncide avec S_z. Pour cela, nous fixons $M_{10} = i$. Les emr électroniques sont alors donnés par les formules suivantes :

\[
\begin{align*}
&\langle [1, 0, -1] \mathcal{E}_{1\Gamma A_1}^{(1, 0)} || [1, 0, -1] \mathcal{E}_{1\Gamma A_1}^{(1, 0)} || [1, 0, -1] \mathcal{E}_{1\Gamma A_1}^{(1, 0)} \rangle = -i \sqrt{3} \\
&\langle [1, 0, -1] \mathcal{E}_{2\Gamma A_2}^{(0, 1)} || [1, 0, -1] \mathcal{E}_{2\Gamma A_2}^{(0, 1)} || [1, 0, -1] \mathcal{E}_{2\Gamma A_2}^{(0, 1)} \rangle = -\sqrt{3} \\
&\langle [1, 0, -1] \mathcal{E}_{0 A_1}^{(1, 0)} || [1, 0, -1] \mathcal{E}_{0 A_1}^{(1, 0)} || [1, 0, -1] \mathcal{E}_{0 A_1}^{(1, 0)} \rangle = 3 M_{11} \\
\end{align*}
\]

Nous fixons arbitrairement la phase $M_{11} = i$.

8.4.3 Hamiltoniens Jahn-Teller vibroniques dans la chaîne (II)

Nous sommes à même de construire maintenant une série d’opérateurs vibroniques et rovibroniques (transformés ou non) à partir des résultats relatifs à chaîne (II) pour des modes deux et trois fois dégénérés.

Hamiltonien vibronique effectif pour le système \([G' \times E]\)

La partie vibrationnelle est construite avec le formalisme \(2d\) à l’aide d’opérateurs doublements indicés afin de rendre compte de structure (II). L’Hamiltonien vibronique effectif pour un mode \(\nu_2\) va alors s’écrire\(^{\text{18}}\):

\[
\tilde{H}_{\text{vib}}(\nu_2) = \sum_{\omega} \alpha_{\omega} \left([1,0^2,0] \mathcal{E}'(k_{e1} \ell_{e1} k_{e2} \ell_{e2}) \otimes [m_1,0^2,0] \mathcal{V}(k_{v} \ell_{v} k_{v} \ell_{v},0,0,0) \right) (\Gamma_{e1},\Gamma_{e2})(A_1)
\]

\(8.134\)

Notons que l’Hamiltonien ne sera de symétrie \(A_1\) que si les conditions suivantes sont satisfaites : \(\Gamma_{e2} = A_1\) et \(\Gamma_{e1} = \Gamma_{v}\). On vérifie alors que les seules opérateurs possibles sont hermitiques et invariants dans le renversement du temps.

Les fonctions de base vibroniques sont écrites en suivant le même schéma de couplage que celui de l’Hamiltonien et sont données par :

\[
\left| \Psi_{e v}(C_{e v},E_{v},(\tilde{C}_{e v})) \right> = \left[\left| [1,0^3,1] \Psi_{e v} \left(\frac{1}{2},1E_{e} \frac{1}{2},E_{v} \right) \otimes \left| \nu_1 \right|^1 \Psi_{e v} \left(\frac{1}{2},mn_{e}C_{e v},0,A_1 \right) \right> (C_{e v},E_{v},(\tilde{C}_{e v})) \right> \right.
\]
\[
= F \left(C_{e v} \quad E_{v} \right) \left(\tilde{C}_{e v} \right) \left[\left| [1,0^3,1] \Psi_{e v} \left(\frac{1}{2},1E_{e} \frac{1}{2},E_{v} \right) \otimes \left| \nu_1 \right|^1 \Psi_{e v} \left(\frac{1}{2},mn_{e}C_{e v},0,A_1 \right) \right> (C_{e v},E_{v},(\tilde{C}_{e v})) \right.
\]
\[
\left. \right> \quad \sigma' \quad \gamma \right).
\]

\(8.135\)

De même qu’avant, si l’on veut écrire l’Hamiltonien Jahn-Teller linéaire non-transformé pour un mode deux fois dégénéré, il suffit de construire des termes vibrationnels inhomogènes en opérateurs création et annihilation pour arriver à une forme similaire à l’expression (8.34) de la référence [45] :

\[
H_{\text{JTL}}(\nu_2) = H_0 + \alpha' \left(Q_+ \tilde{S}_- + Q_- \tilde{S}_+ \right) + \cdots
\]

\(8.136\)

Enfin, la construction d’opérateurs rovibroniques n’est pas plus difficile, il suffit juste d’écrire les opérateurs rotationnels comme \(R^{\Omega}(k_{v} \ell_{v} k_{v} \ell_{v},0,A_1)\).

Hamiltonien vibronique effectif pour un système \([G' \times F]\)

Ce dernier type de système est intéressant puisque plusieurs choix de couplage sont envisageables. Un premier choix consiste à coupler les fonctions et les opérateurs dans le sous-groupe \(O^S\), mais on peut aussi procéder en couplant les moments angulaires électroniques et vibrationnels (seulement pour la partie relative au pseudo-spin \(E'(1)\)) et en symétrisant ensuite dans \(O^S\). On écrira par exemple soit

\[
\tilde{H}_{\text{vib}}(\nu_i) = \sum_{\omega} \alpha_{\omega} \left([1,0^2,0] \mathcal{E}'(k_{e1} \ell_{e1} k_{e2} \ell_{e2}) \otimes [m_1,0^2,0] \mathcal{V}(0,0,A_1,k_{v} \ell_{v} k_{v} \ell_{v}) \right) (\Gamma_{e1},\Gamma_{e2})(A_1)
\]

\(8.137\)

soit

\[
\tilde{H}_{\text{vib}}(\nu_i) = \sum_{\omega} \alpha'_{\omega} \left([1,0^2,0] \mathcal{E}'(k_{e1} \ell_{e1} k_{e2} \ell_{e2}) \otimes [m_1,0^2,0] \mathcal{V}(0,0,A_1,k_{v} \ell_{v}) \right) (\Gamma_{e1},\Gamma_{e2})(A_1)
\]

\(8.138\)

\(^{\text{18}}\)Nous proposons ici un schéma de couplage particulier mais ce choix n’est pas restrictif.
Au niveau des fonctions de base vibroniques, cela se traduit respectivement par

\[\left| \Psi_{v}^{(E_{1}C_{v})(\bar{C}_{v})_{\sigma}} \right\rangle = \left[T^{(A)} \right]^{v} \left[\left[1,0 \right] \Psi_{v}^{(1,1E_{1}E_{2})_{\sigma}} \otimes \left[v,0 \right] \Psi_{0,A_{1},j_{v},n_{v}C_{v}} \right]^{(E_{1}C_{v})(\bar{C}_{v})_{\sigma}} \] (8.139)

et

\[\left| \Psi_{v}^{(E_{2}j_{v},n_{v}C_{v})(\bar{C}_{v})_{\sigma}} \right\rangle = \left[T^{(A)} \right]^{v} \left[\left[1,0 \right] \Psi_{v}^{(1,1E_{1}E_{2})_{\sigma}} \otimes \left[v,0 \right] \Psi_{0,A_{1},j_{v},n_{v}C_{v}} \right]^{(E_{2}j_{v},n_{v}C_{v})(\bar{C}_{v})_{\sigma}} \] (8.140)

avec \(A = A_{1} \) ou \(A_{2} \) suivant que \(F = F_{1} \) ou \(F_{2} \) et \(\bar{C}_{v} = C_{v} \times (A)^{v} \).

- A partir de la première réalisation, nous avons les quatre opérateurs d’interaction suivants pour le système \([G' \times F_{1}]\):

\[\alpha_{1} \left(1,0 \right) \varepsilon^{(0,0,0,1,1)} \wedge 1,0,0,1,1 \) \((A_{1}^{2},A_{2})^{(A_{2})} \),

\[\alpha_{2} \left(1,0,0,0,1 \right) \varepsilon^{(1,0,0,1,1,1)} \wedge 0,0,0,1,1 \) \((A_{1}^{2},A_{2})^{(A_{2})} \),

\[\alpha_{3} \left(1,0,0,0,1 \right) \varepsilon^{(1,1,2,0,0,1)} \wedge 0,0,0,1,1 \) \((E,E)^{(A_{1})} \),

\[\alpha_{4} \left(1,0,0,0,1 \right) \varepsilon^{(1,1,2,0,0,1)} \wedge 0,0,0,1,1 \) \((E,E)^{(A_{1})} \).

- A partir de la deuxième réalisation, nous avons les quatre opérateurs d’interaction suivants pour le système \([G' \times F_{1}]\):

\[\alpha_{1}' \left(1,0,0,0,1 \right) \varepsilon^{(0,0,0,2,1)} \wedge 1,0,0,1,1 \) \((A_{1},A_{2})^{(A_{2})} \),

\[\alpha_{2}' \left(1,0,0,0,1 \right) \varepsilon^{(1,0,0,1,1,1)} \wedge 0,0,0,1,1 \) \((A_{1},A_{2})^{(A_{2})} \),

\[\alpha_{3}' \left(1,0,0,0,1 \right) \varepsilon^{(1,1,2,0,0,1)} \wedge 0,0,0,1,1 \) \((E,E)^{(A_{1})} \),

\[\alpha_{4}' \left(1,0,0,0,1 \right) \varepsilon^{(1,1,2,0,0,1)} \wedge 0,0,0,1,1 \) \((E,E)^{(A_{1})} \).

Par exemple, en partant de la première réalisation, nous pouvons évaluer les principaux paramètres afin de retrouver la structure vibronique de ReF\(_{6}\) (voir Tab. 7.3). Ainsi, avec le jeu de paramètres

\[\alpha_{0} = 721.23 \text{ cm}^{-1} \ (187 \text{ ReF}_6) , \]

\[\alpha_{1} = 14.16 \text{ cm}^{-1} , \quad \alpha_{2} = -11.38 \text{ cm}^{-1} , \quad \alpha_{3} = -0.38 \text{ cm}^{-1} , \quad \alpha_{4} = -0.82 \text{ cm}^{-1} , \] (8.141)

nous obtenons la structure vibronique donnée sur la figure 8.1. Le terme associé au paramètre \(\alpha_{1} \) est un “Coriolis vibronique” du type \(l \Sigma \) avec \(\Sigma = 1/2 \), qui éclate le niveau \(v_{3} = 1 \) en deux composantes distinctes : \(E \times D^{(A)} \) et \(E \times D^{(B)} \).

Fig. 8.1 - Structure vibronique de ReF\(_{6}\) par le modèle algébrique.

Application : système linéaire \([G' \times F_{2}]\)

Enfin, pour achever ce travail de thèse, nous allons considérer l’Hamiltonien Jahn-Teller linéaire \([G' \times F_{2}]\) [59] non-transformé en considérant le système de coordonnées normales symétrisées \(Q^{(0,0,2)} \) associé au mode \(v_{5} \). L’opérateur électronique prépondérant est

\[1,0,0,0,1 \] \(\varepsilon_{0,0,2}^{(1,1)} \) \(F_{1} \) \(\sim \rho_{3} \sigma_{\alpha} \),

\[\alpha_{0} \quad \alpha_{1} \quad \alpha_{2} \quad \alpha_{3} \quad \alpha_{4} \]

\[721.23 \text{ cm}^{-1} \quad (722.36 \text{ cm}^{-1}) \quad (714.82 \text{ cm}^{-1}) \quad (713.81 \text{ cm}^{-1}) \]
l'Hamiltonien linéaire s'écrit alors :

\[
H_{\text{JTL}} = \hbar \omega_5 \left(N_5 + \frac{3}{2} \right) + \gamma T^{(A_2)} \left([1,0]^{1/2} | 1,0 \rangle_{A_2} \otimes Q^{(0,A_1,1)} \right)^{(A_2,0,A_1)(A_2)} + \cdots
\]

(8.142)

En considérant la base vibronique

\[
\left[T^{(A)} \right]^v \left[[1,0]^3 | \psi_{\text{e}}^{(\frac{1}{2},1,E_{\text{e}})} \otimes \psi_0^{(0,A_1,j_e)} \right] (E_{\text{jev}},n_{\text{ev}}) (C_{\text{ev}}) \left(C_{\text{ev}} \right) \right],
\]

(8.143)

et en posant \(\gamma = -2\hbar \omega_5 \sqrt{6D_5} \), nous avons tracé les niveaux d'énergie de \(H_{\text{JTL}} \) en fonction du paramètre sans dimension \(D_5 \) en tronquant la matrice hamiltonienne à \(n_5 = 12 \). Le résultat est illustré sur la figure 8.2 avec \(\omega_5 = 1 \); on retrouve l'allure typique pour un tel système où chaque sous-niveau est étiqueté par la valeur de \(j_{\text{ev}} \).

![Figure 8.2](image)

Fig. 8.2 - Niveaux d'énergie du système Jahn-Teller linéaire en fonction de \(D_5 \) par l'approche algébrique.
8.5 Résumé du chapitre

8.5.1 Ce qu’il faut retenir · · ·

Un jeu d’opérateurs électroniques associé à un état deux, trois ou quatre fois dégénéré a été construit à l’aide d’une réalisation bosonique. Ces opérateurs électroniques sont respectivement les générateurs de $u(2)$, $u(3)$ et $u(4)$.

- Modification de l’orientation d’une RIE dans $U(2)^* \supset SU(2)^* \supset O$.
- Liens entre ces modèles algébriques et le formalisme du “pseudo-spin”.
- Les différents modèles Jahn-Teller non-transformés et effectifs ont été redéfinis.
- Une extension à des chaînes vibroniques du type $u(mn) \supset u_{\text{vib}}(m) + u_{\text{elec}}(n) \supset \cdots$ permettrait de construire des opérateurs vibroniques qui soient les générateurs de $u(mn)$.

8.5.2 Les références à consulter

Voici les principales références concernant ce chapitre. Cette liste n’est pas exhaustive.

Conclusion
Dans cette thèse, nous avons entrepris l'étude des interactions rovibrioniques pour des molécules à symétrie octaédrique et possédant un état électronique dégénéré. Le modèle rovibronique (Hamiltonien, moments de transition, fonctions de partition, ..., etc) mis en place permet une étude et une écriture systématique de toutes les interactions entre les degrés de liberté vibrationnel, électronique et rotationnel, et ceci pour un état électronique quelconque. Ainsi, nous sommes maintenant en mesure, partant d'un jeu de paramètres effectifs donné, de calculer un spectre infrarouge ou Raman en fréquence et en intensité. Mais avant cela et pour une meilleure analyse des phénomènes physiques observés, il a fallu redéfinir un certain nombre de points importants.

Pour cela, nous avons rappelé les outils tensoriels adaptés à la haute symétrie des molécules que l'on souhaitait étudier : les toupies sphériques. Il en est ressorti une méthode originale de recherche de la transformation unitaire qui réalise l'orientation des tenseurs dans le groupe O_h. Nous avons pu ensuite, pour différents systèmes vibroniques, reconsiderer l'effet Jahn-Teller d'un point de vue tensoriel afin de faciliter le calcul des éléments matriciels. La rotation moléculaire a ensuite été introduite dans le modèle Jahn-Teller "usuel" et les limites de celui-ci ont clairement été mises en évidence. Nous nous sommes donc logiquement tournés vers un modèle rovibronique effectif. L'Hamiltonien et les moments de transition effectifs que nous avons définis sont basés sur les formalismes sphérique et octaédrique introduits à Dijon. Ce modèle, qui s'est avéré très performant pour des études en polyades vibrationnelles, a été généralisé ici au cas de polyades vibroniques dans un état électronique dégénéré et pour un système possédant un nombre pair ou impair d'électrons. Nous avons pu tester ce modèle dans deux cas concrets : les molécules V(CO)$_6$ et ReF$_6$.

En premier lieu, nous avons considéré la molécule d'hexacarbonylde de vanadium V(CO)$_6$. Notre point de départ a été de supposer, comme dans la littérature, que le couplage spin-orbite était suffisamment faible de sorte à considérer l'état électronique de base comme étant F_{2g}. Partant de cette approximation, qui s'avère néanmoins justifiée, nous avons pu calculer le profil à basse résolution de la bande fondamentale ν_6 afin de le comparer au spectre expérimentale à transformée de Fourier enregistré au laboratoire de Spectrochimie Moléculaire (LADIR). Le résultat est satisfaisant et nous permet de mieux cerner la structure rovibronique complexe d’un tel système.

En second lieu, nous avons considéré la molécule d’hexafluorure de rhénium ReF$_6$. Son état électronique de base est un état quadruplet de symétrie C'_6. Parmi l’infinité de jeux de paramètres effectifs envisageables, nous en avons trouvé un pour lequel le profil calculé de la bande fondamentale ν_3 semble se rapprocher de celui enregistré à l'ETH de Zürich. Ce résultat est pour le moins concluant d’autant que l’allure générale du spectre est vraiment complexe et ne présente aucune structure régulière. De plus, nous disposons de quelques portions de spectres diode laser, et nous avons pu réaliser quelques simulations pour chacun des deux isotopes de ReF$_6$, à haute résolution. Cette étape est sans doute la plus délicate et s’inscrit plutôt dans des perspectives à long terme.

Cependant, de part la construction des opérateurs électroniques, le modèle rovibronique que nous avons défini avoue ses limites dans le traitement d’un état électronique de symétrie E. Pour pallier cela, nous nous sommes tournés vers une approche de type algébrique où nous associons aux états électroniques deux, trois ou quatre fois dégénérés, les algèbres $u(2)$, $u(3)$ et $u(4)$, respectivement. Les opérateurs associés à chacun de ces états sont ainsi les générateurs de ces différentes algèbres. L’originalité de cette partie réside dans le changement de l’orientation de la représentation E qui nous a permis de relier les générateurs pour des états doublets et quadruplets aux algèbres de Pauli et de Dirac. Nous disposons d’ores et déjà d’un formulaire contenant les principaux coefficients de couplage.
après le changement d'orientation. Nous pouvons aussi retenir deux choses importantes à l’issue de ce type d’approche : d’une part, les principaux termes de couplage Jahn-Teller ont pu être retranscrits sous forme algébrique et d’autre part, nous avons pu faire l’analogie entre notre problème de physique moléculaire et d’autres problèmes rencontrés en physique atomique ou nucléaire (supermultiplets de Wigner, par exemple).

En conclusion, au terme de ce travail nous avons commencé à comprendre la structure complexe des composés octaédriques dans un état électronique dégénéré. Bien sûr, notre démarche pourrait, le cas échéant, être retranscrite pour d’autres systèmes moléculaires (de symétrie C_{3v}, T_d, par exemple), des ions ou des radicaux libres (CH$_3$O, CH$_3$S, ...). En complément de ce travail, nous proposons aussi d’autres suggestions qui nous semblent intéressantes :

- faire une analyse plus détaillée de la bande fondamentale ν_3 de ReF$_6$ en étudiant sa structure fine rotationnelle,

- considérer des termes de couplages spin-orbite dans le modèle effectif. Ainsi, pour V(CO)$_6$, nous devrions traiter les deux états électroniques $E_2 + G'$ en interaction. Ceci compliquera l’étude, mais s’avère indispensable.

- considérer des transitions purement électroniques en introduisant par exemple la notion d’algèbre enveloppante avec des descentes de la forme $u(m + n) \supset u(m) \oplus u(n)$. Les transitions s’effectuent ici entre des états électroniques m et n fois dégénérés et les opérateurs de transitions sont définis dans l’espace de dimension $m + n$,

- écrire non seulement les opérateurs électroniques en terme de générateurs d’une algèbre, mais plus généralement les opérateurs vibroniques. Les calculs seront simplifiés puisque les générateurs peuvent être diagonaux dans une base adéquate,

- réaliser une étude (semi)-classique qualitative et quantitative pour l’analyse et la prédiction de spectres rovibroniques, notamment pour des valeurs élevées du moment angulaire rotationnel.
Bibliographie

[2] M. Rotger, V. Boudon, et H. Selig. Absorption spectrum of the \(a(E_{2g}) \leftrightarrow X(G_g')\) and \(b(G_g') \leftrightarrow X(G_g')\) electronic transitions of \(\text{ReF}_6\). Spectrochimica A Part A, 55, 1575–1584, (1999).

[144] M. REY, V. BOUDON, M. LOETE, et F. MICHELOT. *A Tensorial Formalism Adapted to the Rovibronic Couplings in the Colored Hexafluorides: Application to the $\nu_3(F_{2g})$ and $\nu_3(F_{1u})$ Modes*. J. Mol. Spectrosc., 204, 106–119, (2000).

[213] V. K. Kota, Transformation brackets between $U(N) \supset SO(N) \supset SO(N_a) \oplus SO(N_b)$ and $U(N) \supset U(N_a) \oplus U(N_b) \supset SO(N_a) \oplus SO(N_b)$. J. Math. Phys., 38(12), 6639–6647, (1997).

Théorie des spectres rovibroniques des molécules octaédriques : Hamiltonien et moments de transition

Résumé : Cette thèse est consacrée à l'étude des interactions rovibroniques au sein de complexes octaédriques pour lesquels l'approximation de Born-Oppenheimer n'est plus valide. Pour la première fois, un modèle rovibronique tensoriel effectif complet a été développé à partir des travaux portant sur les toupies sphériques dans un état électronique non dégénéré. Ce modèle inclut le cas de systèmes moléculaires possédant un nombre pair ou impair d'électrons et sa validité a pu être testée sur deux molécules, toutes deux octaédriques : V(CO)$_6$ et ReF$_6$. Pour ces deux systèmes, nous avons alors considéré quatre sous-niveaux vibroniques en interaction. Dans les deux cas, la comparaison entre les profils simulés et observés à basse résolution est satisfaisante. En parallèle, nous avons mis en place, par une approche de type algébrique, un modèle permettant le traitement d'un état électronique doublet, triplet ou quadruplet. L'effet Jahn-Teller a pu alors être réexaminé au moyen de ce type d'approche.

Theory of rovibronic spectra of octahedral molecules: Hamiltonian and transition moment operators

Abstract : This thesis is devoted to the treatment of rovibronic couplings of octahedral species for which the Born-Oppenheimer approximation is broken down. By using the octahedral formalism, a full effective rovibronic model is extended from works about molecules in a non-degenerate electronic state. This effective model is dedicated to molecules with an odd or an even number of electrons and it has been successfully applied to V(CO)$_6$ and ReF$_6$. For both of them we have four interacting vibronic sublevels attributed to a dynamical Jahn-Teller effect and giving rise to very complicated spectra. This model is validated by the overall agreement between predicted and observed band profiles. Moreover, an algebraic approach allowed us to consider a doublet, triplet or quadruplet electronic state. The Jahn-Teller effect has been reviewed with this kind of approach.

Key Words : Tensor operators, rovibronic couplings, Born-Oppenheimer approximation, Jahn-Teller effect, algebraic approach, V(CO)$_6$, ReF$_6$.