
HAL Id: tel-00004582
https://theses.hal.science/tel-00004582

Submitted on 8 Feb 2004

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Etude de la programmation logico-fonctionnelle
concurrente
Wendelin Serwe

To cite this version:
Wendelin Serwe. Etude de la programmation logico-fonctionnelle concurrente. Autre [cs.OH]. Institut
National Polytechnique de Grenoble - INPG, 2002. Français. �NNT : �. �tel-00004582�

https://theses.hal.science/tel-00004582
https://hal.archives-ouvertes.fr

INSTITUT NATIONAL POLYTECHNIQUE DE GRENOBLE

N˚attribué par la bibliothèque

T H È S E

pour obtenir le grade de

DOCTEUR DE L’INPG

Spécialité : Informatique : Systèmes et Communications

préparée au laboratoire LEIBNIZ – IMAG

dans le cadre de
l’École Doctorale Mathématiques, Sciences et Technologie de l’Information, Informatique

présentée et soutenue publiquement

par

Wendelin Bernhard SERWE

le 15 mars 2002

Étude de la programmation logico-fonctionnelle concurrente

Directeur de thèse : M. Rachid ECHAHED

JURY

Mme. Brigitte PLATEAU Président

M. Mario RODŔIQUEZ-ARTALEJO Rapporteur
M. Martin WIRSING Rapporteur
M. Rachid ECHAHED Directeur de thèse
M. Didier BERT Examinateur

M. François FAGES Examinateur
M. Philippe JORRAND Examinateur

2

Remerciements

Tout d’abord je tiens à exprimer toute ma gratitude aux membres du jury :

– M. Rachid Echahed, mon directeur de thèse, pour ses conseils, discussions et
encouragements précieuses, qui ont été indispensables à l’élaboration de cette
thèse.

– Mme. Brigitte Plateau qui m’a fait l’honneur de présider le jury de thèse.

– M. Mario Rodŕıquez-Artalejo et M. Martin Wirsing pour m’avoir fait l’hon-
neur de juger ce travail en tant que rapporteurs.

– M. Didier Bert, M. François Fages et M. Philippe Jorrand pour avoir accepté
de le juger en tant qu’examinateurs.

De plus, je remercie toutes les personnes qui ont participé d’une manière ou d’une autre
à l’élaboration de cette thèse, en particulier :

– toute l’équipe Programmation Multi-Paradigme (PMP) du laboratoire Leibniz

au sein de laquelle ce travail a été mené, c’est-à-dire Jérémie Blanc, Jean-
Christophe Janodet et Frédéric Prost, ainsi que Bruno Galmar et Marc Per-

ache. Ils ont participé directement au travail par leurs relectures, discussions et
implantations.

– M. Michael Hanus et son équipe aux universités de Aix-la-chapelle et Kiel, en par-
ticulier Bernd Braßel, Klaus Höppner et Frank Steiner pour les différentes
discussions que nous avons eues.

– Jérémie Blanc, Olivier et Cécile Lavoisy et Marie-Luise Schneider qui m’ont
aidé à améliorer la rédaction du résumé en français du mémoire.

– tous les membres du laboratoire Leibniz pour l’ambiance chaleureuse qu’ils ont
su créer.

– toute l’équipe de la médiatheque pour son aide précieuse dans mes recherches
bibliographiques.

– mes parents, mes amis et tous les autres qui m’ont soutenu pendant ma thèse.

3

Contents

Contents 4

I Résumé 6
I.1 Introduction . 6
I.2 Présentation du modèle . 8
I.3 Sémantique . 18
I.4 Analyse de la confidentialité . 21
I.5 Description d’un prototype . 22
I.6 Comparaison . 23
I.7 Conclusion . 27

1 Introduction 29
1.1 Overview of the Computation Model . 32
1.2 Plan of the Thesis . 42

2 Related Programming Styles 44
2.1 Declarative Programming . 44
2.2 Concurrent Programming . 57
2.3 Coordination . 61
2.4 (Executable) Specifications Techniques 65
2.5 Multiparadigm Programming . 69

3 Computation Model 75
3.1 Stores . 78
3.2 User Defined Actions . 87
3.3 Component Signatures . 95
3.4 Interactions . 102
3.5 Processes . 106
3.6 Components and Systems . 116

4 Operational Semantics 123
4.1 Operational Semantics of a Component 123
4.2 Semantics of a System . 131

4

5 Compositional Semantics of a Component 137
5.1 Semantics of Execution Traces . 137
5.2 Semantics of Labeled Execution Traces 141
5.3 Compositionality of the Semantics M 145

6 Secrecy Analysis 164
6.1 Formalisation of Secrecy . 165
6.2 Analysis: Abstraction and Constraint Generation 171
6.3 Correctness of the Analysis . 181

7 Implementation: Sabir 187
7.1 Presentation of Sabir . 187
7.2 Example of a Lift Controller . 191

8 Comparison with Related Work 203
8.1 Declarative Programming . 203
8.2 Concurrent Programming . 211
8.3 Coordination . 212
8.4 Specifications . 215
8.5 Multiparadigm Programming . 216

9 Conclusion and Perspectives 219

Bibliography 223

A Concrete Syntax of Sabir 252
A.1 Grammars for Stores . 252
A.2 Translations . 252
A.3 Grammar for Processes . 252

Detailed Table of Contents 255

List of Tables 259

List of Figures 260

Index 261

5

Chapitre I

Étude des langages
logico-fonctionnels concurrents

I.1 Introduction

Les programmes informatiques sont de plus en plus omniprésents du fait de l’uti-
lisation des moyens de traitement d’information qui se trouvent dans pratiquement
tous les appareils de la vie quotidienne, comme par exemple les systèmes de paiement
électroniques, les voitures ou même les lave-linges. Néanmoins, l’état de l’art de la pro-
grammation ne permet pas d’éviter les problèmes liés à des programmes erronés et non
fiables. On peut donc dire que nous sommes toujours au début d’une science de la
programmation [Dij01]. Un moyen pour pallier ces problèmes consiste à améliorer les
méthodes et outils utilisés pour la construction de programmes.

Un outil particulier pour l’expression des programmes est le langage de programma-
tion. Il est admis en linguistique et informatique que le langage utilisé pour l’expression
d’une pensée a une influence sur l’idée. Même si la conjecture de Church [Chu36] semble
suggérer le contraire, la plupart des programmeurs vont admettre que certains langages
sont plus au moins adaptés pour l’expression de différents aspects d’un système. Donc,
un langage multiparadigme, c’est-à-dire un langage qui combine plusieurs styles de pro-
grammation, offre aux programmeurs la possibilité de choisir pour chaque partie d’un
système le concept le plus approprié.

Dès le début de la programmation, la recherche sur les langages de programmation
a été dirigée vers un niveau de description de plus en plus abstrait. Un haut niveau
d’abstraction est souhaitable, car il permet au programmeur de se concentrer sur les
points essentiels du système en faisant abstraction des détails superflus. Ainsi, un haut
niveau d’abstraction permet des programmes concis et proches de la description du
système. Une sémantique bien définie est une deuxième propriété souhaitable, car elle
est indispensable pour la compréhension et la validation d’un programme et de ses
propriétés.

Un langage dit déclaratif permet au programmeur de déclarer le problème à résoudre
au lieu de préciser pas à pas une possibilité de résolution du problème. Ainsi, les lan-
gages déclaratifs sont par leur nature des langages de très haut niveau. Les langages
déclaratifs que nous considérons dans la suite de ce mémoire sont les langages logiques,

6

I.1. INTRODUCTION

fonctionnels et logico-fonctionnels. Ces langages sont fondés sur les notions de fonc-
tions et de prédicats qui ont été utilisées pour la description d’algorithmes avant même
l’invention des ordinateurs.

Néanmoins, les concepts théoriques sous-jacents aux langages déclaratifs sont insuf-
fisants pour la description aisée des systèmes complexes qui nécessitent l’interactivité, la
concurrence et la distribution [Tur39, Mil93a, Weg98]. L’utilité de la concurrence pour
obtenir une meilleure structuration des programmes a été montrée par exemple pour la
définition de systèmes de fenêtrage pour les langages déclaratifs [Pik89, GR93a, FPJ95].

La notion de processus a été introduite comme concept ou abstraction pour la
description de systèmes concurrents. Cette notion est étudiée sous la forme d’algèbres
de processus ou de calculs de processus. D’une manière simplifiée, un processus est défini
par les actions qu’il est capable d’exécuter. Cependant, les langages fondés uniquement
sur les algèbres de processus doivent être enrichis pour offrir les notions de fonction et
de prédicat sans le besoin de les coder en termes de processus.

Afin de faciliter la construction de systèmes complexes, la composition d’un système
à partir de composants (existants) a été proposée. Cette approche permet de réduire
la complexité d’un système en permettant la construction séparée de ses différents
composants, ainsi que leur (ré-)utilisation dans d’autres systèmes. Toutefois, il n’existe
pas de définition formelle généralement admise d’un composant.

Un formalisme qui combine les différentes approches de programmation mentionnées
précédemment permettrait l’expression de la plupart des parties d’un système complexe
à l’aide du concept le plus approprié. Ainsi, la description d’un tel système serait plus
concise et lisible, car il n’y aurait plus besoin d’encoder une notion par une autre. De
plus, une séparation claire des différentes notions ne saurait qu’augmenter la clarté
d’un programme. Évidemment, cette séparation entrâıne une perte par rapport à la
flexibilité offerte par le langage et oblige le programmeur à suivre une certaine discipline
de programmation, ce qui n’est plus perçu comme trop contraignant aujourd’hui.

De nombreux langages et modèles de programmation intégrant les différent notions
ont été proposés. Nous donnons un bref aperçu dans le paragraphe I.6. Dans ce mémoire
nous explorons un nouveau modèle de calcul, ou un nouveau cadre pour les langages
de programmation qui permet la construction de systèmes complexes à l’aide de com-
posants. Ces langages de programmation combinent la programmation déclarative avec
la concurrence sous forme de processus mobiles. De plus, le formalisme proposé est une
extension conservatrice à la fois des langages déclaratifs et des algèbres de processus.

? ? ?

Le reste de ce chapitre est organisé comme suit. Nous présentons notre modèle
au paragraphe suivant et donnons sa sémantique formelle au paragraphe I.3. Le para-
graphe I.4 présente une méthode pour l’analyse de la confidentialité entre les processus
d’un composant. Nous présentons notre prototype d’une plate-forme de programma-
tion multiparadigme au paragraphe I.5. Le paragraphe I.6 donne une brève comparaison
avec quelques travaux voisins, c’est-à-dire des langages et modèles de programmation
qui visent des objectifs similaires aux nôtres. Nous concluons en paragraphe I.7 en
apportant quelques perspectives.

7

CHAPITRE I. RÉSUMÉ

p4

F

p2

p1

p5

p3

sn1

sn4

sn5

sn2
sn3

Fig. I.1 – Système en exécution

I.2 Un modèle de calcul pour
la programmation déclarative concurrente

Nous modélisons un système par un ensemble de composants qui interagissent entre
eux par l’envoi de messages. Chaque composant est identifié par son nom qui peut être
considéré comme l’adresse du composant. À l’intérieur, un composant est constitué
d’un ensemble de processus pi et d’un store F , c’est-à-dire un programme déclaratif
classique. Un store peut être vu comme une présentation statique d’une théorie qui
décrit une situation. Les processus communiquent par la modification des stores, c’est-
à-dire en changeant d’une manière non-monotone la théorie décrite par le store, par
exemple, en ajoutant ou en enlevant une formule. Nous appelons ces modifications du
store actions. Un message envoyé d’un composant à un autre correspond à une action à
exécuter sur le store du composant distant. Un système de trois composants, nommés
sn1, sn2 et sn3, en exécution est présenté en figure I.1.

Dans ce mémoire (et plus particulièrement dans ce résumé) nous nous concentrons
sur la définition d’un composant, et nous effleurons uniquement les problèmes liés à la
composition des composants. Par exemple, le composant sn3 présenté en figure I.1 est
composé des deux composants sn4 et sn5. Cependant, la structure interne de sn3 peut
être masquée en prenant l’union disjointe des stores et des ensembles de processus des
composants sn4 et sn5.

Afin de clarifier la description d’un composant nous suggérons la stratification en
plusieurs niveaux, comme le présente la figure I.2. Le niveau le plus bas correspond à
la description du store, c’est-à-dire les sortes, fonctions et prédicats sont définis à ce
niveau. Un deuxième (méta-)niveau est nécessaire pour la description des actions, car
les actions manipulent les stores comme données. Finalement, les processus utilisent à
la fois les stores et les actions, et leur description demande un troisième niveau. Nous
reviendrons plus en détail aux différents niveaux au paragraphe I.2.3.

I.2.1 Stores

Comme mentionné précédemment, nous appelons store un programme déclaratif
classique. Notre approche pour la combinaison de la programmation déclarative et de
la concurrence est générique dans le sens qu’elle est indépendante du langage déclaratif

8

I.2. PRÉSENTATION DU MODÈLE

(store)sortes, fonctions & prédicats

actions (méta)

processus

Fig. I.2 – Niveaux d’une description d’un composant (vision simplifiée)

utilisé pour la description d’un store.

I.1 Définition. Un store F est un programme déclaratif classique, i.e., F = 〈Σ, R〉,
(écrit dans le langage L), composé d’une signature Σ et d’un ensemble de règles (aussi
appelées phrases ou formules). Une signature Σ = 〈S, Ω〉 est une paire d’un ensemble
de sortes S et d’une famille de symboles d’opérateurs, tel que Σ contienne au moins
la sorte Truth avec son constructeur true. Nous notons la famille d’ensembles des
termes pour une signature Σ et variables X par TL(Σ, X). De plus, nous disposons
d’un prédicat evalL(F, t) (également écrit comme F `L t), qui est valide si le terme t
(de sorte Truth) peut être réduit vers true en utilisant les règles du store F = 〈Σ, R〉.

Le prédicat evalL (ou la relation `L) correspond à un test de validité, comme en
programmation logique. Notons que la définition d’un store est similaire à la notion d’un
système logique dans le contexte des institutions [GB92]. Par la suite, nous omettons
le langage L s’il peut être déduite du contexte.

I.2 Exemple. Le prédicat evalT OY (respectivement, evalCurry) est défini par la sur-
réduction (conditionnelle), c’est-à-dire la sémantique classique de T OY [LFSH99] (res-
pectivement, Curry [HAK+00b]). Notons qu’un programme en T OY (respectivement,
en Curry) est un ensemble de règles et satisfait donc la définition I.1.

I.2.2 Actions

La sémantique d’un processus étant l’ensemble des séquences (en sémantique liné-
aire) ou le graphe (en sémantique arborescente) d’actions qu’il est capable d’exécuter, il
est clair que la notion d’action est centrale pour la définition d’un processus. La plupart
des algèbres de processus considèrent des actions abstraites, c’est-à-dire les actions sont
vues comme des éléments d’un vocabulaire. Or dans notre modèle, l’exécution d’une
action a l’effet de modifier le store. Nous devons donc spécifier davantage la notion
d’action.

I.2.2.1 Méta-signatures

Comme une action transforme un store en un autre, nous définissons une action
comme une fonction totale récursive d’un store vers un store. La définition d’une action
nécessite ainsi la représentation d’un programme déclaratif comme un terme ou un
élément d’un type abstrait de données particulier. Nous appelons la signature d’un tel
type une méta-signature, car elle se situe à un niveau méta par rapport au niveau du
store (cf. figure I.2).

9

CHAPITRE I. RÉSUMÉ

I.3 Définition. Soit L un langage déclaratif. Une méta-signature pour L est une paire
MΣL = 〈ML, MOL〉 d’un ensemble de méta-sortes ML et d’une famille de symboles
de méta-fonctions MOL, tel que ML contienne au moins les sortes correspondant aux
entités syntaxiques du langage L.

Comme exemples de méta-signatures, citons FlatCurry [Han, HAK+00a], la re-
présentation intermédiaire pour les langages logico-fonctionnels (en particulier Curry)
ou la sorte Module utilisée dans le module META-LEVEL de Maude [CDE+98, CDE+99]
pour la représentation de modules Maude. Un exemple d’une méta-signature pour un
langage logico-fonctionnel simple est donné en figure 3.3 à la page 90.

Parce que les différents langages déclaratifs peuvent être implantés en utilisant
différents langages de programmation, nous ne spécifions pas la façon dont les méta-
fonctions MOL d’une méta-signature MΣL sont définies. En effet, leur définition va
dépendre du langage utilisé pour l’implantation du store.

I.2.2.2 Actions élémentaires

À partir de la notion de méta-signature, nous pouvons définir la notion d’une action
élémentaire, comme une fonction d’un store vers un autre.

I.4 Définition. Soit L un langage déclaratif et soit MΣL = 〈ML, MOL〉 la méta-
signature associée. Une action élémentaire est définie comme une fonction totale récur-
sive dont le profil est de la forme a : s1 → . . . → sn → store → store où si ∈ ML
(∀i ∈ {1; . . . ;n}, n ≥ 0) et store (∈ML) est la méta-sorte de programmes écrits en L.
Nous demandons également que le store retourné par une action élémentaire soit bien
formé, c’est-à-dire un programme acceptable pour le langage L.

Comme pour les méta-fonctions, nous ne spécifions pas un formalisme particulier
pour la définition des actions, car il va dépendre du langage d’implantation des stores.
Évidemment, indépendamment du formalisme utilisé pour la définition des actions,
nous devons nous assurer que les définitions des actions respectent les conditions de
la définition I.4, à savoir la totalité et la récursivité. La totalité garantie que l’action
élémentaire peut être appliquée à tout store, et la récursivité assure que l’exécution de
l’action élémentaire se termine dans un temps fini. Ces deux propriétés réunies avec la
condition que le store résultant soit bien formé, ces deux conditions assurent qu’il n’y
aura pas de problème lors de l’exécution dans le sens que le store d’un composant soit
toujours bien formé.

I.2.2.3 Exemples d’actions élémentaires

Nous terminons ce paragraphe en donnant quelques exemples d’actions. L’action
élémentaire tell (respectivement, del) permet d’ajouter (respectivement, enlever) une
règle du store. L’affectation est probablement l’action la plus répandue. L’exécution de
c := v modifie la définition de la constante1 c vers la valeur v, c’est-à-dire une méta-
représentation d’un terme. Figure I.3 donne l’exemple de l’affectation c := 42. L’effet
de l’exécution de cette action est la transformation du store contenant la règle c→ 23
dans un store contenant la règle c→ 42.

1Dans les langages impératifs classiques, c est habituellement considéré comme une variable.

10

I.2. PRÉSENTATION DU MODÈLE

c→ 23...
...
c→ 42c := 42

Fig. I.3 – Exemple de l’exécution d’une affectation

Notons qu’il y a plusieurs possibilités pour définir ces actions. Par exemple, si les
règles d’un store sont stockées dans une liste, au moins deux possibilités s’offrent pour
l’ajout d’une règle, à savoir au début ou à la fin de la liste (cf. les « prédicats » asserta
et assertz de Prolog [DEDC96, pages 44 – 47]). Une autre différence est liée à la
multiplicité d’une règle dans le store : en programmation concurrente par contraintes
(ccp) classique [Sar93], l’ajout d’une contrainte impliquée par le store n’a pas d’effet. Or
elle est importante pour un store fondé sur la logique linéaire [Gir87]. D’une manière
similaire, dans le cas d’une affectation, il semble raisonnable de « normaliser » la
valeur v avant la modification du store. Afin de permettre au programmeur de disposer
toujours de l’action la plus appropriée, notre modèle permet la définition des actions
utilisées par le programmeur.

À part les actions qui modifient l’ensemble des règles d’un store, nous avons besoin
d’actions qui modifient la signature du store. La création de nouveaux symboles de fonc-
tions est réalisée par l’action élémentaire new. Intuitivement, l’exécution de new(f, s)
enrichit la signature par le symbole f de sorte s. Évidemment, nous avons besoin d’ac-
tions similaires à new pour tous les types de symboles d’une signature. L’ensemble de
ces actions dépend donc du langage utilisé pour la description du store. Dans le reste de
ce mémoire, nous notons N

(
a(t1, . . . , tn)

)
la signature de nouveaux symboles ajoutés

par l’exécution de l’action élémentaire a(t1, . . . , tn).

I.2.3 Signature de composant

Un composant est défini comme une partie d’un système, et la description d’un com-
posant dépend donc du reste du système. Dans notre modèle, un composant peut être
identifié par son nom de store, et nous pouvons représenter un système par l’ensemble
SN de tous les noms de store de l’ensemble des composants.

Avant de présenter la définition des processus et d’un composant, nous introdui-
sons dans ce paragraphe la notion de signature de composant. Intuitivement, une telle
signature déclare tous les symboles utilisés dans la description d’un composant. Elle
comporte donc en particulier une signature et une méta-signature comme introduites
auparavant. La figure I.4 (un affinement de la figure I.2) montre la stratification des
différents symboles d’une signature de composant.

I.5 Définition. Soit SN un ensemble de noms de stores. Pour un nom de store ŝn ∈ SN
et un langage déclaratif L, nous définissons la signature de composant CΣ comme un
octuple CΣ = 〈Σ, MΣL, A, I, E, Trans, P, Π〉 où

– Σ = 〈S, Ω〉 est une signature d’un store, c’est-à-dire d’un programme écrit en L,
– MΣL = 〈ML, MOL〉 est une méta-signature pour L,
– A est une famille ((S]ML)2-indicée) de symboles d’actions,

2Nous notons E l’ensemble de sortes construites à partir de l’ensemble de sortes de base E.

11

CHAPITRE I. RÉSUMÉ

(processus & fonctions sur les processus)

(actions)

(méta)

(store)

(traductions)

(imports)

A

MΣ

Σ

Trans

P, Π

I

Fig. I.4 – Niveaux d’une description de système

– I =
{

IΣsn = 〈Σsn , MΣLsn , Asn〉
∣∣ sn ∈ (SN r {ŝn})

}
est une famille (SN -indicée)

de signatures importées IΣsn , c’est-à-dire de triplets de signatures Σsn=〈Ssn ,Ωsn〉,
méta-signatures MΣLsn = 〈MLsn , MOLsn 〉 et familles ((Ssn]MLsn)-indicées) de
symboles d’actions Asn (Lsn est le langage utilisé pour la description du store du
composant sn),

– les symboles exportés E = 〈EΣ, EMΣ, EA〉 sont un triplet d’une sous-signature
EΣ, d’une sous-méta-signature EMΣ et d’une sous-famille de symboles d’actions
EA, c’est-à-dire EΣ ⊆ Σ, EMΣ ⊆ MΣ et EA ⊆ A,

– Trans = {Tr sn | sn ∈ SN } est une famille (SN -indicée) de familles de symboles de
traduction Tr sn ,

– P est une famille (PS-indicée) de symboles de processus, contenant au moins le
processus sans paramètre success,

– Π est une famille (PS-indicée) de symboles de fonctions de processus
et où l’ensemble de sortes PS est défini par

PS = S]ML]
(⊎

sn∈(SNr{ŝn})

(Ssn]MLsn
)
)
] {action; process; storename} (I.1a)

Selon la définition I.5 et la figure I.4, un programmeur doit spécifier les signatures des
stores, c’est-à-dire la signature du store initial du composant et les signatures importées
des autres composants avec lesquels le composant interagit. Notons que ces signatures
ne sont pas nécessairement du même type, car les stores des composants peuvent être
décrits en différents langages déclaratifs.

Outre les signatures, une signature de composant contient également les méta-
signatures associées qui sont utilisées pour la définition des actions comme mentionné
au paragraphe I.2.2. La définition I.5 étend la définition I.4 en admettant comme pa-
ramètres d’une action élémentaire des termes du store en plus des méta-termes. Ce
nouveau type de paramètre doit être compris comme paramètre de la méta-sorte corres-
pondant aux termes, qui est obtenu par l’application implicite de reify . Intuitivement,
reify associe à un terme sa représentation en tant que méta-terme. L’utilisation des
sortes du store dans les profils des actions permet, en plus de faciliter la description des
processus, de vérifier statiquement le typage des arguments d’une action. Par exemple,
pour l’action c := v, il est possible de vérifier statiquement si les types de c et v sont les
mêmes, ce qui évite de vérifier le typage du store après chaque exécution d’une action.

Les symboles exportés par un composant sont ceux que d’autres composants peuvent

12

I.2. PRÉSENTATION DU MODÈLE

utiliser. Évidemment, les symboles exportés doivent être un sous-ensemble des symboles
définis par le composant.

La communication entre processus est fondée sur la modification des stores. Si un
processus veut communiquer une valeur à un processus d’un autre composant dont le
store est décrit dans un langage différent, cette valeur doit être traduite dans le langage
utilisé dans le store distant. Pour ce faire, un programmeur doit spécifier les traductions.

Les deux dernières familles de symboles d’une signature de composant sont les
symboles des processus et les fonctions de processus. La différence entre les processus
et les fonctions de processus est similaire à la distinction entre les fonctions définies et
les constructeurs dans la plupart des langages déclaratifs récents, comme par exemple
Curry [HAK+00b] ou T OY [LFSH99]. Contrairement aux fonctions de processus qui
sont définies par des règles de réécriture, les processus sont définis par les définitions
de processus.

Afin de définir les expressions d’actions et de processus par la suite, nous introdui-
sons, la notion de terme de composant.

I.6 Définition. Soit CΣ une signature de composant et X une famille de variables.
Comme dans l’équation (I.1a), nous considérons la famille d’opérations suivante :

PO =
(⊎

sn∈SN

(Ωsn]MOLsn]Asn)
)
] Trans] P]Π] SN (I.1b)

Nous définissons la famille de termes de composant CT (CΣ, X) comme les termes
construits à partir de la signature PΣ = 〈PS, PO〉 et les variables X, c’est-à-dire

CT (CΣ, X) = T (PΣ, X) (I.2)

I.2.4 Interactions

Dans notre modèle, les processus d’un même composant utilisent le store comme
moyen de communication. Tous les processus ont accès au store, et les modifications
apportées par l’exécution d’une action sont ainsi visibles pour les autres processus du
composant. L’interaction entre les processus des différents composants est fondée sur le
même principe : en effet, tout processus peut modifier les stores des autres composants
du système. Dans ce paragraphe nous introduisons les notions nécessaires pour cette
interaction.

I.2.4.1 Symboles importés et exportés

Nous présentons d’abord les symboles importés d’un autre composant, ce qui est à
distinguer des symboles importés au niveau d’un store. En effet, si le langage déclaratif
le permet, la description d’un store peut être répartie dans plusieurs modules qui ex-
portent et importent leurs définitions respectives, afin de faciliter la description du
store. D’autre part, les symboles importés d’un autre composant sont nécessaires à la
description de l’interaction entre composants, car l’exécution d’une action élémentaire
sur le store d’un autre composant demande la construction des paramètres correspon-
dants.

13

CHAPITRE I. RÉSUMÉ

La nécessité d’importer les symboles d’un autre composant sn vient de la possibilité
d’exécuter des actions sur le store de sn. De ce fait, il est évident que les symboles d’ac-
tions exécutables sur le store de sn doivent être importés. Comme les paramètres d’une
action peuvent être des termes et des méta-termes, la construction de ces paramètres
nécessite d’importer également la signature et la méta-signature de sn.

Les symboles exportés par un composant décrivent les symboles qui peuvent être uti-
lisés par les autres composants du système. Évidemment, les symboles exportés doivent
être un sous-ensemble des symboles définis par le composant.

I.2.4.2 Traductions

Dans le cas d’un système dont les composants sont décrits en utilisant des langages
déclaratifs différents, la communication d’une valeur d’un store à un autre nécessite la
traduction de cette valeur. Afin d’assurer une traduction unique, nous définissons une
traduction comme une fonction totale récursive. Notons qu’une traduction ne peut être
définie dans un des deux stores concernés, car elle représente des associations entre les
deux stores. En fait, une traduction peut être définie dans un « langage union » qui
combine les deux stores.

Nous proposons de spécifier une traduction en plusieurs étapes. Dans un premier
temps, la valeur à traduire est réduite vers une « forme normale » en utilisant la
sémantique opérationnelle du store de départ. La deuxième étape concerne la génération
d’une expression correspondant à la valeur, à l’aide d’une fonction de traduction. Fina-
lement, la valeur correspondante peut être obtenue en calculant la « forme normale »
de l’expression obtenue lors de la deuxième étape. Ainsi, nous permettons au program-
meur de ne spécifier que la fonction de traduction et de déléguer les autres étapes à
l’implantation de la plate-forme.

La spécification des fonctions de traduction utilise un système de réécriture dédié,
dont la signature est l’union des signatures des deux stores. Ainsi, la signature de
traduction entre un store de signature Σ1 = 〈S1, Ω1〉 et un store de signature Σ2 =
〈S2, Ω2〉 est définie par TΣΣ1,Σ2 =

〈
(S1] S2), (Ω1] Ω2] Tr)

〉
, où Tr est une famille

de symboles de traduction (cf. définition I.5). Les fonctions de traduction peuvent ainsi
être définies par des règles de réécriture classiques sur la signature de traduction. Afin
de distinguer les règles de traduction des règles des stores, nous appelons les premières
t-rules.

Une autre possibilité de modéliser l’interaction entre deux composants en différents
langages est fondée sur l’hypothèse que les deux composants « comprennent » un
troisième langage. Des exemples de cette approche sont, parmi d’autres, UTS [HS87],
IDL [COR01] ou l’interface de ocaml (respectivement, ada) vers C [LDG+01, cha-
pitre 17] (respectivement, [Ada95, chapitre B.3]). À part le fait qu’un tel langage n’existe
pas dans tous les cas, les traductions des structures de données plus complexes doivent
toujours être implantées. De plus, l’utilisation de ces langages n’est pas toujours aisée,
à cause des paramètres particuliers nécessaires lors de l’appel du compilateur.

I.2.5 Processus

Les processus d’un composant sont spécifiés dans le style d’une algèbre de processus,
cf. par exemple [Fok00, BW90]. Les processus de base peuvent être combinés à l’aide

14

I.2. PRÉSENTATION DU MODÈLE

d’opérateurs sur les processus. De plus, les fonctions de processus permettent la des-
cription des processus dans un style fonctionnel. Dans ce paragraphe, nous présentons
la définition des processus. Nous commençons avec les processus de base et poursuivons
avec les opérateurs sur les processus. Nous terminons avec les règles qui définissent les
processus.

I.2.5.1 Expressions d’action et actions gardées

Les processus les plus basiques dans notre modèle sont les actions gardées. Intui-
tivement, une action gardée est une paire composée d’une garde et d’une expression
d’action. Intuitivement, une expression d’action est un terme bien formé à partir d’une
signature de composant, enrichie de deux constructeurs, à savoir le couplage d’un appel
à une action élémentaire avec le nom du composant sur lequel l’action est à exécuter,
et la composition séquentielle de deux expressions d’actions.

I.7 Définition. Soit CΣ = 〈Σ, MΣL, A, I, E, Trans, P, Π〉 une signature de com-
posant et X une famille de variables, où PS est défini par l’équation (I.1a). Nous
définissons l’ensemble des expressions d’action A(CΣ, X) comme l’ensemble de termes
de composant de sorte action, c’est-à-dire A(CΣ, X) = CT action(C̃Σ, X) où la si-
gnature de composant C̃Σ est l’enrichissement de CΣ avec les deux constructeurs de la
sorte action :3

1. 〈•, •〉 de profil storename → (storeLsn → storeLsn) → action (pour tout nom
de composant sn ∈ SN) et

2. • ; • de profil action→ action→ action.

Notons que la définition I.7 implique qu’une expression d’action est l’une des trois
formes suivantes : 〈sn, a(t1, . . . , tn)〉, a1 ; a2 ou pf(a1, . . . , an) (où pf ∈ Π est une
fonction de processus dont la sorte du résultat est action). Une expression d’action
qui ne contient pas de fonction de processus, est dite en forme normale. L’ensemble
des expressions d’action en forme normale est noté AN (CΣ, X) ou AN (CΣ, X, sn), si
toutes les actions sont associées au nom du composant sn.

L’extension de la notation N désignant la signature nouvelle ajoutée par une action
élémentaire aux expressions d’actions est immédiate. Nous disons qu’une expression
d’action utilise les nouveaux symboles d’une manière raisonnable, si ces nouveaux sym-
boles ne sont pas utilisés avant leur introduction, c’est-à-dire si dans une composition
séquentielle de deux expressions d’action, comme par exemple a1 ; a2, l’action a2 est
définie par rapport à la signature de composant enrichie avec la nouvelle signature
introduite par a1.

Intuitivement, une action gardée est une paire composée d’une garde et d’une ex-
pression d’action.

I.8 Définition. Soit CΣ = 〈Σ, MΣL, A, I, E, Trans, P, Π〉 une signature de compo-
sant (pour un langage déclaratif L et un nom de composant ŝn) et X une famille de
variables. Une action gardée est une paire [g ⇒ a] composée

– d’une garde g (de sorte) Truth du store local, c’est-à-dire g ∈ TLTruth(Σ, X), et
– d’une expression d’action a ∈ A(CΣ, X) qui utilise les nouveaux symboles d’une

manière raisonnable.
3Le symbole « • » indique les positions des paramètres d’un opérateur.

15

CHAPITRE I. RÉSUMÉ

L’ensemble des actions gardées est noté G(CΣ, X).

Selon la définition I.8, la garde d’une action gardée doit être un terme du store du
composant local. Cette restriction est motivée par le fait que l’exécution d’une action
gardée est atomique (cf. I.3.1), ce qui serait difficile à mettre en œuvre dans un contexte
distribué.

I.2.5.2 Expressions de processus

Les expressions de processus sont définies comme des termes de composant sur une
signature de composant enrichie par, d’une part, le constructeur des actions gardées,
et, d’autre part, par les opérateurs de composition des processus connus des algèbres
de processus, à savoir la composition séquentielle (;) et parallèle (‖) ainsi que le choix
non-déterministe (+) et le choix avec priorité (⊕).

I.9 Définition. Soit CΣ = 〈Σ, MΣL, A, I, E, Trans, P, Π〉 une signature de com-
posant et X une famille de variables, où PS est défini par l’équation (I.1a). Nous
définissons l’ensemble des expressions de processus P(CΣ, X) comme l’ensemble de

termes de composant de sorte process, c’est-à-dire P(CΣ, X) = CT process(
˜̃CΣ, X) où

la signature de composant ˜̃CΣ est l’enrichissement de C̃Σ (cf. définition I.7) avec les
constructeurs de la sorte process suivants :

– [• ⇒ •] de profil Truth → action → process permet de construire des actions
gardées (cf. définition I.8) et

– • ; •, • ‖ •, •+ • et • ⊕ • de profil process→ process→ process.

Les fonctions de processus sont définies par des règles de réécriture spécifiques que
nous appelons p-rules. Par la suite nous appelons une expression de processus qui ne
contient pas d’appel à une fonction de processus un terme de processus. L’ensemble des
termes de processus en forme normale est noté PN (CΣ, X). Une expression de proces-
sus qui ne contient pas d’action gardée, ni d’occurrence de l’opérateur ⊕ est appelée
une expression de processus restreinte. Si les parties droites des p-rules définissant une
fonction de processus sont toutes des expressions de processus restreintes, la fonction
de processus est dite restreinte. Nous notons rP(CΣ, X) l’ensemble des expressions de
processus qui ne contiennent pas d’appel à une fonction de processus non restreinte.

I.2.5.3 Définitions de processus

Un processus est défini par un ensemble de « clauses » ordonnées par priorité.
Chaque clause est composée d’une garde et d’une expression de processus restreinte.

I.10 Définition. Soit CΣ = 〈Σ, MΣL, A, I, E, Trans, P, Π〉 une signature de compo-
sant. Une définition du processus q ∈ P est une phrase de la forme suivante :

q(x1, . . . , xm) ⇐
n⊕
i=1

(
[gi ⇒ ai] ; rpi

)
(I.3)

où (pour tout i ∈ {1; . . . ;n}, tel que n > 0) :
– [gi ⇒ ai] ∈ G

(
CΣ, {x1; . . . ;xm}

)
est une action gardée pour le composant local et

16

I.2. PRÉSENTATION DU MODÈLE

– rpi ∈ rP
(
ĈΣ, {x1; . . . ;xm}

)
est une expression de processus restreinte, où la si-

gnature de composant ĈΣ est l’enrichissement de CΣ avec la nouvelle signature
N ([gi ⇒ ai]) introduite par l’action gardée.

Intuitivement, la sémantique opérationnelle d’un appel à un processus q(t1, . . . , tm)
est similaire à la construction des alternatives dans le langage des commandes gardées
de [Dij75], c’est-à-dire la garde valide la plus prioritaire détermine la clause choi-
sie. L’exécution d’une clause signifie l’exécution atomique de la séquence d’actions
élémentaires obtenue par l’évaluation de l’expression d’action. Ensuite l’exécution conti-
nue par l’exécution du terme de processus obtenu en évaluant l’expression de processus
restreinte.

I.2.6 Composants et systèmes

La définition d’un composant regroupe une signature de composant avec l’ensemble
des définitions introduites précédemment.

I.11 Définition. Soit SN un ensemble de noms de composant. Un composant est un
octuple C =

〈
ŝn, CΣ, R, A, Tr , Rp, ΠR, pi

〉
où

– ŝn ∈ SN est le nom de composant du composant,
– CΣ = 〈Σ, MΣL, A, I, E, Trans, P, Π〉 est une signature de composant pour SN

et ŝn,
– F = 〈Σ, R〉 est un store, également appelé le store initial,
– A est un ensemble de définitions d’actions définissant les actions A,
– Tr est un ensemble de t-rules définissant les traductions Tr,
– Rp est un ensemble de définitions de processus définissant les processus P ,
– ΠR est un ensemble de p-rules définissant les fonctions de processus Π et
– pi ∈ rPN (CΣ, ∅) est un terme de processus restreint et clos, également appelé

terme de processus initial.

On peut distinguer plusieurs parties dans la définition d’un composant. D’abord,
nous avons les définitions qui sont statiques, dans le sens qu’elles ne changeront pas lors
de l’exécution du composant. Ce sont le nom du composant ŝn, les symboles importés
I et exportés E, mais aussi les actions A, traductions Tr , processus P et fonctions de
processus Π avec leurs définitions respectives (c’est-à-dire A, Tr , Rp et ΠR). D’autre
part, le store F est dynamique et évolue lors de l’exécution du système. Finalement, le
terme de processus initial ainsi que le store initial forment l’initialisation du composant.

La combinaison d’un composant à partir de deux composants C1 et C2 (cf. le com-
posant sn3 en figure I.1) correspond à prendre l’union disjointe de toutes les parties des
composants (et la composition parallèle des termes de processus initiaux) :

C1 ‖‖ C2 = 〈ŝn, CΣ1] CΣ2, R1]R2, A1] A2, Tr1] Tr2, Rp
1]R

p
2 , ΠR1]ΠR2, p

i
1 ‖ pi2〉

où les composants de départ sont définis par Ci = 〈sni, CΣi, Ri, Ai, Tri, Rp
i , ΠRi, pii 〉

(pour i ∈ {1; 2}) et ŝn est un nouveau nom de composant. Ainsi le composant C1 ‖‖ C2 est
défini par rapport à l’ensemble de noms de store

(
SN r{sn1; sn2}

)
∪{ŝn}. L’utilisation

de l’union disjointe pour la combinaison de composants permet de définir aisément un
« adaptateur » qui transmet les actions arrivant au composant aux sous-composants
concernés.

17

CHAPITRE I. RÉSUMÉ

success ; p ≡ p success ‖ p ≡ p (Unit≡)
p1 ‖ p2 ≡ p2 ‖ p1 p1 + p2 ≡ p2 + p1 (Comm≡)

Fig. I.5 – Schémas d’axiomes pour la congruence structurelle ≡

Nous modélisons un système comme un ensemble de composants, qui doivent être
définis par rapport au même ensemble de noms de store.

I.12 Définition. Soit S un ensemble de composants S =
{
Csn1 ; . . . ; Csnn

}
et soit SN

l’ensemble de noms de stores associés, c’est-à-dire SN = {sn1; . . . ; snn}. Nous appelons
S un système si le composant Csn = 〈snsn ,CΣsn , Rsn , Asn , Trsn , Rp

sn , ΠRsn , p
i
sn〉 avec

la signature de composant CΣsn = 〈Σsn ,MΣsn , Asn , Isn , Esn ,Transsn , Psn ,Πsn〉 est défini
par rapport à SN (∀sn ∈ SN) tel que pour toute paire de noms de store sn1, sn2 ∈ SN
avec sn1 6= sn2 nous avons

(
Isn1

)
sn2
⊆ Esn2.

I.3 Sémantique

Dans ce paragraphe nous exposons la sémantique du modèle présenté dans le pa-
ragraphe précédent. Nous détaillons d’abord la sémantique opérationnelle et donnons
dans un deuxième temps une sémantique compositionnelle pour les processus d’un com-
posant.

I.3.1 Sémantique opérationnelle

Nous présentons la sémantique de notre modèle en plusieurs étapes. En plus de
la sémantique opérationnelle d’un processus que nous exposons d’abord, la sémantique
opérationnelle d’un composant permet la résolution interactive de buts. Nous décrivons
l’intégration de ces deux sémantiques dans un deuxième temps. Nous terminons par la
sémantique opérationnelle d’un système.

I.3.1.1 Exécution des processus d’un composant

La sémantique des processus d’un composant C est définie par un système de tran-
sitions TC =

〈
Q, −→, 〈F, pi〉

〉
. Les états de TC sont des couples d’un store et d’un

terme de processus, l’état initial étant le couple du store initial et du terme de processus
initial. La relation de transition −→ est définie dans le style de la machine abstraite
chimique [BB92] à l’aide d’une relation de congruence ≡. Les schémas d’axiomes de ≡
sont montrés en figure I.5 et −→ est définie par les règles d’inférence de la figure I.6.

L’exécution d’une action gardée est décrite par la règle (Raction). La prémisse in-
dique que la garde g doit être valide. La fonction sel prend un nom de store sn et une
séquence d’actions élémentaires (c’est-à-dire une expression d’action en forme normale)
et retourne la sous-séquence d’actions élémentaires qui sont destinées au store nommé
sn. La modification du store est décrite à l’aide de la fonction exec définissant l’ap-
plication (séquentielle) d’une séquence d’actions élémentaires sur un store. Notons que

18

I.3. SÉMANTIQUE

p ≡ p′ 〈F, p′〉 −→ 〈F ′, p′′〉 p′′ ≡ p′′′

〈F, p〉 −→ 〈F ′, p′′′〉
(R≡)

F ` g〈
F ,
[
g ⇒ 〈sn1, a1(t1, 1, . . . , t1, k1)〉; . . . ; 〈snn, an(tn, 1, . . . , tn, kn)〉

]〉
−→〈

exec
(

sel
(
ŝn, 〈sn1, a1(t1, 1, . . . , t1, k1)〉; . . . ; 〈snn, an(tn, 1, . . . , tn, kn)〉

)
, F
)
, success

〉
(Raction)(

q(x1, . . . , xn)⇐
⊕m

i=1([gi ⇒ ai] ; pi)
)
∈ Rp〈

F,
(⊕m

i=1 rename([gi ⇒ ai⇓] ; pi)
)
[vj/xj]

〉
−→ 〈F ′, p′〉

〈F, q(v1, . . . , vn)〉 −→ 〈F ′, p′⇓〉
(Rcall)

〈F, p1〉 −→ 〈F ′, p′1〉
〈F, p1 ; p2〉 −→ 〈F ′, p′1 ; p2〉

(R;)

〈F, p1〉 −→ 〈F ′, p′1〉
〈F, p1 ‖ p2〉 −→ 〈F ′, p′1 ‖ p2〉

(R‖)

〈F, p1〉 −→ 〈F ′, p′1〉
〈F, p1 + p2〉 −→ 〈F ′, p′1〉

(R+)

〈F, p1〉 −→ 〈F ′, p′1〉
〈F, p1 ⊕ p2〉 −→ 〈F ′, p′1〉

(R⊕)

〈F, p2〉 −→ 〈F ′, p′2〉
〈F, p1 ⊕ p2〉 −→ 〈F ′, p′2〉

si @ p′1(6≡ p1), @F ′′, tel que 〈F, p1〉 −→ 〈F ′′, p′1〉 (R′⊕)

Fig. I.6 – Règles d’inférence définissant la relation de transition −→

l’évaluation de la garde et l’exécution de toute la séquence d’actions forment une seule
transition, ce qui implique l’atomicité de l’exécution d’une action gardée.

Lors d’un appel de processus, l’expression d’action est évaluée dans le même store
sur lequel les gardes sont évaluées, et l’expression de processus est évaluée dans le store
après l’exécution de l’action (cf. la règle (Rcall)). Cette distinction traduit la composition
séquentielle de l’action gardée et de l’expression de processus.

Les règles restantes sont classiques, à part les deux règles définissant l’opérateur ⊕.
Ces dernières expriment que pour le terme de processus p1 ⊕ p2, l’exécution de p2 est
possible uniquement si l’exécution de p1 ne l’est pas.

I.3.1.2 Sémantique opérationnelle d’un composant

La sémantique opérationnelle d’un composant C comporte deux parties, à savoir
l’exécution des processus (cf. le paragraphe précédent) et la résolution de buts, en
utilisant la sémantique opérationnelle classique du langage utilisé pour la description
du store. Nous décrivons l’intégration de ces deux facettes par un nouveau système de
transitions TC =

〈
Q, 7−→, 〈F, pi, gi, gi〉

〉
, où gi dénote le but initial (qui peut être

true). Les états (ou configurations) de TC sont des quadruplets 〈F, p, gi, g〉 d’un store
F , d’un terme de processus p, du but initial gi et du but courant g. Classiquement, les
configurations d’un langage concurrent n’utilisent que les deux premières parties F et p,

19

CHAPITRE I. RÉSUMÉ

〈F, g〉 〈F, g′〉
〈F, p, gi, g〉 7−→ 〈F, p, gi, g′〉

(G)

〈F, p〉 −→ 〈F ′, p′〉
〈F, p, gi, g〉 7−→ 〈F ′, p′, gi, gi〉

(P)

Fig. I.7 – Règles d’inférence pour le système de transitions T

qui sont suffisantes afin de décrire l’exécution des processus. D’autre part, les langages
déclaratifs classiques n’utilisent que les parties F et g nécessaires pour la description
de la résolution de buts. Notre combinaison de ces deux modèles ajoute la possibilité
d’évaluer des buts tout en décrivant l’exécution de processus concurrents.

La relation de transition de TC est définie par les deux règles d’inférence montrées
en figure I.7. La règle (G) décrit la résolution de buts, par l’utilisation de la sémantique
opérationnelle du langage déclaratif utilisé pour le store. Les modifications du store
sont décrites par la règle (P) en utilisant le système de transitions du paragraphe
précédent. Notons que la modification du store peut invalider certaines étapes dans la
résolution de g, ce qui motive le fait de relancer la résolution à partir de gi, le but
initial. Évidemment, la règle (P) invite à une étude de son amélioration afin de garder
le plus possible de l’arbre de résolution construit avant la modification.

I.3.1.3 Sémantique opérationnelle d’un système

La sémantique opérationnelle d’un système composé de plusieurs composants peut
être définie par un système de transitions global. Un exemple d’un tel système est le
deuxième niveau de la sémantique opérationnelle de KLAIM [NFP98]. Par contre, nous
préférons ne pas suivre cette approche car elle requière l’hypothèse simplificatrice qu’il
est possible de connâıtre l’état de tous les composants d’un système distribué à un
moment donné.

Nous définissons la sémantique opérationnelle d’un système S comme un ensemble
de systèmes de transitions, chacun de ces systèmes modélisant un composant du système
S. L’interaction entre les composants ou systèmes de transitions est définie à l’aide de
méta-règles qui expriment les relations entre les événements liés à la communication des
différents composants. Un événement correspond donc soit à l’envoi soit à la réception
d’un message, c’est-à-dire d’une séquence d’actions à exécuter. L’association de l’en-
semble de tous les événements correspondant à une transition d’un composant permet
de définir l’ensemble de tous les événements qui ont lieu pendant une exécution du
système. Pour spécifier le système de communication, nous définissons une relation de
correspondance entre les envois et réceptions respectifs. Les propriétés du système de
communication correspondent ainsi aux propriétés de cette relation. Par exemple, si la
relation de correspondance est bijective, le moyen de communication utilisé est fiable,
dans le sens où tout message envoyé est reçu, et tout message reçu a été envoyé.

I.3.2 Sémantique compositionnelle

La sémantique opérationnelle telle qu’elle est présentée au paragraphe précédent
n’est pas compositionnelle, c’est-à-dire qu’il y a deux processus qui ont la même séman-

20

I.4. ANALYSE DE LA CONFIDENTIALITÉ

tique, mais qui se comportent différemment s’ils sont exécutés dans un contexte parti-
culier. Intuitivement, la sémantique n’est pas compositionnelle car elle ne prend pas en
compte les actions que l’environnement du processus peut exécuter.

En nous inspirant d’une sémantique compositionnelle proposée pour la programma-
tion concurrente par contraintes [dBP91], nous avons défini une sémantique composi-
tionnelle pour les processus d’un composant en étiquetant les actions exécutées par les
processus avec trois étiquettes. De plus nous permettons la simulation de l’environne-
ment à l’aide d’actions hypothétiques [Ser98]. Ainsi, la nouvelle sémantique incorpore
tous les comportements possibles de l’environnement et sa compositionnalité peut être
prouvée (cf. chapitre 5, théorème 5.22).

I.4 Analyse de la confidentialité

Comme de plus en plus de données secrètes ou confidentielles circulent sur les
réseaux informatiques, il devient de plus en plus important d’assurer la confidentialité
de ces données. Nous définissons la confidentialité d’un point de vue de non-interférence,
c’est-à-dire nous associons à chaque information un niveau de confidentialité. Dans ce
cadre, nous disons qu’un programme respecte la confidentialité si une information ne
dépend pas d’information de confidentialité plus élevée. À notre connaissance, cette ap-
proche a été introduite par [SVI96] dans le contexte des langages impératifs, et étendue
pour les langages concurrents par la suite en [SV98, BC01a, BC01b]. Dans ce para-
graphe, nous donnons une analyse de la confidentialité pour les processus d’un seul
composant qui de plus est limité aux seules actions tell, del, :=, new et skip.

Appliqué à notre modèle, nous associons (à l’aide d’une association de niveaux de
confidentialité `) à tout symbole f d’une signature un niveau de confidentialité `(f)
parmi un treillis de niveaux de confidentialité L. Le niveau de confidentialité d’un terme
est défini comme la plus petite borne supérieure des niveaux de confidentialité de tous les
symboles apparaissant dans le terme. Intuitivement, un store respecte la confidentialité
si l’évaluation d’un terme (ou la résolution d’un but) ne dépend pas d’une information
d’un niveau de confidentialité (strictement) supérieur à celui du terme. Donc, une règle
respecte la confidentialité si le niveau de confidentialité du membre gauche est supérieur
aux niveaux du membre droit et des conditions. Un store respecte la confidentialité si
toutes ses règles respectent la confidentialité.

Nous formalisons le respect de la confidentialité d’un processus en deux étapes. In-
tuitivement, un (terme de) processus respecte la confidentialité si l’effet de son exécution
à un niveau de confidentialité π ne dépend pas des valeurs initiales d’un niveau plus
élevé que π. Donc nous définissons ≈, une bisimulation particulière, et demandons
qu’un processus respectant la confidentialité soit bisimilaire à lui-même. Deux paires
d’un processus pi et d’un store Fi (i ∈ {0; 1}) sont bisimilaires pour un niveau de confi-
dentialité π et une association de niveaux de confidentialité ` si et seulement si d’une
part, les deux stores Fi sont identiques au renommage des variables près pour toute
règle dont le niveau de confidentialité du membre gauche est inférieur (ou égale) à π,
et, d’autre part, si un des processus peut exécuter une action a, alors soit le deuxième
processus peut exécuter la même action de telle sorte que les nouvelles paires de pro-
cessus et stores sont de nouveau bisimilaires, soit le deuxième processus ne peut pas

21

CHAPITRE I. RÉSUMÉ

exécuter la même et dans ce cas toute modification du store par le premier processus
ne concerne que des règles d’un niveau de confidentialité strictement supérieur à π.

Contrairement aux analyses fondées sur le typage [SV98, BC01a, BC01b], nous
définissons une exécution abstraite dont le but est de calculer un ensemble de contraintes
portant sur les niveaux de confidentialité des symboles d’un composant. Le store initial
correspond au système de contraintes exprimant le respect de la confidentialité par les
règles du store initial. Ensuite, l’exécution abstraite d’une action ajoute les contraintes
nécessaires au store. Les contraintes associées à une action expriment deux choses.
Premièrement, les règles ajoutées par l’action doivent respecter la confidentialité. Ceci
évite les mauvaises actions, c’est-à-dire les actions qui explicitement rendent publique
les informations confidentielles. Deuxièmement, l’action ne doit pas modifier une règle
d’un niveau inférieur à la plus petite borne supérieure de toutes les gardes testées jusque
là pendant cette exécution. Intuitivement, toute action doit être d’un niveau supérieur
à la garde, car autrement il serait possible d’obtenir une information sur une valeur
confidentielle.

Lors d’un appel à un processus pendant l’exécution abstraite, seul le niveau de confi-
dentialité est intéressant, ce qui permet d’abstraire la structure des paramètres. Comme
le treillis des niveaux de confidentialité et l’ensemble de symboles d’une signature sont
finis, l’ensemble des appels à un processus est fini. Ainsi nous pourrons explorer toutes
les exécutions possibles, car il est suffisant d’exécuter un appel à un processus une seule
fois, en coupant les appels récursifs déjà traités. Ainsi nous prouvons la terminaison de
notre analyse.

Le résultat de l’analyse pour un store F et un terme de processus p est le système
de contraintes calculé, noté ∆p

F . Nous prouvons que le store F et le terme de processus
utilisés pour calculer ce système de contraintes respectent la confidentialité par rapport
à toute association de niveaux de confidentialité ` telle que ` respecte ∆p

F , c’est-à-dire
telle que toute les contraintes de ∆p

F soient valides.
Notons que notre analyse accepte des programmes plus généraux que ceux de [SV98,

BC01b], car nous permettons la création dynamique de processus (ce qui n’est pas
possible en [SV98]) ainsi que des termes de processus de la forme (p1 ‖ p2) ; p2 (qui ne
sont pas considérés en [BC01b]).

I.5 Description d’un prototype

Afin de montrer la faisabilité de notre modèle, nous avons implanté un prototype
d’une plate-forme pour la programmation multiparadigme selon le modèle proposé.
Ce prototype, implanté en ocaml [LDG+01], est un interpréteur pour un seul compo-
sant. Ainsi, l’exécution d’un système nécessite de lancer une instance du prototype par
composant, de manière possible sur différentes machines connectées, par exemple par
l’internet.

La description d’un composant est séparée en cinq parties ou fichiers, à savoir le
store, les actions, les processus, l’interface (c’est-à-dire les symboles importés) et les
traductions. Ainsi la signature d’un composant est repartie sur les fichiers de telle sorte
que les définitions et déclarations des différents symboles soient regroupées.

Le schéma général du processus de l’interprétation d’un composant est donné sur la

22

I.6. COMPARAISON

sortie
entrée

programme

« forêt abstraite »
« interpréteur »

définitions de processus
processus initial

traductions

définitions importés
définitions exportés

définitions d’actions

définitions de fonctions
store initial

5.

1.

2.

4.

3.

processus
store/fonctions
actions

analyses globales

« compilateur »

Fig. I.8 – Vision globale du processus d’interprétation d’un composant

figure I.8. L’interpréteur prend le nom du composant comme paramètre et commence à
analyser (dans l’ordre indiqué par les numéros sur la figure I.8) les cinq fichiers corres-
pondants aux cinq parties de la description d’un composant. En utilisant l’information
contenue dans ces fichiers, le « compilateur » produit une « forêt abstraite », c’est-à-dire
une représentation interne du composant. Finalement, la forêt abstraite est passée à un
« interpréteur » qui prend en charge l’exécution proprement dite du composant.

En plus de l’exécution du processus initial autour du store initial, l’interprétation
d’un composant nécessite l’exécution d’un interpréteur pour la résolution interactive
de buts (comme dans les langages déclaratifs classiques) ainsi qu’un processus qui gère
l’exécution des messages reçus par les autres composants du système. Notre prototype
offre de plus un interpréteur optionnel qui permet de modifier le store par l’exécution
interactive d’actions, similaire à la possibilité d’échanger le programme dynamiquement
en Erlang [AVWW96].

I.6 Comparaison

La recherche sur les langages de programmation est un domaine vaste, et une compa-
raison détaillée avec tous les travaux voisins ne pourrait être présenté dans ce mémoire.
Dans ce paragraphe, nous comparons donc brièvement notre modèle à quelques tra-
vaux voisins qui nous semblent être les plus proches. La structuration de cette section
ainsi que l’organisation ont été choisies de manière arbitraire, dans le sens où d’autres
possibilités auraient été tout aussi possibles. En effet, le caractère multiparadigme des
travaux rend subjective toute classification linéaire.

I.6.1 Programmation déclarative

Contrairement à notre modèle, la plupart des intégrations de la concurrence aux
langages déclaratifs ne distinguent pas clairement les notions sous-jacentes aux langages
déclaratifs des processus, mais encodent les processus, par exemple en tant que prédicats
ou fonctions.

La programmation logique est considérée comme intrinsèquement concurrente dans
le sens où la recherche de preuve pour une conjonction d’atomes peut être effectuée en

23

CHAPITRE I. RÉSUMÉ

parallèle. À notre avis, cette forme de concurrence implicite visant à améliorer le temps
d’exécution d’un programme est à différencier de la concurrence explicitement spécifiée
par le programmeur afin de mieux modéliser un problème. De plus, cette vision de la
programmation logique ne distingue pas les prédicats des processus.

Notre modèle d’exécution est proche du modèle de la programmation concurrente
par contraintes (ccp) [Sar93]. Dans ce modèle, un ensemble de processus commu-
nique par accumulation de contraintes dans un store. Contrairement à notre modèle,
l’évolution du store est monotone en ccp. De plus, la plupart des sémantiques proposées
pour ccp définissent la sémantique d’un processus par le store final de l’exécution du
processus, et ne sont donc pas conçues pour la modélisation de processus qui ne ter-
minent pas. Les extensions de ccp avec des stores non-monotones qui ont été proposées,
définissent des actions prédéfinies spécifiques [dBKPR93, CR95] ou utilisent des logiques
non-monotones [SL92, SJG96, GJS96, BdBP97, RF97, FRS98].

Les deux « prédicats » prédéfinis assert et retract de Prolog [DEDC96] per-
mettent d’ajouter et d’enlever des formules au programme. Dans notre modèle, ces
« prédicats » correspondent plutôt à des actions.

La programmation logique par contraintes réactive [FFS95, FFS98] permet la modi-
fication dynamique de la théorie utilisée pour la résolution de contraintes. La technique
est fondée sur une réorganisation de l’arbre de recherche afin que cette réorganisation
soit aussi minimale que possible. Il semble intéressant d’adapter ces techniques en vue
d’améliorer la règle (P).

La plupart des extensions concurrentes de langages fonctionnels encodent les pro-
cessus sous forme de fonctions. En conséquence, un processus doit nécessairement re-
tourner une valeur, même si, à notre connaissance, cette valeur n’est pas considérée
dans la plupart des langages [Rep91, AVWW96, PJGF96, TLK96a, Rep99, LDG+01].
Une des motivations amenant à considérer les processus comme des fonctions semble
être la possibilité d’utiliser un style fonctionnel dans la description de processus. Notons
que ce style est également possible dans notre modèle grâce aux fonctions de processus.

La conception du langage Concurrent Haskell (CH) [PJGF96] a été guidée par la
recherche d’une extension minimale de Haskell [PJHA+99], la définition d’abstraction
plus commodes étant possible en Haskell. La seule différence entre un processus en CH
et une fonction classique est le type (ou la sorte) : un processus en CH est une valeur
du type monadique IO t qui dénote une fonction transformant l’état (un argument im-
plicite) et retourne une valeur de type t. L’extension concurrente de cette modélisation
de l’interaction nécessite la définition d’une sémantique opérationnelle à deux niveaux,
similaire à celle proposée au paragraphe I.3.1.

Le langage CML [Rep91, Rep99] diffère de notre modèle dans deux choix fondamen-
taux : La communication entre processus en CML est fondée sur l’échange de messages
et la synchronisation des évènements de communication. De plus, une fonction peut être
définie à l’aide de processus (et vice versa), ce qui contredit la séparation des différents
concepts.

En Erlang [AVWW96], les processus sont définis à l’aide de fonctions non typées. Ces
processus communiquent à l’aide de primitives spécifiques qui ont pour effet d’envoyer
des messages. Comme dans notre modèle (et son prototype Sabir), l’environnement
d’exécution d’Erlang permet l’interaction avec le système. Ainsi, un module peut être

24

I.6. COMPARAISON

remplacé par un autre sans avoir à arrêter son exécution.

Les seuls langages logico-fonctionnels pour lesquels nous connaissons une extension
concurrente sont Curry [HAK+00b] et Escher [Llo95]. Les processus sont modélisés
par les contraintes ou prédicats en Curry [Han99]. La notion de port de Curry est
une extension de celle de [JMH93] qui permet le passage de nom de port, et ainsi la
modélisation de systèmes distribués et mobiles. L’extension concurrente de Escher [Llo]
utilise, tout comme notre modèle, un store commun comme moyen de communication
entre processus. Néanmoins, Escher ne permet pas de grouper plusieurs actions d’une
manière atomique.

I.6.2 Programmation concurrente

Les algèbres de processus, comme par exemple CSP [Hoa87], CCS [Mil89], ACP
[Fok00, BW90] et le π-calcul [Mil99], permettent la description aisée de processus.
Néanmoins, les langages fondés uniquement sur ces algèbres nécessitent le codage des
notions de fonctions et prédicats en termes de processus, contrairement à notre modèle.

Le langage Lotos [LOT00, ELO01] combine la spécification algébrique des types de
données avec les algèbres de processus. Contrairement à notre modèle, les spécifications
des fonctions ne peuvent pas être modifiées lors de l’exécution. De plus, la communica-
tion en Lotos utilise la notion de synchronisation de « portes », ce qui peut être simulé
dans notre modèle. Par contre, la diffusion, qui est immédiate dans notre modèle, est
plus difficile à mettre en œuvre en Lotos.

Le π-calcul [Mil99] permet la modélisation de processus mobiles dans le sens où la
structure de communication peut évoluer grâce au passage de canaux de communica-
tion. Notre action élémentaire new en conjonction avec le constructeur de type Name
permet de modéliser la mobilité d’une manière similaire. Contrairement à notre modèle,
la réception de messages dans le π-calcul est limitée à un seul canal en même temps. Des
extensions du π-calcul (asynchrone) sans cette limitation sont le join-calculus [FG96]
et Lπ [CM98]. Intuitivement, les processus dans le join-calculus et Lπ communiquent à
l’aide d’un multi-ensemble de messages, ce qui est une forme particulière de store.

I.6.3 Coordination

Afin de faire coopérer plusieurs processus (ou programmes) concurrents, différents
modèles et langages de coordination ont été proposés, les plus proches de notre forma-
lisme étant ceux fondés sur un espace de données commun. La plupart des langages de
coordination sont conçus pour la coordination de langages impératifs, dans le sens qu’ils
définissent un ensemble restreint d’actions sur un espace de données partagé. Notons
que ce modèle implique que tous les processus doivent utiliser le même langage afin de
communiquer.

Le premier langage de coordination en tant que tel, Linda [Gel85], permet à des
processus de communiquer à l’aide d’un espace de n-uplets partagé. Linda offre au
processus essentiellement trois opérations, à savoir out, in et read. out(t) met le n-uplet
t dans l’espace de n-uplets. in(t) attend jusqu’à ce que l’espace de n-uplets contienne
un n-uplet t′ qui soit filtré par le n-uplet t, puis établie les liaisons des variables libres
de t vers les valeurs filtrées de t′ et enfin enlève t′ de l’espace de n-uplets. read(t) a

25

CHAPITRE I. RÉSUMÉ

le même comportement que in(t) sauf que le n-uplet t′ n’est pas enlevé de l’espace de
n-uplets. Comme la communication en Linda implique la génération d’un n-uplet, elle
est dite « générative ».

Donc, tout modèle de coordination fondé sur Linda suppose que tous les compo-
sants du système partagent le langage utilisé pour la description des n-uplets. Les
propositions de combiner les langages de coordination à la Linda avec la programma-
tion déclarative enrichissent le modèle en considérant l’espace de n-uplets comme une
théorie logique. Mais contrairement à notre modèle, ces théories restent limitées à des
formules atomiques (des n-uplets).

I.6.4 Spécifications (exécutables)

La différence entre les langages de programmation et les langages de spécification est
que les premiers visent à l’exécution du système, alors que les seconds à une description
abstraite. Les spécifications exécutables sont donc similaires à notre modèle.

Les spécifications algébriques avec état implicite [DG94, Kho96] utilisent la notion
de « modificateur élémentaire » pour décrire les modifications des fonctions. Si ces
modificateurs sont similaires à nos actions élémentaires, ils ne peuvent pas être définis
par le programmeur et sont spécifiques à une seule fonction. De plus, les spécifications
algébriques avec état implicite sont plus orientées vers la description des changements
d’état, contrairement à notre modèle qui prend plus en considération la description des
processus qui provoquent ces changements.

Le formalisme des ASM4 [Gur97] utilise des algèbres pour la description des états.
Ces algèbres peuvent être considérées comme les modèles associés aux présentations de
théorie que représentent nos stores. Les changements d’état sont exprimés à l’aide de
mises à jour élémentaires qui sont similaires à nos actions élémentaires. Finalement,
comme les spécifications algébriques avec état implicite, les ASM ne prévoient pas
l’utilisation des opérateurs des algèbres de processus pour la description de processus.

Les machines à états algébriques [BW00] utilisent plusieurs niveaux pour la descrip-
tion d’un système et distinguent, comme notre modèle, les parties statiques des parties
dynamiques d’un système. En effet, les états d’une machine à états algébriques sont des
spécifications algébriques. Les transitions entre ces états sont spécifiées par des règles
(ou axiomes) de transition particulières, c’est-à-dire des formules logiques liant les deux
états. Ainsi, les machines à états algébriques sont plus proches des spécifications que
notre modèle, car elles ne sont pas nécessairement exécutables. Une autre différence est
que les machines à états algébriques sont composées selon une approche fondée sur le
flot de données, contrairement à nos processus qui sont construits à l’aide d’opérateurs
issus des algèbres de processus.

I.6.5 Programmation multiparadigme

Les motivations de notre travail sont les mêmes que ceux des langages multipara-
digmes, à savoir de permettre l’utilisation de différents styles de programmation dans
un formalisme unifié. Néanmoins, la plupart des langages multiparadigmes ne possèdent
pas de base formelle couvrant la totalité du langage [Bud95, CLSM96, Con88, Cop98,

4ASM est l’acronyme de l’anglais « Abstract State Machine » (machine à états abstraits).

26

I.7. CONCLUSION

NL95, Pla91, Spi94, Zav89, Zav91, ZJ96], ou nous ne connaissons pas d’extension
concurrente [ABPS98, LP96, LP97, AKP93].

Le langage Maude [CDE+99] est fondé sur la logique de la réécriture, ce qui permet
l’intégration de différents styles de programmation en les considérant comme des ins-
tances particulières de la logique de la réécriture. De plus, la réflexivité de la logique
de la réécriture permet la représentation de programmes écrits en Maude sous forme
de termes de Maude. Ainsi, si les fonctions et processus sont représentés de la même
manière en Maude, ces concepts sont distincts car ils se trouvent à des niveaux de méta-
représentation différents. Par contre, nous ne connaissons pas de modèle théorique pour
l’interaction d’un programme Maude avec son environnement.

I.7 Conclusion

Dans ce mémoire nous avons présenté un modèle de programmation qui combine la
programmation déclarative en général, et la programmation logico-fonctionnelle en par-
ticulier, avec la concurrence sous forme de processus mobiles. Une particularité de notre
modèle est que nous faisons clairement la distinction de différentes notions, comme par
exemple fonction, processus et action. Ainsi nous évitons le besoin d’encoder un concept
par un autre et nous permettons l’expression de chaque notion par le formalisme le plus
approprié. D’autres aspects de notre modèle sont la possibilité de définir des actions et
de spécifier explicitement des traductions. Ces deux traits permettent au programmeur
de séparer ces différentes parties d’un programme. Nous avons présenté une sémantique
compositionnelle pour les processus d’un composant ainsi qu’une analyse de la confi-
dentialité d’un point de vue de la non-interférence. Cette analyse est fondée sur une
exécution abstraite et assure qu’une information secrète ne peut pas influencer une
information accessible publiquement.

Néanmoins, le modèle proposé n’est qu’une première étape dans un projet de re-
cherche à plus long terme. En conséquence, de nombreuses possibilités d’améliorations
et de questions restent ouvertes. D’une part, le modèle de calcul peut être étudié da-
vantage, comme par exemple par la définition d’une algèbre de processus (dans la suite
des travaux de [Ser98]) et d’une sémantique dénotationnelle (fondée sur une structure
de Kripke ou la logique linéaire). D’autre part, plusieurs extensions du modèle semblent
intéressantes. Premièrement, l’intégration de la notion du temps est nécessaire pour la
plupart des systèmes de contrôle. Ainsi il serait intéressant d’étudier l’intégration de la
programmation déclarative avec des notions temporelles comme définie en [BE01] dans
notre modèle. Deuxièmement, notre modèle considère uniquement la mobilité dans le
sens du π-calcul, c’est-à-dire par passage de liens. L’étude de l’extension du modèle avec
des processus migrants semble donc intéressante. Troisièmement, la relation de notre
modèle avec la notion de réflexivité mérite d’être étudiée davantage, afin de mieux
comprendre les relations entre les différents niveaux de la description d’un composant.

Finalement, le prototype actuel offre de nombreuses possibilités d’amélioration. Par
exemple, le langage déclaratif utilisé peut être amélioré par l’inclusion de moteurs dédiés
à la résolution de contraintes, par des fonctions d’ordre supérieur, par une analyse de
types polymorphes, etc. Concernant l’implantation des processus, un mécanisme de
verrouillage du store plus fin que le store entier devrait améliorer les performances,

27

CHAPITRE I. RÉSUMÉ

d’une part parce que plus de processus pourraient être exécutés en parallèle, et d’autre
part parce que la sélection des processus à réveiller après une modification du store
pourrait être plus fine. Mise à part les améliorations du prototype proprement dit,
le développement d’outils associés comme un environnement de programmation ou
d’outils d’analyse est nécessaire.

28

Chapter 1

Introduction

Programs have become more and more ubiquitous with the utilisation of information
processing units in nearly all appliances of every day life, such as, for instance, electronic
payment systems, access control systems, (mobile) telephones, cars or even washing ma-
chines. On the other hand, the state of the art in programming cannot safeguard us
from problems related to incorrect and unreliable programs or software, even when the
consequences are very costly or dangerous, as for example the failure of the first launch
of a rocket of the Ariane-5 family, the delays in putting the new airport of Denver
into operation caused by malfunctioning software controlling the automated baggage
handling system, etc. Thus, we are still at the beginning of a science of programming
[Dij01], a state of affairs that is witnessed by the fact that there is currently no consen-
sual definition of a program, if there is a definition at all. One possibility to prevent the
problems related to incorrect and unreliable programs is the improvement of the meth-
ods used for the construction and maintenance of programs. These methods should
help ensure properties of the programs such as correctness, and should be accompanied
by tools that allow to put the methods into practice.

One particular tool for the construction and maintenance of programs is the pro-
gramming language used for the expression of the program. Linguists and computer
scientists1 have long recognized that the language in which thoughts are expressed colors
in a fundamental way the nature of the idea. In its most extreme form, this statement
is called the Sapir-Whorf hypothesis2 and asserts that it may be possible for an in-
dividual thinking in one language to imagine thoughts or utter ideas which cannot in
any way be translated, or even be understood by individuals using a different linguistic
framework. Although in the domain of computer science Church’s conjecture [Chu36]
suggests the exact opposite, namely that the choice of the programming language is not
important, since all computable functions can be expressed in any sufficiently powerful
formalism, as for instance Turing Machines [Tur36] or the λ-calculus [Chu32, Bar84],
most programmers will agree that different languages are more or less convenient for
the expression of different aspects of systems. Depending on the problem, a solution
might be expressed in straightforward manner in a certain language whereas other lan-
guages may require a significantly more difficult description of the solution, mostly due

1Consider the following citation: “The tools we use have a profound (and devious!) influence on
our thinking habits, and, therefore on our thinking abilities” [Dij82].

2For more details on the Sapir-Whorf hypothesis, see for instance [Cha95].

29

CHAPTER 1. INTRODUCTION

to the need of encoding the problem in terms of less adapted concepts. Hence, without
claiming an equivalent of the Sapir-Whorf hypothesis for programming languages, we
believe that the choice of the language influences the structure (and properties) of the
resulting program. This has already been described in the literature, see for instance
[HJ94, Zei95, Arm96]. Clearly, a multiparadigm language, i.e., a language combining
different programming styles or paradigms3, offers the programmer the possibility to
choose for each part of a system description the most appropriate programming style.

Since the beginning of programming, research on programming languages has mostly
been directed in the sense of providing higher-level languages. For instance, the ma-
chine code and assembly languages have been replaced by compiled languages, once
the necessary tools, i.e., compilers, were available. A high-level of abstraction is a
desirable property for a programming language, since it allows a programmer to focus
on the essential parts of a system without the need of considering all of the technical
details. Hence a program written in a really high-level language will be concise and
clear, since it is organised similarly to the structure of the system which it models.
Therefore, programs of a higher abstraction level are more easily written, understood
and maintained than programs of lower levels of abstraction. Besides a high-level of ab-
straction, a programming language should also provide a well-defined semantics, since
the precise definition of the meaning of a program is essential in understanding and
reasoning about the program and its properties. Consequently, a precise semantics is
mandatory for the construction and maintenance of safety-critical programs.

A particular kind of programming languages providing a high-level of abstraction
are languages that allow a programmer to rather declare what the program is about
instead of explicitly writing down how to achieve the goal. These languages are called
declarative programming languages. Besides providing naturally a high-level of abstrac-
tion (since all the “how” is omitted), declarative programs have the advantage that they
are rather close to a specification or description of the problem. They are nevertheless
considered as programs, since they are executable and can be used, at least, as a first
prototype.

Examples of declarative programming languages are functional, logic or functional-
logic programming languages. These languages are based on the notions of functions
and predicates (or relations), i.e., well mastered mathematical concepts which have been
successfully used for description of algorithms even before the invention of computers.
Classically, functions are described in such a declarative language by means of equa-
tions (rewrite rules) or λ-abstractions, whereas Horn clauses (with constraints) are a
classical means for the description of predicates. For the rest of this thesis, “declarative
programming” is used as a synonym for functional, logic or functional-logic program-
ming.

However, the theoretical concepts of functions and predicates that constitute the
basis of classical declarative programming languages, are insufficient to capture the
whole complexity of real-world applications where interactivity, concurrency and dis-
tributivity are needed [Mil93a, Weg98]4. An early example where the use of concurrency

3For more details on the notion of programming paradigms, refer to section 2.5 where we present
some related work on multiparadigm languages.

4Notice in this context, that A. Turing admits the existence of computing machines more powerful
than “Turing Machines” [Tur36], when he states in [Tur39]: “We shall not go any further into the

30

yields a better structure of a program are the coroutines used for the implementation
of a one-pass compiler for cobol [Con63], where the different phases of the compila-
tion are described as parallel executing processes communicating via directed streams.
Another, more recent kind of application that requires interactivity and concurrency
are window systems. The usefulness of concurrency in the concise design of window
systems has been pointed out by a number of researchers, as for instance in [Pik89]
and some concurrent extensions of declarative languages were even motivated by the
design of an adequate window system, written in these languages, as for example eXene
[GR93a] for CML [Rep99] and Haggis [FPJ95] for Concurrent Haskell [PJGF96].

The notion of processes has been introduced as abstraction for the expression of
concurrency. Processes have been studied in form of process algebras and process calculi,
e.g., [Hoa85, Mil89, BW90, Mil99, Fok00]. Informally, a process is characterised by the
actions that it can execute, or the interactions it has with its environment, i.e., other
processes that are executing concurrently. These formalisms, i.e., process algebras and
calculi, allow the description of a system as a set of processes that can be executed on a
single computer or distributed over a network. However, similar to classical declarative
programming languages, languages purely based on process calculi need to be extended
in order to provide the notions of functions and predicates without encoding them in
terms of processes.

Last, but not least, the construction of complex systems through the assembly of
existing components has been suggested, inspired by similar approaches that are current
practice in other engineering disciplines, as for instance the assembly of a bicycle from
a frame, two wheels, a saddle, etc. The construction of programs or software systems
by the composition of components naturally favors the reuse of existing software and
allows to manage the complexity of the overall system by enabling the construction,
verification and maintenance of the components separately. However, these approaches
still lack a consensual definition of a component, which would ensure that the semantics
of a system assembled from several components is clearly defined.

A well-defined combination of the different programming styles mentioned above,
namely declarative, concurrent and components, would allow to express most parts of
a system using the most appropriate concepts. Hence there would be no need to encode
one concept by another, and the different aspects of the problem could be expressed
directly and, in consequence, more clearly. Furthermore, a clear separation and struc-
turing of these different concepts, abstractions or notions, namely functions, predicates
and processes, should lead to well structured, readable and understandable programs
which are consequently easy to maintain. Clearly, this enforced separation comes at
the price of a loss of flexibility, since its enforces a certain discipline of programming
which a programmer has to follow. However, the most flexible programming languages
are machine-code or assembly languages, since they do not enforce any discipline what-
soever, and it has been recognised for long that the benefits of adherence to a more
structured style of programming are worth paying the price of less flexibility.

Numerous programming languages and models have been suggested in order to ac-
commodate the integration of the different notions mentioned before, namely functions,
predicates, processes and components. We refer the reader to the subsequent chapter

nature of this oracle apart from saying that it cannot be a machine.”

31

CHAPTER 1. INTRODUCTION

p4

F

p2

p1

p5

p3

sn1

sn4

sn5

sn2
sn3

Figure 1.1: Execution Model of a System

for a presentation of those we are aware of and that are related to our proposal.
In this thesis we explore a new computation model, or a new general framework

of programming languages, providing a component based approach for constructing
systems. These programming languages are a combination of declarative, i.e., either
functional, logic or functional-logic, programming with concurrency, expressed in form
of mobile processes. The resulting computation model is a conservative extension of,
on the one hand, declarative programming languages and, on the other hand, process
calculi or process algebra.

In the rest of this chapter, we present the broad outlines of our computation model
which is formally presented in chapter 3.

1.1 Overview of the Computation Model

We suggest to model a system as a set of interacting components, which may be dis-
tributed over a network or reside on a single computer [ES00, ES01a]. These compo-
nents capture the different, clearly distinguishable entities of a system, that interact
with each other by exchanging messages. Each component is identified by a component-
name (also called storename) sn which can be seen as the address of the component.
Internally, a component is organised as a set of processes pi, i.e., a concurrent pro-
gram, and a store F , i.e., a traditional declarative program, which can be seen as a
pair of a signature and a set of formulæ describing a (static) theory [BES98, ES99].
The processes pi communicate by modifying the stores, i.e., by altering, in a possi-
bly non-monotonic way, the current theories described by the stores, for example by
simply redefining constants (e.g., adding a message in a queue) or more generally by
adding or deleting formulæ in F . We call these modifications of the stores actions and
allow their defintion by the programmer [ES01b]. Interaction between components is
based on asynchronous message passing, where the messages correspond to actions to
be executed on the remote store. Figure 1.1 shows the execution of a system of three
components with storenames sn1, sn2 and sn3.

In this thesis, and in particular in this section, we focus on the definition of a
component, and only scratch the problems related to the composition of components.

32

1.1. OVERVIEW OF THE COMPUTATION MODEL

For instance, the component sn3 of figure 1.1 is the composition of the two components
sn4 and sn5. Nevertheless, the internal structure of sn3 can be hidden by taking the
disjoint union of both, the stores as well as the sets of processes of the components sn4

and sn5, and by adding the name of the original component as a suffix to all symbols
exported by the component sn3.

1.1.1 Stores

Our approach to combine declarative programming and concurrency is generic in the
sense that it is independent from the actual declarative language used for the description
of the store. In fact, we only require that programs in a declarative language can be
seen as a pair of a signature Σ and a set of formulæ or rules R, i.e., F = 〈Σ, R〉, and
that the operational semantics (of the declarative language) allows the test for validity
of a term (of the special sort Truth). Most (declarative) programming languages fit
into this framework, which is similar to the notion of a logical system in the framework
of institutions [GB92].

1.1.2 Actions

Actions are the principal constituents of processes, as it is witnessed by the fact that
the semantics of a process is, loosely speaking, defined by the sequences (in linear time
semantics) or graph (in branching time semantics) of actions that the process might
execute. Most classical process algebras consider abstract actions, in the sense that
actions are simply elements of a vocabulary (of actions) without further specification,
besides a relation which associates pairs of actions in order to model synchronisation
and communication. In our model, the execution of an action has the observable effect
of modifying the store of the component. Thus we need to specify the notion of actions
further to take into account these modifications.

Roughly speaking, an action 〈sn, a〉 is a pair of an elementary action a and a store-
name sn denoting the store on which the action is to be executed. Examples of actions
are 〈sn, c := v〉, to change the definition of the (variable) constant c (which is defined in
the store of the component sn) to the value v and 〈Display , print(’hello’)〉 to print the
string ’hello’ on the display Display (which is considered as a component). Notice
that this approach to actions integrates smoothly actions defined on external, physi-
cal machines, by considering simply the available commands as actions executable on
these machines. For a given action, different possible semantics exists. For instance
the deletion of a formula from the store might remove exactly the formula or all similar
formulæ. Thus we suggest to integrate the definition of actions into our computation
model. Consequently, a programmer can extend the set of actions provided by the lan-
guage by defining application specific actions, as well as change or precise the semantics
of the predefined actions.

In this section, we introduce the notion of elementary actions by means of some
examples. The formal definition can be found in section 3.2, where we also present how
to define application specific actions.

Since an elementary action transforms a store into another one, we are led to de-
fine elementary actions as total recursive functions from (well-formed) stores to (well-
formed) stores. We require an elementary action to be a recursive function in order

33

CHAPTER 1. INTRODUCTION

to ensure the termination of its execution. The requirement of totality gives us the
guarantee that the elementary action can be applied to any store. We require further,
that all stores in the range of an elementary action (which is applied to a well-formed
store) should be well-defined stores, e.g., they should be well-typed. These conditions
together ensure that the execution of an elementary action will never produce an error
during the runtime of the system. That is to say, all actions can be executed and ter-
minate, and also that the store of a component corresponds to a well-formed program
at any moment during the execution of the program.

A similar view of (elementary) actions can be found for instance in Concurrent
Haskell (CH), where the monadic I/O operations, i.e., functions of type IO t, are
considered as state transformers and are called actions [PJGF96, section 2.1]. A note-
worthy difference5 is that actions in CH are functions, and as such they return a value,
in addition to the implicit “world” parameter. On the other hand, our (elementary)
actions are the basic elements of processes and describe only the effect on the store
without returning any value.

In order to clarify the structure of a component, we suggest to stratify the descrip-
tion of a component in several levels. For instance, actions describe the modification of
the store, i.e., a (declarative) program. Hence it seems natural to define action using a
meta-language with respect to the language, say L, used for the description of the store,
since the action manipulates programs as data. The use of a meta-language, where an
ADT of programs can be defined straightforwardly, avoids the need of integrating the
program modifications inside the language L. Therefore, while a component in our
framework can be seen as a self-modifying program, all modifications are restricted in
the sense that only modifications of program parts at a strictly lower level are allowed.
In fact, since on a higher level, the program parts on lower levels are considered as
data, this restriction is similar to the discipline in classical imperative languages, which
consists in avoiding the modification of the part of the memory where the program code
is stored.

Figure 1.2 shows a first representation of the basic levels needed for the description
of a system in our computation model. The stores are described at the lowest level. As
mentioned before, the meta-level above the store is used for the definition of the actions.
The definition of processes involves both levels. Indeed processes use guards, which are
expressed at the level of the store, and execute actions on the meta-level6. On the right
of figure 1.2 we also show a term, namely succ(zero), of the store together with its meta-
representation, which can be obtained thanks to the reification mapping reify7. Seen
as a meta-term, succ(zero) corresponds to an application of the function succ to the
constant (i.e., parameterless term) zero. In a reflective programming language, as for
instance Maude [CDE+99], the meta-level can be integrated in the language itself, e.g.,

5Besides the fact that the (sort) state used in CH is not further specified, whereas in our model a
state is partly defined as a store, i.e., a declarative program (for more details, see the definition of the
operational semantics in chapter 4).

6Even if figure 1.2 might suggest it, we do not consider the modification of actions by processes.
However, we picture the level of processes above the meta-level (for actions) since the definition of
processes uses actions.

7“To regard or treat (an abstraction) as if it had concrete or material existence.” [The American
Heritage Dictionary of the English Language, Fourth Edition, 2000,
http://www.bartleby.com/61/6/P0130600.html]

34

1.1. OVERVIEW OF THE COMPUTATION MODEL

Sorts, Functions & Predicates

Actions

Processes

(Meta)

(Store)
succ(zero)

succ

application

zero

reify

Figure 1.2: Basic Levels of a System-Description

in Maude by means of the system module META-LEVEL. Nevertheless, the distinction
between the levels is still present and enables a clear structure of the program. We
present these issues in more detail in section 3.2.

In analogy to well-formed calls to (or applications of) functions (see definition 3.7),
we say that a(t1, . . . , tm) is a well formed call to the elementary action a if for all
i ∈ {1; . . . ;m} the term ti is a well-formed term corresponding to the sort required by
the profile of the elementary action a. Notice that, since an action is defined on the
meta-level with respect to the store, the layering shown in figure 1.2 suggests that its
arguments should also be on the meta-level. We suppose further that we dispose of a
mapping reify which maps a term t of the store to its meta-representation reify(t), as
shown on the right of figure 1.2. However, for convenience of notation, we often omit
the explicit calls to reify in the sequel, and write meta representations of terms in the
same way as usual terms. In section 3.2, we give a more detailed definition of well
formed action (parameters).

For the rest of this chapter, we suppose that we are given a set A of predefined
(elementary) actions, namely tell, del, := and new. Intuitively, tell(f) (respectively,
del(f)) add (respectively, remove) a rule (or more generally, a formula) f to (re-
spectively, from) the store (or program). Thus the profile of tell (respectively, del)
is tell : rule → store → store. Furthermore, we abbreviate for the rest of this chapter
tell(t→ true) (where t is a (meta-representation of a term of sort Truth) to tell(t).

Certainly the most common elementary action is assignment :=(c, v), also written
more familiarly in infix-notation as c := v, changes the definition of the constant8 c
to the value v, i.e., a (meta-representation of a) term. A reasonable requirement on
the assignment action is to normalise the new value (with respect to the current store)
of the constant before adding the new definition. Figure 1.3 gives an example of the
execution of the action c := 42. The effect of this action is to transform the store
containing the rule (or equation) c == 23 into a store containing the rule c == 42.

Besides actions modifying the rules or formulæ of a store, we need also actions for
the modification of the signature. The creation of new operator (or function) symbols is
handled by the elementary action new. The intuitive meaning of an elementary action
new(f, s) is to enrich the signature of the store with the operator symbol f of sort
s. Besides the new-action creating new function symbols, we may need similar actions

8In imperative languages, c is traditionally considered as a variable.

35

CHAPTER 1. INTRODUCTION

c == 23
...

...

c == 42c := 42

Figure 1.3: Execution of an Assignment Action

for the other kinds of symbols in a signature, i.e., sorts, constructors, etc. Obviously,
the exact set of needed new-actions depends on the declarative language used for the
description of the store.

1.1.3 Processes

The processes of a component are specified in the style of a process algebra, see for
instance [BW90, Fok00]. In this section we give a brief overview on the definition of
processes in our computation model. To simplify the presentation, we restrict our-
selves to systems which contain a single component. The complete definition of the
computation model can be found in chapter 3.

1.1.3.1 Guarded Actions

As we have already mentioned before, actions are essential for the definition of processes.
In fact, the basic processes in our computation model are guarded actions. A guarded
action is a pair, consisting of a guard and a sequence of (calls to elementary) actions
(with parameters):[

g ⇒ a1(t1, 1, . . . , t1,m1); . . . ; an(tn, 1, . . . , tn,mn)
]

such that the guard g is a (conjunction of) expression(s) of sort Truth and, for all
i ∈ {1; . . . ;n}, ai(ti, 1, . . . , ti,mi) is a well formed call to the elementary action ai.

To shorten the notation, we sometimes omit the parameters of the (elementary)
actions and abbreviate a guarded action to [g ⇒ ai].

Similar to the “guarded commands” of [Dij75], the execution of the sequence of
(elementary) actions ai in a guarded action [g ⇒ ai] is only possible if the current
theory described by the store allows to prove that the guard g is valid.

1.1 Example. The following guarded action increments the value of the constant (the
name of which is) c under the condition that the constraint, i.e., a (0-ary) function of
sort Truth, increment is true:

[increment ⇒ c := (c↑+ 1)]

Recall that we require the assignment action to normalise the new value before adding
the definition. By c↑ we denote the current value of the constant c.

As the execution of actions modifies the store, the order in which the actions are
executed may influence the resulting store. To obtain a deterministic execution of a

36

1.1. OVERVIEW OF THE COMPUTATION MODEL

guarded action, we follow the tradition in imperative programming and require the
sequential execution (from left to right) of the elementary actions of a guarded action.

To simplify the notation, we call in the sequel both, guarded and elementary actions,
just “actions”, whenever there is no risk of confusion.

1.1.3.2 Process Terms

Recall that processes in our computation model are defined in process algebraic style.
The elementary (or basic) process terms are the execution of (guarded) actions and
process calls. The predefined process success represents the process which executes
no action and terminates successfully. As usual in process algebra (see, e.g., [BW90,
Fok00]), we provide some operators for combining processes: parallel (‖) and sequential
(;) composition, nondeterministic choice (+) and choice with priority (⊕). Hence we
define a process term p as a “well-formed” expression according the following grammar:

p ::= success
[g ⇒ ai] (guarded action)
q(t1, . . . , tm) (process call)
p ; p (sequential composition)
p ‖ p (parallel composition)
p+ p (nondeterministic choice)
p⊕ p (choice with priority)

In the case of a process call q(t1, . . . , tm), we require that the parameters t1, . . . , tm
of the process q are of sorts corresponding to the profile of q (and that the arity of q is
m).

The operator of choice with priority⊕ is not very common, but we found it necessary
to model critical applications where nondeterminism is not acceptable [Abr96b]. The
intended meaning of the process term q1 ⊕ q2 is: “execute the process q2 only if the
process q1 cannot be executed”, i.e., the process q1 has a higher priority than the
process q2.

In order to get clearer and more readable programs by enforcing a “good program-
ming style”, we introduce the notion of restricted process terms. Roughly speaking, a
restricted process term is a process term syntactically restricted neither to contain any
occurrence of the priority operator, nor a guarded action. Thus, a restricted process
term rp is a well formed expression according to the following grammar:

rp ::= success q(t1, . . . , tm) rp ; rp rp ‖ rp rp+ rp

As for process terms, we require process calls to be well-sorted.
The principal motivation for the introduction of the notion of restricted process

terms is that we allow the use of the operator of choice with priority only between the
different clauses inside process definitions . Since the use of this operator is restricted,
it can be implemented efficiently (see section 4.1.3).

1.2 Example. Consider a process counter and the guarded action of example 1.1.
Then the following is an example of a (restricted) process term, representing a process

37

CHAPTER 1. INTRODUCTION

that increments the constant c (if increment is true) and then behaves as the process
counter:

[increment ⇒ c := (c↑+ 1)] ; counter

1.1.3.3 Process Definitions

The behaviour of processes is defined by means of process definitions. However, the
recursive definition of the behaviour of a process requires some care in order to avoid
pathological cases, as for example processes with an infinite branching degree.

1.3 Example. Consider the following recursive definition of a process q:

q = (q ; a) + a (1.1)

In [BW90, exemple 2.4.13, page 33] it is shown that equation (1.1) has no unique
solution, if we suppose that a solution to the equation does exist. In, fact, q0

def=
∑

i>0 a
i

and q1
def= q0 + a∞ are two different solutions of equation (1.1). The problem with this

definition of the process q is, that we do not know, if a call to q always terminates (as
does the process q0) or if there might be an execution where it does not terminate (as
does q1, when choosing the branch a∞). Further examples of recursive definitions that
do not uniquely determine processes are the following equations (see [Fok00, example
and exercise 4.1.1, page 32]): q = q ‖ a and q = q.

To avoid this kind of problems, process definitions are usually required to be
guarded9, that is to say, a recursive call to a process has to be preceded by the ex-
ecution of an action. Notice, that this notion of guard is to be distinguished from the
guards in guarded actions, since the guard in a guarded process is an action, whereas
the guard in a guarded action is a term (of sort Truth) of the store.

A process is defined by a set of rules, clauses10 or guarded commands, ordered by
priority. Each guarded command consists of a guarded action and a restricted process
term. Using the previously introduced notations, a process can thus be defined by a
phrase of the following form:

q(x1, . . . , xm) ⇐
n⊕
i=1

(
[gi ⇒ aiji] ; rpi

)
(1.2)

Notice that we have omitted some technical conditions on the use of free variables for
the sake of a readable presentation.

Intuitively, the operational behaviour of a process call q(t1, . . . , tm) is similar to
the alternative construct of the guarded command language of [Dij75]. That is to say,
we have to evaluate which of the guards of the commands defining q are valid, and then
to choose among them the command with the highest priority. Choosing a guarded
command means to atomically execute the sequence of elementary actions associated
with the guard and afterwards to behave like the associated restricted process term.

9In [Mil89, page 101] this is called weakly guarded ; a guarded process may not be below a ‖ operator.
10In analogy with the definition of predicates by a set of clauses in logic programming; for the same

reasons we use the symbol ⇐ for the definition of a process.

38

1.1. OVERVIEW OF THE COMPUTATION MODEL

1.4 Example (A simple counter). Extending the preceding examples of this section,
we consider a process counter modeling a simple counter that can be controlled by means
of two constraints, namely increment and reset. Whenever the former is set to true,
counter increments the value of the constant c and when the latter holds, counter resets
the value of c to zero. In both cases, the definition of the constraint is removed from the
store, and the process is called recursively. Hence, the store on which counter acts, has
to define a theory about natural numbers and the two constraints increment and reset.

counter ⇐
[
reset ⇒ c := 0 ; del(reset)

]
; counter

⊕
[
increment ⇒ c := (c↑+ 1) ; del(increment)

]
; counter

(1.3)

In a complete system, the constraints increment and reset could be set to true by
another process, controlling for instance a graphical user interface. Notice that the
definition of counter gives reset a higher priority than increment. Thus, in case both
are true, the counter c will be first reset to zero, and incremented afterwards (if the
constraint increment is then still true).

1.1.4 Operational Semantics

The operational semantics of a component integrates two orthogonal aspects, namely
the use of the store as a classical declarative program (i.e., evaluation of expressions
and goal solving) and the execution of processes. Informally, the operational semantics
of a component is defined by means of a transition system the states of which consist
of a store and a process term. Execution of actions corresponds to state transitions,
and in every state the (current) store can be used as a classical declarative program.

Hence, our computation model is a conservative extension of declarative program-
ming, since a component without any processes corresponds to a declarative program
in the classical sense. On the other hand, when abstracting from the effects of the
actions, i.e., the modifications of the stores, and considering only the names of actions
that are executed, our computation model is a classical process algebra.

1.1.5 Example of the Dining Philosophers

We conclude this brief overview of our computation model by the complete presentation
of a small example.

Consider the “Dining Philosophers” problem inspired from the example presented
in [Dij71]. The problem concerns the life of some (Chinese) philosophers, which alter-
nate between thinking and eating. These philosophers live in a same room, and are
seated around a round table, in the middle of which stands a large bowl of rice (with
the enjoyable property of containing always a sufficient amount of well-prepared rice).
Figure 1.4 shows such a table for six philosophers. As usual, a philosopher needs two
chop sticks to eat. Unfortunately, there are only as many chop sticks as philosophers,
so that the philosophers have to share the sticks with their neighbours. Furthermore,
the philosophers are not allowed to exchange sticks across the table.

We model the situation with two predicates on natural numbers, i.e., functions with
the profile Nat → Truth, which have to be added to a signature of natural numbers (as
for instance the signature of example 3.6), namely stick(x) and is eating(y). The former

39

CHAPTER 1. INTRODUCTION

philosopher 3

philosopher 0

philosopher 1

philosopher 2 philosopher 4

philosopher 5

Figure 1.4: Dining Table for Six Philosophers

stick(x) ∧
stick(((x+1) mod n))

⇒
del(stick(x));
del(stick(((x+1) mod n)));
tell(is eating(x))



true⇒
del(is eating(x));
tell(stick(x));
tell(stick(((x+1) mod n)))



thinks(x, n) eats(x, n)

Figure 1.5: Automaton Describing the Behaviour of a Philosopher

represents the fact that stick x is lying on the table, and the latter is true whenever
philosopher y is eating. Hence the initial store is an extension of a theory for natural
numbers (as for instance the program presented in example 3.10) with n rules stating
the presence of the n sticks on the table, e.g., stick(i)→ true, for i ∈ {0; . . . ;n− 1}.

The behaviour of a philosopher can be modeled by a simple automaton as shown
in figure 1.5. Since a philosopher either thinks or eats, the automaton has two states.
The transitions between the states are labeled with guarded actions executed along
with the transition. These guarded actions use the elementary actions tell(r) (respec-
tively, del(r)) which add (respectively, remove) an (unconditional) rule “r → true” to
(respectively, from) the current store, i.e., the current declarative program.

The automaton shown in figure 1.5 translates immediately into the definitions of the
two processes shown in table 1.1. We use two processes to model the two states for a
philosopher: either the philosophers thinks or eats. These processes take two arguments

40

1.1. OVERVIEW OF THE COMPUTATION MODEL

thinks(x, n)⇐

stick(x) ∧
stick(((x+1) mod n))⇒

del(stick(x));
del(stick(((x+1) mod n)));
tell(is eating(x))

; eats(x, n)

eats(x, n) ⇐

true⇒
del(is eating(x));
tell(stick(x));
tell(stick(((x+1) mod n)))

; thinks(x, n)

Table 1.1: Process Definitions for the Dining Philosophers

of sort Nat , corresponding to the number of the philosopher and to the total number
of philosophers in the system. In order to start to eat, a thinking philosopher has to
execute a guarded action. The guard stick(x) ∧ stick(((x+1) mod n)) ensures that the
needed sticks are both available, and the three elementary actions modify the theory
by removing the two sticks, and by adding the eating philosopher. The guard true

in the action of the process eats reflects that an eating philosopher can decide to stop
eating at any moment.

The initial process term is the parallel composition of n thinking philosophers,
numbered from 0 to n− 1, i.e.,

thinks(0, n) ‖ . . . ‖ thinks((n− 1), n)

Thus, at the beginning of the execution of this system, we observe the situation
shown in figure 1.4. Thus, the solving of the goal is eating(x) is initially impossible:
There exists no substitution for x such that is eating(x) could be reduced to true.
However, during the execution, the philosophers start and stop eating (respectively,
thinking), such that we might observe the sequence of situations shown in figure 1.6.
Together with the images representing the table of the philosophers, figure 1.6 also
shows the essential parts of the current theory (or store).

First, philosopher number 3 starts eating (situation 1). In situation 2, philosopher
number 0 joins him. Thus, in situation 2, the current theory has been changed such that
the solving of the goal is eating(x) returns the two answer substitutions {x 7→ 0} and
{x 7→ 3}. Philosopher number 0 has stopped eating in situation 3, whereas philosopher
number 3 is still hungry and continues to eat. He is joined by philosopher number 1 in
situation 4 and by philosopher number 5 in situation 5. Hence, the solving of the goal
stick(y) in situation 5 is impossible, since all sticks are in use, and no stick is available
on the table.

Notice that our solution of the Dining Philosophers is straightforward. Indeed,
the store is a simple description of the situation, and the two processes are obtained
immediately from the formalisation of the behaviour of a philosopher by an extended
automaton. Notice further, that our solution does not need an additional semaphore
in order to avoid dead-locks, and that we provide a generic description of a philosopher
as a process.

41

CHAPTER 1. INTRODUCTION

stick(1)

stick(0)

stick(2)

stick(5)

is eating(3)
.
.
.

.

.

.

stick(5)

stick(2)

is eating(0)

is eating(3)

stick(1)

stick(0)

stick(2)

stick(5)

is eating(3)
.
.
.

.

.

.

stick(5)

is eating(1)

is eating(3)

stick(0)

.

.

.

is eating(3)

is eating(1)

is eating(5)

situation 1 situation 2 situation 3 situation 4 situation 5

Figure 1.6: Possible Execution Sequence for Six Philosophers

1.2 Plan of the Thesis

The rest of the thesis is organised as follows. In the following chapter we present
some of the work on related programming styles or paradigms, programming languages,
or research that pursues similar goals, i.e., the integration of several programming
paradigms, in particular declarative programming and concurrency.

The complete formal definition of our computation model is the subject of chapter 3.
After a recall of the basic notions and definitions of declarative, i.e., functional and logic,
programming, chapter 3 introduces the notions of actions, processes and components
and gives the corresponding definitions. The chapter ends with a presentation of the
construction of a system from a set of components. Since chapter 3 is rather long, we
give a small table of its contents on page 75.

We present the operational semantics of our computation model in chapters 4. As
already mentioned, the operational semantics of a component is composed of two parts,
namely the execution of processes and the classical operational semantics of the store.
In addition to these two parts, chapter 4 briefly presents the semantics of a system
composed of several components.

In chapter 5 we show that a semantics for the processes of a component based on
traces of execution according to the semantics presented in chapter 4 is not composi-
tional and suggest an extension, namely the use of labeled traces, for which we prove
compositionality.

To show that our computation model facilitates the understanding of and reasoning
about programs, we present in chapter 6 an analysis of non-interference for the processes
of a component, applied to the problem of ensuring the confidentiality of information.
This analysis is based on an abstract execution of a component.

We have validated our proposal of a programming framework by the implementation
of a prototype, which we present in chapter 7. This prototype is composed of an
interpreter for a component, defined according to the operational semantics presented
in chapter 4. Since our computation model is a conservative extension of declarative

42

1.2. PLAN OF THE THESIS

programming, this interpreter can be used for both, the execution of component as
well as the execution of declarative programs. Along with the broad outlines of the
architecture of the prototype, we give also further examples of programs.

In chapter 8 we give a comparison of our computation model with some of the related
work presented in chapter 2, in particular other extensions of declarative languages with
concurrency. To avoid a double presentation of the related frameworks, chapter 8 does
not present the related work. Therefore, we recommend the lecture of chapter 2 prior
to chapter 8. Finally, chapter 9 concludes, giving some directions for future work.

43

Chapter 2

Related Programming Styles

Research on programming languages and styles is a large and diversified field. In this
chapter, we present the different programming languages and related models we are
aware of and that are rather closely related to our work, in the sense that they either
use similar methods or pursue similar objectives. Obviously, in view of the large number
of existing works, this chapter can and does not aim to be complete; we rather focus on
the presentation of some examples illustrating the different approaches we are aware
of. Furthermore, we limit ourselves in this chapter on a presentation of the different
approaches; a comparison with related work is subject of chapter 8.

We present first some extensions of declarative programming languages with con-
currency. In a second step, we describe some languages based on theoretical models
for concurrency, namely process calculi. Then we overview some research which in-
vestigates the interaction and coordination between several concurrent programs. We
present also some approaches of executable specifications, and, last, but not least, some
approaches aiming at the combination of different programming styles, or paradigms, in
a single, multiparadigm computation model. Note that the structure of this chapter is
based on an arbitrarily chosen classification of the different approaches. Another clas-
sification would have equally well suited the purpose, and some of the work presented
would have had its place equally well in a different section (of this chapter). In fact,
the multi-paradigm character of most approaches renders any linear, one-dimensional
classification very subjective.

2.1 Declarative Programming

Classical declarative languages, i.e., functional, logic and functional-logic languages,
aim to provide high-level descriptions of applications or systems. They are called
declarative since their aim is to allow to describe or declare the problem, instead of
giving a solution of how to resolve it. Since they are based on well mastered mathe-
matical concepts, namely functions and predicates, which have been successfully used
in describing algorithms even before the invention of computers, these languages come
equipped with a precisely defined semantics. Due to these theoretical foundations,
they exhibit well-known nice features, as for example a high level of abstraction, read-
ability due to concise programs, efficient compilation techniques, “optimal” execution

44

2.1. DECLARATIVE PROGRAMMING

strategies, proof methods, type systems, denotational semantics, etc. [Hug90, HJ94].
However, the theoretical concepts of functions and predicates that constitute the

basis of classical functional-logic languages, are not sufficient to capture the whole
complexity of real-world applications [Weg98] where interactivity, concurrency and dis-
tributivity are needed.

To overcome these limitations, quite a few concurrent extensions for declarative lan-
guages have been proposed. Most of them do not distinguish clearly between processes
and the concepts underlying the declarative language, but rather encode or simulate
processes in terms of the latter. Since this makes these languages rely on the possi-
bilities offered by the operational semantics of the declarative language at hand, these
approaches for integration of concurrency seem to be tailored for specific languages, and
the generalisation of the method to a general computation model is not straightforward.

In the following, we look more closely at some concurrent extensions of declarative
programming languages, considering the logic, functional and functional-logic languages
separately. We conclude with a brief presentation of linear logic programming.

2.1.1 (Constraint) Logic Programming

In Logic Programming [Kow74, vEK76], a program is a description of a first-order
theory by set of Horn Clauses. The execution of a logic program corresponds to solve
a goal, i.e., to check the satisfiability of a conjunction of atoms using an operational
semantics based on SLD-resolution [KK71]. Constraint Logic Programming replaces
unification in logic programming by the more general concept of constraint solving
[JL87]. In fact, unification can be seen as solving a particular kind of constraint,
namely to compute the unifier of two terms.

One of the main advantages of logic programming is its well-defined semantics
(the least Herbrand model). If we consider a Horn clause such as p(x) ⇐ q, p(x),
the denotation of the predicate p is empty according to the classical semantics of logic
programs (i.e., for any x, p(x) does not hold). But if we see this clause as the description
of a process, the semantics of p is the infinite sequence (of actions) q∞.

Neglecting this difference, most concurrent extensions of (constraint) logic program-
ming are based on the so called “process interpretation” of (constraint) logic program-
ming [vEdLF82, Sha83, Sha87]. According to this view, (constraint) logic program-
ming can be seen as “inherently parallel”, in that a goal can be seen as a set of parallel
processes, using shared (logical) variables as communication channels. Hence, in inter-
preting conjunction as parallelism, the benefit of parallel execution can be made easily
useful for logic programming languages [CdKC94]. However, this implicit parallelism
which increases the performance of a logic program by using more than one proces-
sor is, in our opinion, to be distinguished from concurrency explicitly specified by the
programmer.

In this section we give a short glance on some of concurrent (constraint) logic
programming languages. A more detailed review of the historic development leading
to concurrent constraint programming can be found, for instance in [dBP94] or in
[Tic95]. The latter paper points at the “deevolution” of concurrent logic programming
languages, that is to say the abandon of high-level features in favor of more practically
implementable ones.

45

CHAPTER 2. RELATED PROGRAMMING STYLES

Viewing goals as processes, the implementation of “don’t know nondeterminism”
using backtracking, used for example in Prolog, becomes too inefficient (or even impos-
sible, since a printout, for example, cannot be undone) to implement. In fact, in order to
maintain consistency, the whole system should backtrack, since the actions of the pro-
cess needing to backtrack may have already influenced other processes. Hence, most
concurrent logic programming languages provide mechanisms to control the choices
made by processes, in order to avoid the need for backtracking. The most popular of
such mechanisms are guards: a clause can only be selected if the associated guard is
satisfied or entailed by the current set of constraints, also called the constraint store
which is shared by all processes. In this model, communication between processes is di-
rected and asynchronous, since some processes are seen as producers (of bindings) on a
certain variable and others as consumers, and the action of the producers and consumer
may be performed at different times, see for instance Concurrent Prolog [Sha83, Sha86],
Guarded Horn Clauses [Ued85] or PARLOG [CG86].

Another approach to synchronisation is to suspend a process until enough bindings
have been produced (by other concurrent processes) so that the number of consistent
alternatives for the next step reduces to one, as for instance in AKL [HJ90, FHJ91,
JH94, Jan94]. The commitment to a rule in ALPS [Mah87] introduces an additional
condition, namely that no further restriction on the global variables can invalidate the
guard of the rule and the commitment to the rule. Stated otherwise, in ALPS the
current constraint store has to entail the guard of a rule.

The idea of entailment for commitment to a rule of ALPS combined with the ex-
pression of processes using extra-logical combinators as in process algebras lead to the
family of concurrent constraint programming (ccp) languages [SR90, Sar93]. The execu-
tion model of the family of ccp consists of a set of agents (or processes) communicating
via a common (constraint) store. The only actions executable on this store are telling
a new constraint and asking if the current store entails a constraint. Hence, a language
of the ccp family is parametric with respect to the constraint system used for the store.
An agent (or process) A in ccp is defined according to the following grammar:

g ::= tell(c) ask(c)
A ::= Stop

∑n
i=1 gi → Ai A ‖ A ∃xA p(x̃)

where the agent Stop represents successful termination and the guarded choice agent∑n
i=1 gi → Ai behaves like one of the Ai for whom the associated guard gi is entailed

by the store. A1 ‖ A2 is the parallel composition of the agents A1 and A2, ∃xA behaves
like A, but with x considered to be local, and procedure calls p(x̃) are defined by
declarations, i.e., sentences of the form: p(x̃) :- A.

The members of the ccp family differ in the semantics of the different operators,
namely tell and ask. As an example, while tell always succeeds and possibly leads
to an inconsistent constraint store, an atomic atell(c) blocks on a constraint store
d if the conjunction of the constraint c with constraint store c ∧ d would lead to a
inconsistent constraint store. The semantics of the ccp family of languages has been well
investigated, see for instance [SRP91, dBP91] and a process algebra (see section 2.2.1)
for ccp has been suggested in [dBP92]. An implementation of the ccp framework is
Janus [SKL90].

46

2.1. DECLARATIVE PROGRAMMING

The original model of ccp is limited to a monotonic evolution of the store, since
constraints cannot be removed. Suggestions for non-monotonic extensions either pro-
vide new built-in actions [dBKPR93, CR95] or use non-monotonic logics, as logic with
defaults [SJG95, SJG96, GJS96] or linear logic [SL92, BdBP97, RF97, FRS98].

For example, [dBKPR93] introduces an operator updatex used to hide the name of
a variable (and thus to erase all constraints on it): executing updatex(c) transforms
the store d to (∃xd) ∧ c. [CR95] add two new operators. remove(c) removes the
constraint c from the store, and enforce(c) forces the store to entail the constraint c.
This enforcement of c may require the removal of all constraints present in the store
which are inconsistent with c. In order to ensure a deterministic computation of the
result, i.e., the final store, [CR95] introduce the notion of constraint dependencies.
For instance, considering the process ask(c)→ tell(d), the constraint d depends on the
constraint c. These dependencies have to be kept along with the current store, in order
to enable the removal (respectively, addition in the case of a negative dependence) of
the dependent constraints.

Using the logic for default reasoning of [Rei80], testing the absence of information
becomes possible [SJG95, SJG96, GJS96]. More concretely, the process (or agent)
if c else A checks that the constraint c is not entailed by the current store and then
behaves as the process A, making the assumption (or the “guess”) that c will not be
entailed by any future store. This strong and restrictive demand on stability of the
result (store) assures that the result computed does not depend on vagaries of parallel
execution of the processes, as for instance the differences in the execution speed of
processors.

Using linear logic1, the consumption or removal of resources, i.e., constraints, from
the store can be modeled. [SL92] is based on a sub-logic of simply typed higher-order
linear logic, namely HLL. Processes are considered as formulas of a particular sub-
class of HLL, where the tell primitive of (standard) ccp is replaced by (concurrent)
agents consisting only of the corresponding constraint. In contrary to the approach
of [SL92] which can be considered as a linear logic programming language, [BdBP97]
and [RF97, FRS98] extend the model of ccp by considering linear stores (or constraint
systems). [BdBP97] defines a linear constraint systems as a multiset of constraints,
equipped with an entailment relation (extending a basic entailment relation over con-
straints to multisets). Besides the actions known from ccp, namely (a)tell and ask,
[BdBP97] introduces the operator get. Informally, get(c) corresponds to ask(c) of clas-
sical ccp, where a multiset of constraints, e.g., {d1, . . . , d2}, which entails c is removed
from the store. The (operational) semantics of processes is defined by means of so-
called histories, which can be considered informally as dependence graphs between
(executions of) actions. The constraint stores of LCC [RF97, FRS98] are axiomatised
in (intuitionistic) first-order linear logic (ILL) [Gir87]. Correspondingly, the entailment
relation used for checking the guards is the entailment in ILL. Thus, testing of a guard
always removes the constraints needed for the proof2. Using a translation of LCC into
ILL and the phase semantics of linear logic [Gir87], it is possible to prove safety proper-
ties of programs written in LCC and ccp (since ccp programs are a particular sub-class

1See section 2.1.4 for a brief presentation of linear logic and some associated programming languages.
2In contrary to [BdBP97], LCC does no longer provide an ask-action. In fact, ask(c) can be simulated

by means of get(c) −→ tell(c).

47

CHAPTER 2. RELATED PROGRAMMING STYLES

of LCC programs).
The logic programming language Prolog provides two “predicates” that allow one to

modify the logic program by adding and deleting clauses, namely assert and retract
[DEDC96]. In fact, the predicates forming a program are considered as being stored in
a “database” which can be updated by means of the mentioned built-in “predicates”,
or “extra-logical operators”. This view of logic programming is adopted for the descrip-
tion of deductive databases, where rules or clauses allow to infer new information from
a database. But in addition to the fact that the logical semantics of Prolog does not
account for these updates operations, Prolog does not support atomicity3, a basic fea-
ture of database transactions. [BK98b] surveys research on these update operations in
logical databases from the point of view of languages for the description of transactions.

Transaction Logic (T R) [BK94, BK98a] is a logic for the description of database
transactions. T R is equipped with a model and a proof theory and contains a logic
programming language as subset. Transaction are described in T R by means of clauses
(as in Prolog), but instead of a single operator of conjunction, T R introduces a second
form of conjunction, called sequential conjunction ⊗. Informally, the rule b← a1 ⊗ a2

states that the transaction b consists of the two (sub-)transactions a1 and a2 which
have to be executed both, and in the sequential order, i.e., (the update) a2 is executed
after successful completion of (the update) a1. To take into account the evolution of the
database, models of a program in T R are sequences of database states. A concurrent
extension of T R is CT R [BK96], introducing an additional concurrent conjunction
operator ‖. Both, T R as well as CT R, do not distinguish between actions (or updates)
and predicates.

Another recent language for the specification of updates and transactions in a logic
programming language is ULTRA (Updates in a Logic language with TRAnsactions)
[WFF98]. As CT R, ULTRA allows the modeling of concurrent updates (if they are
consistent). The main difference between ULTRA and CT R is that ULTRA gives a
precise semantics to the parallel execution of isolated, i.e., non-interacting, transactions.
But as CT R, ULTRA does not distinguish between predicates and actions (or updates).

One of the main advantages of CIAO, the extension of Prolog described in [CH99],
is that CIAO does not need large modifications of the underlying execution model,
namely the WAM [AK91]. Similar to the coordination language ESP [BC91, Cia94]
which we describe in section 2.3.2, the operators assert and retract of Prolog are
interpreted as send and receive operations on a multiset of atoms, called “blackboard”.
CIAO provides (a family of) new primitives for launching the concurrent solving of
goals (in a (local) copy of the current logic program). Additional primitives allow to
control this new goal-solving process, e.g., to force backtracking or termination, or
to synchronise on its result. Communication between these processes is achieved by
asserting and retracting (marked) atoms.

The most popular communication medium in concurrent logic programming are
streams, i.e., lists of infinite length. To send a message m on a stream S, which is
represented by a free, i.e., uninstantiated, (logical) variable, it is sufficient to bind
S to the value [m|S_1], where S_1 is a fresh variable. Thus the next message has
to be sent to the stream S_1. On the side of the receiver, waiting for S to become

3Informally, atomicity of a transaction ensures that the transaction either executes to completion
or not at all.

48

2.1. DECLARATIVE PROGRAMMING

constrained to a pair [M|R] (where M and R are free logical variables) binds the message
m to M and the remaining stream, namely S_1, to R. In order to extend this scheme
of communication to several senders to the same stream, especially when the number
of senders is susceptible to change dynamically, the introduction of additional merger
processes becomes necessary.

To avoid the inconveniences associated with additional mergers, the notion of ports
as a many-to-one communication medium has been introduced in AKL [JMH93]. In-
stead of providing a complete formal definition of ports, it is argued in [JMH93] that
the introduced port primitives have a “logical reading” as a constraint and preserve
the monotonicity of the constraint store. Informally, a port is a connection between
a multiset of messages and a corresponding stream, and by abuse of the notation the
multiset is usually identified with the port. The operation open port(P, S) creates a new
port P together with its associated stream S. open port is considered as a constraint
that states that all members of the multiset P are members in the stream S and vice
versa, with an equal number of occurrences. On the other hand, to send a message M
on a port P, a process has to use the operation send(P, M) which is interpreted as a
constraint stating that the message M is a member of the multiset P.

Oz [Smo95b] is an extension of ccp with first-class procedures and “stateful” data-
structures. As in basic ccp, the evolution of the store is monotonic. But in order to
cope with the stateful features (which are necessarily non-monotonic) the store of Oz is
portioned in three compartments: the constraint, the procedure and the cell store. A
cell represents a “mutable binding of a name to a variable” [Smo95b] and can thus be
updated to contain a binding to another variable. Surprisingly, this update is considered
to be monotone, as the update to the (constraint) store stays monotone. The notion
of ports of AKL has been embedded as a means for communication between processes
in Oz, as well as in its distributed extension Distributed Oz [VRHB+97], where the
store is transparently distributed over several sites. Unsurprisingly, the “imperative
features” of Oz allow to define a semantics for ports [Smo95b, section 9, pages 333 –
334]: instead of a multiset, there is a function (or procedure) managing the stream,
i.e., all sending goes to this (stateful4) function, and only this function is allowed to
modify the tail of the stream.

In most of the current constraint logic programming systems, the process of goal
solving has to be restarted whenever a change in the data or underlying theory occurs.
In order to improve the operational semantics in dynamic, i.e., frequently changing
environments, [FFS95, FFS98] investigate the reordering of reduction steps in the con-
text of CLP, based on an incremental model of execution. It has been shown that this
approach leads to better execution times than re-execution of the goal from scratch. In
the particular context of constraint logic programming over finite domain constraints
(CLP(FD)), [GCR99] considers the efficient retraction of constraints, in such a way
that there is negligible overhead in the case that no retraction occurs.

2.1.2 Functional Programming

The fundamental operation in functional programming is the application of functions
to arguments. A program in a (pure) functional programming language forms a set

4It has to remember the current tail of the stream.

49

CHAPTER 2. RELATED PROGRAMMING STYLES

of function definitions, where each function itself may be defined as a composition
of other functions (defined in the program). Since the notion of functions is a well
defined mathematical concept, a functional program is rather close to a mathematical
specification of the function to be realised by the program. Functional programming has
well-defined theoretical foundations, such as for instacne the λ-calculus [Chu32, Bar84]
or equational logic [O’D85]. Execution of a (purely) functional program consists of
evaluating an expression to its normal form, that is to say until no more functions can
be applied.

2.1.2.1 Input/Output in Functional Programming

Similar to logic programming, in functional languages, there is no standard way for
the integration of input and output (I/O), as for example interaction with the user
or accessing the file-system. A first approach is to allow “impure” features. In this
approach, which is followed for instance by Common Lisp [Ste90], Scheme [ADH+98],
SML [MTHM97] and ocaml [LDG+01], the evaluation of an expression does not only
yield the normal-form of the expression, but has also an (“side-”) effect, as for instance
printing something on a screen or blocking until something read from an input device
can be returned as a value. This approach is called “impure”, since it destroys desirable
properties of functional programming, as for instance the possibility for equational
reasoning, also known as “referential transparency” [Wad97].

Monadic I/O which is the approach chosen, for instance, in the lazy5 functional lan-
guage Haskell [PJHA+99], separates the actual execution of actions from its denotation
[Wad97]6. Several combinators allow to combine the actions in a sequential manner.
Hence a program can be seen as a specification of the command to be performed upon
execution. These commands are also called state transformers [PJGF96]. One parame-
ter of the command is the environment (or state) which is passed from action to action
during execution. A semantics for a simple form of monadic I/O can be expressed
within the functional language, allowing the use of standard techniques for verification
of functional programs using monadic I/O [Gor94].

In other languages, as for example FL [BWW90] and Clean [PvE98], this “en-
vironment passing” is explicit and not hidden by monads. A problem with explicit
environment passing is that, since the environment cannot be duplicated, sharing or
duplication has to be avoided. FL [WW88] introduces new primitive operations on
a history, that is to say an additional argument (to every function) representing the
interaction with the environment so far. Since the history argument can only be ma-
nipulated by the new primitives, the access to the environment is ensured to take place
in a controlled manner. The quite complex Uniqueness Types System [AP95b] of the
lazy functional language (Concurrent) Clean [PvE98] ensures that at most one refer-
ence to the environment exist at a time. Therefore, the actions on the environment of

5In a lazy functional language the evaluation of a subexpression is effectuated at most once and
only if its value is necessary for the evaluation of the final result. Hence the control of the moment of
execution of side-effects would be rather elaborate, rendering less interesting the “impure” approach to
I/O.

6“A program in a pure functional language is an expression that denotes the effect that the program
should have on the outside world when the program is executed.” [CH98, section I.4, page 11]

50

2.1. DECLARATIVE PROGRAMMING

Clean are encapsulated in special functions which have access to the environment. An
interesting feature of this approach is the possibility to handle multiple environments.

Another class of approaches is based on the notion of streams, which might be
represented in a lazy language as (lazy) lists. In this approach, an interactive program
transforms an element (or response) of the input stream into an element (or request)
of the output stream, see for instance [Hen82, BW88]. A semantics of stream based
I/O (in the lazy language Miranda) has been presented in [Tho90]. The model of
stream processors has been used to define a framework for the construction of graphical
user interfaces (GUI’s), where the basic stream processors are called Fudgets [CH93,
CH98]. Finally, the operations of continuation passing I/O (CPS7) can be derived from
(synchronous) stream I/O and implemented using a top-level interpreter [Gor94].

2.1.2.2 Concurrent Functional Programming

Similar to logic programming, the execution of “pure” functional programs can also
easily take advantage of several processors: Due to the absence of side-effects when
evaluating expressions, the arguments of a function can be evaluated in parallel. But
this implicit parallelism that aims at improving the (run-time) performance of the
program, is to be distinguished from explicitly specified concurrency that allows the
programmer to better structure the program. The former can be seen as an improve-
ment of the operational semantics of functional programming languages (and could be
hidden from a programmers point of view), whereas the latter extends the possibili-
ties for structuring interactive applications [Pik89]. Several concurrent extensions have
been suggested for functional languages, but most of them do not distinguish between
processes and functions.

Concurrent Haskell (CH) [PJGF96] introduces new primitives for, on the one hand,
starting processes and, on the other hand, atomically mutable state into the functional
language Haskell [PJHA+99]. Since these primitives correspond to state transforming
actions, they are introduced in addition to the available monadic I/O actions. The
first of theses primitives, namely forkIO, has the type IO () -> IO () and takes an
action (i.e., a state transforming function, or process) as parameter which is launched
concurrently as a side-effect of the execution of the action forkIO. These processes
can communicate and synchronise via mutable variables, a built-in type called MVar,
corresponding to a binary semaphore than can contain a value. These MVar variables
can be created by executing newMVar, (destructively) read8 by takeMVar and set by
putMVar.

These new primitives are voluntarily “low-level”, since they are meant as “raw iron
from which more friendly abstractions can be built” [PJGF96], using the standard
abstraction facilities provided by a functional programming language. However, the
difference between functions, actions and processes is not quite clear and may confuse
a programmer.

Concurrent ML (CML) [Rep91, PR96, Rep99] introduces new primitives into the
functional programming language SML [MTHM97]. First of all, processes are created
by execution of the primitive spawn which takes as argument an expression and the

7CPS is the acronym of Continuation passing style.
8The read operation is blocking if there is no value.

51

CHAPTER 2. RELATED PROGRAMMING STYLES

side-effect of which is to evaluate the expression concurrently as a separate process (or
thread). Processes communicate in a message passing style using buffered channels.
To allow an abstract expression of synchronisation between processes, CML introduces
the notion of events. Informally, an event corresponds to a possible synchronisation
which has to be made effective by executing the primitive sync. A process executing
sync is blocked until another (concurrent) process syncronises on a corresponding
event, so that the communication and synchronisation can take place. The basic events
correspond to the emission and reception of a message, and are provided by means of
the functions recvEvt and sendEvt9. More elaborate events can be constructed using
further combinators. The combinator wrap allows to specify a function which is to be
applied to the value returned by the event immediately after the synchronisation on the
event occurs. A nondeterministic choice between a list of events to synchronise on is
provided by the combinator choose. Finally, the combinator guard allows to associate
a function that is called before every synchronisation on the event.

Similar to CH, the notions of processes, actions and functions are not clearly dis-
tinguished in CML. One of the main motivations behind this fact seems to be the
possibility to use the powerful standard abstraction of functional programming (e.g.,
higher-order polymorphic functions) for the description of processes, allowing a pro-
grammer to use the same abstraction facilities as usual in functional programming
languages. However, while the type system of CH inhibits the use of processes inside
the “purely functional” part such that a CH-program is stratified in two layers, all
functions in CML are allowed to have side-effects.

As CML, Facile [TLK96a, TLK96b] extends the functional language SML with
“behaviour-expressions” (defining the behaviour of processes), synchronous communi-
cation channels and the notion of nodes, also called sites or locations. Behaviour-
expressions can be transformed into a value, called a process “script”, which can be
manipulated by functions as usual. The evaluation of the expressions (spawn s) and
(r spawn n s) for a location n and a script s have the side-effect of spawning a new
process whose behaviour is defined by the script s (on the node n). Since spawn is con-
sidered as a function, Facile allows functions and processes to call each other mutually,
similar to CML. Communication between processes in Facile is restricted to message
passing through channels.

The untyped concurrent functional language Erlang [AV90, AVWW96] models sys-
tems as sets of processes the behaviour of which is described by means of functions.
Similar to CML and CH, process creation is the side-effect of a special primitive, namely
spawn, which returns an identifier or name of the created process. Erlang-processes
communicate via message passing using special built-in functions with side-effects,
namely the sending of messages to other processes. An interesting feature of Erlang
are the built-in functions delete_module, load_module and purge_module which al-
low users to replace a module (i.e., a part of a program) by a new corrected one without
stopping the entire application. Erlang has been (designed and) used for the develop-
ment of large, fault tolerant telephone switching systems [EPd92, Arm96, Art01].

The parallel functional programming language Eden [BLOMP98] combines a lazy
functional language with a (coordination) language for processes, in order to allow

9These “functions” were initially called receive and transmit in [Rep91].

52

2.1. DECLARATIVE PROGRAMMING

the explicit expression and control of the parallel evaluation structure of a functional
program. Eden provides primitives for the definition and creation of processes, com-
munication channels and interaction and the specification of interconnection topologies
[BLOM95]. As a consequence, the processes in Eden are distinguished from functions
and other static definitions.

Concurrent Clean [NSvEP91, PvE98] is based on term graph rewriting, i.e., a pro-
gram is specified by a set of graph rewriting rules. In Clean, the programmer can
influence (the efficiency of) the code generated by the compiler by means of anno-
tations. For instance, cyclic data structures can be created due to explicit control
sharing. Other annotations allow to change the default lazy evaluation strategy locally
into a more efficiently implementable eager one. Furthermore, annotations allow a pro-
grammer to explicitly specify which parts of the term (or graph) should be reduced
concurrently. These annotations distinguish between parallel evaluation on another
processor and interleaved evaluation on the same processor. Thus, similar to Eden,
this form of concurrency in (Concurrent) Clean serves mainly the specification of a
more efficient operational behaviour of a program by explicitly organising its parallel
execution. In our opinion, this form of parallelism is to be distinguished from concur-
rency which aims at providing a better structured program (that might be executed
sequentially by simulation of the parallel execution of processes).

[AP95a] investigates an extension of concurrent Clean (written entirely in Clean) for
the simulation of concurrent interactive systems. (Interactive) processes are modeled
by means of state transition functions, where the state is a four-tuple composed of
a local and a shared state, and the current state of the file-system and GUI. As in
CML and CH, the creation of a new process is the side-effect of the execution of a
primitive action. The simulation of the execution of (interactive) processes ensures the
interleaving execution of the different concurrent processes.

Functional Parallel Programming (FP2) [Jor84, Jor85] allows the description of
systems by means of networks of processes communicating by means of ports, i.e.,
directed channels. The values sent over these communication ports are defined as
standard algebraic data types. Processes are defined by, on the one hand, the functions
which describe the computation of the values sent by processes in response to received
values, and, on the other hand, by transition rules describing the ordering among the
communication actions of the process. The states of a process are represented by means
of closed atoms, and a transition rule consists of a precondition, a set of events and a
postcondition. Informally, the semantics of a transition rule is to transform the state
into the postcondition, if the state is an instance of the precondition and the set of
events is possible.

2.1.3 Functional Logic Programming

LogLisp [RS81] was one of the earliest attempts to create a language integrating
functional and logic programming. The motivation for amalgamating functional and
logic programming is to combine the advantages of both paradigms, namely the efficient
operational behaviour of functional programming and the expressive features of logic
programming, as function inversion, partial data-structures and logical variables. Thus
functional-logic programming is more efficient than pure logic programming while being

53

CHAPTER 2. RELATED PROGRAMMING STYLES

more expressive than pure functional programming, and has like both, functional as well
as logic programming, a well-defined semantics. Background material on the integration
of functional and logic programming, including a comprehensive list of references up to
1994, can be found in the survey paper [Han94]. In this paragraph, we present some
recent proposals for functional logic programming languages.

One widespread operational semantics for functional-logic programming is based on
narrowing, which combines a rewrite step with the instantiation of free variables using
unification. Narrowing is sound, i.e., it computes only correct answers, and complete,
i.e., all possible answers are effectively computed. Several strategies for narrowing have
been proposed, some of which have been proved optimal in the sense that a minimal
number of narrowing steps is performed [AEH97, AEH00]. Residuation is another
operational semantics for functional-logic programming which avoids the instantiation
of variables, that is to say, residuation does apply a rewrite rule only if all parameters
are sufficiently instantiated, and otherwise suspends. Thus, residuation is interesting
in a context where goal are solved in parallel, since suspending only makes sense if
some concurrent processes may instantiate the variable. In order to represent infinite
data structures and to speed up the operational semantics, the use of graphs (instead
of first-order terms) has been suggested [EJ99].

As for purely logic or purely functional programming languages, functional-logic
programming languages need to be extended to cope with interactive concurrent appli-
cations.
T OY [GHLR96, ASRA97, GHLR99, LFSH99] is a programming language based

on a constructor based conditional rewriting logic (CWRL). The core notion of T OY
are lazy non-deterministic functions, e.g., the term rewriting systems corresponding to
programs in T OY are not required to be confluent, i.e., a term might be rewritten to
several, different constructor terms. To represent goals and conditions, T OY uses the
notion of joinability (in symbols, a ./ b), which means that a and b can be rewritten
to a common constructor term t. Informally, a program in T OY consists of a set
of equations specifying polymorphic algebraic data-types and conditional rewrite rules
defining the operational behaviour of functions defined over these data types. However,
we are not aware of a concurrent extension of T OY.

The functional logic language Curry [Han97, HAK+00b] is based on a combination
of narrowing with residuation. Processes in Curry are represented by constraints, that
is to say that they are introduced in the style of logic programming. On the other
hand, the interaction with the external environment is limited to the “functional part”,
since Curry uses monadic I/O as, e.g., Haskell (see section 2.1.2.1). Hence, there are
two different kinds of operators for sequential composition: the monadic operators
concerning I/O and the sequential conjunction of constraints (or processes).

Recently, the idea of ports introduced in AKL [JMH93] has been extended and
integrated into the functional-logic language Curry in order to cope with distributed
applications [Han99]. In Curry, ports can be named, that is to say it is possible to
associate a symbolic name (or string) to a port and to use this name to identify the
port in a distributed application. Since the symbolic name is a value of a (built-
in) data type of Curry, it can also be communicated between processes, allowing the
communication structure to vary.

The functional logic language Escher [Llo95, Ede99, Llo99] is not based on narrowing

54

2.1. DECLARATIVE PROGRAMMING

but on rewriting (with residuation). Escher extends the functional language Haskell in
several ways. First, the all variables in the right hand sides of rules that do not appear
in the left hand side of the rule have to be explicitly quantified. Second, the answers
computed by Escher may contain (besides constructors as in Haskell) variables and
some functions which are defined in system modules. The basics of logic programming
are explicitly defined by a number of well-chosen rewrite rules defining the functions in
the system module Booleans. Thus Escher responds to a goal, i.e., a term containing
variables, with a term corresponding to the disjunction of all possible solutions, i.e.,
equations defining values for the variables.

In a concurrent extension of Escher [Llo], processes communicate by means of a
common store, called blackboard10. As in CH, processes are represented as functions
of type IO (), and the actions processes may execute are the primitive functions of
this same type, as for instance putChar which interacts with the outside world of
the program, and (store ref value) which modifies the blackboard by assigning the
value value to the reference ref. A further difference to CH is that concurrent Escher
provides a symmetric operation for parallel composition by means of a special primitive
function called ensemble which models a set of concurrently executing processes.

2.1.4 Linear Logic Programming

The main difference between classical and linear logic [Gir87, Gir95] is that, contrary
to classical logic, the number of occurrences of a formula in linear logic matters. For in-
stance, linear logic distinguishes between the formula “A” and the formula “A and A”.
The intuition between this distinction is that linear logic considers formulæ as resources,
and in the former formula, the formula or resource A occurs only once, whereas A oc-
curs twice in the latter. Due to this differentiation linear logic is sometimes called
“resource sensitive”. Linear logic has two kinds of conjunction (and, dually, of dis-
junction), namely multiplicative (“times”, ⊗) and additive (“with”, &). Intuitively,
the proposition A ⊗ B means that A and B hold both, whereas A&B stands for an
(internal) choice between A and B. The intuitive meaning of the additive disjunction
(“plus”, ⊕) is an (external) choice. Informally A ⊕ B means that we may have A or
B, but that someone else decides for us which, as it occurs if we toss a coin. Since the
meaning of the multiplicative disjunction (“par”,

&

) is “not that easy” [Gir95]11, we
refer the reader to introductions on linear logic, e.g., [Sce90, Wad93, Gir95], for more
detailed presentation, and restrict ourselves to notice that

&

can be (and is) used to
represent parallel composition of communicating processes. The linear negation of the
formula A is written as A⊥, and linear implication A(B which means informally that
the consumption of A yields B, is defined by A⊥

&

B. A formula A of classical logic
can be written in linear logic using the two exponentials !A (“of course A”), asserting
a infinite number of occurrences of A, and its dual ?A (“why not A”).

As for logic programming, in linear logic programming the execution of a program
is seen as proof search (in linear logic). Similar to the restriction of Prolog to a frag-
ment of classical logic, namely definite Horn clauses, existing linear logic programming

10This terminology and communication scheme is similar to some coordination languages, e.g., Linda
[Gel85], which we present in more detail in section 2.3.

11The double-quotes are from [Gir95].

55

CHAPTER 2. RELATED PROGRAMMING STYLES

languages differ in the set of formulæ or fragments of linear logic that are allowed as pro-
grams. In this subsection we present some of the linear logic programming languages we
are aware of; for a more complete survey, the interested reader may consider for instance
[Mil95, Win97]. Most of these languages are based on proof theoretic considerations in
sequent calculi [Gen35]. In such a setting, sequents are used for the representation of
a computation state and the actions and dynamics of a computation are modeled as
transformations of sequents occurring during the incremental construction of cut-free
proofs. In these languages the proof-theoretic behaviour of logical connectives gives a
rigorous semantics to the various aspects of concurrent programming, exploiting the
fact that the inference rules defining the operators of linear logic have strong similari-
ties to the inference rules defining the operational semantics of process calculi (which
is presented in the following section).

The programming language LO12 [AP91, AP92] generalises the paradigm of logic
programming using definite Horn clauses by, on the one hand, allowing multiplicative
linear disjunction (“par”,

&

) in the heads of clauses and, on the other hand, using
linear implication. These generalised clauses are interpreted as methods describing
state transitions, i.e., the formulæ in the head of a clause are consumed when the
clause is applied. Using the proof theoretic behaviour of the connectives of linear logic,
in particular of

&

and (, the operational semantics of LO has a precise definition.
Proofs in a sequent calculus may be redundant, in the sense that several syntactical

representations for a same proof exists, for instance by reordering some of the inference
rules. In [And92] it is shown that the class of “focusing” proofs is complete, e.g.,
that every provable formula of linear logic has a focusing proof. The programming
language LinLog [And92] is based on the same fragment of linear logic as LO, since
focusing proofs have a more compact form for this fragment. However, this syntactical
restriction does not come at the expense of loss of expressive power, since an encoding,
similar to the encoding of classical logic to clausal form, of full linear logic to LinLog
can be defined [And92].

The completeness of uniform proofs for intuitionistic logic depends on the fact that
in intuitionistic logic sequents are single conclusion, i.e., they contain a single goal to be
proved. The straightforward extension of the notion of uniform proofs to intuitionistic
linear logic was used for the design of the linear logic programming language Lolli
[HM94].

There are essentially two distinct possibilities to extend the notions of uniform
proof and goal directed search to multiple conclusion as needed in full linear logic: by
requiring that either some or all of the components of the goal are reduced. The mul-
tiple conclusion specification logic Forum [Mil96] follows the second approach. Forum
is a particular presentation of linear logic which allows to see all of linear logic as a
logic programming language. Consequently, Forum extends is an extension of Lolli and
LO13. Different models of concurrent programming have been successfully encoded in
Forum, see for instance [Mil96] for an encoding of CML and [Mil92a] for one of the
π-calculus.

12LO stands for “Linear Objects”.
13As already mentioned, full linear logic can be represented into LinLog (of which LO is a subset).

However, the relationship of Forum to full linear logic is more immediate, since no additional symbols
are required [Mil96].

56

2.2. CONCURRENT PROGRAMMING

The language Lygon [HPW96, Win97] chooses the other possibility to extend the
notions of uniform proof and goal directed search to multiple conclusions, namely by re-
quiring that some of the goal can be reduced. This approach ensures that goal-directed
search is complete for many subsets of linear logic, such that Lygon encompasses the
broadest subset of linear logic as a logic programming language, where a logic program-
ming language is defined as subset of a logic such that a proof search strategy respecting
some criteria14, is complete [Win97]. Similar to the other linear logic programming lan-
guages mentioned so far, Lygon allows to encode state changes and concurrency.

Another approach linking linear logic and computation is described in [Abr93].
This work is inspired by the Curry-Howard isomorphism [dG95] which links (classical)
intuitionistic logic and functional programming in form of the typed λ-calculus by
interpreting formulæ as types and proofs as programs. The main difference between
this approach and the linear logic programming languages mentioned so far, is that the
latter consider computation as proof search, whereas the former consider computation as
the normalisation of proofs (or expressions). Since intuitionistic linear logic can be seen
as a refinement of ordinary intuitionistic logic, its computational interpretation can be
seen as an refinement of the λ-calculus. However, the computational interpretation of
full linear logic requires a more radical departure from the functional framework, namely
multiset rewriting as represented by the Chemical Abstract Machine (CHAM) [BB90,
BB92]. However, the logic(s) considered in [Abr93] are (second order) propositional
logics.

2.2 Concurrent Programming

A widely used abstraction for the modeling of concurrent systems are processes. Unfor-
tunately, there are as many ways to define processes as there are different programming
styles (including, among others, temporal logic programming or Petri Nets). Never-
theless, process calculi have been well investigated and provide a clean framework for
the description of concurrent processes. In this section we present some of the process
calculi we are aware of. Common to most of these process calculi is the so-called in-
terleaving semantics for concurrency, that is to say, that actions are atomic, and no
two actions occur at the same time, except for synchronisation and communication.
Consequently a particular execution of a concurrent system can be characterised by
the sequence of actions that have been executed.

These calculi are nice theoretically models for concurrency, but they are not de-
signed to used for actual programming. Hence we present along with the calculi some
programming languages using them as their theoretical foundation. But similar to
concurrent extensions of declarative languages, where processes have to be encoded as,
e.g., functions or predicates, programming languages uniquely based on process calculi
encode the notions of functions and predicates via processes.

14Forum does not qualify as a logic programming language according to most of the criteria of
[Win97].

57

CHAPTER 2. RELATED PROGRAMMING STYLES

2.2.1 Process Calculi and Process Algebras

One of the first process calculi is the Calculus of Communicating Systems (CCS)
[Mil80, Mil89]. In CCS, every atomic action a has precisely one other atomic ac-
tion ā with which it communicates, and the result of a communication is not some
atomic action, but the silent step τ . As operators on processes, CCS offers parallel
composition and nondeterministic choice ((infinite) summation). Basic CCS does not
provide a general operator for sequential composition, but only action prefixing. How-
ever, such an operator can be easily defined [Mil89, section 8.2]. The semantics of CCS
is defined by a transition system and a relation of observational congruence (which
abstracts from silent steps). A translation of a calculus with value passing in to the
basic calculus of CCS is presented in [Mil89, section 2.8]. The idea is to introduce a
specific action for each transmittable value15. Another, more direct treatment of value
passing (in a slightly different calculus) can be found in [HI93]. Both calculi do not
provide parameters for processes, but could be extended (easily) to do so.

The concurrency model of (Theoretical) Communicating Sequential Processes (CSP)
[Hoa78, BHR84, Hoa87] is based on failure semantics16. CSP provides two different
choice operators, namely internal u and external 2 choice. Internal choice is non-
deterministic and cannot be influenced by the environment, whereas external choice
depends on the environment. Other operators on processes of CSP include two parallel
compositions (using intersection, ‖, and interleaving, ‖‖), sequential ; composition and
iteration *P . The latter can be defined recursively as *P = µq.(P ; q) where µ denotes
the least fixpoint operator. Further operators concern the handling of interruptions.
As in CCS, passing of values along communication channels is encoded by providing
a specific action for each transmittable value. The action executed by the process
c!v → P ‖ c?x → Q is c.v (and the resulting process is P ‖ Q[v/x], where Q[v/x]
denotes the process obtained by replacing in Q every action c.x by c.v). An example
of a programming language based on CSP is Occam [Bar92].

Another approach for modeling concurrency are process algebras, as for instance the
Algebra of Communicating Processes (ACP) [BK84, BW90]. In contrary to CCS and
CSP, processes in ACP are characterised as models of algebraic theories, describing the
actions processes may execute by means of axioms or equations17. As for any axiomatic
theory, different models are possible for a same theory description, but they may be
distinguished by additional axioms. Communication between processes is synchronous
and uses a communication function γ, where γ(a, b) describes the action modeling
the communication between the actions a and b. As an example, the communication
function for CCS could be defined as follows: γ(a, ā) = τ , for every action a.

Lotos
18 [LOT00, ELO01] is a (specification) language combining algebraic speci-

fication and process calculi, where processes are defined via process algebra operators
(similar to those of CSP and CCS) whereas functions are described in equational logic
in the style of ACT ONE. Lotos is standardised by the ISO and has been applied

15Hence the need for infinite summation, since an infinite number of arguments might be possible.
16[Hoa78] is based on trace semantics, but is superseded by TCSP [BHR84] which is based on failure

semantics and (later [Hoa87]) also called CSP (instead of TCSP). By CSP we refer to this later model.
17More recently, a presentation of ACP via a system of transition rules has been given [Fok00].
18

Lotos is the acronym for the (extended) Language Of Temporal Ordering Specifications.

58

2.2. CONCURRENT PROGRAMMING

extensively to the specification of the ISO/19 (communication) protocols.

2.2.2 Calculi for Mobile Processes

Mobility in concurrent systems was probably first studied in the actor model [Hew77,
Agh86]. Actors had considerable success as a model for research in system architecture
and design. However, the only formally defined models of actors we are aware of do not
provide a general theory or calculus for the general actor model. For instance, [Cli81]
developed a semantics of actor systems, but without defining a notion of equivalence
of actor systems, and [AMST92, AMST97] define a semantics, based on a transition
system presented in [Agh86], which is restricted to a particular actor language, namely
a simple functional language with concurrency primitives based on the actor model.

Extended CCS (ECCS) [EN86] adds to CCS the possibility to pass the names of
communication links, in addition to the other values which can be communicated. Since
the names of communication links are distinguished syntactically from the other values,
the definition of ECCS is rather complicated. Nevertheless, ECCS can be considered
the first proposal of an algebraic calculus for mobile processes, where mobility is to
be understood in the sense of a varying communication structure. Since this form of
mobility is achieved by passing the communication links between processes, the model
of mobility introduced by ECCS is sometimes called a “link-passing” model.

The π-calculus [MPW92, Mil99] simplifies ECCS by dropping the difference be-
tween values and channels names, putting everything into one single syntactic cate-
gory, namely names. In this calculus, processes are defined according to the following
grammar20:

P ::=
∑

i∈I πi.Pi P | Q !P (νx)P

where x, y, . . . ∈ X are names and I is a finite indexing set; in the case I = ∅, the sum
is written as 0. The two possible action prefixes π are:

• x(y), the reception of a value (which is bound to the name y) on the link (or
channel) named x, and

• x̄y, the sending of the name y on the link x.

While the original definition of the π-calculus is monadic, i.e., only one value can be
transmitted on a channel at a time as implied by the action prefixes above, an extension
to a polyadic calculus has been proposed in [Mil93b]. The choice operator + is external
choice as in CSP, | denotes parallel composition and !P – pronounced “bang P” – is
similar to the iteration operator of CSP and means P | P | . . ., i.e., as many copies of
P in parallel as you wish. As in CCS, communication is synchronous.

This rather simple calculus is quite expressive: Several encodings of the λ-calculus
into the π-calculus have been defined (consider for instance [Mil92b, San98]), and a
simulation of the behaviour of higher-order processes is presented in [Mil93b]. However,
we are not aware of an actual implementation of the full synchronous π-calculus. In

19 is the acronym for Open Systems Interconnection, and ISO is the short name for the International
Organization for Standardization

20This grammar is taken from [Mil93b]

59

CHAPTER 2. RELATED PROGRAMMING STYLES

fact, due to its synchronous communication scheme using non-located channels, global
consensus problems [FLP85] arise [FGL+96].

Several extensions of the π-calculus exist. The asynchronous π-calculus, indepen-
dently introduced by [HT91] and [Bou92] allows only reception as a prefix, and in-
troduces sending as a basic process. Hence, communication is asynchronous, as it is
impossible (since syntactically forbidden) for the sender of a message to wait until it
is received. The asynchronous π-calculus has been shown to be strictly less expressive
than the π-calculus [Pal97]. The main reason for the difference between the two calculi
is the (synchronous) combination of input and output prefixes in a single summation
which is needed in order to implement a symmetric leader election protocol [Bou88].
Programming languages based on the asynchronous π-calculus are for instance Pict
[PT97, PT98] and TyCO [Vas94, LSV99].

The ρ-calculus [NS94, NM95]21 adds general constraints22 to the γ-calculus [Smo94],
a calculus for modeling higher-order concurrent (constraint) programming. In the ρ-
calculus, the monolithic constraint store of ccp is considered as transparently distributed
over the processes, since the ρ-calculus does not distinguish between a constraint c and a
process imposing the constraint c. The global constraint corresponding to the constraint
store of ccp can be obtained by combination of the constraints of the processes by means
of the reduction rule [NM95]. An embedding of the ρ-calculus over the trivial constraint
system ρ(∅) into the asynchronous, polyadic π-calculus is straightforward, since fact the
process part of the ρ-calculus is a subcalculus of the π-calculus, as is shown in [NM95].
The ρ-calculus is a foundation of the concurrent constraint programming language Oz
already mentioned in section 2.1.1 [Smo95a].

A more direct integration of the λ-calculus in the (asynchronous) π-calculus (where
replication is restricted to input prefix) by directly extending both calculi is the blue
calculus or π?-calculus [Bou97]. In this calculus, functions, i.e., λ-abstractions, are
also considered as processes, and any process can be applied to any name. In fact, a
message m send on a link l is considered as an application of l to m, and the name
of (the link in) an input prefix is considered the location of a resource that can be
“fetched” (via a dedicated transition). This allows for example to express functions as
processes without the need for an explicit coding of reply-channels and thus to encode
the λ-calculus in a more “direct style”.

A type system for an extension of the π?-calculus allowing a static analysis of non-
interference for mobile processes has been proposed in [Pro01].

The fusion calculus [PV98] (an improved polyadic version of the monadic update
calculus [PV97]) is both, a simplification and an extension of the π-calculus. It is an
extension, since the π-calculus is a proper subcalculus of the fusion calculus, but is also
a simplification, because one of the two binding constructs is removed by separating
the binding of variables from reception. Communication of a name simply amounts to
state the equality of the names which are “sent” and the names which are “received”,
i.e., execution of the process x̄y | xz enforces the equality of the names y and z. Thus

21The main difference between the two presentations of the ρ-calculus is that [NM95] distinguishes
between logical conjunction on constraints, ∧̇, and (parallel) composition (of processes or “terms”), ∧,
whereas [NS94] does not.

22The γ-calculus (restricted to closed expressions) can be identified with the ρ-calculus over name
equations and conjunctions ρ(x=y) [NM95].

60

2.3. COORDINATION

communication in the fusion calculus is symmetric and effects all processes in the scope
of the names communicated. Besides the lazy λ-calculus, the fusion calculus allows to
encode some basic instances23 of the ρ-calculus [VP98] so that the fusion calculus can
also be used as a calculus for ccp.

Another calculus containing the π-calculus as a subcalculus is the χ-calculus [Fu97].
This calculus is inspired from the view of communication (between processes) as cut
elimination (in a proof). When removing type information from proof nets of linear
logic [Gir87], the resulting graphs are considered as representations of process terms
where communication corresponds to cut elimination. This view leads to the definition
of a calculus where, as in the fusion calculus, a special scope operator controls the effect
of a communication.

In the π-calculus (as well as in the related calculi presented so far), reception is
limited to the use of a single channel. Extensions of the (asynchronous) π-calculus
without this restriction are the join-calculus [FG96] and Lπ [CM98].

Processes in the join-calculus [FG96] can be seen as communicating via a multiset of
messages: sending a message corresponds to place it in the multiset, and the (blocking)
“joint reception” of several messages waits until all messages are present in the multiset
and then removes them in a single atomic step from the multiset. The distributed join-
calculus [FGL+96] extends the join-calculus in order to model mobile processes with
locations. Intuitively, the locations of a system form a tree-like structure, where the
leafs are groups of processes. Every location resides on a physical site and be moved
(together with all its sublocations) to another site.

Several programming languages based on the join-calculus have been proposed, as
for instance jocaml [FFMS01] or Funnel24. While the former is an integration of the
join-calculus with the functional programming language ocaml [LDG+01], the latter
is a prototype implementation of a programming language based on Functional Nets
[Ode00], a programming framework based on the join-calculus.

In Lπ [CM98] processes communicate, as in the join-calculus, via a multiset. Ad-
ditionally, a process may have a guard, i.e., a Lπ-process that, when executed in an
encapsulated environment, has to terminate successfully before the process can proceed.
Since executions of Lπ-processes can be seen as deductions in linear logic, Lπ aims at
providing a uniform declarative formalism capturing transformational and concurrent
programming paradigms that is based on linear logic.

As we have already pointed out, some linear logic programming languages, as for
example Forum, can also simulate the execution of processes as in the π-calculus (see
section 2.1.4), since the proof theoretic behaviour of the connectives in linear logic is
rather similar to the operators of process calculi.

2.3 Coordination

When modeling complex systems, different (asynchronous, communicating, heteroge-
nous) activities require to be coordinated. Coordination languages and models aim at

23Namely ρ(x= y), which uses constraints over name equation and conjunction, ρ(x= y, C), which
adds constants and ρ(x=y, x 6=y), which adds inequalities.

24The current release of Funnel can be obtained from the URL http://lampwww.epfl.ch/funnel.

61

CHAPTER 2. RELATED PROGRAMMING STYLES

“providing a means of integrating a number of possibly heterogenous components to-
gether by interfacing with each component in such a way that the collective set forms a
single application that can execute and take advantage of parallel and distributed sys-
tems” [PA98a]. Hence a complete programming language is composed of a computation
language and a coordination language [GC92].

Among the different models of coordination, coordination languages based on a
shared dataspace model are the most related to our computation model. This model
of coordination was to our knowledge first introduced in the HEARSAY-II speech un-
derstanding system [EHRLR80], where several processes (called knowledge sources)
communicate by means of a blackboard which records the different hypotheses gener-
ated by the knowledge sources. Thus all hypotheses can be seen and modified by all
knowledge sources in the system. Coordination languages based on this principle are
well suited for combination with imperative languages [GC92, PA98b]. In the following,
we present some of these models and languages we are aware of and then present some
combinations such coordination models with declarative programming.

2.3.1 Coordination Languages

The first genuine coordination language, Linda, is based on a shared dataspace model
[Gel85, ACG86, CG89]. Processes communicate via a common tuple space by means
of essentially three operations, namely out, in and read. out(t) puts the tuple t into
the tuple space. in(t) waits until the tuple space contains a tuple t′ that matches t,
binds the free variables in t to the matching values of t′ and removes t′ from the tuple
space. read(t) behaves identical to in(t) except that the matching tuple t′ remains in
the tuple space. This communication model is also called “generative communication”
[Gel85], since communication involves the generation of a tuple which has an existence
independent of the process which created it (until it is explicitly withdrawn from the
tuple space).

Some presentations of Linda, e.g., [ACG86, CG89], also include an additional fourth
operation, namely eval(t), which – similar to out – puts the tuple t into the tuple space,
but additionally starts a process evaluating the tuple t. Therefore such a tuple t is also
called an active (or “live”) tuple. When the evaluation of an active tuple has finished,
it turns into an ordinary (“dead”) tuple. In this extended model, since the distinction
between processes and tuples vanishes, new semantical problems arise, as for instance
the removal of an active tuple, i.e., the removal of a running process. A common remedy
is to (implicitly) allow only the removal of dead tuples [ACG86, CG89, NFP98].

Several extensions of the Linda-coordination communication model have been pro-
posed. In this section we present some propositions for multiple tuple spaces, as well
as other models for coordination. In the subsequent section we present models with
more “expressive” tuple spaces, in the sense that the latter are considered as logical
theories, leading to a combination of declarative programming and coordination.

The Kernel Language of Agents Interaction and Mobility (KLAIM) [NFP98] allows
the description of mobile processes that coordinate themselves via multiple tuple spaces.
In KLAIM, a system (also called a net) is modeled as a set of nodes which are located on
different (physical) sites or localities. Roughly speaking, a node or location corresponds
to a set of processes together with a mapping associating location variables to concrete

62

2.3. COORDINATION

(physical) sites. Processes are defined in the style of a process algebra with located
Linda-operations as basic actions. For instance, the operation out(t)@` puts the tuple
t in the tuple space at the location `. An additional action, namely newloc(u) allows
the creation of new (virtual) locations which are attributed to a physical location by the
runtime environment. Parameterised process identifiers allow the definition of guarded
recursive processes, where the set of legal parameters include processes, locations and
tuples (which on their turn are allowed to contain processes and locations).

Another extension of Linda with multiple, named tuple spaces is PoliS [Cia94]. In
PoliS agents can only read the space they are contained in, but they can write into any
space they know of. While agents cannot move from one space to another, they are
able to create both, tuples and spaces. When a tuple is put into a space before this
space has been created, the tuple is kept in the “meta tuple space” until the destination
space comes into existence.

Linda 3 [Gel89] extends Linda with hierarchically ordered multiple tuple spaces.
In Linda 3 tuple spaces are considered as elements of a new type ts together with a
special operation tsc (which has to be called inside an eval operation) for the creation
of new tuple spaces. Tuples containing entire tuple spaces, as well as active tuples, are
considered in the same way as standard tuples. Thus, contrary to standard Linda, the
removal of processes is possible in Linda 3. Bauhaus [CGZ94] adds a special operation or
command, namely move, which allows a process to move tuples from one tuple space to
another. Since processes are seen as “active” tuples, mobile processes can be expressed
in Bauhaus by moving the tuple corresponding to the process executing the operation
(which is denoted by a special symbol in Bauhaus).

In Law-Governed Linda (LGL) [ML95] the programmer specifies a law. When a
process executes one of the Linda coordination primitives, a corresponding event is
generated. For each of these events, the law specifies a sequence of so-called primitive
operations to be executed. Thus, a law allows to enforce the use of specific coordination
protocol.

Another approach to coordination is Gamma [BM96], where a program is described
in terms of multiset transformations. Since there is no artificial sequential ordering of
these transformations, they can be executed sequentially or in parallel, whenever their
parallel application does not make multiple use of a same element, i.e., if the different
transformation modify different parts of the multiset. As in Linda, communication
(and coordination) between processes is based on a shared data-space: in Gamma all
processes transform the same multiset. Nevertheless, the notion of processes is implicit
in Gamma, i.e., a programmer specifies the tasks without the need for sequentialising
them, but concurrent activities are not explicitly specified as such.

The Linda coordination model has also been formalised in form of a process alge-
bra [NP96, BGZ97, BGZ98] and the Turing-completeness of a language based on the
Linda-coordination primitives has been proved [BGZ97]. [BJ98] establishes a hierarchy
of Linda-like languages25 with respect to the set of available operations, in order to
analyse which of the Linda-operations really add expressiveness, i.e., which could not
be encoded by means of the others. This hierarchy is extended in [BJ99] to a com-
parison of three different coordination models, namely languages based on the Linda

25In [BJ98] the primitives are called similar to the actions of ccp, for instance ask (instead of read),
tell (instead of out), etc.

63

CHAPTER 2. RELATED PROGRAMMING STYLES

primitives, languages based on multiset rewriting (as for example Gamma or Bauhaus)
and languages using communication transactions, i.e., languages which allow to group
several modifications (of the tuple space) into a single atomic transaction (as for exam-
ple SP). Roughly summarised the results of the comparison imply that both, multiset
rewriting and transactions, are more expressive than simple Linda-operations, and that
transactions are more expressive for the full set of Linda-operations, i.e., ask , nask , get
and tell .

ManifoldManifoldManifoldManifoldManifoldManifold [BAdB+00] encourages a discipline of programming where computation
is clearly separated from coordination (or communication). Computation in ManifoldManifoldManifoldManifoldManifoldManifold

is expressed by means of atomic or computation processes26 which read values from
input streams (the process is blocked until a value is available) and write their results
to output streams. Coordinator processes control the overall structure of the system
by means of special actions, as for instance the creation and destruction of streams
and processes. As Linda, ManifoldManifoldManifoldManifoldManifoldManifold allows the computation processes to be written
in different languages, under the assumption that the set of atomic values that are
passed through the streams are understood by all languages used in the description of
the system. Besides message passing using streams, processes can also communicate
by broadcasting events to all (coordinator) processes. The semantics of a system is
defined by means of two levels. In a first level, the behaviour of every (coordinator
or computation) process is defined by means of a transition system. In a second level,
the transition system corresponding to the processes of a system are combined into a
second, global transition system defining the semantics of a system.

2.3.2 Coordination and Declarative Programming

Several combinations of logic programming with a coordination model based on a shared
dataspace have been suggested [BC91, Cia94, ODN95, dBJ96, DNO97, DO99]. These
proposals extend Linda by interpreting the tuple space as a logical theory, and by
interpreting the operations on the tuple space in a similar way to, for instance, the
“extra-logical operators” assert and retract of Prolog [DEDC96] (see section 2.1.1).
However, the shared dataspace is still restricted to (logic) tuples, i.e., unitary clauses
or atoms.

(Extended) Shared Prolog (SP, ESP) [BC91, Cia94] uses the notion of a logic tuple
space, i.e., the tuples are seen as atoms, and unification replaces the pattern matching
when accessing information in the shared dataspace. The logic tuple space is used
to coordinate several processes, called theories. Each process (or theory) is composed
of several rules. These rules have mainly three parts: a precondition testing for the
presence of some tuples in the tuple space (possibly deleting some tuples), calls to
predicates (locally) defined in the theory and a multiset of tuples to be added to the
tuple space whenever the call to the predicates, i.e., the solving of the goal, terminates
successfully. Since ESP is based on PoliS (see section 2.3.1), it provides also for multiple,
named logic tuple spaces.

A similar approach is followed by Agents Communicating through Logic T heories
(ACLT) [ODN95], where the tuple space of Linda is replaced by a theory description

26In analogy to object oriented programming, definitions of processes are also called classes in
[BAdB+00].

64

2.4. (EXECUTABLE) SPECIFICATIONS TECHNIQUES

restricted to atoms (i.e., unitary clauses), which is also called a knowledge base and
which can be used for proving logical consequence. These advantages can only be
exploited by agents written in a logic language (also called “logic agents” [DNOV96]),
whereas agents written in e.g., C-Linda just see a classical tuple space.

An extension of ACLT with atomic reactions triggered by communication events
are Tuple Centres [DNO97, DO99]. These reactions are defined using a new “simple
specification language” for the reaction rules which is shown to be Turing complete
[DNO98]. A key property is that a reaction can trigger itself other reactions, which
are executed before any new communication event (from another agent) is taken into
account. Therefore, reactions allow to transform the tuple space into a higher level
communication medium, which by itself can incorporate evolved communication pro-
tocols. Since the reactions of Tuple Centres are encoded via special tuples in the tuple
space, agents may modify the behaviour of the communication medium.

Another interesting extension of logic programming with (several) blackboards is
µLog [JdB94, dBJ96]27, where Linda-like primitives are added to a logic programming
language. These primitives allow the addition (respectively, lecture or removal) of
terms, blackboards and processes. In µLog the definitions of, on the one hand, pred-
icates (conditions) and, on the other hand, processes are distinguished: the clauses
defining processes are allowed to contain blackboard primitives, whereas predicates
have to be defined by pure Horn clauses. However, µLog makes no distinction between
goal solving and execution of a process. Additionally, µLog distinguishes between
foreground and background processes. Foreground processes have to terminate (for a
successful computation), whereas the background processes are (implicitly) killed on
termination of the foreground processes. Also, the initial goals (or processes) in µLog
are not allowed to share variables, to ensure that the communication between processes
(or goals) uses only the blackboards.

The Coordination Language Facility (CLF) [AFP96, APPPr98] combines message
oriented coordination using Linda-like primitives with transactions. In CLF, coordi-
nation of several participants uses special processes called coordinators, the behaviour
of which is defined by means of scripts, i.e., collections of rules describing the removal
and insertion of a number of resources. For this reason the programming paradigm
underlying CLF has also been called resource-based programming [And01]. Informally,
a rule l � r of CLF defines two sets of resources: the resources in r are to be inserted
to the participants after the successful atomic removal of all resources in l from the
participants. Thus the rules of CLF are a fragment of the linear logic programming
language LinLog (see section 2.1.4), interpreting � as linear implication (.

2.4 (Executable) Specifications Techniques

Formal specifications provide precise descriptions of a system, allowing to check prop-
erties early in the development process and thus to reduce the cost of modifications.
Whenever a formal specification is executable, the specification is even a first prototype
of the system which facilitates communication between the developer(s) and the user(s)
of the system.

27µLog is the successor of Multi-Prolog [dBJ93].

65

CHAPTER 2. RELATED PROGRAMMING STYLES

2.4.1 Algebraic Specifications

The notion of abstract data types plays a central role in classical algebraic28 speci-
fications, see for instance [EM85, EM90, Wir90, AKKB99] or the common algebraic
specification language (Casl) [BB01, CAS01] as an example of a language. These
types are called abstract, since the actual representation of the data is hidden, and in
consequence they can only be manipulated using, in an applicative style, the operations
provided with the abstract data type. This implies that there is, as in pure functional
programming, no notion of state or side-effects. Consequently, when modeling dynamic
systems and their behaviour, the state has to be explicitly coded, and will appear as
a parameter and a result everywhere in the specification, rendering the specification
more complicated and less “natural”.

To avoid these problems, [DG94, Kho96] suggest the introduction of the notion
of implicit state, leading to the framework called AS-IS, the acronym of Algebraic
Specification with Implicit State. States are represented in AS-IS implicitly by means
of an additional algebraic specification of (elementary) access functions. Every access
function f (of profile s1 × · · · × sn → s) can be modified by means of an associated
(elementary) modifier µ-f , i.e., a function of domain s1 × · · · × sn × s. The intended
semantics of an elementary update µ-f(t1, . . . , tn, t) is to change the definition of the
access function f at all points of the domain matching the pattern t1, . . . , tn to the
term t which may contain variables (that are used in the pattern). More complex
modifiers can be obtained by the addition of guards, and sequential, and two forms of
parallel composition [Kho96].

[AZ92, AZ95, Zuc99] suggest d-oids as structures describing the evolution of dy-
namic systems at the level of the models, i.e., by transition systems the states of which
are (instant) algebras. All the instant algebras (or states) of a system are required to
share is the set of sorts. Thus the signature, i.e., the set of operations defined in an
instant algebra, is allowed to vary from one state to another. Associated with each
transformation is a (partial) function relating elements of the domains before and after
the transformation. These functions are called tracking maps, since they allow to keep
track of object identities. While d-oids provide a theoretical foundation and model for
dynamic systems, they currently do not include concurrent modifications and are thus
not well suited as an actual programming language for concurrent systems.

Dynamic abstract data types (DADT) [EO94] are an (informal) proposal aiming
at the generalisation of the already presented extensions of algebraic specifications
for dynamic systems. Roughly speaking, a DADT consists of an ADT together with
a collection of dynamic operations defining transformations between instances of the
ADT. The specification of a DADT is separated into four different levels. The lower
two levels correspond are similar to AS-IS : the first level (Value Type) defines the
algebraic data types, and the second (Instant Structure) generalises the definitions of
access functions of AS-IS. The two higher levels describe the dynamic evolution of
the ADTs defined by the first two levels, i.e., the third level corresponds, roughly
speaking, to the elementary modifiers of AS-IS, and the fourth level is used for higher
order combination of DADTs. The basis of the semantics of a DADT is a transition
system the states of which are instant structures. As d-oids and AS-IS, DADTs do not

28In mathematics, “algebra” denotes a structure of a set together with operations on the set.

66

2.4. (EXECUTABLE) SPECIFICATIONS TECHNIQUES

provide the notion of processes directly.

2.4.2 Abstract State Machines

(Gurevich) Abstract State Machines (ASMs) [Gur85, Gur91, Gur95, Gur97, Gur00]
aim at providing a theoretical model that allows the expression of algorithms at the
level of abstraction that is “natural” for the algorithm, avoiding the need to encode the
algorithm in the language of a lower level machine. Thus ASMs are thought to be a
general model for algorithms, in the sense that “for every (sequential) algorithm A, there
exists an equivalent (sequential) abstract state machine B” [Gur00, theorem 6.13], in
the same way as Turing Machines [Tur36] are a general model for computable functions.

Supporting this thesis of ASMs [Gur85, Gur00], the formalism of ASMs has been
used successfully for the description of the semantics of different programming lan-
guages, such as for instance BABEL, C, C++, , cobol, Java, Occam, PARLOG,
Prolog, SDL, SML and VHDL29. Montages [KP97] are an extension of ASM dedicated
to the specification of dynamic and static semantics of programming languages.

An ASM is characterised by its (finite) vocabulary, i.e., a set of function symbols,
Υ and a set of update rules R. The functions in the vocabulary Υ are partitioned into
static, i.e., immutable, and dynamic, i.e., mutable, functions. The states of an ASM
are algebras30, i.e., models of first-order theories (where predicates are represented as
boolean functions). An algebra (or state) A consists of a pair A = 〈X, I〉 of a base set
(or super-universe) X and an interpretation I of the functions of the vocabulary Υ (as
functions on X). Different types or sorts of elements can be accommodated by means
of a partition of X into universes corresponding to the different types, or by extension
of the formalism of ASMs to many-sorted algebraic specifications [Zam98]. A basic
update rule f(s1, . . . , sn) := t modifies the value of the (dynamic) function f at the
element (s1, . . . , sn) (in the domain of f) to the value of the term t31 More complex
updates can be obtained by a (finite) parallel composition of basic updates, the meaning
of which is the atomic update of a several functions at the same time. An extension to
an update of possibly infinite locations in a single step is provided by means of so-called
parallel ASMs [Gur95, section 5]. Roughly speaking, parallel ASMs allow rules to be
parameterised by variables the range of which are universes ; application (or firing) of
a rule corresponds to fire the rule for all possible instances for the variable. Update
rules can also be guarded, i.e., the execution of the update depends on the validity of
a boolean expression. The import (or creation) of new elements, i.e., members, of a
given universe, is achieved by means of a special universe, the so called reserve. Notice,
that the vocabulary, as well as the base set, is not modified by the import of an element
[Gur00, sections 4.4 and 4.5].

To cope with interactive algorithms, [Gur00, section 8] introduces the notion of an
environment which can modify the state of the ASM (after each step of the algorithm).
These modifications of the state by the environment can thus account for inputs to

29Refer to the URL http://www.eecs.umich.edu/gasm/proglang.html for a complete list of avail-
able ASM-specifications of programming languages.

30This is the reason why ASMs were initially called evolving algebras [Gur95].
31The difference of these updates with the modifiers of [DG94, Kho96] (see section 2.4.1) is that the

former modify the model whereas the latter modify the specification.

67

CHAPTER 2. RELATED PROGRAMMING STYLES

the algorithm. On the other hand, output is “taken miraculously away” (by the en-
vironment) [Gur00] so that output does not need any further consideration. In order
to restrict the possible modifications of the environment, [Gur00, section 8.4] suggests
to annotate the (dynamic) functions (i.e., those that can be changed during a com-
putation) in a vocabulary as either internal (i.e., modifiable only by the algorithm),
external (i.e., modifiable only by the environment) or shared (i.e., modifiable by both,
the algorithm and the environment).

Communicating Evolving Algebras [GR93b] aim to provide a theory of (true) con-
current computation in the framework of ASMs. A central notion is the independence
of update rules. Two rules are considered independent when it is impossible to derive
the sequencing in time from their joint effect32. Using the notion of independence, the
definition of the parallel composition of ASMs can be defined. Communication be-
tween concurrent ASMs is based on the modification of the common part of the state.
This model has been used for an encoding of the CHAM and the π-calculus [GR93b,
section 4].

Distributed computation is simulated by considering several agents that share a
common state of which every agent has a “personalised” view [Gur95, section 6]. Agents
can be grouped together into teams which themselves are agents. Thus synchronisation
of agents is achieved by specifying an action for the team as a whole, since the action
cannot be performed by one of the agents separately. For instance, consider an agent
A that wants to send a value v to agent B, i.e., it has to modify the definition of
a function f at a location t. Since v is known only by A and f(t) only by B, the
communication has to be described by another agent, namely the team formed from
A and B. A more explicit specification for synchronisation between different agents
is suggested in [Sch98], where rules can be labeled. Informally, all rules that have the
same label are expected to be executed jointly, i.e., in a single atomic step.

Interactive Abstract State Machines (IASMs) [dAMdIdSB98] are an extension of
(distributed) ASMs with message passing as mechanism for communication between so-
called units, i.e., processes or components of a system. Besides the update rules as in
classical ASMs, IASMs provide interactions which specify the communication behaviour
of the unit. Informally, interactions are an extension of the external functions of ASMs
[Gur95, section 3.3.2], which correspond to functions that are partially specified inside
the system and controlled or changed from the outside. Using external functions,
the reception of values can be modeled easily, and IASMs extend the concept to more
complex interactions, keeping the modeling of the environment by partial specifications.
Furthermore, the communication structure between the different units of an IASM can
vary, and units can be created dynamically. The semantics of an IASM is defined by
means of a translation into an ASM [dAMdSB98].

A formalism combining ASMs with algebraic specification with implicit state (AS-
IS, see section 2.4.1) has been suggested in [GKZ99]. With respect to ASMs, the
combined formalism allows the use of algebraic data types for the formal specification
of the semantics of static functions, i.e., functions which are never modified during the
execution of the system. On the other hand, the combined formalism adds to AS-IS
an additional layer which is used for the formal specification of the dynamic evolution

32Notice that independence is a coarser relation than consistency. For instance, while the updates
a := b and b := a are consistent, they are not independent.

68

2.5. MULTIPARADIGM PROGRAMMING

of systems. Thus, [GKZ99] suggests the specification of a dynamic system in three
levels, where the first two correspond to AS-IS, that is to say the first level defines the
data types which are static, i.e., unmodified, during the execution of the system, and
the functions which may change during the execution of the system (i.e., the so-called
elementary access functions) are defined in the second level. Finally, the third level
defines update expressions, which correspond roughly speaking to an extension of the
combinators of the elementary updates which we have already presented along with
AS-IS [Kho96].

Algebraic state machines [BW00] are state machines or interactive state transition
systems which are completely defined by algebraic and logic means. As in AS-IS, the
states of algebraic state machines are algebras, specified by an algebraic specification.
In algebraic state machines, transitions between states are described by particular tran-
sition axioms, also called transition rules. Informally, a transition rule is defined as a
four-tuple. Two parts of a transition rule are logical formulæ defining pre- and post-
conditions on the states between which the transition takes place. The other two parts
of a transition rule define the inputs consumed and the outputs produced by the tran-
sition. Thus algebraic state machines can be considered as “black boxes”, data-flow
nodes or components which communicate with their environment by means of input
and output channels. Using techniques similar to those of [Bro98], these components
can be composed to more complex systems.

2.5 Multiparadigm Programming

“Have you ever gotten into a do-it-yourself construction project, and
become stuck because you were missing a particular tool? You had three
choices: (1) go out and buy (or borrow) the right tool, (2) use the wrong
tool as best as you could, or (3) give up. [. . .] When confronted by this
problem in programming, you are limited to choices 2 and 3: program
around the problem using the constructs provided by your language or give
up.” [Hai86]

To solve the problem mentioned above, multiparadigm programming has been sug-
gested. The goal of multiparadigm programming is to allow a programmer to write the
implementation of a system in different paradigms, such that for every part of the sys-
tem the most appropriate paradigm (or language) can be used. Thus a program written
in a multiparadigm language should be easier to write, understand and maintain. Ety-
mologically, the word “paradigm” (from the word παράδειγµα) means example33, and
is commonly used to refer to a category of entities sharing a common characteristic.
Further definitions of the word (and its meaning in computer science) can be found for
example in [Hai86], [Spi94, section 2.1], [Bud95] or [Cop98].

33More precisely: “1. One that serves as a pattern or model. 2. A set or list of all the inflectional
forms of a word or of one of its grammatical categories: the paradigm of an irregular verb. 3. A set of
assumptions, concepts, values, and practices that constitutes a way of viewing reality for the community
that shares them, especially in an intellectual discipline.” [The American Heritage Dictionary of the
English Language, Fourth Edition, 2000, http://www.bartleby.com/61/73/P0057300.html]

69

CHAPTER 2. RELATED PROGRAMMING STYLES

The idea of multiparadigm methods is obviously not restricted to software engineer-
ing, and the benefits of similar approaches are also exploited in other domains. For
instance, in the design of electronic systems the use of several languages in a single
specification allows to (drastically) reduce the “time to market”, since every part of a
system can be expressed in the most appropriate language [Cos01].

In the following, we present some of the numerous proposals for multiparadigm
frameworks or languages. More exhaustive surveys or enumerations of different ap-
proaches and research directions to multiparadigm programming languages and envi-
ronments can be found in [Mul86] and [Spi94]. Most of them are oriented towards an
implementation and focus less on the investigation of the semantic foundations of the
suggested framework. We conclude the section with a presentation of some component
based approaches we are aware of.

The approach to multiparadigm programming suggested in [SDE95, Spi94] mod-
els programming paradigms as object classes: a paradigm corresponds to a class and a
module (of the system) is an object (or instance) of the class. This allows to organise the
different paradigms in a tree-structured hierarchy using inheritance, where the “toplevel
class” corresponds to the target architecture. Subclasses (i.e., “subparadigms”) are
implemented using (as primitives) only the methods of its direct superclass(es). This
layering allows to reconcile the different operational semantics of the paradigms, since
services (this could be, dependent on the paradigm, procedures, clauses, functions,
rules, ports, etc.) of another paradigm are accessible through so called “call gates”
following the hierarchical ordering of the paradigms. An advantage of this approach
is its extensibility: to add a new programming paradigm, it is sufficient to integrate a
corresponding class in the existing hierarchy such that only the interface to its immedi-
ate neighbours (parents, children and siblings) need to be implemented. Furthermore,
the implementation of generators of multiparadigm environments is possible [SDE95].

Nondeterminism is at the root of the approach to system composition using pro-
grams written in different paradigms presented [Zav89]. These programs are necessarily
incomplete, since they lack those features of the system that are implemented in the
other parts. Representing this incompleteness as nondeterminism, composition allows
external programs to influence the behaviour without disturbing the semantics of the
programming language, so that the part can still be analysed and validated as usual
(for a program in that particular language). Hence, in the composed system, the differ-
ent parts influence each other by controlling their nondeterministic choices mutually.
The example of an prototype telephone network presented in [Zav89] the central part
is written in the multiparadigm programming language PAISLey [Zav91]. Informally, a
PAISLey-program is a set of function definitions that can be described by a hierarchical
dataflow diagram. Synchronisation of different concurrent computations is achieved by
structuring the dataflow diagram into looping processes which enforce the synchronous
update of their state, i.e., the synchronous evaluation of so-called exchange functions,
which are similar to the communication gates of Lotos or the channels of process
calculi as CSP.

[ZJ96] tackles the problem of multiparadigm specification by augmenting the speci-
fication language Z with automata and grammars. In this approach a system is specified
by means of several partial specifications that are all translated into first-order logic
and then linked together. However, the method is limited to the specification of a

70

2.5. MULTIPARADIGM PROGRAMMING

rather restricted class of systems, namely those that react to a sequence of atomic in-
put events by the execution of a state changing operation (before the next input event
is handled).

LIFE34 [AKP93] uses ψ-terms for the representation of data-structures. Roughly
speaking, a ψ-term corresponds to a (labeled) directed graph the nodes of which are
sorted, and the labels of the arcs are called features. Thus ψ-terms conveniently rep-
resent record-like data structures. Furthermore, the subtyping and type intersection
rules for ψ-terms account for some of the (multiple) inheritance convenience known
from object-oriented languages. Higher-order functions are defined in LIFE as usual by
means of rewrite rules. By extending unification to ψ-terms, LIFE encompasses also
the paradigm of logic programming.

Considering objects as constants, OLI [LP96, LP97] integrates logic and object-
oriented programming conservatively so that pure logic or object-oriented programming
remains possible. OLI introduces the notion of “o-terms”, i.e., (calls to) objects with-
out state-changing methods. This ensures that the evaluation of non-primitive o-terms,
i.e., o-terms containing unevaluated calls to other objects, does not modify the static
theory described by the program. Thus the logic part of OLI integrates the evaluation
of calls to objects similar to the reduction of expressions in functional-logic programs.
The logic part is introduced into an object oriented language similar to Smalltalk by
means of a special built in object, namely $logicBase, which acts like an interpreter
for a logic programming language, i.e., goals can be solved using a method query: and
the theory can be modified as in Prolog [DEDC96] by means of the methods assert:
and retract:. While a semantics for the extension of logic programming with o-terms
is given in [LP96, LP97], the overall (object-oriented) framework of OLI lacks a clearly
defined formal semantics.

The integration of object oriented and logic programming proposed in [Con88] dis-
tinguishes between two kinds of predicates, namely object and procedure names. The
procedures correspond to the classical predicates as in Prolog and they are defined
by classical Horn clauses. Objects are defined by object clauses, i.e., an extension of
Horn clauses with two (positive) literals in the head, such that one is a procedure and
the other is an object. The operational semantics is similar to the one of Prolog (see
[DEDC96, chapter 4]), with the additional conditions that all procedure-literals are on
the left of all object literals, and that the selection of literals proceeds from left to right.
In the case of a procedure literal matching (a part of the head of) an object clause, a
matching object literal has to be searched in the remainder of the goal.

Distributed Logic Objects (DLO) [CLSM96] extends the framework of [Con88] by
using arbitrary number of positive literals in the heads of clauses. Furthermore, DLO
is a committed choice language, i.e., once a rule is selected, this choice is not undone
by backtrack in the future. Computation in DLO is inherently concurrent, since the
literals in the body of a clause are solved in parallel. A distributed implementation of
DLO is described in [CLSM96].

I+ [NL95] integrates the paradigms of object-oriented, functional, logic and paral-
lel programming. Informally, I+ distinguishes between two kinds of objects, namely
functional and logic objects, where the methods of the former are interpreted as func-

34LIFE is the acronym of Logic, Inheritance, Functions and Equations.

71

CHAPTER 2. RELATED PROGRAMMING STYLES

tions, and those of the latter as predicates. Functions are defined by equations using
pattern matching, and predicates by (augmented35) Horn clauses. Parallelism in I+

corresponds to the concurrent execution of the different “active” objects of a program.
In order to allow a programmer a better control of the parallel execution of the pro-
gram, I+ provides an asynchronous mode for method invocation besides the classical
synchronous message passing scheme corresponding to a remote procedure call, where
the caller is suspended until the callee returns an answer. In the asynchronous mode,
the result of the call can be collected later on by means of a special, blocking operation.
We are not aware of a semantic foundation of I+.

Alma-0 [AS97, ABPS98] integrates the paradigms of logic and imperative program-
ming, by extending a subset of Modula-2 [Mod96] in several aspects. First, boolean
expressions can be used as statements and vice versa, and the evaluation of a boolean
expression to FALSE corresponds to a failure, when used as a statement. Second, choice
points can be set, such that backtracking upon failure is possible. Third, simulating
unification, the equality predicate is generalised to assignment when one of the terms
is an uninstantiated variable and the other a term the value of which is known. Fi-
nally, a new parameter passing scheme for procedures allows to pass variables by name,
and expressions by value. An operational (respectively, denotational) semantics for the
assignment-free subset of Alma-0 has been presented in [AB99] (respectively, [Apt00]),
based on the interpretation of conjunctions in the clauses of a logic program as se-
quential composition36. In this view, formulas are seen as programs the execution of
which corresponds to a proof search for the formula. However, we are not aware of a
concurrent extension of Alma-0.

The multiparadigm language Leda [Bud95] provides, compared to Alma-0, the possi-
bility to use the paradigms of functional and object-oriented programming, but without
investigating the semantic foundations of this extension. As in I+, the overall structure
of a Leda-program is object-oriented, and the other paradigms are integrated for the
implementation of the methods. However, Leda does not provide concurrency.

The multiparadigm language G [Pla91] claims to include the logic, functional, im-
perative, relational and object-oriented programming paradigms. As fundamental data
structure, G provides streams, i.e., possibly infinite sequences, which can be composed
in an applicative, functional style. Additional operators allow to repeat and filter
streams. In G, the different programming paradigms are not considered as a whole
but “unbundled” into different characteristics that are then integrated into G. This
has the drawback that some paradigms are included only partially. For example, the
integration of the logic paradigm uses a technique based on filters instead of unification
in the selection of the rules to execute.

Maude [CDE+99] is a multiparadigm programming language based on rewriting
logic [MOM01], the basic axioms of which are rewrite rules. There are two comple-
mentary views of a rewrite rule t → t′ in rewriting logic. On the one hand, t → t′

can be seen as a description of a local transition from a state a fragment of which
matches the pattern t to a new state where an instance of t has been replaced by an
instance of t′. On the other hand, t → t′ can be interpreted as a logical inference rule
allowing the inference of formulæ of the form t′ from formulæ of the form t. A program

35They are called augmented, since terms are allowed to contain calls to methods of objects.
36Notice that conjunction is commutative, while sequential execution is not.

72

2.5. MULTIPARADIGM PROGRAMMING

in Maude is a collection of modules, each of which corresponds to a rewriting theory.
The implementation of Maude makes extensive use of the fact that rewriting logic is
reflective, i.e., that there exists a universal theory U in which any finite rewrite theory
can be represented (including U itself). Reflection is supported in Maude by means
of the system module META-LEVEL [CDE+98, CDE+99]. For instance, Maude allows
the specification of different rewrite strategies on meta-level in Maude itself. Thus,
different programming paradigms, as functional, logic, object-oriented and concurrent
programming, can be specified and used in Maude [Mes92].

The programming language C++ [Str85] is also used for multiparadigm program-
ming and design [Cop98], where the notion of paradigm is slightly different from the
work mentioned up to now, since the considered paradigms are for instance the fol-
lowing: classes, overloaded functions, templates, modules and ordinary procedural pro-
gramming [Cop98, page xiii]. That the declarative paradigms, e.g., functional and/or
logic programming, are missing, emphasises that, as for other imperative programming
languages, C++ is a rather low-level language, lacking a well-defined semantics and
the associated advantages.

Last, but not least, the unix operating system [RT78] is also a multiparadigm
environment, since an application in unix can be constructed from different programs,
written in any language for which an interpreter or compiler exists. These programs
are supposed to read a sequence of characters from “standard input” and to write
a sequence of characters to “standard output”, so that they can be composed using
buffered one-way communication channels, so-called “pipes”. This model is widely
used, although it is rather low-level, restricted and not provided with a clear semantics.

The composition of a system from a set of existing components is a particular kind
of multiparadigm framework, since the different components might be written in dif-
ferent languages. Besides the possibility to use always the most appropriate language,
so-called component based approaches, such as for instance the (Distributed) Com-
ponent Object Model ((D)COM) [COM95] or JavaBeans [Eng97] are motivated by
the possibility of increasing software reuse. In a component based approach, a (soft-
ware) system is constructed by assembling several ready-to-use components which are
considered as black boxes, similar to the construction of system in other engineering
disciplines. Thus, research on components focuses mainly on the assembly of compo-
nents, i.e., their interfaces, leaving unspecified their internal structure, since it is not
important for a user of a component [Szy98]. This implies that, in order to build any
system, a set of predefined or built-in components has to be provided, for instance in
form of a component library.

In the current component models mentioned above, components are provided in
binary form, i.e., ready for execution. Since the languages which have been used for
the production of these components do not matter, such component approaches are
inherently multiparadigm, although with a rather low-level and restrictive integration,
similar to operating systems as unix.

The only formal definition of a component we are aware of is given in [Bro98], where
a component is characterised by a function mapping input streams to output streams.
Hence this definition also considers merely the input/output behaviour and neglects
the internal structure of a component.

The mixed language program system (MLP system) [HS87] aims at facilitating the

73

CHAPTER 2. RELATED PROGRAMMING STYLES

development of distributed systems by allowing different components to be written
in different programming languages37. The different components of such a system
communicate using a common language, namely the Universal Type System (UTS)
language which allows the definition of data types. Thus every language that is to
be used in the MLP system has to provide the translations of its data-structures into
the corresponding types of the UTS. While such translation have been defined for
imperative programming languages as C or Pascal, we are not aware of an integration
of declarative languages in the MLP system.

? ? ?

We have seen that among the many existing proposals for a convenient programming
computation model combining different programming paradigms, none exactly meets
our requirements, namely a clear separation of concerns allowing the use of the most
appropriate programming style for every part, while keeping the well-defined semantics
of a declarative language.

In the remaining chapters of this thesis we present our proposal for a combination
of (mobile) processes and declarative languages in a component based approach. A
main design pricniple of our computation model is to distinguish clearly between, on
the one hand, concepts which are definable in classical declarative languages, such as
functions, predicates or constraints and action or (mobile) processes on the other hand.
Furthermore, we present the definition and semantics of a component.

37“A mixed language program is a program written in two or more programming languages. Such
programs consist of several program components, where each program component is composed of one
or more procedure written in the same language.” [HS87, beginning of section II]

74

Chapter 3

A Computation Model for
Concurrent Declarative
Programming

Contents of the Chapter

3 A Computation Model for Concurrent Declarative Programming 75
3.1 Stores . 78

3.1.1 General Properties of Stores . 78
3.1.2 Example of a declarative language 79
3.1.3 Names . 86

3.2 User Defined Actions . 87
3.2.1 Meta-Signatures for the Definition of Actions 88
3.2.2 Examples of Definitions of Actions 91

3.3 Component Signatures . 95
3.3.1 Component Signatures . 95
3.3.2 Example of the Multiple Counters 100

3.4 Interactions . 102
3.4.1 Imports and Exports . 103
3.4.2 Translations . 104

3.5 Processes . 106
3.5.1 Action Expressions and Guarded Actions 107
3.5.2 Process Expressions and Process Terms 110
3.5.3 Process Definitions . 114

3.6 Components and Systems . 116
3.6.1 Components . 116
3.6.2 Composing Components: Systems 118

In this chapter we present an component-based approach to concurrent declarative
programming [ES00, ES01a]. We suggest to model a system as a set of components,
where each component is internally composed of a store F , i.e., a declarative program,
and a set of processes pi, interacting via the modification of the store by means of
the execution of actions that can be defined by the programmer [ES01b]. Interaction
between components is based on the same scheme as interaction between processes of

75

CHAPTER 3. COMPUTATION MODEL

p4

F

p2

p1

p5

p3

sn1

sn4

sn5

sn2
sn3

Figure 3.1: Execution Model of a System

the same component, namely the modification of the stores, i.e., declarative programs.
That is to say, processes are allowed to execute actions on all stores in the system.
To take into account the difference between local and remote computation, we suggest
to model interaction between components by a message-passing scheme, where each
message corresponds to a sequence of elementary actions that should be executed on
the receiving store.

Figure 3.1 shows a system of three components, named sn1, sn2 and sn3, in execu-
tion. In component sn2, five processes pi (i ∈ {1; . . . ; 5}) execute on the store F . Notice
that component sn3 is the composition of two components, namely sn4 and sn5. By
joining the stores of the subcomponents sn4 and sn5 in figure 3.1, we want to express
that the separation in two subcomponents is invisible from the outside of component
sn3.

As we have already mentioned in the introduction, the description of a component
can be stratified in several levels, a simplified view of which is shown in figure 3.2 (see
definition 3.36 and figure 3.4 for the complete definition). The lowest level corresponds
to the level of store, i.e., classical declarative programs. At this level, a programmer de-
clares the symbols of functions and predicates and specifies their meaning, for instance
by means of conditional rewrite rules. Since the actions executed by processes modify
the store, i.e., the declarative programs, it seems natural to specify the actions on the
meta-level with respect to the level of the stores. Finally, the description of processes
requires both levels. On the one hand, processes execute actions, and need therefore
the meta-level. On the other hand, processes depend on values of the store, namely in
the guards of the guarded actions (see section 1.1.3.1). Notice that the implementation
of our computation model manipulates all these different notions, and needs therefore
a further level, which is not shown in figure 3.2.

To distinguish between the different components of a system, we attribute to each
component of the system an identifier or name, called component name or storename.
In the system of figure 3.1 the storenames of the three components shown are sn1, sn2

and sn3
1. If a process wants to execute an action on the store of another component,

it necessarily needs to know the actions executable on the other store, as well as some
1We do not mention sn4 and sn5 since they are not visible from the outside of the component sn3.

76

(Store)Sorts, Functions & Predicates

Actions (Meta)

Processes

Figure 3.2: Basic Levels of a Component-Description

information about the signature of the store of the other component, in order to con-
struct the parameters of the action in a meaningful way. Thus, a component needs to
import (and conversely export) a subset of its actions as well as a subsignature of (the
signature of) its store. In the case of components the stores of which are written using
different declarative languages, interaction requires the translation of the values of one
store into a representation meaningful for the other store.

? ? ?

The rest of this chapter is organised as follows. First we consider the level of the
stores separately, that is to say we present the declarative language which we use for
the description of the stores. Our computation model is not restricted to a particu-
lar declarative language, but can be applied to extend several declarative languages
with concurrency. Thus, we present the general requirements on declarative languages
which are to be used for the description of stores in our model, and illustrate these
requirements with an example of a simple declarative language which we is used in the
remainder of this thesis.

As already mentioned, the processes of a component modify the stores by the ex-
ecution of actions. In a second step, we tackle thus in section 3.2 the definition of
actions, which are defined as functions from stores to stores. We present the notion
of a meta-signature and give some examples of definitions of actions for the simple
declarative language presented in section 3.1.

The remaining sections of this chapter present the remaining, highest level of the
description of a component as shown in figure 3.2, as well as the interaction between
components. We give first in section 3.3 the definition of a component signature which
defines all the symbols necessary for the description of a component, refining figure 3.2
(see figure 3.4).

Then we present in section 3.4 the necessary definitions for the description of the
interaction between components. Actually, most of the symbols declared in the com-
ponent signature that are used for the interaction between components, namely the
imported symbols, are not defined in the component itself, but they supposed to be
defined in another component. Furthermore, the exported symbols are defined in the
component, but their definitions are covered by the sections corresponding to the stores

77

CHAPTER 3. COMPUTATION MODEL

(section 3.1) and actions (section 3.2). However, we present the definition of transla-
tions which are needed for the interaction between components the stores of which are
written in different declarative languages.

In section 3.5 we give the definition of processes. The basic processes in our model
are, on the one hand, guarded actions, i.e., pairs of a guard and a sequence of elementary
actions, that are to be executed atomically, and, on the other hand, process calls.
Besides the definition of the classical operators on process terms known from process
algebras, we introduce expressions on processes and actions, in order to the description
of processes in a style similar to the abstractions used in functional programming.

Finally, we present the definition of components and a brief presentation of the
composition of components to both, components and systems in section 3.6.

3.1 Stores

The store of a component corresponds to a classical declarative program. Roughly
speaking, a program can be seen as a theory description by means of a set of “for-
mulæ”. Thanks to this general view of stores, our approach to combine declarative
programming and concurrency is generic in the sense that it is independent from the
actual declarative language. Thus, (almost) any (pure) declarative language can be
used for the description of a store. Additionally, this property allows us to build sys-
tems of several components with stores in different languages, where the store of each
component might be written in the most appropriate language.

3.1.1 General Properties of Stores

A declarative program can be seen as a description of a theory, modeling a part of the
“real world”. In our computation model, this theory description is called a store and is
shared by the processes of the component. The store of a component can be considered
as a “knowledge base”, modeling information about the state of the component and
its environment, that exploited by the processes. Hence, the processes need to access
the information contained in the store, as well as to modify the store. Access to the
information uses the operational semantics of the declarative language the store is
written in. The modification of the store is performed by the execution of actions
and is presented in the following section dedicated to actions. In order to define the
processes in a language independent way, we make the simplifying assumption that all
stores are constructed from a signature and a set of rules. Thus we get the following
definition.

3.1 Definition (store). A store is a classical (declarative) program F = 〈Σ, R〉
(written in the language L), composed of a signature Σ and a set of rules (also called
phrases or formulæ) R. A signature Σ = 〈S, Ω〉 is a pair of a set of sorts S and a
(S-indexed) family of operator, function or predicate symbols, such that Σ contains
at least the sort Truth with its constructor true

2. S denotes the set of all sorts that

2In Curry [HAK+00b] the corresponding sort and constructor are called Success and success. We
have chosen Truth, since success is already used for the successfully terminating process.

78

3.1. STORES

can be constructed from the set of basic sorts specified by the set S3. We note the
(S-indexed) family of sets of terms for a signature Σ and variables X as TL(Σ, X).
Furthermore, we have a decidable predicate evalL(F, t) (also written as F `L t), which
holds if the term t of sort Truth, i.e., t ∈ TLTruth(Σ, X), can be reduced to true using
the rules (or formulæ) of the store F = 〈Σ, R〉.

The predicate evalL (or relation `L) corresponds to a evaluation of a boolean ex-
pression in classical functional languages, or to a test for validity in logic programming.
Whenever the (declarative) language L is clear from the context, we omit the corre-
sponding index. Similarly, we write, by abuse of notation, S instead S, if there is no
risk of confusion.

3.2 Example. The predicate evalT OY (respectively, evalCurry) is defined by (condi-
tional) narrowing, the standard operational semantics of T OY [LFSH99] (respectively,
Curry [HAK+00b]). Notice that a T OY (respectively, Curry) program is a set of rules
and corresponds thus obviously to definition 3.1.

3.3 Example. In the logic programming language Prolog [DEDC96], the operation
evalProlog is defined by the standard operational semantics with the additional condition
that the answer substitution should be the identity substitution. Notice that we model
atoms (i.e., applications of predicates) as terms of sort Truth.

3.4 Example. Besides declarative languages, classical imperative programming lan-
guages, such as ada [Ada95] or C [KR88], can, in general, be used for the description of
stores. Intuitively, the rules of an imperative store define the values stored in each of the
cells of the memory, and terms are straightforwardly defined as expressions. However,
we have to require that expressions use only functions4 which do not have side-effects,
i.e., which do not modify the memory. The check for validity is then the (side-effect
free) evaluation of a boolean-valued expression.

Notice that the definition of stores is similar to the notion of a logical system in
the framework of institutions [GB92]. Informally, a logical system is characterised by a
signature Σ, a collection of Σ-sentences, a collection of Σ-models and a Σ-satisfaction
relation (of Σ-sentences by Σ-models) [GB92, page 96].

3.1.2 Example of a declarative language

In this section, we define a simple functional logic language which we use in the re-
mainder of the thesis to illustrate our proposal of a computation model for concurrent
declarative programming languages, namely for the description of stores. Instead of
this simple language, we might also have used another declarative language, as for in-
stance Curry [Han97, HAK+00b], T OY [GHLR96, GHLR99] or Haskell [PJHA+99].
The main motivation for choosing our own simple declarative language is the need of
an abstract data type of programs in order to define actions (see section 3.2).

In the following, we recall briefly the basic notions about (conditional) term rewrit-
ing and narrowing [DJ90, Klo92, BK86].

3For instance, functional types can be constructed using the type constructor →, e.g., the sort
s1 → s2 denotes the sort of functions of domain s1 and range s2.

4Procedures are captured in our model by the notion of processes. In fact, both execute actions.

79

CHAPTER 3. COMPUTATION MODEL

3.1.2.1 Syntax

Roughly speaking, a program in our simple declarative language is defined by a signa-
ture Σ and a set of rules R defining the semantics of the functions or operations of the
signature. A signature defines the data types of the program, as well as the operations
on these data types. We follow a constructor-discipline [O’D85], i.e., we distinguish
between the constructors of the data types and defined functions.

3.5 Definition (signature). A (constructor-based) signature Σ is a pair Σ = 〈S, Ω〉
of a set of sorts S and a (S+-indexed 5) family of function symbols Ω.

The family of function symbols is partitioned into constructor symbols C and defined
function (or operator) symbols D, i.e., Ω = C]D.

For a function symbol f ∈ Ωs1· ... · sn+1 , we call s1 × . . . × sn → sn+1 the profile of
the function symbol f . The arity of a function symbol of profile s1 × . . . × sn → sn+1

is defined as the natural number n, corresponding to the number of arguments the
function accepts.

We require that a signature Σ should contain at least the sort Truth (∈ S), rep-
resenting the predicates or constraints, which are used in the conditions of the rewrite
rules. We also require that the signature contains at least two constructors of the sort
Truth, namely “true” (∈ CTruth) and the (polymorphic) equality predicate =, i.e., for
all sorts s different from Truth, i.e., s ∈

(
S r {Truth}

)
we have that =s·s ∈ Ds·s·Truth.

In the following, we may omit these obligatory parts of a signature to shorten the
notation.

3.6 Example. The following is a signature of natural numbers, Σnat :

Snat = {Truth,Nat}
Cnat = {zero : Nat ; succ : Nat → Nat ; true : Truth; = : Nat ×Nat → Truth}
Dnat = {+, −,mod : Nat ×Nat → Nat ; <, ≥, : Nat ×Nat → Truth}

In addition to a signature, we suppose that we are given a infinite (S-indexed)
family of (sets of) variables X.

3.7 Definition (term). For a (constructor-based) signature Σ and a (S-indexed) fam-
ily of (sets of) variables X, we define the (S-indexed) family of well formed terms
T (Σ, X) inductively as the smallest set such that the following conditions hold:

• all variables are terms: ∀x ∈ Xs (s ∈ S) : x ∈ Ts(Σ, X) and

• all well sorted applications are terms:
∀f ∈ Ωs1· ... · sn , ∀ti ∈ Tsi(Σ, X) (i ∈ {1; . . . ;n− 1}, si ∈ S) :
f(t1, . . . , tn−1) ∈ Tsn(Σ, X).

3.8 Notation. We note the set of free variables of a term t as V(t). By abuse of
notation we write also V(t1, . . . , tn) def=

⋃n
i=1 V(ti) for the set of free variables of a

collection of terms t1, . . . , tn.
5In the language we consider here, the S is the set of sequences over S, where the concatenation of

sorts is written as ·.

80

3.1. STORES

zero + x→ x (R+1)
succ(x) + y → succ(x+ y) (R+2)

x− zero → x (R−1)
succ(x)− succ(y)→ x− y (R−2)

x mod y → x | x < y (R mod1)
x mod y → (x− y) mod y | x ≥ y (R mod2)

zero < succ(x)→ true (R<1)
succ(x) < succ(y)→ x < y (R<2)

x ≥ zero → true (R≥1)
succ(x) ≥ succ(y)→ x ≥ y (R≥2)

Table 3.1: Rules for the Signature Σnat

When a term does not contain an application of a defined function, we call it a
constructor term. A pattern is a well sorted term of the form f(t1, . . . , tn), where f is
a defined function and the ti’s are constructor terms (∀i ∈ {1; . . . ;n}). We call a term
operation-rooted when it has an operation symbol at the root, otherwise it is said to
be in head normal form. A (constructor) term t is called ground , if it contains no free
variables, i.e., using notation 3.8, if V(t) = ∅.

The semantics of the operators is defined by means of (conditional) rewrite rules.

3.9 Definition (rule). A (conditional rewrite) rule R is a triple 〈lhs, rhs, condition〉,
noted lhs→ rhs | condition, such that

• lhs6 is a linear pattern, i.e., each free variable of lhs occurs at most once in lhs,
and

• condition =
∧n
i=1 ti is a condition, i.e., a possibly empty (n ≥ 0) conjunction of

terms (of sort Truth) ti ∈ TTruth(Σ, V(lhs)).

If the condition is the empty conjunction, i.e., the constant true, it is often omitted:
we write an unconditional rewrite rule simply as lhs → rhs. Notice that definition 3.9
could be refined by additional conditions on the use of free variables in the rhs and
condition. For instance, one might require that for all rules we have that the rule does
not introduce new free variables, i.e., V(rhs) ∪ V(condition) ⊆ V(lhs).

3.10 Example. The rules shown in table 3.1 complete example 3.6 by defining the
classical semantics of the operators of the signature Σnat .

The following notation extends the notion of free variables to rules, by taking the
union of the free variables of the terms occurring in the rule.

3.11 Notation. We extend the notation of free variables to rules by noting the set of
free variables of a rule R = l→ r | c as V(R) = V(l→ r | c) = V(l) ∪ V(r) ∪ V(c).

6lhs (respectively, rhs) stands for left (respectively, right) hand side.

81

CHAPTER 3. COMPUTATION MODEL

A set of (conditional) rewrite rules, as for instance in example 3.10, defines a (con-
ditional) Term Rewriting System (TRS) which we also call a declarative program.

3.12 Definition (program). A program or constructor-based term rewriting system
F is a pair F = 〈Σ, R〉 of a (constructor-based) signature Σ and a set of rules R.

Informally, a (declarative) program can be seen as a description of a theory defining
the static relationships between the symbols of the signature. The use of such a theory
description is defined by the operational semantics. One possible operational semantics
is presented in the following subsection.

3.1.2.2 Operational Semantics

The operational semantics of a program is defined by rewriting [DJ90, Klo92] and
narrowing [Sla74]. In our setting, rewriting allows to compute normal forms of an
expression, whereas narrowing allows to compute a substitution such that an expression
can be reduced to normal form. Before defining rewriting and narrowing formally, we
introduce two further definitions, namely substitutions and positions.

Throughout this section, we suppose that we are given a program F = 〈Σ, R〉.

3.13 Definition (substitution). A substitution σ is a mapping σ : X → T (Σ, X)
from variables to terms such that σ(x) is of sort s for all variables x ∈ Xs and such
that the s-domain of σ, i.e., SDom(σ) def= {x ∈ X |σ(x) 6= x}, is finite.

By abuse of notation, we also note σ the unique extension of a substitution σ to
terms, i.e., σ : T (Σ, X) → T (Σ, X). A unifier of two terms t and t′ is a substitution
σ such that σ(t) = σ(t′).

We frequently identify a substitution σ with the set {x 7→ σ(x) |x ∈ SDom(σ)}.
The set of all substitutions is denoted by Sub and Id denotes the identity-substitution,
i.e., Id def= {x 7→ x |x ∈ X}7.

We call a term t′ an instance of a term t if there exists a substitution σ with σ(t) = t′,
in which case we write t ≤ t′. A substitution σ is called more general than a substitution
σ′ if there exists a substitution ϑ such that for all variables x, ϑ

(
σ(x)

)
= σ′(x). We

denote a most general unifier of two terms t and t′ by mgu(t, t′).

3.14 Example. We have mgu
(
a+ b, succ(x) + y

)
=
{
a 7→ succ(x); b 7→ y

}
.

Using substitutions, we can define the notion of a variant of a rewrite rule, which can
be obtained by consistently renaming all free variables of the rule (see notation 3.11) by
fresh variables, where a fresh variable is a variables that does not occur in the current
environment (or computation).

3.15 Definition (variant). Let W be a set of variables, and R a (conditional) rewrite
rule, i.e., R = l → r | c. We call a variant of R with respect to W as a (conditional)
rewrite rule R′ = l′ → r′ | c′ such that there exists an injective substitution σ

def= {x 7→
y |x ∈ V(R) and y 6∈W} and we have σ(l) = l′, σ(r) = r′ and σ(c) = c′.

7Notice that we have SDom(Id) = ∅.

82

3.1. STORES

In the sequel, we consider most of the time variants of rules with respect to the set of
all variables occurring in the current environment or computation. Therefore, whenever
we omit the set W , it should be understood as the set of all variables occurring in the
current environment or computation.

In order to differentiate the subterms of a term, we recall the notion of positions.

3.16 Definition (position). A position is a sequence of positive integers identifying
a subterm in a term. The empty sequence, denoted by Λ, denotes the term t itself for
every term t. For every term of the form f(t1, . . . , tn), position p and positive number
i ∈ {1; . . . ;n} the sequence i · p identifies the subterm at position p of ti.

We denote by Pos the set of all positions.

Using positions, replacements of subterms can be easily described.

3.17 Notation. We write t|p for the subterm at the position p of the term t. The
result of replacing t|p by t′ in t is denoted by t[t′]p.

We are now ready to define rewriting. Since our rules are allowed to contain variables
in the condition and the right hand side which do not occur in the left hand side, we
use variants of rules for rewriting.

3.18 Definition (unconditional reduction step). A term t can be rewritten by an
unconditional reduction step to a term t′, i.e., t →p, R t′ if there exist a position p, a
variant R′ = l → r of an unconditional rewrite rule R ∈ R and a substitution σ with
t|p = σ(l) and t′ = t[σ(r)]p.

We let ∗→ denote the transitive and reflexive closure of →. A term t is reducible to
a term t′ if t ∗→ t′, and irreducible if there is no term t′ such that t → t′. A normal
form of a term t is an irreducible term t′ such that t is reducible to t′. In the sequel,
we suppose that the considered term rewriting systems are confluent , i.e., that if there
exists a normal of a term t, than this normal form is unique determined. We note the
normal form of a term t as t↓.

3.19 Example. Considering the signature and rules of examples 3.6 and 3.10, we have
that the term succ(zero)+ succ(zero) is reducible to succ(succ(zero)), since we have the
following rewriting derivation:

succ(zero)+succ(zero) →Λ, (R+2) succ(zero +succ(zero)) →1·Λ, (R+1) succ(succ(zero))
(3.1)

The application of a conditional rewrite rule R = (l → r | c) adds the condition
that all terms of the condition have to be reducible to the constructor term true

in order to apply the rule R. Hence, the definition of a conditional reduction step
generalises definition 3.18.

3.20 Definition (reduction step). A term t can be rewritten to a term t′ by means
of a reduction step, i.e., t →p, R t

′ if there exist a position p, a variant R′ = l → r | c
of a (conditional) rewrite rule R ∈ R and a substitution σ with t|p = σ(l), t′ = t[σ(r)]p
and σ(ti)

y = true for all terms ti in c, i.e., c =
∧n
i=1 ti.

83

CHAPTER 3. COMPUTATION MODEL

3.21 Example. For the program consisting of the signature and rules of examples 3.6
and 3.10 we have the following reduction step:

zero mod succ(zero)→Λ, (R mod1) zero (3.2a)

since the substituted condition of rule (R mod1) is reducible to true, i.e.,(
σ(x < y)

)
=
(
zero < succ(zero)

)
→Λ, (R<1) true (3.2b)

where σ is defined as σ def= {x 7→ zero; y 7→ succ(zero)}.

The difference between narrowing and rewriting is that a narrowing step instantiates
free variables of the considered term in order to apply a rewrite rule (whereas rewriting
would simply fail). Stated otherwise, narrowing uses unification instead of pattern
matching when selecting the rewrite rule to apply.

3.22 Definition (unconditional narrowing step). An unconditional narrowing
step is a transformation of a term t to a term t′, i.e., t p, R, σ t

′ if there exist a non-
variable position p in t (i.e., t|p 6∈ X, a variant R′ = l→ r of an unconditional rewrite
rule R ∈ R and a unifier σ of t|p and l such that t′ = σ(t[r]p). In this case the term t
is called narrowable at position p using the rule R and substitution σ.

We let ∗
 denote the transitive and reflexive closure of . For a finite narrowing

derivation, i.e., a sequence of (unconditional) narrowing steps,

t1 p1, R1, σ1 t2 p2, R2, σ2 · · · pn, Rn, σn tn+1 (3.3)

(with n ≥ 0) such that the term tn+1 is a constructor term, i.e., not narrowable, we
call the substitution ϑ def= σn ◦ · · ·◦σ1

8 the answer substitution for the term t1. Since the
instantiations of the variables in the rules Ri by the substitution σi are not relevant for
the computed result (i.e., the term tn+1 and the answer substitution ϑ) of a narrowing
derivation, we omit the corresponding parts of ϑ in the sequel.

3.23 Example. Referring to example 3.10, the following are examples of narrowing
steps:

a ≥ b Λ, (R≥1), {b7→zero} true (3.4a)
a ≥ b Λ, (R≥2), {a 7→succ(x); b7→succ(y)} x ≥ y (3.4b)

Thus the unconditional narrowing step (3.4a) yields the answer substitution {b 7→ zero},
whereas the step (3.4b) leads to a term which can be further narrowed.

In our setting, we use narrowing mainly for goal solving, i.e., for searching an
answer substitution such that the goal can be reduced to true. We define a goal as a
conjunction of terms (of sort Truth).

3.24 Definition (goal). Let Σ = 〈S, Ω〉 be a signature and X a (S-indexed family of)
sets of variables. A goal g is defined as a (finite) conjunction of terms of sort Truth,
i.e., g def=

∧n
i=1 ti where we have for all i ∈ {1; . . . ;n} that ti ∈ TTruth(Σ, X).

8We denote by ◦ the composition of functions, i.e., (f ◦ g)(x)
def
= f

(
g(x)

)
(∀x).

84

3.1. STORES

Roughly speaking, a (conditional) narrowing step consists in removing a term from
a goal, performing an unconditional narrowing step on the term and adding the new
term together with the substituted condition of the used rule to the remainder of the
goal.

3.25 Definition (narrowing step). A narrowing step is the transformation of a goal
g into a new goal, i.e.,

(
{t} ∧ g

)
 (l→ r |(

∧n
i=1 ti)), σ

(
{t′} ∧

(n∧
i=1

{σ(ti)}
)
∧ σ(g)

)
(3.5)

if there exists a position p of t such that t p, l→r, σ t
′.

We say that a goal g is solved, if g = {true} and call a goal g solvable if there exists
a narrowing derivation leading from g to {true}. The reason why we define conditional
narrowing on conjunctions of terms (of sort Truth) and not just on a single term as for
conditional rewriting (see definition 3.20), is that we cannot evaluate the conditions at
once due to the presence of uninstantiated variables. Notice that the commutativity
and associativity of conjunction implies that in equation (3.5) any conjunct of the goal
g could have been chosen (instead of t).

3.26 Example. Consider the goal g =
{

(x mod succ(succ(zero))) < succ(zero)
}

. A
narrowing derivation yielding the answer substitution {x 7→ zero} is the following{

(x mod succ(succ(zero))) < succ(zero)
}

 Λ, (R mod1), Id

{
x < succ(zero); x < succ(succ(zero))

}
 Λ, (R<1), {x 7→ zero}

{
true; x < succ(succ(zero))

}
 Λ, (R<1), {x 7→ zero}

{
true

} (3.6)

To compute a reduction (respectively, narrowing) step one must compute the step’s
position. A rewriting strategy (respectively, narrowing strategy) is a (partial) func-
tion St : T (Σ, X) → Pos × R (respectively, St : T (Σ, X) → Pos × R × Sub) such
that whenever St(t) = (p, R) (respectively, St(t) = (p, R, σ)), t is reducible (respec-
tively, narrowable) at position p using the rule R (and the substitution σ). For the
unconditional case, different rewriting and narrowing strategies have been described,
see for instance [AEH94, AEH00, AEH97]. The soundness and completeness of (lazy)
constrained (or conditional) narrowing has been shown in [LF92].

To conclude the presentation of the simple declarative language, we show that it
meets the general requirements on languages that are to be used for the description of
stores in our computation model (see before, i.e., section 3.1.1 and definition 3.1).

3.27 Example. Obviously, the definition of a program (see definition 3.12) corresponds
to the definition of a store (see definition 3.1). The predicate of definition 3.1 can be
defined as follows:

F ` t ⇔ t
∗
 Id true with the identity-substitution Id (3.7)

85

CHAPTER 3. COMPUTATION MODEL

3.1.3 Names

We conclude this section with the description of an additional built-in which is necessary
in order to model mobile processes. Recall from the introduction, that processes of a
component modify the store or declarative program by the execution of actions. As we
show in the following section, these actions are defined on a meta-level with respect
to the store, since they manipulate stores or declarative programs as data (see also
figure 3.2).

Notice that at the level of the actions, i.e., at the meta-level with respect to the
store or declarative program, we distinguish between the value denoted by a constant
c (which is a meta-representation of a term) and the constant c itself (which is a
function symbol). This distinction is present in all languages providing assignment. In
imperative programming languages, references or pointers allow to distinguish between
the pointer or reference and the value which is referenced. Notice that the notion of
variables in imperative languages denotes both, the value stored in a given place in
the memory (when occurring at the right of :=) and the address of the place in the
memory where the value is stored (when occurring on the left of :=). Similarly, in SML
[MTHM97], where a symbol of type (or sort) ref t is distinguished from a symbol
of type t. The distinction between structural equality (i.e., equality of values) and
physical equality or object identity is another reflection of this difference.

As already mentioned in section 1.1.2, we need, besides actions modifying the rules
of a store, also actions for the modification of the signature. For the creation of new
(function) symbols we introduced in section 1.1.2 the elementary action new. This ac-
tion necessitates the introduction of a new parameterised sort representing the names or
references to (function) symbols into the store itself. The following example illustrates
this necessity.

3.28 Example. Consider a process, say A, which creates a new communication chan-
nel, say c, such that another, concurrently executing process, say B, should send mes-
sages to A using c. For simplicity, we suppose that channels are represented as lists of
messages. Notice that since the channel c is freshly created by the process A, it is in
the local scope of A and the process B has no knowledge of c. Since processes in our
computation model use the common store for their interaction and communication, A
has to use the store to inform B about the new channel c. Thus suppose that A can
send messages to B using a channel d. But passing the channel c to the process B is
to be distinguished from passing the current value of c (which is probably an empty list
of messages). Therefore, the type of messages that can be passed through the channel d
have to be names of channels.

Therefore we introduce a new parameterised sort to denote the sort of the name of
a symbol of sort s.

3.29 Definition (Name). The sort Name(s) denotes the sort of symbol-names such
that the sort of the symbols is s. If c is of sort Name(s), we denote by c↑ the associated
symbol of sort s.

For the ease of programming, we require that the names of the symbols declared
by the programmer are added implicitly. For a signature Σ = 〈S, Ω〉, we call name-
signature Σn the signature of all the names of the symbols of Σ. Thus we require that

86

3.2. USER DEFINED ACTIONS

the signature Σ̃ of a store is the (disjoint) union of the signature Σ as defined by the
programmer and the associated name-signature:9

Σ̃ def= Σ]
〈{

Name(s)
∣∣ s ∈ S}, { f̂ : Name(s)

∣∣ f ∈ Ωs

}〉︸ ︷︷ ︸
def= Σn

(3.8)

Accordingly, the execution of the (elementary) action new(x, s) introduces two new
symbols in the (signature of the) store, namely x of sort Name(s) and x↑ of sort s.
x stands for the name of (or a reference to) the symbol x↑. The elementary action
new together with the parameterised sort Name(s) allows to model mobility in the same
way as the π-calculus [Mil99], where mobility is modeled by a varying communication
structure due to the possibility of passing the names of communication channels.

3.2 User Defined Actions

We have already mentioned in the introduction that actions are the principal con-
stituents for the description of processes, since each run of a process corresponds to the
performance of a possibly infinite sequence of actions. In this section, we discuss the in-
tegration of the definition of actions in a computation model for concurrent declarative
programming [ES01b].

The actions executed by processes operate on stores, i.e., declarative programs.
The effect of executing an action on a store is the modification of the store. Notice
that, whenever a process has to execute actions on some physical device, the latter is
considered as a component, that is to say, modeled as a store for the data description,
together with processes for the control part of the device. This led us in section 1.1.2
to characterise an action as a total recursive function which goes from stores to stores.

Using our computation model, the combination of processes with a declarative pro-
gramming language L becomes straightforward as long as it is possible to define or to
use actions which modify programs written in L. Unfortunately, actions over programs
are often supposed to be not a fundamental part of a language and are not specified
for most familiar programming languages. Exceptions are reflective languages, as for
instance Maude [CDE+99] or Common Lisp [Ste90] in combination with its Metaob-
ject Protocol (MOP) [KdRB91]. In a reflective language, programs can be represented
as data in the language itself, and these data objects representing programs can be
executed by an interpreter.

Nevertheless, even if classical programming languages do not provide actions as a
distinguished notion, particular actions on programs exist, but they are mixed with
“predefined built-ins” of the syntax of the language. For instance, Prolog [DEDC96]
provides the “predicates” assert and retract which allow one to add and to remove
clauses to and from a program. In SML [MTHM97] (respectively, Scheme [ADH+98]
or Common Lisp [Ste90]), the “function” := (respectively, setq) permits to update the
value associated to a “mutable cell”. In Erlang [AVWW96], the “built-in functions”

9The (disjoint) union of two signatures Σ1 = 〈S1, Ω1〉 and Σ2 = 〈S2, Ω2〉 is defined in the obvious

way, e.g., Σ1] Σ2
def
=
〈
S1] S2, Ω1] Ω2

〉
.

87

CHAPTER 3. COMPUTATION MODEL

load_module, delete_module and purge_module allow to exchange a version of a
module by a new, “corrected” one.

All these built-in actions are supposed to be used inside the sentences defining a
program. Thus these actions have the side-effect of modifying the program in which
they are used. Stated otherwise, these actions do not have a parameter representing
the program to which the action has to be applied. Thus, it is implicit that they
applied to the program in which they occur. There is a further limitation related to
these built-in actions. In fact, there may be different possibilities for the semantics of
a particular action. For instance, the family of languages for ccp [Sar93, chapter 3]
distinguishes between numerous different ways to add a formula to a store or to check
for the entailment of a formula.

For these reasons, we suggest to allow the definition of actions, so that a programmer
is not restricted to the actions built-in into the programming language, but can rather
use always the action most suited for the particular need at hand. We believe that this
should lead to more readable and consequently more easily maintainable programs.

3.2.1 Meta-Signatures for the Definition of Actions

There are many ways to define actions on programs for a given language L, for example
by providing a set of built-in actions (together with operators for combining them) or
by providing a dedicated action description language (ADL). An ADL associated to a
declarative language programming L is defined as a language that allows the description
of actions over programs written in L. Therefore, an ADL (for the language L) is also
a meta-language (for L) since the entities manipulated by an ADL are L-programs.
This implies that an ADL needs at least to provide the data types corresponding to
L-programs.

A natural choice for an ADL of a declarative language L is the language in which a
compiler or interpreter for L-programs is implemented. In order to keep our computa-
tion model open to different implementation languages, we require only the definition
of some abstract data type (ADT) for L-programs. Then we define actions as functions
over these ADT’s, without imposing a particular way of their implementation. For
instance, we use a syntax similar to SML [MTHM97] for the examples of specifications
of actions in section 3.2.2.

We call signature of the ADT’s of L-programs a meta-signature, since this signature
is on the meta-level with respect to the signatures of the programs or stores, as we have
shown in figure 3.2.

3.30 Definition (meta-signature). Consider a declarative programming language L.
A meta-signature for L is a pair MΣL = 〈ML, MOL〉 of a set of meta-sorts ML and
a (ML10-indexed) family of meta-function symbols MOL, such that ML contains at all
the sorts corresponding to the syntactic entities of the language L.

Obviously, the meta-sorts representing the syntactical entities of programs depend
on the programming language. For functional language L for instance, the set of
meta-sorts ML contains at least the sorts symbolL of symbols, variableL of variables,

10Similar to definition 3.1, we note ML the set of sorts that can be constructed over the set of basic
meta-sorts ML.

88

3.2. USER DEFINED ACTIONS

storeL of stores (or programs), termL of terms and ruleL of rules. As an example of
a meta-signature, we give a simplified presentation of the data type actually used in
the implementation of the simple declarative language presented in section 3.1.2. This
language is also used in the current prototype for the description of the stores.

3.31 Example. In the case of the simple functional logic language presented in sec-
tion 3.1.2, we might have the meta-signature shown in figure 3.3, where we use a syntax
similar to SML [MTHM97]. The profile of a function name is written as (-> is supposed
to be right-associative):

name : argument_sort_1 -> ... -> argument_sort_2 -> result_sort

The sort of lists with elements of sort element_sort is denoted by element_sort
list, and there are predefined sorts of boolean values bool and character strings
string. The keyword type introduces the declaration of a new sort. Finally, com-
ments are enclosed between (* and *).

This meta-signature or ADT is defined in a modular way. The signatures of basic
data types (i.e., meta-sorts) such as strings and generic lists are missing. Data types
of sorts, operations, variables, terms, rules and stores are described by their construc-
tors (make_?), testers (is_?) and accessors (get_?), the straightforward definitions
of which are also omitted. Note that this ADT is not meant to be an (optimized)
implementation of the considered declarative language, but just a support to ease the
description of examples for the definition of actions in the subsequent section.

Other examples of meta-signatures or ADT’s of programs are FlatCurry [Han,
HAK+00a], an intermediate representation of Curry (or other functional-logic) pro-
grams or the sort Module used in the META-LEVEL module of Maude [CDE+98, CDE+99]
for the representation of Maude-modules.

Since different declarative programming languages can be implemented in very dif-
ferent languages, which are not necessarily declarative, not to speak of being based on
constructor based term-rewriting systems, we restrict ourselves to examples of possible
definitions of meta-operators, most prominently elementary actions. Therefore, we de-
fine actions (over a declarative language L) as curryfied functions that may take some
arguments and return total recursive functions from L-programs to L-programs.

3.32 Definition (elementary action). Consider a declarative language L and its
meta-signature MΣL = 〈ML, MOL〉. An elementary action a over L-programs is defined
as a total recursive function the profile of which has the following form

a : s1 → . . . → sn → storeL → storeL (3.9)

where si ∈ML (∀i ∈ {1; . . . ;n}, n ≥ 0) and storeL (∈ML) is the sort of L-programs.
We also require that the store returned by an elementary action be well-formed, i.e., a
correct L-program.

Obviously, whatever formalism is used for the definition of actions, we have to
ensure that an action respects the conditions of definition 3.32, namely that the action
is a total and recursive function and that the result of an action is a well-formed L-
program. A possibility to guarantee these properties is to (syntactically) restrict the

89

CHAPTER 3. COMPUTATION MODEL

type store (* STORES *)
make_store : sort list -> operation list -> rule list -> store
get_sorts : store -> sort list
get_operations : store -> operation list
get_rules : store -> rule list

type rule (* RULES *)
make_rule : term -> term -> term -> rule
get_lhs : rule -> term
get_rhs : rule -> term
get_condition : rule -> term

type term (* TERMS *)
make_variable_term : variable -> term
make_application : operation -> term list -> term
is_variable : term -> bool
is_application : term -> bool
get_variable : term -> variable
get_operation : term -> operation
get_arguments : term -> term list

type variable (* VARIABLES *)
make_variable : string -> sort -> variable
get_variable_name : variable -> string
get_variable_sort : variable -> sort

type operation (* OPERATIONS *)
make_function : string -> sort -> operation
make_constructor : string -> sort -> operation
get_function_name : operation -> string
get_constructor_name : operation -> sort
get_function_sort : operation -> string
get_constructor_sort : operation -> sort
is_function : operation -> bool
is_constructor : operation -> bool

type sort (* SORTS *)
make_basic_sort : string -> sort
make_functional_sort : sort -> sort -> sort

Figure 3.3: Sample of a Meta-Signature (or ADT) for the simple Declarative Language
of section 3.1.2.

90

3.2. USER DEFINED ACTIONS

formalism used for their description, i.e., the ADL, in order to either guarantee, or at
least allow the definition of effective analyses.

Notice that a particular consequence of the requirement, that the resulting store
of an elementary action has to be well formed, is that it has to be well-typed (since
this is a necessary condition for a well-formed store). As we see in the sequel, for
the set of actions introduced in section 1.1.211, namely tell, del and :=, the need for
dynamically type-checking the store (i.e.,, at the moment of the execution of the action)
can be avoided, and replaced by a static analysis of the program before its execution.
Consider the assignment action c := v. For the resulting store to be well-typed, we have
to require that the sorts of the constant c and the term (or value) v are the same. This
condition can be checked during the analysis of a process, since we know the sorts of
all symbols and terms in the store.

Notice that we suggest to define actions by a well mastered mathematical concept,
namely total recursive functions, for the description of which appropriate (program-
ming) languages have been defined and used for some time now. Notice that similarly,
the semantics of the Haskell-type system is defined by a functional program (written
in Haskell) [Jon99].

3.2.2 Examples of Definitions of Actions

In this section we give examples of definitions of actions on a declarative programming
language similar to the language which was introduced in section 3.1.2. For this pur-
pose, we use as ADL a functional language, syntactically close to SML [MTHM97],
where we denote the application of a function f to two arguments x_1 and x_2 by (f
x_1 x_2), that is to say with parentheses around the function symbol and its argu-
ments.

Recall that, according to definition 3.12, a store or program in our simple declarative
language (see section 3.1.2) is a pair 〈Σ, R〉 where the signature Σ is a pair Σ = 〈S, Ω〉
of a set of sorts S and a family of sorted functions Ω, and R is a set of conditional
rewrite rules. A corresponding ADT or meta-signature has been presented given in
example 3.31 (and figure 3.3).

3.2.2.1 Adding Rules

The actions which are most straightforward to define are those which just add something
to a part of the store, for example the addition of a rule. In example 1.1.5, for instance,
the elementary action tell(is eating(x)) adds the rule “is eating(x)→ true”.

Obviously, since in our example the store contains a list of rules, we have at least
two different possibilities to implement this action, depending on the position where
the new rule is inserted into the list of rules. Two reasonable choices are for instance
the beginning and the end of the list – the following is a (naive) specification of the
former:

add_rule : rule -> store -> store
add_rule rule store =

11In fact, most actions that do modify only the rules of the store enjoy the same property.

91

CHAPTER 3. COMPUTATION MODEL

make_store (get_sorts store)
(get_operations store)
(cons rule (get_rules store))

Prolog provides two built-in “predicates”, namely asserta and assertz, which add
a new clause at the beginning (asserta) or the end (assertz) of the clauses defining
the corresponding predicate [DEDC96, pages 44 – 47]12. Obviously, the possibilities are
different, if the ADT of stores is more sophisticated in order to implement “optimal”
evaluation strategies, where rules are stored, for instance, within definitional trees
[Ant92].

There are still more possibilities for the addition of a rule to a store. Consider the
case of adding several times the same rule. Depending on the operational semantics,
the existence of duplicated rules may be important (notice that the standard of Prolog
[DEDC96] is not very precise about how this is handled in Prolog). In classical ccp
for instance, telling the constraint c several times (i.e., adding the constraint c several
times to the store) is equivalent to telling it just once [Sar93]. On the other hand, in
linear logic programming (see section 2.1.4), the number of occurrences of a formula
does have an influence on the theory represented by the store.

These possibilities could be implemented by combining the addition of a rule with
a test, such as adding a rule only if it is not yet present in the store (modulo some
equivalence relation).

3.2.2.2 Removing Rules

There are several possibilities to remove a rule from a store. A programmer might want
to remove a precise rule, or all rules of a specified form. Thus, when removing a rule,
we should test each rule separately if it should be removed or not. Different possibilities
of removal correspond then to different tests, which might be a functional parameter
of the action. Examples for such test are identity, identity up to renaming of variables,
pattern matching, unification, equality (equivalence with respect to the store), etc.. A
possible implementation of the removal action is the following:

remove_rules : (rule -> bool) -> store -> store
remove_rules test store =

make_store (get_sorts store)
(get_operations store)
(find_all (fun x -> not (test x)) rules)

where the function (find all t list) returns the list of all elements e of the list
list for which the evaluation of (t e) returns true. We use an anonymous function
(or λ-abstraction) to inverse the result of the test test, that is to say the expression
(find all (fun x -> not (test x)) rules) denotes the list of all rules r in the list
of rules rules for which (test r) returns false.

12The clause of a Prolog-program are searched sequentially [DEDC96, pages 22 – 23], and different
primitives allow to add at the beginning or the end of the clauses. However, the standard of Prolog
does not specify if the clauses are stored in a list (or multi-set, allowing double occurrences) or set (in
which case no double occurrences are possible). Thus one has to guess (from the examples) that the
clauses are stored in a list (and their multiplicity matters).

92

3.2. USER DEFINED ACTIONS

In Prolog, the built-in “predicate” abolish(predicate) removes all clauses for a
given predicate predicate (in a single step), whereas retract(pattern) removes all
rules which can be unified with the rule-pattern pattern (one by one upon backtrack-
ing) [DEDC96, pages 37 – 38, 154 – 155]. While abolish is not very “precise”, the
successful use of retract requires to control the number of necessary backtracks, which
is in our opinion not straightforward.

3.2.2.3 Assignment

Probably the most common action is assignment (:=) as it is ubiquitous in imperative
programming languages. Assignment is also used in some declarative languages such
as SML [MTHM97], Common Lisp [Ste90], Scheme [ADH+98] or Oz [Smo95b]. Using
the actions defined above (i.e., the functions add rule and remove rules), the action
of assignment might be defined as follows:

(:=) : operation -> term -> store -> store
(:=) operation term store =
(add_rule

(make_rule (make_application operation nil) term true)
(remove_rules

(rule_pattern_match
(make_rule (make_application operation nil)

(make_variable_term x)
(make_variable_term y)))

store))

where x and y are variables, true is the boolean constant true, and nil the empty list.
rule pattern match is a test function which implements a pattern-matching-based
removal13:

rule_pattern_match : rule -> rule -> bool
rule_pattern_match rule1 rule2 =

(term_matches (get_lhs rule1) (get_lhs rule2)) and
(term_matches (get_rhs rule1) (get_rhs rule2)) and
(term_matches (get_condition rule1) (get_condition rule2))

where we use the standard pattern matching function term matches:

term_matches : term -> term -> bool

(term matches term1 term2) returns true if term1 matches term2.
Thus the assignment c := term removes all rules defining the (constant) opera-

tion c and adds a single rule which redefines c to have the value term. This view of
assignment is also adopted in the coordination language Linda [Gel85, page 98].

Notice, that in our computation model, a “variable” in the sense of standard imper-
ative programming languages corresponds to a “changing constant”: using assignment,

13We suppose that and is evaluated “lazily” in a sequential manner from left to right. To make the
example more readable, we write and instead of && which would be required by SML [MTHM97].

93

CHAPTER 3. COMPUTATION MODEL

we may change the theory which defines the value of the constant. However, in each of
these theories, the value (of the constant) does not change, i.e., it is constant. Notice
further, that as in imperative programming, assignment leads to a state change. But
in contrary to imperative programming languages, assignment is not the only possible
action.

As already mentioned in section 1.1.2, a further reasonable requirement on the
assignment action (c := term) is to reduce the new value, i.e., term, to normal-form,
i.e., the action might add a rule defining c to have the value term’ where term’ is the
normal-form of term (under the assumption that the store is confluent).

3.2.2.4 Modifying the Signature

So far, we have only considered the modifications of the rules of a store. Modifica-
tions of the other part of the store, i.e., its signature, might be interesting too. For
instance, consider an implementation of a window system. Such a system needs to
store information about all the different windows that are currently displayed on the
screen. Roughly speaking, a theory describing the current state of the window system
might model every window by a constant. Hence, when a request for the creation of a
new window arrives, the theory has to be changed, and a new constant corresponding
to the new window needs to be created. A similar example is the dynamic creation of
new communication channels, which is mandatory in order to model mobility through
link passing as in the π-calculus [Mil99].

These examples have in common that the enrichment of the signature is limited
to new constants, which then may be further used and modified by assignment as in
classical imperative programming languages. However, there are also situations where
the addition of a new operation, or even a new sort might be necessary. For instance, if
a program has to be modified, the new version of the program might use new operations
over new data-structures, that is to say new data-types. This happens for example if
we want to change the implementation of an algorithm using another, more efficient
data structure, as for instance graphs instead of lists.

Actions modifying the signature are executed implicitly in some of the interactive
interpreters for modern declarative languages, whenever the definition of new global
symbols is permitted, as for example the let-construct in ocaml [LDG+01] or SML/NJ
[SML98].

Removing declarations from the signature is more problematic. In particular, we
need to ensure that the symbol removed is no longer in use. While the condition of the
wellformedness of the resulting store ensures this for the rules of the store, it is more
problematic to ensure that no other process is still using this symbol. Therefore, we
consider in the rest of this thesis only actions that enrich signatures.

Notice further that an elementary action which adds symbols to the signature of a
store should have them as parameters. Otherwise the action could be used only once,
since there is no point in adding the same symbol twice14. In general, the introduction
of a new symbol is motivated by the use of this symbol in the sequel of the execution.
Thus we suggest to consider elementary actions that enrich the signature as binding
the symbols they introduce. This is similar to for instance, the receive operation of the

14Recall from definition 3.1, that signatures are sets of symbols.

94

3.3. COMPONENT SIGNATURES

π-calculus [Mil99], where the names received on a channel are bound in the subsequent
process. In the sequel, we use the following notation for the new symbols introduced by
an elementary action. Since an action can introduce both, sorts as well as operators,
the set of new symbols introduced by an action corresponds to a signature Σ̂ = 〈Ŝ, Ω̂〉.

3.33 Notation. We denote by N
(
a(t1, . . . , tn)

)
the signature of new symbols intro-

duced by the execution of the call to the elementary action a(t1, . . . , tn).

The following example defines the set of new symbols for some of the actions pre-
sented in the introduction and in this chapter.

3.34 Example. The actions tell (or add_rule), del (or remove_rule) and assignment
(i.e., :=) do not modify the signature of the store, we have immediately:

N
(
tell(R)

)
= N

(
del(R)

)
= N (c := v) def= 〈∅, ∅〉 (3.10a)

where R is a rule, c a function symbol and v a (meta-representation of a) term (of the
same sort as c).

3.35 Example. Consider the elementary action new mentioned in section 1.1.2. In-
formally, new(c, s) adds two symbols to the signature of the store, namely the new name
of a function symbol c of sort Name(s) and the associated (function) symbol c↑ of sort
s. Thus we define:

N
(
new(c, s)

) def=
〈
∅, {c : Name(s); c↑ : s}

〉
(3.10b)

3.3 Component Signatures

A component is defined as a part of a system. Consequently, the description of a compo-
nent that interacts with the rest of the system necessarily depends on the specification
of the system. In our computation model, a system is modeled as a set of components,
which are identified by means of storenames. Thus we can represent a system by the
set SN of all the storenames of the components forming the system, together with a
bijective mapping from storenames to components. In the following we therefore define
a component with respect to a set of storenames SN which represents the system the
component is designed for.

In the previous two sections of this chapter, we have already presented two parts of a
component that can be studied separately, namely the definition of a store, i.e., a declar-
ative program, and the definition of actions, i.e., functions over meta-representations of
declarative programs. In this section we present the notion of a component signature,
before we give the definitions of the different parts of a component in the following
sections. We illustrate the definition of a component signature by the example of the
multiple counters, and define the notion of component terms.

3.3.1 Component Signatures

A component signature defines all the symbols that occur in the description of a com-
ponent. Notice that these symbols belong to all the different levels shown in figure 3.4

95

CHAPTER 3. COMPUTATION MODEL

(Imports)

(Processes & Process Functions)

(Actions)

(Meta)

(Store)

(Translations)

A

MΣ

Σ

Trans

P, Π

I

Figure 3.4: Levels of a System Description: Structure of a Component-Signature

(which refines figure 3.2), that is to say to the level of the store, to the meta-level of
the store, as well as to the part describing the processes. Besides the symbols of the
stores (and the associated meta-representations) of the components in the system, a
component signature defines symbols for actions, translations, processes and functions
on processes and actions. These symbols defined in a component signature allow there-
fore the construction of processes and actions, which are introduced as new sorts,
along with the sort storename representing storenames. We comment on the different
parts of a component signature after the definition.

3.36 Definition (component signature). Let SN be a set of storenames. We define,
for a storename ŝn ∈ SN and a declarative language L, a component signature CΣ as
an eight-tuple CΣ = 〈Σ, MΣL, A, I, E, Trans, P, Π〉 where

• Σ = 〈S, Ω〉 is a signature of a store, i.e., of a L-program,

• MΣL = 〈ML, MOL〉 is a meta-signature for L,

• A is a ((S]ML)15-indexed) family of action symbols, the sorts of which are of
the form s1 → . . . → sn → storeL → storeL (n ≥ 0),

• I =
{

IΣsn = 〈Σsn , MΣLsn , Asn〉
∣∣ sn ∈ (SN r {ŝn})

}
is a (SN -indexed) family

of imported signatures IΣsn , i.e., triples of signatures Σsn = 〈Ssn , Ωsn〉, meta-
signatures MΣLsn = 〈MLsn , MOLsn 〉 (Lsn is the (declarative) language used for the
store of component sn) and ((S]MLsn)15-indexed) families of actions symbols Asn

(the sorts of which are of the form s1 → . . . → sn → storeLsn → storeLsn),

• E = 〈EΣ, EMΣ, EA〉 is a triple of a sub-signature16 EΣ, a sub-meta-signature EMΣ

and a subset of the action symbols EA, i.e., EΣ ⊆ Σ, EMΣ ⊆ MΣ and EA ⊆ A,
15As before (see definitions 3.1 (page 78) and 3.30 (page 88)), we note S the set of sorts that can be

constructed over the set of basic sorts S.
16For two signatures Σ1 = 〈S1, Ω1〉 and Σ2 = 〈S2, Ω2〉 we say that Σ1 is a sub-signature of Σ2,

written as Σ1 ⊆ Σ2, if S1 ⊆ S2 and Ω1 ⊆ Ω2. A similar relation is defined for all other kinds of
signatures, in particular meta-signatures, in the obvious way.

96

3.3. COMPONENT SIGNATURES

• Trans = {Tr sn | sn ∈ SN } is a (SN -indexed) family of (((S] Ssn)15-indexed) fam-
ilies of) translation symbols Tr sn (the sorts of which are of the form s1 → s2 with
s1 ∈ S and s2 ∈ Ssn),

• P is a (PS15-indexed) family of process symbols the range of which is process,
containing at least the parameterless process success ∈ Pprocess, which always
terminates successfully,

• Π is a ((PS15-indexed) family of process function symbols, the profile of which
contains at least one of the three sorts action, process or storename,

and where the set of sorts PS is defined as

PS
def= S]ML]

(⊎
sn∈(SNr{ŝn})

(Ssn]MLsn)
)
]{action; process; storename} (3.11a)

The following paragraphs motivate and comment on the different parts of a com-
ponent signature which are also shown in figure 3.4.

Σ: On the level of the store, a programmer has to specify the signature of the
initial stores. Obviously, the component signature has to contain the signature of the
store of the component itself, but in order to interact with other components, the
component signature needs to incorporate also (parts of) the signatures of the initial
stores of these other components (see the “imports” I). Notice that the signatures of
the components of a system are not necessarily of the same kind, since they may be
signatures of programs written in different declarative languages. For instance, some
of these signatures may follow a constructor discipline, while others do not.

MΣ: Along with the signatures of the stores, a component signature contains the
definitions of the meta-signatures or ADT’s corresponding to meta-representations of
the stores. As we have seen in section 3.2, these meta-signatures are necessary for the
definition of actions and correspond to the meta-level in figure 3.4.

A: Definition 3.36 extends the definition of actions of the preceding section, i.e.,
definition 3.32, to a richer set of admissible sorts for the parameters of an (elementary)
action. Besides meta-terms, also terms of the store are allowed as parameters. Thus
actions are different from meta-operators, since the sorts of the latter are constructed
only from meta-sorts, whereas the former have sorts constructed from meta-sorts and
sorts. The second kind of parameters is to be understood as parameters of the meta-sort
corresponding to the syntactic entities of the corresponding sort. For instance, for the
language presented in section 3.1.2, an example of such a syntactic entities are terms,
and the corresponding meta-sort is term. As already mentioned in the introduction, the
meta-terms are obtained from terms by means of an implicit application of the mapping
reify . Roughly speaking, reify associates to a syntactic entity e of a declarative language
L its representation as a meta-term (of the meta-sort e corresponding to this entity
e ∈ML). A particular case are terms of sort Name(s) (see section 3.1.3). To such terms,
the mapping reify associates the corresponding symbol (in the language of section 3.1.2,
a meta-term of meta-sort symbol ∈ML).

97

CHAPTER 3. COMPUTATION MODEL

Besides offering a more convenient description of processes, the use of the sorts of the
stores in the profiles of action symbols has the additional advantage of enabling static
type-checking of the arguments of actions. For instance, considering the assignment
action c := v (see section 3.2.2.3), we can statically verify that the sorts of the function
symbol c and the term v are the same. Thus it is no longer necessary to verify this
condition at runtime17.

I, E: The imported signatures allow the processes of the component to interact
with other components of the system. Since processes modify stores, we need to import
the signatures of the stores, the meta-signatures and the (elementary) actions defined
on the remote component. The exported symbols of a component are those which other
components are allowed to import. So it seems natural to require that these symbols are
defined in the component signature and that not necessarily all symbols are exported.

Trans: Processes communicate by modification of the stores. If the stores are
written in different (declarative) languages, the communication of a value from one
store to another requires the translation of this value. These translations are described
by means of translations functions Trans. Furthermore, since processes communicate
by modifying the stores, the values received by a component are already translated
(since they are already in the store). Hence, the burden of translation is on the sender
of a message, as a part of the construction of a well-formed action that can be executed
on the remote store. Thus it seems natural to index the translations of a component by
functional sorts s1 → s2, where s1 is a sort of the store (i.e., s ∈ S) of the component
and s2 is a sort imported from the component with storename sn (i.e., s2 ∈ Ssn).

PS: The set of sorts PS defines the (basic) sorts that can be used in the definition
of processes and process functions. Besides the (disjoint) union of the sorts and meta-
sorts, PS contains three additional sorts, namely action, process and storename. The
sort storename represents storenames and allows to pass storenames as parameters to
processes. The sort action represents actions, i.e., pairs of a storename and a call to
an (elementary) action. action is necessary for the definition of functions that yield
actions. The sort process has the same rôle as action, but for processes.

P , Π: The last two kinds of symbols introduced by a component signature are
processes and process functions. The difference between the processes P and the process
functions Π is similar to the distinction between constructors and defined functions in
constructor-based languages (as for instance the simple declarative language presented
in section 3.1.2), i.e., processes define the basic entities on which process functions
operate. On the one hand, the meaning of process functions is defined by (rewrite)
rules, and their operational semantics by rewriting. On the other hand, the processes
are defined by process definitions, and their operational semantics is given by means
of transition system in chapter 4. Thus, similar to the constructors in section 3.1.2,

17This remark holds only for actions that are part of the program which is analysed before the
execution, and does not in general hold for actions that are received during execution of the program
(because they are unknown when the program is analysed).

98

3.3. COMPONENT SIGNATURES

processes are undefined in the rewriting system defining the process functions. A further
difference is that we require processes in P to have the result-sort process.

Notice that a process function cannot be defined as a classical function, meta-
function or a translation function, since the profile of a process function is required
to contain at least one occurrence of one of the sorts action, process or storename.
This justifies also to consider process functions as a separate notion.

We do not distinguish between “process functions” and “action functions” (i.e.,
process functions the result sort of which is action), as both are on the same level in
figure 3.4. They are used for a high level description of processes, and are not modified
during the execution of the system. Nevertheless, we use the term action function
in the sequel to denote process functions the profile of which does not contain any
occurrence of the sort process.

The following convention abbreviates the description of processes. In fact, by consid-
ering the definitions of the local store as imported from the component with storename
ŝn, we can restrict ourselves to consider only imported symbols.

3.37 Notation. To shorten the notation we integrate the signature Σ, meta-signature
MΣ and family of actions A of the component into the family of imported symbols I
(which becomes a SN -indexed family). We define thus:

Σŝn
def= Σ, MΣŝn

def= MΣ and Aŝn
def= A (3.12)

Furthermore, we renew the convention introduced in section 3.1.1 and confound,
by abuse of notation, in the sequel, whenever there is no risk of confusion, the set of
(basic) sorts S and the set of sorts S that can be constructed from S (for all sets of
sorts S).

We conclude this section with the introduction of the notion of component terms,
i.e., terms constructed using the symbols defined in a component signature. Informally,
a component signature CΣ = 〈Σ, MΣL, A, I, E, Trans, P, Π〉 can be seen as a signa-
ture, i.e., a pair 〈PS, PO〉, where the set of sorts PS are defined as in equation (3.11a)
(see on page 97 in definition 3.36) and the (PS-indexed) family of operators combine
all the symbols defined in a component signature, i.e.,18

PO
def=
(⊎

sn∈SN

(Ωsn]MOLsn]Asn)
)
] Trans] P]Π] SN (3.11b)

Notice that, according to equation (3.11b), we consider the storenames as the con-
structors of the sort storename, i.e., we have for all sn ∈ SN that sn ∈ POstorename.
The family of operations PO is extended in the following section by, on the one hand,
the additional constructors of the sort process, namely the symbols corresponding to
operators of process algebras, as for instance ‖ (parallel composition) or ⊕ (choice with
priority), and, on the other hand, constructors of the sort action, in particular the
composition of a storename and a call to an elementary action.

18Notice that equation (3.11b) uses notation 3.37.

99

CHAPTER 3. COMPUTATION MODEL

Figure 3.5: A Counter Window

Viewing a component signature as a signature according to equations (3.11a) and
(3.11b), we define for a (PS-indexed) family of variables X the (PS-indexed) family of
component terms CT (CΣ, X) as the terms (see definition 3.7) over the signature CΣ19

and the set of variables X, i.e.,

CT (CΣ, X) def= T (CΣ, X) (3.13)

The extension of the notation of free variables of a term introduced in section 3.1.2.1
(see notation 3.8) from terms to component terms is straightforward.

3.3.2 Example of the Multiple Counters

Consider a (simplistic) application inspired from [Gui95] representing a system of mul-
tiple counters. The application starts by creating a window (as shown in figure 3.5)
representing a counter which can be incremented manually by clicking on the button
labeled Increment. The behaviour of the two other buttons in the counter window is
as follows. The Copy-button creates an independent counter (with an associated new
window) and initialises it with the current value of the counter being copied, whereas
the Link-button creates a new view (i.e., a new window) of the same counter. All links
(or views) of a same counter should behave identically, e.g., they increase the counter
at the same time. Additionally we may want to use the current value of the counters
for some calculations, in the same way as we would like to use any other constant in
a classical declarative language. We use our solution for this problem as a running
example for the illustration of the different definitions in the remainder of this chapter.

We suggest to separate the management of the windows from the counters. Hence
we model the system using two components, a first one for the counters, say C, and
a second one for the window system, say X. This is similar to real window systems,
where applications may run on a machine connected via the network to the machine
controlling the monitor. In this chapter, we focus on the component C. We start in
this example with the presentation of the component signature for the component C.
We specify each of the eight parts of the component signature separately, using the
following set of storenames SN = {C; X}.

The store of the component C describes a theory for counters. We model a counter
c as a constant of type Cnt , i.e., a pair 〈val ,wins〉 of the current value val of the

19In fact, we consider CΣ enriched with constructors of the sorts action and process (see defini-
tions 3.43 and 3.50).

100

3.3. COMPONENT SIGNATURES

S
def= {Cnt ; Evt ; Wid ; Evt List ; Wid List} (3.14a)

C
def=


cnt : Nat ×Wid List → Cnt ;
increment , copy , link : Evt ;
nilEvt : Evt List ; consEvt : Evt × Evt List → Evt List
nilWid : Wid List ; consWid : Wid ×Wid List →Wid List

 (3.14b)

D
def=


get val : Cnt → Nat ; get wins : Cnt →Wid List
headEvt : Evt List → Evt ; tailEvt : Evt List → Evt List
headWid : Wid List →Wid ; tailWid : Wid List →Wid List
appendEvt : Evt List × Evt List → Evt List

 (3.14c)

Table 3.2: Signature of the store for the Multiple Counters Example

counter c and a list of the window identifiers wins of the windows associated with c,
i.e., the windows displaying the value of c. The fields of a counter can be accessed by the
functions get val and get wins. We represent the values of a counter by natural numbers
which can be specified for instance as in the examples of section 3.1.2 (examples (3.6)
and (3.10)). The window identifiers are represented by strings of characters, which we
suppose to be a built-in sort. The processes of the counters have to react on events
occurring in the windows. The only (high-level) events (occurring in a counter window)
we consider are clicks on the different buttons. Thus we define the sort Evt by the set
of the three constructors {increment , copy , link}. Obviously, we also need the sort of
lists, which are classically represented by means of two constructors, namely cons which
takes an element and a list and returns a list and nil , the empty list.

The signature ΣC of the store of the component C is thus the enrichment of the
signature Σnat (see example 3.6) with the following sorts, constructors and functions
(we omit the declaration of the equality predicate = for the new sorts) as shown in
table 3.2.

An example for the meta-signature of the simple declarative programming language
has already been given in example 3.31, so we do not need to repeat it here. The actions
we need for the modifications of the store C are assignment (:=) and the creation of
new symbols new. Recall from section 3.1.3, that new takes two arguments, the first
corresponding to the new (function) symbol to be introduced in the signature of the
sort and the second to the sort of the new symbol. To simplify, we suppose that all
these symbols are exported, i.e., the component C does not hide any of its symbols.

Since there are only two components in the system, the family of imported symbols
consists only of the imports from the component X which are shown in table 3.3.
In order to display the counter windows, the component C imports two elementary
actions from X, namely add-win and refresh-win. The action add-win(v, c, e) creates a
new counter window for the counter c displaying the value v such that clicks on the
buttons in this window have the effect of adding a corresponding Evt at the end of
the list of Evts e. The process in the component X that actually handles the creation
of the window is also in charge of sending an action to the store C which adds the

101

CHAPTER 3. COMPUTATION MODEL

ΣX
def=
〈
{int; string}, {+ : int× int→ int}

〉
(3.14d)

AX
def=
{

add-win : int× string× string → (storeocaml → storeocaml);
refresh-win : int× string → (storeocaml → storeocaml)

}
(3.14e)

Table 3.3: Imports from component the X by the component C

Wid of the new window to the counter c. Thus, the action add-win takes the names of
the counter c and the event-list e as arguments, by means of a built-in encoding into
character-strings (see section 3.4.2). The action refresh-win(v, w) refreshes the display
of the window denoted by the Wid w such that the new value v is displayed.

Thus the imported signature from the component X needs to specify at least the
sorts and operators necessary for the arguments of the actions add-win and refresh-win.
Suppose that the component X uses ocaml [LDG+01] for the description of its store,
and that the values of the counter are represented by ints and the Wids by strings.
Besides these two sorts, we import the addition (+) of ints.

We need two translations, namely int-of-nat and string-of-wid , in order to provide
the parameters for the elementary actions executed on the component X. The former,
i.e., int-of-nat , translates terms of sort Nat (see example 3.6) to the built-in integers
of ocaml, whereas the latter translates Wid ’s into strings of ocaml :

TransX
def= {int-of-nat : Nat → int; string-of-wid : Wid → string} (3.14f)

We suggest to provide one control process per counter window, which we call
cnt ctrl. The process cnt ctrl needs two parameters: on the one hand, the name of
the constant representing the counter the value of which is displayed in the window
and, on the other hand, the name of the list of events which occur in the window.
A second process, called create win, handles the creation of new counter windows.
create win takes the same arguments as cnt ctrl. Thus, we the set of processes of the
component C is defined as follows

P
def= {cnt ctrl, create win : Name(Cnt)× Name(Evt List)→ process} (3.14g)

Finally, we use a process function to express the update of all the windows of a
same counter:

Π def= {refresh-windows : int×Wid List → action} (3.14h)

3.4 Interactions

In our computation model, processes of a same component use the common store for
interaction. All processes of a component have access to all information in the store, i.e.,
the signature and the rules. To communicate, processes modify the store by executing
actions. In this section we present the interface between components.

102

3.4. INTERACTIONS

Informally, interaction between components is based on the same scheme as interac-
tion between processes on the same component: in fact, processes are allowed to modify
the stores of other components, i.e., they can execute actions on these stores. For in-
stance, in the example of the multiple counters (see section 3.3.2), the component C
needs to refresh the display of the windows associated to a counter whenever the value
of the counter has changed. Since the display of the windows is handled by the compo-
nent X, this action needs to be sent from C to X. In order to interact, components need
to exchange the declarations or profiles of the symbols that are used for the interaction.
We say that a component exports a declaration, when this declaration can be used by
other components. The declarations of a remote component that a component uses
for interaction are called imported declarations. We present the imports and exports
in the subsequent section. Furthermore, to model the interaction between components
in different languages, we introduce the notion of translations in section 3.4.2. In the
example of the multiple counters, the value of the counter has to be translated such
that it is understood on the component X.

3.4.1 Imports and Exports

We distinguish different levels of imports (respectively, exports). For instance, the
declarative program describing a store may itself be a collection of files or modules,
and the access to symbols defined in other modules might be restricted. This is to
be distinguished from the import (respectively, export) of declarations of a store or
declarations of actions from one component to another. The former is a facility to
structure the program or store, whereas the latter is necessary for interaction between
components. For instance, a component must be able to construct the parameters of
an action to be executed on a remote store. In this section, we describe the imports
and exports related to the interaction between components.

Since interaction between components in our computation model is based upon
the execution of actions on the stores of remote components, a component needs to
import the actions which can be executed on the stores of other components. Since
these actions take parameters that are related to the store of the remote component,
the signature of the store, e.g., sorts, functions and predicates, as well as its meta-
signature have to be imported. This led us in the preceding section to define the
signature imported from a component with storename sn as a triple of a signature Σsn ,
meta-signature MΣLsn (where Lsn is the (declarative) language used for the store of
component sn) and a family of actions symbols Asn .

To avoid name-clashes, i.e., two symbols with the same identifier defined in different
components, the identifiers of the imported symbols could be prefixed with the name
of the component they are defined in, similar to the prefixing of the module name as
in, for example, ocaml [LDG+01] or Curry [HAK+00b].

The exported signature of a component is the part of the signature of the component
which can be used, i.e., imported, by other components. Thus, a component can export
a sub-signature of its store, a sub-meta-signature of its stores and a subset of its action
symbols.

3.38 Example. As an example for imports, reconsider the example of the multiple
counters (see section 3.3.2), in particular table 3.3 which gives signature imported by

103

CHAPTER 3. COMPUTATION MODEL

the component C from the component X.
The component C exports its complete signature, meta-signature and set of actions.

3.4.2 Translations

Consider a system of several components the stores of which are written in different
declarative languages. When the processes of such a system are to interact, the val-
ues sent from one (store) to another (store) have to be translated, i.e., values of one
language have to be transformed into values of the other. Here we mean by values
terms in some normal form, for instance ground constructor terms. It seems natural to
require a translation to be a total recursive function, since to any value that is to be
communicated has to correspond a unique translation which should be computable.

Note that these translation functions cannot be part of one of the stores involved,
since they define relations between objects in both of the languages. In fact, they
can be seen as functions in a “union-language” that combines both stores, i.e., two
programs written in different languages. Furthermore, a translation may need to use
the operational semantics of the declarative languages, in order to reduce terms to
normal-forms before and after the translation, if necessary.

We suggest to specify translations (from language L1 to language L2
20) via a (gen-

eral) term rewriting system, and to separate a translation into three steps. First, the
term to be translated is reduced to normal form (using the operational semantics of
language L1). Then a corresponding expression is generated, by application of a spe-
cial translation function. Finally the expression is reduced to normal form (using the
operational semantics of language L2) yielding the translation of the original term.
The motivation of this separation is to let a programmer just specify the translation
functions, and put the handling of the other phases into the implementation. Thus a
translation function associates to a term t in normal form (in L1) a term t′ (in L2)
whose normal form corresponds to the translation of the term t.

Obviously, for declarative languages in which the notion of normal form is not
defined, the first and/or the last step in the translation of a value are unnecessary
and omitted. An example of such a language is Prolog [DEDC96], where all terms
are distinguished elements of the least Herbrand model which defines the semantics of
a Prolog-program. Thus, in Prolog, all terms are already in “normal form” and the
normalisation steps before and after translation are not needed.

Since we translate values (and no meta-representations) we can define translation
functions by a term rewriting system which translates from a signature Σ1 into a
signature Σ2.

3.39 Definition (translation signature). Let Σ1 = 〈S1, Ω1〉 and Σ2 = 〈S2, Ω2〉 be
two signatures of stores. We define the translation signature TΣΣ1,Σ2 as the tuple

TΣΣ1,Σ2

def=
〈
(S1] S2), (Ω1] Ω2] Tr)

〉
(3.15)

where Tr is a ((S1] S2)-indexed) family of translation symbols Tr, the sorts of which
are of the form s1 → s2 (where s1 ∈ S1 and s2 ∈ S2).

20We do not require L1 and L2 to be different languages. In fact, translations can also be used
for the transformation between different implementations of a data-type implemented using the same
language.

104

3.4. INTERACTIONS

We define the family of terms over a translation signature in the usual manner.

3.40 Definition (translation term). For a translation signature TΣΣ1,Σ2 and a
((S1] S2)-indexed) family of variables X we define the ((S1] S2)-indexed) family of
translation terms Tr(TΣΣ1,Σ2 , X) inductively as the smallest set such that the following
conditions hold (Σj = 〈Sj , Ωj〉, j ∈ {1; 2}):

• all well sorted terms of Σj are translation terms:
∀t ∈ Ts(Σj , X)(j ∈ {1; 2}, s ∈ Sj) : t ∈ Trs(TΣΣ1,Σ2 , X) and

• all well sorted applications of translation functions are translation terms:
∀tr ∈ Trs1, s2 , ∀t ∈ Trs1(TΣΣ1,Σ2 , X) (s1 ∈ S1, s2 ∈ S2) :
tr(t) ∈ Trs2(TΣΣ1,Σ2 , X).

We extend the notation of free variables of section 3.1.2 to translation terms, and
note the set of free variables of a translation term t by V(t). The operational behaviour
of translation functions is defined by t-rules, i.e., (unconditional) rewrite rules.

3.41 Definition (t-rule). Let TΣΣ1,Σ2 be a translation signature and X a ((S1 ∪ S2)-
indexed) family of variables (Σj = 〈Sj , Ωj〉, j ∈ {1; 2}). We define a t-rule R as a pair
lhs→ rhs such that

• lhs = tr(t) ∈ Trs(TΣΣ1,Σ2 , X) is the application of a translation tr to a translation
term t,

• rhs ∈ Trs
(
TΣΣ1,Σ2 , V(lhs)

)
is a translation term of the same sort as lhs and

• s ∈ S2 is a sort of the signature Σ2.

In the sequel we write Tr for a set of t-rules.

The first condition ensures that the t-rule defines a translation function, and the
other two conditions ensure that the term is translated into a correct term over the
signature Σ2 into which we want to translate.

3.42 Example. In the example of the multiple counters (see section 3.3.2), the trans-
lation int-of-nat of the sort of natural numbers Nat to the built-in integers of ocaml
can be defined by the following two t-rules:

int-of-nat(zero)→ 0 (3.16a)
int-of-nat

(
succ(x)

)
→
(
(+) int-of-nat(x) 1

)
(3.16b)

Besides the translations defined by the programmer, we use in the sequel an ad-
ditional translation to-string transforming Names of symbols into character strings,
which we suppose to be a predefined sort in languages used for the description of the
stores. This translation is motivated by the same arguments as the introduction of
the type Name in the stores (see example 3.28 in section 3.1.3), namely the necessity of
passing communication links from one process to another, but here in the context of
communications over the borders of components.

We therefore require that the translation to-string is a bijective mapping, that
is to say, that there exists (for every language L) a mapping to-string−1 such that

105

CHAPTER 3. COMPUTATION MODEL

to-string−1
(
to-string(n)

)
= n for every name n21. Hence, in the example of the mul-

tiple counters (see equation (3.14e) in section 3.3.2), the name of the counter and the
event-list can be encoded into character strings (on the component C before send-
ing them as arguments of the action add-win to the component X) and be decoded
to the corresponding symbols (by the component X before modifying the store of the
component C).

Another possibility to interaction between components written in different lan-
guages is to suppose that both components understand a common language, and to
provide built-in translations for the elements of this third language. Examples for this
approach are for instance our built-in translation to-string for Names, the Universal
Type System (UTS) language of the MLP system [HS87], the Interface Definition Lan-
guage (IDL) of the Common Object Request Broker Architecture (corba) [COR01]
or the interfaces of ocaml (respectively, ada) to C [LDG+01, chapter 17] (respectively,
[Ada95, chapter B.3]). Besides the fact, that such a common third language does not
always exists, a programmer has still to implement the translations for the higher-level
(i.e., not built-in) data-structures defined in his program. Thus it requires a disciplined
programmer to avoid mixing translations with other “unrelated” functions22.

Even when such a third language exists, its use is not necessarily straightforward.
For instance, while it is possible to implement a program combining parts written in ada

and in ocaml, exploiting their interfaces to C is somewhat tricky, due to several specific
compiler and linker options, additional libraries and required compilation order23.

In Maude [CDE+99], translations between two languages L1 and L2 can be reified
as functions from meta-representations of L1 to meta-representation of L2 [CDE+98,
section 4.3]. Thus in contrary to our proposal, the translations in Maude are described
on the meta-level with respect to the languages (with the additional requirement that
both meta-levels are specified in Maude). These translations are thus general in the
sense that they specify how to translate a program written in L1 into a program written
in L2. In our model, we need to be more specific, since we want to translate a value
described in one program into a value with respect to another program. Therefore we
define the translations separately using the symbols defined in the programs.

3.5 Processes

The processes of a component are specified in the style of a process algebra, see for
instance [Fok00, BW90]. Basic process terms, e.g., guarded actions or process calls,

21This can be obtained, for instance, by encoding both the name and the sort of the symbol (or
name) in the string returned by to-string.

22The ocaml-Manual recommends to separate translations (when providing user-defined primitive
C-functions) [LDG+01, section 17.1.2]:

“Implementing a user primitive is actually two separate tasks: on the one hand, decoding
the arguments to extract C values from the given Caml values, and encoding the return
value as a Caml value; on the other hand, actually computing the result from the argu-
ments. Except for very simple primitives, it is often preferable to have two distinct C
functions to implement these two tasks.”

23With a colleague we needed recently about two hours for getting a simple “Hello-World”-style
program running.

106

3.5. PROCESSES

are combined by means of operators for constructing processes. Additionally, process
functions allow the use of functional abstractions in the description of processes. In
this section, we present the definition of processes. We start with the basic process
terms and go on with the definition of the operators on processes. Finally we give the
rules for defining processes.

3.5.1 Action Expressions and Guarded Actions

The basic process terms of our computation model are guarded actions. Informally, a
guarded action is a pair of a guard, i.e., a term of the store, and an action expression.
Therefore, before giving the new definition of a guarded action, we define the notion
of a (well-formed) action expression. Informally, a well-formed action expression is a
component term of sort action (see equation (3.13)).

We have basically three kinds of action expressions. First of all, we have pairs〈
sn, a(t1, . . . , tn)

〉
of a storename sn and a call to an elementary action a. Then we

have sequences of action expressions a1 ; a2. The last kind of action expression are
applications of action functions.

3.43 Definition (action expression). Let CΣ = 〈Σ, MΣL, A, I, E, Trans, P, Π〉 be
a component signature and X an (PS-indexed) family of (sets of) variables, where PS
is defined according to equation (3.11a). Then we define the set of action expressions
A(CΣ, X) as the set of component terms of sort action, i.e.,

A(CΣ, X) def= CT action(C̃Σ, X) (3.17)

where the component signature C̃Σ is the component signature CΣ enriched with the
following two constructors of the sort action:

1. 〈•, •〉 is a constructor of profile storename→ (storeLsn → storeLsn)→ action
(for all storenames sn ∈ SN) and

2. • ; • is a constructor of profile action→ action→ action.

where we use the symbol “•” as a placeholder for the parameters, since these operators
are usually written in mixfix-syntax.

Notice that definition 3.43 implies that any action expression is of one of the three
following forms: 〈sn, a(t1, . . . , tn)〉 (using the constructor introduced by item 1.),
a1 ; a2 (introduced the constructor introduced by item 2.) or pf(t1, . . . , tn) (where
pf ∈ Π is an action function with result-sort action), since a component signature
does not contain any other operation with result sort action. We use this property for
instance in the definition of new symbols in notation 3.46.

3.44 Example. Considering the component signature for the component C presented
in section 3.3.2, the following is an action expression describing the actions to execute
upon a click on the Increment-button in a counter window:〈

C, c := cnt
(
succ(get val(c↑)), get wins(c↑)

)〉
;

refresh-windows
(
int-of-nat(get val(c↑)), get wins(c↑)

) (3.18)

where the constant c represents the name of the counter, i.e., c is of the sort Name(Cnt).

107

CHAPTER 3. COMPUTATION MODEL

In the sequel, we consider an extended definition of component terms (see equa-
tion (3.13)), where the constructors introduced in definition 3.43 are allowed in the
construction of component terms.

The semantics of action functions is defined by means of (special) rewrite rules which
we call p-rules. Below, we present the definition of p-rules along with the definition
of process expressions (see definition 3.52). Action expressions which contain no ap-
plication of action functions or translations, i.e., action expressions that are sequences
of pairs of storenames and (well-formed) calls to elementary actions, are said to be in
normal form. Informally, the operational semantics of action expressions describes the
execution of an action in two steps: before an action expression is executed, it is first
reduced to normal form. This is also the reason why we do not introduce the sequen-
tial combination of action expressions as an action function, in order to emphasise its
special operational behaviour.

3.45 Notation. For a component signature CΣ and a family of variables X we denote
by AN (CΣ, X) the set of action expressions in normal form, i.e., containing no calls
to action functions (∈ Π) or translations (∈ Trans).

Finally, to denote the set action expressions in normal form where all elementary
actions are paired with the storename sn, we write AN (CΣ, X, sn).

The extension of the notation for new symbols introduced by an elementary action
to action expressions needs to incorporate the storename of the store where the symbols
are introduced. Thus, instead of a single signature, the new symbols introduced by an
action expression are a (SN -indexed) family of signatures.

3.46 Notation. The (SN -indexed) family of signatures of new symbols introduced by
an action expression is defined inductively as follows:

Nsn

(〈
sn, a(t1, . . . , tn)

〉) def= N
(
a(t1, . . . , tn)

)
(3.19a)

N (a1 ; a2) def= N (a1) ∪N (a2) (3.19b)

N
(
pf(t1, . . . , tn)

) def=
n⋃
i=1

N (ti) (3.19c)

Equations (3.19a) and (3.19b) express the intuition that the set of new symbols
introduced by a sequence of elementary actions is the union24 of the new symbols
introduced by the actions separately. An informal motivation of equation (3.19c) is
that the set of new symbols introduced by an action expression pf(t1, . . . , tn) (which is
not in normal form) depends on the arguments of the action function pf , which in turn
might not be known during the analysis of the process using this action expression.
We give further motivation (and counter examples, see examples 3.53 and 3.54) for
equation (3.19c) below, when we define the p-rules that specify the semantics of action
functions in section 3.5.2.

The following notation gives the conditions governing the use of freshly introduced
symbols in action expressions, namely that symbols have to be introduced before they
are used.

24In fact, we are interested in the disjoint union, which is a consequence of the sensible use of new
symbols (see notation 3.47).

108

3.5. PROCESSES

3.47 Notation. An action expression is said to be sensible if symbols are not used
before they are introduced. We define the corresponding property by structural induction
on action expressions:

• all calls to elementary actions as well as all applications of action functions are
sensible and

• a sequential composition of action expressions a1 ; a2 ∈ A(CΣ, X) is sensible if
both a1 ∈ A(CΣ, X) and a2 ∈ A(ĈΣ, X) are sensible.

The component signature ĈΣ corresponds to the enrichment of the component
signature CΣ = 〈Σ, MΣL, A, I, E, Trans, P, Π〉 with the (SN -indexed family) of
signatures of new symbols N (a1) =

{
Σ̂sn

∣∣ sn ∈ SN
}

introduced by the action
expression a1:

ĈΣ def=
〈
(Σ] Σ̂ŝn),MΣ, A, Î, E, Trans, P, Π

〉
(3.20a)

where ŝn denotes the storename of the local component, and where the enriched
imported symbols Î are defined as follows:

Î
def=
{

IΣsn =
〈
(Σsn] Σ̂sn), MΣLsn , Asn

〉 ∣∣∣ sn ∈ (SN r {ŝn})
}

(3.20b)

Obviously, a single elementary action is sensible. The reason why an application
of an action function is a sensible action expression is that the rules defining action
functions are restricted in this sense, as we show along with the definition of action
(and process) functions by p-rules (see definition 3.52). Notice that new symbols can
be used in subsequent actions.

We conclude this section with the definition of a guarded actions, which are defined
as pairs of a guard and an action expression.

3.48 Definition (guarded action). Let CΣ = 〈Σ, MΣL, A, I, E, Trans, P, Π〉 be a
component signature (for a declarative lanagge L and a storename ŝn) and X a (PS-
indexed) family of (sets of) variables, where PS is defined according to equation (3.11a).
Then we define a guarded action as a pair [g ⇒ a], consisting of

• a guard g, i.e., a term of sort Truth of the local store, i.e., g ∈ TLTruth(Σ, X),
and

• a sensible action expression a ∈ A(CΣ, X).

We note the set of guarded actions (for CΣ and X) as G(CΣ, X).

Notice that according to definition 3.48 the guard of a guarded action is required
to be a term in the store of the local component ŝn. This implies that while processes
are allowed to execute actions on all stores in a system, they can only read, i.e., ac-
cess information, from the local store (through the guards). The motivation for this
restriction is that the check of the validity of the guard and the execution of the action
expression are a single (locally) atomic operation. By locally atomic we mean that

109

CHAPTER 3. COMPUTATION MODEL

the (sub-) sequences of actions for a given store25 have to be executed atomically, and
that on the local store, the check of the validity of the guard, the evaluation of the
action expression to normal form, the execution of the action and the sending of the
sequences of actions to the remote stores form a single, atomic operation. If we would
allow a guard to contain parts of different stores, than we would have to ensure global
atomic execution, which is in our opinion not a natural abstraction when the stores
(i.e., components) are explicitly distributed26.

The following notation extends the notation of free variables to action expressions
and guarded actions.

3.49 Notations. The (SN -indexed) family of signatures of new symbols introduced by
a guarded action is the set of new symbols introduced by its action expression, i.e.,

N
(
[g ⇒ a]

) def= N (a) (3.21)

The set of free variables of a guarded action is defined as follows:

V([g ⇒ a]) def=
(
V(g) ∪ V(a)

)
(3.22)

The new symbols introduced by a guarded action are distinguished from free vari-
ables. Notice also that the guard may not use the new symbols introduced by the
action expression.

3.5.2 Process Expressions and Process Terms

In this section we define the notion of process expressions, which generalises the notion
of process terms introduced in section 1.1.3.2. Roughly speaking, process expressions
are defined as component terms of sort process. Basic process expressions are guarded
actions (see definition 3.48) and process calls, i.e., applications of a process q ∈ P .
Process expressions can be composed using the operators of process algebras mentioned
in section 1.1.3.2, namely parallel (‖) and sequential (;) composition, nondeterministic
choice (+) and choice with priority (⊕). Last, but not least, the application of a process
function (with result sort process) also yields a valid process expression.

3.50 Definition (process expression). Let CΣ be a component signature and X
an (PS-indexed) family of (sets of) variables, where PS is defined according to equa-
tion (3.11a). We define the set of process expressions P(CΣ, X) as the set of component
terms of sort process, i.e.,

P(CΣ, X) def= CT process(
˜̃CΣ, X) (3.23)

where the component signature ˜̃CΣ is an enrichment of the component signature C̃Σ
as defined in definition 3.43 (recall that C̃Σ is itself an enrichment of the component
signature CΣ with constructors of the sort action) with the following five constructors
of the sort process:

25In the case of a component composed of several subcomponents (see section 3.6), we require the
atomic execution of the subsequences on the stores of the subcomponents.

26Global atomic execution of actions would also require the implementation of a global consensus,
the implementation of which is difficult or even impossible in case of a single faulty process [FLP85].

110

3.5. PROCESSES

1. [• ⇒ •], the constructor of guarded actions (see definition 3.48), is a constructor
of profile Truth→ action→ process and

2. • ; •, • ‖ •, •+ • and • ⊕ • are constructors of profile
process→ process→ process.

where we use the symbol “•” as a placeholder for the parameters, since these operators
are usually written in mixfix-syntax.

In the sequel, we consider an extended definition of component terms (see equa-
tion (3.13)), where the constructors introduced in definitions 3.43 and 3.50 are allowed
in the construction of component terms.

Notice that the operator “;” is polymorphic, since it denotes sequential composition
of both, action and process expressions.

Process expressions without application of process functions and translations are
called process terms. Similar to action expressions, we also say that process terms are
process expressions in normal form.

3.51 Notation. For a component signature CΣ and a family of variables X we denote
the set of process terms or process expressions in normal form, i.e., containing no
application of a process function (∈ Π) or translation (∈ Trans), by PN (CΣ, X).

Notice that the notion of process terms according to notation 3.51 is a refinement
of the informal notion of process terms as introduced in section 1.1.3.2.

There are several possibilities to define the meaning of process functions. We suggest
to describe the meaning of process-functions by means of p-rules, i.e., rewrite rules
similar to those of the declarative programming language presented in section 3.1.2
(see definition 3.9) and to the t-rules used for the specification of translation functions
in section 3.4.2 (see definition 3.41). The main differences with respect to the notion
of rules as introduced in definition 3.9 are that, on the one hand, we use component
terms instead of terms, and on the other hand, similar to t-rules, we do not require a
constructor discipline and allow general component terms in the left hand sides.

3.52 Definition (p-rule). Let CΣ be a component signature for a set of storenames
SN and X a family of variables. We define a p-rule ΠR as a pair lhs→ rhs such that

• lhs = pf(t1, . . . , tn) ∈ CT s(CΣ, X) is the application of a process function pf (of
arity n) to n component terms ti (i ∈ {1; . . . ;n}) and

• rhs ∈ CT s

(
CΣ, V(lhs)

)
is a component term of the same sort as lhs, namely s.

The first two conditions are similar to those of definition 3.41 and define a general
rewrite rule. Since we need to know the exact set of new symbols in order to check
the correctness of a process definition, we consider only p-rules satisfying additional
conditions. The following examples motivates these conditions.

3.53 Example. Consider create-i-symbols, an action function of profile Nat → action
(where the sort Nat is defined as in example 3.6) which creates as many new symbols as

111

CHAPTER 3. COMPUTATION MODEL

is indicated by its parameter. We could define create-i-symbols by the following rewrite
rules:

create-i-symbols(zero) → skip (3.24a)
create-i-symbols

(
succ(i)

)
→

(
〈sn, new(x, Nat)〉 ; create-i-symbols(i)

)
(3.24b)

It is impossible to detect (statically, i.e., without executing the program) the number of
new symbols that will be introduced by the action expression create-i-symbols(c) where
c is a constant (of sort Nat) defined in the store, since we do not know the value of c.
However, the new symbols are used in the sequel of the execution of the process executing
create-i-symbols(c) (otherwise there would be no point in introducing them), so that we
need to verify the correct use of these symbols in the remaining process. Obviously, we
need to know the exact set of symbols in order to accomplish this verification.

In order to avoid the problems mentioned in example 3.53 we require that in a
p-rule ΠR = lhs → rhs defining the process function pf (i.e., the profile of the process
function pf is of the form s1 → . . . → sn → action), we have that for all applications
of an elementary action a(t1, . . . , tm) occurring in rhs that for all storenames sn ∈ SN
that Nsn

(
a(t1, . . . , tm)

)
= 〈∅, ∅〉. Obviously, p-rule (3.24b) violates this condition,

and we consider the definition of create-i-symbols as incorrect.

3.54 Example. As a second example, consider the action function two-times (the
profile of which is action → action) which takes an action expression as argument
and executes it twice:

two-times(x) → x ; x (3.25)

The evaluation of the action expression two-times
(〈

sn, new(c, s)
〉)

yields an action
expression which introduces the same symbol two times. Nevertheless, the action ex-
pression two-times

(
〈Bell, ring〉

)
should be consider a correct description of ringing an

alarm bell two times.

In contrary to the p-rules defining of create-i-symbols, the p-rule defining two-times
should not be considered as illegal, since there are situations where it is useful. However,
in order to avoid the potential problems related to p-rules similar to the p-rule (3.25)
defining two-times, the use of an action which introduces new symbols as a parameter
for a process function pf should be avoided if the corresponding formal parameter
appears more than once in one of the p-rules defining pf .

The additional restrictions motivated by the examples 3.53 and 3.54 justify equa-
tion (3.19c), which defines the signature of new symbols introduced by an application
of an action function as the union of the new signatures introduced by its arguments.

A process expression is said to be in restricted form if it contains neither a guarded
action, nor an occurrence of ⊕ or +. If the rhs of a p-rule is a process expression
in restricted form, the p-rule is said to be in restricted form as well. When all p-
rules defining a process function pf are in restricted form, we call the process function
pf restricted process function, otherwise we call pf non-restricted. We can deduce
easily that when a process expression in restricted form does not contain calls to non-
restricted process functions, its normal form is a restricted process term in the sense

112

3.5. PROCESSES

of section 1.1.3.2. In the following, we note (for a component signature CΣ and a set
of variables X) the set of restricted process expressions that do not contain calls to
non-restricted process functions as rP(CΣ, X).

3.55 Example. Considering the component signature of the example of the multiple
counters presented in section 3.3.2, the following process expression (which is also a
process term) is not restricted, since it uses guarded actions:[

true⇒
〈
C, new(c, Cnt)

〉
;
〈
C, c := zero

〉
;〈

C, new(e, Evt List)
〉

;
〈
C, e := nilEvt

〉]; create win(c, e) (3.26)

For technical reasons (e.g., avoiding dead-locks) we have to ensure that process
expressions always denote unique processes, that is to say, the evaluation of the process-
functions has to terminate, and to return, deterministically, exactly one (restricted)
process term. These constraints (on process functions) are similar to the constraints
on the functions defining (elementary) actions, see section 3.2.1. As mentioned there,
these conditions could either be enforced by syntactical restrictions, or by the use of
effective analyses of the definitions.

The following examples show the use of process expressions and p-rules in order to
simplify the description of processes by the use of functional abstractions.

3.56 Example. Consider the sort of lists (of numbers), defined by the two constructors,
namely cons which takes a number and a list and returns a list and nil , the empty list.
We define a process function q̂, which takes a list of numbers l and a process expression
p as arguments and evaluates to the parallel composition of the process expression p
and a process q(i) for every i in the list l, by the following p-rules:

q̂(nil , p) → p

q̂
(
cons(i, l), p

)
→ q(i) ‖ q̂(l, p)

Using the process function q̂, we can abbreviate the process expression

q(1) ‖ q(2) ‖ q(3) ‖ q(4) ‖ q(5) ‖ p to q̂([1; 2; 3; 4; 5], p)

where we use the (classical) shorthand [1; 2; 3; 4; 5] for the list

cons(1, cons(2, cons(3, cons(4, cons(5, nil)))))

In the example of the multiple counters, the use of a process function allows to
express the update of all windows of a counter with a single action expression.

3.57 Example. The process function refresh-windows in the example of the multiple
counter (see section 3.3.2) is defined as follows:

refresh-windows(i, nilWid)→ 〈C, skip〉 (3.27a)

refresh-windows
(
i, consWid (w, ws)

)
→
〈
X, refresh-win

(
i, string-of-wid(w)

)〉
; refresh-windows(i, ws)

(3.27b)

113

CHAPTER 3. COMPUTATION MODEL

3.5.3 Process Definitions

As already mentioned in the introduction, a process is defined by a set (ordered by
priority) of rules or clauses, each of which consists of a guarded action and a restricted
process expression.

3.58 Definition (process definition). Let CΣ = 〈Σ, MΣL, A, I, E, Trans, P, Π〉 be
a component signature. A process definition for the process q ∈ P is a sentence of the
following form:

q(x1, . . . , xm) ⇐
n⊕
i=1

(
[gi ⇒ ai] ; rpi

)
(3.28)

where (for every i ∈ {1; . . . ;n}, with n > 0):

• [gi ⇒ ai] ∈ G
(
CΣ, {x1; . . . ;xm}

)
is a guarded action for the local component,

i.e., gi ∈ TLTruth
(
Σ, {x1; . . . ;xm}

)
and a sensible action expression ai, i.e., ai ∈

A
(
CΣ, {x1; . . . ;xm}

)
(see definition 3.48) and

• rpi is a restricted process expression, i.e., rpi ∈ rP
(
ĈΣ, {x1; . . . ;xm}

)
where the

component signature ĈΣ corresponds to the enrichment of the component signature
CΣ with the signatures of new symbols N ([gi ⇒ ai]) introduced by the guarded
action [gi ⇒ ai] (see notation 3.47 for a formal definition of ĈΣ).

Intuitively, the operational behaviour of a process call q(t1, . . . , tm) is similar to
the alternative construct of the guarded command language of [Dij75]. That is to say,
we have to evaluate which of the guards of the rules of the process definition for q are
valid, and then to choose among them the rule with the highest priority. Choosing
a rule means to atomically execute the sequence of elementary actions obtained by
evaluating the action expression associated with the guard and afterwards to behave
like the normal form of the associated (restricted) process expression.

3.59 Example. The process definitions of the store of the component C for the example
of the multiple counters (see section 3.3.2) are shown in table 3.4 (the rewrite rules
defining the functions get val , get wins, head and tail of the store of C are shown in
table 3.5 on page 118).

The process controlling a counter-window is cnt ctrl, which takes two parameters:
the name c of the associated counter and the name e of the event-queue to which the
window system sends all the events occurring in the window being controlled (an example
of a counter window is shown in figure 3.5). Intuitively, cnt ctrl handles the events in
the list e one by one. For instance, an event corresponding to a click on the Increment-
button removes the event from the list e, increments the counter c (i.e., assigns to c
the pair of the successor of the old value and the old list of windows) and triggers the
redrawing of all windows associated to c (using the process function refresh-windows).
Then the process continues to execute cnt ctrl. An event representing a click on the
Copy-button removes the event from the list e and creates and initialises a new counter
c′ and a new event-list e′. Then the process continues in parallel with a new process
which creates a new window for the new counter. The handling of clicks on the Link-
button is similar to the handling of Copy.

114

3.5. PROCESSES

cnt ctrl(c, e)⇐head(e↑) = increment ⇒

〈
C, e := tail(e↑)

〉
;〈

C, c := cnt
(
succ(get val(c↑)), get wins(c↑)

)〉
;

refresh-windows
(
int-of-nat(succ(get val(c↑))), get wins(c↑)

)
;

cnt ctrl(c, e)

⊕

head(e↑) = copy ⇒

〈
C, e := tail(e↑)

〉
;〈

C, new(c′, Cnt)
〉
;

〈
C, c′ := cnt

(
get val(c↑), nilWid

)〉
;〈

C, new(e′, Evt List)
〉
;
〈
C, e′ := nilEvt

〉
;

cnt ctrl(c, e) ‖ create win(c′, e′)

⊕
[
head(e↑) = link ⇒

〈
C, e := tail(e↑)

〉
;
〈
C, new(e′, Evt List)

〉
;
〈
C, e′ := nilEvt

〉]
;

cnt ctrl(c, e) ‖ create win(c, e′)

create win(c, e)⇐[
true ⇒

〈
X, add-win(get val(c↑), to-string(c), to-string(e))

〉]
; cnt ctrl(c, e)

Table 3.4: Process Definitions for the Component C

The process create win takes the names of a counter c and an event-list e as ar-
guments and sends a call to the elementary action add-win to the component X and
subsequently behaves as the process cnt ctrl controlling the new window for the counter
c.

In analogy to logic programming, where the free variables of a clause or rule have
to be renamed each time the clause is used (see section 3.1.2.2), we have to rename
the new symbols introduced by elementary actions (see section 3.2.2.4) in the rules of
a process definition. However, in contrary to the variant of a rule (see definition 3.15),
we need to rename the symbols, i.e., the names of constants and functions, instead of
variables (which in turn need not to be renamed). Similar to the renamed rules in
section 3.1.2, we call a renamed rule of a process definition a variant.

3.60 Definition (p-variant). Let b =
(
[g ⇒ a] ; rp

)
be a rule or clause of a process

definition. A p-variant of b is defined as the rule obtained from b by replacing consis-
tently all symbols in N (a), i.e., the signatures of new symbols introduced by the action
expression a, by fresh symbols. In the sequel, we denote “rename” the operation which
returns a variant for a given rule.

The following example illustrates definition 3.60.

3.61 Example. Consider the process definition of cnt ctrl in the example of the mul-
tiple counters as shown in table 3.4. Every time the Link-button in a particular window
is clicked, we have to create a new counter window. Therefore, the event-list associated
to the new window has to get a fresh name, i.e., we have to rename e′. A possible
renaming of the rule of cnt ctrl handling clicks on Link is the following (where e′ has

115

CHAPTER 3. COMPUTATION MODEL

been renamed to ẽ):[
head(e↑) = link ⇒ 〈C, e := tail(e↑)〉 ;

〈
C, new(ẽ, Evt List)

〉
;
〈
C, ẽ := nilEvt

〉]
;

cnt ctrl(c, e) ‖ create win(c, ẽ)
(3.29)

3.6 Components and Systems

We conclude the presentation of our computation model with the definition of compo-
nents and their composition in order to construct systems.

3.6.1 Components

In the preceding sections we have presented how the different symbols occurring in a
component signature are defined. All these different definitions together are called a
component. As already mentioned in section 3.3, a component is defined as part of a
system. Thus the following definition depends on a set of storenames SN representing
the other parts of the system.

3.62 Definition (component). Let SN be a set of storenames. A component is
defined as an eight-tuple

C def=
〈
ŝn, CΣ, R, A, Tr , Rp, ΠR, pi

〉
(3.30)

where

• ŝn ∈ SN is the storename (or component-name) of the component,

• CΣ = 〈Σ, MΣL, A, I, E, Trans, P, Π〉 is a component signature with respect to
the set of storenames SN and the storename ŝn (see definition 3.36),

• R is a set of rules or formulæ such that F def= 〈Σ, R〉 is a store, also called the
initial store (see definition 3.1),

• A is a set of actions definitions for the elementary actions A,

• Tr is a set of translation definitions for the translation symbols Trans, i.e., a set
of t-rules (see definition 3.41),

• Rp is a set of process definitions for the processes P (see definition 3.58),

• ΠR is a set of p-rules defining the process functions Π (see definition 3.52) and

• pi ∈ rPN (CΣ, ∅) is a closed restricted process expression (i.e., a process expres-
sion containing no free variables), called the initial process expression or initial
process term.

116

3.6. COMPONENTS AND SYSTEMS

According to definition 3.62, a component is characterised by its component name
or storename, its component signature with the corresponding definitions and its initial
process term. The different symbols introduced in a component signature are defined
by the store (defining the symbols of the signature for instance by (conditional) rewrite
rules as in definition 3.9), the action definitions (which might be defined as in the
examples of section 3.2.2), the translation definitions (defining the translation from the
store of the component into other components by means of t-rules, see definition 3.41)
and the definitions of processes (see definition 3.58) and process functions (by p-rules,
see definition 3.52). The symbols defined in the imported signatures (in the component
signature) are left without definition by the component, since they are imported from
other components, which have to provide the necessary definitions. The evolution
of the store of the component is defined by the execution of its initial process term
on its initial store. We require the initial process term to be closed in order to have a
concrete process to execute. Notice that it is not restrictive to require the initial process
expression to be in restricted form since we can transform a general process expression
into a restricted process expression by introducing some additional processes.

Different kinds of definitions can be distinguished among the definitions of a com-
ponent, namely those, which are static, i.e., which do not change during the execution,
and those which are dynamic. On the one hand, the storename ŝn, the imported sig-
natures I, exports E, as well as the actions A, translations Trans, processes P and
process functions Π with their related definitions (i.e., A, Tr , Rp and ΠR) are static.
On the other hand, i.e., the signature Σ and the set of rules R, are called dynamic,
since they may change due to the execution of actions. The evolution of the dynamic
part is described by the execution of the initial process term on the initial store. We
also call the pair of the initial process term and the initial store the initialisation of a
component .

3.63 Example. Consider the example of the multiple counters which has been presented
together with the component signature of the component C in section 3.3.2. Table 3.5
gives the rewrite rules defining the functions which are not part of the signature Σnat

the rules for which are defined in table 3.1. The first two rules of table 3.5 are straight-
forward definitions of access functions for the sort Cnt, and the remaining rules are
classical definitions for the partial functions head and tail . The only action used on
the store of the component C is assignment, which has been defined in section 3.2.2.3.
The translation int-of-nat has been defined in example 3.42 27, the process definitions
are shown in table 3.4 and the process function refresh-windows is specified in exam-
ple 3.57.

It remains thus the specification of the initial process term. Consider the process
expression of example 3.55, equation 3.26, which is not in restricted form. In order
to use this term as initial process term, we have to wrap it into a new (parameterless)
process, say start (∈ Pprocess). Hence, if we define start by the process definition

start⇐
[
true⇒

〈
C, new(c, Cnt)

〉
;
〈
C, c := zero

〉
;〈

C, new(e, Evt List)
〉

;
〈
C, e := nilEvt

〉]; create win(c, e) (3.31)

we can define the initial process term of the component C as a call to the process start.
27The translation of Wids (which are represented as strings) to strings should be obvious.

117

CHAPTER 3. COMPUTATION MODEL

get val
(
cnt(v, ws)

)
→ v (Rget val)

get wins
(
cnt(v, ws)

)
→ ws (Rget wins)

headEvt

(
consEvt(e, es)

)
→ e headWid

(
consWid (w, ws)

)
→ w (Rhead)

tailEvt

(
consEvt(e, es)

)
→ es tailWid

(
consWid (w, ws)

)
→ ws (Rtail)

Table 3.5: Rules for the Store of the Component C

3.6.2 Composing Components: Systems

We model a system simply as a (finite) set of components such that the exported
and imported signatures match. However, as shown in figure 3.1, a component itself
might also be the combination of several components. In this section we present both,
the construction of systems from a set of components, as well as the combination of
components, which allows to consider a system as a component.

Intuitively, a system is constructed by putting together the components correspond-
ing to the storenames with respect to which the components have been defined.

3.64 Definition (system). Let S be a set of components

S def=
{
Csn1 ; . . . ; Csnn

}
(3.32a)

and consider the associated set of storenames SN , i.e., SN def= {sn1; . . . ; snn}. S is called
a system if for all storenames sn ∈ SN , the component Csn is defined (with respect to
the set of storenames SN) as

Csn
def=
〈
sn, CΣsn , Rsn , Asn , Trsn , Rp

sn , ΠRsn , p
i
sn

〉
(3.32b)

with component signatures

CΣsn
def=
〈
Σsn , MΣsn , Asn , Isn , Esn , Transsn , Psn , Πsn

〉
(3.32c)

such that for all pairs of storenames sn1, sn2 ∈ SN with sn1 6= sn2(
Isn1

)
sn2
⊆ Esn2 (3.33)

Notice that a system is complete in the sense that all components of the system
are specified, since all components are required to be defined with respect to the same
set of storenames28. Thus, in principle, every component of a system knows about all
other components. However, this does not imply that all components have necessarily
to interact with each other, but only that such an interaction should be possible. The
requirement of matching interfaces is expressed by condition (3.33) which implies that
(for any pair of storenames sn1 and sn2) the component signature CΣsn1 (of the com-
ponent Csn1) is only allowed to import a subset from the exported symbols Esn2 of the
component signature CΣsn2 (of the component Csn2).

28A straightforward generalisation might be to require that all components are defined with respect
to a subset of a common set of storenames.

118

3.6. COMPONENTS AND SYSTEMS

3.65 Example. The complete system for the example of the multiple counters is the
composition of two components, namely C which models the control of the counters and
X which models the display of the windows. The component C is presented in exam-
ple 3.63. We do not specify the component X completely, but consider it as a predefined
component (like the actual physical screen used for the display of the windows), the
interface of which is presented in section 3.3.2 in form of the imported signature (see
equations (3.14d) and (3.14e)). Intuitively, the store of X describes a theory of counter
windows, describing all relevant properties of the different windows, as for instance
their location on the screen, their name, and the event queue where the messages cor-
responding to clicks have to be sent to. A process running on the component X ensures
that the events occurring on the display lead to the execution of the appropriate actions,
i.e., the adding of a message corresponding to the button in the event queue associated
to the window.

We conclude the presentation of our computation model with the introduction of a
second kind for the combination of components, which allows to consider an incomplete
system as a single component. By incomplete system, we mean a set of components
which is a subset of the components of a system. Intuitively, by taking the disjoint union
of the different parts of two components, we obtain the combination of the components.

3.66 Definition (Combination of Components: ‖‖). Let SN be a set of storenames,
and consider two components C1 and C2 defined with respect to SN as

Ci
def=
〈
sni, CΣi, Ri, Ai, Tri, Rp

i , ΠRi, pii
〉

with component signatures

CΣi
def=
〈
Σi, MΣLi , Ai, Ii, Ei, Trans i, Pi, Πi

〉 (3.34a)

(for i ∈ {1; 2}) such that C1 and C2 are a part of a system, i.e., we have that

(
Isn1

)
sn2
⊆ Esn2 and

(
Isn2

)
sn1
⊆ Esn1 (3.34b)

Then we define for a fresh storename ŝn (i.e., ŝn 6∈ SN) the combination of C1 and C2

as the following component with respect to the storenames
(
SN r {sn1; sn2}

)
]{ŝn}

C1 ‖‖ C2
def=〈

ŝn, CΣ1]̃CΣ2, R1]R2, A1] A2, Tr1] Tr2, Rp
1]R

p
2 , ΠR1]ΠR2, p

i
1 ‖ pi2

〉 (3.35)

where (using the auxiliary operators
m
],

i
∪ and

t
]) the combination of the component

119

CHAPTER 3. COMPUTATION MODEL

signatures CΣ1]̃CΣ2 is defined as follows

CΣ1]̃CΣ2
def=〈

Σ1] Σ2, MΣL1

m
]MΣL2 , A1]A2, I1

i
∪I2, E1] E2, Trans1

t
]Trans2, P1] P2, Π1]Π2

〉
(3.36a)

MΣL1

m
]MΣL2

def=

{
MΣL1 if L1 = L2

MΣL1]MΣL2 otherwise
(3.36b)

I1
i
∪ I2

def= (I1 r IΣsn2) ∪ (I2 r IΣsn1) (3.36c)

Trans1
t
] Trans2

def={
Tr1

sn] Tr2
sn

∣∣ sn ∈ (SNr{sn1; sn2}), Tr1
sn ∈Trans1 and Tr1

sn ∈Trans2

} (3.36d)

Definition 3.66 allows to consider incomplete systems as components. Indeed, the
system of the two components C1 and C2 is, in general, incomplete, since both com-
ponents might interact with other components the storenames of which are in the set
SN r {sn1; sn2}. Thus we have obviously that condition (3.34b) is a particular case
of condition (3.33). On the other hand, the combination C1 ‖‖ C2 can be considered as
a new component, which hides the internal separation in two components29. Notice
that the component C1 ‖‖ C2 has the same interface to its a environment as a component
defined directly according to definition 3.62, since in both cases the exported symbols
are a signature, a meta-signature and a family of actions.

Roughly speaking, the definitions of C1 ‖‖ C2 are the disjoint union of the definitions
of C1 and C2, together with the parallel composition of the initial process terms. The
disjoint union ensures that we can always determine the component where a symbol
was originally defined in30. However, since C1 ‖‖ C2 hides the separation between C1

and C2, their mutual interfaces have to be omitted, which is expressed formally by the
equations (3.36). In the case that the two components use the same declarative lan-
guages for the description of their stores, we do not need to duplicate the corresponding
meta-signatures31. Notice that if the meta-signatures are different, the signatures are of
different kinds. This is no problem, since the disjoint union ensures that the definitions
of the stores do not interfere. Since both components are defined with respect to the
same set of storenames SN , the imported symbols (from a component sn3) have to be
parts of a common set (namely the set of symbols exported by sn3), such that we use in
equation (3.36c) the union instead of the disjoint union. Furthermore, as C1 ‖‖ C2 is de-
fined with respect to a set of storenames which does not contain sn1 and sn2, we remove
the corresponding “internal” imports, i.e., the imports from C2 by C1 (and vice versa,
see condition (3.36c)). Similarly, the “internal” translations, i.e., translations needed
in the interaction between C1 and C2 are hidden from the outside by condition (3.36d).

Notice further, that definition 3.66 does not allow the extension of the component
C1 ‖‖ C2 with additional processes or functions. This restriction reflects the idea that

29The extension of definition 3.66 to more than two components is straightforward.
30In the case that both components define symbols of the same name, we can easily ensure the

disjointness by adding a prefix or suffix encoding the original storename.
31To simplify, we suppose that a given declarative language has an unique meta-signature. This

requirement could be weakened, necessitating a more complicated definition of
m
].

120

3.6. COMPONENTS AND SYSTEMS

the operator ‖‖ represents a means to hide the internal structure of a part of a system
from the outside.

The operational behaviour of the component C1 ‖‖ C2 is defined by the operational
behaviour of the components C1 and C2, extended with a simple “dispatcher” for the
actions that are sent to the component. That is to say, from the point of view of C1 and
C2, the combination is completely transparent: they interact directly with each other as
well as with the other component of the system as usual, since they are not aware of the
existence of the storename ŝn of C1 ‖‖ C2. On the other hand, the other components of
the system interact with the component C1 ‖‖ C2. Hence, the implementation of C1 ‖‖ C2

has to be able to forward the messages to the either C1 or C2. Notice that the disjoint
union of the actions allows to distinguish easily to which component the action should
be forwarded. For instance, since we know for all actions30 a ∈ A1] A2 that either
a ∈ A1 or a ∈ A2 (but not both), the store to which the a is to be applied can be easily
determined: if a ∈ A1 then the apply a to the store of C1, otherwise to the store of C2.

? ? ?

In this chapter we have defined our computation model for concurrent declarative pro-
gramming. Roughly speaking, we model a system as a set of component, where each
component is composed of a store which is modified by the execution of actions. These
actions, which can be defined by the programmer, are executed either by processes of
the component, or are received as messages emanating from processes of other compo-
nents in the system. The interaction of components written in different languages is
possible due to the use of dedicated translation functions.

Our computation model distinguishes clearly between the different levels of a sys-
tem. For instance, actions are defined at a meta-level with respect to the store since
actions modify stores. Furthermore, our extension of declarative programming is con-
servative in the sense that the definition (and semantics) of functions and predicates
has not been changed. In fact, since we can express the dynamics of a system by means
of actions and processes, there is no need to encode these notions by using functions or
predicates. Thus all techniques applying to declarative programs can still be used for
the stores. Similarly, all state transforming interaction can be expressed at the level
of actions and processes. Last, but not least, the process functions allow the use of
the powerful abstraction mechanisms of functional programming to be applied to the
description of processes.

As we have already mentioned at the beginning of this chapter, we have used a
simple monomorphic type system, and did not use higher-order functions, in order to
keep the presentation as simple as possible. However, we believe that an extension
including to higher-order functions and polymorphic type systems [Mil78] is rather
straightforward.

Finally, our computation may seem complicated and complex compared to classical
process calculi or computation models. However, this complexity is unavoidable in
order to distinguish clearly between the different concepts and notions. In a simpler
model, all these different concepts have to encoded inside the notions provided by the
model. While this is possible, we prefer to keep different notions clearly separated, in

121

CHAPTER 3. COMPUTATION MODEL

order to ease the expression and understanding of the overall system.

122

Chapter 4

Operational Semantics

The motivation for the investigation of a semantics for a programming language or
framework is the precise formal definition of a program. Clearly, such a precise def-
inition is a necessary precondition for any reasoning about programs, as for example
program analysis or verification. In this chapter, we present the operational semantics
of our framework which we have presented in the preceding chapter. We give the oper-
ational semantics of a system in two steps. First we consider a single component, and
extend the semantics in a second step to a system of several components.

4.1 Operational Semantics of a Component

The operational semantics of a component has to take into account two different aspects,
namely the execution of processes (i.e., the execution of actions causing the modification
of the store), and the classical operational semantics of the store, e.g., interactive goal-
solving or evaluation of expressions. A further aspect (which can be seen as a part
of the execution of processes) is the operational semantics of process functions, i.e.,
the reduction of process (and action) expressions to normal form. Thus, we present
the operational semantics of a component in four steps. First, we define the execution
of (closed) guarded actions in normal form. The operational semantics of action and
process expressions, i.e., their reduction to normal form, is defined by a rewrite system
for process functions. In a third step, we describe the execution of processes by a
transition system TC . Finally we combine the rules of TC with rules describing the
interactive use of the store, leading to a second transition system TC which defines the
operational semantics of a component.

Throughout this section, we consider the operational semantics of a component
C =

〈
ŝn, CΣ, R, A, Tr , Rp, ΠR, pi

〉
with storename ŝn.

4.1.1 Execution of Closed Guarded Actions in Normal Form

To execute a closed guarded action in normal form, i.e., a pair of a guard and a sequence
of pairs of storenames and calls to elementary actions containing no free variables, as
for instance[

g ⇒
〈
sn1, a1(t1, 1, . . . , t1, l1)

〉
; . . . ;

〈
snk, ak(tk, 1, . . . , tk, lk)

〉]
123

CHAPTER 4. OPERATIONAL SEMANTICS

in the store F (of a component C with storename sn), we have first to test the validity
of the guard g in the store F . If g holds in the store F , i.e., F ` g, we have to execute
the sequence of (instantiated) storename/elementary action pairs〈

sn1, a1(t1, 1, . . . , t1, l1)
〉
; . . . ;

〈
snk, ak(tk, 1, . . . , tk, lk)

〉
In these pairs, the storename determines the component where the elementary action is
to be executed. As an elementary action (when supplied with arguments) is a function
from stores to stores, the effect of executing an elementary action means to replace,
i.e., to “destructively update”, the store F by the store the result or normal form of(
ai(ti, 1, . . . , ti,mi)

)
(F), i.e., the application of the action to F .

However, to take into account the difference between local and distributed compu-
tations, we distinguish between elementary actions intended for the local component
(i.e., associated with the storename ŝn) and all the others. In the first case, we can
directly update the local store, in the second we send a message containing the elemen-
tary action to the remote component. It is then up to the remote component to ensure
that the elementary action is eventually correctly executed. In this section, we are only
concerned with the actions to be executed on the local store. The execution of actions
on other, remote stores, is presented in section 4.2.

To express the execution of an action expression in normal form formally, we define
two functions, namely exec and sel . These functions take as a parameter an action
expression in normal form, i.e., a sequence of pairs of a storename sni and an elementary
action ai. We represent these sequences as lists. In the sequel, we use the data type of
(polymorphic) lists Seq(E) with elements of sort E, which is defined by the constructors
nil (without parameters) for the empty list and cons which takes an element e and a list
l and constructs the list with the element e in front. The first element of a (non-empty)
list l is denoted by head(l), and the remaining list by tail(l). Furthermore, we write [e]
for the (singleton) list cons(e,nil) and l1 :: l2 for the concatenation of the lists l1 and
l2

1.
The function sel takes two arguments, a storename sn and an action expression

l ∈ AN (CΣ, X) in normal-form, i.e., a sequence of pairs of storenames and elementary
actions, which we represent by a list l, and returns the sub-list of l consisting of those
pairs of storenames and elementary actions of l, the storename of which is sn.

sel(sn, l) =
l if l = nil ,

cons
(
〈sn ′, a(t1, . . . , tm)〉, sel

(
sn, tail(l)

)) if sn = sn ′ and
head(l) = 〈sn ′, a(t1, . . . , tm)〉,

sel
(
sn, tail(l)

)
otherwise.

(4.1)

The function execsn describes the execution on a store F (the storename of which
is sn) of an action expression l ∈ AN (CΣ, X, sn) in normal-form where all storenames

1The data type Seq(E) is a polymorphic extension of the sort of lists used in the example of the
multiple counters: see section 3.3.2 for the signature and example 3.63 for the rewrite rules.

124

4.1. OPERATIONAL SEMANTICS OF A COMPONENT

are the same, i.e., a sequence of pairs of a storename sn and an elementary action ai.

execsn(l, F) =

{
F if l = nil ,

execsn

(
tail(l),

(
a(t1, . . . , tm)

)
(F)
)

if head(l) = 〈sn, a(t1, . . . , tm)〉
(4.2)

4.1.2 Evaluation of Actions and Process Expressions

The execution of (guarded) actions as defined above considers only (closed) guarded
actions in normal form. Hence general action (and process) expressions need to be
reduced to normal form before their execution. This reduction is similar to classical
rewriting as presented in the context of the operational semantics of a simple declarative
programming language in section 3.1.2.2.

Roughly speaking, the reduction of an action or process expression rewrites process
functions according to their definitions (i.e., p-rules), until the expression does no longer
contain any process functions. That is to say, in every reduction step, the sub-term
which is reduced is either rooted with a process functions or in a position which has
to be reduced in order to eliminate an occurrence of a process function. Thus calls to
elementary actions and processes as well as expressions constructed by means of the
operators ;, ‖, + and ⊕ play a similar rôle in the evaluation of action and process
expressions as the constructors in classical rewriting.

In the following we present the essential notions related to the operational semantics
of process functions. Recall from definition 3.36 that a component signature is an eight-
tuple CΣ = 〈Σ, MΣL, A, I, E, Trans, P, Π〉 where the signature of the store Σ = 〈S, Ω〉
is a pair of a set of sorts and a family of operators or functions. Hence, process functions
are defined by means of a rewriting system〈〈

PS,
(

Π]
{

;; ‖; +; ⊕; 〈•, •〉; [• ⇒ •]
})〉

, ΠR]R] Tr
〉

(4.3)

where R is the set of rules of the current store, Tr is the set of t-rules defining the
translation functions (in Trans) and 〈•, •〉 (respectively, [• ⇒ •]) is the constructors
of action (respectively, process) expressions introduced in definition 3.43 (respectively,
3.50). Since action expressions are a special case of process expressions, we do not
present the reduction of action expressions separately.

The reduction of a process expression is defined by means of unconditional reduction
steps as in definition 3.18. We refer therefore the reader to section 3.1.2 for further
details and recall here only the main definitions and notations. Recall that we note
t|p the sub-term of term t at the position p and write t[t′]p for the replacement of the
sub-term at the position p in a term t by t′.

Similar to definition 3.20, a reduction step p 99Kp,ΠR p′ is the application of the
p-rule, t-rule or rule ΠR = lhs → rhs to the process expression p at the position p,
yielding the process expression p′ = p[σ(rhs)]p, where the substitution σ is defined by
the equation p|p = σ(lhs).

Recall from section 3.5 that a process expression without any call to a process or
translation function is said to be in normal form (see notations 3.45 and 3.51). Notice

125

CHAPTER 4. OPERATIONAL SEMANTICS

that a process expression in normal form is not necessarily irreducible2 since one of its
sub-terms might be an application of a defined function such that the process expression
could be further reduced by the application of a rule R (∈ R).

Consequently, a process expression has, in general, not a uniquely determined nor-
mal form. However, by specifying an appropriate evaluation strategy, we can ensure
an unique normal form. In this thesis, we opt for the simplest strategy, namely to
completely evaluate a process expression to an irreducible process expression. A more
general approach would allow the programmer to specify the strategy to be used, for
instance by marking some sub-terms such that they are not evaluated. However, this
marking demands further investigation, since it requires the use of an additional level
(above the level of processes) in the description of a component, since it concerns the im-
plementation of our computation model. Notice that the use of Names (or meta-terms)
allow to pass parameters which are not evaluated.

In the sequel, we call the irreducible process expression obtained by application of
reduction steps to a process expression p the3 normal form of p, noted p⇓. Similarly, we
note the normal form of an action expression a as a⇓. Notice, that we have by definition
that, for any process expression p, p⇓ is a process term according to notation 3.51, i.e.,
a process expression without any occurrence of a process function.

The separation of the evaluation or normalisation of action and process expressions
from the execution of processes and actions reflects the fact that we consider these ex-
pressions as a means to facilitate the description of processes, for instance to abbreviate
the notation as we have shown in examples 3.56 and 3.57. Furthermore, by clearly sep-
arating the different kinds of execution, we aim at making the operational behaviour
of a program easier to understand. In fact, since the execution of actions and processes
modifies the store, the moment when a process function is evaluated may influence the
resulting action or process, if the process function depends on a value from the store.

4.1.3 Execution of Process Terms

After the description of the reduction or evaluation of process expressions to process
terms, we present in this section the transition system TC =

〈
Q, −→, 〈F, pi

w�〉〉
describing the execution of process terms. The states of TC , i.e., Q, are pairs, e.g.,
〈F, p〉, consisting of a store F and a process term p. The initial state of TC is built
from the initial store F and the normal form of the initial process expression pi

w�, which
are both specified by the programmer as parts of the specification of the component C
(see definition 3.62). In the sequel, we will omit the normalisation of the initial process
term.

As common in process calculi, we define the transition relation in the style of
the Chemical Abstract Machine (CHAM) [BB92], i.e., modulo a congruence relation,
namely ≡, on process terms. The CHAM uses the metaphor of a chemical solution in

2Recall from section 3.1.2.2 that a term t is called irreducible if no reduction step can be executed
starting with t.

3Recall from section 3.5.2 that we require process and translation functions to be total recursive
functions in order to guarantee that p⇓ is uniquely determined. However, the reduction steps for process
expressions may involve also reduction using the rules of the store. A programmer has therefore to
ensure that the terms of the store which are used in process expressions are always reducible to an
unique normal form, in this during the complete execution of the system.

126

4.1. OPERATIONAL SEMANTICS OF A COMPONENT

success ; p ≡ p

success ‖ p ≡ p
(Unit≡)

p1 ‖ p2 ≡ p2 ‖ p1

p1 + p2 ≡ p2 + p1
(Comm≡)

Table 4.1: Axiom Schemes Defining the Structural Congruence ≡ on Process Terms

order to represent the states of a transition system as a multiset of floating molecules.
Heating or cooling the chemical solution does only change the solution in a reversible
manner: this is modeled by the congruence relation (which can be applied in both
directions). The transitions correspond to the chemical reactions which transform the
solution. The congruence relation ≡ is defined by the axiom schemes shown in ta-
ble 4.1; the extension to a congruence relation (reflexivity etc.) should be obvious. The
inference rules defining the transition relation −→ are given in table 4.2. These rules
define exactly the set of legal (or correct) transitions (with respect to TC), in the sense
that all correct transitions can be inferred by these rules and all transitions that can
be inferred by these rules are correct.

Informally, the congruence relation ≡ states that the process term success is a unit
element for sequential (;) and parallel (‖) composition (see rules (Unit≡)), and that
the operators ‖ and + are commutative (see rule (Comm≡)). Notice that success is not
a neutral element for +. In fact, success + p has the choice between (immediate) ter-
mination or the behaviour of p, whereas p cannot, in general, terminate immediately4.
Obviously, sequential composition and choice with priority are not commutative by
their very nature. Notice finally, that we do not need the axioms for associativity (of ;,
‖, + and ⊕), since the inference rules shown in table 4.2 imply that the corresponding
processes have the same behaviour.

We comment the rules of table 4.2 one by one. The combination of the structural
congruence and the transition relation is described by rule (R≡). In the language of the
CHAM, rule (R≡) allows to include “heating” and “cooling” steps, i.e., transformation
according to ≡ before and after a transition (or “reaction” in the metaphor of a chemical
solution). Stated otherwise, rule (R≡) allows to define the transition relation “modulo
the congruence ≡”.

Using the auxiliary functions sel and exec defined in section 4.1.1, we describe by
rule (Raction) the effects of executing a closed (guarded) action, i.e., an action expression
in normal form without free variables. Under the premise of the validity of the guard
in the current store (F ` g), the local store is replaced by the application of the action
expression in normal form, i.e., a sequence of elementary actions, to the store. Since
this sequence may contain elementary actions on several stores, we have to distinguish
between elementary actions meant for the local store (recall that we suppose that we
are given a component C = 〈ŝn, CΣ, R, A, Tr , Rp, ΠR, pi〉 with storename ŝn) and all
the others. Notice that rule (Raction) describes only the execution of the “local” actions.

4Consider the process term [true⇒ skip] which executes an action before successful termination.

127

CHAPTER 4. OPERATIONAL SEMANTICS

p ≡ p′ 〈F, p′〉 −→ 〈F ′, p′′〉 p′′ ≡ p′′′

〈F, p〉 −→ 〈F ′, p′′′〉
(R≡)

F ` g〈
F ,
[
g ⇒ 〈sn1, a1(t1, 1, . . . , t1, k1)〉; . . . ; 〈snn, an(tn, 1, . . . , tn, kn)〉

]〉
−→〈

exec ŝn

(
sel
(
ŝn, 〈sn1, a1(t1, 1, . . . , t1, k1)〉; . . . ; 〈snn, an(tn, 1, . . . , tn, kn)〉

)
, F
)
, success

〉
(Raction)(

q(x1, . . . , xn)⇐
⊕m

i=1([gi ⇒ ai] ; pi)
)
∈ Rp〈

F,
(⊕m

i=1 rename([gi ⇒ ai⇓] ; pi)
)
[vj/xj]

〉
−→ 〈F ′, p′〉

〈F, q(v1, . . . , vn)〉 −→ 〈F ′, p′⇓〉
(Rcall)

〈F, p1〉 −→ 〈F ′, p′1〉
〈F, p1 ; p2〉 −→ 〈F ′, p′1 ; p2〉

(R;)

〈F, p1〉 −→ 〈F ′, p′1〉
〈F, p1 ‖ p2〉 −→ 〈F ′, p′1 ‖ p2〉

(R‖)

〈F, p1〉 −→ 〈F ′, p′1〉
〈F, p1 + p2〉 −→ 〈F ′, p′1〉

(R+)

〈F, p1〉 −→ 〈F ′, p′1〉
〈F, p1 ⊕ p2〉 −→ 〈F ′, p′1〉

(R⊕)

〈F, p2〉 −→ 〈F ′, p′2〉
〈F, p1 ⊕ p2〉 −→ 〈F ′, p′2〉

if @ p′1, @F ′′, such that 〈F, p1〉 −→ 〈F ′′, p′1〉 (R′⊕)

Table 4.2: Inference Rules Defining the Transition Relation −→ of TC

We present the mechanisms for sending messages containing the sequence of elementary
actions (together with their arguments) to remote components in section 4.2, where we
define the operational semantics of system composed of several components.

Notice that the execution of an action is locally atomic, i.e., all the elementary
actions (for a same store) of an action are executed in a single transition step, so that
actions executed by other processes cannot interfere. An example for the usefulness
of the atomic execution of actions is the program for the dining philosophers (see
example (1.1.5)) where a philosopher needs to take the two necessary chop sticks in a
single atomic action.

According to Rule (Rcall), a call to a process corresponds to the execution of an
(instantiated) variant of the process definition. Recall from definition 3.60 that a
variant of a process definition is obtained by renaming all new symbols introduced by
new elementary actions, and that we note the renaming by the function rename. This
is similar to the application of clauses in logic programming, where implicitly each
variable is renamed by a fresh one, i.e., a new and unused variable. However, in our
computation model the programmer has explicitely to specify which symbols should be
replaced by fresh ones via the elementary action new.

128

4.1. OPERATIONAL SEMANTICS OF A COMPONENT

Notice that the action expression of the selected definition is evaluated in the same
store in which the guard is checked, due to the locally atomic execution of guarded
actions. Notice further, that the process expressions are evaluated in the store after
the execution of the action. By the way, it can be seen easily, that there exists an
i ∈ {1; . . . ;m} such that p′ ≡ rename(pi)[vj/xj] (j ∈ {1; . . . ;n}), i.e., the process
expression p′ is (equivalent to) one of the process expressions of the guarded commands
defining the process q. The reason is that the transition in the premise of rule (Rcall) is
necessarily an execution of an action, i.e., a transition according to rule (Raction), due
to the syntactical form of process definitions.

Rules (R;) to (R+) describe the standard semantics of the operators ;, ‖ and +. Ac-
cording to rule (R;), executing the process term p1 ; p2 means to execute first p1. When
p1 has terminated its execution, that is to say when it has become the process term
success, i.e., p′1 ≡ success, rule (R≡) together with the first axiom of (Unit≡) ensure
that p2 can start its execution. Rule (R‖) specifies an interleaving semantics for the
parallel composition p1 ‖ p2, i.e., there is only one execution step (or transition) at a
time such that the steps executed by concurrent processes are “interleaved” in a nonde-
terministic way. This semantics of the parallel composition is to be distinguished from
so-called true concurrency models, where several execution steps are allowed to happen
at the same time. However, an interleaving semantics is conceptually simpler, since the
problem of two “contradicting” steps (or actions in our case) cannot arise. Hence this
approach has been adopted by most process calculi (see section 2.2). The execution
of the process term p1 + p2 as described by rule (R+) consists of the execution of p1,
discarding p2. Since the operator + is commutative, see the axiom schemes (Comm≡),
the execution of p1 + p2 can choose nondeterministically between p1 and p2.

Since the operator ⊕ is not commutative, we need two inference rules to define
its operational behaviour5. When executing the process-term p1 ⊕ p2, the process p2

will only be executed if (in the current store) an execution of p1 is impossible (see the
side-condition of Rule (R′⊕)). In contrary, p1 can be executed independently from the
executability of p2 (see Rule (R⊕)). Notice that thanks to our syntactical restriction to
restricted process expressions in processes definitions as well as for the initial process
term, the operator of choice with priority can only appear inside a process call, i.e., in
rule (Rcall). Thus, when we check the guards of the process in a sequential manner the
operator ⊕ can be easily implemented. In fact, this is the motivation of the syntactical
restriction.

We call inference tree for a transition 〈F, p〉 −→ 〈F ′, p′〉 a tree the nodes of which
correspond to transitions (or other statements occurring in the inference rules). The
nodes of an inference tree are labeled with inference rules such that the children cor-
respond to the premises allowing to infer the parent using the inference rule with
which the parent is labeled. Suppose that we can prove the validity of the transition
〈F, p2〉 −→ 〈F ′, p′2〉. Under this hypothesis, figure 4.1 shows the remainder of an infer-
ence tree for the transition

〈
F, p1 ‖ (p2 + p3)

〉
−→

〈
F ′, p1 ‖ p′2

〉
. We draw inference

trees with its root at the bottom of the figure, such that the applications of the in-
ference rules are in the same direction as in their definitions. Notice that the notion
of inference trees has similarities to the proof figures which are used in linear logic

5Notice that we need only one rule for the equally non commutative operator “;“ since in the process
term p1 ; p2 only p1 can be executed.

129

CHAPTER 4. OPERATIONAL SEMANTICS

p1 ‖ (p2 + p3) ≡ (p2 + p3) ‖ p1

...
〈F, p2〉 −→ 〈F ′, p′2〉

〈F, p2 + p3〉 −→ 〈F ′, p′2〉
(R+)

〈F, (p2 + p3) ‖ p1〉 −→ 〈F ′, p′2 ‖ p1〉
(R‖) p′2 ‖ p1 ≡ p1 ‖ p′2〈

F, p1 ‖ (p2 + p3)
〉
−→

〈
F ′, p1 ‖ p′2

〉 (R≡)

Figure 4.1: Example of an Inference Tree

programming to represent proofs, i.e., executions.

4.1.4 Combined Operational Semantics of a Component

Besides the execution of the processes modifying the store, described by the transition
system TC , the operational semantics of a component C has another, orthogonal aspect,
namely the classical operational semantics of the declarative programming language
L used for the description of the store, as for instance goal solving or evaluation of
expressions. We suppose that the operational semantics of L is described by a relation
y, which we do not precise further. Intuitively, y describes the transformation steps
of a goal, i.e., y is a relation between goals. Examples for y are for instance rewriting
→ or narrowing presented in section 3.1.2.

We describe the operational semantics of a component C via a new transition system,
namely TC =

〈
Q, 7−→, 〈F, pi, gi, gi〉

〉
, where gi denotes a (possibly empty) initial goal

the user wants to solve, or the expression which is to be reduced. The states Q of the
transition system TC are configurations, i.e., four-tuples 〈F, p, gi, g〉, where F is the
current store, p is the current process term, gi is the initial goal to solve and g is
the expression representing the current state of the evaluation of gi (according to the
operational semantics of the declarative language used for F). We need the initial goal
in a configuration, since we need to know the solving of which goal we should restart if
a modification of the store invalidates the evaluation effectuated so far.

Classically, configurations of concurrent languages and process calculi, as e.g., CSP
[Hoa85], the π-calculus [Mil99] or also our operational semantics for the execution of
processes TC , are described only by the first two parts of our configurations, namely
〈F, p〉, which are enough to express the execution of processes. As for declarative lan-
guages, a configuration classically uses the first and the fourth parts 〈F, g〉 which allow
to express the rules of the operational semantics y of the declarative language, as for
instance the definition of the relation in section 3.1. Combining these two opera-
tional semantics adds the possibility to execute concurrent processes without loosing
the characteristics of declarative languages. For instance, goals can be solved while
the processes are running. This feature is useful to allow to query, at any moment,
the current store or state of an evolving system – without being limited to a fixed,
predefined set of possible queries that has been established during the specification of
the system. In particular, in a programming framework for rapid prototyping, where
the prototype is a means to explore the set of interesting queries, it is interesting to
dispose of a rich query language.

130

4.2. SEMANTICS OF A SYSTEM

〈F, g〉y 〈F, g′〉
〈F, p, gi, g〉 7−→ 〈F, p, gi, g′〉

(G)

〈F, p〉 −→ 〈F ′, p′〉
〈F, p, gi, g〉 7−→ 〈F ′, p′, gi, g′〉

where g′
def=

{
g if F = F ′

gi otherwise
(P)

Table 4.3: Inference Rules for the transition system T

The transition relation of TC , i.e., 7−→, is defined by the two inference rules shown
in table 4.3. Rule (G) concerns interactive goal-solving, i.e., the use of the operational
semantics of the declarative language, as for instance goal solving (in logic languages)
or evaluation of expressions (in functional languages). In the example of the Dining
Philosophers, rule (G) allows us to ask for the currently eating philosophers by solving
the goal is eating(x) (see section 1.1.5). Rule (P) describes the modifications of the
store by the processes via the transition system T. When a process modifies the store,
we have to restart the goal-solving at the initial goal, i.e., gi, as the modification may
invalidate the already achieved derivation.

Obviously, rule (P) is only one of the many possibilities. A rather simple refinement
would be to restart the goal-solving only if the execution of a process has altered some
of the definitions used so far in the evaluation of the goal. Another, completely different
option for rule (P) would be to solve the goal in an unmodified “private copy” of the
store. More sophisticated techniques, namely rearranging of the search tree, i.e., the
order of the application of rules, have been investigated in [FFS95, FFS98]. These
methods allow the reuse of as much as possible of the search tree after the theory has
been modified.

Finally, we use a last rule to model the interactive interpreter for the store. At
every moment, a user of the interpreter can decide to change the initial goal gi1 that is
currently solved, and replace it by another goal gi2. Obviously, we have to restart goal
solving from the new initial goal gi2. Notice that due to rule (I), a programmer does not
need to specify the initial goal for a component, since all components can start with a
default empty goal, i.e., true, and the user of the system can interactively change to
another goal.

〈F, p, gi1, g〉
〈F, p, gi2, gi2〉

(I)

Notice that the operational semantics for a component does not consider explicitly
composite components, i.e., components of the form C1 ‖‖ C2. In fact, a composite
component can be considered as a particular case of a system the operational semantics
of which is defined in the following section.

4.2 Semantics of a System

In this section we consider the operational semantics of a system of several components.
We do not want to model the semantics of such a system by a single transition system,

131

CHAPTER 4. OPERATIONAL SEMANTICS

since we find it unrealistic to assume that we might have total knowledge about the
states of all the components of a distributed system at the same time. Indeed, if we
were up to defining the states of the global transition system, we would be forced to the
simplifying assumption that there exists a point during the execution of the system,
such that all components are in a fixed state. Therefore we do not believe that a single
transition system as in the preceding sections is an appropriate model for a distributed
system, since it gives a centralised view of a system. An example of such a semantics
is the operational semantics of KLAIM [NFP98], where a global transition system is
used in order to specify the synchronisation between the different components (or nets)
in a system. We prefer to model a distributed system as a collection of concurrently
executing transition systems.

In the preceding section, we have presented the transition system TC defining the
operational semantics of a single component C. In this section, we give some meta-rules
and conditions describing the interactions between several instances of T representing
the components of a system. Recall that components in our framework communicate
via message-passing, where a message corresponds to a sequence of elementary actions
to be executed. Thus we need to specify how the messages are sent and received.

In order to model the delay due to the transmission of messages over the commu-
nication network, we introduce the notion of a mailbox, acting as a (fifo6-) channel on
which a component, e.g., C, receives action expressions in normal form (i.e., sequences
of elementary actions) emanating from other components that want them to be exe-
cuted on the component C. Thus we extend the configuration of a component by a
fifth part, namely the mailbox m, leading to a new transition system the transition re-
lation of which we note by �. Recall from notation 3.45 that we note AN (CΣ, ∅, sn)
the set of action expressions in normal form where all calls to elementary actions are
paired with the storename sn. In the sequel, we represent the mail-boxes as lists, i.e.,
mailboxes are of sort Seq

(
AN (CΣ, ∅, sn)

)
, using the sort Seq(E) of lists (of elements

of sort E) introduced in section 4.1.1.
As for the transition systems in the preceding section, the translation relation� of

the extended transition system for a component is defined by a set of inference rules.
The first inference rule for � allows the reception of messages in the mailbox.

m′ ∈ Seq
(
AN (CΣ, ∅, ŝn)

)〈
F, p, gi, g, m

〉
�
〈
F, p, gi, g, (m ::m′)

〉 (M)

The premise of rule (M), namely m′ ∈ Seq
(
AN (CΣ, ∅, ŝn)

)
models the reception of

a list of messages, where a message is an action expression in normal-form such that
all elementary actions are paired with the storename of the receiving component, i.e.,
ŝn. We consider the reception of a list of messages in order to model the indepen-
dence of the execution of different components. Hence, we can model the reception of
an arbitrary number of messages (including zero), allowing to model the fact that a
“slower” component will receive, in general, more messages per transition than “faster”
components.

The second inference rule for� tells us that all transitions with respect to 7−→ are

6fifo is the acronym of first-in-first-out.

132

4.2. SEMANTICS OF A SYSTEM

also transitions with respect to �.〈
F, p, gi, g

〉
7−→

〈
F ′, p′, (gi)′, g′

〉
m′ ∈ Seq

(
AN (CΣ, ∅, ŝn)

)〈
F, p, gi, g, m

〉
�
〈
F ′, p′, (gi)′, g′, (m ::m′)

〉 (C)

The second premise of rule (C) allows the reception of a sequence of messages in the
mailbox during the transition.

The execution of (sequences of) actions that are already in the mailbox has to be
interleaved with the execution of actions by the processes of the component. Therefore,
we introduce a rule similar to rule (Raction) (see table 4.2), which describes the execution
of actions by processes of the component.

m′ ∈ Seq
(
AN (CΣ, ∅, ŝn)

)〈
F, p, gi, g,

[
a] ::m

〉
�
〈
exec ŝn(a, F), p, gi, g′, m ::m′

〉 g′
def=
{
g if F =exec ŝn(a, F)
gi otherwise

(E)
The main difference between rules (E) and (Raction) is that (E) considers action expres-
sions and (Raction) guarded actions. Hence, rule (E) has no premise corresponding to
the check of the guard. Similarly, the selection of the actions addressed to the store
can be omitted in rule (E) since all elementary actions received in the mailbox are
(by definition) to be executed on the current store. Clearly, the same remarks as for
rule (P) apply to rule (E), concerning the fact of restarting the goal solving after the
execution of the actions. Notice also, that rule (E) (as rule (C)) allows the reception of
new messages, i.e., action expressions in normal-form, during the execution of actions
from the mailbox.

As mentioned at the beginning of this section, we specify the interaction between
different components not by a global transition system, but give meta-rules which relate
events occurring in different components. We distinguish two kinds of events, namely
SEND, the sending of a sequence of actions, and RECEIVE, their reception. These events
have two arguments, namely the component name or storename sn of their destination
and the contents of the message, i.e., an action expression a in normal form (where all
calls to elementary actions are paired with the storename sn), i.e., a ∈ AN (CΣ, ∅, sn).

Recall that rule (Raction) describes the execution of a guarded action [g ⇒ a] only
partially, in the sense that only the modification of the local store is expressed. However,
the execution of the guarded action has also the effect of sending messages to remote
components. Thus, we associate to each execution of a guarded action the set of SEND-
events corresponding to the messages sent to other components. This is tantamount to
label the transitions of a component with the set of events associated to the transition.
The inference rules for the labeled transition relation are shown in table 4.4. According
to rule (R̂action), we label a transition 〈F, [g ⇒ a]〉 −→ 〈F ′, success〉 with the set of
events Ev s([g ⇒ a]) which is defined as (recall that the storename of the local component
is ŝn)

Ev s([g ⇒ a]) def=
{

SEND
(
sn ′, sel(sn ′, a)

) ∣∣ sn ′ ∈ SN r {ŝn} and sel(sn ′, a) 6= nil
}

(4.4)
We omit the formal definition of the straightforward7 extension of the labeling to the
transition system TC , i.e., to the transition relation 7−→.

7Labeling rule (P) amounts to pass on the set of events, whereas rules (G) and (I) are labeled with
the empty set.

133

CHAPTER 4. OPERATIONAL SEMANTICS

p ≡ p′ 〈F, p′〉 Ev−−→ 〈F ′, p′′〉 p′′ ≡ p′′′

〈F, p〉 Ev−−→ 〈F ′, p′′′〉
(R̂≡)

F ` g〈
F, [g ⇒ a]

〉 Ev s([g⇒a])−−−−−−−→
〈
exec

(
sel(ŝn, a), F

)
, success

〉 (R̂action)

(
q(x1, . . . , xn)⇐

⊕m
i=1([gi ⇒ ai] ; pi)

)
∈ Rp〈

F,
(⊕m

i=1 rename([gi ⇒ ai⇓] ; pi)
)
[vj/xj]

〉 Ev−−→ 〈F ′, p′〉
〈F, q(v1, . . . , vn)〉 Ev−−→ 〈F ′, p′⇓〉

(R̂call)

〈F, p1〉
Ev−−→ 〈F ′, p′1〉

〈F, p1 ; p2〉
Ev−−→ 〈F ′, p′1 ; p2〉

(R̂;)

〈F, p1〉
Ev−−→ 〈F ′, p′1〉

〈F, p1 ‖ p2〉
Ev−−→ 〈F ′, p′1 ‖ p2〉

(R̂‖)

〈F, p1〉
Ev−−→ 〈F ′, p′1〉

〈F, p1 + p2〉
Ev−−→ 〈F ′, p′1〉

(R̂+)

〈F, p1〉
Ev−−→ 〈F ′, p′1〉

〈F, p1 ⊕ p2〉
Ev−−→ 〈F ′, p′1〉

(R̂⊕)

〈F, p2〉
Ev−−→ 〈F ′, p′2〉

〈F, p1 ⊕ p2〉
Ev−−→ 〈F ′, p′2〉

if @ p′1, @F ′′, @ a′, such that
〈F, p1〉

Ev ′−−→ 〈F ′′, p′1〉
(R̂′⊕)

Table 4.4: Inference Rules for −→ Labeled with the Associated Events

The extension of the labeling to the transition relation � has to consider be-
sides SEND-events also RECEIVE-events. Intuitively, the reception of a message in the
mailbox as modeled in the rules (M), (C) and (E) corresponds to the occurrence of a
RECEIVE event. The labeled versions of theses inference rules are as follows:

m′ ∈ Seq
(
AN (CΣ, ∅, ŝn)

)
〈
F, p, gi, g, m

〉 Ev r(m′)
�

〈
F, p, gi, g, (m ::m′)

〉 (M̂)

〈
F, p, gi, g

〉 Ev s

7−→
〈
F ′, p′, (gi)′, g′

〉
m′ ∈ Seq

(
AN (CΣ, ∅, ŝn)

)
〈
F, p, gi, g, m

〉 Ev s]Ev r(m′)
�

〈
F ′, p′, (gi)′, g′, (m ::m′)

〉 (Ĉ)

m′ ∈ Seq
(
AN (CΣ, ∅, ŝn)

)
〈
F, p, gi, g,

[
a] ::m

〉 Ev r(m′)
�

〈
exec ŝn(a, F), p, gi, g′, m ::m′

〉 g′
def=
{
g if F = exec ŝn(a, F)
gi otherwise

(Ê)

where the set of RECEIVE-events associated to a sequence of action expressions in
normal form is defined as

Ev r
(
[a1; . . . ; an]

) def=
{

RECEIVE(sn, ai)
∣∣ i ∈ {1; . . . ;n}

}
(4.5)

134

4.2. SEMANTICS OF A SYSTEM

Using the labeling of the transition relation� as described by the rules (M̂), (Ĉ) and
(Ê), we can now define the meta-rules which relate the events occurring at different com-
ponents. We may imagine the multiset E of all events occurred during a particular exe-
cution (or run) of a system. A run of a system consists in our model of a set of sequences
of transitions (for the transition relation�), such that there is exactly one sequence of
transitions for each component of the system. Thus we require that for each sequence of

transitions 〈F0, p0, gi0, g0,m0〉
Ev1
� 〈F1, p1, gi1, g1,m1〉

Ev1
� · · ·

Evi
� 〈Fi, pi, gii , gi,mi〉

Evi+1

� · · ·
in the run, we have that E ⊇

⋃
i>0 Evi. Furthermore, we have to require that the mul-

tiset of occurred events E contains only events that have actually occurred, i.e., that
have been added by a transition. In other words, we require that for all events e ∈ E ,
we have a sequence of transitions in the run such that there exists i > 0 such that
e ∈ Evi.

To express the interaction between components, we need to link the SEND and
RECEIVE events in E . We say that two events SEND and RECEIVE correspond (to
each other) when they have exactly the same arguments. Consequently, a RECEIVE-
event e (∈ E) that corresponds to a SEND-event e′ (∈ E) might model the reception
of a message the sending of which is modeled by e′. To specify the relation between
events more precisely, we use further conditions, refining the notion of corresponding
events. Notice first, that E can be considered as a set, i.e., distinguishing events with
the same parameters, if we define an appropriate order on the occurred events. To
define this order, we extend the sequential order of the transitions of a component
C to a partial8 order on the events occurring at the component C, which we note ≺C .
Hence, the distinction between SEND-events can be based on the sender of the message
together with the partial orders ≺ (on the sender-side), since in one transition at most
one message is sent from one component to another. Similarly, we can distinguish
RECEIVE-events by the sender together with the partial order on the receiver-side.
However, since the reception of several messages is possible in a single transition, we
have to take into account the order of the messages in the list9 (which is added to
the mailbox) to extend the partial order such that two receptions of the same action
expression from the same component an be distinguished.

Our requirements on the interaction between components of a system can now
be expressed as properties of a correspondence function over E considered as a set.
A reasonable requirement seems to be that the We require that the correspondence
function is bijective and idempotent. Hence, for every event e (∈ E) we denote its
corresponding event, i.e., the event associated to e by the correspondence function,
by ē. The idempotency of the correspondence function ensure that we have ¯̄e = e.
The requirement that the correspondence function be bijective expresses already two
properties of the communication medium, namely that no message can be lost (i.e., all
messages that are sent arrive eventually) and that no phantom (i.e., unsent) messages
are received. The former would mean that the restriction of the correspondence function
to the domain of RECEIVE-events is not surjective (there are SEND-events which do
not correspond to a RECEIVE-event). The latter (no phantom messages) is just the

8The order is necessarily partial since several events may occur at a single transition.
9The order induced by a list is the reason why we used lists instead of sets. Furthermore, lists reflect

more closely the idea of a fifo-channel.

135

CHAPTER 4. OPERATIONAL SEMANTICS

dual.
A further meta-rule or condition relating SEND and RECEIVE events could be used

to specify that the underlying communication medium preserves the order of messages
along a communication link10, i.e., for two SEND events e1

def= SEND(sn ′, a1) and e2
def=

SEND(sn ′, a2) occurring at the component C such that e1 ≺C e2, we have also that the
corresponding events are in the same order. ē1 ≺C′ ē2 where C′ is the component with
storename sn ′.

? ? ?

In this chapter, we have presented the operational semantics of a system as a set of
several concurrently executing transition systems, each of them defining the operational
semantics of a single component. Interaction between these transition systems is ex-
pressed by establishing a correspondence between the communication events occurring
at the components. The operational semantics of a component itself has essentially two
parts, namely the execution of processes (modifying the store) and interactive goal solv-
ing. The operational semantics we presented here reflects this separation in the way that
it is defined as a combination of two distinct transition relations. With respect to pre-
vious presentations of the operational semantics of our framework [Ser98, ES99, ES00],
we use here an approach in the style of the CHAM [BB92] and give a description of
the semantics of a system of several components.

10We do not suppose a global ordering of the messages, we demand only that the messages sent
from component C1 to component C2 arrive at the component C2 in the order they were sent from the
component C1.

136

Chapter 5

Compositional Semantics of a
Component

In this chapter we present a compositional semantics for processes of a component.
Intuitively, a semantics is called compositional , if the semantics of a composed entity
(in our case, a composed process term) can be obtained by composition of the semantics
of its components. Compositionality allows to considerably reduce the complexity of
(program) analyses, since it allows to analyse (small) parts of a program separately,
and to compose the obtained results to obtain a global result. Hence a compositional
semantics facilitates reasoning about programs, which is the main motivation for the
definition of a precise formal semantics.

We show first that the semantics of execution traces as generated directly by the
operational semantics of processes as presented in chapter 4 is not compositional. Then
we present a second semantics based on labeled execution traces (originally inspired
from the compositional semantics for ccp defined in [dBP91]) which we show to be
compositional.

Throughout this chapter we suppose we are given a single component C defined as
C def=

〈
ŝn, CΣ, R, A, Tr , Rp, ΠR, pi

〉
, and we consider only the part of the semantics

of a component dealing with the execution of processes.

5.1 Semantics of Execution Traces

The semantics of a process we consider in this chapter is based on execution traces or
trace for short. Informally, a trace is the sequence of (guarded) actions a process has
executed. Similar to traces in a snowy winter landscape, the trace of a process allows
to reconstruct the (execution) path the process has taken.

To define the traces of a process according to the transition system presented in
section 4.1, we label all transitions with the action that is executed by the transition.
Thus we obtain the transition system T̃C =

〈
Q, −→, 〈F, pi〉

〉
. The states Q as well as

the initial state 〈F, pi〉 of T̃C are the same as for the transition system TC , namely pairs
of a store F and a process term p. The inference rules of T̃C are shown in table 5.2.
These rules are essentially the same as those for TC (see table 4.2) and just introduce the
labels of the transitions. Thus the transition relation −→ is a ternary relation between

137

CHAPTER 5. COMPOSITIONAL SEMANTICS OF A COMPONENT

states, guarded actions and states (instead of being binary relation between states). We
recall in table 5.1 the axiom schemes defining the congruence relation ≡ to make this
chapter “self-contained”, since they are exactly the same as those shown in table 4.1.
As already mentioned in section 4.1.3, the extension of ≡ to a congruence relation is
obvious. As for the inference rules of table 4.2, the inference rules in table 5.2 define
exactly the set of correct (or valid) transitions (with respect to T̃C).

Informally, a trace is a sequence of labels of the transition system T̃C , i.e., a sequence
of guarded actions (in normal form).

5.1 Definition (trace). Let C def=
〈
ŝn, CΣ, R, A, Tr , Rp, ΠR, pi

〉
be a component.

A trace t is a (possibly infinite) sequence of (closed) guarded actions ai ∈ G(CΣ, ∅)
(∀i > 0)

t = a1 ; a2 ; . . . ; ai ; . . . = (ai)i≥0 (5.1)

In the sequel, we note sets of traces as T .

For a finite trace t = a1; . . . ; an, we call n the length of the trace t. Notice that
definition 5.1 allows a trace to have the length 0. In the sequel we call traces of length
0 empty and let ε denote an empty trace.

In order to define the semantics of a process, we have to relate traces to executions
with respect to the labeled transition system T̃. For this purpose, we use the notion of a
transition sequence which describes the executions or derivations of a transition system.
We define transition sequences with respect to a general transition system, since we
reuse the same notion later on for the transition system providing the compositional
semantics.

5.2 Definition (transition sequence). A transition sequence d of a labeled transition
system T = 〈Q, −→, q〉 is a sequence

d = q1
`1−→ q2

`2−→ q3
`3−→ . . . (5.2)

where the qi are states of the transition system (i.e., ∀i ≥ 1, qi ∈ Q), and the transitions
between the states are correct with respect to the transition relation −→ of the transition
system (i.e., ∀i, (qi, `i, qi+1) ∈ −→).

In the sequel, we denote the set of transition sequences for a given initial state q
and a transition system T by TST (q). For instance, we say that the transition sequence

d =
(
〈F1, p1〉

a1−→ 〈F2, p2〉
a2−→ 〈F3, p3〉

a3−→ . . .
)
∈ TS T̃

(
〈F, p〉

)
(5.3a)

(with F1 = F and p1 = p) produces (written d ↪→ t) the trace

t = a1 ; a2 ; a3 ; . . . (5.3b)

Furthermore, we write d · d′ for the concatenation of a finite transition sequences

d = q1
`1−→ q2

`2−→ q3
`3−→ . . .

`n−1−−−→ qn and a (possibly infinite) transition sequence

d′ = q′1
`′1−→ q′2

`′2−→ q′3
`′3−→ . . . such that the states q′1 and qn are equivalent, i.e., for all

states q and for all transition labels ` we have that (q′1
`−→ q)⇔ (qn

`−→ q).

138

5.1. SEMANTICS OF EXECUTION TRACES

success ; p ≡ p

success ‖ p ≡ p
(Unit≡)

p1 ‖ p2 ≡ p2 ‖ p1

p1 + p2 ≡ p2 + p1
(Comm≡)

Table 5.1: Axiom Schemes Defining the Structural Congruence ≡ on Process Terms

p ≡ p′ 〈F, p′〉 a−−→ 〈F ′, p′′〉 p′′ ≡ p′′′

〈F, p〉 a−−→ 〈F ′, p′′′〉
(R̃≡)

F ` g〈
F,
[
g ⇒ 〈sn1, a1(t1, 1, . . . , t1, k1)〉; . . . ; 〈snn, an(tn, 1, . . . , tn, kn)〉

]〉
[g ⇒〈sn1, a1(t1, 1, ... , t1, k1)〉;... ;〈snn, an(tn, 1, ... , tn, kn)〉]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→〈

exec
(

sel
(
ŝn, 〈sn1, a1(t1, 1, . . . , t1, k1)〉; . . . ; 〈snn, an(tn, 1, . . . , tn, kn)〉

)
, F
)
, success

〉
(R̃action)(

q(x1, . . . , xn)⇐
⊕m

i=1([gi ⇒ ai] ; pi)
)
∈ Rp〈

F,
(⊕m

i=1 rename([gi ⇒ ai⇓] ; pi)
)
[vj/xj]

〉 a−−→ 〈F ′, p′〉
〈F, q(v1, . . . , vn)〉 a−−→ 〈F ′, p′⇓〉

(R̃call)

〈F, p1〉
a−−→ 〈F ′, p′1〉

〈F, p1 ; p2〉
a−−→ 〈F ′, p′1 ; p2〉

(R̃;)

〈F, p1〉
a−−→ 〈F ′, p′1〉

〈F, p1 ‖ p2〉
a−−→ 〈F ′, p′1 ‖ p2〉

(R̃‖)

〈F, p1〉
a−−→ 〈F ′, p′1〉

〈F, p1 + p2〉
a−−→ 〈F ′, p′1〉

(R̃+)

〈F, p1〉
a−−→ 〈F ′, p′1〉

〈F, p1 ⊕ p2〉
a−−→ 〈F ′, p′1〉

(R̃⊕)

〈F, p2〉
a−−→ 〈F ′, p′2〉

〈F, p1 ⊕ p2〉
a−−→ 〈F ′, p′2〉

if @ p′1, @F ′′, @ a′, such that
〈F, p1〉

a′−−→ 〈F ′′, p′1〉
(R̃′⊕)

Table 5.2: Labeled Inference Rules Defining the Transition Relation a−−→ of T̃C

139

CHAPTER 5. COMPOSITIONAL SEMANTICS OF A COMPONENT

We call a transition sequence d maximal if d cannot be prolonged, i.e., if d is finite
there is no further transition possible from the final state of d. A trace t is called
maximal if there exists a maximal transition sequence d such that d ↪→ t. Notice that
not all traces are produced by a transition sequence, and that there might be several
transition sequences producing the same trace, even if we consider only transition
sequences for the same store and process term, due to the operator of non-deterministic
choice +1.

In a trace based semantics, a process is characterised by the set of all its possible
traces, that is to say, those traces that can possibly be produced by a transition sequence
corresponding to an execution of the process. Using definitions 5.1 and 5.2 we can
define a first semantics of processes based on the transition system T̃C , i.e., based on
the operational semantics of chapter 4 where every transition is labeled by the executed
action.

5.3 Definition (operational semantics: O). Let C def= 〈ŝn,CΣ,R,A, Tr ,Rp,ΠR, pi〉
be a component. The operational semantics O associates to a process term p and a
store F the set of all maximal traces produced by the transition sequences (with respect
to the transition system T̃C) of the process term p when started on the store F :

O(p, F) def=
{

t
∣∣∣ ∃d ∈ TS T̃C

(
〈F, p〉

)
: d ↪→ t

}
(5.4)

Unfortunately, this first semantics is not compositional as can been seen from the
following example.

5.4 Example. Consider a component signature ĈΣ and a component Ĉ defined as

Ĉ def=
〈
sn, ĈΣ, ∅, ∅, ∅, ∅, ∅, success

〉
(5.5a)

ĈΣ def=
〈
〈{Truth}, {P,Q : Truth}〉, ÂΣ, ∅, ∅, ∅, ∅, ∅, ∅

〉
(5.5b)

where the action signature ÂΣ defines at least two elementary actions, namely tell for
adding predicates (i.e., functions of codomain Truth), and skip which does not do any-
thing. The storename of Ĉ is sn, its initial store is empty, i.e., there are no rules
defining the two predicates P and Q, and its initial process term is success. All the
other parts of Ĉ are empty, i.e., Ĉ does not interact with its environment at all.

Consider the following two process terms:

p̂1
def= [P ⇒ 〈sn, skip〉] ; success (5.5c)

p̂2
def= [Q⇒ 〈sn, skip〉] ; success (5.5d)

where P and Q are two different atomic predicates. When we start the execution of p̂1

(respectively, p̂2) in the empty initial theory F (which neither entails P nor Q), the set
of traces associated to p̂1 (respectively, p̂2) contains only the empty trace, thus

O(p̂1, F) = O(p̂2, F) = {ε} (5.5e)
1For instance, consider two processes q1 and q2 which are both defined by the process definition

“qi ⇐ [true ⇒ a] ; success” (i ∈ {1; 2}). Then we have two distinct transition sequences for the
process term q1 + q2 which both produce the (maximal) trace a.

140

5.2. SEMANTICS OF LABELED EXECUTION TRACES

However, considering the parallel composition of p̂1 (respectively, p̂2) with following
process term

p̂3
def= [true⇒ 〈sn, tell(P)〉] ; success (5.5f)

we find that the semantics of p̂1 ‖ p̂3 and p̂2 ‖ p̂3 are different:

O(p̂1 ‖ p̂3, F) =
{

[true⇒ 〈sn, tell(P)〉] ; [P ⇒ 〈sn, skip〉]
}

(5.5g)
O(p̂2 ‖ p̂3, F) = {ε} (5.5h)

The source of the non-compositionality of the operational semanticsO is that traces,
i.e., sequences of the actions executed by a single process, represent only the behaviour
of this process without taking into account its context, that is to say possible actions
of other parallel processes or the environment. Thus two processes, e.g., p̂1 and p̂2,
although having the same semantics, may behave differently in some contexts, e.g.,
when executed in parallel with p̂3. Notice that the process p̂3 modifies the current
theory, enabling the execution of p̂1. Thus one possible idea to obtain a compositional
semantics is to incorporate assumptions or hypotheses about the possible behaviour of
the environment.

5.2 Semantics of Labeled Execution Traces

As already mentioned, the main reason of the non-compositionality of the semantics
O based on simple execution traces is that the semantics of a process term does not
take into account the behaviour of the environment of the process. Recall that in a
compositional semantics, the semantics of a composed process can be computed from
the semantics of its components. Stated otherwise, two process terms that have the
same compositional semantics, behave in the same way in every context. Therefore
every compositional semantics needs to distinguish p̂1 and p̂2 of example 5.4, since they
behave differently in a particular context, namely the parallel composition with p̂3. The
semantics O cannot be compositional since it assigns the same set of traces to p̂1 and
p̂2.

A possibility to obtain a compositional semantics starting from O is to incorporate
in the semantics of p̂1 the fact that if (and only if) another (concurrent) process tells the
predicate P , then p̂1 can be executed. This allows to distinguish p̂1 from p̂2 since p̂2 can
only execute if the predicate Q is added to the store. We define a semantics containing
this additional information by means of the sets of traces of a new labeled transition
system. A special inference rule allows to integrate assumptions, or hypotheses, about
actions that might be executed by other concurrent processes, into the semantics of
a process. To distinguish between the actions that are really executed by the process
and those which are supposed, or expected, to be executed by the environment of the
process, the actions in the traces are labeled.

Extending the ideas of [dBP91] we distinguish three labels for actions. An action ap

labeled with p is an action that has been executed by the process itself. The other two
labels represent “hypothetical actions” that might be executed by the environment of
the processes. Reflecting the differences between local and distributed computation we
distinguish further between actions that might be executed by concurrent processes of

141

CHAPTER 5. COMPOSITIONAL SEMANTICS OF A COMPONENT

the local component and actions that might have been received from other components
via the mailbox (see section 4.2). We label the former with o and the latter with e2.

5.5 Definition (labeled action). Let CΣ be a component signature and X a family
of variables. A labeled action a` is a guarded action a ∈ G(CΣ, X) the label of which
is taken from the set ` ∈ {p; o; e}.

We denote the set of labeled guarded actions by G̀(CΣ, X). We call a labeled guarded
action a` ∈ G̀(CΣ, X) hypothetical, if its label ` is either o or e.

To define the compositional semantics, we introduce a further transition system,
namely CTC . The transition system CTC is a triple CTC =

〈
Q, −→, 〈F, pi〉

〉
, where the

states as well as the initial state are the same as already for the transition systems TC
and T̃C . However, the labels of the transitions are labeled actions, i.e., the transition
relation−→ is a ternary relation between states, labeled actions and states. The inference
rules of CTC are shown in table 5.3, where the congruence relation ≡ is defined in
table 5.1. As for the rules of tables 4.2 and 5.2, the inference rules of table 5.3 define
exactly the set of transitions.

The first eight rules (above the horizontal line), namely rules (CR≡), (CRaction),
(CRcall), (CR;), (CR‖), (CR+), (CR⊕) and (CR′⊕), are essentially the same as the rules
of T̃C shown in table 5.2. The difference is that the transitions are labeled with labeled
(guarded) actions. Notice that all actions in these rules are labeled with p since these
rules describe the execution of a process. In particular, in rule (CR′⊕), the requirement
that the transition in the side-condition has to be labeled with p ensures that only
transitions corresponding to executions of p1 are forbidden.

The two other rules (below the horizontal line), namely rules (CRo) and (CRe), allow
to incorporate hypothetical actions in the semantics, i.e., the traces of a process. On
the one hand, rule (CRo) mimics rule (CRaction), with the only difference of the label
of the action: since rule (CRo) models a hypothetical action that might be executed
by a concurrent process of the same component, the action is labeled with o. On the
other hand, rule (CRe) correspond to rule (E) which we already presented in section 4.2
along with the operational semantics of a system of several components. This rule
models the execution of (sequences of elementary) actions received in the mailbox (see
section 4.2). We do not mention the mailbox explicitly since we are considering only a
single component. Since actions received in the mailbox are considered as executed by
someone external to the component, they are labeled with the label e.

Labeled traces are the extension of traces to the transition system CTC .

5.6 Definition (labeled trace). Let C def=
〈
ŝn, CΣ, R, A, Tr , Rp, ΠR, pi

〉
be a

component. A labeled trace t is a possibly infinite sequence of (closed) labeled guarded
actions a`i ∈ G̀(CΣ, ∅) (∀i > 0)

t = a`11 ; a`22 ; . . . ; a`ii ; . . . = (a`ii)i≥0 (5.6)

In the sequel, we note sets of labeled traces as T .

As for traces, we call a labeled trace maximal if there a exists a maximal transition
sequence (of the transition system CTC) producing it (see section 5.1). Similarly, we

2The labels are the initial letters of, respectively, process, other processes and environment.

142

5.2. SEMANTICS OF LABELED EXECUTION TRACES

p ≡ p′ 〈F, p′〉 ap

−−→ 〈F ′, p′′〉 p′′ ≡ p′′′

〈F, p〉 ap

−−→ 〈F ′, p′′′〉
(CR≡)

F ` g〈
F,
[
g ⇒ 〈sn1, a1(t1, 1, . . . , t1, k1)〉; . . . ; 〈snn, an(tn, 1, . . . , tn, kn)〉

]〉
[g ⇒〈sn1, a1(t1, 1, ... , t1, k1)〉;... ;〈snn, an(tn, 1, ... , tn, kn)〉]p

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→〈
exec

(
sel
(
ŝn, 〈sn1, a1(t1, 1, . . . , t1, k1)〉; . . . ; 〈snn, an(tn, 1, . . . , tn, kn)〉

)
, F
)
, success

〉
(CRaction)(

q(x1, . . . , xn)⇐
⊕m

i=1([gi ⇒ ai] ; pi)
)
∈ Rp〈

F,
(⊕m

i=1 rename([gi ⇒ ai⇓] ; pi)
)
[vj/xj]

〉 ap

−−→ 〈F ′, p′〉

〈F, q(v1, . . . , vn)〉 ap

−−→ 〈F ′, p′⇓〉
(CRcall)

〈F, p1〉
ap

−−→ 〈F ′, p′1〉

〈F, p1 ; p2〉
ap

−−→ 〈F ′, p′1 ; p2〉
(CR;)

〈F, p1〉
ap

−−→ 〈F ′, p′1〉

〈F, p1 ‖ p2〉
ap

−−→ 〈F ′, p′1 ‖ p2〉
(CR‖)

〈F, p1〉
ap

−−→ 〈F ′, p′1〉

〈F, p1 + p2〉
ap

−−→ 〈F ′, p′1〉
(CR+)

〈F, p1〉
ap

−−→ 〈F ′, p′1〉

〈F, p1 ⊕ p2〉
ap

−−→ 〈F ′, p′1〉
(CR⊕)

〈F, p2〉
ap

−−→ 〈F ′, p′2〉

〈F, p1 ⊕ p2〉
ap

−−→ 〈F ′, p′2〉

if @ p′1, @F ′′, @ a′, such that
〈F, p1〉

(a′)p

−−−→ 〈F ′′, p′1〉
(CR′⊕)

F ` g〈
F, p

〉 [g ⇒〈sn1, a1(t1, 1, ... , t1, k1)〉;... ;〈snn, an(tn, 1, ... , tn, kn)〉]o

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→〈
exec

(
sel
(
ŝn, 〈sn1, a1(t1, 1, . . . , t1, k1)〉; . . . ; 〈snn, an(tn, 1, . . . , tn, kn)〉

)
, F
)
, p
〉 (CRo)

a ∈ AN (CΣ, ∅, sn)

〈F, p〉 [true⇒ a]e

−−−−−−−→
〈
exec(a, F), p

〉 (CRe)

Table 5.3: Labeled Inference Rules Defining the Transition Relation a`−−→ of CTC

143

CHAPTER 5. COMPOSITIONAL SEMANTICS OF A COMPONENT

have further that not all labeled traces are produced by a transition sequence, and that
a labeled trace might be produced by several transition sequences.

An important property of a concurrent system is the fairness of its executions, see
for instance [MP91, chapter 2]. Informally, an execution or labeled trace is called fair
if every action or transition that is enabled is executed eventually. To define this notion
formally, we introduce first the notion of a p-index which corresponds to the index (or
position) of the last action a process has executed, i.e., that is labeled with p.

5.7 Definition (p-index). The p-index index p(t) of a labeled trace t = (a`ii)i>0 is
defined as the last (i.e., greatest) index i such that the i-th action is labeled with p.
Formally:

index p(t) def=


0 if ∀i > 0 we have `i 6= p

n if ∃n > 0 such that (`n = p and ∀i > n we have `i 6= p)
∞ otherwise

(5.7)

According to definition 5.7, the p-index of a labeled trace t produced by an execution
of success is 0, since t does not contain any action labeled with p. A p-index of ∞
signifies, informally, that the execution of the process does not terminate.

Using the notion of p-index, we can express the notion of fairness formally. Roughly
speaking, we consider a labeled trace with a finite p-index, e.g., n, as fair if it corre-
sponds to a terminating execution of a process term, i.e., where the final process term
is success. Additionally, all traces with an infinite p-index are considered as fair as well.
Thus, a trace is fair, if a process executes eventually all actions it can execute.

5.8 Definition (fair labeled trace). We call a labeled trace t = (a`ii)i≥0 fair (with
respect to a process term p and a store F) if

1. either the number of actions of t labeled with p is infinite or null, i.e.,
index p(p) ∈ {0;∞}, or

2. index p(t) = n and there exists a transition sequence d producing t such that pn+1,
the process term of the (n+ 1)-th state of d represents the successful termination
(of the execution of p), i.e., pn+1 ≡ success.

Notice that definition 5.8 considers a labeled trace t execution which does not
contain any execution of an action by the process (which would be labeled with p)
as fair with respect to any process term p (case index p(t) = 0). While these traces
are classically not considered as fair, we need to include them in order to account for
the sequential composition of a process after a non-terminating process. This should
become clear along with the definition of the semantical operator ;̃ in section 5.3.1.1.

We extend the notion of fairness to transition sequences as follows. For a fair
labeled trace t, we call a transition sequence d producing t satisfying the condition 2
of definition 5.8 a fair transition sequence for t.

The semantics M is defined similar to O, but using labeled traces and transitions
with respect to the transition system CTC . Recall that we note the set of transition
sequences with respect to a transition system T and initial state q as TST (q) (see
definition 5.2).

144

5.3. COMPOSITIONALITY OF THE SEMANTICS M

5.9 Definition (compositional semantics: M). Let C be a component defined as
C def=

〈
ŝn, CΣ, R, A, Tr , Rp, ΠR, pi

〉
. The compositional semantics M associates

to a process term p and a store F the set of all maximal fair labeled traces produced by
the transition sequences (with respect to the transition system CTC) of the process term
p when the execution is started on the store F :

MC(p, F) def=
{

t
∣∣ t fair and ∃d ∈ TS CTC

(
〈F, p〉

)
: d ↪→ t

}
(5.8)

Notice that definitions 5.8 and 5.9 together imply that for any labeled trace in the
range ofMC we have the existence of a maximal fair transition sequence producing it.

We conclude this section with some examples illustrating the semanticsMC . How-
ever, since the sets of labeled traces are in general of infinite cardinality, we cannot
describe them extensively, and restrict ourselves to more or less formal descriptions of
them.

5.10 Example. The semantics of the process term success is the (infinite) set of all
(infinite) labeled traces which do not contain any action labeled with p such that there
exists a transition sequence (using only the rules (CRo) and (CRe)) producing the trace.

The preceding example shows that for all components C (which contain at least one
action a), we have the following two inclusions, for all stores F and process terms p:

MC(success, F) ⊆ MC(p, F) (5.9a)
ε 6∈ MC(p, F) (5.9b)

The reason of the validity of inclusion (5.9b) is that the labeled traces (in the composi-
tional semantics) are required to be maximal, and rule (CRo) allows to make always the
assumption of an execution of the (guarded) action [true⇒ a]. Using inclusion (5.9b),
we consider in the sequel only labeled traces different from ε, i.e., we write a labeled
trace as (a`ii)i>0.

5.11 Example. Reconsider the two processes of example 5.4. We show that the sets of
labeled traces associated to p̂1 and p̂2 by the compositional semantics MĈ are different.
Consider the labeled trace3

t =
[
true ⇒ 〈sn, tell(P)〉

]o;
[
P ⇒ 〈sn, skip〉

]p;
([

true ⇒ 〈sn, skip〉
]o)∞

. . .

(5.10)
We have t ∈ MĈ(p̂1, F) but t 6∈ MĈ(p̂2, F). Thus the semantics MĈ distinguishes
between p̂1 and p̂2.

5.3 Compositionality of the Semantics M
Basically, compositionality of a semantics means that the semantics of composed term,
say p1 ‖ p2, can be obtained by composition of the semantics of its constituents, that is
in our example the semantics of p1 and p2. Hence we need to define for each operator

3The tail of t consisting of an infinite number of labeled actions
(
[true⇒ 〈sn, skip〉]o

)∞
is necessary

in order to respect the requirement of a maximal labeled trace.

145

CHAPTER 5. COMPOSITIONAL SEMANTICS OF A COMPONENT

on process terms an associated “semantical” operator. In this section, we define first
the semantic operators and state the theorem of the compositionality afterwards.

Before defining the semantical operators, we announce a hypothesis under which
we can prove the compositionality of the semantics MC4. Informally, we require that
all guards are valid for at least one store, and we can reach this store by means of the
execution of actions.

5.12 Hypothesis. For every guard g and every store F , we have a (closed) action
expression in normal form, e.g., a, such that exec(a, F) ` g where exec is the function
describing the execution of elementary actions of section 4.1.1.

Notice that hypothesis 5.12 does not imply a strong restriction concerning the com-
ponents to which the results of this chapter apply. In fact, as we already mentioned
in section 1.1.2, we suppose that every declarative language used for the description
of stores has a set of predefined actions. Hypothesis 5.12 amounts to require that the
set of predefined actions allows to construct all possible stores, a property that, in
our opinion, a decent set of predefined elementary actions should have. Furthermore,
hypothesis 5.12 rules out the possibility of guards which are always false. Notice that
in a real program a guard which is known to be never valid makes no sense: why
considering a situation which can provably never occur?

Another implication of hypothesis 5.12 is that success is the only process term the
semantics of which contains only labeled traces that do not contain any action labeled
with p. Since a process different form success can only be blocked on a guard, the
process can make the assumption of another (concurrent) process executing an action
expression such that the guard becomes true; and this action expression exists according
hypothesis 5.12.

As a consequence, our semantics M does not deal with failures, i.e., processes
which neither can continue their execution nor have finished their execution successfully.
However, we conjecture that no compositional semantics based on (infinite) traces can
have both, a general sequential composition and a handling of failures. Indeed, one the
one hand, the compositional handling of general sequential composition requires the
possibility to deduce successful termination from the set of traces. Furthermore we need
to distinguish success from failure, since the subsequent process can start its execution
only in the case of success. On the other hand, both, successful termination and failure
lead to traces which cannot execute any further actions. Since a trace does not contain
any information about the process, it is thus impossible to distinguish between failure
and successful termination by considering only the traces. In the metaphor of the
beginning of the chapter, the traces in the snow do not tell us if the ski that made
them was red or blue.

5.3.1 Semantical Operators

In this section we define the semantical operators associated to the combinators of
process terms. These semantical operators are functions taking two sets of labeled
traces as arguments and returning a new set of labeled traces. The goal is to define

4We sill omit the index C for the rest of this chapter to alleviate the notation.

146

5.3. COMPOSITIONALITY OF THE SEMANTICS M

these operators such that they mimic the operational behaviour of their counterparts
on the process terms, such that we can prove the compositionality of the semanticsM.

5.3.1.1 Sequential Composition: ;̃

The execution of the process term p1 ; p2 means to execute first p1 and, after the suc-
cessfully terminating execution of p1, to proceed with the execution of p2. The main
idea of the semantics M is that a labeled trace for a process term may contain hypo-
thetical transitions thanks to rules (CRo) and (CRe). To define the semantical operator
;̃ for sequential composition (see definition 5.14), we exploit this feature to construct
the labeled traces for p1 ; p2 by a combination of, on the one hand, a labeled trace t1

for p1 which contains a hypothetical execution of p2 after the (real) execution of p1,
and, on the other hand, a labeled trace t2 which contains a hypothetical execution of
p1 before the (real) execution of p2. The definition of the combination of two labeled
traces meeting this conditions is then merely a relabelling of the actions, since the two
labeled traces differ only in the labels.

5.13 Example. Consider the following three labeled traces t1, t2 and t3:

t1
def= ae ; bo ; cp ; do ; eo ; t′ (5.11a)

t2
def= ae ; bo ; co ; do ; ep ; t′ (5.11b)

t3
def= ae ; bo ; cp ; do ; ep ; t′ (5.11c)

where t′ is a labeled trace which does not contain any action labeled with p.
Suppose that t1 (respectively, t2) is a (labeled) trace in the semantics of a process

term p1 (respectively, p2), we have that t3 is a (labeled) trace in the semantics of p1 ; p2.
In fact, the actions a and b are hypothetical for both, p1 and p2, i.e., both p1 and p2

suppose that first the environment (i.e., another component) modifies the store by the
execution of action a and afterwards a concurrent process modifies the store by executing
b. In a labeled trace for p1 ; p2, we can make the same hypotheses. Since c is executed
by p1 (and its execution is supposed by p2), it is also executed by p1 ; p2. After the
execution of c, p1 has terminated. d is once more supposed to executed by a concurrent
process. Finally, process p2 executes e, and therefore e is also labeled with p in t3.

As a first step of the definition of the semantic operator ;̃, we define a partial operator
which defines how to combine two labeled traces that respect appropriate conditions.
The extension to sets of labeled traces, together with the selection of matching pairs is
presented in a second step.

5.14 Definition (̃;). Let t1 = (ax
1
i
i)i>0 and t2 = (ax

2
i
i)i>0 be two labeled sequences such

that there are indexes m, n ∈ IN ∪ {∞} satisfying the following conditions (table 5.4
summarises these conditions):

• the m-th labeled action is the last action labeled with p in t1, i.e., index p(t1) = m
(thus ∀j such that j > m we have that x1

j ∈ {e; o}),

• the n-th labeled action is the first action labeled with p in t2, i.e., ∀j such that
0 < j < n we have that x2

j ∈ {e; o},

147

CHAPTER 5. COMPOSITIONAL SEMANTICS OF A COMPONENT

j 1 . . .m m+ 1 . . . n− 1 n . . .

`1j {e; o; p} {e; o} {e; o}

`2j {e; o} {e; o} {e; o; p}

For all intervals of j, the label `1j (respectively, `2j) of trace t1 (respec-
tively, t2) may take a value from the set of the corresponding column.

Table 5.4: Conditions on the Labels of t1 and t2 for the operator ;̃

• p1 has finished its execution before p2 starts, i.e., (m < n or m =∞5) and

• in both labeled traces, the actions labeled e coincide, i.e., ∀j, x1
j = e if and only if

x2
j = e.

Then we define the partial operator ;̃ by

t1 ;̃ t2
def= (ayii)i>0 where yi

def=

{
x1
i if i ≤ m
x2
i otherwise

(5.12)

We leave ;̃ undefined for all other pairs of labeled traces.

Notice that this definition of ;̃ includes also the cases where (one of) the labeled
traces t1 and t2 contain no action labeled with p at all. In fact, this may arise in
realistic situations. As a first example, consider the case of p1 = success. Since p1 has
already successfully terminated, there cannot be any action executed by this process,
and p2 may start its execution at once. As a second example, consider the case of a
non-terminating process p1. Now the execution of p2 never starts.

The extension of ;̃ to sets of labeled traces is straightforward, we just have to take
those labeled traces which can be obtained by combining traces of the sets by ;̃ (on
pairs of labeled traces).

5.15 Definition (̃; on sets). For two sets of labeled traces T1 and T2 we define:

T1 ;̃T2
def=
{

t
∣∣ ∃t1 ∈ T1, ∃t2 ∈ T2 such that: t = t1 ;̃ t2

}
(5.13)

5.3.1.2 Parallelism: ‖̃

To execute two processes in parallel, both processes have to make assumptions about
the execution of the other. If this is the case, the actions executed by the parallel
composition are the actions executed by the processes. Obviously, both processes can-
not execute an action at the same time. Similar to the definition of ;̃, we define the
semantical operator ‖̃ in two steps. The following definition is partial in the sense that
it considers only labeled traces which agree on the sequences of actions.

5Notice that in this case, we necessarily also have n =∞.

148

5.3. COMPOSITIONALITY OF THE SEMANTICS M

5.16 Definition (‖̃). Let t1 = (ax
1
i
i)i>0 and t2 = (ax

2
i
i)i>0 be two labeled traces the

sequences of actions of which are identical. We define the partial operator ‖̃ by

t1 ‖̃ t2
def= (ayii)i>0 where yi

def=


p if (x1

i = p and x2
i = o) or (x1

i = o and x2
i = p)

o if x1
i = x2

i = o

e if x1
i = x2

i = e

(5.14)
We leave ‖̃ undefined for all other pairs of labeled traces.

Intuitively, this partial definition of ‖̃ is sufficient, since rule (CRo) can be used
at any moment during the execution of a process, and thus all possible hypothetical
actions can be included in the semantics of a process. Therefore we leave ‖̃ undefined
on all other (pairs of) labeled traces of different kind. The extension of ‖̃ to sets of
labeled traces, which we note, by abuse of notation, as well by ‖̃, is defined in the
obvious way.

5.17 Definition (‖̃ on sets). For two sets of labeled traces T1 and T2 we define:

T1 ‖̃T2
def=
{

t
∣∣ ∃t1 ∈ T1,∃t2 ∈ T2 such that t = t1 ‖̃ t2

}
(5.15)

5.3.1.3 Non-Deterministic Choice: +̃

The operator of non-deterministic choice allows to execute either of the processes.

5.18 Definition (+̃). For two sets of labeled traces T1 and T2 we define:

T1 +̃T2
def= T1 ∪ T2 (5.16)

5.3.1.4 Choice with Priority: ⊕̃

When executing p1⊕p2, the process p2 is executed if and only if in the configuration in
which the rule (CR⊕) is applied, rule (CR′⊕) cannot be applied. This means in terms of
traces, that there is no trace for p1 that makes the same assumptions as the sequence
for p2 and has its first action labeled p.

5.19 Example. Consider the following two labeled traces t1 and t2:

t1
def= ae ; bo ; co ; t′ (5.17a)

t2
def= ae ; bo ; cp ; t′′ (5.17b)

where t′ and t′′ are arbitrary labeled traces.
Suppose that t1 (respectively, t2) is a (labeled) trace in the semantics of a process

term p1 (respectively, p2). Then t2 is a labeled trace produced by an execution of p1⊕p2

under the hypothesis that there does not exist another labeled trace for p1 which after the
hypothetical actions ae and bo executes an action. Notice that similar to example 5.13
the hypothetical actions of the simple process term p2 (i.e., the hypothetical actions of
t2) become hypothetical actions of the composed process term p1 ⊕ p2.

149

CHAPTER 5. COMPOSITIONAL SEMANTICS OF A COMPONENT

To define the semantical operator ⊕̃ formally, we introduce the notion of a hypo-
thetical prefix, denoting the maximal prefix of a trace without any occurrence of the
label p. Hence, the hypothetical prefix of a process describes the hypothetical actions
before the process starts its execution.

5.20 Definition (hypothetical prefix). The hypothetical prefix of a labeled sequence
t = a`11 ; . . . ; a`n−1

n−1 ; ap
n ; t′, where all `i ∈ {o, e} (∀i ∈ {1; . . . ;n−1}) is the (finite) labeled

sequence
hpref (s) def= a`11 ; . . . ; a`n−1

n−1 (5.18)

Notice that the hypothetical prefix is not defined for all labeled traces. In particular,
it is undefined for all labeled traces in the semantics of success, i.e., the labeled traces
which do not contain any occurrence of the label p (see example 5.10.

Using hypothetical prefixes, we can define the semantical operator for choice with
priority as follows.

5.21 Definition (⊕̃). For two sets of labeled traces T1 and T2 we define:

T1 ⊕̃T2
def= T1 ∪

t

∣∣∣∣∣∣
t ∈ T2 and ∀t′ ∈ T1such that if

hpref (t) and hpref (t′) are defined, then:
hpref (t) 6= hpref (t′)

 (5.19)

5.3.2 Compositionality of the Semantics M

Using the semantical operators we can now state the main theorem of this chapter.

5.22 Theorem (Compositionality ofM). Let C def= 〈ŝn, CΣ, R, A, Tr , Rp, ΠR, pi〉
be a component, p1 and p2 two closed process terms (i.e., p1, p2 ∈ PN (CΣ, ∅)) and F
a store. Then the following equations hold:

M(p1 ; p2, F) = M(p1, F) ;̃ M(p2, F) (5.20a)
M(p1 ‖ p2, F) = M(p1, F) ‖̃ M(p2, F) (5.20b)
M(p1 + p2, F) = M(p1, F) +̃ M(p2, F) (5.20c)
M(p1 ⊕ p2, F) = M(p1, F) ⊕̃ M(p2, F) (5.20d)

According to theorem 5.22, the semantics of a compound process term (and store)
can be determined by “composing” the semantics of its constituents using the appropri-
ate semantic combinator, the semanticsM is compositional. This property implies that
two processes with the same semantics behave in the same way when combined with
a third process, since the semantics of the combination can be obtained by combining
the semantics of the third process and the semantics of one of the two processes.

5.3.2.1 Auxiliary Lemmas

Before we prove theorem 5.22, we introduce some additional lemmas stating some prop-
erties of the semanticsM and the associated transition system. Recall that throughout
this and the following section, we suppose that we are given a component

C = 〈sn, CΣ, R, A, Tr , Rp, ΠR, pi〉

150

5.3. COMPOSITIONALITY OF THE SEMANTICS M

We use the symbol (possibly with additional indexes and other markings) p (respec-
tively, F) to denote process terms (respectively, stores) with respect to the component
signature CΣ.

Our first lemma formalises the intuition that if a parallel composition of processes
executes an action, this action is executed by one of the processes forming the parallel
composition.

5.23 Lemma. For process terms p1 and p2, a store F and an action a we have:

〈F, p1 ‖ p2〉
ap

−→ 〈F ′, p′〉 ⇔
∃p′1 :

(
p′ ≡ (p′1 ‖ p2) and 〈F, p1〉

ap

−→ 〈F ′, p′1〉
)

or
∃p′2 :

(
p′ ≡ (p1 ‖ p′2) and 〈F, p2〉

ap

−→ 〈F ′, p′2〉
) (5.21)

Proof. One of the implications, namely ⇐, is a simple application of the inference rule
for the parallel composition operator (see rules (CR‖) and (CR≡)). Therefore we do not
detail the proof here, and focus on the other implication.

Consider the transition 〈F, p1 ‖ p2〉
ap

−→ 〈F ′, p′〉. Inspection of the inference rules in
table 5.3 shows that this transition can only be inferred by either rule (CR≡) or (CR‖).
In the case of rule (CR‖) the implication is obviously true. In the case of an application
of rule (CR≡) we have two process terms, say p and p′′, and a transition

〈F, p〉 ap

−→ 〈F ′, p′′〉 (5.22)

such that p ≡ (p1 ‖ p2) and p′′ ≡ p′. Without loss of generality6, we suppose that
transition (5.22) can be proved by using a rule different from (CR≡) as first inference
rule. By the definition of the congruence relation ≡ (see table 5.1) there are four
different possibilities for the process term p, which we consider separately.

i) p = p̃1 ‖ p̃2 with p̃1 ≡ p1 and p̃2 ≡ p2:

Transition (5.22) can only be proved by using rule (CR‖) as first inference rule.
Thus we have p′′ ≡ (p̃′1 ‖ p̃2) and consequently the first condition of (5.21) holds,

when we take p′1
def= p̃′1 (the transition 〈F, p1〉

ap

−→ 〈F ′, p′1〉 is valid since it corre-
sponds to the premise of rule (CR‖) which we used to infer the transition (5.22))
and we have p′ ≡ p′′ ≡ (p̃′1 ‖ p̃2) ≡ (p′1 ‖ p̃2) ≡ (p′1 ‖ p2).

ii) p = p̃2 ‖ p̃1 with p̃1 ≡ p1 and p̃2 ≡ p2:

Symmetric to case i) (with p′′ ≡ (p̃′2 ‖ p̃1) and p′2
def= p̃′2).

iii) p = p̃1 with p̃1 ≡ p1:

In this case, we have that p2 = success. Thus by taking p′1
def= p′′ we have that the

first condition of (5.21) holds:
p′ ≡ p′′ ≡ p′1 ≡ (p′1 ‖ success) ≡ (p′1 ‖ p2).

iv) p = p̃2 with p̃2 ≡ p2:

Symmetric to case iii) (with p1 = success and p′2
def= p′′).

6Since rule (CR≡) is not an axiom scheme, there have to be process terms in the equivalence class
of (p1 ‖ p2) (respectively, p′) such that we can apply another inference rule.

151

CHAPTER 5. COMPOSITIONAL SEMANTICS OF A COMPONENT

For a transition as the one on the left of equation (5.21), we say that “the action
a has been executed by p1 (respectively, p2)” if the first (respectively, second) of the
two conditions on the right of equation (5.21) holds. Notice that this statement is
ambiguous, since both conditions on the right of equation (5.21) may hold (consider
for instance processes of the form p ‖ p).

The following lemma formalises an intuition similar to the one of lemma 5.23, but
for the operator of non-deterministic choice, namely that both processes might execute
the action.

5.24 Lemma. For process terms p1 and p2, stores F and F ′ and an action a we have:

〈F, p1 + p2〉
ap

−→ 〈F ′, p′〉 ⇔
(
〈F, p1〉

ap

−→ 〈F ′, p′〉
)

or
(
〈F, p2〉

ap

−→ 〈F ′, p′〉
)

(5.23)

Proof. The implications⇐ is a simple application of the inference rule for the operator
of non deterministic choice (see rule (CR+)).

Consider the transition 〈F, p1 +p2〉
ap

−→ 〈F ′, p′〉. Inspection of the inference rules in
table 5.3 shows that the transition can only be deduced by either rule (CR≡) or (CR+).
In the case of rule (CR+) the implication is obviously true. In the case of an application
of rule (CR≡) we have two process terms, say p and p′′, and a transition

〈F, p〉 ap

−→ 〈F ′, p′′〉 (5.24)

such that p ≡ (p1 +p2) and p′′ ≡ p′. Similar to the proof for lemma 5.23 (see footnote 6
on page 151), we suppose without loss of generality that transition (5.24) can be proved
by using a rule different from (CR≡) as first inference rule. By the definition of the
congruence relation ≡ (see table 5.1) there are two different possibilities for the process
term p, namely p = p̃1 + p̃2 or p = p̃1 + p̃2 (where p̃1 ≡ p1 and p̃2 ≡ p2). Without loss of
generality, we suppose the former, i.e., p = p̃1 + p̃2. Thus according to rule (CR+) there
exists a transition 〈F, p̃1〉

ap

−→ 〈F ′, p′′〉. Since we have that p′′ ≡ p′, the first condition
of the right side of (5.23) holds.

The next lemma formalises the intuition that if we have a transition for a sequential
composition whose first process term is not equivalent to success, than we can execute
the same action with just the first process term (of the sequential composition).

5.25 Lemma. For process terms p1 and p2, a store F and an action a we have:(
〈F, p1 ; p2〉

ap

−→ 〈F ′, p′〉 and p1 6≡ success
)

⇒
(
∃p′1 such that 〈F, p1〉

ap

−→ 〈F ′, p′1〉 and p′ ≡ (p′1 ; p2)
)

(5.25)

Proof. Notice that under the assumption that p1 6≡ success the only inference rule
allowing to infer the transition 〈F, p1 ; p2〉

ap

−→ 〈F ′, p′〉 is (CR;)7. By inspection of this

rule and its premise, we have that there exists a process term p′1 such that 〈F, p1〉
ap

−→
〈F ′, p′1〉 and by rule (CR≡) we conclude that p′ ≡ (p′1 ; p2).

7Similar to the proofs of the lemmas 5.23 and 5.24 (see footnote 6 on page 151), we do not consider
rule (CR≡) without loss of generality.

152

5.3. COMPOSITIONALITY OF THE SEMANTICS M

The following lemma states that the (i+1)-th process term of a transition sequence
is different from success if i is less than the p-index of the trace produced by the
transition sequence. Intuitively, this signifies that the process has not terminated its
execution.

5.26 Lemma. For a transition sequence d def= 〈F1, p1〉
a
`1
1−−→ 〈F2, p2〉

a
`2
2−−→ 〈F3, p3〉

a
`3
3−−→

. . . producing a labeled trace t, we have that for all i ∈ IN :

i < index p(t) ⇒ pi+1 6≡ success (5.26)

Proof. Suppose that there exists i < index p(t) such that pi+1 ≡ success. Let n0 be the
next action after i that is labeled with p, i.e.,

n0
def= min{n |n > i and `n = p}

(n0 exists according to definition 5.7). Examination of the inference rules defining the
transition relation −→ of CTC (see table 5.3) shows that for all n > i, we have also that
pn ≡ success (since pi ≡ success). In particular, we have the transition

〈Fn0 , success〉
ap
n0−−→ 〈Fn0+1, success〉

which is in contradiction to the inference rules of table 5.3 (see also example 5.10).

The following lemma states that any action executed by a process can also be
“executed hypothetically” using rule (CRo).

5.27 Lemma. For all stores F and F ′, for all actions a and for all process terms p
we have the following implication:

〈F, p〉 ap

−→ 〈F ′, p′〉 ⇒ 〈F, p〉 ao

−→ 〈F ′, p〉 (5.27)

Proof. Notice that the rules (CRaction), (CRo) and (CRe) are the only “axiom schemes”
for the transition relation −→ of CTC , that is to say, the only inference rules without
premises (in table 5.3) which allow to introduce a transition (in contrary to the other
inference rules which allow to infer new transitions from already introduced (or in-
ferred) transitions). Since the premises of rules (CRaction) and (CRo) are exactly the
same, we immediately have the validity of equation (5.27).

The converse of lemma 5.27 does not hold in general. Indeed, consider a process
term p in which the action a does not occur.

Last, but not least, the following lemma states that the process term does not
matter for transitions labeled with actions labeled with either o or e. That is to say,
for transitions with such labels, the process term can be replaced by any other process
term, without invalidating the transition.

5.28 Lemma. For all stores F and F ′, for all actions8 a and for all process terms p1

and p2 we have the following to equivalences.

〈F, p1〉
ao

−→ 〈F ′, p1〉 ⇔ 〈F, p2〉
ao

−→ 〈F ′, p2〉 (5.28a)

〈F, p1〉
ae

−→ 〈F ′, p1〉 ⇔ 〈F, p2〉
ae

−→ 〈F ′, p2〉 (5.28b)
8More precisely almost all actions, since the guard of the action in equivalence (5.28b) has to be

true (see rule (CR≡)).

153

CHAPTER 5. COMPOSITIONAL SEMANTICS OF A COMPONENT

Proof. Inspection of the inference rules (CRo) and (CRe) shows that the applicability
of these inference rules does not depend on the process term.

Exploiting that all labels of the actions in a hypothetical prefix are either o or e,
we can extend lemma 5.28 in a straightforward manner to the following corollary.

5.29 Corollary. Let d = 〈F1, p1〉
a
`1
1−−→ 〈F2, p2〉

a
`2
2−−→ 〈F3, p3〉

a
`3
3−−→ . . . be a transition

sequence (for a store F1 and a process term p1) producing a labeled trace t the hypo-
thetical prefix of which has length n − 1. Then we have that for any process term p′

that

d′
def= 〈F1, p

′〉
a
`1
1−−→ 〈F2, p

′〉
a
`2
2−−→ 〈F3, p

′〉
a
`3
3−−→ . . .

a
`n−1
n−1−−−−→ 〈Fn, p′〉

is a legal transition sequence (for F1 and p′) producing a labeled trace t′ such that
hpref (t) = t′.

Notice that the labeled trace t′ in corollary 5.29 is in general not of maximal length,
i.e., it can be extended. We leave the proof of corollary 5.29 as an exercise for the
reader.

The following corollary of lemma 5.28 states that labeled traces that do not contain
any action labeled with p are in the semantics of all process terms, whenever they
are in the semantics of a process term (because this ensures that the guards of the
hypothetical actions labeled with o are valid).

5.30 Corollary. Let t = (a`ii)i>0 be a labeled trace such that for all i we have `i ∈ {o; e}
and that there exists a process term p and a store F with t ∈ M(p, F). Then we have
for all process terms p′ that t ∈M(p′, F).

Proof. Consider a transition sequence d for p and F producing t

d
def= 〈F1, p1〉

a
`1
1−−→ 〈F2, p2〉

a
`2
2−−→ 〈F3, p3〉

a
`3
3−−→ . . .

(i.e., F1
def= F and p1

def= p2). Since for all i, `i ∈ {o; e}, we have (by the inference
rules (CRo), (CRe) and (CR≡)) that pi ≡ p (for all i). Thus by lemma 5.28, we have
that the transition sequence

d′
def= 〈F1, p

′〉
a
`1
1−−→ 〈F2, p

′〉
a
`2
2−−→ 〈F3, p

′〉
a
`3
3−−→ . . .

is valid. Since clearly d′ ↪→ t, we have that t ∈ M(p′, F) (notice that t is fair and
maximal by definition).

Combined with example 5.10, corollary 5.30 implies that for all stores F and all
process term p we have that the semantics of success is a part of the semantics of all
processes, i.e.,

MC(success, F) ⊆MC(p, F) (5.29)

154

5.3. COMPOSITIONALITY OF THE SEMANTICS M

5.3.2.2 Proof of Theorem 5.22

Using the auxiliary lemmas of the preceding section, we prove the equations of theo-
rem 5.22 one by one. This proof gives a formal justification of the definitions of the
semantical operators in section 5.3.1.

To lighten the notation, we use p̂ (respectively, F̂) instead of p (respectively, F) in
the equations we prove. This renaming allows to use the symbols p and F in other con-
texts, as for instance for the states of transition sequences which are most conveniently
written as 〈Fi, pi〉.

5.3.2.2.1 Sequential Composition. To prove equation (5.20a), we prove the fol-
lowing two set inclusions:

⊂ M(p̂1 ; p̂2, F̂) ⊆M(p̂1, F̂) ;̃M(p̂2, F̂):

Consider a labeled trace t = (a`ii)i>0 ∈ M(p̂1 ; p̂2, F̂). By definition of M (see
definition 5.9) there exists a maximal fair transition sequence

d = 〈F1, p1〉
a
`1
1−−→ 〈F2, p2〉

a
`2
2−−→ 〈F3, p3〉

a
`3
3−−→ . . .

(with F1
def= F̂ and p1

def= p̂1 ‖ p̂2) such that d ↪→ t.

Using the transition sequence d (for p̂1 ; p̂2 and F̂) as a starting point, we define
two transition sequences d1 (respectively, d2) for F̂ and p̂1 (respectively, p̂2).

We write 〈F ji , p
j
i 〉 (respectively, (aji)

`ji) for the i-th state (respectively, labeled
action) of the transition sequence dj (j ∈ {1; 2}). The actions and stores of dj
are the same as for d, i.e., aji

def= ai and F ji
def= Fi and we set pj1

def= p̂j (j ∈ {1; 2}).
Consequently, we have p1 ≡ p1

1 ; p2
1. We define the labels `ji and process terms

pji step by step. Suppose that we have already defined correct transitions for all
i < i0 such that pi ≡ p1

i ; p2
i (for all i ≤ i0)9. Consider the i0-th transition of d,

i.e., 〈Fi0 , pi0〉
(ai0)

`i0

−−−−−→ 〈Fi0+1, pi0+1〉. If `i0 ∈ {o; e} we can define pji0+1
def= pji0 and

`ji0
def= `i0 (j ∈ {1; 2}) and have by lemma 5.28 that the corresponding transition

is valid. In the case that `i0 = p, we distinguish the following two cases:

1. p1
i0
≡ success:

We set p1
i0+1

def= success and `1i0
def= o. The corresponding transition is valid

thanks to lemmas 5.27 and 5.28. Furthermore, since we have by assumption
that pi0 ≡ (p1

i0
; p2
i0

) ≡ p2
i0

, we can set p2
i0+1

def= pi0+1 and `2i0
def= `i0 = p.

Clearly the i0-th transition of d2 is valid, and pi0+1 ≡ p1
i0+1 ; p2

i0+1.
2. p1

i0
6≡ success:

Since we have, according to lemma 5.25, that there exists a process term

p1
i0+1 such that 〈Fi0 , p1

i0
〉

(ai0)p

−−−→ 〈F 1
i0+1, p

1
i0+1〉, we can safely set `1i0

def= p.
Using lemmas 5.27 and 5.28 we can prove the validity of the i0-th transition
of d2 when setting p2

i0+1
def= p2

i0
and `2i0

def= o. Finally, lemma 5.25 tells us that
pi0+1 ≡ (p1

i0+1 ; p2
i0

) ≡ (p1
i0+1 ; p2

i0+1).
9For i0 = 1 we have by the definitions above that p1 ≡ p1

1 ; p2
1.

155

CHAPTER 5. COMPOSITIONAL SEMANTICS OF A COMPONENT

The transition sequences d1 and d2 are defined as the limits of the stepwise con-
struction above. d1 and d2 produce two labeled traces, which we call t1 and
t2.

It remains to prove that tj ∈M(p̂j , F̂) (j ∈ {1; 2}) and that t = t1 ;̃ t2. To prove
the latter, we define n0

def= index p(t1). By construction, we have for all indexes i
that

`ji = p ⇒ `
(j+1) mod 2
i = o (∀j ∈ {1; 2}) (5.30a)

`i = e ⇒ `1i = `2i = e (5.30b)
`i = o ⇒ `1i = `2i = o (5.30c)

p1
i 6≡ success ⇒ `2i 6= p (5.30d)

Since we have by lemma 5.26 for all i < n0 that p1
i+1 6≡ success, we conclude

(using (5.30d)) that `2i 6= p (∀i ≤ n0). By definition of the p-index we have that
for all i > n0 we have `1i 6= p. We conclude by the definition of ;̃ on pairs of
labeled traces (see equation (5.12)) that t = t1 ;̃ t2.

To prove tj ∈ M(p̂j , F̂) we remark first that by its definition, dj is a maximal10

transition sequence for p̂j and F̂ (j ∈ {1; 2}). It remains to prove the fairness
of t1 and t2. Reconsider the p-index of t1, i.e., n0. If n0 ∈ {0;∞}, we have by
definition 5.8 immediately the fairness of t1. Suppose now that 0 < n0 < ∞.
Obviously, by construction of d1 we have that n0 ≤ index p(t). Therefore, if
n0 = index p(t), the fairness of t1 is a consequence of the fairness of t. On the
other hand, we have by construction of d1 that p1

i ≡ success for all i > n0

(otherwise `1(index p(t)) = p by construction of d1, which leads to the contradiction
index p(t1) > n0), and it follows therefore by definition 5.8 the fairness of t1.
To prove the fairness of t2, notice that in the case index p(t1) 6= ∞ we have
by construction index p(t) = index p(t2), and have thus the fairness of t2 due
to the fairness of t. On the other hand, by construction of d2, we have that
index p(t1) = ∞ implies index p(t2) = 0 and we have immediately the fairness of
t2 (also by definition 5.8).

⊃ M(p̂1 ; p̂2, F̂) ⊇M(p̂1, F̂) ;̃M(p̂2, F̂):

Let t be a labeled trace in M(p̂1, F̂) ;̃M(p̂2, F̂). According to the definition of
;̃ (over sets of labeled traces, see equation (5.13)), there exists t1 ∈ M(p̂1, F̂)
and t2 ∈ M(p̂2, F̂) such that t = t1 ;̃ t2. Thus by definition of M we have a
maximal fair transition sequence d1 (respectively, d2) for F̂ and p̂1 (respectively,
p̂2) producing t1 (respectively, t2). We write 〈F ji , p

j
i 〉 (respectively, (aji)

`ji) for
the i-th state (respectively, labeled action) of the transition sequence dj (for
j ∈ {1; 2}).
Starting from d1 and d2 we construct a transition sequence d for p̂1 ; p̂2 and F̂
producing t. We note 〈Fi, pi〉 (respectively, (ai)`i) the i-th state (respectively,
labeled action) of the transition sequence d. Since the actions of d1 and d2 are
the same (by definition of ;̃, see equation (5.12)), we define ai

def= a1
i . Thus we can

10By construction, tj is maximal, because t is maximal (j ∈ {1; 2}).

156

5.3. COMPOSITIONALITY OF THE SEMANTICS M

also define Fi
def= F 1

i because the execution of actions is deterministic (and thus
also F 1

i = F 2
i).

According to lemma 5.26 we have for all n < index p(t1) that p1
n+1 6≡ success.

Thus for all n < index p(t1), the transition 〈Fn, p1
n ; p̂2〉

a
`1n
n−−→ 〈Fn+1, p

1
n ; p̂2〉 is valid

(using rule (CR;) or lemma 5.28). Thus we define (∀n < index p(t1)) pn
def= p1

n ; p̂2

and `n
def= `1n. If index p(t1) =∞, d is completely defined and we have clearly that

d ↪→ t and that t is fair (since index p(t) = index p(t1) = ∞, see definition 5.8).
We conclude that t ∈M(p̂1 ; p̂2, F̂) (t is maximal because t1 is maximal).

Suppose now, that n0
def= index p(t1) 6= ∞. Hence we can define pn0

def= p1
n0

; p̂2,
`n0

def= p and pn0+1
def= p1

n0+1 ; p̂2 (the former two only if n0 > 0). Since d1 is a
fair transition sequence for t1, we have that p1

n0+1 ≡ success (see definition 5.8),
and thus pn0+1 ≡ p̂2. By the definition of ;̃ on pairs of labeled traces (see equa-
tion (5.12)), we have for all n ≤ n0 that `2n ∈ {o; e}. Consequently, we have by
rules (CRo) and (CRe) that p2

n0+1 ≡ p̂2, and we can define for all n > (n0 + 1):
pn

def= p2
n and `n

def= `2n. Obviously, since d is a valid transition sequence and the
fairness of t follows from the fairness of t2, we have t ∈M(p̂1 ; p̂2, F̂).

5.3.2.2.2 Parallel Composition. To prove equation (5.20b), we have to prove the
following two set inclusions.

⊂ M(p̂1 ‖ p̂2, F̂) ⊆M(p̂1, F̂) ‖̃M(p̂2, F̂):

Consider a labeled trace t ∈ M(p̂1 ‖ p̂2, F̂). By definition of M (see defini-
tion 5.9) there exists a transition sequence (with F1

def= F̂ and p1
def= p̂1 ‖ p̂2)

d = 〈F1, p1〉
a
`1
1−−→ 〈F2, p2〉

a
`2
2−−→ 〈F3, p3〉

a
`3
3−−→ . . .

such that d ↪→ t. Using d as a starting point, we define a transition sequence d1

(respectively, d2) for F̂ and p̂1 (respectively, p̂2), by considering the transitions of d
one by one. We write 〈F ji , p

j
i 〉 (respectively, (aji)

`ji) for the i-th state (respectively,
labeled action) of the transition sequence dj (j ∈ {1; 2}). We define aji

def= ai and
F ji

def= Fi (j ∈ {1; 2}).

Thus, the initial state of dj is defined as 〈F j1 , p
j
1〉

def= 〈F̂ , p̂j〉, and we clearly have
that p1 = (p̂1 ‖ p̂2) ≡ (p1

1 ‖ p2
1). Along with the definition of the transition

sequences dj we prove that for all i:

pi+1 ≡ (p1
i+1 ‖ p2

i+1) (inv)

Clearly, (inv) holds for i = 0 (since p1 ≡ (p1
1 ‖ p2

1) by definition). Now, assuming
that (inv) holds for all i < i0, we define pji0+1 and `ji0 such that (inv) holds for
i0 and the following is a correct transition with respect to CTC :

〈F ji0 , p
j
i0
〉

(aji0
)
`
j
i0

−−−−−→ 〈F ji0+1, p
j
i0+1〉

We distinguish the following two cases:

157

CHAPTER 5. COMPOSITIONAL SEMANTICS OF A COMPONENT

`i0 ∈ {o; e}: Define pji0+1
def= pi0+1 and `ji0

def= `i0 (j ∈ {1; 2}). Obviously (inv)
holds

(
pi0+1 ≡ pi0 ≡ (p1

i0
‖ p2

i0
) ≡ (p1

i0+1 ‖ p2
i0+1)

)
and the transitions are

valid by lemma 5.28.

`i0 = p: By lemma 5.23 (and rule (CR≡)) we have three possibilities to consider:
either the right, the left or both condition(s) of (5.21) hold. In the latter
case, we choose (arbitrarily) one of the two other cases, since both are equally
applicable. Without loss of generality, suppose that pi0+1 ≡

(
(p1
i0

)′ ‖ p2
i0

)
and 〈Fi0 , p1

i0
〉
ap
i0−−→ 〈Fi0+1, (p1

i0
)′〉. Define p1

i0+1
def= (p1

i0
)′, p2

i0+1
def= p2

i0
, `1i0

def= p

and `2i0
def= o. By lemma 5.23 we have the validity of the transition and (inv),

since pi0+1 ≡
(
(p1
i0

)′ ‖ p2
i0

)
≡ (p1

i0+1 ‖ p2
i0+1).

The transition sequences d1 and d2 are defined as the limits of the stepwise
construction above. Let tj be the labeled trace produced by dj , i.e., dj ↪→ tj
(j ∈ {1; 2}).

Since by construction tj ∈ M(p̂j , F̂) (tj (respectively, d) is maximal and fair,
since t (respectively, dj) is maximal and fair), it remains to prove that we have
t = t1 ‖̃ t2. By construction, we have for all i, a1

i = a2
i , (`1i = e) ⇔ (`2i = e) and

the following two implications (`1i = p) ⇒ (`2i = o) and (`2i = p) ⇒ (`1i = o).
Consequently, t1 ‖̃ t2 is defined and clearly equals t.

⊃ M(p̂1 ‖ p̂2, F̂) ⊇M(p̂1, F̂) ‖̃M(p̂2, F̂):

Let t be a labeled trace inM(p̂1, F̂) ‖̃M(p̂2, F̂). By the definition of ‖̃ (over sets
of labeled traces, see equation (5.15)) there exists labeled traces t1 (∈M(p̂1, F̂))
and t2 (∈M(p̂2, F̂)) for the store F̂ and the process term p̂1 respectively, p̂2 such
that t = t1 ‖̃ t2. We construct a transition sequence d for F̂ and p̂1 ‖ p̂2 producing
t to show that t ∈M(p̂1 ‖ p̂2, F̂).

Since t1 ∈ M(p̂1, F̂) (respectively, t2 ∈ M(p̂2, F̂)), there exists a maximal fair
transition sequence d1 (respectively, d2) such that d1 ↪→ t1 (respectively, d2 ↪→ t2).
As above we note the i-th state (respectively, labeled action) of dj by 〈F ji , p

j
i 〉

(respectively, (aji)
`ji) (j ∈ {1; 2}). Similarly, we write the i-th labeled action of t

as a`ii . Notice that F j0 = F̂ (j ∈ {1; 2}).

Since t1 ‖̃ t2 = t, we have immediately that for every i: a1
i = a2

i = ai. Since
the execution of an action is deterministic, the execution of the same action has
the same effect, and we conclude that F 1

i = F 2
i (for all i). Hence we define

the i-th state of d as follows: Fi
def= F 1

i and pi
def= (p1

i ‖ p2
i). Since the labeled

actions (including their labels) are already fixed by t and t is fair and maximal
(by construction), it remains only to prove that d is a legal transition sequence,
i.e., we have to justify the transitions.

Consider the i-th transition, i.e., 〈Fi, p1
i ‖ p2

i 〉
a
`i
i−−→ 〈Fi+1, p

1
i+1 ‖ p2

i+1〉. We
distinguish two different cases:

`i ∈ {o; e}: By lemma 5.28 we have the validity of the transition.

158

5.3. COMPOSITIONALITY OF THE SEMANTICS M

`i = p: By the definition of ‖̃ (equation 5.14), we have either (`1i = p and `2i = o)
or (`1i = o and `2i = p). Without loss of generality, we consider the former.

Thus we have the transition 〈Fi, p1
i 〉

ap
i−→ 〈Fi+1, p

1
i+1〉 and pi+1 ≡ (p1

i+1 ‖ p2
i)

(since according to rule (CRo) necessarily p2
i+1 ≡ p2

i), so that we can apply
lemma 5.23 to prove the validity of the transition.

5.3.2.2.3 Nondeterministic Choice. To prove equation (5.20c), we prove the
following two set inclusions:

⊂ M(p̂1 + p̂2, F̂) ⊆M(p̂1, F̂) +̃M(p̂2, F̂):

Let t = (a`ii)i>0 be a fair maximal labeled trace in M(p̂1 + p̂2, F̂). If t does not
contain any action labeled with p, we have by corollary 5.30 that t ∈ M(p̂j , F̂)
(j ∈ {1; 2}), and we have by definition of +̃ that t ∈M(p̂1, F̂) +̃M(p̂2, F̂).

Suppose now that the length of the hypothetical prefix of t is n− 1. Consider a
transition sequence for p̂1 + p̂2 and F̂ (i.e., F1

def= F̂ and p1
def= p̂1 + p̂2)

d = 〈F1, p1〉
a
`1
1−−→ 〈F2, p2〉

a
`2
2−−→ 〈F3, p3〉

a
`3
3−−→ . . .

producing t.

Consider the n-th transition of d, i.e., 〈Fn, pn〉
ap
n−→ 〈Fn+1, pn+1〉. Since by

rules (CRo) and (CRe) pn ≡ p̂1 + p̂2 we have by lemma 5.24 (and rule (CR≡))
that 〈Fn, p̂1〉

ap

−→ 〈Fn+1, pn+1〉 or 〈Fn, p̂2〉
ap

−→ 〈Fn+1, pn+1〉. Without loss of gen-
erality, we suppose the former.

We define the transition sequences d′ def= 〈F1, p̂1〉
a
`1
1−−→ . . .

a
`n−1
n−1−−−−→ 〈Fn, p̂1〉 and

d′′
def= 〈Fn, p̂1〉

a`nn−−→ 〈Fn+1, pn+1〉
a
`n+1
n+1−−−→ 〈Fn+2, pn+2〉

a
`n+2
n+2−−−→ . . .

(notice that d′ is valid by corollary 5.29 and d′′ is valid since it is a part of d).
Thus d · d′′ is a fair maximal transition sequence for p̂1 and F̂ producing t. We
conclude that t ∈M(p̂1, F̂) and consequently t ∈M(p̂1, F̂) +̃M(p̂2, F̂).

⊃ M(p̂1 + p̂2, F̂) ⊇M(p̂1, F̂) +̃M(p̂2, F̂):

Let t be a fair maximal labeled trace inM(p1, F̂) +̃M(p2, F̂). Thus according to
the definition of +̃ (see equation (5.16)), t ∈M(p̂1, F̂) or t ∈M(p̂2, F̂). Without
loss of generality, we suppose that t ∈M(p̂1, F̂). Let

d
def= 〈F1, p1〉

a
`1
1−−→ 〈F2, p2〉

a
`2
2−−→ 〈F3, p3〉

a
`3
3−−→ . . .

be a transition sequence for p̂1 and F̂ (i.e., p1 = p̂1 and F1 = F̂) producing
t. If the hypothetical prefix of t does not exist, we have by corollary 5.30 that
t ∈M(p̂1 + p̂2, F̂). Let now be n− 1 the length of the hypothetical prefix of t.

By corollary 5.29 we construct a transition sequence

d′
def= 〈F1, p̂1 + p̂2〉

a
`1
1−−→ 〈F1, p̂1 + p̂2〉

a
`2
2−−→ . . .

a
`n−1
n−1−−−−→ 〈Fn, p̂1 + p̂2〉

159

CHAPTER 5. COMPOSITIONAL SEMANTICS OF A COMPONENT

Using rule (CR+) we have that the transition 〈Fn, p̂1 + p̂2〉
ap
n−→ 〈Fn+1, pn+1〉 is

valid. Consequently, defining

d′′
def= 〈Fn, p̂1 + p̂2〉

a`nn−−→ 〈Fn+1, pn+1〉
a
`n+1
n+1−−−→ 〈Fn+2, pn+2〉

a
`n+2
n+2−−−→ . . .

d′ · d′′ is a fair maximal transition sequence for p̂1 + p̂2 and F̂ producing t, and
we conclude t ∈M(p̂1 + p̂2, F̂).

5.3.2.2.4 Choice with Priority. To prove equation (5.20d), we prove the following
two set inclusions:

⊂ M(p̂1 ⊕ p̂2, F̂) ⊆M(p̂1, F̂) ⊕̃M(p̂2, F̂):

Consider a fair maximal labeled trace t ∈M(p̂1⊕ p̂2, F̂). By the definition ofM
we have a transition sequence (with F1

def= F̂ and p1
def= p̂1 ⊕ p̂2)

d = 〈F1, p1〉
a
`1
1−−→ 〈F2, p2〉

a
`2
2−−→ 〈F3, p3〉

a
`3
3−−→ . . .

producing t.

If the hypothetical prefix of t is not defined, t does not contain any action labeled
with p and we have by corollary 5.30 that t ∈M(p̂1, F̂), and we have by definition
of ⊕̃ (equation (5.19)) that t ∈M(p̂1, F̂) ⊕̃M(p̂2, F̂).

Let now be n − 1 the length of the hypothetical prefix of t. Notice that by
rules (CRo) and (CRe) we have that pn ≡ p̂1 ⊕ p̂2. We distinguish two cases:

1. ∃p̂′1 such that 〈Fn, p̂1〉
ap
n−→ 〈Fn+1, p̂

′
1〉:

We remark that according to rules (CR⊕) and (CR≡) there exists a process

term p̂′′1 such that pn+1 ≡ p̂′′1 and 〈Fn, p̂1〉
ap
n−→ 〈Fn+1, p̂

′′
1〉 (this is the premise

necessary for proving the n-th transition of d). Consequently,

d′
def= 〈Fn, pn〉

a`nn−−→ 〈Fn+1, pn+1〉
a
`n+1
n+1−−−→ 〈Fn+2, pn+2〉

a
`n+2
n+2−−−→ . . .

is a transition sequence for the process term p̂1 and the store Fn producing
the labeled trace (a`ii)i≥n. By corollary 5.29 we can construct a transition
sequence d′′ for p̂1 and F̂ such that the concatenation of d′′ and d′, i.e.,
d′′ · d′, is a transition sequence for p̂1 and F̂ producing t. This proves that
t ∈M(p̂1, F̂), and by the definition of ⊕̃ (equation (5.19)) we can conclude:
t ∈M(p̂1, F̂) ⊕̃M(p̂2, F̂).

2. @p̂′1 such that 〈Fn, p̂1〉
ap
n−→ 〈Fn+1, p̂

′
1〉:

In this case, there exists, according to the premise of rule (CR′⊕), a process

term p̂′2 such that p̂′2 ≡ pn+1 and 〈Fn, p̂2〉
ap
n−→ 〈Fn+1, p̂

′
2〉. Thus we can prove

similarly to the preceding case 1 that t ∈M(p̂2, F̂).
According to the definition of ⊕̃ (see equation (5.19)), it remains to prove
that for all labeled traces t1 ∈ M(p̂1, F̂) such that the hypothetical prefix
of t1 exists, we have that hpref (t1) 6= hpref (t).

160

5.3. COMPOSITIONALITY OF THE SEMANTICS M

Suppose now that there exists a labeled trace t1 ∈ M(p̂1, F̂) such that we

have hpref (t1) = hpref (t). Thus we have a transition 〈Fn, p̂1〉
(a′)p

−−−→ 〈F ′n, p̂′1〉
with an action a′ and a new state 〈F ′n, p̂′1〉 (recall that the length of hpref (t) =
hpref (t1) is n − 1). But this transition invalidates the n-th transition of d,

namely 〈Fn, p̂1 ⊕ p̂2〉
ap
n−→ 〈Fn+1, p̂

′
2〉, since the side-condition of rule (CR′⊕)

would not be valid. Because the latter transition is part of the (correct)
transition sequence d we started with, we reached a contradiction, and the
labeled trace t1 cannot exist.

⊃ M(p̂1 ⊕ p̂2, F̂) ⊇M(p̂1, F̂) ⊕̃M(p̂2, F̂):

Let a fair maximal labeled trace t ∈ M(p̂1, F̂1) ⊕̃M(p̂2, F̂2). Then we have
according to the definition of ⊕̃ (see equation (5.19)) either t ∈ M(p̂1, F̂1) or
t ∈M(p̂2, F̂2). We analyse these two cases separately.

1. t ∈M(p̂1, F̂):
Consider a transition sequence

d = 〈F1, p1〉
a
`1
1−−→ 〈F2, p2〉

a
`2
2−−→ 〈F3, p3〉

a
`3
3−−→ . . .

for p̂1 and F̂ (i.e., p1
def= p̂1 and F1

def= F̂) producing t. If the hypothetical
prefix of t is not defined, we have by corollary 5.30 that t ∈M(p̂1⊕ p̂2, F̂1).
Suppose now that the length of the hypothetical prefix of t is n − 1. By
corollary 5.29 we have for all i ∈ {1; . . . ;n−1} that the following transition is

valid 〈Fi, p̂1⊕p̂2〉
a
`i
i−−→ 〈Fi+1, p̂1⊕p̂2〉 and we call the corresponding transition

sequence d′. Furthermore, the transition 〈Fn, p̂1 ⊕ p̂2〉
ap
n−→ 〈Fn+1, pn+1〉 is

valid by application of rule (CR⊕). Writing d′′ for the transition sequence

d = 〈Fn, p̂1 ⊕ p̂2〉
ap
n−→ 〈Fn+1, pn+1〉

a
`n+1
n+1−−−→ 〈Fn+2, pn+2〉

a
`n+2
n+2−−−→ . . .

we conclude that d′ · d′′ is a transition sequence for p̂1 ⊕ p̂2 and F̂ . Since
clearly (d′ · d′′) ↪→ t, we have that t ∈M(p̂1 ⊕ p̂2, F̂).

2. t 6∈ M(p̂1, F̂) (i.e., t ∈M(p̂2, F̂)):
Consider a transition sequence

d = 〈F1, p1〉
a
`1
1−−→ 〈F2, p2〉

a
`2
2−−→ 〈F3, p3〉

a
`3
3−−→ . . .

for p̂2 and F̂ (i.e., p1
def= p̂2 and F1

def= F̂) producing t. If the hypothetical
prefix of t is not defined, we have by corollary 5.30 that t ∈M(p̂1, F̂1), and
this situation has already be handled in the preceding case 1.
Suppose now that the length of the hypothetical prefix of t is n − 1. We
define the transition sequence d′ as above, using corollary 5.29.
Suppose that there exists a process term p̂′1, a store F ′n+1 and an action

a′n such that we have the transition 〈Fn, p̂1 ⊕ p̂2〉
(a′n)p

−−−→ 〈F ′n+1, p̂
′
1〉. Given

161

CHAPTER 5. COMPOSITIONAL SEMANTICS OF A COMPONENT

this transition, we can construct a transition sequence d̃ for p̂1 and F̂ such
that for the labeled trace t̃ produced by d̃ holds hpref (̃t) = hpref (t) and t̃ ∈
M(p̂1, F̂). But this is a contradiction, since we have that t 6∈ M(p̂1, F̂), t ∈
M(p̂2, F̂) and t ∈M(p̂1, F̂1) ⊕̃M(p̂2, F̂2), and thus by definition of ⊕̃ (see
equation (5.19)) no labeled trace in M(p̂1, F̂) (for which the hypothetical
prefix is defined) has the same hypothetical prefix as t. Thus we conclude,
that we can apply rule (CR′⊕) to prove the validity of the transition 〈Fn, p̂1⊕

p̂2〉
ap
n−→ 〈Fn+1, p̂

′
2〉, where p̂′2 ≡ pn+1.

Defining d′′ as in case 1 above, we conclude that d′ ·d′′ is a transition sequence
for p̂1⊕ p̂2 and F̂ . Since clearly (d′ ·d′′) ↪→ t, we have that t ∈M(p̂1⊕ p̂2, F̂).

quod erat demonstrandum.

? ? ?

In this chapter we have presented a semantics based on labeled traces for a component
which we have proven to be compositional, motivated by an example showing that a
semantics based on the traces of the operational semantics is not compositional. Our
semantics associates to a process term p and an initial store F the set of all traces that
can be observed upon execution of the process term p starting in the initial store F . The
definition of (labeled) traces we used in this chapter (see definitions 5.1 and 5.6) differs
from other definitions of traces, as can be found for instance in [DR95], where a trace
is used in order to specify a process. In these approaches, a trace is considered as the
equivalence class of strings (which correspond to our traces) according to a dependency
relation D.

Compared to the compositional semantics based on labeled traces for ccp as pre-
sented in [dBP91], our semantics uses three different labels, distinguishing the actions
executed by the process, other processes of the same component, and processes from
other components. Furthermore, our semantics has operators for general sequential
composition and choice with priority which do not exist in the model considered in
[dBP91]. Also, the semantics of [dBP91] is restricted to finite traces, since all traces
are required to have a termination mode. Similarly, the compositional semantics for a
non-monotonic extension of ccp presented in [dBKPR93] considers only traces which are
finite (possibly with a marker for deadlock δ corresponding to an inconsistent store)
and maximal. Using the marker and the finiteness of the traces, [dBKPR93] define
the semantical operator for (general) sequential composition by a simple concatena-
tion of the traces. However, as [dBP91], [dBKPR93] does not provide a operator of
choice with priority. With respect to previous version of our compositional seman-
tics [Ser98, ES99, ES], we give a “complete” proof11, and extend the compositional
semantics to a transition system in the style of the CHAM, i.e., using a congruence
relation.

Notice that the semantics M considers fairness in the sense as expressed in def-
inition 5.8, which means informally, that a fair trace represents either a terminating

11Notice that the compositionality of the semantics presented in [dBP91] is not proven.

162

5.3. COMPOSITIONALITY OF THE SEMANTICS M

execution of a process (under the necessary assumptions about its context) or no exe-
cution at all. One might be tempted to require that the traces retained for M respect
a more restrictive fairness condition, as for instance that there has to be at least one
action labeled with p. However, due to the presence of both, an operator for general
sequential composition and non terminating processes, a process might always be com-
posed sequentially after a process that never terminates, and therefore we are forced to
admit labeled traces in the semantics of a process which do contain no action labeled
with p. Nevertheless, an implementation should ensure that the execution of a parallel
composition is fair, in the sense that all parallel (or concurrent) processes (of a compo-
nent) have equal chances to proceed their execution. This can be achieved by standard
techniques known from operating systems (e.g., time-slicing).

163

Chapter 6

Secrecy Analysis

The need for secrecy increases as more and more private data (credit card numbers,
personal medical files, etc.) migrate through the Internet, since one needs to ensure
that sensible data is not publicly accessible, i.e., remains in some restricted, controlled
area. One way to define secrecy from a theoretical point of view is to assign privacy
levels to data used by a program. High levels (of secrecy) denote highly private data
while low levels represent public data. The aim of a secrecy analysis is to show how
high and low level data interact with each other. Secrecy is achieved when information
may only flow from low levels to higher ones. In other words, public data may influence
private data whereas the converse is forbidden, i.e., any modification of private data
should not be observable at the public level.

To our knowledge, this kind of approach to secrecy has been first studied in the
context of imperative programing in [SVI96]. The extension to concurrent program-
ming is not straightforward as [SV98] shows. Indeed, control-flow may be turned into
information-flow. Consider the following sequential, i.e., non concurrent program1:

while (PIN > 0) loop
null;

end loop;
SPY := 0;

This program verifies secrecy as defined in [SVI96] because at the end of every execution,
the value of variable SPY is the same, and thus is not influenced by the value of variable
PIN. Nevertheless, it is clear that in a concurrent setting, it is possible, by a smart
combination of many of such processes, to gather informations about the value of PIN.
Indeed, consider the processes α, β and γ in table 6.1, which are the direct translation
of the example given in [BC01b, figure 1]2. The processes α and β are translations of
the while-loop shown above, using recursion3. Execution of the process term α ‖ β ‖ γ

1We use the syntax of ada [Ada95], where null is the instruction which does not do anything,
corresponding to the elementary action skip.

2Notice that this example itself is a simplification of the example given in [SV98], by using boolean
values instead of natural numbers.

3Notice that in our framework, we could define α simply by

α⇐ [cα = true ⇒ SPY := false ; cβ := true] ; success

since a process blocks until its guard becomes valid. While this specification avoids “busy waiting”, it

164

6.1. FORMALISATION OF SECRECY

α ⇐ [cα = false ⇒ skip] ; α
⊕ [cα = true ⇒ SPY := false ; cβ := true] ; success

β ⇐ [cβ = false ⇒ skip] ; β
⊕ [cβ = true ⇒ SPY := true ; cα := true] ; success

γ ⇐ [PIN = true ⇒ cα := true] ; success
⊕ [PIN = false ⇒ cβ := true] ; success

PIN , SPY , cα and cβ are constants of sort bool (which is defined by
the two constructors true and false). cα and cβ are initialised to false.

Table 6.1: Information Flow through Control Flow

copies the secret value of PIN into the public variable SPY .
To circumvent these problems, [SV98] suggest to forbid guards testing secret data

in while loops, that is to say to allow only tests on low level data in while loops. This
condition is a bit drastic, and has been relaxed by the introduction of a subtler type
system in [BC01a, BC01b]. The idea is that if a guard has a high level of secrecy then
all following assignments must be performed at a higher or equal level. Therefore the
maximal levels of loop guards have to be taken into account for sequential compositions.
To implement this idea, program types in [BC01b] are defined as pairs where the first
component is the upper bound of secrecy level of guards, while the second component
records the lower bound of the secrecy levels of assigned variables.

6.1 Formalisation of Secrecy

In this section we precisely define the notion of secrecy we consider in this chapter.
Informally, we associate to each symbol (of a signature) a secrecy (or privacy) level
indicating its status: the higher the privacy level of a symbol, the more private is
the status of this symbol. We say that a program respects secrecy (or privacy), if
information cannot flow from high privacy levels towards lower privacy levels. In other
words, we consider secrecy from a non-interference point of view: a program respects
secrecy (or is safe), if there are no interferences from higher secrecy levels towards lower
secrecy levels.

Before we give the formal definition of secrecy in section 6.1.2, we present briefly
the part of our computation model which we consider in this chapter.

6.1.1 Simplified Model of a Component

We restrict our analysis to the processes of a single component, the store of which is
described using the simple declarative language presented in section 3.1.2, on which we
use only the five actions tell, del, :=, new and skip. Furthermore, we do not consider
process functions. Thus we get the following simplified definition of a component.

does not correspond exactly to the example as given in [BC01b].

165

CHAPTER 6. SECRECY ANALYSIS

6.1 Definition (simplified component). A simplified component is a five-tuple
C def= 〈Σ, P, R, Rp, pi〉 of a signature Σ, process symbols P , rewrite rules R, process
definitions Rp and an initial process term pi.

Recall from definition 3.1 that we note the set of terms over a signature Σ and
a set of variables X as T (Σ, X). In this chapter, we write P(C) the set of process
terms for the simplified component C. Similarly, we note the set of actions defined for
a component as A(C).

The operational semantics of a process term is described by the transition system
sT, the rules of which are shown in the tables on page 167. Table 6.6 recalls the
axioms defining the congruence relation ≡ on process terms, and table 6.4 recalls the
inference rules defining the transition relation →. Contrary to section 4.1.1, we define
the execution of actions in this chapter by an additional transition relation, namely�,
the inference rules for which are shown in table 6.3.

In the sequel, we sometimes label the transition relations with the (elementary)
action executed by the transition. We have omitted the labels in the tables to enhance

the readability. We write also
a·A(C)∗−−−−−→ a finite sequence of transitions the first of which

is labeled with the action a, and the subsequent actions are labeled with any action
∈ A(C).

The following straightforward lemma states that we can construct corresponding
execution sequences for a same process term on different stores, provides the guards of
the actions are valid.

6.2 Lemma. Let C = 〈Σ, P, R, Rp, pi〉 be a component. Then, for all stores F1 and
F2, process terms p and actions a, we have that the two transitions 〈F1, p〉

a−→ 〈F ′1, p′〉
and 〈F2, p〉

a−→ 〈F ′2, p′′〉 imply that we have also a transition 〈F2, p〉
a−→ 〈F ′2, p′〉.

Proof. Consider two transition sequences 〈F1, p〉
a−→ 〈F ′1, p′〉 and 〈F2, p〉

a−→ 〈F ′2, p′′〉.
Notice that the second transition implies that F2 ` g, where g is the guard of the
action a, i.e., a = [g ⇒ a1; . . . ; an]. Since the process term p is the same in both
transitions, we have, by using the same inference rules as for the first transition, that
〈F2, p〉

a−→ 〈F ′2, p′〉.

6.1.2 Formalisation of Secrecy

The idea of our formalisation of secrecy is to assign a privacy level to every symbol of a
signature Σ = 〈S, Ω〉, i.e., all elements of Ω. Following [BC01b] we require the privacy
levels to have the structure of a lattice.

6.3 Definition (privacy lattice). A privacy lattice L is a lattice of privacy levels.

We note v (respectively, @) the (strict) order defined on a privacy lattice L and we
make no differences between the lattice and the set of its elements, i.e., L denotes in
the same time the lattice and its carrier. If π1, π2 are two elements of L and π1 v π2,
we say that π1 is more private than π2. We write t for the join operation (least upper
bound) and u for the meet operation (greatest lower bound). The maximum of L is >
and its minimum is ⊥. In the rest of this chapter, we consider mostly a privacy lattice
of two elements > and ⊥, where > represents secret data, and ⊥ public data.

166

6.1. FORMALISATION OF SECRECY

success ; p ≡ p

success ‖ p ≡ p
(Unit≡)

p1 ‖ p2 ≡ p2 ‖ p1

p1 + p2 ≡ p2 + p1

(Comm≡)

Table 6.2: Axiom Schemes Defining the Structural Congruence ≡ on Process Terms

〈
〈Σ, R〉, tell(l→ r | c) ; a

〉
�
〈〈

Σ, R∪ {l→ r | c}
〉
, a
〉

(sRtell)〈
〈Σ, R〉, del(l→ r | c) ; a

〉
�
〈〈

Σ, Rr {l→ r | c}
〉
, a
〉

(sRdel)〈
〈Σ,R〉, (d := v) ; a

〉
�〈〈

Σ,
{
l→ r | c

∣∣∣∣ (l→ r | c) ∈ R and
l is not of the form d(t1, . . . , tn)

}
∪
{
d→ v↓F

}〉
, a

〉 (sR:=)

〈
〈Σ, R〉, new(c, s) ; a

〉
�
〈
〈Σ] {c : s}, R〉, a

〉
(sRnew)

〈F, skip ; a〉� 〈F, a〉 (sRskip)

Table 6.3: Axiom Schemes describing the Execution of Actions

p ≡ p′ 〈F, p′〉 → 〈F ′, p′′〉 p′′ ≡ p′′′

〈F, p〉 → 〈F ′, p′′′〉
(sR≡)

〈
F, a1; . . . ; an ; skip

〉 ∗
�
〈
F ′, skip

〉
F ` g〈

F, [g ⇒ a1; . . . ; an]
〉
→ 〈F ′, success〉

(sRaction)

(
q(x1, . . . , xn)⇐

⊕m
i=1(ai ; pi)

)
∈ Rp

〈
F,
(⊕m

i=1 rename(ai ; pi)
)
[vj/xj]

〉
→ 〈F ′, p′〉〈

F, q(v1, . . . , vn)
〉
→ 〈F ′, p′〉

(sRcall)
〈F, p1〉 → 〈F ′, p′1〉

〈F, p1 ; p2〉 → 〈F ′, p′1 ; p2〉
(sR;)

〈F, p1〉 → 〈F ′, p′1〉
〈F, p1 ‖ p2〉 → 〈F ′, p′1 ‖ p2〉

(sR‖)

〈F, p1〉 → 〈F ′, p′1〉
〈F, p1 + p2〉 → 〈F ′, p′1〉

(sR+)

〈F, p1〉 → 〈F ′, p′1〉
〈F, p1 ⊕ p2〉 → 〈F ′, p′1〉

(sR⊕)

〈F, p2〉 → 〈F ′, p′2〉
〈F, p1 ⊕ p2〉 → 〈F ′, p′2〉

if @ p′1, @F ′′, such that 〈F, p1〉 → 〈F ′′, p′1〉 (sR′⊕)

Table 6.4: Simplified Transition System sT for a single Component

167

CHAPTER 6. SECRECY ANALYSIS

The privacy level of a symbol in a signature is determined by a privacy map. This
map is extend to terms by taking the least upper bound of the privacy levels of all the
symbols occurring in the term.

6.4 Definition (privacy map). Let Σ = 〈S, Ω〉 be a signature. We call a privacy
map any map ` from symbols of Ω towards a privacy lattice L. We extend naturally
any privacy map ` to all terms in T (Σ, X), in the following way:

`(f(t1, . . . , tn)) =
(n⊔
i=1

`(ti)
)
t `(f) (6.1a)

`(x) = ⊥ where x is a variable (6.1b)

In the following we suppose that we are given a privacy map `. When we talk of
the privacy of a term t we intend `(t).

We now define the notion of safe rewrite rules, i.e., rules which respect secrecy.
Informally, a rewrite rule is safe whenever no information may flow from a higher level
towards a lower one. Suppose that PIN is a constant denoting an information of the
highest level: `(PIN) = >, whereas SPY is a constant of the lowest level, `(SPY) = ⊥.
Then rewrite rules as for instance SPY → PIN , or SPY → v1 | (PIN = v2) are not
safe, since they allow the use of private or secret information in the evaluation of a
public term or expression. Indeed, when the right hand side or the conditions are of a
higher privacy level than the left hand side of a rewrite rule, the result of the application
of the rule depends on information of a higher privacy level.

6.5 Definition (safe rewrite rule). A conditional rewrite rule lhs → rhs | cond is
called safe with respect to a privacy map ` whenever the following conditions hold:

`(rhs) v `(lhs) and `(cond) v `(lhs) (6.2)

In other words, rewrite rules are safe when the result of a rewrite or reduction step
is a term of a lower privacy level than the original term, or a condition on which the
reduction depends. This is in line with our informal presentation of the preservation of
secrecy, where we stated that information may only flow from low levels towards high
levels. In the following, the privacy level of a safe rewrite rule l → r | c is written
`
(
l → r | c

)
and is defined as `(l). We extend the notion of safe rewrite rules to safe

stores. A store F = 〈Σ, R〉 is called safe (with respect to a privacy map `), if all
rewrite rules R ∈ R are safe (with respect to `).

The extension of a privacy map ` to actions is defined by the following equations:

`
(
[g ⇒ a1; . . . ; an]

) def=
n⊔

i=1

`(ai) (6.1c)

`
(
tell(R)

) def= `
(
tell(R)

) def= `(R) (6.1d)

`(c := v) def= `(c) (6.1e)

`(skip) def= `
(
new(c, s)

) def= > (6.1f)

Intuitively, the privacy level of a guarded action denotes the minimal privacy level of
the rules that are changed by the execution of the action.

168

6.1. FORMALISATION OF SECRECY

In order to define what we intend by safe processes, we have first to define the notion
of equivalence between stores up to a given privacy level with respect to a privacy map.

6.6 Definition (〈`, π〉-equivalence). Let F0, F1 be two stores, ` a privacy map (into
the privacy lattice L) and π a privacy level, i.e., π ∈ L. We say that F0 and F1

are 〈`, π〉-equivalent, written as F0
∼=`
π F1, if and only if for all rules Ri ∈ Ri with

`(Ri) v π there exists a rule R(1−i) ∈ R(1−i), such that Ri = R(1−i) (up to a bijective
renaming of free variables) for all i ∈ {0; 1}.

Notice that according to definition 6.6, we have for an action a with π v `(a) that
for all stores F1 and F2 with F1

∼=`
π F2, 〈F, p〉 a−→ 〈F ′, p′〉 implies that also F ′1 ∼=`

π F
′
2.

The following lemma states that the evaluation of a term is independent from the
rules of higher privacy in a safe store. Intuitively, the lemma holds, since the evaluation
of a term t uses only rules of a lower privacy than t.

6.7 Lemma. Let π be a privacy level, ` a privacy map and Fi = 〈Σ, Ri〉 (i ∈ {1; 2})
two safe stores with the same signature Σ such that F1

∼=`
π F2. Then for all terms

t ∈ T (Σ, ∅) with `(t) v π we have that a reduction step t→p, R1 t
′ (with R1 ∈ R1 and

a position p) implies the existence of a term t′′ such that t→p, R2 t
′′ (with R2 ∈ R2), t′

is equal to t′′ up to renaming and both, `(t′) = `(t′′) v π.

Proof. The safety of the stores together with the definition of the privacy map ensure
that the privacy levels of all rules4 used in the reduction step t→ t′ are lower or equal
to π. By definition of ∼=`

π we have thus for each these rules (∈ R1) the existence of a
rule (∈ R2) which is equal up to renaming. Thus the reduction steps are with respect
to the same stores (modulo renaming of the variables in the rewrite rules).

An immediate consequence of lemma 6.7 is that the normal forms of a term t (with
`(t) v π) are the same with respect to F1 and F2 if F1

∼=`
π F2. In the sequel we note

t↓F the normal form of the term t with respect to the store or program F .
We now extend the notion of bisimulation of processes to take into account the

privacy levels of the stores. Thus we define a bisimulation up to a privacy map `
and a privacy level π. Informally two processes p1, p2 are bisimilar with respect to `
and π (〈`, π〉-bisimilar) when, executed on 〈`, π〉-equivalent stores, they remain 〈`, π〉-
bisimilar. In other words, either one can execute p1 and then for each execution of p1

there is an execution of p2 such that the resulting pairs of stores and process terms
remain 〈`, π〉-bisimilar, or p1 can’t be executed. In this case, we ensure that every
execution of p2 only affect parts of the store with an higher privacy than π, i.e., all
stores in an execution of p2 remain 〈`, π〉-equivalent to the “initial” store.

6.8 Definition (〈`, π〉-bisimulation). Let C = 〈Σ, P, R, Rp, pi〉 be a component, `
a privacy map and π a privacy level. A relation B`π on pairs of stores and process terms
is called a 〈`, π〉-bisimulation if B`π is symmetric and if 〈F1, p1〉 B`π 〈F2, p2〉 implies:

1. F1
∼=`
π F2

2. 〈F1, p1〉
a−→ 〈F ′1, p′1〉 implies that

4Notice that due to conditions in the rewrite rules, more than one rule are used in a reduction step.

169

CHAPTER 6. SECRECY ANALYSIS

• either there exist F ′2 and p2 such that we have 〈F2, p2〉
a−→ 〈F ′2, p′2〉 and

〈F ′1, p′1〉 B`π 〈F ′2, p′2〉

• or 〈F2, p2〉 6
a−→ and for all F]1 and p]1 such that 〈F1, p1〉

a·A(C)∗−−−−−→ 〈F]1 , p
]
1〉 we

have that F]1 ∼=`
π F2.

For the rest of this chapter, we consider only the largest 〈`, π〉-bisimulation, which we
note as ≈`π.

We are now ready to define the notion of a safe process term. Intuitively, a process
term is safe, i.e., respects secrecy map `, if it is bisimilar to itself for every privacy level
π on 〈`, π〉-equivalent stores.

6.9 Definition (safe process term). Let C = 〈Σ, P, R, Rp, pi〉 be a component. A
process term p ∈ P(C) is called safe with respect to a privacy map `, if for all privacy
levels π ∈ L and for all stores F1, F2 such that F1

∼=`
π 〈Σ, R〉 ∼=`

π F2 we have that
〈F1, p〉 ≈`π 〈F2, p〉.

Notice that up to a given privacy level π the stores occurring during the execution
of a safe process term do not depend on the initial rules (i.e., the rules of the initial
store) the privacy of which is greater than π.

We conclude this section with the characterisation of the properties of an unsafe
process term, i.e., a process term which is not 〈`, π〉-bisimilar to itself. Intuitively, if a
process term is not bisimilar to itself, than we have that the execution of the process
term on equivalent stores leads to one of two situations: either the execution (of the
same actions) leads to two non-equivalent stores or one of the executions blocks and
the other execution continues to a non-equivalent store.

6.10 Lemma. Let C = 〈Σ, P, R, Rp, pi〉 be a component. Let F 1
0 , F 2

0 be two stores
(for the signature Σ), p0 ∈ P(C) a process term, ` a privacy map and π a privacy level.
If 〈F 1

0 , p0〉 6≈`π 〈F 2
0 , p0〉 then there exist N ≥ 0 and two transition sequences

〈F 1
0 , p0〉

a1−→ 〈F 1
1 , p1〉

a2−→ · · · an−→ 〈F 1
N , pN 〉

〈F 2
0 , p0〉

a1−→ 〈F 2
1 , p1〉

a2−→ · · · an−→ 〈F 2
N , pN 〉

(6.3)

such that F 1
j
∼=`
π F

2
j for all j < N and that we have one of the following two situations

1. F 1
N 6∼=`

π F
2
N , or

2. there exist a store F] and a process term p] such that 〈F jN , pN 〉
a·A(C)∗−−−−−→ 〈F], p]〉

but 〈F (j+1 mod 2)+1
N , pN 〉 6

a−→ and F] 6∼=`
π F

(j+1 mod 2)+1
N (for j ∈ {1; 2}).

Proof. Without loss of generality, consider, in the situation of lemma 6.10, a maximal
transition sequence d1 for F 1

0 and p0 (see definition 5.2). We distinguish between the
case of a finite and an infinite execution trace.

1. The maximal transition sequence d1 is finite, i.e., we have n ≥ 0 such that

〈F 1
0 , p0〉

a1−→ 〈F 1
1 , p1〉

a2−→ · · · an−→ 〈F 1
n , pn〉 6

a−→ (6.4)

170

6.2. ANALYSIS: ABSTRACTION AND CONSTRAINT GENERATION

We prove the lemma by induction on the length n of the transition sequence.

Base Case. In the case that n = 0, if we have F 1
0 6∼=`

π F
2
0 the lemma is obviously

true (for N = 0). Otherwise, by definition of ≈`π, there exist F], p] such that
〈F 2

0 , p0〉 →+ 〈F], p]〉 with F 1
0 6∼=`

π F
]. Thus the lemma holds for N = 0.

Induction Step. Suppose now, that lemma 6.10 holds for maximal transition
sequences for 〈F 1

0 , p0〉 of length shorter than n. Consider a maximal transition
sequence of length n. If F 1

0 6∼=`
π F

2
0 , the lemma is obviously true (for N = 0).

Otherwise we distinguish two further cases:

• 〈F 2
0 , p0〉 6

a1−→. Assume that F 2
0
∼=`
π F

1
i for all i ∈ {1; . . . ;n}. Thus we have

by definition 6.8 that 〈F 1
0 , p0〉 ≈`π 〈F 2

0 , p0〉 which is in contradiction to our

assumption. Thus there exists i0 such that 〈F 1
0 , p0〉

a1·A(C)∗−−−−−→ 〈F 1
i0
, p1

i0
〉 but

〈F 2
0 , p0〉 6

a1−→ and F 1
i0
6∼=`
π F

2
0 , i.e., we are in the second situation of lemma 6.10

for N = 0.

• there exists a process term p′0 such that5 〈F 2
0 , p0〉

a1−→ 〈F 2
1 , p

′
0〉. Notice that

in this case, we have by lemma 6.2 also the transition 〈F 2
0 , p0〉

a1−→ 〈F 2
1 , p1〉.

Hence we have 〈F 1
1 , p1〉 6≈`π 〈F 2

1 , p1〉 and can apply the hypothesis of the
induction, since the considered maximal transition sequence for 〈F 1

1 , p1〉 has
length n− 1.

2. The maximal transition sequence d1 is infinite, i.e., we have

〈F 1
0 , p0〉

a1−→ 〈F 1
1 , p1〉

a2−→ · · · ai−→ 〈F 1
i , pi〉

ai+1−−−→ · · · (6.5a)

Consider the maximal transition sequence d2 for F 2
0 and p0 which corresponds to

an execution of (a prefix of) the action sequence (ai)i>0. If d2 is finite, the proof
is symmetric to case 1. Thus we suppose we have an infinite transition sequence6

〈F 2
0 , p0〉

a1−→ 〈F 2
1 , p1〉

a2−→ · · · ai−→ 〈F 2
i , pi〉

ai+1−−−→ · · · (6.5b)

Notice that we cannot have F 1
i
∼=`
π F 2

i for all i ≥ 0 since this implies that
〈F 1

0 , p0〉 ≈`π 〈F 2
0 , p0〉, in contrary to our assumptions. Thus, we choose N as

the least index such that F 1
n 6∼=`

π F
2
n .

6.2 Analysis: Abstraction and Constraint Generation

Our analysis is based on an abstract execution of a component. This abstract execution
yields a constraint system, i.e., conditions on the privacy levels assigned to the symbols
of the signature. We prove in theorem 6.29 that if a privacy map respects the constraint
system, an execution of the program respects secrecy. Hence our approach is a partic- à revoir !
ular case of abstract interpretation [CC77]. In this section, we define the abstraction
as well as its use for the analysis, i.e., the generation of the constraint system.

5The transition yields the store F 2
1 since the execution of actions is deterministic.

6We have the same process terms in the transition sequences d1 and d2 by a similar reasoning as
above.

171

CHAPTER 6. SECRECY ANALYSIS

6.2.1 Abstraction

We define the abstraction of a component C = 〈Σ, P, R, Rp, p〉 by means of a set of
abstraction functions, which we note, by abuse of notation, all as Abs. Intuitively,
Abs maps a signature Σ into an abstract signature which contains only two sorts,
namely Priv and Truth. Each of the symbols of Σ is mapped into a new constant
symbol in the abstract signature. These new symbols are to be interpreted as privacy
levels for the symbols of Σ. Besides these symbols, the abstract signature contains
the standard operators of a lattice together with their specification. Rewrite rules are
mapped into pairs of rewrite rules representing the conditions on the privacy levels
of their constituents. Finally, a term is mapped to an expression over privacy levels
denoting the maximal privacy level of any symbol occurring in the term.

6.11 Definition (abstract store). The abstract store Abs(F) for a store F = 〈Σ, R〉
is defined as a pair

〈
Abs(Σ), Abs(R)

〉
of a signature Abs(Σ) and a set of rules Abs(R)

by means of the abstraction function Abs which is defined by the following equations

Abs(Σ) def=

〈 {Priv; Truth}{
f̃
∣∣ f ∈ Σ

}
]
{
v, =: Priv× Priv→ Truth; ˜true : Truth;
>, ⊥: Priv; t, u : Priv→ Priv

}〉
(6.6a)

Abs(R) def= RL ∪
⋃
R∈R
Abs(R) (6.6b)

Abs(l→ r | c) def=
{
Abs(r) v Abs(l)→ ˜true; Abs(c) v Abs(l)→ ˜true

}
(6.7)

Abs
(
f(t1, . . . , tn)

) def= f̃ t
(n⊔
i=1

Abs(ti)
)

(6.8a)

Abs(x) def= x where x is a variable (6.8b)

where RL is a set of rewrite rules axiomatising a lattice (of privacy levels).

In the sequel, we write for short true instead of ˜true. Furthermore, we abbreviate
rewrite rules of the form t1 v t2 → true to t1 v t2. As a shorthand and in analogy
to the notation of the operators in the abstract signature, we write in the sequel F̃
(respectively, Σ̃, R̃ and t̃) for the abstraction of a store F (respectively, a signature Σ,
a rule R and a term t).

The abstraction of an elementary action consists in the action, where the arguments
have been abstracted. Abusing the notation, we note the abstraction of (elementary)
actions also by the function Abs.

6.12 Definition (abstract action). The abstraction of a guarded action is the ab-
straction of the guard and the sequence of the abstractions of the elementary actions:

Abs
(
[g ⇒ a1; . . . ; an]

) def=
[
Abs(g) ⇒ Abs(a1); . . . ; Abs(an)

]
(6.9)

172

6.2. ANALYSIS: ABSTRACTION AND CONSTRAINT GENERATION

The abstraction of an elementary action is defined by the following equations

Abs
(
tell(R)

) def= tell
(
Abs(R)

)
(6.10a)

Abs
(
del(R)

) def= del
(
Abs(R)

)
(6.10b)

Abs
(
c := t

) def= c̃ := Abs(t) (6.10c)

Abs
(
new(c, s)

) def= new(c̃, s) (6.10d)

Abs(skip) def= skip (6.10e)

Similar to the abstraction of an action, the abstraction of a process call is defined by
the call with abstracted arguments. The only modification concerning the abstraction
of process terms is that Abs maps the operator ⊕ to +. This is motivated by the fact
that in the abstract operational semantics we consider all guards to be valid7, so that
we do not need to distinguish between ⊕ and +. We continue our abuse of notation
concerning the abstraction function Abs.

6.13 Definition (abstraction of process terms). Besides the abstraction of a
guarded action which is defined in definition 6.12, the abstraction of a process term
is defined by the following equations:

Abs
(
q(t1, . . . , tn)

) def= q
(
Abs(t1) , . . . , Abs(tn)

)
(6.11a)

Abs(p1 ; p2) def= Abs(p1) ; Abs(p2) (6.11b)

Abs(p1 ‖ p2) def= Abs(p1) ‖ Abs(p2) (6.11c)

Abs(p1 + p2) def= Abs(p1) +Abs(p2) (6.11d)

Abs(p1 ⊕ p2) def= Abs(p1) +Abs(p2) (6.11e)

The operational semantics of an abstracted component is used in order to generate
a constraint system, which describes the conditions under which the execution of the
initial process term respects secrecy (with respect to a privacy map). Therefore, we de-
fine the operational semantics of an abstracted component by a new transition system,
namely ST, the rules of which are presented on page 174.

The goal of the abstract operational semantics is to accumulate the constraints
which guarantee that a concrete execution respects secrecy. According to lemma 6.10,
there are two possibilities to violate secrecy, namely by executing an inherently bad
action or by modifying a public information after checking a secret guard. The first
case is handled by the constraints imposed on the actions executed by a process term.
In order to capture the second case, we follow the idea of [BC01b] and associate a
process term with a privacy level σ, representing the maximal privacy level of all the
guards checked so far. All actions executed by process are then required to modify
only data of a higher privacy than σ. Notice that defining the states of the abstract
transition system as triples of an abstract store, abstract process term and σ would be
too restrictive, as the following example shows.

7Notice that a guard is abstracted to a privacy level. Thus, checking the validity of a guard amounts
to check if the abstracted guard is a privacy level, which holds by definition.

173

CHAPTER 6. SECRECY ANALYSIS

〈p1 ‖ p2, σ〉⇒ 〈p1, σ〉 ‖s 〈p2, σ〉 (‖s -Intro)

〈p1 + p2, σ〉⇒ 〈p1, σ〉 +s 〈p2, σ〉 (+s -Intro)

〈p1 ; p2, σ〉⇒ 〈p1, σ〉 ;s 〈p2, ⊥〉 (;s -Intro)

〈success, σ1〉 ‖s 〈success, σ1〉⇒ 〈success, σ1 t σ2〉 (‖s -Elim)

〈success, σ1〉 ;s 〈p2, σ2〉⇒ 〈p2, σ1〉 (;s -Elim)

Table 6.5: Axiom Schemes for ⇒

〈p1, σ1〉 ‖s 〈p2, σ2〉 ≡s 〈p2, σ2〉 ‖s 〈p1, σ1〉

〈p1, σ1〉 +s 〈p2, σ2〉 ≡s 〈p2, σ2〉 +s 〈p1, σ1〉
(Comm≡s)

Table 6.6: Axiom Schemes Defining the Structural Congruence ≡s on Abstract Process
Terms, i.e., Pairs of Process Terms and Secrecy Levels

〈
F̃ , tell(l̃→ r̃ | c̃) ; a, σ

〉
⇀⇀

〈
F̃ ∪ {(r̃ v l̃); (c̃ v l̃); (σ v l̃)}, a, σ

〉
(SRtell)〈

F̃ , del(l̃→ r̃ | c̃) ; a, σ
〉
⇀⇀

〈
F̃ ∪ {(σ v l̃)}, a, σ

〉
(SRdel)〈

F̃ , (c̃ := ṽ) ; a, σ
〉
⇀⇀

〈
F̃ ∪ {(ṽ v c̃); (σ v c̃)}, a, σ

〉
(SR:=)〈

F̃ , new(c, s) ; a, σ
〉
⇀⇀

〈
F̃ , a, σ

〉
(SRnew)

〈F̃ , skip ; a, σ〉⇀⇀ 〈F̃ , a, σ〉 (SRskip)

Table 6.7: Axiom Schemes describing the Abstract Execution of Actions

ap↓↓ ≡s ap′ 〈F̃ , ap′〉⇀ 〈F̃ ′, ap′′〉 ap′′
yy ≡s ap′′′

〈F̃ , ap〉⇀ 〈F̃ ′, ap′′′〉
(SR≡s)

〈
F̃ , a1; . . . ; an ; skip, σ t g̃

〉 ∗
⇀⇀

〈
F̃ ′, skip, σ t g̃

〉〈
F̃ , 〈[g ⇒ a1; . . . ; an], σ〉

〉
⇀
〈
F̃ ′, 〈success, σ t g̃〉

〉 (SRaction)

(
q(x1, . . . , xn)⇐

⊕m
i=1(ai ; pi)

)
∈ Rp

〈
F̃ ,
〈
Abs

(⊕m
i=1 ai ; pi

)
[ṽj/xj], σ

〉〉
⇀
〈
F̃ ′, 〈p′, σ′〉

〉〈
F̃ , 〈q(ṽ1, . . . , ṽn), σ〉

〉
⇀
〈
F̃ ′, 〈p′, σ′〉

〉
(SRcall)

〈F̃ , ap1〉⇀ 〈F̃ ′, ap′1〉
〈F̃ , ap1 ;s ap2〉⇀ 〈F̃ ′, ap′1 ;s ap2〉

(SR;s)

〈F̃ , ap1〉⇀ 〈F̃ ′, ap′1〉
〈F̃ , ap1 ‖s ap2〉⇀ 〈F̃ ′, ap′1 ‖s ap2〉

(SR‖s)

〈F̃ , ap1〉⇀ 〈F̃ ′, ap′1〉
〈F̃ , ap1 +s ap2〉⇀ 〈F̃ ′, ap′1〉

(SR+s)

Table 6.8: Transition System ST for the Secrecy Analysis

174

6.2. ANALYSIS: ABSTRACTION AND CONSTRAINT GENERATION

6.14 Example. Consider a process term p1 ‖ p2 such that pi executes the action ai
(i ∈ {1; 2}). Suppose further that a1 tests a secret guard and modifies only secret data,
whereas a2 tests a public guard and handles public data. Then the execution of a1

before a2 is correct and should be accepted by the analysis. However, a single σ for the
complete p1 ‖ p2 would not allow this, since both p1 and p2 would be required to use the
same privacy level σ.

Therefore we introduce a new kind of process terms for the use in the analysis,
where all parallel processes are paired with a privacy level representing the least upper
bound of the guards tested by this process.

6.15 Definition (abstract process terms). The following grammar defines the set
of abstract process terms:

ap ::= 〈p, σ〉 ap ‖s ap ap +s ap ap ;s ap (6.12)

Notice that we distinguish between abstractions of process terms (see definition 6.13)
and abstract process terms, i.e., abstractions of process terms paired with privacy levels
(see definition 6.15). The transformation of a pair of an abstraction of a process term
and a privacy level σ is described by the relation⇒, which is completely defined by the
axiom schemes shown in table 6.5. The introduction of the new operators ‖s and +s

dispatches the privacy level σ over the subterms (see rules (‖s -Intro) and (+s -Intro)).
Since the operator ;s is not commutative, the second process term cannot execute, so
that the privacy level associated to it does not matter. Therefore, we set the privacy
level associated to the second process term to ⊥ in rule (;s -Intro).

The operator ‖s is removed when both processes have terminated successfully (see
rule (‖s -Elim)), taking as new privacy level the least upper bound of the two privacy
levels before. Notice that we do not need an elimination rule for the operator +s thanks
to the definition of the transition relation ⇀ (see rule (SR+s)). Notice that we do not
need to consider the privacy level associated to the process term after the ;s, since this
process has not yet tested any guard, since it has not yet executed any action. This also
explains why we set in rule (;s -Intro) the privacy level associated to p2 to ⊥. Notice
that since the relation ⇒ is completely defined by the axiom schemes of table 6.5 and
rule (SR;s) does not allow the reduction of the second argument of ;s, we have that the
second argument of ;s will always be of the form 〈p, σ〉. We note the normal form of
a pair of a process term p and a privacy level σ as 〈p, σ〉

yy. Notice that the rules of
table 6.5 are only applied to the top of an abstract process term8.

The congruence ≡s is similar to ≡, besides the fact that, due to the use of ⇒, we
do no longer need the axiom schemes defining success as unit element for ‖ and ;, since
these properties are already expressed in the rules defining the relation ⇒.

The rules of table 6.7 describe the execution of abstract actions by the transition
relation ⇀⇀. The constraints or rewrite rules9 added to the abstract store F̃ ensure
that the action does not modify a part of the store the privacy level of which is strictly
lower than σ (see the last condition in the rule (SRtell), (SRdel) and (SR:=)) and that
the rules added to the store are safe10. The addition of a new symbol to the signature

8That is to say, we do not consider a congruence relation generated by the axioms of table 6.5.
9We abbreviate rewrite rules of the form x v y → true to x v y.

10A formal proof of these two properties can be found in the lemmas 6.27 and 6.28.

175

CHAPTER 6. SECRECY ANALYSIS

of a store does not modify the rules of the store. Therefore, rule (SRnew) does not add
any constraints to the abstract store.

The execution of an abstract process term ap is described by the transition relation
⇀ defined by the inference rules in table 6.8. Notice that in rule (SRcall), we do
not rename the new symbols introduced by the new action in the rules of a process
definition. Indeed, we consider that all symbols that are created by the same new
action must have the same privacy level. Furthermore, the first premise of rule (SRcall)
is identical to the first premise of rule (sRcall) (an uses the operator ⊕) since we do not
abstract the process definitions.

In order to state the correspondence between concrete and abstract executions for-
mally, we introduce the notion of a weak equivalence between abstract process terms for
the analysis. We call this equivalence weak, since it does not consider the privacy levels
associated with abstract process terms. Furthermore, we wish to consider equivalent
concrete process terms as weak equivalent. Thus, we introduce a congruence ≡a on
abstractions of process terms which is similar to ≡.

6.16 Definition (weak equivalence). Two abstract process terms ap1 and ap2 are
called weakly equivalent, written as ap1 ≡̃

s ap2, if the corresponding process terms are
equivalent, i.e.,

ap1 ≡̃
s ap2 ⇔ U(ap1) ≡a U(ap2) (6.13)

where the function U is defined by the following four equations

U
(
〈p, σ〉

) def= p (6.14a)

U
(
ap1 ‖s ap2

) def= U(ap1) ‖ U(ap2) (6.14b)

U
(
ap1 +s ap2

) def= U(ap1) + U(ap2) (6.14c)

U
(
ap1 ;s ap2

) def= U(ap1) ; U(ap2) (6.14d)

and ≡a is the congruence on abstractions of process terms generated by the following
axiom schemes

success ; ap ≡a ap success ‖ ap ≡a ap (Unit≡a)
ap1 + ap2 ≡a ap2 + ap1 ap1 ‖ ap2 ≡a ap2 ‖ ap1 (Comm≡a)

Since the axiom schemes of ≡a and ≡ are the same, we have obviously that p1 ≡ p2

implies that Abs(p1) ≡a Abs(p2)11. We have further that the application of ⇒ does
not modify weak equivalence, since

U(ap↓↓) ≡a U(ap) (∀ap) (6.15)

Using the notion of weak equivalence, we can express the correspondence between
concrete and abstract transitions. Intuitively, we have that for every concrete transition
from p to p′, there exists also a corresponding abstract transition, that is to say an
transition from the abstraction of p to a process term which is weakly equivalent to the
abstraction of p′.

11The converse is false, as the example of the process terms p1 + p2 and p1 ⊕ p2 shows.

176

6.2. ANALYSIS: ABSTRACTION AND CONSTRAINT GENERATION

6.17 Lemma. Let C = 〈Σ, P, R, Rp, pi〉 be a component, F a store and p ∈ P(C) a
process term. Then we have for all concrete transitions

〈F, p〉 a−→ 〈F ′, p′〉 (6.16a)

that there exists, for all privacy levels σ, a process term p̂, an abstract store F̃ and
an abstract process term p̃ such that p̂ ≡ p, 〈Abs(p′), σ〉 ≡̃s p̃ and we have the abstract
transition 〈

Abs(F), 〈Abs(p̂), σ〉
yy〉 Abs(a)

⇀ 〈F̃ , p̃〉 (6.16b)

Proof. We prove lemma 6.17 by induction on the height of the inference tree for the
concrete transition. That is to say, we prove for all inference rules for→ (see table 6.4)
that, if the lemma holds for the premises, than it also holds for the conclusion of the
inference rule.

Base Case. The only inference rule in table 6.4 without any occurrence of → in the
premise is rule (sRaction). By inspection of the axiom schemes for� (see table 6.3) and
⇀⇀ (see table 6.7), we have that

〈
F, a1; . . . ; an ; skip

〉 ∗
�
〈
F ′, skip

〉
implies that for all

σ there exists F̃ such that
〈
Abs(F), Abs(a1); . . . ;Abs(an) ; skip, σ

〉 ∗
⇀⇀

〈
F̃ , skip, σ

〉
.

Thus, defining p̂ def= p and p̃
def= 〈success, σ〉, we have by rule (SRaction) that lemma 6.17

holds.

Induction Step. We consider the remaining inference rules one by one, under the hy-
pothesis that lemma 6.17 holds for the transitions occurring in the premise.

(sR≡): Suppose that the premises of rule (sR≡) hold, i.e., we have that p ≡ p′, p′′ ≡ p′′′
and 〈F, p′〉 → 〈F ′, p′′〉. Using the hypothesis of the induction, we have thus
that for all σ there exist p̂′, F̃ and p̃′′ such that p̂′ ≡ p′, 〈Abs(p′′), σ〉 ≡̃s p̃′′ and〈
Abs(F), 〈Abs(p̂′), σ〉

yy〉 Abs(a)
⇀ 〈F̃ , p̃′′〉. Since we have p ≡ p′ ≡ p̂′, we define

p̂
def= p̂′ and have obviously that 〈Abs(p̂), σ〉

yy≡s 〈Abs(p̂′), σ〉
yy, corresponding

to the first premise of rule (SR≡s). We define p̃′′′ def= p̃′′
yy and have an abstract

transition by rule (SR≡s). Thus it remains to prove that 〈Abs(p′′′), σ〉 ≡̃s p̃′′′. This
holds, since we have

U
(
〈Abs(p′′′), σ〉

)
= Abs(p′′′) ≡a Abs(p′′) ≡a U(p̃′′) ≡a U(p̃′′

yy) = U(p̃′′′) (6.17)

(sR‖): The premise of (sR‖) is 〈F, p1〉
a−→ 〈F ′, p′1〉. Hence, according to the hypothesis

of the induction, for all privacy levels σ, there exist p̂1, F̃ and p̃1 such that p̂1 ≡ p,〈
Abs(p′1), σ

〉
≡̃s p̃1 and

〈
Abs(F), 〈Abs(p̂1), σ〉

yy〉 Abs(a)
⇀ 〈F̃ , p̃1〉. We define p̂ def=

p and p̃ def= p̃1 ‖s〈Abs(p2), σ〉. Since 〈Abs(p̂), σ〉
yy = 〈Abs(p1), σ〉 ‖s〈Abs(p2), σ〉,

we can infer that
〈
Abs(F), 〈Abs(p̂), σ〉

yy〉 Abs(a)
⇀ 〈F̃ , p̃1 ‖s〈Abs(p2), σ〉〉 using

rule (SR‖s).

Since Abs(p′1) ≡a U(p̃1) we also have that Abs(p′1) ‖ Abs(p2) ≡a U(p̃1) ‖ Abs(p2)
(since ≡a is a congruence). Hence, we conclude that 〈Abs(p′1 ‖ p2), σ〉 ≡̃s p̃.

177

CHAPTER 6. SECRECY ANALYSIS

(sRcall), (sR;), (sR+), (sR⊕) or (sR′⊕): Since these cases are proven in a similar way as
the case for rule (sR‖), we omit them here.

Lemma 6.17 can be extended in a straightforward manner to finite sequences of
transitions. We get the following corollary the proof of which we leave to the reader.

6.18 Corollary. Let C = 〈Σ, P, R, Rp, p〉 be a component, F0 a store and p0 ∈ P(C)
a process term. Then we have for all concrete transition sequences

〈F0, p0〉
a1−→ 〈F1, p1〉

a2−→ · · · an−→ 〈Fn, pn〉 (6.18a)

that there exist abstract stores F̃i and abstract process term api such that the following
is a valid abstract transition sequence

〈F̃0, ap0〉
Abs(a1)
⇀ 〈F̃1, ap1〉

Abs(a2)
⇀ · · ·

Abs(an)
⇀

〈
F̃n, apn

〉
(6.18b)

where F̃0
def= Abs(F0) and api ≡̃

s 〈pi, σi〉
yy for all i ∈ {0; . . . ;n} and a (growing) se-

quence of privacy levels σi.

6.2.2 Secrecy Analysis

The overall idea of our program analysis is to perform all possible abstract executions
of the initial process term of a component and to collect all constraints computed in
the abstract stores by this execution. The point is that we can define an abstract
execution which is finite, i.e., which always terminates, since after a certain point
no more privacy inequations are created by further execution of the abstract process
term. This comes from the fact that abstract elementary actions don’t modify values
of the store but add only new constraints to the store. Since the number of symbols
appearing in a component is finite, the number of inequalities that can be generated by
this program is also finite. Therefore it is possible to consider the complete execution
tree of a program (infinite branches being cut whenever no more new information can
be collected). The union of all abstract stores of the leafs of this program abstract
execution is the result of the analysis. The idea for implementing the decision if a
branch of an abstract execution can be cut is based on checking for each process call,
if the call has already been executed. Therefore, we define the analysis reduction ≫
with respect to an abstract store, an abstract process term and a set of the process
calls already executed, called history.

6.19 Definition (analysis reduction (≫)). The analysis reduction≫ is a relation
between triples of the form 〈F̃ , ap, H〉, where H is a set of process calls. ≫ is defined
by the same inference rules as ⇀, but by replacing rule (SRcall) by the following two
inference rules.

q(v1, . . . , vn) 6 ∈̃ H(
q(x1, . . . , xn)⇐

⊕m
i=1(ai ; pi)

)
∈ Rp〈

F̃ ,
〈(∑m

i=1 ai ; pi
)
[vj/xj], σ

〉
,
(
H ∪ {q(v1, . . . , vn)}

)〉
≫

〈
F̃ ′, 〈p′, σ′〉, H′

〉〈
F̃ , 〈q(v1, . . . , vn), σ〉, H

〉
≫

〈
F̃ ′, 〈p′, σ′〉, H′

〉 (aSRcall)

q(v1, . . . , vn) ∈̃ H〈
F̃ , 〈q(v1, . . . , vn), σ〉, H

〉
≫

〈
F̃ ′, 〈success, σ〉, H

〉 (aSRcut
call)

178

6.2. ANALYSIS: ABSTRACTION AND CONSTRAINT GENERATION

where the relation ∈̃ of membership of a call in a history is defined as follows (we note
' the equivalence of abstract terms using the standard axioms of a lattice, e.g., the
associativity, commutativity and idempotency of t and u or the absorption laws for >
and ⊥):

q(v1, . . . , vn) ∈̃ H ⇔ ∃q(v′1, . . . , v
′
n) ∈ H such that ∀i ∈ {1; . . . ;n} : vi ' v′i

(6.19)

Thus≫ is the same as ⇀ but allows to stop the execution of process calls if a call
with the same parameters has already been executed. Intuitively, the execution of ≫
terminates always since the set of possible parameters for process calls is finite.

6.20 Lemma. All executions according to ≫ terminate.

Proof. Notice that the abstract signature is finite, and that only a finite number of new
symbols is added to the signature during the abstract executions, since according to
rule (SRcall) we do not rename the symbols introduced by new elementary actions, such
that these symbols are added only once. Using the standard axioms of a lattice for
the operators u, t, > and ⊥, we conclude that the set of terms of sort Priv is finite.
Consequently the set of possible process calls is also finite. Since recursive process
calls are the only way for writing non-terminating processes, the finiteness of the set of
possible calls implies lemma 6.20 by rule (aSRcut

call).

We now define the set of constraints computed by the analysis. Informally, it is
the collection of all possible abstract stores that can be computed using ≫ for the
abstraction of the initial store, an abstract process term and the empty history.

6.21 Definition (constraint system). Let C = 〈Σ, P, R, Rp, p〉 be a component,
F = 〈Σ, R〉 the initial store and p a process term. The constraint system ∆p

F [π]
associated to F and p is defined as follows:

∆p
F [π] def=

⋃
F̃ such that

〈Abs(F), 〈p, π〉, ∅〉
∗
≫ 〈F̃ , 〈success, σ〉, H〉

F̃ (6.20)

In the sequel, we write simply ∆p
F instead of ∆p

F [⊥].

According to definition 6.21, ∆p
F is the set of rules that can be generated by an

abstract execution of p. Notice that Abs(F), the abstraction of the initial store F , is a
part of ∆p

F .
In order to state the “monotonicity” for our analysis, we define the notion of a weaker

constraint system. Intuitively, ∆1 is weaker than ∆2 if for all constraints (x v y) in ∆1

there is the same or a stronger constraint in ∆2, where a stronger constraint is obtained
by increasing the level of x.

6.22 Definition. Let C = 〈Σ, P, R, Rp, p〉 be a component. Consider two stores
Fi = 〈Σ, Ri〉 and two process terms pi ∈ P(C). We say that the constraint system ∆1

is weaker than ∆2, written as ∆1 b ∆2, if for all rules R1 = (t1 v t′ → true) ∈ ∆1

179

CHAPTER 6. SECRECY ANALYSIS

there exists R2 = (t2 v t′ → true) ∈ ∆2 such that Symb(t1) ⊆ Symb(t2), where the set
of symbols occurring in a term t is defined as follows:

Symb(t1 t t2) = Symb(t1) ∪ Symb(t2) (6.21a)
Symb(f̃) = {f̃} where f̃ is a constant symbol (6.21b)
Symb(x) = ∅ where x is a variable (6.21c)

Notice that the condition in definition 6.22 includes the case that R1 ∈ ∆2.
The following lemma proves that our analysis is monotone (with respect to the

relation b) in the sense that the constraints computed starting from the initial process
term include the constraints that can be computed starting from all process terms that
can be reached by executing the initial process term.

6.23 Lemma. Let C = 〈Σ, P, R, Rp, p〉 be a component with initial store F = 〈Σ, R〉.
Then we have that 〈F, p〉 ∗→ 〈F], p]〉 implies that there exists a privacy level σ] such
that ∆p]

F]
[σ]] b ∆p

F .

Proof. Notice first, that all executions of 〈F], p]〉 are a part (more precisely a suffix)
of a execution of 〈F, p〉. Thus, for all privacy levels σ and σ′, we have that all abstract
actions executed by (an execution of)

〈
Abs(F]), 〈Abs(p]), σ′〉

〉
are also executed by

the corresponding execution of
〈
Abs(F), 〈Abs(p), σ〉

〉
. By corollary 6.18 we have

further an abstract execution for Abs(p) leading to an abstract process term p̃]. Let
σ] be the greatest lower bound of all privacy levels occurring in p̃]. Thus we have
for all constraints added by the abstract execution of 〈p], σ]〉 that they (or a stronger
constraint) are also added by an execution of 〈p, ⊥〉. Consequently, we have

(
∆p]

F]
[σ]]r

Abs(F])
)
b ∆p

F .
To prove Abs(F]) b ∆p

F , consider a rule R ∈ R] (we suppose that F] = 〈Σ], R]〉).
If R ∈ R, the lemma obviously holds. Otherwise, R has been added to the store by
the execution of an elementary action. By corollary 6.18 and inspection of the axiom
schemes of table 6.7 we have that ∆p

F contains the rules corresponding to Abs(R).

Notice that all rules in ∆p
F are of the form x v y → true (by definition of ⇀⇀

and Abs). Therefore, we can define the formula ∆̃p
F as the conjunction of the left hand

sides of the rules in ∆p
F :

∆̃p
F

def=
∧

(xv y→true) ∈ ∆p
F

(x v y) (6.22)

In the sequel, we will confound ∆̃p
F and ∆p

F .

6.24 Example. The non-trivial12 part of the constraint system computed for the ex-
ample of [BC01b] mentioned at the beginning of this chapter (see table 6.1) is

false v SPY ∧ (cα t true) v SPY ∧ true v cβ ∧ (cα t true) v cβ ∧
true v SPY ∧ (cβ t true) v SPY ∧ true v cα ∧ (cβ t true) v cβ ∧

true v cα ∧ (PIN t true) v cβ ∧ true v cβ ∧ (PIN t true) v cβ
12We have omitted all constraints of the form ⊥ v x since they are valid by definition.

180

6.3. CORRECTNESS OF THE ANALYSIS

The link between the respect of secrecy (for a privacy map `) and our analysis
(i.e., the constraint system ∆p

F) is defined by the notion of compatibility between a
privacy map and a constraint system. Informally, a privacy map ` is compatible with
a constraint system ∆p

F , if all the conjuncts of ∆̃p
F are valid for `.

6.25 Definition (compatible). Let C = 〈Σ, P, R, Rp, p〉 be a component, F =
〈Σ, R〉 the initial store and p a process term. A privacy map ` (for a privacy lat-
tice L) is compatible with the constraint system ∆p

F associated to F and p if 〈L, ˜̀〉 is
a model of ∆p

F , where ˜̀maps v, t, u, > and ⊥ to the corresponding functions and
elements of L, and abstract symbols to the privacy levels of the corresponding symbols,
i.e., ˜̀(f̃) def= `(f).

Notice that the compatibility of a privacy map ` with ∆p
F implies that the initial

store F is safe with respect to `.

6.26 Example. Consider the privacy map `, defined by the following equations:

`(PIN) def= `(cα) def= `(cβ) def= > (6.23a)

`(SPY) def= `(true) def= `(false) def= ⊥ (6.23b)

We have obviously that ` is not compatible with the constraint system of example 6.24,
since for instance > = `(cα) 6v `(SPY) = ⊥.

6.3 Correctness of the Analysis

In this section, we show that our analysis is correct in the sense that if the analysis
tells us that the initial process p of a component is safe, i.e., respects secrecy, than
all execution of p respect secrecy. Before we prove the correctness of our analysis in
theorem 6.29, we introduce some auxiliary lemmas.

The following lemma states that the constraint system implies that the stores are
always safe during the execution of a process (with respect to a privacy map compatible
with the constraint system).

6.27 Lemma. Let C = 〈Σ, P, R, Rp, p〉 be a component and ∆p
F the constraint system

associated to F = 〈Σ, R〉 and p. Let ` be a privacy map for Σ which is compatible with
∆p
F . Then a transition sequence 〈F, p〉 ∗→ 〈F], p]〉 implies that the store F] is safe.

Proof. Notice that by definition 6.21, the constraints ∆p
F imply that F is safe. Consider

a transition sequence 〈F, p〉 a1−→ 〈F1, p1〉
a2−→ · · · an−→ 〈Fn, pn〉 (with n > 0) such that

for all i < n, the store Fi is safe, but Fn is not safe. Thus the execution of action an
transforms the safe store Fn−1 into the unsafe store Fn. Let an = [g ⇒ a1; . . . ; am].
According to rule (sRaction), the execution of an is described by the sequence of the
executions of the elementary actions aj (where F 0

n−1
def= Fn−1 and Fmn−1

def= Fn)

〈F 0
n−1, a1; . . . ; am ; skip〉 � 〈F 1

n−1, a2; . . . ; am ; skip〉 � · · · � 〈Fmn−1, skip〉 (6.24)

Consider the greatest index j0 such that F j0−1
n−1 is safe but F jn−1 is not safe for all

j ∈ {j0; . . . ;m}. Thus the execution of aj0 transforms a safe store in an unsafe store.
We consider the different elementary actions one by one.

181

CHAPTER 6. SECRECY ANALYSIS

tell(l→ r | c): Since Fn−1 is safe, the rule (l → r | c) is unsafe, since it is the only
difference between Fn−1 and Fn, according to rule (sRtell). By corollary 6.18, we
have that ∆p

F implies the constraints added by rule (SRtell), in particular r̃ v l̃

and c̃ v l̃. This is a contradiction to the hypothesis, since these constraints imply
the safety of (l→ r | c).

del(l→ r | c): According to rule (sRdel), the rules of the store Fn are a subset of the
rules of the store Fn−1. Thus Fn is safe, in contradiction to the hypothesis.

(c := v): Since the removal of rules by the assignment cannot transform a safe store in
an unsafe store, we have only to consider the rule added according to rule (sR:=).
By corollary 6.18, we have that ∆p

F implies the constraints added by rule (SR:=),
in particular ṽ v c̃. This is a contradiction to the hypothesis, since this constraint
implies the safety of the rewrite rule (c→ v↓).

new(c, s) or skip: This case is impossible, since according to rules (sRnew) and (sRskip),
the rules of the store are not modified.

Recall that the sequence of elementary actions of a guarded action is executed
atomically. Thus, the action [true⇒ SPY := PIN ; SPY := 0] respects secrecy, since
the temporary violation is invisible. This explains why we did consider the greatest
index (or last elementary action) in the proof of lemma 6.27.

The following lemma states that the actions executed by a process are of a higher
privacy level than the first guard checked by the process.

6.28 Lemma. Let C = 〈Σ, P, R, Rp, p0〉 be a component and ∆p0

F0
the constraint

system associated to F0
def= 〈Σ, R〉 and p0. Let ` be a privacy map for Σ which is

compatible with ∆p0

F0
. Then, for all transition sequences

〈F0, p0〉
a1−→ 〈F1, p1〉

a2−→ · · · am−−→ 〈Fm, pm〉
am+1−−−→ · · · (6.25)

where a1 = [g1 ⇒ a1
11

; . . . ; a1
n1

], we have that `(g) v `(ai) for all i > 0.

Proof. Let i0 be the least index such that `(ai0) @ `(g). By corollary 6.18 we have an
abstract execution corresponding to (6.25), i.e.,

〈
Abs(F0), 〈p0, σ〉

yy〉 Abs(a1)
⇀

〈
F̃1, ap1

〉 Abs(a2)
⇀ · · ·

Abs(ai0)
⇀

〈
F̃i0 , api0

〉
(6.26)

Notice first, that by inspection of the rules describing the execution of abstract process
terms (see table 6.8), we have that `(g) v σi for all σi occurring in the process terms
api (∀i > 0). Let ai0 = [gi0 ⇒ ai01 ; . . . ; ai0ni0

]. Thus we have an abstract transition〈
F̃i0−1, ai01 ; . . . ; ai0ni0

; skip, σi0
〉 ∗
⇀⇀

〈
F̃i0 , skip, σi0

〉
.

According to equation (6.1c), we conclude from `(ai0) @ `(g) that there exists
j ∈ {1; . . . ;ni0} such that `(ai0j) @ `(g). We consider the different possibilities for the
elementary action ai0j one by one.

182

6.3. CORRECTNESS OF THE ANALYSIS

tell(l→ r | c): According to rule (SRtell), ∆p0

F0
implies σi0 v `(l), which is in contradic-

tion to the hypothesis, since `
(
tell(l→ r | c)

)
= `(l) (by equation (6.1d)).

del(l→ r | c): According to rule (SRdel), ∆p0

F0
implies σi0 v `(l), which is in contradic-

tion to the hypothesis, since `
(
del(l→ r | c)

)
= `(l) (by equation (6.1d)).

(c := v): According to rule (SR:=), ∆p0

F0
implies σi0 v `(c), which is in contradiction

to the hypothesis, since `(c := v) = `(c) (by equation (6.1e)).

new(c, s) or skip: In this case we have `(ai0j) = > (according to equation (6.1f)), which
is in contradiction to our assumption.

Using the preceding lemmas, we can prove the correctness of our analysis, i.e., we
can prove that if a concrete execution is unsafe with respect to a privacy map `, than
the ` is not compatible with the constraint system ∆p

F .

6.29 Theorem (correctness). Let C = 〈Σ, P, R, Rp, p〉 be a component, L a privacy
lattice and ∆p

F the constraint system associated to F = 〈Σ, R〉 and p. Then we have
for all privacy maps ` for Σ that if ` is compatible with ∆p

F then 〈F, p〉 is safe with
respect to `.

Proof. Suppose that the privacy map ` compatible with ∆p
F and that 〈F, p〉 is not safe.

According to definition 6.9, there exists thus a privacy level π ∈ L and two sets of
rewrite rules R1 and R2 such that F 1

0
∼=`
π F

∼=`
π F

2
0 but 〈F 1

0 , p0〉 6≈`π 〈F 2
0 , p0〉, where

F i0
def= 〈Σ, Ri〉 (i ∈ {1; 2}) and p0

def= p. According to lemma 6.10, we have a natural
number n13 and two transition sequences

〈F 1
0 , p0〉

a1−→ 〈F 1
1 , p1〉

a2−→ · · · an−→ 〈F 1
n , pn〉

〈F 2
0 , p0〉

a1−→ 〈F 2
1 , p1〉

a2−→ · · · an−→ 〈F 2
n , pn〉

(6.27)

such that F 1
i
∼=`
π F

2
i for all i < n, and that one of the following to cases holds.

Case 1: F 1
n 6∼=`

π F
2
n . Suppose that the guarded action an = [g ⇒ a1; . . . ; am] is composed

of the guard g and the sequence of elementary actions ai (i ∈ {1; . . . ;m}). Thus
we have by rule (sRaction) the following sequences of transitions describing the
execution of the elementary actions ai:〈

F jn, 0, a1; . . . ; am ; skip
〉
�

〈
F jn, 1, a2; . . . ; am ; skip

〉
�

〈
F jn, 2, a3; . . . ; am ; skip

〉
...
�

〈
F jn,m, skip

〉 (6.28)

where F jn, 0
def= F jn−1 (for j ∈ {1; 2}). Let i0 be such that F 1

n, i0−1
∼=`
π F

2
n, i0−1 and

F 1
n, i 6∼=`

π F
2
n, i for all i ≥ i0. Notice that we have i0 > 0 and that i0 exists, since

13We use a here a lowercase n instead of the uppercase N used in lemma 6.10 to enhance the
readability.

183

CHAPTER 6. SECRECY ANALYSIS

(by assumption) F 1
n, 0
∼=`
π F 2

n, 0 and F 1
n,m 6∼=`

π F 2
n,m. We consider the different

possibilities for the elementary action ai0 one by one, and show that each of them
leads to a contradiction with the assumptions.

tell(R): According to lemma 6.17, we have that the abstract action tell(R̃) has
been executed during the analysis, i.e., the computation of the constraints
∆p
F . We distinguish the following two cases:

R̃ v π: The rule R added to the store is the same for both, F 1
n, i0−1 and

F 2
n, i0−1. Thus, we have that F 1

n, i0
∼=`
π F 2

n, i0
, in contradiction to the

assumption.
π @ R̃: In this case, the rules of a lower or equal privacy level than π are

not modified, and thus we cannot have F 1
n, i0
6∼=`
π F

2
n, i0

.
del(R): We distinguish two cases:

R̃ v π: In this case, the rule R is present in F 1
n, i0−1 if and only if R is present

in F 2
n, i0−1. Thus the removal of R has the same effect, and we have that

F 1
n, i0
∼=`
π F

2
n, i0

, in contradiction to the assumption.

π @ R̃: Since the rules of the store which have a lower or equal privacy
level than π are not modified by the execution of this action, we have
F 1
n, i0
∼=`
π F

2
n, i0

, in contradiction to the assumption.
c := v: According to lemma 6.17, we have that the abstract action c̃ := ṽ has been

executed during the analysis. We distinguish the following two cases:
l̃ v π: Since F 1

n, i0−1
∼=`
π F

2
n, i0−1, we have that v↓F 1

n, i0−1
= v↓F 2

n, i0−1
(using

lemma 6.7; by lemma 6.27 we have that the stores F 1
n, i0−1 and F 2

n, i0−1

are safe). Consequently F 1
n, i0
∼=`
π F

2
n, i0

, in contradiction to the assump-
tions.

π @ l̃: In this case, the assignment does modify only rules of a higher privacy
level then π, and thus we cannot have F 1

n, i0
6∼=`
π F

2
n, i0

.
new(c, s): This is impossible, since new does not modify the rules of the store

(see rule (sRnew)).
skip: This is impossible, since skip does not modify the store (see rule (sRskip)).

Case 2: there exists a process term p] and a store F] such that 〈F 1
n , pn〉 →+ 〈F], p]〉

but 〈F 2
n , p〉 6→ and F] 6∼=`

π F
2
n . Thus we have a transition sequence

〈F 1
n , pn〉

an+1−−−→ 〈F 1
n+1, pn+1〉

an+2−−−→ · · · an+m−−−→ 〈F 1
n+m, pn+m〉 (6.29)

such that F 1
n+j
∼=`
π F

2
n for all j ∈ {1; . . . ;m− 1} and F 1

n+m 6∼=`
π F

2
n . Consequently,

we have that the privacy level of an+m is lower than π, i.e., `(an+m) v π. Suppose
that the guarded action an+1 = [g ⇒ a1; . . . ; ak] is composed of the guard g and
the sequence of elementary actions ai (i ∈ {1; . . . ; k}). Notice that π @ `(g), since
〈F2, p〉 /

an+1−−−→ (otherwise we have a contradiction to lemma 6.7 for the evaluation
of g which yields the same result with respect to both stores). Thus we have that
`(an+m) @ `(g). On the other hand, we have by lemma 6.28 that the compatibility
of ` with ∆pn

F 1
n

implies that `(g) v `(an+m). Thus, using lemma 6.23, we reach a
contradiction.

184

6.3. CORRECTNESS OF THE ANALYSIS

q.e.d.

Informally, the two cases in the proof of theorem 6.29 correspond to the two different
possibilities for information flow. Case 1 handles a direct information flow, whereas an
information flow induced by a control flow is handled in case 2. Notice that in the
first case we consider, as already in the proof of lemma 6.27 the last elementary action,
to take into account the atomic execution of the sequence of elementary actions of a
guarded action.

The following examples show that there exist process term which respect secrecy,
but which are rejected by our analysis.

6.30 Example. Consider a process term p1 which respects privacy (for a privacy map
`), and a process term p2 which does not respect secrecy (for `). Let g be an arbitrary
guard (for the component for which p1 and p2 are defined). Then the process term(
[g ⇒ skip] ; p1

)
⊕
(
[g ⇒ skip] ; p2

)
obviously respects secrecy (for `) since p2 will be

never executed. However, our analysis rejects this process term.

6.31 Example. Consider the process term
[
true ⇒ SPY := PIN ; SPY := 0

]
Due

to the atomic execution of the sequence of elementary actions, the “bad” elementary
action SPY := PIN has no observable effect. However, our analysis yields a constraint
system which is incompatible with the privacy map `, where ` is defined by `(SPY) def= ⊥
and `(PIN) def= >.

6.32 Example. Consider the following process term

q ⇐ [PIN = 42⇒ SPY := 0 ; skip] ; success
⊕ [PIN 6= 42⇒ SPY := 0 ; skip] ; success

is analysed as not respecting secrecy for a privacy map that assigns, as in example 6.31,
> to PIN and ⊥ to SPY , whereas in fact the modification of the store by q does not
depend on the actual value of PIN .

? ? ?

Secrecy has been well investigated in many different programming paradigms: imper-
ative programming [SVI96], functional programming or more precisely the λ-calculus,
e.g., [ABHR99, Pro00, HR98], concurrent programming [Aba97, HR00, HVY00]. Nev-
ertheless the line of approach of these works is rather theoretical, since basic computa-
tion models are considered, e.g., the λ-calculus, π-calculus or other theoretical models
which do not aim to be a support for programming of practical applications. We have
defined an analysis for our computation model which is closer to reality: in chapter 7,
we describe a prototype implementation of a platform supporting the presented com-
putation model. That is to say, the language we consider is more expressive than the
one used in [BC01a, BC01b] and [SV98] in two respects. First, we provide a general se-
quential composition operator, i.e., the process term (p1 ‖ p2) ; p3 is legal in our model,
in contrary to the language used in [BC01b] and [SV98]. Second, our framework allows
the dynamic creation of parallel processes.

185

CHAPTER 6. SECRECY ANALYSIS

Similar to the type system presented in [BC01b], our analysis is finer than the one
of [SV98], since we do not restrict the guards to be of the lowest privacy level. Our
analysis is based on an abstract execution instead of a type system. Therefore we do
not need to assign a privacy level to a process corresponding to the τ in [SV98, BC01b].
Notice finally, that the examples 6.30 and 6.32 are also rejected by the type systems of
[SV98, BC01b]. Example 6.31 is not directly comparable, since the languages considered
in [SV98, BC01b] do not offer a construct for atomic grouping of actions.

186

Chapter 7

Implementation: Sabir

In order to prove the feasibility of our computation model, we have implemented a
first prototype of a multiparadigm programming platform based on the computation
model presented in the preceding chapters. This chapter presents this prototype which
we call Sabir1. First we present in the following section the general architecture and
implementation principles of our interpreter for components. Then we illustrate in
section 7.2 the use of our prototype by means of some examples of execution traces of
components using Sabir.

7.1 Presentation of Sabir

The current version of Sabir is an interpreter for one component, that is to say Sabir
takes a description of a component as input and interprets or executes the component.
Therefore, to interpret a system consisting of several components, a programmer has to
start several instances of Sabir at the same time. Since these components communicate
via the Internet, i.e., using TCP/IP connections, it is possible to execute a distributed
system, i.e., a system the components of which are located on different computers.

As we have seen in chapter 3, a component C is defined by an eight-tuple, i.e.,
C = 〈ŝn, CΣ, R, A, Tr , Rp, ΠR, pi〉 (see definition 3.62 for more details). To simplify
the effective description of a component, in Sabir a component is described by a set of
five different parts or files, as is symbolised in figure 7.1, namely:

F the (initial) store or declarative program,

A the definitions of the actions that are executable on the store F ,

P the definitions of processes, together with the initial process term,

T the definitions of translations for communicating values of the store to other stores
that are possibly written in a different language and

I the imported (respectively, exported) definitions from (respectively, to) the envi-
ronment, i.e., other components of the system.

187

CHAPTER 7. IMPLEMENTATION: SABIR

P IF A T

component−name

actions processes translations import
exportpredicates

functions

Figure 7.1: A Programmer’s View of a Component

The motivation of this separation is to group the declaration of symbols with the cor-
responding definitions, by splitting the component signature according to the different
kinds of definitions. Recall that the symbols of a component are defined in a compo-
nent signature which is defined as an eight-tuple CΣ = 〈Σ, MΣL, A, I, E, Trans, P, Π〉.
Part F describes the initial store F of the component, i.e., F = 〈Σ, R〉, a pair of a
signature Σ and a set of rules R. The action signature AΣ is grouped with the def-
initions of actions A in part A. Recall (from section 3.2.1) that an action signature
AΣ includes, besides a family of action names, also a meta-signature, allowing the rep-
resentation of the store as an abstract data type (ADT) and the definition of action
in an action definition language (ADL). Processes are grouped with process functions
and the initial process term: Part P contains the declaration of the process symbols P
and the process function symbols Π (from the component signature) and the process
definitions Rp, the definitions of process functions ΠR and the initial process term p
from the component. Part T defines the translations, i.e., it groups the declaration
of the translation symbols Trans with their definitions Tr . The remaining symbols of
the component signature are left undefined, since they are imported from other com-
ponents (where they are supposed to be defined). The imported declarations I and
the storenames SN of the remote stores form the part I, together with the declaration
of the exported symbols, i.e., the symbols (declared in the component at hand) that
remote components are allowed to use. The grammars describing the syntax of these
five different files are given in appendix A.

The general scheme of the interpretation process for a single component in Sabir
is shown in figure 7.2. The interpreter takes as an argument the name of the compo-
nent, and tries to read the (five) files corresponding to the parts of the description of a
component mentioned above2. These files are processed in the order indicated by the
numbers in figure 7.2. Using the information contained in the files, the “compiler” pro-
duces an “abstract forest” (or parse-tree), i.e., an internal, intermediate representation
of the component (which might be written into a file and stored). Finally, the abstract
forest is passed to an “interpreter” which executes the component.

In the following paragraphs we present in more detail both, the contents of the
different files describing a component and the different steps in the execution of a
component. Our prototype Sabir is implemented in the programming language ocaml

1Etymologically, the word “Sabir” stems from the Spanish “saber” (to know). Historically, “Sabir”
denotes a language created for the communication between people of different mother tongues. Thus
Sabir denotes a mixed language, most notably the lingua franca used in Mediterranean harbours.

2The file-names of the files corresponding to these parts are obtained by adding suffixes to name of
the component, namely .store for part F, .actions for part A, .procs for part P, .import for part
I and .trans for part T.

188

7.1. PRESENTATION OF SABIR

output
inputprocess defs

initial process

translations

imported defs
exported defs

action defs

function defs
initial store

processes
store/functions
actions

global analyses

"compiler"

program

"abstract forest"
"interpreter"

5.

1.

2.

4.

3.

Figure 7.2: Global Vision of the Interpretation Process of a Component in Sabir

[LDG+01].

7.1.1 Part F

The stores of components in Sabir are programs in declarative languages following the
principles presented in section 3.1.2. One of the principal motivation in implementing a
rather simple declarative language on our own was the need for an ADL for the definition
of actions. While the corresponding (meta-) data types necessarily to exist as well for
existing declarative languages, they are more difficult to access, not as well documented
as the use of the language itself and more sophisticated than a straightforward, naive
implementation, since they need to handle additional features as for example I/O.

We have chosen a syntax close to Curry [HAK+00b] and Haskell [PJHA+99], since
the definition of a function by several equations is rather close to the rewrite rules of
section 3.1.2. However, to simplify our parser, we require all terms to be parenthesised
completely, and do not provide local definitions or where-clauses. Furthermore, we
require that all symbols are declared before they are used, which allows a simple parser
(in a single pass) and avoids the need to infer types. Finally, as in section 3.1.2, we
use a simple sorting instead of a polymorphic type system with higher-order functions.
The corresponding extensions of our prototype are under development.

The operational semantics is based on a conditional version of weakly needed nar-
rowing [AEH00], an optimal evaluation strategy, representing the rules of functions
internally by definitional trees [Ant92]. In the current version of the first, simple declar-
ative language used in Sabir, non-determinism is solved by parallel evaluation, i.e., in
the case of several possibilities for the reduction of a term, the evaluation process is
split up and all possibilities are continued in parallel. Consequently, the current imple-
mentation is complete, in the sense that every possible answer is computed.

7.1.2 Part A

As the declarative language for stores (see sections 3.1.2 and 7.1.1) is implemented in
ocaml [LDG+01], it seems natural to chose ocaml as an ADL. In fact, by using the
implementation language of the declarative language, we have a straightforward access
to all the data types representing the meta-signature. Therefore an action is imple-

189

CHAPTER 7. IMPLEMENTATION: SABIR

mented by a classical ocaml-function using the same modules for the representation of
programs as the interpreter for the declarative language of Sabir.

To allow for a more efficient execution of actions during interpretation of a compo-
nent, we do not interpret actions, but exploit the possibilities offered by the Dynlink-
library of ocaml [LDG+01, chapter 26], which allows to link (previously) compiled
ocaml-code dynamically, i.e., at run-time, into a program. Thus, actions are used
in form of (pre-) compiled ocaml-functions that are (dynamically) linked to the in-
terpreter. The ocaml-functions defining the actions have to be compiled using the
standard ocaml-compiler and a library containing the necessary definitions of Sabir,
before we can start the interpretation of a component using these actions.

7.1.3 Part I

In the current prototype of Sabir, this part is mainly used for the specification of
the storenames SN with respect to which the component is defined, since the current
prototype of Sabir does support only very limited control about imported and exported
symbols, in order to simplify its implementation. Currently, all declarations of stores
are considered as imported (respectively, exported), such that we only need to parse
the files describing the stores of the remote components to know all imported symbols
(of the stores). However, the imported set of actions executable on the remote store
has to be mentioned explicitly.

Concerning the specification of the storenames SN of the other components in the
system, this part specifies besides the symbolic names also the port number and IP-
address of the remote components. These addresses are used by the interpreter of a
component to establish the communication links between components.

7.1.4 Part T

To simplify our current prototype implementation, we suppose that all languages for
the stores supported by the interpreter have a syntax similar to the one used for the
description of the store used in part F3. Thus the specification of translations can use
the same syntax for rules as part F.

7.1.5 Part P

The part describing the processes of a component contains besides the process def-
initions (see definition 3.58) also the initial process term. The concrete syntax (see
appendix A) for process terms enforces that the initial process, as well as the process
terms in the rules of the process definitions, are restricted process terms.

The current implementation of Sabir does not include process functions and p-
rules, nor a type checker for process expressions. In fact, as mentioned in section 3.5.2,
we consider process functions as a means to facilitate the description of processes.
Thus we have, by lack of time, excluded these features in our first prototype. The
corresponding extensions are under progress. Consequently, the only simplification of

3Otherwise, we would need a parser that can handle expressions written in a syntax mixing those
of different languages.

190

7.2. EXAMPLE OF A LIFT CONTROLLER

process expressions which takes place in the current version of Sabir is the application
of translations.

7.1.6 Execution of a Component

The execution of a component proceeds in several steps. First, in order to prepare
the execution of the component as a part of a system, a handler for the mail-box is
set up so that the component is ready to accept connections from other components
of the system. Then the interpreter tries to establish the connections to the other
components corresponding to the declared storenames SN (which are specified by part
I as mentioned above). When all connections are working (or after a rather long
timeout), the execution strictly speaking the strict sense of the component is started.

The execution of a component strictly speaking consists in the execution of an
interactive interpreter for the declarative program or store, together with the execution
or interpretation of process expressions. This interpretation follows rather closely the
operational semantics as presented in chapter 4. First, execution of the initial process
is started, and in parallel the process handling the incoming mailbox is unlocked, so
that messages arriving from other components can effectively be handled. Additionally
two (interactive) interpreters are launched. The first is an interpreter of the declarative
language for the store and the second is an interpreter for the interactive execution of
actions on the store. The former can be used for interactive use of the theory described
by the store, and the second allows a user to update the theory (or program) remotely,
similar to the primitives for exchanging the code of modules in Erlang [AVWW96].

The mutual exclusion of the execution of actions is ensured in Sabir by protecting the
stores with a monitor [Han72, Hoa74], a concept first defined for the design of operating
systems which is now implemented as libraries for a range of programming languages, as
for instance Java [Lea99, secion 3.3.2] or ocaml [LDG+01, chapter 23]. Informally, all
procedures of monitor are guaranteed to be executed in mutual exclusion. We use this
property to ensure that at most one process (including the interactive interpreters and
the process handling the mailbox) has access to the store. Additionally, a procedure
of the monitor may suspend its execution and wait for a resource to become free or,
in our case, a condition or guard to become true. In terms of monitors, this is means
to wait on a so-called condition variable. When a process has finished the execution
of an action, it releases the store and signals the condition variable, that is to say,
wakes one (or all) of the waiting processes up. When woken up, a process resumes
its execution just after the wait instruction, but before another process can enter the
monitor. Therefore we can implement a process blocking on a guard by putting the
test of the validity in a loop: while the guard is not valid, the process has to wait on
the condition variable and to recheck the guard as soon as it is woken up (which means
that another process has modified the store such that the guard might have become
true), otherwise it can proceed with the execution of the action.

7.2 Example of a Lift Controller

In the rest of the chapter, we present samples of descriptions of components in Sabir
and their execution traces. In contrary to the examples in chapters 1 and 3, we use here

191

CHAPTER 7. IMPLEMENTATION: SABIR

Figure 7.3: Windows of the Lift Controller Application

the concrete syntax of the current prototype of Sabir (see appendix A). Lines starting
with -- are comments, and are not considered by the parser.

Our first example is inspired from a very vague specification in [Abr96a]. Consider
a building with m floors in which a system of n lifts is installed. On every floor there
is a button for requesting a lift, and each lift is equipped with buttons for ordering the
lift to stop at a given level. Suppose we have to model this system, i.e., control the
lifts, ensuring that all orders and requests are eventually handled. For simplicity, we
do not consider the capacity of the lifts, assuming that it is always sufficient for the
requests to handle.

Figure 7.3 shows a snapshot of an execution of our lift control system for a building
with m = 10 floors (numbered from 0 to 9) and n = 3 lifts. We see five windows.
The first window, entitled Floors, represents the ten buttons on the floors. A second
window, entitled Building, visualises the current positions of the lifts4, where a black
(respectively, white) rectangle symbolises a lift the doors of which are closed (respec-
tively, open). The remaining three windows, entitled 1, 2 and 3, represent the button
inside the lifts, as well as the current direction of the corresponding lift (i.e., up or
down).

The intuitive idea of our model is as follows. We model the lifts as independent
processes that share the information of requests coming from the floors. Hence, our
model does not depend on the numbers of floors and lifts, and we can, for instance,
easily add an additional lift4. This feature might be useful when we want to use the
system for the evaluation of the number of lifts actually needed for the building (in this
case, it would be necessary to consider the capacity of the lifts as well).

We distinguish between the requests issued by the buttons on the floors which
can be handled by any of the lifts and orders which have to be handled by a given
lift. orders are either issued by the buttons inside the lift or requests that have been
assigned to the lift. In order to optimise the assignment of requests to lifts, we try to

4Clicking on the button add lift in the window Building also allows to dynamically add a new lift.

192

7.2. EXAMPLE OF A LIFT CONTROLLER

make the lifts move as long as possible in one direction, i.e., either up or down. Thus we
can model a lift as a four-tuple (L ready direction position orders) containing
its current level or position (represented by an integer), its current direction and
a list of orders to handle, represented as a list of floors-numbers (i.e., integers). The
flag ready is a boolean value indicating if the lift is ready to move after the doors have
been opened in order to handle a request or order. One of the conditions that have to
be satisfied in order to consider a lift a ready is, for instance, that the doors of the lifts
have to be closed. Orders from the buttons inside a lift are directly put in the list of
orders of the lift, while requests on the floors are put into a list requests shared by
all lifts. A process controlling the lift ln moves a request from the list requests into
the list of orders of ln, if the request is in the current direction of ln and if ln is
among the lifts that are nearest to the request. Whenever a lift handles an order on
a floor, all requests for this floor are handled (i.e., removed from the list requests) as
well.

As in the example of the multiple counters (see example 3.63), we suppose that,
besides the component lifts (modelling the lifts), we have a second component, namely
X, which acts as a GUI for the lifts. The actions executable on the component X are
the following:

action move_to_floor :: Name(lift) -> integer -> store -> store.
action open_doors :: Name(lift) -> integer -> store -> store.
action close_doors :: Name(lift) -> integer -> store -> store.

Their first parameter denotes the (name of the) lift, and the second the current level
of this lift.

Tables 7.1 and 7.2 give the declarations of types and functions (i.e., the signature) of
the store for the component lifts. The corresponding rules are presented in table 7.3
and 7.4. Finally, the process definitions of the component lifts are given in tables 7.5
and 7.6. The initial process term of the component lifts is a call to the process start
(see table 7.6). In the following, we comment the program shown in tables 7.1 to 7.6,
using the process definitions as a guideline, that is to say, we explain the functions
of the store in the context of the process where they are used. The explanations of
some of the simpler functions are omitted, since for instance the classical sort of lists
(int_list) has already been presented in chapter 3 in the example of the multiple
counters.

The definition of the process lift_ctrl (see table 7.5) controlling a lift named
ln is shown in table 7.5 (where we denote by s^ the Name of a symbol s, and the
symbol associated to a name n by (deref n)5). The process is defined by four rules
or clauses. The guard of the first rule, i.e., (order_to_handle (deref ln))6, checks
if there is an order or request to handle on the current floor (of the lift ln), i.e.,
order_to_handle tests if the current position of the lift ln is a member of the concate-
nation (append) of the list of orders of the lift ln and the global requests. Handling
an order (respectively, request) simply means to remove it from the lists of orders (ord
ln) (respectively, requests requests). This is expressed by the first two actions, which

5In section 3.1.3 we used the notations ŝ (respectively, n↑).
6In the case of a boolean expression, say b, as a guard, we abbreviate the notation and write simply

b instead of b = true.

193

CHAPTER 7. IMPLEMENTATION: SABIR

-- type of list of naturals
type int_list = nil | cons integer int_list.

-- classical functions on lists
head :: int_list -> integer
tail :: int_list -> int_list
append :: int_list -> int_list -> int_list

-- classical predicates on lists
member :: integer -> int_list -> bool
is_nil :: int_list -> bool
not_nil :: int_list -> bool

-- return the list without all (the first) occurrence(s)
remove :: integer -> int_list -> int_list
rm_first :: integer -> int_list -> int_list

-- return the sub-list of greater (smaller) elements
get_above :: integer -> int_list -> int_list
get_below :: integer -> int_list -> int_list

-- return the list of differences (with the parameter)
get_dists :: integer -> int_list -> int_list

-- test if there are elements greater (smaller)
orders_above :: integer -> int_list -> bool
orders_below :: integer -> int_list -> bool

-- test if all elements of the list are greater
all_above :: integer -> int_list -> bool

-- is the position "a" nearest to a request "b" ?
nearest :: integer -> integer -> bool

-- type of directions
type direction = up | down.

-- compute the next floor for a floor and direction
next :: integer -> direction -> integer

-- the "limit-floors" of the building
base :: integer
top :: integer

Table 7.1: Signature of the store for the component lifts: Part 1

194

7.2. EXAMPLE OF A LIFT CONTROLLER

-- type of lifts
-- a lift is a 4-tuple <ready, direction, current floor, "orders">
-- ready is a flag for the control of the opening/closing of the doors
type lift = L bool direction integer int_list.

-- accessors to the fields of a lift
fin :: lift -> bool
dir :: lift -> direction
pos :: lift -> integer
ord :: lift -> int_list

-- "operations" on the lifts:
-- move to the next floor
next_pos :: lift -> lift
-- change the direction
opposite :: lift -> lift
-- remove the orders
rm :: lift -> lift
-- toogle the ready-flag
set_timer :: lift -> lift
clear_timer :: lift -> lift

-- add an order
add_lift_ord :: integer -> lift -> lift

-- return the sub-list of all elements in the direction of the lift
get_in_dir :: lift -> int_list -> int_list
-- return the sub-list of all elements not in the direction of the lift
rm_in_dir :: lift -> int_list -> int_list

-- some "predicates" for the guards for the lift control process
-- order to handle on the current floor?
order_to_handle :: lift -> bool
-- further orders in the current direction of the lift?
order_in_direction :: lift -> bool
-- new request in the direction of the lift?
new_req_in_dir :: lift -> bool
-- any other requests ?
further_requests :: lift -> bool

-- global constants:
-- a list containing the current positions of the lifts
lifts_pos :: int_list
-- the list of the (floor) requests
requests :: int_list
-- create a new lift?
create :: bool

Table 7.2: Signature of the store for the component lifts: Part 2

195

CHAPTER 7. IMPLEMENTATION: SABIR

-- rules for the classical list functions
head (cons x y) = x
tail (cons x y) = y

append nil a = a
append (cons a b) c = (cons a (append b c))

is_nil nil = true
not_nil (cons a b) = true

member a (cons b c) | (a = b) = true
member a (cons b c) | (a < b) = (member a c)
member a (cons b c) | (a > b) = (member a c)

-- compute particular sublists
get_above a nil = nil
get_above a (cons b c) | (a < b) = (cons b (get_above a c))
get_above a (cons b c) | (a >= b) = (get_above a c)

get_below a nil = nil
get_below a (cons b c) | (a > b) = (cons b (get_below a c))
get_below a (cons b c) | (a <= b) = (get_below a c)

get_dists a nil = nil
get_dists a (cons b c) = (cons (abs (a - b)) (get_dists a c))

-- predicates on lists of requests/orders
requests_above a e = (not_nil (get_above a e))
requests_below a e = (not_nil (get_below a e))

all_above a nil = true
all_above a (cons b c) | (a <= b) = (all_above a c)

-- removal of requests/orders from a list
remove a nil = nil
remove a (cons b c) | (a = b) = (remove a c)
remove a (cons b c) | (a < b) = (cons b (remove a c))
remove a (cons b c) | (a > b) = (cons b (remove a c))

rm_first a nil = nil
rm_first a (cons b c) | (a = b) = c
rm_first a (cons b c) | (a < b) = (cons b (rm_first a c))
rm_first a (cons b c) | (a > b) = (cons b (rm_first a c))

-- is the position "a" nearest to a request "b" ?
nearest a b = (all_above (abs (a - b)) (get_dists b lifts_pos))

Table 7.3: Rules of the store for the component lifts: Part 1

196

7.2. EXAMPLE OF A LIFT CONTROLLER

-- next floor in a direction
next x up | (x < top) = (x + 1)
next x down | (x > base) = (x - 1)

-- accessors to the fields of a lift
fin (L r d p o) = r
dir (L r d p o) = d
pos (L r d p o) = p
ord (L r d p o) = o

-- "modifiers" of lists
rm (L r d p o) = (L r d p (remove p o))

next_pos (L r d p o) = (L r d (next p d) o)

opposite (L r up p o) = (L r down p o)
opposite (L r down p o) = (L r up p o)

set_timer (L r d p o) = (L true d p o)
clear_timer (L r d p o) = (L false d p o)

add_lift_ord x (L r d p o) = (L r d p (cons x o))

-- predicates for the guards
order_to_handle (L r d p o) = (member p (append requests o))

order_in_direction (L r up p (cons o os)) =
(requests_above p (cons o os))

order_in_direction (L r down p (cons o os)) =
(requests_below p (cons o os))

further_requests (L r d p nil) = (not_nil requests)
further_requests (L r d p (cons o os)) = true

new_req_in_dir (L r up p o)
| (nearest p (head requests)) = (p <= (head requests))

new_req_in_dir (L r down p o)
| (nearest p (head requests)) = (p >= (head requests))

-- initialisation of "global" constants
requests = nil

create = false

base = 0
top = 9

lifts_pos = nil

Table 7.4: Rules of the store for the component lifts: Part 2

197

CHAPTER 7. IMPLEMENTATION: SABIR

process lift_ctrl ln :-
[(order_to_handle (deref ln)) =>
{lifts @ (assign requests^ (remove (pos (deref ln)) requests))};
{lifts @ (assign ln (rm (deref ln)))};
{X @ (open_doors ln (pos (deref ln)))}
];
((random_wait 7); (signal_timeout ln)) || (handle ln),

[(new_req_in_dir (deref ln)) =>
{lifts @ (assign ln (add_lift_ord (head requests) (deref ln)))};
{lifts @ (assign requests^ (tail requests))}
];
(lift_ctrl ln),

[(order_in_direction (deref ln)) =>
{lifts @ (assign lifts_pos^ (rm_first (pos (deref ln)) lifts_pos))};
{lifts @ (assign ln (next_pos (deref ln)))};
{lifts @ (assign lifts_pos^ (cons (pos (deref ln)) lifts_pos))};
{X @ (move_to_floor ln (pos (deref ln)))}
];
(lift_ctrl ln),

[(further_requests (deref ln)) =>
{lifts @ (assign ln (opposite (deref ln)))};
{X @ (show_direction ln (string_of_direction (dir (deref ln))))}
];
(lift_ctrl ln)

end

process handle ln :-
[(order_to_handle (deref ln)) =>
{lifts @ (handle_request (pos (deref ln)))};
{lifts @ (assign requests^ (remove (pos (deref ln)) requests))};
{lifts @ (assign ln (rm (deref ln)))};
{X @ (open_doors ln (pos (deref ln)))}
];
(handle ln),

[(new_req_in_dir (deref ln)) =>
{lifts @ (assign ln (add_lift_ord (head requests) (deref ln)))};
{lifts @ (assign requests^ (tail requests))}
];
(handle ln),

[(fin (deref ln)) =>
{lifts @ (assign ln (clear_timer (deref ln)))};
{X @ (close_doors ln (pos (deref ln)))}
];
(lift_ctrl ln)

end

Table 7.5: Process Definitions for the component lifts: Part 1

198

7.2. EXAMPLE OF A LIFT CONTROLLER

process signal_timeout ln :-
[true => {lifts @ (assign ln (set_timer (deref ln)))}]; success

end

process start :-
[create =>
{lifts @ (assign create^ false)};
{lifts @ (new ln lift)};
{lifts @ (assign ln (L false up base nil))};
{lifts @ (assign lifts_pos^ (cons base lifts_pos))};
{X @ (create_lift_window ln lifts)}
];
(lift_ctrl ln) || start

end

Table 7.6: Process Definitions for the component lifts: Part 2

modify the store of the component liftsaccordingly. The removal of the order in the
lift is encapsulated inside the function rm. Notice that the removal of the request in
both lists is atomic, so that each request is handled exactly one lift. The third action
displays the handling in the GUI by executing the action open_doors on the compo-
nent X. After executing the actions, the process becomes the parallel composition of, on
the one hand, the process handle and, on the other hand, the sequential composition
of the special process random_wait and the process signal_timeout. The predefined
process random_wait needs a random amount7 of time for its successful termination,
and the process signal_timeout (see table 7.6) sets the ready flag of the lift ln. The
process handle is similar to the process lift_ctrl and presented later on. Intuitively,
it represents a lift the doors of which are open, but which can still handle requests and
orders on the current floor. In a real lift, this situation corresponds for instance to
persons arriving just before the doors close.

The second rule of the process lift_ctrl describes the transformation of the first
request of the list requests into an order of the lift. The guard new_req_in_dir checks
if the first element of the list of requests is a request in the direction of the lift such
that the lift is among the lifts that are nearest to the floor of the request. The boolean
function nearest takes two parameters, namely the position of the lift and the request,
and checks if the other lifts are all at least as far as the current lift, using the global
constant lifts_pos, which corresponds to the list of positions of all the lifts. The two
actions of the second rule describe the addition of the request as an order to the lift
and the removal of the request from the list requests. Similar to the removal of an
order, the addition of an order to the list of orders of a lift is encapsulated inside the
function add_lift_ord.

The third rule describes the movement of the lift. Obviously, a lift should continue
to move in its current direction, if it has pending orders in its current direction. For
an upwards (respectively, downwards) moving lift, the guard order_in_direction
checks if the sub-list of orders that are greater (respectively, smaller) than the current

7The amount is randomly chosen between 0 and the number of second specified by the parameter.

199

CHAPTER 7. IMPLEMENTATION: SABIR

position of the lift is not empty. The movement of the lift is described by three actions.
First, the current position of the lift is removed from the list lifts_pos recording
the current positions of all lifts (see the previous paragraph). The second action uses
the function next_pos which encapsulates the changement of the position of the lift
properly speaking. The third action adds the new position of the lift to lifts_pos.
The GUI is updated by means of the fourth action.

Finally, the last rule of the definition of the process lift_ctrl describes the situa-
tion where a lift changes the direction. The guard further_requests is true if either
the list of orders of the lift or the list of requests is not empty. Consequently, this
guard also holds when one of the previous guards is valid. However, since the rules
of a process definition are ordered by priority, the fourth rule is only chosen when the
others rules can not be applied. Since the other guards consider all situations where a
request or order exists in the current direction, it is reasonable to change the direction
of the lift in case that there is another request pending. Notice that if none of the
guards applies, the process lift_ctrl suspends until one of them becomes true. The
fourth guard ensures that a lift does not suspend as long as there are requests pending
in the system.

The process handle is the counter-part of the process lift_ctrl, in the sense that
lift_ctrl describes the behaviour of a lift that is ready to move, whereas handle
describes a lift that is handling a request, i.e., stopped at a floor with open doors.
Consequently, instead of the rules describing the movement and the change of the
direction, handle has a further rule which describes the closing of the doors. The
boolean function fin checks the ready-flag of the lift. This flag is set by the process
signal_timeout which is started concurrently to handle whenever a request is handled
by a lift. If the flag is set, it is cleared, the command to close the doors is sent to the
GUI, and the process behaves afterwards as the process lift_ctrl.

Besides this rule, the process handle contains also the rules for handling a request
(since persons might press on the button on the floor while the lift is there) and for
selecting new requests from other floors. Notice that the rule describing the closing
of the doors has to have a lower priority than the handling of request. In a real lift,
this behaviour corresponds to the fact, that a person, which arrives just at the moment
when the doors close, can still get on the lift by forcing the doors to reopen by pushing
the button on the floor.

The process signal_timeout has already been explained along with the description
of the first rule of the process lift_ctrl on page 199. The remaining process start
controls the creation of new lifts as response to clicks on the “add lift”-button in the
Building-window of the GUI (see figure 7.3). Its only rule is similar to the rules of
the process cnt ctrl describing the creation of a new counter window in the example
of the multiple counters (see example 3.59 on page 114). We suppose that a click on
the “add lift”-button sets the global boolean constant create to true. In this case, we
have to reset create to false in order to allow further requests for the creation of lifts,
create and initialise a new lift (which is placed on the lowest floor base and directed
upwards), add the position of the new lift (i.e., base) to the list lifts_pos, sent the
command to create a new lift to the GUI and to continue waiting for a click on the
“add lift”-button.

To execute the lifts, we have to start the interpretation of two components, namely

200

7.2. EXAMPLE OF A LIFT CONTROLLER

% sabir liftssabir liftssabir liftssabir liftssabir liftssabir lifts

[?] > requests;;requests;;requests;;requests;;requests;;requests;;

NIL with {}

[?] > :p;;:p;;:p;;:p;;:p;;:p;;
<snip>
function s_a_b_i_r__ln_1 :: (-> lift)
<snip>
{s_a_b_i_r__ln_1 -> (L false UP 0 NIL)}
<snip>

[?] > requests;;requests;;requests;;requests;;requests;;requests;;

(CONS 8 (CONS 6 (CONS 4 (CONS 2 NIL)))) with {}

[?] > s_a_b_i_r__ln_1;;s_a_b_i_r__ln_1;;s_a_b_i_r__ln_1;;s_a_b_i_r__ln_1;;s_a_b_i_r__ln_1;;s_a_b_i_r__ln_1;;

(L false UP 4 (CONS 8 (CONS 8 (CONS 6 NIL)))) with {}

Figure 7.4: Example of an Interactive Session for the Component lifts

lifts and X, by executing the interpreter sabir with the name of the component as
argument. Under the hypothesis that the component X is started, Figure 7.4 shows a
transcript of an interactive session for the component lifts. The output of Sabir is
printed in type-writer, and the input of the user in bold type-writerbold type-writerbold type-writerbold type-writerbold type-writerbold type-writer.

The start of the interpreter for the declarative program presented in tables 7.1
to 7.1 is signaled by the prompt “[?] >”. At the beginning, the evaluation of the
function requests yields the empty list NIL8. The result of an evaluation is followed
by the answer substitution, here the identity substitution {}. The primitive :p allows
to print the current program. This primitive allows to detect the creation of a constant
s_a_b_i_r__ln_1 of sort lift, corresponding to the creation of a new lift9. Before the
function requests is evaluated for the second time, the user has clicked on the buttons
generating requests for the floors 2, 4, 6 and 8, as can be seen from the result of the
second evaluation. The evaluation of the function s_a_b_i_r__ln_1 shows that, in the
mean time, the lift has moved to floor 2 and is handling the corresponding request.

? ? ?

In this chapter we have described our prototype implementing a platform for the compu-
tation model presented in the preceding chapters. Besides a description of the different
parts of a program which have to be produced by a user, i.e., a programmer, we have
given a brief overview of the architecture of the prototype and illustrated its use through

8In the output of the interpreter, constructors are printed in uppercase letters, but case does not
matter (see appendix A).

9“<snip>” indicates omissions from the transcript corresponding to other lines of the store.

201

CHAPTER 7. IMPLEMENTATION: SABIR

examples. Due to lack of time, the current version does not include all of the features
of our computation model framework. However, it shows clearly the feasibility of the
platform and gives hints for further improvements. Among these, the improvement of
the efficiency of the implementation of the functional logic programming language used
for the stores is already under progress. Further improvements are mentioned in the
conclusion of the thesis (see chapter 9).

202

Chapter 8

Comparison with Related Work

In this chapter compare our computation model as presented in the preceding chapters
to some related programming models and languages. Given the large amount of existing
research in the field, we cannot compare our work to all the propositions in the area,
but focus on those we are aware of and that are closely related to our model.

The chapter follows roughly the structure of the presentation of related work in
chapter 2. However, as we already mentioned there, the order chosen is completely
arbitrary, and some of the work might have been discussed in another section of this
chapter. Furthermore, we omit a detailed comparison with some of the related work
we already criticised in chapter 2 and mention some work which we did not present
there. Finally, in order to reduce redundancy, we also refer the reader to chapter 2 for
a presentation of the formalisms which we mention here.

8.1 Declarative Programming

The main difference with existing concurrent extensions of declarative programming
languages is that we distinguish clearly between the notions underlying the declarative
language and processes. Our motivation for this separation is to avoid the need to
encode one concept by another. We strongly believe that this leads to more structured
programs which in consequence are easier to write, read and understand. Furthermore,
our approach is more general in the sense that it can be applied to extend most declar-
ative languages with concurrency, since we do not rely on concepts to be available in
the declarative language, but provide processes as an additional notion to those which
are already offered by the declarative language. In fact, our approach requires only the
conditions mentioned in sections 3.1 and 3.2.

However, besides this fundamental difference, there are some common points, which
we point out for some selected examples of concurrent extensions of declarative pro-
gramming languages we are aware of.

8.1.1 Logic Programming

The rules defining our processes (see definition 3.58) are syntactically similar to the
clauses defining predicates in logic programming, with the difference that we provide
more than just conjunction to combine the process terms of the bodies of the “clauses”

203

CHAPTER 8. COMPARISON WITH RELATED WORK

and that we explicitly order the clauses defining a process by priority. Therefore,
definitions of processes are less “declarative” as definitions of predicates in logic pro-
gramming. However, a process is a different concept which has to be distinguished from
predicates, and the order of the execution of actions by a process matters, requiring a
more imperative description of processes.

The built-in “predicates” assert and retract of Prolog [DEDC96] are similar
to our actions. In fact, CIAO [CH99] and ESP [Cia94] interpret these predicates as
Linda [Gel85] coordination primitives on a database of atoms. While this view does
not improve our understanding of the semantics of this mix of predicates and actions,
[CH99] presents nice implementation techniques for the execution of these particular
actions.
T R [BK94, BK98a] extends the view of assert and retract as database updates

by the introduction of transactions, i.e., sequences of actions, which are, as in our com-
putation model, to be executed atomically. A further similarity with our model is the
notion of a shared store (respectively, database) which is modified by processes (respec-
tively, transactions) which are defined separately by process definitions (respectively,
in a transaction base). However, in contrary to our model, T R requires all actions to
be reversible in order to allow the roll-back of an transaction. This requirement is not
necessary in our model, since all actions of a guarded action (our abstraction corre-
sponding to a transaction in T R) are required to be executable if the guard is valid.
Furthermore, the updates in T R are restricted to the modification of atoms. Thus, in
contrary to our framework, the update of functions cannot be expressed directly.

The execution model of our components is closely related to the one of concurrent
constraint programming (ccp) [Sar93], namely a (constraint) store shared by a number
of processes. The main differences of our model to basic ccp are that the store of ccp
can only be modified in a monotonic manner, and that the set of actions available is
fixed (for a particular language) cannot be defined by the programmer.

Most of the semantics proposed for the family of ccp-languages consider the result-
ing, final store as the semantics of a process. Thus most of the semantics for ccp consider
only finite, terminating executions. The only semantics for ccp considering explicitly
infinite computations we are aware of are presented in [dBG97] and [FRS98], but even
these approaches are concerned with the final, resulting store, which is modeled as a
least fix-point1. We prefer a trace based semantics in order to model non-terminating
processes controlling external devices.

The compositional (and fully abstract) semantics based on labeled execution traces
for ccp presented in [dBP90, dBP91] inspired our compositional semantics of chapter 5.
Several differences are worth to be mentioned. First, our language includes an operator
for general sequential composition (instead of only action-prefixing which is a particular
case of sequential composition, since the first process has to be a single action) and
introduces an operator of choice with priority. Second, we are interested in possibly
infinite executions, and do not have the notion of a termination mode. Finally, we
distinguish three (instead of two) different labels, in order to emphasise the difference
of local and distributed computation. Other investigations of the semantics of ccp
concern the definition of a process algebra for ccp, i.e., an equational characterisation

1Notice that this requires a monotone evolution of the store.

204

8.1. DECLARATIVE PROGRAMMING

of a congruence relation for ccp processes, which considers only terminating processes
[dBP92]. A behaviour similar to our operator of choice with priority can be achieved
by means of the if-then-else-like construction “now c then A else B” construct of the
timed extension of ccp presented in [dBG95].

Several non-monotonic extensions of ccp have been suggested, either by providing
new built-in actions [dBKPR93, CR95] or by using non-monotonic logics, as a logic
with defaults [SJG95, SJG96, GJS96] or linear logic [SL92, BdBP97, RF97, FRS98].
The user-definable actions in our computation model allow a greater degree of flexi-
bility than the specific new built-in primitives of [dBKPR93] and [CR95]. Two of the
solutions to the problem of the Dining Philosophers of [dBKPR93, CR95] use an ad-
ditional arbiter process (second solution of [dBKPR93] and the one of [CR95]). The
first solution of [dBKPR93] uses a specific constraint system which allows to model
the atomic removal of two forks2. Similarly, the actions provided by the approaches
based on linear logic are in our opinion less intuitive, since they rely on an implicit
removal (of the constraints used for the proof of entailment of the guard), instead of
specifying explicitly the constraints to be removed (as in our computation model). As
most linear logic programming languages, linear Janus [Tse94], the implementation of
the framework suggested in [SL92] does not distinguish between processes, stores and
formulæ. The semantics of a process in [BdBP97] is defined by a history, which can be
seen informally as a graph representing all possible executions and taking into account
the causal dependencies between occurrences of basic actions. In contrary to most se-
mantics for process calculi, this semantics does not need to interleave all actions in a
sequential manner and is thus a truly concurrent semantics. Although this semantics
considers only finite, i.e., either successful terminating or deadlocking, computations,
[BdBP97] sketches a solution to the (non-terminating) problem of the Dining Philoso-
phers (see example 1.1.5), using an additional semaphore3. Since [FRS98] (similar to
[SL92]) provides only an operator for prefixing a process with a guard, sequential com-
position, i.e., imposing an order on the execution of tell operations has to be encoded.
As an example, consider the solution suggested for the Dining Philosophers in [FRS98,
section 2.2] which is defined as follows:

philosopher(I,N) =
fork(I) ⊗ fork(I+1 mod N) −→

(tell(eat(I,N)) ‖
2Informally, the predicate use(x, leftfork) (respectively, use(x, rightfork)) models the fact that

philosopher x uses the fork on his left (respectively, right). The constraint system is such that

use(x1, leftfork) ∧ use(x2, rightfork) = use(x2, leftfork) ∧ use(x3, rightfork) = . . .

= use(xn, leftfork) ∧ use(x1, rightfork) = false

Thus, using an atomic atell , a philosopher can only tell the use of his both forks, otherwise the constraint
store would become false.

3[BdBP97] sketches two further solutions to the problem of the Dining Philosophers. The first one
is a translation to ccp (with an atomic atell) of the one suggested in [Sha89, page 1245], which is similar
to ours, since a philosopher can take both forks (or sticks) in a single atomic step. The synchronisation
is expressed by incrementally instantiating streams associated to the forks. The second solution is a
translation to standard ccp of the one presented in [Rin88] which is rather long, complicated (70 lines
of code, which is still incomplete) and requires the use of an additional semaphore for ensuring that no
deadlocks occur. Both solutions do not support interactive goal-solving.

205

CHAPTER 8. COMPARISON WITH RELATED WORK

eat(I,N) −→ (tell(fork(I) ⊗ fork(I+1 mod N)) −→ philosopher(I,N)))

where the sequential composition “eat and then think” is encoded as

tell(eat(I,N)) ‖ eat(I,N) −→ P

Notice that this program is close to our solution (see example 1.1.5) since the atomic
removal of both forks (or sticks) is possible, and that no additional semaphore is needed.
Indeed, the main difference is the implicit removal of the predicates fork(I).

The notion of ports as a many-to-one communication medium has been introduced
in AKL [JMH93]. It is argued that the introduced port primitives have a “logical
reading” (as a special (port-) constraint4) and preserve the monotonicity of the con-
straint store. In our non-monotonic setting, we can provide the behaviour of ports
via appropriate (elementary) actions. For instance, we can model the streams as lists
of messages. The reception of a messages corresponds to access the head of the list,
and sending amounts to simply add a new message to the end of the list. Notice that
we could easily specify other communication schemes, for example we might want to
introduce priorities of the messages. In this case, we would just have to modify the
definition of the action send.

The programming system MOzart [Moz], based on the (multiparadigm) program-
ming language Oz [Smo95b, VRHB+97], combines, in a distributed setting, a num-
ber of different programming paradigms, namely declarative programming, object-
oriented programming, constraint programming and concurrent programming. Un-
fortunately, the formal semantical descriptions of the Oz language we are aware of
[Smo94, Smo95a, Smo95b, Smo98], focus on particular aspects of the language and do
not cover the framework as a whole. The assignment operation is modeled in Oz by
the update of a cell, i.e., by modifying the references contained in the cell to a binding
to a new variable. Our actions allow to express the modification of the theory without
the need to introduce the additional notion of cells. As in AKL, communication in
(distributed) Oz is based on the notion of ports, the behaviour of which can be defined
using the stateful features of Oz [Smo95b, section 9, pages 333 – 334].

Reactive CLP [FFS95, FFS98] investigates the dynamic change of the theory used
for constraint or goal solving. The technique proposed is based on a rearrangement
of the search tree in order to keep all reduction steps which depend exclusively on
parts of the theory that have not been modified. It seems interesting to investigate the
adaptation of these techniques in order to improve rule (P) (see page 131).

4We do not completely understand the semantics of this constraint, especially the (incremental?)
modification of the stream of messages according to the execution of send constraints. Unfortunately,
the port constraint is not defined formally, as the following quotation shows.

“the interpretation in terms of constraints is not a complete characterisation of the
behaviour of ports, [. . .]. In particular, it does not account for message multiplicity, nor
for their “relevance”, i.e., it does not “minimise” the ports to the messages that appear
in a computation.

A logic with resources could possibly help, e.g., Linear Logic [Gir87]. The don’t care
nondeterministic and resource sensitive behaviour of ports can easily be captured by LL.
The automatic closing requires much more machinery. If such an exercise would aid our
understanding remains to be seen.” [JMH93, end of section 3.2]

206

8.1. DECLARATIVE PROGRAMMING

8.1.2 Functional Programming

In most concurrent extensions of functional programming languages, processes are mod-
eled by means of functions. Therefore, a process is required to return a value, even if
the value is discarded (or simply does not matter) in most of the proposals we are aware
of [Rep91, AVWW96, PJGF96, TLK96a, Rep99, LDG+01]. One of the motivations to
consider processes just as (a special kind of) a function seems to be that this allows to
apply standard functional programming techniques to the description of processes (see
for instance, [TLK96b, page 285]). Our process and action expressions together with
process functions (see section 3.5.2) allow to use similar techniques in our computation
model.

The design of Concurrent Haskell (CH) [PJGF96] was guided by the research for
a “minimal” set of primitive operations which would allow to provide concurrent pro-
gramming in the functional language Haskell [PJHA+99], such that, using the rich set
of abstraction features of functional programming, more friendly abstraction can be
defined. Thus, the confusion between the notions of functions and processes is one of
the design principles of CH. In fact, only the type system allows to distinguish between
a (pure) function and a state transformer (or process), i.e., a function the result type
of which is necessarily of the form IO t5. However, the introduction of concurrency
renders the interpretation of monadic I/O as abstract descriptions of a state transform-
ers “untenable” [PJGF96, section 2.1] for CH, since the execution of the side-effects
denoted by the actions cannot wait until the program has finished (and the description
of the actions to be executed has been computed completely). Thus, the operational
semantics of Haskell has to be extended.

The operational semantics of CH is stratified in two layers, namely the deterministic
reduction of expressions (i.e., the operational semantics of Haskell) and the concurrent
reaction modeling the execution of processes, or reduction of functions of type IO ().
While this separation in two levels is similar to our operational semantics as presented
in chapter 4, there are several differences. First, CH does not provide operators for
sequential composition and choice between processes, since these operators are not
primitive in the sense that they can be simulated using the operators available in
CH. We have included these operators, since we did not have the goal of designing a
minimal extension to a particular language nor a minimal calculus allowing to model
any problem, but rather searched to combine the best features of both, declarative
programming and process calculi, where these operators are widely used. Second, com-
munication between processes in CH uses MVars (besides the implicit synchronisation
on shared expressions due to the lazy evaluation strategy). In the operational seman-
tics, MVars are modeled as a special kind of process. Thus this communication scheme
is a particular case of the communication using a store, since the parallel composition
of MVars can be considered as a store (containing only atomic formulæ). Third, our
operational semantics presents the execution of all actions or state-transformers at the
level of the processes, whereas the operational semantics of CH integrates at least6 the
description of the operational behaviour of the operator of sequential composition, i.e.,

5Since the value returned by a function representing a process is discarded, the type t is mostly the
empty type ().

6Due to lack of space, the other primitive actions are not considered in [PJGF96, section 6].

207

CHAPTER 8. COMPARISON WITH RELATED WORK

>>=, into the operational semantics of the declarative program. Last, but not least,
CH does not provide a symmetrical operator for parallel composition of processes (as
is usual in most process calculi), but a primitive action which has the side-effect of
launching a process7.

Therefore, the main difference between our computation model and the closely
related model of CH is that we provide operators taken from process calculi for the
description of processes, instead of encoding processes as a particular kind of functions.
Thus we allow the direct use of the appropriate description tools for each concept,
without the need of encoding them. For instance, our solution to the example of the
Dining Philosophers (see example 1.1.5) needs the atomic test of two guards, which is
not directly provided in CH.

CML [Rep91, PR96, Rep99] differs from our model (of a component) in two basic
design choices. On the one hand, communication in CML is based on message passing,
whereas the our processes share a common store. On the other hand, our program-
ming model is asynchronous, whereas processes in CML synchronise on events, a new
data type introduced in CML. Furthermore, since the behaviour is specified by func-
tions which might be defined by means of processes the definition of which might use
functions, CML clearly does not distinguish between processes and functions.

In contrary to our computation model and to most process calculi, processes in
CML are named, i.e., the creation of a process (which is, as in CH, a side-effect of
executing a particular built-in function, namely spawn), returns the (unique) identifier
of the process, similar to the unix [RT78] operating system. While this allows the
definition of primitives for the control of the execution of processes, as for instance the
possibility to kill (i.e., stop) a running process, we are not aware of a clear semantics
for such a model. Notice that the solution to the problem of the Dining Philosophers
given in [Rep99, page 186] as an example for the implementation of the Linda [Gel85]
coordination principles in CML needs an additional semaphore to ensure that at most
n− 1 philosophers are seated around the table, since there is no direct support for the
atomic test and update of two tuples, as we used in example 1.1.5.

Similar to CML (and in contrary to our computation model), functions and pro-
cesses can use each other mutually in Facile [TLK96a]. Indeed, the behaviour of pro-
cesses if defined by means of process scripts, which can be transformed into an expres-
sion using the primitive function script and the execution of a script is a side-effect
of executing the functions spawn. As in CML, communication in Facile is based on
message passing using synchronous channels, so that additional primitive functions for
choosing between different communication events. Another aspect of Facile, namely
the notion of a node, is closer to our computation model. Roughly speaking a node of
Facile corresponds to a component in our model, and in Facile we also find two levels of
concurrency, namely between processes (of a same node) and between nodes. However,
our current model does not allow to start processes on a remote component nor does
it consider the dynamic creation of nodes. On the other hand, the components of a
system in our computation model may be written in different languages, whereas nodes
in Facile have to be written in Facile.

7It is argued in [PJGF96, section 2.2] that a symmetrical fork, as for instance the primitive symFork

of [JH93]) would have forced the synchronisation on the termination of the forked process, that is to
say, the introduction of a general sequential operator.

208

8.1. DECLARATIVE PROGRAMMING

Processes in Erlang [AVWW96] are defined by means of (untyped) functions, with
additional built-in functions implementing asynchronous communication via message
passing. Similar to our computation model, the Erlang runtime systems allows the
interaction with the system, including the modification of the code executed by the
processes, by replacing a module by a new version of the module8. When defining a
function, the syntax of Erlang allows to distinguish between a call to a function in the
same version of the module or in the most recent version of the module9. Since Erlang
can handle at most two versions of a module (called the “old” and “new” version), the
standard runtime system kills all processes that are still executing the “old” version,
before the “new” version becomes the new “old” one, and the new module is loaded into
the new “new” version. When a new version of a module is loaded into the runtime-
system, the signature of the module is allowed to change, such that the complications
related to the removal of a symbol mentioned in section 3.2.2.4 apply also to Erlang,
where they are solved by killing the corresponding processes.

Eden [BLOMP98] distinguishes between (static) functions and (dynamic) processes
[BLOM95, section 1.4], which are modeled as functional transformations from a set of
inputs to a set of outputs. As in our computation model, the creation of new channels
allows for a varying communication structure. However, the coordination model of
Eden [BLOMP97] is based on message passing, and since the communication channels
of Eden are restricted to one-to-one connections, an additional built-in process MERGE
is needed, in contrary to our computation model.

Concurrency in concurrent Clean [NSvEP91, PvE98] is mainly aimed at improving
the operational behaviour by means of a parallel execution. For instance, processes
are created by means of annotations on the subexpressions in the right hand sides of
the rules defining the functions. Furthermore, Clean provides different annotations for
processes depending if the new process should work on the graph representing the term
to be reduced, or on a copy of it. However, an extension of Clean for the simulation
of concurrent interactive processes has been suggested in [AP95a], where processes are
modeled as state transforming functions. Similar to CH and CML, the creation of
processes is the side-effects of a specific action. Since processes are allowed to share (a
part of) their state, the communication scheme is similar to the one of our computation
model. However, the sequential execution of the processes is controlled by the reception
of messages corresponding to events in the GUI, which restricts the flexibility of the
definition of processes.

8.1.3 Functional Logic Programming

Since the declarative language sketched in section 3.1 which is used in our prototype for
the description of the stores is a functional logic programming language, our approach
is naturally closely related to concurrent functional logic programming languages. Un-
fortunately, we are aware of only a small number of languages extending the functional
logic paradigm with concurrency, which might by due to the fact that the functional

8This is not really a restriction, since update at the level of functions can be easily obtained by
encapsulating all functions in separate modules.

9The former is achieved by explicitly prefixing the module-name to the call of the function; omitting
the prefix results in the latter [AVWW96, page 123].

209

CHAPTER 8. COMPARISON WITH RELATED WORK

logic paradigm by itself is far less established than the functional or logic paradigm
separately. In fact, the only concurrent ones we are aware of are Curry and Escher.

Similar to logic programming, processes in Curry [HAK+00b] are represented by
constraints, using a concurrent interpretation of conjunction. As a means for communi-
cation, the notion of ports of [JMH93] has been introduced in Curry and been extended
to named ports which allow for distributed programming [Han99]. Our communication
scheme allows to model the behaviour of ports (by appropriate actions) so that we do
not need to introduce them into our computation model. Due to the use of monadic
I/O, processes in Curry are not allowed to perform I/O actions, i.e., to interact with
the external world. This implies that Curry provides two different operators for se-
quential composition, namely >>= (which is used for the composition of action in the
IO monad) and &> (which corresponds to the sequential interpretation of conjunction
used for modelling the sequential composition of processes). The example program of
the Dining Philosophers which comes with the distribution of PAKCS10 [HAK+00a]
uses an additional semaphore to ensure that only n− 1 philosophers are seated around
the table at the same time such that the system does not deadlock.

The concurrent extension of Escher [Llo] has a similar execution model as our
computation model, since processes also communicate by means of a shared memory,
called the blackboard. However, the execution of processes (which are modeled, similar
to CH, as functions of type IO ()) is simulated by means of “the primitive function
ensemble, that cannot be written directly in Escher” [Llo, section 3, second phrase].
As CH, concurrent Escher uses the monadic operators >> and >>= to model sequential
composition and does not provide an operator for nondeterministic choice. Finally,
since concurrent Escher does not allow the encapsulation of a guard and several actions
into one single atomic step, the program modeling the Dining Philosophers given in
[Llo, figure 5] needs an additional semaphore.

8.1.4 Linear Logic Programming

As already pointed out in section 2.1.4, the proof theoretic behaviour of the logical
connectives in linear logic is quite similar to the operational behaviour of operators in
process algebra. In most linear logic programming languages, the execution of a pro-
cesses corresponds, roughly speaking, to the search of a proof in linear logic. Therefore,
in terms of linear logic programming, the execution of a process aims at a (final) result,
namely the proof which is searched. On the other hand, some processes, as for instance
those controlling an external system, are designed to never terminate or to return a
result. In our opinion, the modeling of these processes in linear logic programming
as a nonterminating search for a proof (of the initial formula) is not as intuitive as
a process algebraic description. Furthermore, the initial formula describes the system
completely, in the sense that the process described does not interact with an environ-
ment external to the formula. Thus the model of a system in linear logic programming
is closed, whereas our computation model is open in the sense that a component may
receive (via the mailbox) at any moment any executable action from the outside of the
system. Nevertheless, in the light of the similarities of the rules, the investigation of a

10PAKCS is the acronym for the Portland Aachen Kiel Curry System which is available for download
at the URL http://www.informatik.uni-kiel.de/~pakcs.

210

8.2. CONCURRENT PROGRAMMING

description of the semantics of our computation model in terms of linear logic might
be worth further investigation, but this is beyond the scope of this thesis.

8.2 Concurrent Programming

The description of processes in our computation model is based on process calculi, and
by means of appropriate actions we can model most11 of the communication mecha-
nisms of these calculi. However, our computation model distinguishes clearly between
the notions of processes and those underlying declarative languages, such as functions
and predicates. This distinction does not exists in process calculi, and functions or
predicates have to encoded. We consider therefore our computation model to be more
convenient for programming, since these different notions can be expressed directly us-
ing an appropriate formalism. In this section we compare our computation model to
some programming languages based on process calculi. Following the calculi they are
based on, most of these languages require the encoding of the notions of functions and
predicates by means of processes.

The combination of algebraic specification with a process calculus similar to CCS
[Mil80] and CSP [Hoa87] provided by Lotos [LOT00, ELO01] distinguishes between
functions and processes. However, in contrary to our proposal, the definitions of the
functions cannot be changed. In fact the store is mainly used to specify the types of the
messages. The communication mechanism of Lotos by synchronisation on ports has
to be simulated in our computation model. On the other hand, a broadcast is natural
in our model, but rather difficult to obtain in Lotos.

The parallel and functional programming language FP2 [Jor84, Jor85] is similar to
Lotos. In both languages, the functional part is used for the specification of the data
types used in the communication between processes. Similar to our computation model,
the behaviour of processes is specified by transition rules, which in our model modify
the state. In contrary to our model however, the state is local to a process and consist
only of a closed atoms instead of descriptions of theories. The process forms of FP2 are
similar to our process expressions. However, the set of operators for the combination of
processes of FP2 differs from ours. While FP2 provides three different kinds of parallel
composition (corresponding to the different modes of interaction between the composed
processes), sequential composition has to be encoded in FP2. As for Lotos, the main
differences to our computation model is the communication scheme and the fact that
the definitions of the functions cannot be modified in FP2, in contrary to our stores.

Our action new (which allows the dynamic creation of channels) together with the
parameterised sort Name (which allows channel names to be passed) allows to model mo-
bility in the same way as the (asynchronous) π-calculus, i.e., by passing communication
links. Since the encoding of functions by means of processes in the π-calculus is rather
complicated and not very intuitive, an integration of the λ-calculus and the π-calculus
has been proposed [Bou97], by combining the operational behaviour of functions and
processes, whereas in our model, functions and processes are clearly distinguished no-

11An example of a calculus we cannot model, is the full synchronous π-calculus, which offers an
external choice between send and receive on the same channel. However, we are not aware of any
implementation of such a powerful calculus.

211

CHAPTER 8. COMPARISON WITH RELATED WORK

tions. Furthermore, our model is a conservative extension of declarative programming,
such that interactive goal solving with respect to the current store is possible.

The programming language Pict [PT97, PT98] is based on the asynchronous π-
calculus. Contrary to Pict (and the π-calculus), our guards allow the atomic reception
on several channels, whereas in the π-calculus processes can only wait on a single
channel. Extensions of the (asynchronous) π-calculus without this restriction are the
join-calculus [FG96] and Lπ [CM98].

jocaml [FFMS01] is a language based on the join-calculus where processes can be
seen as communicating via a multiset of messages: sending a message corresponds
to place it in the multiset, and the “joint reception” of several messages is blocking
and removes the received messages from the multiset. Thus broadcast is not provided
directly and has to be encoded as in any language based on the π-calculus. Since jocaml
is implemented on top of ocaml [LDG+01], jocaml-programs can use the facilities of
ocaml for the definition of data structures and functions12. However, we are not aware
of a complete description of the theoretical foundations of this integration.

In Lπ, [CM98], processes communicate as in the join-calculus via a multiset, but
additionally may have guards, i.e., a Lπ-process that, when executed in an encapsulated
environment, has to terminate successfully. Using these guards, the solution to the
problem of the Dining Philosophers given in [Cai99, secion 2.1, pages 23 – 24]13 allows
a philosophers to take two sticks in a single atomic action, similar to our solution (see
example 1.1.5). However, Lπ does not distinguish between predicates and processes,
and like all the other dialects of the π-calculus mentioned above does not support
interactive goal solving.

Synchronous programming languages, as for instance Esterel [BG92] or Lustre

[HCRP89], model reactive systems as functions that periodically associate to a (finite)
set of input signals a (finite) set of output signals, where the computation of the output
signals takes no time (or is at least completed before the next input signals arrive).
[Bon95] suggests the specification of these function by means of the process algebra
CoReA. Basic processes of CoReA are guarded emissions of (output) signals, where
the guards check on the presence (or absence) of input signals. Since the sequential
ordering is imposed by the synchronous model, CoReA provides only two combinators
for processes, namely parallel composition and a choice with priority (similar to our
operator ⊕).

8.3 Coordination

Most of the coordination languages presented in section 2.3 are targeted to the co-
ordination of imperative programs, that is to say, they provide a set of predefined
coordination primitives which have to be incorporated as basic procedures or actions
in imperative programming languages. On the other hand, those coordination models

12“To explore the expressive power of message-passing in jocaml, we now consider the encoding
of some data structures. In practice however, one would use the state-of-the-art built-in data struc-
tures inherited from ocaml, rather than their jocaml internal encodings.” [FFMS01, introduction of
chapter 1.6]

13Notice that the specification in [Cai99, page 24] does not contain a generic description of a philoso-
pher process.

212

8.3. COORDINATION

designed for combination with declarative programming languages (see section 2.3.2)
consider mostly a store restricted to contain only atoms (or atomic formulæ). In all
cases, the programs to be coordinated are required to share the common language used
for the description of the tuples or atoms in the shared data space.

Similar to our computation model, a system in KLAIM [NFP98] is composed of sev-
eral components (called “nets” in KLAIM) which themselves are structured by means
of concurrent, parameterised processes. Therefore the actions executed by processes in
KLAIM are located, i.e., paired with the location (of the net) where they are to be
executed. This is similar to our pairs of storenames and elementary actions. However,
the stores of KLAIM are not declarative programs, but multisets of tuples which are ac-
cessed or selected (as in Linda [Gel85], see section 2.3.1) by means of pattern matching.
A further similarity is the separation of the operational semantics in two levels, corre-
sponding to the locations (components) and the nets (system). However, while KLAIM
provides a global transition system describing the semantics of a system, we prefer to
view a system as a parallel composition of several transition system, in order to reflect
that we cannot know the states of all components at the same moment. Furthermore,
KLAIM does not distinguish between tuples and processes: on the one hand, KLAIM
supports the notion of active tuples, i.e., tuples representing processes14, and on the
other hand, the operational semantics of KLAIM presented in [NFP98] models tuples as
processes. This way of modelling messages as processes can also be found in the asyn-
chronous π-calculus (see section 2.2.2) or the join-calculus calculus (see section 2.2.2)
where sending a message corresponds to spawn a parallel process which synchronises
on the reception of the message and terminates. Finally, we have voluntary restricted
ourselves in this thesis to the precise description of components and their interactions,
and model system as a static set of components. KLAIM does not have this restriction
and allows the dynamic creation of locations (i.e., components) by means of particular
builtin actions. In our opinion, the creation of components should be distinguished
from actions, since the former modify the set of stores in the system, whereas the latter
modify stores, i.e., members of the before mentioned set.

The operational semantics of ManifoldManifoldManifoldManifoldManifoldManifold [BAdB+00] is defined in two levels, similar
to the one of our computation model as presented in chapter 4. The first level defines
the behaviour of processes and the second level defines the interaction between the
different transition systems. Whereas in our approach the behaviour of processes and
components is explicitly defined, the atomic (computation) processes in ManifoldManifoldManifoldManifoldManifoldManifold are
considered as black boxes such that only a specific set of events can be observed, namely
silent steps (τ), raising (raise) and reception (receive) of events, input (get) and output
(put) on streams and termination (halt).

In contrary to ACLT and Tuple Centres [ODN95, DNO97, DO99], our model pro-
vides a clear definition of processes. The benefits of separating the specification of the
communication medium from the description of the communicating agents is illustrated
by the example of the Dining Philosophers [DNO97, section 3]. In a first solution, the
definition of reaction rules allows to encapsulate the removal of both sticks inside a sin-
gle atomically executed action. Consider now the following modification of the problem.

14Notice that this leads to two different ways of introducing a concurrent process: Either by putting
an active tuple into the tuple space by means of the tuple space operation eval or by the operator ‖ of
parallel composition of processes.

213

CHAPTER 8. COMPARISON WITH RELATED WORK

Each philosopher disposes now of a set of different sticks, one for each meal during the
day, e.g., a stick for each, breakfast, lunch and diner. In ACLT , the program can be
adapted correspondingly, by changing only the reaction rules and the representation
of the sticks (or forks) in the tuple space and thus by keeping the same descriptions
for the philosophers. Notice that the same holds in our framework, where we would
have to change the definition of the elementary actions and the representation of the
situation in the store.

Similarly to our model, definitions of processes and definitions of predicates are
distinguished in µLog [JdB94, dBJ96], since the clauses defining processes are allowed
to contain blackboard primitives, whereas the clauses defining predicates are not. Nev-
ertheless, the execution of processes is seen as the solving of the initial goal in µLog ,
which is also witnessed by the definition of a sound and complete declarative semantics
for (terminating) goals [dBJ96, section 4]. The distinction between fore- and back-
ground processes in µLog has no equivalent in our computation model, since we do not
consider processes which return a result. Thus all our processes can be considered as
background processes in the sense of µLog , and predicates (or functions of result-sort
Truth) correspond to the foreground processes of µLog . Since the blackboard primi-
tives of µLog modify only the blackboard (or logical tuple space), the clauses defining
predicates (or conditions) in µLog cannot be modified, in contrary to our elementary
actions which are allowed to modify the rules defining functions. Notice also that µLog
is not a conservative extension of logic programming since the predicates in the initial
goal are not allowed to share variables15. Finally, our implementation of the store is
similar to the implementation of blackboards in µLog , in the sense that our stores are
a passive data-structure, and not a particular process that manages the store16.

The behaviour of coordinators in CLF [AFP96, APPPr98] is defined by means of
scripts, i.e., collections of rules in a subset of LinLog [And92]. Thus the handling of
the resources involved in the interaction between components is expressed implicitly in
the rules (the head h of a rule h � b is removed and the body b is added). Similar
to our guarded actions, the execution of a rule in CLF is atomic, allowing to model
the example of the Dining Philosophers in a similar way as in section 1.1.5 [APPPr98,
section 2.5, pages 192 – 195]. Furthermore the heads of CLF-rules are similar to our
guards: both correspond to a formula which has to be valid (at the current instant).
In contrary to our model, the only action available in a CLF rule is the addition of
resources (or formulæ) to the (stores of the) components. Another difference is that
the head of a CLF-rule may contain predicates defined in different components, so
that CLF needs an elaborate protocol in order to ensure the atomic execution of rules.
Finally, as our model, CLF considers the interaction between components written in
different languages. However, as in corba [COR01] or MLP [HS87], all components
and languages are required to support the common communication primitives of CLF.
For this purpose, Mekano17 [AAP+99], a library of standard CLF components has been
developed for the programming languages Python and Java.

15This restriction ensures that the communication between processes uses only the blackboard and
not streams encoded using logical variables.

16However, the interactive interpreter for the store is a particular process.
17Mekano is an abbreviation of “Multi-platform Environment for Knowledge Applications in Net-

worked Organisations”.

214

8.4. SPECIFICATIONS

8.4 Specifications

Both, programming and specification languages allow the description of a system by
means of a formal language. However, while programming languages aim at an ex-
ecutable program, specification languages and methods focus rather on an abstract,
high-level description which is not necessarily executable.

The modifiers of the extension of algebraic specifications with implicit state (AS-
IS) presented in [DG94, Kho96] are similar to our (elementary) actions. However,
they cannot be defined by the programmer (as our actions), but are predefined and
only applicable to their corresponding function. Furthermore, AS-IS focuses on the
description of the modification of the state (i.e., the actions) and needs to be extended
in order to allow the convenient description of processes which execute these changes
and allow to structure the description of the system.

Similar to our approach, d-oids [AZ92, AZ95, Zuc99] model the semantics of a
system by a transition system. While we use stores, i.e., declarative programs, as the
states (of the transition system), d-oids describe modifications of (instant) algebras
which, informally, correspond to structures classically used in algebraic specifications.
A further similarity to our computation model is that the signatures of d-oids are
dynamic, allowing the creation of new functions, similar to our elementary action new.
As for AS-IS, we are not aware of a concurrent extension of d-oids. In addition, we are
not aware of a tool or language allowing to develop programs based on d-oids.

The states of Abstract State Machines (ASMs), see for instance [Gur97], are algebras
which can be considered as models of the theory descriptions or stores in our compu-
tation model. These algebras are modified by means of elementary updates which are
similar to our actions, in the sense that the execution of an update (or an action) results
in the change of the function definitions of the current state. However, similar to AS-IS,
the basic model of ASMs does not provide process algebraic combinators for the de-
scription of several concurrent processes. In the framework of communicating evolving
algebras [GR93b], processes communicate as in our computation model by means of a
shared store or state. Interaction between different units in IASMs [dAMdIdSB98] uses
message passing, similar to the sending of actions between components in our model.
IASMs distinguish three kinds of dynamic functions18, namely internal, external and
shared functions. Internal functions can only be modified by updates of the unit itself,
external functions only by the environment and shared functions by both. The distinc-
tion between external and shared functions is not necessary in our model, since we do
not need to encode the environment by means of partially specified external functions.
Finally, we are not aware of an implementation of IASMs.

The combination of AS-IS with ASMs presented in [GKZ99] as well as DADT’s
[EO94] share with our proposal the structuring of the description of a system (or rather
a single component) description in several levels, where the lower levels correspond to
the description of a static structure, and the higher levels define the modifications of
these structures. However, in contrary to the combination of AS-IS with ASMs and
DADT’s, we suggest to use process algebras for the description of the dynamic part
of a system, taking advantage of the theoretical studies of concurrency and mobility
developed in the context of process algebras.

18These functions are called dynamic in contrast to the static functions which cannot be modified.

215

CHAPTER 8. COMPARISON WITH RELATED WORK

Similar to our model, algebraic state machines [BW00] distinguish between the
static and dynamic parts of a system, in order to enhance the readability of speci-
fications. Thus, algebraic state machines also use different layers in the description
of a system. Indeed, the states of an algebraic state machine are algebraic specifica-
tions, and the transitions between states are expressed by particular transition rules or
axioms. Compared to our computation model, algebraic state machines are closer to
specifications, i.e., they are not necessarily executable. This is witnessed by the fact
that the transition rules are considered as specifications of a logical relation between
states, and arbitrary logical formulæ are allowed in the pre- and post-conditions of
the transition rules. Furthermore, algebraic state machines do not use process algebra
combinators for their composition, but a single composition operator which is based on
the data flow using the input and output channels, considering single algebraic state
machines as black boxes. Thus, notions of processes (or algebraic state machines) and
components are not as clearly distinguished as in our model. Finally, the use of process
algebraic operators allows us to express the dynamic creation of processes, since we
allow arbitrary process terms in the rules of process definitions, whereas the transitions
of algebraic state machines cannot change the number of processes.

8.5 Multiparadigm Programming

Our approach shares most of its motivations with existing proposals for multiparadigm
programming, namely the accommodation of a multitude of programming styles inside
a single computation model, such that for every part of a system the most appro-
priate paradigm can be used. However, most of the approaches to multiparadigm
programming presented in section 2.5 lack a theoretical model or semantics for the
complete approach. Thus these approaches [Bud95, CLSM96, Con88, Cop98, NL95,
Pla91, Spi94, Zav89, Zav91, ZJ96] do not benefit from the advantages associated with
classical declarative programming, which are related to the sound theoretical founda-
tions of these paradigms. The multiparadigm languages mentioned in section 2.5 where
we are aware of a formally defined semantics are Alma-0 [ABPS98], OLI [LP96, LP97],
LIFE [AKP93] and Maude [CDE+99].

The combination of logic and imperative programming represented in Alma-0 is
based on the sequential interpretation of conjunction. Thus, in contrary to our com-
putation model, procedures (or processes) and predicates are not distinguished. The
examples of programs given in [ABPS98] illustrate the use of Alma-0 for the expression
of algorithms involving the necessity for the exploration of “search tree” allowing both,
a fine control on the sequential order of the exploration and an abstract description of
the search. However, we are not aware of a concurrent extension of Alma-0.

Similar to our motivations, OLI [LP96, LP97] aims at a clear distinction between
the different notions integrated in the framework. An advantage of this separation
is that, on the one hand, the resulting language is a conservative extension of the
combined languages, and, on the other hand, the integration does not try to encode a
concept by another but rather provides both. A further similarity between OLI and
our model is that modifications of the theory are defined in a part of the program
separated from the predicates defining the theory. Thus the objects in OLI play a

216

8.5. MULTIPARADIGM PROGRAMMING

similar rôle as our processes, albeit we are not aware of a concurrent implementation
of OLI. Finally, while a (sound and complete) formal semantics for the logic part of
OLI is described in [LP96, LP97] (considering objects as constants, using the notion of
an enriched Herbrand universe), the operational semantics of the object oriented part
is based on an informal description.

The foundation of LIFE [AKP93] on ψ-terms allows to conveniently represent ob-
jects, functions and predicates in a uniform framework. However, we are not aware of
a concurrent extension of LIFE.

The use of rewriting logic as the foundation of the programming language Maude
[CDE+99] allows the unification of different programming paradigms in Maude, by
viewing the different programming styles as particular instances of a rewriting logic
[Mes92]. Since rewriting logic is reflective, Maude allows the definition of a special
module, called META-LEVEL [CDE+98, CDE+99], which allows to reify programs, i.e.,
to represent programs (or modules) as terms in Maude itself. The module META-LEVEL
introduces the notion of a reflective tower [CDE+99, page 35], since the terms represent-
ing modules can also be reified. Notice that the reification of a meta-representation
of a module, i.e., a term of the module META-LEVEL, yields a term of the module
META-LEVEL. Consequently, reification of meta-terms does not change the sort, in the
sense that a reified meta-term is also a meta-term. In fact, most of the time19, only
the two lowest levels of the reflective tower are used. In our model, the use of the third
level would allow the modification of the definitions of actions, which we did not need in
the examples we have considered so far. Thus, while in Maude the notions of functions
and processes are represented in the same way, namely by operators defined by (condi-
tional) rewrite rules, they can be distinguished since they are on different levels of the
reflective tower. Finally, we are not aware of a theoretical model for interaction of a
Maude program with its environment (which is not part of the program). In fact, the
only input/output primitives provided by the standard library are in the LOOP-MODULE
[CDE+99, section 2.8] which allows the definition of interactive read-eval-print loops.

[Spi94] distinguishes different approaches to multiparadigm programming, namely
new languages, languages extensions, theoretical approaches and multiparadigm frame-
works. Theoretical approaches, which achieve the unification of paradigms by a unifi-
cation of the theoretical bases of the paradigms, are criticised as being both, limited to
only a few paradigms as well as being impractical since too difficult to implement [Spi94,
section 2.4.3]20. In our opinion, this critic misses the point, since there is no reason not
to attempt the combination of particular paradigms, just because the development of
a sound theoretical foundation seemsdifficult.

Classical imperative programming languages, as for instance C [KR88], ada [Ada95]
or Java [GJSB00], lack most of the nice features of declarative programming languages.
First, these languages do not have a well-defined formal semantics which allows the for-
mal reasoning about properties of programs21. Second, the high level of abstraction

19We are aware of only one example where more than two levels are needed [CDE+98, section 4.4],
namely the implementation of theorem provers using modifiable strategies for theory transformations.

20On the other hand, the lack of an unifying model, not to speak of an underlying theory, for their
own approach of is acknowledged [Spi94, sections 2.4.5 and 7.1.2].

21Using ASMs (see section 2.4.2), the semantics of C [GH93] and Java [SSB01] has been defined.
However, since these semantics have been defined after the language, they are, in our opinion, rather

217

CHAPTER 8. COMPARISON WITH RELATED WORK

available in declarative languages allows the programmer to focus on the declaration
of the problem, rather than explicitly describing a solution step by step. Notice fur-
ther, that our computation model combines the advantages of declarative languages
in the description of static theories, such as data types, functions or predicates, with
imperative programming for the description of concurrent interactive processes.

The use of reflection in Java [GJSB00, McC98] is restricted to the inspection of
the properties of the code which has been downloaded, in order to check which method
can be called, etc.. This kind of reflection is needed in the component framework of
JavaBeans [Eng97]. In this framework, components are exchanged in binary, i.e.,
compiled, form. Thus, for the integration of these components into a running program,
as for instance a development environment, the program needs to access information
about the interface of the included component. This is to be distinguished from the
reflection in Maude [CDE+99], which allows to model the modification of stores as
required by the definition of our actions.

? ? ?

In this chapter we have compared our computation model to the related work presented
in chapter 2. This comparison shows that our model combines ideas and motivations
from a wide range of fields. However, the comparison also points out the distinguishing
features of our approach, namely a clear separation of the different programming styles
in a conservative manner, while keeping a formally defined semantics.

Note finally, that our language for the definition of actions (see section 3.2) should
not be confused with action semantics [Mos92] which is a method for defining the
semantics of a given programming language, whereas we want to define the modification
of programs.

complicated (since the language has not been designed with the goal of a simpler semantics in mind).

218

Chapter 9

Conclusion and Perspectives

Aiming at an appropriate tool for executable, formal descriptions and specifications
of complex systems, we have presented in this thesis a first step towards a computa-
tion model which provides a component based approach for constructing systems by
combining declarative (i.e., functional, logic and functional-logic) programming with
concurrency, expressed in form of mobile processes. Roughly speaking, we suggest to
model a system as a collection of components where each component consists of a store,
i.e., a declarative program, and a set of processes modifying the store of the components
in the system by the execution of actions.

A distinctive feature of the proposed model is that the different notions, as for
instance functions, predicates, processes, actions, etc. are clearly distinguished from
each other. As pointed out in the comparison in chapter 8, this is the main difference
with respect to most of the other models we are aware of. Indeed, most of these models
encode one concept or notion by another. We claim that less encoding is a gain in
readability and maintainability, which should result in both, augmented programmer
productivity and less errors or bugs. As further advantage of distinguishing the different
concepts, we have that our approach is generic in the sense that it can be applied to
extend almost any declarative language with concurrent processes, since it does not
depend on a particular encoding of the notion of processes by means of the concepts
provided by the declarative language.

Further noteworthy features of our computation model are the user-definable ac-
tions (see section 3.2) and the specification of translations in the interaction between
components (see section 3.4.2). Both allow a programmer to modularise the descrip-
tion of the system by separating specific parts. Notice also, that we give a (precise)
definition of a component, in contrary to most component based approaches where a
component is characterised indirectly or solely by its interface.

The definition of a formal computation model is motivated by the possibility of
defining formal analyses. Therefore, we have defined in chapter 5 a compositional
semantics for processes of a component, which allows to analyse a process by analysing
its parts separately. In chapter 6 we have presented an example of an analysis, namely
the analysis of secrecy for the processes of a component from a point of view of non-
interference. This analysis is based on an abstract execution of a process, and ensures
that no secret information can flow to places where it can be accessed publicly.

Last, but not least, the reader may keep in mind that a complete description of an

219

CHAPTER 9. CONCLUSION AND PERSPECTIVES

inherently complex system cannot be expressed in a simple way, since otherwise the
system would not be complicated. Our computation model may seem complicated, due
to the many different notions and definitions presented in chapter 3, but it is designed
to allow to describe, at an appropriate level of abstraction, systems which have to
interact with their complex environment.

The computation model presented in this thesis is, as already mentioned, only a
first step towards a long-term research goal. Thus it provides plenty of possibilities
for future research and improvements. We conclude this thesis by mentioning some of
them.

A first line of research concerns the extension and deeper exploration of the theo-
retical model underlying the framework, as for instance, the development of a process
algebra for our processes or the investigation of a denotational semantics. The former
has already been attempted in a setting with a fixed set of predefined actions [Ser98].
For the latter, a semantics based on Kripke-structures where the worlds would corre-
spond to the states of the transition system defining the operational semantics of a
component seems to be a promising approach. Another possibility would be to follow
ideas of linear logic programming languages and investigate the relationships of our
operational semantics with the proof theoretical behaviour of the operators in linear
logic. With respect to the specification of actions and translations, a closer investiga-
tion of dedicated formalism or languages is necessary, in order to help a programmer
to analyse and ensure the properties required in chapter 3, as for instance totality,
termination, confluence, etc. Concerning the operational semantics of our components,
rule (P) provides a multitude of possible improvements. In our opinion, a significant
improvement of rule (P) cannot be achieved in a general model but is necessarily tai-
lored to a particular declarative language and its operational semantics. Indeed, the
improvement of rule (P) involves the manipulation of the search tree and strategy used
by the operational semantics of the declarative language.

There are also a number of interesting extensions of the framework, since we have
chosen to exclude some concepts in this first attempt to define a computation model.
For instance, the current model does not take into account temporal notions at all.
However, these notions are necessary for modeling control systems, e.g., when an emer-
gency is to be signaled to the operators if some events do not occur inside a particular
time interval. An integration of temporal properties with declarative programming has
been suggested in [BE01], using a synchronous programming model, where all pro-
cesses act at the same time, and actions have no duration. It seems interesting to
investigate the integration of the temporised programs of [BE01] as stores in our com-
putation model. Besides enriching the computation model with temporal notions, this
integration involves the combination of the synchronous and asynchronous computation
model.

Another concept we did not consider in this thesis, is the notion of objects which is
used to structure and organise programs in object-oriented programming. One of the
main advantages of the object oriented programming paradigm is the ease of reusing
existing programs, most prominently by the use of inheritance and dynamic linking.

Mobility in our current model is restricted to the passing of communication links as
in the π-calculus. An interesting extension concerns the modeling of mobile processes

220

which actually change the component where they are executing. This extension requires
to locate processes, i.e., to associate to processes the component where it executes.
Furthermore, the communication between components has to be extended, since a
component has to be able to receive not only actions, but entire processes. Notice
that we therefore need to consider different forms of parallel composition, since the
parallel composition of the launch of two processes on a remote component behaves not
necessarily the same way as the launch of the parallel composition of the two processes
on the remote component. Similarly, our model does not provide higher-order processes,
i.e., processes which take processes as arguments. Notice, that our action and process
expressions (as well as all the other rewrite systems) could be easily extended to deal
with higher-order functions. However, the relationship of this extension to higher-order
process calculi needs further investigation.

Last, but not least, the relationship of our framework with reflection needs further
explorations. We have tried to stratify our computation model, that is to say, to ensure
that modifications of one layer can only be made at a superior layer. For instance,
processes are allowed to modify the functions of the store, since processes are running
on a meta-level with respect to the store. On the other hand, processes are not allowed
to modify the definitions of process functions. Reflection allows a unified view of these
different layers, facilitating the exchanges between layers while keeping them distinct.
This is particularly interesting for the arguments of the actions which we require to
be on the meta-level with respect to the store (by using implicit reifications when
necessary). A better understanding of reflection would allow more flexible control
about these transformations.

Obviously, as any program (and in particular as any prototype), the current im-
plementation of the framework could be improved in several respects. For instance,
the implementation of the declarative language could be greatly improved by including
dedicated constraint solvers, higher-order functions, a polymorphic type-checker, etc.
But it should also be possible and interesting to include existing declarative languages
for the description of stores. Another area of improvement is the implementation of the
operational semantics. The current implementation tests the guards of the processes
sequentially and locks the complete store. The use of a finer granularity for the locks
should come with at least two advantages. First, there should be more processes that
could be executed in parallel, such that on a multi-processor system the execution would
become faster. Second, since we have a finer locking mechanism, the implementation
can control better which of the waiting processes to wake up. Currently, all processes
reevaluate their guards, but if we know that a different part of store has been modified
such that the validity of the guard has not been changed, there is no need to recheck
the guard. This also should increase the efficiency of the implementation.

Besides the improvement of the implementation itself, the development of a sur-
rounding collection of tools is mandatory if we are to tackle realistic problems of a
significant size. A first set of such tools which comes to mind are an environment for
program development, debuggers and libraries. However, these tools could include dif-
ferent kinds of program analyses. For instance, we would need analysers to check the
required conditions on the definitions of actions and process functions (e.g., confluence,
termination, etc.). Further analyses could verify the properties of a component or even
a complete system, such as safety, liveness or non-interference. These analyses could

221

CHAPTER 9. CONCLUSION AND PERSPECTIVES

use abstract interpretation or a more elaborate type system than the one currently
used.

222

Bibliography

[AAP+99] Jean-Marc Andreoli, Damián Arregui, François Pacull, Michel Rivière, Jean-
Yves Vion-Dury and Jutta Willamowski. CLF/Mekano: A framework for building
virtual-enterprise applications. In Proceedings of EDOC ’99, Mannheim, September
1999.

[AB99] Krzysztof R. Apt and Marc Bezem. Formulas as programs. In K. R. Apt,
V. Marek, M. Truszczynski and D. S. Warren, editors, The Logic Programming
Paradigm: A 25 Years Perspective, Artificial Intelligence Series, pages 75 – 107.
Springer-Verlag, 1999.

[Aba97] Mart́ın Abadi. Secrecy by typing in security protocols. In Mart́ın Abadi and
Takayasu Ito, editors, Proceedings of the 3rd Internation Symposium on Theoreti-
cal Aspects of Computer Software (TACS 1997), volume 1281 of Lecture Notes in
Computer Science, pages 611 – 638, Sendai, September 1997. Springer Verlag. Open
lecture.

[ABHR99] Mart́ın Abadi, Anindya Banerjee, Nevin Heintze and Jon G. Riecke. A
core calculus of dependency. In Proceedings of the 26th ACM SIGPLAN - SIGACT
Symposium on Principles of Programming Languages (POPL ’99), pages 147 – 160,
San Antonio, January 1999.

[ABPS98] Krzysztof R. Apt, Jacob Brunekreef, Vincent Partington and Andrea
Schaerf. Alma - 0: An imperative language that supports declarative program-
ming. ACM Transactions on Programming Languages and Systems, 20(5):1014 –
1066, September 1998.

[Abr93] Samson Abramsky. Computational interpretations of linear logic. Theoretical
Computer Science, 111(1 – 2):3 – 57, April 1993.

[Abr96a] Jean-Raymond Abrial. The B-Book: Assigning Programs to Meanings. Cam-
bridge University Press, 1996.

[Abr96b] Jean-Raymond Abrial. Formal Methods for Industrial Applications, volume
1165 of Lecture Notes in Computer Science, chapter Steam-Boiler Control Specifi-
cation Problem, pages 500 – 510. Springer Verlag, 1996.

[ACG86] Sudhir Ahuja, Nicholas Carriero and David Gelernter. Linda and friends.
IEEE Computer, 19(8):26 – 34, August 1986.

223

BIBLIOGRAPHY

[Ada95] ISO. Ada 95 Reference Manual (Language and Standard Libraries), 1995.
ISO/IEC 8652:1995.

[ADH+98] H. Abelson, R. K. Dybvig, C. T. Haynes, G. J. Rozas, N. I. Adams IV, D. P.
Friedman, E. Kohlbecker, G. L. Steele Jr., D. H. Bartley, R. Halstead, D. Oxley,
G. J. Sussman, G. Brooks, C. Hanson, K. M. Pitman and M. Wand. Revised5 report
on the algorithmic language Scheme. Higher Order and Symbolic Computation,
11(1):7 – 105, August 1998.

[AEH94] Sergio Antoy, Rachid Echahed and Michael Hanus. A needed narrowing strat-
egy. In Proceedings of the 21st ACM SIGPLAN - SIGACT Symposium on Principles
of Programming Languages (POPL ’94), pages 268 – 279, Portland, 1994.

[AEH97] Sergio Antoy, Rachid Echahed and Michael Hanus. Parallel evaluation strate-
gies for functional logic languages. In Proceedings of the International Conference
on Logic Programming (ICLP ’97), pages 138 – 152, Portland, 1997. The MIT Press.

[AEH00] Sergio Antoy, Rachid Echahed and Michael Hanus. A needed narrowing strat-
egy. Journal of the ACM, 47(4):776 – 822, July 2000.

[AFP96] Jean-Marc Andreoli, Steve Freeman and Remo Pareschi. The coordination
language facility: Coordination of distributed objects. Theory and Practice of Object
Systems, 2(2):77 – 94, 1996.

[Agh86] Gul A. Agha. Actors: A Model of Concurrent Computation in Distributed
Systems. The MIT Press series in Artificial Intelligence. The MIT Press, 1986. fifth
printing, 1990.

[AK91] Hassan Aı̈t-Kaci. Warren’s Abstract Machine: A Tutorial Reconstruction. The
MIT Press, 1991.

[AKKB99] Egidio Astesiano, Hans-Jörg Kreowski and Bernd Krieg-Brückner, editors.
Algebraic Foundations of Systems Specification. IFIP State-of-the-Art Reports.
Springer Verlag, 1999.

[AKP93] Hassan Aı̈t-Kaci and Andreas Podelski. Towards a meaning of LIFE. Journal
of Logic Programming, 16(3):195 – 234, July/August 1993.

[AMST92] Gul Agha, Ian A. Mason, Scott Smith and Carolyn Talcott. Towards a
theory of actor computation. In Rance Cleaveland, editor, Proceedings to the 3rd

International Conference on Concurrency Theory (CONCUR ’92), volume 630 of
Lecture Notes in Computer Science, pages 565 – 579. Springer Verlag, 1992.

[AMST97] Gul Agha, Ian A. Mason, Scott Smith and Carolyn Talcott. A foundation
for actor computation. Journal of Functional Programming, 7(1):1 – 72, 1997.

[And92] Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic.
Journal of Logic and Computation, 2(3):297 – 347, June 1992.

224

[And01] Jean-Marc Andreoli. Paradigmes de programmation et fondements logiques.
Habilitation á diriger des recherches, Universitè Joseph Fourier, Grenoble, June
2001.

[Ant92] Sergio Antoy. Definitional trees. In Hélène Kirchner and Giorgio Levi, editors,
Proceedings of the 3rd International Conference on Algebraic and Logic Program-
ming (ALP 1992), volume 632 of Lecture Notes in Computer Science, pages 143 –
157, Volterra, September 1992. Springer Verlag.

[AP91] Jean-Marc Andreoli and Remo Pareschi. Linear objects: Logical processes with
built-in inheritance. New Generation Computing, 9(3 – 4):445 – 473, 1991. selected
papers from the 7th International Conference on Logic Programming, 1990.

[AP92] Jean-Marc Andreoli and Remo Pareschi. Linear Objects: a logic framework
for open system programming. In Andrei Voronkov, editor, Proceedings of the
International Conference on Logic Programming and Automated Reasoning (LPAR
’92), volume 624 of Lecture Notes in Artificial Intelligence, pages 448 – 450, SAt.
Petersburg, July 1992. Springer Verlag.

[AP95a] Peter M. Achten and M. J. Plasmeijer. Concurrent interactive processes in a
pure functional language. In Vliet van Utrecht, editor, Proceedings of Computing
Science in the Netherlands, pages 10 – 21, Stichting Mathematisch Centrum, 1995.

[AP95b] Peter M. Achten and M. J. Plasmeijer. The ins and outs of concurrent clean
i/o. Journal of Functional Programming, 5(1):81 – 110, 1995.

[APPPr98] Jean-Marc Andreoli, François Pacull, Daniele Pagani and Remo Pareschi.
Multiparty negotiation for dynamic distributed object services. Science of Computer
Programming, 31(2 – 3):179 – 203, July 1998.

[Apt00] Krzysztof R. Apt. A denotatinal semantics for first-order logic. In John
Lloyd, Veronika Dahl, Ulrich Furbach, Manfred Kerber, Kung-Kiu Lau, Catus-
cia Palamidessi, Lúis Moniz Pereira, Yehoshua Sagiv and Peter J. Stuckey, editors,
Proceedings of the 1st International Conference on Computational Logic (CL 2000),
volume 1861 of Lecture Notes in Artificial Intelligence, pages 53 – 69, London, July
2000. Springer Verlag. invited talk.

[Arm96] Joe Armstrong. Erlang – a survey of the language and its industrial applica-
tions. In Proceedings of the 9th Exhibitions and Symposium on Industrial Applica-
tions of Prolog (INAP ’96), Hino, Tokyo, October 1996.

[Art01] Thomas Arts. Functional programming and logic decrease the use of the most
important part of your system. In Michael Hanus, editor, Proceedings of the In-
ternational Workshop on Functional and (Constraint) Logic Programming (WFLP
2001), pages 5 – 16, Kiel, September 2001. Institut für Informatik und Praktische
Mathematik, Christian-Albrechts-Universität Kiel. Bericht Nr. 2017.

[AS97] Krzysztof R. Apt and Andrea Schaerf. Search and imperative programming.
In Proceedings of the 24th ACM SIGPLAN - SIGACT Symposium on Principles of
Programming Languages (POPL ’97), pages 67 – 79, 1997.

225

BIBLIOGRAPHY

[ASRA97] Puri Arenas-Sánchez and Mario Rodŕıguez-Artalejo. A semantic framework
for functional logic programming with algebraic polymorphic types. In Michel Bidoit
and Max Dauchet, editors, Proceedings of the 7th International Joint Conference
on Theory and Practice of Software Development (TAPSOFT ’97), volume 1214 of
Lecture Notes in Computer Science, pages 453 – 464, Lille, April 1997. Springer
Verlag. (extended abstract).

[AV90] Joe Armstrong and Robert Virding. Erlang – an experimental telephony pro-
gramming language. In Proceedings of the 13th International Switching Symposium,
Stockholm, May/June 1990.

[AVWW96] Joe Armstrong, Robert Virding, Claes Wikstrom and Mike Williams. Con-
current Programming in ERLANG. Prentice Hall, second edition, 1996.

[AZ92] Egidio Astesiano and Elena Zucca. A semantic model for dynamic systems. In
U. W. Lipeck and B. Thalheim, editors, Workshop on Modelling Database Dynam-
ics, Workshops in Computing, pages 63 – 83, Volkse, 1992. Springer Verlag.

[AZ95] Egidio Astesiano and Elena Zucca. D-oids: a model for dynamic data types.
Mathematical Structures in Computer Science, 5(2):257 – 282, June 1995.

[BAdB+00] Marcello M. Bonsangue, Farhad Arbab, J. W. de Bakker, Jan J. M. M.
Rutten, A. Secutella and Gianluigi Zavattaro. A transition system semantics for the
control-driven coordination language Manifold. Theoretical Computer Science,
240(1):3 – 47, June 2000.

[Bar84] Hendrik Pieter Barendregt. The Lambda Calculus: Its Syntax and Semantics,
volume 103 of Studies in logic and the foundations of mathematics. North Holland
Publishing Company, 1984. revised edition.

[Bar92] Geoff Barrett. occam 3 reference manual, March 1992. draft.

[BB90] Gérard Berry and Gérard Boudol. The chemical abstract machine. In Pro-
ceedings of the 17th ACM SIGPLAN - SIGACT Symposium on Principles of Pro-
gramming Languages (POPL ’90), pages 81 – 94, San Francisco, January 1990.
ACM.

[BB92] Gérard Berry and Gérard Boudol. The chemical abstract machine. Theoretical
Computer Science, 96(1):217 – 248, 1992. selected papers of the 2nd Workshop on
Concurrency and Compositionality, San Miniato, March 1990.

[BB01] Hubert Baumeister and Didier Bert. Algebraic specification in Casl. In
M. Frappier and H. Habrias, editors, Software Specification Methods: An Overview
Using a Case Study, Formal Approaches to Computing and Information Technology
(FACIT). Springer Verlag, 2001.

[BC91] Antonio Brogi and Paolo Ciancarini. The concurrent language, Shared Pro-
log. ACM Transactions on Programming Languages and Systems, 13(1):99 – 123,
January 1991.

226

[BC01a] Gérard Boudol and Ilaria Castellani. Noninterference for concurrent programs.
In Fernando Orejas, Paul G. Spirakis and Jan van Leeuwen, editors, Proceedings
of the 28th International Colloquium on Automata, Languages and Programming
(ICALP 2001), volume 2076 of Lecture Notes in Computer Science, pages 382 –
395, Heraklion, July 2001. Springer Verlag.

[BC01b] Gérard Boudol and Ilaria Castellani. Noninterference for concurrent programs
and thread systems. Technical Report 4254, Institut National de Recherche en In-
formatique et en Automatique (INRIA), September 2001. Accepted for publication
in Theoretical Computer Science.

[BdBP97] Eike Best, Frank de Boer and Catuscia Palamidessi. Partial order and SOS
semantics for linear constraint programs. In D. Garlan and D. Le Métayer, editors,
Proceedings of the 2nd International Conference on Coordination: Languages and
Models (Coordination ’97), volume 1282 of Lecture Notes in Computer Science,
pages 256 – 273, Berlin, September 1997. Springer Verlag.

[BDH+98] Manfred Broy, Anton Deimel, Juergen Henn, Kai Koskimies, Frantisek
Plasil, Gustav Pomberger, Wolfgang Pree, Michael Stal and Clemens A. Szyper-
ski. What characterizes a (software) component? Software: Concepts and Tools,
19(1):49 – 56, June 1998.

[BE01] Jérémie Blanc and Rachid Echahed. Adding time to functional logic programs.
In Michael Hanus, editor, Proceedings of the International Workshop on Functional
and (Constraint) Logic Programming (WFLP 2001), pages 31 – 44, Kiel, Septem-
ber 2001. Institut für Informatik und Praktische Mathematik, Christian-Albrechts-
Universität Kiel. Bericht Nr. 2017.

[BES98] Jérémie Blanc, Rachid Echahed and Wendelin Serwe. Towards reactive func-
tional logic programming languages. In Herbert Kuchen, editor, Proceedings of the
7th International Workshop on Functional and Logic Programming (WFLP ’98),
Bad Honnef, April 1998. Institut für Wirtschaftsinformatik, Westfälische Wilhelms-
Universität Münster.

[BG92] Gérard Berry and Georges Gonthier. The ESTEREL programming language:
Design, semantics and implementation. Science of Computer Programming, 19(2):87
– 152, 1992.

[BGZ97] Nadia Busi, Roberto Gorrieri and Gianluigi Zavattaro. On the Turing equiv-
alence of Linda coordination primitives. Electronic Notes in Theoretical Computer
Science, 7, 1997.

[BGZ98] Nadia Busi, Roberto Gorrieri and Gianluigi Zavattaro. A process algebraic
view of Linda coordination primitives. Theoretical Computer Science, 192(2):167 –
199, February 1998.

[BHR84] Stephen D. Brookes, Charles Antony Richard Hoare and A. W. Roscoe. A
theory of communicating sequential processes. Journal of the ACM, 31(3):560 –
599, July 1984.

227

BIBLIOGRAPHY

[BJ98] Antonio Brogi and Jean-Marie Jacquet. On the expressiveness of linda-like
concurrent languages. Electronic Notes in Theoretical Computer Science, 16(2),
1998.

[BJ99] Antonio Brogi and Jean-Marie Jacquet. On the expressiveness of coordina-
tion models. In Paolo Ciancarini and Alexander L. Wolf, editors, Procedings of
the 3rd International Conference on Coordination Languages and Models (Coordi-
nation ’99), volume 1594 of Lecture Notes in Computer Science, pages 134 – 149,
Amsterdam, April 1999. Springer Verlag.

[BK84] J. A. Bergstra and J. W. Klop. Process algebra for synchronous communication.
Information and Control, 60(1 – 3):109 – 137, January/February/March 1984.

[BK86] J. A. Bergstra and J. W. Klop. Conditional rewrite rules: Confluence and
termination. Journal of Computer and System Science, 32(3):323 – 362, June 1986.

[BK94] Anthony J. Bonner and Michael Kifer. An overview of transaction logic. The-
oretical Computer Science, 133(2):205 – 265, October 1994. Special issue on the
Workshop on Formal Methods in Databases and Software Engineering.

[BK96] Anthony J. Bonner and Michael Kifer. Concurrency and communication in
transaction logic. In Michael J. Maher, editor, Proceedings of the 1996 Joint Inter-
national Conference and Syposium on Logic Programming, pages 142 – 156, Bonn,
September 1996. The MIT Press.

[BK98a] Anthony J. Bonner and Michael Kifer. Results on reasoning about updates in
transaction logic. In Burkhard Freitag, Hendrik Decker, Michael Kifer and Andrei
Voronkov, editors, Transactions and Change in Logic Databases: Invited Surveys
and Selected Papers of the International Seminar on Logic Databases and the Mean-
ing of Change and ILPS ’97 Post-Conference Workshop on (Trans)Actions and
Change in Logic Programming and Deductive Databases, (DYNAMICS’97), volume
1472 of Lecture Notes in Computer Science, pages 166 – 196, Schloß Dagstuhl and
Port Jefferson, 1998. Springer Verlag.

[BK98b] Anthony J. Bonner and Michael Kifer. The state of change: A survey. In
Burkhard Freitag, Hendrik Decker, Michael Kifer and Andrei Voronkov, editors,
Transactions and Change in Logic Databases: Invited Surveys and Selected Pa-
pers of the International Seminar on Logic Databases and the Meaning of Change
and ILPS ’97 Post-Conference Workshop on (Trans)Actions and Change in Logic
Programming and Deductive Databases, (DYNAMICS’97), volume 1472 of Lecture
Notes in Computer Science, pages 1 – 36, Schloß Dagstuhl and Port Jefferson, 1998.
Springer Verlag.

[BLOM95] Silvia Breitinger, Rita Loogen and Yolanda Ortega-Mallén. Concurrency in
functional and logic programming. In Proceedings of the Fuji International Work-
shop on Functional and Logic Programming. World Scientific, 1995.

[BLOMP97] Silvia Breitinger, Rita Loogen, Yolanda Ortega-Mallén and Ricardo Peña.
The Eden coordination model for distributed memory systems. In Proceedings of

228

High-Level Parallel Programming Models and Supportive Environments (HIPS ’97).
IEEE Press, 1997.

[BLOMP98] Silvia Breitinger, Rita Loogen, Yolanda Ortega-Mallén and Ricardo Peña.
Eden: Language definition and operational semantics. Technical Report 96-10,
Philipps-Universität Marburg, Fachbereich Mathematik und Informatik, 1998. re-
vised version, April 7, 1998.

[BM96] Jean-Pierre Banâtre and David Le Métayer. Gamma and the chemical reaction
model: ten years after. In Jean-Marc Andreoli, Chris Hankin and David Le Métayer,
editors, Coordination Programming: Mechanisms, Models and Semantics, pages 3
– 41. Imperial College Press, August 1996.

[Bon95] Frédéric Boniol. Synchronous communicating reactive processes. In Proceed-
ings of the 2nd AMAST Workshop on Real-Time Systems, Bordeaux, June 1995.

[Bou88] Luc Bougé. On the existence of symmetric algorithms to find leaders in net-
works of communicating sequential processes. Acta Informatica, 25(2):179 – 201,
February 1988.

[Bou92] Gérard Boudol. Asynchrony and the π-calculus. Research Report 1702, In-
stitut National de Recherche en Informatique et en Automatique (INRIA), May
1992.

[Bou97] Gérard Boudol. The π-calculus in direct style. In Proceedings of the 24th ACM
SIGPLAN - SIGACT Symposium on Principles of Programming Languages (POPL
’97), pages 228 – 241, 1997.

[Bro98] Manfred Broy. A uniform mathematical concept of a component. Software:
Concepts and Tools, 19(1):57 – 59, 1998. Appendix to [BDH+98].

[Bud95] Timothy A. Budd. Multiparadigm Programming in Leda. Addison-Wesley
Publishing Company, 1995.

[BW88] Richard Bird and Philip Wadler. Introduction to functional programming.
Prentice Hall, 1988.

[BW90] Jos C. M. Baeten and W. P. Weijland. Process Algebra. Number 18 in Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University Press, 1990.

[BW00] Manfred Broy and Martin Wirsing. Algebraic state machines. In Teodor Rus,
editor, Proceedings of the 8th International Conference on Algebraic Methodology
and Software Technology (AMAST 2000), volume 1816 of Lecture Notes in Com-
puter Science, pages 89 – 118, Iowa, May 2000. Springer Verlag. Invited talk.

[BWW90] John Backus, John H. Williams and Edward L. Wimmers. An introduction
to the programming language FL. In David A. Turner, editor, Research Topics in
Functional Programming, pages 219 – 247. Addison-Wesley Publishing Company,
1990.

229

BIBLIOGRAPHY

[Cai99] Lúıs Caires. A Model for Declarative Programming and Specification with Con-
currency and Mobility. PhD thesis, Universidade Nova de Lisboa, July 1999.

[CAS01] The CoFI Task Group on Language Design. Casl: The Common Algebraic
Specification Language: Summary, March 15, 2001. version 1.0.1.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of fixpoints.
In Proceedings of the 4th ACM SIGPLAN - SIGACT Symposium on Principles of
Programming Languages (POPL ’77), pages 238 – 252, Los Angeles, January 1977.
ACM.

[CDE+98] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso
Mart́ı-Oliet and José Meseguer. Metalevel computation in maude. In Claude Kirch-
ner and Hélène Kirchner, editors, Proceedings of the 2nd International Workshop on
Rewriting Logic and its Applications, volume 15 of Electronic Notes in Theoretical
Computer Science. Elsevier Science Publishers, 1998.

[CDE+99] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso
Mart́ı-Oliet, José Meseguer and José Quesada. Maude: Specification and Program-
ming in Rewriting Logic. Computer Science Laboratory, SRI International, March
1999.

[CdKC94] Jacques Chassin de Kergommeaux and Philippe Codognet. Parallel logic
programming systems. ACM Computing Surveys, 26(3):295 – 336, September 1994.

[CG86] Keith Clark and Steve Gregory. PARLOG: Parallel programming in logic.
ACM Transactions on Programming Languages and Systems, 8(1):1 – 49, January
1986.

[CG89] Nicholas Carriero and David Gelernter. Linda in context. Communications of
the ACM, 32(4):444 – 458, April 1989.

[CGZ94] Nicholas Carriero, David Gelernter and Lenore Zuck. Bauhaus Linda. In
Paolo Ciancarini, Oscar Nierstrasz and Akinori Yonezawa, editors, Proceedings of
the Workshop on Models and Languages for Coordination of Parallelism and Dis-
tribution, volume 924 of Lecture Notes in Computer Science, Bologna, July 1994.
Springer Verlag.

[CH93] Magnus Carlsson and Thomas Hallgren. Fudgets – a graphical user interface
in a lazy functional language. In Proceedings of FPCA, 1993.

[CH98] Magnus Carlsson and Thomas Hallgren. Fudgets: Purely Functional Processes
with applications to Graphical User Interfaces. PhD thesis, Department of Com-
puter Science, Chalmers University of Technology, Göteborg University, 1998.

[CH99] Manuel Carro and Manuel Hermenegildo. Concurrency in prolog using threads
and a shared database. In Proceedings of the 16th International Conference on Logic
Programming (ICLP ’99), Las Cruces, November 1999. The MIT Press.

230

[Cha95] Daniel Chandler. The Act of Writing. University of Wales, Aberystwyth, 1995.

[Chu32] Alonzo Church. A set of postulates for the foundation of logic. Annals of
Mathematics, 33:346 – 366, 1932.

[Chu36] Alonzo Church. An unsolvable problem in elementary number theory. Amer-
ican Journal of Mathematics, 58:345 – 363, 1936.

[Cia94] Paolo Ciancarini. Distributed programming with logic tuple spaces. New Gen-
eration Computing, 12(3):251 – 284, 1994.

[Cli81] William D Clinger. Foundations of actor semantics. Technical Report AI-TR-
633, MIT Artificial Intelligence Laboratory, May 1981.

[CLSM96] Anna Ciampolini, Evelina Lamma, Cesare Stefanelli and Paola Mello. Dis-
tributed logic objects. Commputer Languages, 22(4):237 – 258, 1996.

[CM98] Lúıs Caires and Lúıs Monteiro. Verifiable and executable logic specifications
of concurrent objects in Lπ. In Chris Hankin, editor, Proceedings of the 7th Eu-
ropean Symposium on Programming (ESOP ’98), volume 1381 of Lecture Notes in
Computer Science, pages 42 – 56, Lisbon, March – April 1998. Springer Verlag.

[COM95] Microsoft Corporation and Digital Equipment Corporation. The Component
Object Model Specification, October 24, 1995. version 0.9, available at
http://www.microsoft.com/com/resources/comdocs.asp.

[Con63] Melvin E. Conway. Design of a separable transition-diagram compiler. Com-
munications of the ACM, 6(7):396 – 408, July 1963.

[Con88] John S. Conery. Logical objects. In Robert A. Kowalski and Kenneth A.
Bowen, editors, Proceedings of the 5th International Conference and Symposium on
Logic Programming, volume 1, pages 420 – 434, Seattle, August 1988. The MIT
Press.

[Cop98] James O. Coplien, editor. Multi-Paradigm Design for C++. Addison-Wesley
Publishing Company, October 1998.

[COR01] Object Management Group. The Common Object Request Broker: Architec-
ture and Specification, revision 2.4.2 edition, February 2001. available at
http://www.omg.org/cgi-bin/doc?formal/01-02-33.

[Cos01] Pascal Coste. Conception des systèmes hétérogènes multilangages. thèse de
doctorat, Université Joseph Fourier Grenoble I, January 2001. in french.

[CR95] Philippe Codognet and Francesca Rossi. Nmcc programming: Constraint en-
forcement and retraction in cc programming. In Proceedings of ICLP ’95. The MIT
Press, 1995.

[dAMdIdSB98] Marcelo de Almeida Maia, Vladimir Oliveira di Iorio and Roberto
da Silva Bigonha. Interacting abstract state machines. In Proceedings of the 28th

Annual Conference of the Gesellschaft für Informatik, Technical Report. Universität
Magdeburg, 1998. extended abstract.

231

BIBLIOGRAPHY

[dAMdSB98] Marcelo de Almeida Maia and Roberto da Silva Bigonha. Formal seman-
tics for interacting abstract state machines. Technical Report RT 005/98, Univer-
sidade Federal de Minas Gerais, September 1998.

[Dav65] Martin Davis, editor. The Undecidable: Basic Papers On Undecidable Propo-
sitions, Unsolvable Problems And Uncomputable Functions. Raven Press Books,
Hewlett, New York, 1965.

[dBG95] Frank S. de Boer and Maurizio Gabbrielli. Modeling real-time in concurrent
constraint programming. In John W. Lloyd, editor, Proceedings of the International
Logic Programming Symposium (ILPS ’95), pages 528 – 542, Portland, December
1995.

[dBG97] Frank S. de Boer and Maurizio Gabbrielli. Infinite computations in concurrent
constraint programming. In Proceedings of the 13th Conference on Mathematical
Foundations of Programming Semantics, Electronic Notes in Theoretical Computer
Science, Pittsburgh, 1997.

[dBJ93] Koen de Bosschere and Jean-Marie Jacquet. Multi-Prolog: Definition, opera-
tional semantics and implementation. In David Scott Warren, editor, Proceedings
of the 10th International Conference on Logic Programming (ICLP ’93), pages 299
– 313, Budapest, 1993. The MIT Press.

[dBJ96] Koen de Bosschere and Jean-Marie Jacquet. Extending the µLog framework
with local and conditional blackboard operations. Journal of Symbolic Computation,
21(4):669 – 697, April / May / June 1996.

[dBKPR93] Frank S. de Boer, Joost N. Kok, Catuscia Palamidessi and Jan J. M. M.
Rutten. Non-monotonic concurrent constraint programming. In Proceedings of the
International Symposium on Logic Programming (ILPS ’93), pages 315 – 334. The
MIT Press, 1993.

[dBP90] Frank S. de Boer and Catuscia Palamidessi. On the asynchronous nature
of communication in concurrent logic languages: a fully abstract model based on
sequences. In J. C. M. Baeten and J. W. Klop, editors, Proceedings of the 1st

International Conference on Theories of Concurrency: Unification and Extension,
volume 458 of Lecture Notes in Computer Science, pages 99 – 114, Amsterdam,
August 1990. Springer Verlag.

[dBP91] Frank S. de Boer and Catuscia Palamidessi. A fully abstract model for con-
current constraint programming. In S. Abramsky and T. S. E. Maibaum, editors,
Proceedings of the International Joint Conference on Theory and Practice of Soft-
ware Development (TAPSOFT ’91), Volume 1, Colloquium on Trees in Algebra
and Programming (CAAP ’91), volume 493 of Lecture Notes in Computer Science,
pages 296 – 319, Brighton, UK, April 1991. Springer Verlag.

[dBP92] Frank S. de Boer and Catuscia Palamidessi. A process algebra of concur-
rent constraint programming. In Krzysztof Apt, editor, Proceedings of the Joint
International Conference and Symposium on Logic Programming, pages 463 – 477,
Washington, USA, 1992. The MIT Press.

232

[dBP94] Frank S. de Boer and Catuscia Palamidessi. Advances in Logic Programming
Theory, chapter 2: From Concurrent Logic Programming to Concurrent Constraint
Programming, pages 55 – 113. Oxford University Press, 1994.

[DEDC96] Pierre Deransart, AbdelAli Ed-Dbali and Laurent Cervoni. Prolog: The
Standard, Reference Manual. Springer Verlag, 1996.

[DG94] Pierre Dauchy and Marie-Claude Gaudel. Algebraic specification with implicit
state. Technical Report 887, Laboratoire de Recherche en Informatique, Université
de Paris-Sud, F - 91405 Orsay Cedex 2, February 1994.

[dG95] Philippe de Groote, editor. The Curry-Howard Isomorphism, volume 8 of
Cahiers du Centre de logique. Academia-Bruylant, Louvain-la-Neuve, 1995.

[Dij71] Edsger Wybe Dijkstra. Hierarchical ordering of sequential processes. In Charles
Antony Richard Hoare and R. H. Perrott, editors, Proceedings of a Seminar on
Operating Systems Techniques, volume 9 of A.P.I.C. Studies in Data Processing,
pages 72 – 93, Belfast, 1971. Acdemic Press.

[Dij75] Edsger Wybe Dijkstra. Guarded commands, nondeterminacy and formal deriva-
tion of programs. Communications of the ACM, 18(8):453 – 457, 1975.

[Dij82] Edsger Wybe Dijkstra. How do we tell truths thatmight hurt? In Selected
Writings on Computing: A Personal Perspective, pages 129–131. Springer Verlag,
1982. Originally written in June 1975.

[Dij01] Edsger Wybe Dijkstra. The end of computing science? Communications of the
ACM, 44(3):92, March 2001.

[DJ90] Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In Jan van
Leeuwen, editor, Handbook of Theoretical Computer Science, Volume B: Formal
Models and Semantics, chapter 6, pages 243 – 320. Elsevier, Amsterdam, 1990.

[DNO97] Enrico Denti, Antonio Natali and Andrea Omicini. Programmable coordi-
nation media. In David Garlan and David Le Métayer, editors, Proceedings of the
2nd International Conference on Coordination Languages and Models (Coordination
’97), volume 1282 of Lecture Notes in Computer Science, pages 274 – 288, Berlin,
September 1997. Springer Verlag.

[DNO98] Enrico Denti, Antonio Natali and Andrea Omicini. On the expressive power
of a language for programming coordination media. In Proceedings of the ACM
Symposium on Applied Computing (SAC ’98), Atlanta, February 1998.

[DNOV96] Enrico Denti, Antonio Natali, Andrea Omicini and Marco Venuti. An ex-
tensible framework for the development of coordinated applications. In Paolo Cian-
carini and Chris Hankin, editors, Proceedings of the 1st International Conference
on Coordination Languages and Models (Coordination ’96), volume 1061 of Lecture
Notes in Computer Science, pages 305 – 320, Cesena, April 1996. Springer Verlag.

233

BIBLIOGRAPHY

[DO99] Enrico Denti and Andrea Omicini. From tuple spaces to tuple centres. Tech-
nical Report DEIS-LIA-99-001 – LIA Series No. 35, Dipartimento di Elettronica,
Informatica e Sistemistica, Universitá di Bologna, 1999.

[DR95] Volker Diekert and Grzegorz Rozenberg, editors. The Book of Traces. World
Scientific, 1995.

[Ede99] Kerstin Eder. A study of the operational behaviour of Escher and its implemen-
tation. In Rachid Echahed, editor, Proceedings of the 8th International Workshop
on Functional and Logic Programming (WFLP ’99), pages 182 – 194, Grenoble,
June 1999. Institut IMAG, Rapport de Recherche RR 1021-I-.

[EHRLR80] Lee D. Erman, Frederick Hayes-Roth, Victor R. Lesser and D. Raj Reddy.
The Hearsay-II speech-understanding system: Integrating knowledge to resolve un-
certainty. ACM Computing Surveys, 12(2):213 – 253, June 1980.

[EJ99] Rachid Echahed and Jean-Christophe Janodet. Parallel graph narrowing. In
Proceedings of the 8th International Workshop on Functional and Logic Program-
ming (WFLP ’99), pages 269 – 281, Grenoble, June 1999.

[ELO01] ISO/IEC. Enhancements to Lotos, September 2001. ISO 15437:2001.

[EM85] Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic Specification 1:
Equations und Initial Semantics, volume 6 of EATCS Monographs in Theoretical
Computer Science. Springer Verlag, 1985.

[EM90] Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic Specification 2:
Module Specifications an Constraints, volume 21 of EATCS Monographs in Theo-
retical Computer Science. Springer Verlag, 1990.

[EN86] Uffe H. Engberg and Mogens Nielsen. A calculus of communicating systems
with label passing. Technical Report DAIMI PB-208, University of Aarhus, Depart-
ment of Computer Science, May 1986.

[Eng97] Robert Englander. Developing Java Beans. The Java Series. O’Reilly & As-
sociates, Inc., June 1997.

[EO94] Hartmut Ehrig and Fernando Orejas. Dynamic abstract data types: An in-
formal proposal. Bulletin of the European Association for Theoretical Computer
Science, 53, June 1994.

[EPd92] Dick Eriksson, Mats Persson and Kerstin ŸÖdling. Switching software archi-
tecture prototype using real time declarative language. In Proceedings of the 14th

International Switching Symposium, Yokohama, 1992.

[ES] Rachid Echahed and Wendelin Serwe. A concurrent extension of functional logic
programming languages. Internal Report, available at
ftp://ftp.imag.fr/pub/LEIBNIZ/PMP/conc_ext_flp.ps.gz.

234

[ES99] Rachid Echahed and Wendelin Serwe. A concurrent extension of functional
logic programming languages. extended abstract. In Preproceedings of the 9th In-
ternational Workshop on Logic-based Program Synthesis and Transformation, pages
189 – 198, Venezia, September 1999. Universita Ca Foscari di Venezia, Technical
Report CS-99-16.

[ES00] Rachid Echahed and Wendelin Serwe. Combining mobile processes and declara-
tive programming. In John Lloyd, Veronika Dahl, Ulrich Furbach, Manfred Kerber,
Kung-Kiu Lau, Catuscia Palamidessi, Lúıs Moniz Pereira, Yehoshua Sagiv and
Peter J. Stuckey, editors, Proceedings of the 1st International Conference on Com-
putational Logic (CL 2000), volume 1861 of Lecture Notes in Artificial Intelligence,
pages 300 – 314, London, July 2000. Springer Verlag.

[ES01a] Rachid Echahed and Wendelin Serwe. A component-based approach to con-
current declarative programming. In Michael Hanus, editor, Proceedings of the In-
ternational Workshop on Functional and (Constraint) Logic Programming (WFLP
2001), pages 285 – 298, Kiel, September 2001. Institut für Informatik und Praktis-
che Mathematik, Christian-Albrechts-Universität Kiel. Bericht Nr. 2017.

[ES01b] Rachid Echahed and Wendelin Serwe. Integrating action definitions into con-
current declarative programming. In Michael Hanus, editor, Proceedings of the In-
ternational Workshop on Functional and (Constraint) Logic Programming (WFLP
2001), pages 299 – 312, Kiel, September 2001. Institut für Informatik und Praktis-
che Mathematik, Christian-Albrechts-Universität Kiel. Bericht Nr. 2017.

[FFMS01] Cédric Fournet, Fabrice Le Fessant, Luc Maranget and Alan Schmitt. The
JoCaml language (beta release): Documentation and User’s Manual. Institut Na-
tional de Recherche en Informatique et en Automatique (INRIA), January 2001.
available at http://pauillac.inria.fr/jocaml/htmlman/index.html.

[FFS95] François Fages, Julian Fowler and Thierry Sola. A reactive constraint logic
programming scheme. In Proceedings of the 12th International Conference on Logic
Programming (ICLP ’95), 1995.

[FFS98] François Fages, Julian Fowler and Thierry Sola. Experiments in reactive con-
straint logic programming. Journal of Logic Programming, 37(1 – 3):185 – 212,
October 1998.

[FG96] Cédric Fournet and Georges Gonthier. The reflexive chemical abstract machine
and the join-calculus. In Proceedings of the 23rd ACM SIGPLAN - SIGACT Sym-
posium on Principles of Programming Languages (POPL ’96), pages 372 – 385, St.
Petersburg Beach, Florida, January 1996.

[FGL+96] Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget and
Didier Rémy. A calculus of mobile agents. In Ugo Montanari and Vladimiro Sassone,
editors, Proceedings of the 7th International Conference on Concurrency Theory
(CONCUR ’96), volume 1119 of Lecture Notes in Computer Science, pages 406 –
421, Pisa, August 1996. Springer Verlag.

235

BIBLIOGRAPHY

[FHJ91] Torkel Franzén, Seif Haridi and Sverker Janson. An overview of the andorra
kernel language. In Lars-Henrik Eriksson, Lars Hallnäs and Peter Schroeder-Heister,
editors, Proceedings of the 2nd International Workshop on Extensions of Logic Pro-
gramming (ELP ’91), volume 596 of Lecture Notes in Computer Science, pages 163
– 179, Stockholm, January 1991. Springer Verlag.

[FLP85] Michael J. Fischer, Nancy A. Lynch and Michael S. Paterson. Impossibility
of distributed consensus with one faulty process. Journal of the ACM, 32(2):374 –
382, April 1985.

[Fok00] Wan Fokkink. Introduction to Process Algebra. Texts in Theoretical Computer
Science. Springer Verlag, 2000.

[FPJ95] Sigbjorn Finne and Simon L. Peyton Jones. Composing Haggis. In Remco C.
Veltkamp and Edwin H. Blake, editors, Proceedings of the Eurographics Workshop
on Programming Paradigms in Graphics, pages 85 – 101, Maastricht, September
1995. Springer Verlag.

[FRS98] François Fages, Paul Ruet and Sylvain Soliman. Phase semantics and verifi-
cation of concurrent constraint programs. In Proceedings of the 13th Annual IEEE
Symposium on Logic in Computer Science (LICS ’98), 1998.

[Fu97] Yuxi Fu. A proof theoretical approach to communication. In Pierpaolo Degano,
Robert Gorrieri and Alberto Marchetti-Spaccamela, editors, Proceedings of the 24th

International Colloquium on Automata, Languages and Programming (ICALP ’97),
volume 1250 of Lecture Notes in Computer Science, pages 325 – 335, Bologna, July
1997. Springer Verlag.

[GB92] Joseph A. Goguen and Rod M. Burstall. Institutions: Abstract model theory
for specification and programming. Journal of the ACM, 39(1):95 – 146, January
1992.

[GC92] David Gelernter and Nicholas Carriero. Coordination languages and their sig-
nificance. Communications of the ACM, 35(2):96 – 107, February 1992.

[GCR99] Yan Georget, Philippe Codognet and Francesca Rossi. Constraint retraction
in CLP(FD): Formal framework and performance results. Constraints, 4(1):5 – 42,
February 1999.

[Gel85] David Gelernter. Generative communication in Linda. ACM Transactions on
Programming Languages and Systems, 7(1):80 – 112, January 1985.

[Gel89] David Gelernter. Multiple tuple spaces in Linda. In Eddy Odijk, Martin Rem
and Jean-Claude Syre, editors, Proceedings of the Conference on Parallel Architec-
ture and Languages Europe (PARLE ’89), volume 366 of Lecture Notes in Computer
Science, pages 20 – 27, Eindhoven, June 1989. Springer Verlag.

[Gen35] Gerhard Gentzen. Investigations into logical deductions. In M. E. Szabo,
editor, The collected papers of Gerhard Gentzen, pages 68 – 131. North Holland
Publishing Company, 1935. 1969.

236

[GH93] Yuri Gurevich and James K. Huggins. The semantics of the C programming
language. In Egon Börger, Gerhard Jäger, Hans Kleine Büning, Simone Martini and
Michael M. Richter, editors, Selected papers from the 6th Workshop on Computer
Science Logic (CSL ’92), volume 702 of Lecture Notes in Computer Science, pages
274 – 308, San Miniato, 1993. Springer Verlag.

[GHLR96] J. C. González-Moreno, M. Teresa Hortalá-González, Francisco Javier
López-Fraguas and Mario Rodŕıguez-Artalejo. A rewriting logic for declarative pro-
gramming. In Hanne Riis Nielson, editor, Programming Languages and Systems.
Proceedings of the 6th European Symposium on Programming (ESOP ’96), volume
1058 of Lecture Notes in Computer Science, pages 156 – 172, Linköping, April 1996.
Springer Verlag.

[GHLR99] J. C. González-Moreno, M. Teresa Hortalá-González, Francisco Javier
López-Fraguas and Mario Rodŕıguez-Artalejo. An approach to declarative pro-
gramming based on a rewriting logic. Journal of Logic Programming, 40(1):47 – 87,
July 1999.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1 – 102,
1987.

[Gir95] Jean-Yves Girard. Linear logic, its syntax and semantics. In Jean-Yves Gi-
rard, Yves Lafont and Laurent Regnier, editors, Advances in Linear Logic, volume
222 of London Mathematical Society Lecture Note Series, pages 1 – 43. Cambridge
University Press, June 1995.

[GJS96] Vineet Gupta, Radha Jagadeesan and Vijay Saraswat. Models for concurrent
constraint programming. In Ugo Montanari and Vladimiro Sassone, editors, Pro-
ceedings of the 7th International Conference on Concurrency Theory, volume 1119
of Lecture Notes in Computer Science, pages 66 – 83, Pisa, August 1996. Springer
Verlag.

[GJSB00] James Gosling, Bill Joy, Guy Steele and Gilad Bracha. The Java Language
Specification. Sun Microsystems, Inc, second edition, June 2000.

[GKZ99] Marie-Claude Gaudel, Carole Khoury and Alexandre V. Zamulin. Dynamic
systems with implicit state. In Jean-Pierre Finance, editor, Proceedings of the
2nd Internationsl Conference on Fundamental Approaches to Software Engineering
(FASE ’99), volume 1577 of Lecture Notes in Computer Science, pages 114 – 128,
Amsterdam, March 1999. Springer Verlag. Held as part of the European Joint
Conferences on the Theory and Practice of Software (ETAPS ’99).

[Gor94] Andrew D. Gordon. Functional Programming and Input/Output. Distinguished
Dissertations in Computer Science. Cambridge University Press, 1994.

[GR93a] Emden R. Gansner and John H. Reppy. A multithreaded higher-order user
interface toolkit. In User Interface Software, volume 1 of Software Trends, pages
61 – 80. John Wiley & Sons, 1993.

237

BIBLIOGRAPHY

[GR93b] Paola Glavan and Dean Rosenzweig. Communicating evolving algebras. In
Egon Börger, Gerhard Jäger, Hans Kleine Büning, Simone Martini and Michael M.
Richter, editors, Selected papers from the 6th Workshop on Computer Science Logic
(CSL ’92), volume 702 of Lecture Notes in Computer Science, pages 182 – 215, San
Miniato, 1993. Springer Verlag.

[Gui95] GUI Fest ’95 Post-Challenge: multiple counters. available at
http://www.cs.chalmers.se/~magnus/GuiFest-95/, July 24 – July 28 1995. or-
ganized by Simon Peyton Jones and Phil Gray as a part of the Glasgow Research
Festival.

[Gur85] Yuri Gurevich. A new thesis. American Mathematical Society Abstracts, page
317, August 1985. abstract 85T-68-203.

[Gur91] Yuri Gurevich. Evolving algebras: An attempt to discover semantics. Bul-
letin of the European Association for Theoretical Computer Science, 43:264 – 284,
February 1991. preliminary version of [Gur93].

[Gur93] Yuri Gurevich. Evolving algebras: An attempt to discover semantics. In Grze-
gorz Rozenberg and A. Salomaa, editors, Current Trends in Theoretical Computer
Science, pages 266 – 292. World Scientific, 1993. A previous version appeared as
[Gur91].

[Gur95] Yuri Gurevich. Evolving algebras 1993: Lipari guide. In E. Börger, editor,
Specification and Validation Methods, pages 9 – 36. Oxford University Press, 1995.

[Gur97] Yuri Gurevich. May 1997 draft of the ASM guide. Technical Report CSE-TR-
336-97, EECS Department, University of Michigan, May 1997.

[Gur00] Yuri Gurevich. Sequential abstract state machines capture sequential algo-
rithms. ACM Transactions on Computational Logic, 1(1):77 – 111, July 2000.

[Hai86] Brent Hailpern. Multiparadigm languages and environments. IEEE Software,
3(1):6 – 9, January 1986. Guest Editor’s Introduction.

[HAK+00a] Michael Hanus [Ed.], Sergio Antoy, Johannes Koj, Philip Niederau, Ramin
Sadre and Frank Steiner. PAKCS 1.3 User Manual, December 4, 2000. available at
http://www.informatik.uni-kiel.de/~pakcs.

[HAK+00b] Michael Hanus [Ed.], Sergio Antoy, Herbert Kuchen, Francisco J. López-
Fraguas, Wolfgang Lux, Juan José Moreno Navarro and Frank Steiner. Curry: An
integrated functional logic language. available at
http://www.informatik.uni-kiel.de/~mh/curry/report.html,
June 6, 2000. Version 0.7.1.

[Han] Michael Hanus. FlatCurry: An intermediate representation for Curry programs.
URL http://www.informatik.uni-kiel.de/~curry/flat.

[Han72] Per Brinch Hansen. Strutured multiprogramming. Communications of the
ACM, 15(7):574 – 578, July 1972.

238

[Han94] Michael Hanus. The integration of functions into logic programming: From
theory to practice. Journal of Logic Programming, 19 & 20:583 – 628, 1994.

[Han97] Michael Hanus. A unified computation model for functional and logic pro-
gramming. In Proceedings of the 24th ACM SIGPLAN - SIGACT Symposium on
Principles of Programming Languages (POPL ’97), 1997.

[Han99] Michael Hanus. Distributed programming in a multi-paradigm declarative
language. In Gopalan Nadathur, editor, Proceedings of the International Conference
on Principles and Practice of Declarative Programming (PPDP ’99), volume 1702 of
Lecture Notes in Computer Science, pages 188 – 205, Paris, 1999. Springer Verlag.

[HCRP89] Nicolas Halbwachs, P. Caspi, P. Raymond and D. Pilaud. The synchronous
dataflow programming language LUSTRE. In Special issue on Another Look at
Real-Time Systems, Proceedings of the IEEE, 1989.

[Hen82] Peter Henderson. Purely functional operating systems. In J. Darlington,
P. Henderson and D. A. Turner, editors, Functinal Programming and its Appli-
cations: an advanced course, CREST advanced courses from Camdridge University
Press. Cambridge university press, July, 20 – 31 1982. reprinted 1983.

[Hew77] Carl Hewitt. Viewing control structures as patterns of passing messages. Ar-
tificial Intelligence, 8(3):323 – 364, June 1977.

[HI93] Matthew Hennessy and Anna Ingólfsdóttir. A theory of communicating pro-
cesses with value passing. Information and Computation, 107(2):202 – 236, Decem-
ber 1993.

[HJ90] Seif Haridi and Sverker Janson. Kernel andorra prolog and its computation
model. In David H. D. Warren and Péter Szeredi, editors, Proceedings of the
7th International Conference on Logic Programming (ICLP 1990), pages 31 – 46,
Jerusalem, June 1990. The MIT Press.

[HJ94] Paul Hudak and Mark Jones. Haskell vs. Ada vs. C++ vs. Awk vs. . . . an
experiment in software prototyping productivity. available at
http://www.cs.yale.edu/homes/hudak-paul.html, July 1994.

[HM94] Joshua S. Hodas and Dale Miller. Logic programming in a fragment of intu-
itionistic linear logic. Information and Computation, 110(2):327 – 365, May 1994.

[Hoa74] Charles Antony Richard Hoare. Monitors: An operating system structuring
concept. Communications of the ACM, 17(10):549 – 557, October 1974.

[Hoa78] Charles Antony Richard Hoare. Communicating sequential processes. Com-
munications of the ACM, 21(8):666 – 677, August 1978. Corrigendum: CACM
21(11): 958; Reprint: CACM 26(1): 100 – 106.

[Hoa85] Charles Antony Richard Hoare. Communicating sequential processes. Interna-
tional Series in Computer Science. Prentice Hall, 1985.

239

BIBLIOGRAPHY

[Hoa87] Charles Antony Richard Hoare. Processus Sequentiels Communicants. Manuels
Informatiques Masson. Masson, 1987. french translation of [Hoa85] by Alain Ker-
marrec.

[HPW96] James Harland, David J. Pym and Michael Winikoff. Programming in lygon:
An overview. In Martin Wirsing and Maurice Nivat, editors, Proceedings of the
5th International Conference on Algebraic Methodology and Software Technology
(AMAST ’96), volume 1101 of Lecture Notes in Computer Science, pages 391 –
405, Munich, July 1996. Springer Verlag.

[HR98] Nevin Heintze and Jon G. Riecke. The SLam calculus: Programming with
secrecy and integrity. In Proceedings of the 25th ACM SIGPLAN - SIGACT Sym-
posium on Principles of Programming Languages (POPL ’98), pages 365 – 377, San
Diego, January 1998.

[HR00] M. Hennessy and J. Riely. Information flow vs. ressource access in the asyn-
chronous pi-calculus. In Ugo Montanari, José D. P. Rolim and Emo Welzl, editors,
Proceedings of the 27th International Colloquium on Automata, Languages and Pro-
gramming (ICALP 2000), volume 1853 of Lecture Notes in Computer Science, pages
415 – 427, Geneva, July 2000. Springer Verlag.

[HS87] Roger Hayes and Richard D. Schlichting. Facilitating mixed language pro-
gramming in distributed systems. IEEE Transactions on Software Engineering,
13(12):1254 – 1264, December 1987.

[HT91] Kohei Honda and Mario Tokoro. An object calculus for asynchronous com-
munication. In Pierre America, editor, Proceedings of the 5th European Conference
on Object-Oriented Programming (ECOOP ’91), volume 512 of Lecture Notes in
Computer Science, pages 133 – 147, Geneva, July 1991. Springer Verlag. revised
version of August 1991.

[Hug90] John Hughes. Why functional programming matters. In David A. Turner,
editor, Research Topics in Functional Programming, pages 17 – 42. Addison-Wesley
Publishing Company, 1990.

[HVY00] Kohei Honda, Vasco Thudichum Vasconcelos and Nobuko Yoshida. Secure
information flow as typed process behaviour. In Gert Smolka, editor, Proceedings
of the 9th European Symposium on Programming (ESOP ’2000), volume 1782 of
Lecture Notes in Computer Science, pages 180 – 199, Berlin, March 2000. Springer
Verlag.

[Jan94] Sverker Janson. AKL – A Multiparadigm Programming Language. PhD thesis,
Uppsala Theses in Computing Science 19, June 1994. SICS Dissertation Series 14.

[JdB94] Jean-Marie Jacquet and Koen de Bosschere. On the semantics of µLog. Future
Generation Computer Systems Journal, 10:93 – 135, February 1994.

[JH93] Mark P. Jones and Paul Hudak. Implicit and explicit parallel programming in
haskell. Technical Report YALEU/DCS/RR-982, Yale University, August 1993.

240

[JH94] Sverker Janson and Seif Haridi. An introduction to AKL – a multiparadigm
programming language. In Constraint Programming, volume 131 of NATO-ASI
Series. Springer-Verlag, 1994.

[JL87] Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In Proceed-
ings of the 14th ACM SIGPLAN - SIGACT Symposium on Principles of Program-
ming Languages (POPL ’87), pages 111 – 119, München, January 1987. ACM.

[JMH93] Sverker Janson, Johan Montelius and Seif Haridi. Ports for objects in con-
current logic programs. In Gul A. Agha, Peter Wegner and Yonezawa, editors,
Research Directions in Concurrent Object-Oriented Programming. The MIT Press,
1993.

[Jon99] Mark P. Jones. Typing haskell in haskell. In Proceedings of the 1999 Haskell
Workshop, France, October 1999. Published in Technical Report UU-CS-1999-28,
Department of Computer Science, University of Utrecht.

[Jor84] Philippe Jorrand. FP2: Functional parallel programming based on term substi-
tution. In Wolfgang Bibel and B. Petkoff, editors, Proceedings of the International
Conference on Artificial Intelligence: Methodology, Systems, Applications (AIMSA
’84), pages 95 – 112, Varna, September 1984. Elsevier Science Publishers.

[Jor85] Philippe Jorrand. Term rewriting as a basis for the design of a functional and
parallel programming language. a case study: The language FP2. In Wolfgang
Bibel and Philippe Jorrand, editors, Fundamentals of Artificial Intelligence: An
Advanced Course, volume 232 of Lecture Notes in Computer Science, pages 221 –
276, Vignieu, July 1985. Springer Verlag.

[KdRB91] Gregor Kiczales, Jim des Rivières and Daniel G. Bobrow. The Art of the
Metaobject Protocol, chapter 5 and 6. The MIT Press, 1991.

[Kho96] Carole Khoury. Spécifications algébriques avec état implicite. In Journées du
GDR Programmation, CNRS, Orléans, November, 20 – 22 1996.

[KK71] Robert A. Kowalski and Donald Kuehner. Linear resolution with selection
function. Artificial Intelligence, 2(3/4):227 – 260, 1971.

[Klo92] J. W. Klop. Term rewriting systems. In S. Abramsky, D. Gabbay and Maibaum,
editors, Handbook of Logic in Computer Science, Vol. II, pages 1 – 112. Oxford
University Press, 1992.

[Kow74] Robert A. Kowalski. Predicate logic as programming language. In Jack L.
Rosenfeld, editor, Proceedings of Information Processing 74, pages 569 – 574, Stock-
holm, August 1974. International Ferderation for Information Processing (IFIP),
North Holland Publishing Company.

[KP97] Philipp W. Kutter and Alfonso Pierantonio. Montages: Specifications of real-
istic programming languages. Journal of Universal Computer Science, 3(5):416 –
442, 1997.

241

BIBLIOGRAPHY

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language.
Prentice Hall, second edition, 1988. ANSI C.

[LDG+01] Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy and Jérôme
Vouillon. The Objective Caml system: Documentation and user’s manual. Institut
National de Recherche en Informatique et en Automatique (INRIA), July 2001.
Release 3.02.

[Lea99] Doug Lea. Concurrent Programming in Java: Design Principles and Patterns.
The Java Series. Addison-Wesley Publishing Company, second edition, november
1999.

[LF92] Francisco Javier López-Fraguas. A general scheme for constraint functional
logic programming. In Héléne Kirchner and Giorgio Levi, editors, Proceedings of
the 3rd Internatinal Conference on Algebraic and Logic Programming, volume 632
of Lecture Notes in Computer Science, pages 213 – 227, Volterra, September 1992.
Springer Verlag.

[LFSH99] Francisco Javier López-Fraguas and Jaime Sánchez-Hernández. T OY: A
multiparadigm declarative system. In Proceedings of the 10th International Con-
ference on Rewriting Techniques and Applications (RTA ’99), pages 244 – 247.
Springer Verlag, LNCS 1631, 1999.

[Llo] John W. Lloyd. Interaction and concurrency in a declarative programming lan-
guage. to appear.

[Llo95] John W. Lloyd. Declarative programming in Escher. Technical Report CSTR-
95-013, Departement of Computer Science, University of Bristol, June 1995.

[Llo99] John W. Lloyd. Programming in an integrated functional and logic language.
Journal of Functional and Logic Programming, 1999(3), March 1999.

[LOT00] ISO JTC 1/SC 7. LOTOS – A formal description technique based on the
temporal ordering of observational behaviour, June 2000. ISO 8807:1989.

[LP96] Jimmy H. M. Lee and Paul K. C. Pun. An overview of the OLI multiparadigm
programming language and its semantics. In Dilip Patel, Yuan Sun and Shushma
Patel, editors, Proceedings of the International Conference on Object Oriented In-
formation Systems (OOIS ’96), pages 79 – 92, London, December 1996. Springer
Verlag.

[LP97] Jimmy H. M. Lee and Paul K. C. Pun. Object logic integration: A mul-
tiparadigm design methodology and a programming language. Commputer Lan-
guages, 23(1):25 – 42, 1997.

[LSV99] Lúıs Lopes, Fernando M. A. Silva and Vasco Thudichum Vasconcelos. A
virtual machine for a process calculus. In Gopalan Nadathur, editor, Proceedings
of the Conference on Principles and Practice of Declarative Programming (PPDP
’99), volume 1702 of Lecture Notes in Computer Science, pages 244 – 260, Paris,
1999. Springer Verlag.

242

[Mah87] Michael J. Maher. Logic semantics for a class of committed-choice programs.
In Jean-Louis Lassez, editor, Proceedings of the 4th International Conference on
Logic Programming (ICLP ’87), pages 858 – 876, Melbourne, May 1987. The MIT
Press.

[McC98] Glen McCluskey. Using Java reflection. available at
http://developer.java.sun.com /developer/technicalArticles/ALT/Reflection,
January 1998.

[Mes92] José Meseguer. Multiparadigm logic programming. In Hélène Kirchner and
Giorgio Levi, editors, Proceedings of the 3rd Internatinal Conference on Algebraic
and Logic Programming, volume 632 of Lecture Notes in Computer Science, pages
158 – 200, Volterra, September 1992. Springer Verlag.

[Mil78] Robin Milner. A theory of type polymorphism in programming. Journal of
Computer and System Science, 17(3):348 – 375, December 1978.

[Mil80] Robin Milner. A calculus of communicating systems, volume 92 of Lecture
Notes in Computer Science. Springer Verlag, 1980.

[Mil89] Robin Milner, editor. Communication and Concurrency. Prentice Hall Inter-
national, 1989.

[Mil92a] Dale Miller. The pi-calculus as a theory in linear logic: Preliminary results.
In Evelina Lamma and Paola Mello, editors, Proceedings of the 3rd International
Workshop on Extensions of Logic Programming (ELP ’92), volume 660 of Lecture
Notes in Computer Science, pages 242 – 264, Bologna, February 1992. Springer
Verlag.

[Mil92b] Robin Milner. Functions as processes. Mathematical Structures in Computer
Science, 2(2):119 – 141, 1992. Previous version as Rapport de Recherche 1154,
INRIA Sophia-Antipolis, 1990, and in Proceedings of ICALP ’91, LNCS 443.

[Mil93a] Robin Milner. Elements of interaction. Communications of the ACM, 36(1):78
– 89, January 1993. Turing Award Lecture.

[Mil93b] Robin Milner. The polyadic π-calculus: A tutorial. In Friedrich L. Bauer,
Wilfried Brauer and Helmut Schwichtenberg, editors, Logic and Algebra of Specifi-
cation, Proceedings of International NATO Summer School (Marktoberdorf, 1991),
volume 94 of Series F. NATO ASI, Springer, 1993. Available as Technical Report
ECS-LFCS-91-180, University of Edinburgh, October 1991.

[Mil95] Dale Miller. A survey of linear logic programming. Computational Logic: The
Newsletter of the European Network in Computational Logic, 2(2):63 – 67, December
1995.

[Mil96] Dale Miller. Forum: A multiple-conclusion specification logic. Theoretical
Computer Science, 165(1):201 – 232, September 1996.

[Mil99] Robin Milner. Communicating and Mobile Systems: the Pi-Calculus. Cam-
bridge University Press, June 1999.

243

BIBLIOGRAPHY

[ML95] Naftaly H. Minsky and Jerrold Leichter. Law-governed Linda as a coordina-
tion model. In Paolo Ciancarini, Oscar Nierstrasz and Akinori Yonezawa, editors,
selected papers of the Workshop on Models and Languages for Coordination of Par-
allelism and Distribution (ECOOP ’94), volume 924 of Lecture Notes in Computer
Science, pages 125 – 146, Bologna, July 1995. Springer Verlag.

[Mod96] ISO/IEC JTC 1/SC 22/WG 13. Modula-2, Base Language, June 1996. ISO
10514-1:1996.

[MOM01] Narciso Mart́ı-Oliet and José Meseguer. Rewriting logic: Roadmap and
bibliography. Theoretical Computer Science, 2001. To appear.

[Mos92] Peter D. Mosses. Action Semantics, volume 26 of Cambridge Tracts in Theo-
retical Computer Science. Cambridge University Press, 1992.

[Moz] The mozart programming system. http://www.mozart-oz.org/.

[MP91] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concur-
rent Systems – Specification, volume 1. Springer, 1991.

[MPW92] Robin Milner, Joachim G. Parrow and David J. Walker. A calculus of mobile
processes. Information and Computation, 100(1):1 – 77, September 1992.

[MTHM97] Robin Milner, Mads Tofte, Robert Harper and David MacQueen. The
Definition of Standard ML – Revised. The MIT Press, 1997.

[Mul86] Special issue on multiparadigm languages and environments. IEEE Software,
3(1):6 – 77, January 1986.

[NFP98] Rocco De Nicola, Gian Luigi Ferrari and Rosario Pugliese. KLAIM: A ker-
nel language for agents interaction and mobility. IEEE Transactions on Software
Engineering, 24(5):315 – 330, May 1998.

[Nie96] Flemming Nielson, editor. ML with Concurrency: Design, Analysis, Imple-
mentation and Application. Monographs in Computer Science. Springer Verlag,
1996.

[NL95] Kam-Wing Ng and Chi-Keung Luk. I+: A multiparadigm language for object-
oriented declarative programming. Computer Languages, 21(2):81 – 100, 1995.

[NM95] Joachim Niehren and Martin Müller. Constraints for free in concurrent com-
putation. In Kanchana Kanchanasut and Jean-Jacques Lévy, editors, Proceedings
of the Asian Computing Science Conference, volume 1023 of Lecture Notes in Com-
puter Science, pages 171 – 186, Pathumthani, December 1995. Springer Verlag.

[NP96] Rocco De Nicola and Rosario Pugliese. A process algebra based on Linda.
In Paolo Ciancarini and Chris Hankin, editors, Proceedings of the 1st International
Conference on Coordination Languages and Models (Coordination ’96), volume 1061
of Lecture Notes in Computer Science, pages 160 – 178, Cesena, April 1996. Springer
Verlag.

244

[NS94] Joachim Niehren and Gert Smolka. A confluent relational calculus for higher-
order programming with constraints. In Jean-Pierre Jouannaud, editor, Proceedings
of the 1st International Conference on Constraints in Computational Logics, volume
845 of Lecture Notes in Computer Science, pages 89 – 104, München, September
1994. Springer Verlag.

[NSvEP91] E. G. J. M. H. Nöcker, J. E. W. Smetsers, M. C. J. D. van Eekelen and M. J.
Plasmeijer. Concurrent CLEAN. In Aarts, Leeuwen and Rem, editors, Proceedings
of Parallel Architectures and Languages Europe, volume 505 of Lecture Notes in
Computer Science, pages 202 – 219, Eindhoven, 1991. Springer Verlag.

[O’D85] Michael J. O’Donnell. Equational Logic as a Programming Language. The
MIT Press, 1985.

[Ode00] Martin Odersky. Functional nets. In Gert Smolka, editor, Programming Lan-
guages and Systems, Proceedings of the 9th European Symposium on Programming
(ESOP 2000), volume 1782 of Lecture Notes in Computer Science, pages 1 – 25,
Berlin, March 2000. Springer Verlag. invited paper.

[ODN95] Andrea Omicini, Enrico Denti and Antonio Natali. Agent communication
and control through logic theories. In Marco Gori and Giovanni Soda, editors,
Proceedings of the 4th Congress of the Italian Association for Artificial Intelligence
(AI*IA ’95), volume 992 of Lecture Notes in Computer Science, pages 439 – 450,
Florence, 1995. Springer Verlag.

[PA98a] George A. Papadopoulos and Farhad Arbab. Coordination models and lan-
guages. Technical Report SEN-R9834, CWI, December 1998.

[PA98b] George A. Papadopoulos and Farhad Arbab. Coordination models and lan-
guages. In The Engineering of Large Systems, volume 46 of Advances in Computers,
pages 329 – 400. Acdemic Press, August 1998.

[Pal97] Catuscia Palamidessi. Comparing the expressive power of the synchronous and
the asynchronous pi-calculus. In Proceedings of the 24th ACM SIGPLAN - SIGACT
Symposium on Principles of Programming Languages (POPL ’97), pages 256 – 265,
Paris, January 1997. ACM.

[Pik89] Rob Pike. A concurrent window system. Computing Systems, 2(2):133 – 153,
Spring 1989.

[PJGF96] Simon L. Peyton Jones, Andrew D. Gordon and Sigbjorn Finne. Concurrent
Haskell. In Proceedings of the 23rd ACM SIGPLAN - SIGACT Symposium on
Principles of Programming Languages (POPL ’96), pages 295 – 308, St Petersburg
Beach, Florida, January 1996.

[PJHA+99] Simon Peyton Jones [Ed.], John Hughes [Ed.], Lennart Augustsson, Dave
Barton, Brian Boutel, Warren Burton, Joseph Fasel, Kevin Hammond, Ralf Hinze,
Paul Hudak, Thomas Johnsson, Mark Jones, John Launchbury, Erik Meijer, John

245

BIBLIOGRAPHY

Peterson, Alastair Reid, Colin Runciman and Philip Wadler. Report on the pro-
gramming language Haskell 98: A non-strict, purely functional language. available
at http://haskell.systemsz.cs.yale.edu/definition, February 1999.

[Pla91] John Placer. The multiparadigm language G. Commputer Languages,
16(3/4):235 – 258, 1991.

[PR96] Prakash Panangaden and John H. Reppy. The essence of concurrent ML. In
Nielson [Nie96], chapter 2, pages 5 – 29.

[Pro00] Fédéric Prost. A static calculus of dependencies for the λ-cube. In Proceedings
of the 15th Annual IEEE Symposium on Logic in Computer Science (LICS ’2000),
pages 267 – 276, Santa Barbara, 2000. IEEE Computer Society Press.

[Pro01] Fédéric Prost. Types for static analyses of mobile processes. Cahiers du labo-
ratoire Leibniz, 29, August 2001.

[PT97] Benjamin C. Pierce and David N. Turner. Pict: A programming language based
on the pi-calculus. Technical Report 476, CSCI, Indiana University, March 1997.
Dedicated to Robin Milner on the occasion of his 60th birthday.

[PT98] Benjamin C. Pierce and David N. Turner. Pict: A programming language based
on the pi-calculus. In Gordon Plotkin, Colin Stirling and Mads Tofte, editors, Proof,
Language and Interaction: Essays in Honour of Robin Milner. The MIT Press, 1998.

[PV97] Joachim Parrow and Björn Victor. The update calculus. In Michael Johnson,
editor, Proceedings of AMAST’97, volume 1349 of Lecture Notes in Computer Sci-
ence, pages 409 – 423. Springer Verlag, 1997. Full version available as Technical
report DoCS 97/93, Uppsala University.

[PV98] Joachim Parrow and Björn Victor. The fusion calculus: Expressiveness and
symmetry in mobile processes. In Proceedings of Logig in Computer Science, pages
176 – 185. IEEE Computer Society Press, 1998.

[PvE98] Rinus Plasmeijer and Marko van Eekelen. Concurrent clean language report.
Technical Report CSI-R9816, Computing Science Institute, University of Nijmegen,
June 1998. Version 1.3.

[Rei80] Ray Reiter. A logic for default reasoning. Artificial Intelligence, 13:81 – 132,
1980.

[Rep91] John H. Reppy. CML: A higher-order concurrent language. In Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI ’91), SIGPLAN Notices, pages 293 – 305, Toronto, June 1991. ACM
Press.

[Rep99] John H. Reppy. Concurrent Programming in ML. Cambridge University Press,
1999.

246

[RF97] Paul Ruet and François Fages. Concurrent constraint programming and non-
commutative linear logic. In Selected Annual Conference of the European Associa-
tion for Computer Science Logic, Aarhus, August 1997.

[Rin88] G. A. Ringwood. Parlog86 and the dining logicians. Communications of the
ACM, 31(1):10 – 25, January 1988.

[RS81] J. A. Robinson and E. E. Sibert. The LOGLISP user’s manual. Technical
Report 12/81, Syracuse University, New York, 1981.

[RT74] Dennis Ritchie and Ken Thompson. The UNIX time-sharing system. Commu-
nications of the ACM, 17(7):365 – 375, July 1974.

[RT78] Dennis Ritchie and Ken Thompson. The UNIX time-sharing system. The Bell
System Technical Journal, 57(6, part 2), July/August 1978. Update of [RT74].

[San98] Davide Sangiorgi. Interpreting functions as pi-calculus processes: a tutorial.
Technical Report RR-3470, INRIA - Sophia Antipolis, August 1998.

[Sar93] Vijay Anand Saraswat. Concurrent Constraint Programming. ACM Doctoral
Dissertation Awards. The MIT Press, 1993.

[Sce90] Andre Scedrov. A guide to linear logic. Bulletin of the European Association
for Theoretical Computer Science, 41:154 – 165, June 1990. updated version.

[Sch98] Wolfgang Schönfeld. Interacting abstract state machines. In Proceedings of
the 28th Annual Conference of the Gesellschaft für Informatik, Technical Report.
Universität Magdeburg, 1998.

[SDE95] Diomidis D. Spinellis, Sophia Drossopoulou and Susan Eisenbach. Object-
oriented technology in multiparadigm language implementation. Journal of Object-
Oriented Programming, 8(1):33 – 38, March/April 1995.

[Ser98] Wendelin Serwe. Étude d’une sémantique pour les langages logico-fonctionnels
réactifs. mémoire de DEA, Université Joseph Fourier, Grenoble and Institut Na-
tional Polytechnique de Grenoble, June 24 1998.

[Sha83] Ehud Shapiro. A subset of concurrent prolog and its interpreter. Technical
report, ICOT, March 1983.

[Sha86] Ehud Shapiro. Concurrent prolog: A progress report. IEEE Computer,
19(8):44 – 58, August 1986.

[Sha87] Ehud Shapiro, editor. Concurrent Prolog, volume 1. The MIT Press, 1987.

[Sha89] Ehud Shapiro. Technical correspondence: Linda in context. Communications
of the ACM, 32(10):1244 – 1249, October 1989.

[SJG95] Vijay Anand Saraswat, Radha Jagadeesan and Vineet Gupta. Default timed
concurrent constraint programming. In Proceedings of the 22nd ACM SIGPLAN -
SIGACT Symposium on Principles of Programming Languages (POPL ’95), pages
272 – 285, San Francisco, January 1995.

247

BIBLIOGRAPHY

[SJG96] Vijay Anand Saraswat, Radha Jagadeesan and Vineet Gupta. Timed de-
fault concurrent constraint programming. Journal of Symbolic Computation, 22(5
– 6):475 – 520, November – December 1996.

[SKL90] Vijay Anand Saraswat, Kenneth M. Kahn and Jacob Levy. Janus – a step
towards distributed constraint programming. In Proceedings of the North American
Logic Programming Conference, Austin, October 1990. extended abstract.

[SL92] Vijay Anand Saraswat and Patrick Lincoln. Higher-order, linear, concurrent
constraint programming. Technical report, Xerox PARC, 1992.

[Sla74] James R. Slagle. Automated theorem-proving for theories with simplifiers com-
mutativity, and associativity. Journal of the ACM, 21(4):622 – 642, October 1974.

[SML98] Standard ML of New Jersey user’s guide. available at
http://cm.bell-labs.com/cm/cs/what/smlnj/doc/index.html, 1998.

[Smo94] Gert Smolka. A foundation for higher-order concurrent constraint program-
ming. In Jean-Pierre Jouannaud, editor, Proceedings of the 1st International Con-
ference on Constraints in Computational Logics, volume 845 of Lecture Notes in
Computer Science, pages 50 – 72, München, September 1994. Springer Verlag.

[Smo95a] Gert Smolka. The definition of Kernel Oz. In Andreas Podelski, editor,
Constraints: Basics and Trends, volume 910 of Lecture Notes in Computer Science,
pages 251 – 292. Springer Verlag, 1995.

[Smo95b] Gert Smolka. The Oz programming model. In Jan van Leeuwen, editor,
Computer Science Today: Recent Trends and Developments, volume 1000 of Lecture
Notes in Computer Science, pages 324 – 343. Springer Verlag, 1995.

[Smo98] Gert Smolka. Concurrent constraint programming based on functional pro-
gramming. In Chris Hankin, editor, Proceedings of the 7th European Symposium on
Programming: Languages and Systems, volume 1381 of Lecture Notes in Computer
Science, pages 1 – 11, Lisbon, March / April 1998. Springer Verlag.

[Spi94] Diomidis D. Spinellis. Programming Paradigms as Object Classes: A Structur-
ing Mechanism for Multiparadigm Programming. PhD thesis, Imperial College of
Science, Technology and Medicine, London, February 1994.

[SR90] Vijay Anand Saraswat and Martin Rinard. Concurrent constraint program-
ming. In Proceedings of the 17th ACM SIGPLAN - SIGACT Symposium on Prin-
ciples of Programming Languages (POPL ’90), pages 232 – 245, San Francisco,
January 1990. extended abstract.

[SRP91] Vijay Anand Saraswat, Martin Rinard and Prakash Panangaden. Semantic
foundations of concurrent constraint programming. In Proceedings of the 18th ACM
SIGPLAN - SIGACT Symposium on Principles of Programming Languages (POPL
’91), pages 333 – 353, New York, 1991. ACM. Preliminary Report.

[SSB01] Robert Stärk, Joachim Schmid and Egon Börger. Java and the Java Virtual
Machine: Definition, Verification, Validation. Springer Verlag, June 2001.

248

[Ste90] Guy L. Steele, Jr. Common Lisp the Language. Digital Press, second edition,
1990.

[Str85] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Pub-
lishing Company, October 1985.

[SV98] Geoffrey Smith and Dennis M. Volpano. Secure information flow in a multi-
threaded imperative language. In Proceedings of the 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’98), pages 355 – 364,
San Diego, January 1998.

[SVI96] Geoffrey Smith, Dennis M. Volpano and Cynthia Irvine. A sound type system
for secure flow analysis. Journal of Computer Security, 4(3):167 – 187, 1996.

[Szy98] Clemens A. Szyperski. Emerging component software technologies – a strategic
comparison. Software: Concepts and Tools, 19(1):2 – 10, June 1998.

[Tho90] Simon Thompson. Interactive functional programs. In David A. Turner, edi-
tor, Research Topics in Functional Programming, pages 249 – 285. Addison-Wesley
Publishing Company, 1990.

[Tic95] Evan Tick. The deevolution of concurrent logic programming languages. Jour-
nal of Logic Programming, 23(2):89 – 124, May 1995.

[TLK96a] Bent Thomsen, Lone Leth and Tsung-Min Kuo. FACILE — from toy to
tool. In Nielson [Nie96], chapter 5, pages 97 – 144.

[TLK96b] Bent Thomsen, Lone Leth and Tsung-Min Kuo. A facile tutorial. In Ugo
Montanari and Vladimiro Sassone, editors, Proceedings of the 7th International Con-
ference onConcurrency Theory, volume 1119 of Lecture Notes in Computer Science,
pages 278 – 298, Pisa, August 1996. Springer Verlag.

[Tse94] Clifford Sheung-Ching Tse. The design and implementation of an actor lan-
guage based on linear logic. Master’s thesis, Massachusetts Institute of Technology,
May 1994.

[Tur36] Alan M. Turing. On computable numbers, with an application to the entschei-
dungsproblem. Proceedings of the London Mathematical Society, ser. 2, vol. 42:230
– 265, November 1936. reprinted in [Dav65, pages 115 – 153].

[Tur39] Alan M. Turing. Systems of logic based on ordinals. Proceedings of the London
Mathematical Society, ser. 2, vol. 45:161 – 228, 1939. reprinted in [Dav65, pages
154 – 222].

[Ued85] Kazunori Ueda. Guarded horn clauses. In E. Wada, editor, Logic Programming
’85, volume 221 of Lecture Notes in Computer Science, pages 168 – 179. Springer
Verlag, 1985.

[Vas94] Vasco T. Vasconcelos. Typed concurrent objects. In Mario Tokoro and Remo
Pareschi, editors, Proceedings of the 8th European Conference on Object-Oriented
Programming (ECOOP ’94), volume 821 of Lecture Notes in Computer Science,
pages 100 – 117, Bologna, July 1994. Springer Verlag.

249

BIBLIOGRAPHY

[vEdLF82] M. H. van Emden and G. J. de Lucena Filho. Predicate logic as a lan-
guage for parallel programming. In K. L. Clark and S.-A. Tärnlund, editors, Logic
Programming, volume 16 of APIC Studies in Data Processing, pages 189 – 198.
Acdemic Press, 1982.

[vEK76] Maarten H. van Emden and Robert A. Kowalski. The semantics of predicate
logic as a programming language. Journal of the ACM, 23(4):733 – 742, October
1976.

[VP98] Björn Victor and Joachim Parrow. Concurrent constraints in the fusion calcu-
lus. In Kim G. Larsen, Sven Skyum and Glynn Winskel, editors, Proceedings of the
25th International Colloquium on Automata, Languages and Programming, volume
1443 of Lecture Notes in Computer Science, pages 455 – 469, Aalborg, July 1998.
Springer Verlag.

[VRHB+97] Peter Van Roy, Seif Haridi, Per Brand, Gert Smolka, Michael Mehl and
Ralf Scheidhauer. Mobile objects in distributed Oz. ACM Transactions on Pro-
gramming Languages and Systems, 19(5):804 – 851, September 1997.

[Wad93] Philip Wadler. A taste of linear logic. In Mathematical Foundations of Com-
puting Science, volume 711 of Lecture Notes in Computer Science, Gdansk, August
1993. (invited talk).

[Wad97] Philip Wadler. How to declare an imperative. ACM Computing Surveys,
29(3):240 – 263, September 1997.

[Weg98] Peter Wegner. Interactive foundations of computing. Theoretical Computer
Science, 192(2):315 – 351, February 1998.

[WFF98] Carl-Alexander Wichert, Burkhard Freitag and Alfred Fent. Logical trans-
actions and serializability. In Burkhard Freitag, Hendrik Decker, Michael Kifer and
Andrei Voronkov, editors, Transactions and Change in Logic Databases, volume
1472 of Lecture Notes in Computer Science, pages 134 – 165. Springer Verlag, 1998.

[Win97] Michael David Winikoff. Logic Programming with Linear Logic. PhD thesis,
School of Electrical Engineering and Computer Science, University of Melbourne,
1997.

[Wir90] Martin Wirsing. Handbook of Theoretical Computer Science, volume B, chapter
Algebraic Specification, pages 675 – 788. North Holland Publishing Company, 1990.

[WW88] John H. Williams and Edward L. Wimmers. Sacrificing simplicity for conve-
nience: Where do you draw the line? In Proceedings of the 15th ACM SIGPLAN -
SIGACT Symposium on Principles of Programming Languages (POPL ’88), pages
169 – 179, San Diego, January 1988.

[Zam98] Alexandre V. Zamulin. Specification of dynamic systems by typed gurevich
machines. In Zdzislaw Bubnicki and Adam Grzech, editors, Proceedings of the 13th

International Conference on System Science, pages 160 – 167, Wroclaw, Septem-
ber 15 – 18, 1998.

250

[Zav89] Pamela Zave. A compositional approach to multiparadigm programming. IEEE
Software, 6(5):15 – 25, September 1989.

[Zav91] Pamela Zave. An insider’s evaluation of PAISLey. IEEE Transactions on
Software Engineering, 17(3):212 – 225, March 1991.

[Zei95] Stephen F. Zeigler. Comparing development costs of C and Ada. whitepaper,
Rational Software Corporation, March 30, 1995.

[ZJ96] Pamela Zave and Michael Jackson. Where do operations come from? a mul-
tiparadigm specification technique. IEEE Transactions on Software Engineering,
XXII(7):508 – 528, July 1996.

[Zuc99] Elena Zucca. From static to dynamic abstract data-types: An institution
transformation. Theoretical Computer Science, 216(1 – 2):109 – 157, March 1999.

Total number of references: 341.

251

Appendix A

Concrete Syntax of Sabir

In this appendix we give the grammars defining the concrete syntax used for the ex-
amples in chapter 7. We use the symbol ::= for the definition of a non-terminal, the
symbol ::= for an alternative and the write {a} for an optional a. Furthermore a∗ (re-
spectively, a+) stands for the repetition of a a natural (respectively, positive) number
of times. We do not present the (classical) definitions for identifiers, number and char-
acter strings. The typewriter font is used for the keywords and “special” symbols.
The current implementation does not distinguish between upper and lower case letters,
and considers any undeclared identifier as a variable.

Since the actions are specified as classical ocaml-functions, we refer the reader to
the ocaml documentation for further details. As mentioned in section 7.1.3, the import
of declarations from another component amounts in the current implementation to read
the corresponding files. Consequently, we do not need to present the syntax for imports
separately, and present only the grammars for stores, translations and processes.

A.1 Grammars for Stores

The grammar shown in table A.1 on page 253 defines the syntax of the declarative
language used in the description of the stores of a component, as it is used in the
examples of the lifts (see section 7.2), the multiple counters (see example 3.63) and the
Dining Philosophers (see section 1.1.5). We do not show the built-in infix operations
(such as +, -), nor do we present the classical syntax for identifiers (idf), numbers and
character strings (which are enclosed by ").

A.2 Translations

The syntax for the definition of translations is shown in table A.2 on page 253.

A.3 Grammar for Processes

Table A.3 on page 254 shows the grammar which defines the syntax used in the de-
scription of the processes, i.e., for the process definitions and the initial process term.

252

A.3. GRAMMAR FOR PROCESSES

store ::= DECL declaration∗ RULES rule∗ (A.1.1)
declaration ::= TYPE idf = constructors . (A.1.2)

TYPE idf . (A.1.3)
idf :: type-expression . (A.1.4)

constructors ::= idf simple-type∗
(
| constructors

)∗ (A.1.5)

type-expression ::= simple-type functional-type named-type (A.1.6)
simple-type ::= idf (A.1.7)

functional-type ::= (type-expression -> type-expression) (A.1.8)
named-type ::= NAME (type-expression) (A.1.9)

rule ::= lhs
{
| expression∗

}
= expression (A.1.10)

lhs ::= idf expression∗ (A.1.11)
expression ::= constant application (expression) (A.1.12)

constant ::= idf number string (A.1.13)
application ::= (idf expression∗) (A.1.14)

Table A.1: Syntax for Stores: Language 1

translation ::= TRANSLATION idf translation-rule+ . (A.2.1)
translation-rule ::= expression = expression (A.2.2)

expression ::= constant application (expression) (A.2.3)
constant ::= idf number string (A.2.4)

application ::= (idf expression∗) (A.2.5)

Table A.2: Syntax for Translations

253

APPENDIX A. CONCRETE SYNTAX OF SABIR

processes ::= DECL declaration∗ DEF definition∗ INITIAL process-term∗ (A.3.1)
declaration ::= PROCESS idf :: parameter-type∗ . (A.3.2)

definition ::= PROCESS idf variable∗ :- process-rules+ END (A.3.3)
process-rules ::= guarded-action ; process-term

(
, process-rules

)∗ (A.3.4)
guarded-action ::= [expression+ => actions] (A.3.5)

actions ::= { idf @ expression }
(
; actions

)∗ (A.3.6)

process-term ::= SUCCESS WAIT RANDOM_WAIT application (A.3.7)
process-term || process-term (A.3.8)
process-term ; process-term (A.3.9)

expression ::= constant application (expression) (A.3.10)
constant ::= idf idf ^ number string (A.3.11)

application ::= (idf expression∗) (A.3.12)

Table A.3: Syntax for Process Definitions and Process Terms

The non-terminal parameter-type occurring in rule (A.3.2) is defined as the non-
terminal type-expression of table A.1 (rule (A.1.6)).

254

Contents

Contents 4

I Résumé 6
I.1 Introduction . 6
I.2 Présentation du modèle . 8

I.2.1 Stores . 8
I.2.2 Actions . 9

I.2.2.1 Méta-signatures . 9
I.2.2.2 Actions élémentaires . 10
I.2.2.3 Exemples d’actions élémentaires 10

I.2.3 Signature de composant . 11
I.2.4 Interactions . 13

I.2.4.1 Symboles importés et exportés 13
I.2.4.2 Traductions . 14

I.2.5 Processus . 14
I.2.5.1 Expressions d’action et actions gardées 15
I.2.5.2 Expressions de processus 16
I.2.5.3 Définitions de processus 16

I.2.6 Composants et systèmes . 17
I.3 Sémantique . 18

I.3.1 Sémantique opérationnelle . 18
I.3.1.1 Exécution des processus d’un composant 18
I.3.1.2 Sémantique opérationnelle d’un composant 19
I.3.1.3 Sémantique opérationnelle d’un système 20

I.3.2 Sémantique compositionnelle . 20
I.4 Analyse de la confidentialité . 21
I.5 Description d’un prototype . 22
I.6 Comparaison . 23

I.6.1 Programmation déclarative . 23
I.6.2 Programmation concurrente . 25
I.6.3 Coordination . 25
I.6.4 Spécifications (exécutables) . 26
I.6.5 Programmation multiparadigme 26

I.7 Conclusion . 27

255

TABLE OF CONTENTS

1 Introduction 29
1.1 Overview of the Computation Model . 32

1.1.1 Stores . 33
1.1.2 Actions . 33
1.1.3 Processes . 36

1.1.3.1 Guarded Actions . 36
1.1.3.2 Process Terms . 37
1.1.3.3 Process Definitions . 38

1.1.4 Operational Semantics . 39
1.1.5 Example of the Dining Philosophers 39

1.2 Plan of the Thesis . 42

2 Related Programming Styles 44
2.1 Declarative Programming . 44

2.1.1 (Constraint) Logic Programming 45
2.1.2 Functional Programming . 49

2.1.2.1 Input/Output in Functional Programming 50
2.1.2.2 Concurrent Functional Programming 51

2.1.3 Functional Logic Programming 53
2.1.4 Linear Logic Programming . 55

2.2 Concurrent Programming . 57
2.2.1 Process Calculi and Process Algebras 58
2.2.2 Calculi for Mobile Processes . 59

2.3 Coordination . 61
2.3.1 Coordination Languages . 62
2.3.2 Coordination and Declarative Programming 64

2.4 (Executable) Specifications Techniques 65
2.4.1 Algebraic Specifications . 66
2.4.2 Abstract State Machines . 67

2.5 Multiparadigm Programming . 69

3 Computation Model 75
3.1 Stores . 78

3.1.1 General Properties of Stores . 78
3.1.2 Example of a declarative language 79

3.1.2.1 Syntax . 80
3.1.2.2 Operational Semantics 82

3.1.3 Names . 86
3.2 User Defined Actions . 87

3.2.1 Meta-Signatures for the Definition of Actions 88
3.2.2 Examples of Definitions of Actions 91

3.2.2.1 Adding Rules . 91
3.2.2.2 Removing Rules . 92
3.2.2.3 Assignment . 93
3.2.2.4 Modifying the Signature 94

3.3 Component Signatures . 95

256

3.3.1 Component Signatures . 95
3.3.2 Example of the Multiple Counters 100

3.4 Interactions . 102
3.4.1 Imports and Exports . 103
3.4.2 Translations . 104

3.5 Processes . 106
3.5.1 Action Expressions and Guarded Actions 107
3.5.2 Process Expressions and Process Terms 110
3.5.3 Process Definitions . 114

3.6 Components and Systems . 116
3.6.1 Components . 116
3.6.2 Composing Components: Systems 118

4 Operational Semantics 123
4.1 Operational Semantics of a Component 123

4.1.1 Execution of Closed Guarded Actions in Normal Form 123
4.1.2 Evaluation of Actions and Process Expressions 125
4.1.3 Execution of Process Terms . 126
4.1.4 Combined Operational Semantics of a Component 130

4.2 Semantics of a System . 131

5 Compositional Semantics of a Component 137
5.1 Semantics of Execution Traces . 137
5.2 Semantics of Labeled Execution Traces 141
5.3 Compositionality of the Semantics M 145

5.3.1 Semantical Operators . 146
5.3.1.1 Sequential Composition: ;̃ 147
5.3.1.2 Parallelism: ‖̃ . 148
5.3.1.3 Non-Deterministic Choice: +̃ 149
5.3.1.4 Choice with Priority: ⊕̃ 149

5.3.2 Compositionality of the Semantics M 150
5.3.2.1 Auxiliary Lemmas . 150
5.3.2.2 Proof of Theorem 5.22 155

5.3.2.2.1 Sequential Composition. 155
5.3.2.2.2 Parallel Composition. 157
5.3.2.2.3 Nondeterministic Choice. 159
5.3.2.2.4 Choice with Priority. 160

6 Secrecy Analysis 164
6.1 Formalisation of Secrecy . 165

6.1.1 Simplified Model of a Component 165
6.1.2 Formalisation of Secrecy . 166

6.2 Analysis: Abstraction and Constraint Generation 171
6.2.1 Abstraction . 172
6.2.2 Secrecy Analysis . 178

6.3 Correctness of the Analysis . 181

257

TABLE OF CONTENTS

7 Implementation: Sabir 187
7.1 Presentation of Sabir . 187

7.1.1 Part F . 189
7.1.2 Part A . 189
7.1.3 Part I . 190
7.1.4 Part T . 190
7.1.5 Part P . 190
7.1.6 Execution of a Component . 191

7.2 Example of a Lift Controller . 191

8 Comparison with Related Work 203
8.1 Declarative Programming . 203

8.1.1 Logic Programming . 203
8.1.2 Functional Programming . 207
8.1.3 Functional Logic Programming 209
8.1.4 Linear Logic Programming . 210

8.2 Concurrent Programming . 211
8.3 Coordination . 212
8.4 Specifications . 215
8.5 Multiparadigm Programming . 216

9 Conclusion and Perspectives 219

Bibliography 223

A Concrete Syntax of Sabir 252
A.1 Grammars for Stores . 252
A.2 Translations . 252
A.3 Grammar for Processes . 252

Detailed Table of Contents 255

List of Tables 259

List of Figures 260

Index 261

258

List of Tables

1.1 Process Definitions for the Dining Philosophers 41

3.1 Rules for the Signature Σnat . 81
3.2 Signature of the store for the Multiple Counters Example 101
3.3 Imports from component the X by the component C 102
3.4 Process Definitions for the Component C 115
3.5 Rules for the Store of the Component C 118

4.1 Axiom Schemes Defining the Structural Congruence ≡ on Process Terms 127
4.2 Inference Rules Defining the Transition Relation −→ of TC 128
4.3 Inference Rules for the transition system T 131
4.4 Inference Rules for −→ Labeled with the Associated Events 134

5.1 Axiom Schemes Defining the Structural Congruence ≡ on Process Terms 139
5.2 Labeled Inference Rules Defining the Transition Relation a−−→ of T̃C . . . 139

5.3 Labeled Inference Rules Defining the Transition Relation a`−−→ of CTC . . 143
5.4 Conditions on the Labels of t1 and t2 for the operator ;̃ 148

6.1 Information Flow through Control Flow 165
6.2 Axiom Schemes Defining the Structural Congruence ≡ on Process Terms 167
6.3 Axiom Schemes describing the Execution of Actions 167
6.4 Simplified Transition System sT for a single Component 167
6.5 Axiom Schemes for ⇒ . 174
6.6 Axiom Schemes for ≡s . 174
6.7 Axiom Schemes describing the Abstract Execution of Actions 174
6.8 Transition System ST for the Secrecy Analysis 174

7.1 Signature of the store for the component lifts: Part 1 194
7.2 Signature of the store for the component lifts: Part 2 195
7.3 Rules of the store for the component lifts: Part 1 196
7.4 Rules of the store for the component lifts: Part 2 197
7.5 Process Definitions for the component lifts: Part 1 198
7.6 Process Definitions for the component lifts: Part 2 199

A.1 Syntax for Stores: Language 1 . 253
A.2 Syntax for Translations . 253
A.3 Syntax for Process Definitions and Process Terms 254

259

List of Figures

I.1 Système en exécution . 8
I.2 Niveaux d’une description d’un composant (vision simplifiée) 9
I.3 Exemple de l’exécution d’une affectation 11
I.4 Niveaux d’une description de système 12
I.5 Schémas d’axiomes pour la congruence structurelle ≡ 18
I.6 Règles d’inférence définissant la relation de transition −→ 19
I.7 Règles d’inférence pour le système de transitions T 20
I.8 Vision globale du processus d’interprétation d’un composant 23

1.1 Execution Model of a System . 32
1.2 Basic Levels of a System-Description . 35
1.3 Execution of an Assignment Action . 36
1.4 Dining Table for Six Philosophers . 40
1.5 Automaton Describing the Behaviour of a Philosopher 40
1.6 Possible Execution Sequence for Six Philosophers 42

3.1 Execution Model of a System . 76
3.2 Basic Levels of a Component-Description 77
3.3 Sample of a Meta-Signature . 90
3.4 Levels of a System Description: Structure of a Component-Signature . . 96
3.5 A Counter Window . 100

4.1 Example of an Inference Tree . 130

7.1 A Programmer’s View of a Component 188
7.2 Global Vision of the Interpretation Process of a Component in Sabir . . 189
7.3 Windows of the Lift Controller Application 192
7.4 Example of an Interactive Session for the Component lifts 201

260

Index

Symbols
≡a, 175
•↓↓, 174
[• ⇒ •], 109, 111
:=, 86, 91, 164
•|•, 83, 124
≈
`
π, 169
⊥, 165
+, 111
+̃, 148
+s, 174
‖‖, 119
•↑, 86
〈•, •〉, 107
∼=`
π, 168

=, 80
≡, 125, 165
≡s, 174
∈̃, 177
u, 165
∞, 143
v, 165
@, 165
≤, 82
•↓, 83
‖, 111
‖̃, 148
‖s, 174
0, 59
•, 107
•⇓, 125
⊕, 111
⊕̃, 149
•[•]•, 83, 124
≡̃s, 175
;, 107, 111
;̃, 147
;s, 174

t, 165
>, 165
`, 79
b, 178
⇒, 174
�, 165
≫, 177
7−→, 129
 , 84, 85
−→, 125, 165
99K, 124
↪→, 137
→, 83
⇀⇀, 174
⇀, 175
y, 129
�, 131

A
A, 116
A, 107, 165
A, 96, 97
a, 107
a, 89
Abs, 171, 172
abstract

execution, 170
interpretation, 170
process term, 174
store, 171

abstraction function, 171
ACP, 58
action, 89

expression, 107
function, 99

action, 96, 97, 98
ACT ONE, 58
ada, 79, 106, 163, 216

261

INDEX

ADL, 88, 89, 91, 187, 188
ADT, 34, 66, 88–92, 97, 187
AKL, 46, 49, 54, 205
Alma-0, 71, 72, 215
ALPS, 46
AN , 108
answer substitution, 84
arity, 80
AS-IS, 65, 66, 68, 214
ASM, 66–68, 214, 216

B
b, 115
BABEL, 66
Bauhaus, 63
bisimulation, 168
π?-calculus, 60

C
C, 116
C, 80
C, 66, 73, 79, 106, 216
C++, 66, 72
Caml, 106
Casl, 65
ccp, 46, 47, 49, 60, 63, 88, 92, 136, 161,

203, 204
CCS, 57–59, 210
CH, 34, 51–53, 55, 206–209
CHAM, 57, 67, 125, 126, 135, 161
χ-calculus, 60
choice with priority, 37
CIAO, 48, 203
Clean, 50, 52, 53, 208
CLF, 65, 213
CLP, 49, 205

CLP(FD), 49
CLP(R), 66

CML, 31, 51–53, 56, 207, 208
cobol, 31, 66
COM, 73
combination, 119
Common Lisp, 50, 87, 93
compatible, 180
component, 116, 165

signature, 96

term, 100
compositional, 136
compositional semantics, 143
concatenation, 137
Concurrent

Haskell, see CH
Prolog, 46

condition variable, 190
configurations, 129
confluent, 83
constraint system, 178
constructor term, 81
corba, 106, 213
CoReA, 211
CPS, 51
CΣ, 96, 116
CSP, 58, 59, 70, 129, 210
CT , 100
Curry, 54, 78, 79, 89, 103, 188, 208, 209
CWRL, 54

D
∆, 178
D, 80
DADT, 66, 214
del, 164
DLO, 71
d-oid, 66, 214

E
E, 96, 98
E , 134
ε, 137
e, 140
ECCS, 59
Eden, 52, 53, 208
empty trace, 137
equivalent, 168
Erlang, 52, 87, 190, 207, 208
Escher, 54, 55, 208, 209
ESP, 48, 64, 203
Esterel, 211
eval , 79
event, 132
exec, 124
eXene, 31

262

F
F , 78, 82
Facile, 52, 207
fair, 143

labeled trace, 143
transition sequence, 143

fairness, 141
FL, 50
FlatCurry, 89
formulæ, 78
Forum, 56, 61
FP2, 53, 210
fresh variables, 82
fudgets, 51
Functional Nets, 61
Funnel, 61

G
G, 72
G, 109
G̀, 141
g, 84
γ-calculus, 60
GHC, 46
goal, 84
ground, 81
guarded

action, 36, 109
command, 36, 38

GUI, 51, 53, 192, 198, 199, 208

H
Haggis, 31
Haskell, 50, 51, 54, 79, 91, 188, 206
head normal form, 81
hearsay, 61
HLL, 47
hpref , 149
hypothetical

action, 141
prefix, 149

I
I, 96, 98
I+, 71, 72
IASM, 68, 214
Id , 82

IDL, 106
ILL, 47
index p, 143
inference tree, 128
instance, 82
I/O, 34, 50, 51, 54, 188, 206, 209
irreducible, 83
IΣ, 96
ISO, 58

J
Janus, 46, 204
java

JavaBeans, 73, 217
Java, 66, 190, 213, 216, 217
jocaml, 61, 211
join-calculus, 61, 212

K
KLAIM, 62, 131, 211, 212

L
L, 78, 88, 96
L, 165
`, 167
labeled

action, 141
trace, 141

λ-calculus, 49, 57, 59, 60, 184, 210
LCC, 47
Leda, 72
length of a trace, 137
LGL, 63
lhs, 81
LIFE, 70, 215, 216
Linda, 55, 62–65, 93, 203, 207, 212
Linda 3, 62, 63
LinLog, 56, 65, 213
LO, 56
locally atomic, 127
LogLisp, 53
Lolli, 56
Lotos, 58, 70, 210
Lustre, 211
Lygon, 56

M
M, 143

263

INDEX

M , 88, 96
m, 131
Manifold, 63, 212
Maude, 34, 35, 72, 87, 89, 106, 215–217
maximal

trace, 139
transition sequence, 137

Mekano, 213
meta-language, 34
meta-signature, 88
mgu, 82
Miranda, 50
ML, 51
MLP, 73, 106, 213
MO, 88, 96
Modula-2, 71
monitor, 190
MOP, 87
MOzart, 205
MΣ, 88, 96, 97
Multi-Prolog, 64

N
N , 94, 108, 110
Name, 86
name-signature, 86
names, 86
narrowable, 84
narrowing step, 85
narrowing strategy, 85
new, 87, 164
new symbols, 95
nondeterministic choice, 37
normal form, 83

O
O, 139
Ω, 78, 80, 96
o, 140
ocaml, 50, 61, 94, 102, 103, 105, 106,

187–190, 211, 250
Occam, 58, 66
operation-rooted, 81
operational semantics, 139
OSI, 58
Oz, 49, 60, 93, 205

P
P , 97, 98
P, 110, 165
Π, 97, 98
rP, 113
p, 140
p, 83
p, 110
rp, 114
p-index, 143
p-rule, 111
p-variant, 115
PAISLey, 70
PAKCS, 209
parallel composition, 37
PARLOG, 46, 66
Pascal, 73
pattern, 81
phrases, 78
pi, 116
π-calculus, 56, 59–61, 67, 87, 94, 129,

184, 210–212, 219
Pict, 59, 210
PN , 111
PO, 99
PoliS, 62, 64
Pos, 83
position, 83
ΠR, 111
ΠR, 116
privacy lattice, 165
privacy map, 167
process

call, 110
definition, 114
expression, 110
term, 37

in normal form, 111
process, 96, 97, 98
process term, see also abstract/restricted

process term
profile, 80
program, 82
Prolog, 46–48, 55, 64, 66, 71, 79, 87, 92,

104, 203
PS, 97, 98

264

Python, 213

Q
Q, 129
Q, 125

R
R, 81
R, 78, 82, 116
RECEIVE, 132
reducible, 83
reduction step, 83
reflective, 87
reification, 34
rename, 115, 127
restricted

p-rule, 112
process expression, 112
process term, 37
process function, 112

rewriting strategy, 85
ρ-calculus, 60
rhs, 81
RL, 171
Rp, 116
rule, 78, 81

S
S, 78
Σn, 86
Σ, 78, 80, 96, 97
S, 78, 80, 96
S, 118
σ, 172
σ, 82
Sabir, 186–191, 200, 250
Scheme, 50, 87, 93
SDL, 66
secrecy, 163
sel , 123
SEND, 132
sensible, 109
sequential composition, 37
signature, 78, 80
skip, 164
Smalltalk, 70
SML, 50–52, 66, 86–89, 91, 93

SML/NJ, 94
SN , 96
ŝn, 96, 99, 116
sn, 96
SP, 63, 64
ST, 172
St, 85
sT, 165
store, 78, see also abstract store
storename, 96, 97, 98
sub-signature, 96
Sub, 82
substitution, 82, see also answer substi-

tution
success, 144
Symb, 179
system, 118

T
T , 129
T̃, 136
T, 125
T , 79, 80, 165
t, 80
t-rule, 105
TCP/IP, 186
tell, 164
term, 80, see also component term, con-

structor term, (abstract/restricted)
process term, translation term

Tr , 105, 116
Tr , 96, 104
Tr, 105
trace, 136, 137
Trans, 96, 98
transition sequence, 137
translation

signature, 104
term, 105

TRS, 82
true, 78
Truth, 78
TS , 137, 143
TΣ, 104
Tuple Centres, 64, 212
TyCO, 59

265

INDEX

U
U , 175
ULTRA, 48
unconditional narrowing step, 84
unconditional reduction step, 83
unifier, 82
unix, 72, 73, 207
UTS, 73, 106

V
V, 80, 81, 110
variable, 79, see also condition variable,

fresh variable
variant, 82
VHDL, 66

W
WAM, 48
weak equivalence, 175
weaker constraint system, 178

X
X , 59
X, 79, 80

266

Étude de la programmation logico-fonctionnelle concurrente

La construction de programmes nécessite l’utilisation d’outils adaptés. Un outil particulier
est le langage de programmation. Les langages logico-fonctionnels sont des langages de program-
mation dits déclaratifs qui se basent sur les notions mathématiques de fonction et de prédicat.
Ce fondement théorique solide facilite à la fois la description d’un système à un niveau proche
de la spécification ainsi que la validation de programmes. Néanmoins, les concepts sous-jacents
aux langages logico-fonctionnels sont insuffisants pour la description aisée de systèmes com-
plexes qui nécessitent l’interactivité, la concurrence et la distribution. Pour la modélisation de
ces systèmes, la notion de processus a été introduite. Dans le contexte des algèbres de processus,
un processus est caractérisé par les actions qu’il est capable d’exécuter. Cependant, les langages
fondés uniquement sur les algèbres de processus doivent être étendus afin d’éviter le codage de
fonctions et de prédicats en termes de processus.

Dans cette thèse nous proposons un modèle de calcul qui intègre la programmation concur-
rente et déclarative. Nous suggérons de modéliser un système par un ensemble de composants.
Chacun de ces composants comporte un programme déclaratif, appelé store, et un ensemble
de processus interagissant par l’exécution d’actions. De plus, un composant peut contenir de
nouvelles actions définissables par le programmeur. L’interaction entre composants est fondée
sur le même principe, c.-à.-d. un processus peut exécuter des actions sur les stores des autres
composants. Les différents composants d’un système peuvent utiliser des langages déclaratifs
différents pour la description de leurs stores respectifs, ce qui nécessite la traduction des va-
leurs communiquées. Nous donnons une sémantique compositionnelle ainsi qu’une analyse de
la confidentialité pour les processus d’un composant, et présentons les principes d’un prototype
implanté.

Spécialité : « Informatique : Systèmes et Communications »
Mots clefs : Langages de programmation, langages déclaratifs, langages logico-fonctionnels,
programmation concurrente, algèbres de processus, mobilité, programmation multiparadigme,
action, composants, compositionnalité, confidentialité.

On Concurrent Functional Logic Programming

The construction of programs needs the use of appropriate tools. A particular kind of tool
are programming languages. Functional-logic programming languages are declarative languages
based on the mathematical notions of functions and predicates. This solid formal foundation
facilitates both, the concise description of systems at a level close to specifications, as well as the
validation of programs. Nevertheless, the underlying concepts are insufficient for a convenient
description of complex systems where interactivity, concurrency and distribution are needed.
In order to model such systems, the notion of processes has been introduced. In the context
of process algebræ, a process is characterised, informally, by the actions it might execute.
However, languages based solely on process algebræ have to be extended with the notions of
functions and predicates to avoid the encoding of these notions by means of processes.

In this thesis, we study an integration of declarative and concurrent programming. We
model a system as a set of components. Each component contains a declarative program,
called store, and a set of processes which interact by the execution of actions and are described
by means of process algebræ. Additionally, a component might contain definitions of further
actions definable by the programmer. Interaction between components uses the same scheme:
Processes can execute actions on the store of the other components. The different components
of a system can use different declarative languages for the description of their stores, so that
the translation of the communicated values is necessary. We give a compositional semantics
and a secrecy analysis for the processes of a component and present the outlines of a prototype
implementation.

Keywords: (Declarative) Programming Languages, Functional-Logic Programming, Concur-
rent Programming, Process Algebra, Mobility, Multiparadigm Programming, Action, Compo-
nents, Compositionality, Secrecy.

Laboratoire leibniz – Institut imag, 46, avenue Félix Viallet, 38031 Grenoble Cedex, france

