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Résumé

Cette thèse est consacrée à l’étude des équations de réaction diffusion non-locale du type
∂u
∂t − (J ? u − u) = f(u). Ces équations non-linéaires apparaissent naturellement en phy-
sique et en biologie voir [28, 37, 48]. On s’intéresse plus particulièrement aux propriétés
(existence, unicité, monotonie) des solutions du type front progressif. Trois classes de non-
linéarités f (bistable, ignition, monostable) sont étudiées. L’existence dans les cas bistable et
ignition est obtenue via une technique d’homotopie. Le cas monostable nécessite une autre
approche. L’existence est obtenue via approximation des équations sur des semi-intervales
infinis (−r,+∞). L’unicité et la monotonie des solutions sont quand à elles obtenues par
méthode de glissement. Le comportement asymptotique ainsi que des formules pour les
vitesses sont aussi établis.

Mots-clés: fronts progressifs, sur et sous-solution, principe du maximum, équations de réaction-
diffusion non-locale, méthode de glissement.

Abstract

This PHD Thesis is devoted to the study of the exitence, uniqueness and qualitative be-
havior of travelling wave solutions of non-local reaction diffusion equations ∂u

∂t −(J?u−u) =
f(u). Such nonlinear equations arise in population dynamics or in neural network when con-
sidering non-local diffusion, see [28, 37, 48]. We treat three different classes of nonlinearities
f (bistable, ignition, monostable), which are commonly used in the litterature. Existence for
bistable and ignition nonlinearity are obtained using a homotopy argument. For monostable
nonlinearity, existence is obtained through approximation problem set on semi infinite in-
terval (−r,+∞). Uniqueness and monotonicity of the travelling wave are obtained using
sliding techniques. Asympotic behavior and speed formula are also investigate.

Keywords: travelling front, super and sub-solution, maximum principle, non-local reaction-
diffusion equations, sliding techniques
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Introduction générale

1 Introduction et motivation de la thèse

La modélisation et l’analyse mathématique des systèmes biologiques est d’un grand in-
térêt pour mieux comprendre notre environnement ainsi que son évolution. De nombreuses
analogies entre les réacteurs chimiques et certains systèmes biologiques ont conduit les cher-
cheurs à introduire des modèles du type “réaction-diffusion” dans la description de ceux-ci.
Notamment, au niveau d’une population, les individus interagissent et se déplacent libre-
ment, ainsi il n’est guère étonnant d’obtenir des modèles pour la dynamique d’une popu-
lation similaire à ceux décrivant une réaction chimique. Ces modèles de réaction-diffusion
sont essentiellement fondés sur le système d’équations suivant :

ut − γ∆u = f(u) sur Rn × R+, (1)

où u est un vecteur à m-composantes (chaque composante représentant la mesure d’une
espèce qui se diffuse), γ est une matrice de diffusion et ∆ est l’opérateur de Laplace. La
fonction vectorielle f est un terme généralement non-linéaire décrivant toutes les réactions
et interactions considérées.

C’est depuis les premiers travaux de Fisher (1930)[35] sur la propagation d’un gène mu-
tant au sein d’une population donnée que ces systèmes et leur généralisation ont donné lieu
à d’intenses recherches et se sont montrés très robustes dans la description de phénomènes
variés. On les retrouve, entre autres, dans la description de phénomènes liés à la dynamique
des populations, l’écologie, les réseaux neuronaux, la combustion, la chimiotaxie ... et bien
d’autres encore.

Ces systèmes d’équations sont caractérisés par l’existence de fronts progressifs décrivant
l’évolution en temps long du phénomène considéré : ainsi la proportion u des gènes mutants
dans l’équation de Fisher (m=1)

ut − γ∆u = u(1− u) sur Rn × R+ (2)

se propage (après un certain temps) à vitesse constante et le long d’un profil déterminé (aussi
appelé onde progressive). Ces fronts progressifs sont des solutions u(x, t) de (1) qui peuvent
s’écrire sous la forme u(x, t) = φ(x.e + ct) où e et c sont respectivement un vecteur de Sn−1

et un réel en général inconnu. La fonction φ est une fonction scalaire qui vérifie l’équation
différentielle suivante :





φ′′ − cφ′ + f(φ) = 0 sur R
φ(x)→ 0 quand x→ −∞
φ(x)→ 1 quand x→ +∞

1



Introduction générale

Un front progressif est alors un couple (φ, c) où c représente la vitesse de l’onde et φ son
profil.

L’équation (1) est, en fait, une approximation locale dans laquelle on suppose que les
quantités étudiées à l’instant t et au point x ne se diffusent que vers ses voisins immédiats.

Je me suis intéressé dans cette thèse aux propriétés (existence, unicité, monotonie) des
fronts progressifs dans des modèles prenant en compte les effets non locaux de la diffusion.
Dans ces modèles (introduits très tôt par Kolmogorov-Petrovskii-Piskounov (1937) [46]), le
terme de diffusion γ∆u est remplacé par un opérateur intégral de la forme J?u−u, où J peut
être assimilé à une densité de probabilité et J ?u(x) =

∫
Ω J(x−y)u(y)dy. Les modèles étudiés

rendent aussi compte de termes de diffusion mixte, c’est-à-dire composés d’une partie non-
locale J ?u−u et d’une partie locale modélisée par un opérateur de diffusion classique. Pour
fixer les idées, j’étudie l’équation intégrodifférentielle suivante :

ut − γ∆u− β(J ? u− u) = f(u) sur Rn × R+, (3)

où γ et β sont deux réels positifs ou nuls, J est une fonction continue, positive, paire et d’in-
tégrale 1. Lors de cette analyse, j’ai considéré les trois classes de nonlinéarités f suivantes,
communément utilisées dans la littérature :

– A1 f est bistable i.e. il existe ρ > 0 tel que f vérifie
– f |(0,ρ) < 0 et f |(ρ,1) > 0
– f(0) = f(1) = 0 et f ′(1) < 0 ;

– A2 f est du type ignition i.e. il existe ρ > 0 tel que
– f |(0,ρ) ≡ 0 et f |(ρ,1) > 0
– f(0) = f(1) = 0 et f ′(1) < 0 ;

– B f est monostable i.e. f(0) = f(1) = 0,f |(0,1) > 0 et f ′(1) < 0.
Le graphique ci-dessous résume les propriétés de ces trois classes de nonlinéarités :

0 00 ρρ

bistable ignition KPP

f(s)

1 1 1

2



2. Intérêt de cette modélisation

Les nonlinéarités du type A1 interviennent plutôt dans la description de réactions chi-
miques, notamment pour expliquer les transitions de phases ainsi que la propagation d’in-
terface. En effet, les états s = 0 et s = 1 représentent les états stables du système et les fronts
progressifs décrivent la transition à vitesse constante d’un état stable vers un autre. La vitesse
de la transition c n’est alors rien d’autre que la vitesse de l’onde progressive. Le prototype
de fonction bistable est donné par f(u) = u(a − u)(u − 1). Pour plus de détails, on peut se
référer aux articles de Fife[30, 32] ; Fife, Mc Leod [34] ; Chen [16] et le livre de Murray [48]
ainsi qu’aux références qu’ils contiennent. Les types A2 et B interviennent plutôt en combus-
tion où généralement le terme de réaction est de la forme g(s) = (1 − s)e−Es . Ainsi, pour E
assez grand, une nonlinéarité du type ignition (A2) apparaît comme une bonne approxima-
tion du terme de réaction g. Pour plus d’information voir Berestycki, Larrouturou [7] ; Kanel’
[41] et Zeldovich, Frank-Kamenetskii [62]. Dans la classe des fonctions monostables, il existe
une sous-classe qui joue un grand rôle dans la modélisation en dynamique de populations.
Cette sous-classe, introduite par Kolmogorov-Petrovski-Piskounov [46], est caractérisée par
les hypothèses supplémentaires f ′(0) > 0 et f ′(0)s ≥ f(s). On fera donc référence à des
nonlinéarités du type KPP pour cette sous-classe. On remarquera que la nonlinéarité utilisée
par Fisher est de ce type.

Lorsque β = 0, l’existence et l’unicité ou la multiplicité de fronts progressifs pour ces
trois classes sont bien connues, voir [4, 7, 35, 34, 41, 46, 61, 62]. Notamment, les résultats
d’existence et d’unicité diffèrent suivant les nonlinéarités considérées. En effet, dans le cas
d’une nonlinéarité monostable il existe une infinité de solutions, contrastant avec l’existence
d’un unique front (φ, c) dans les autres situations. On résume les résultats d’existence et
d’unicité par le théorème suivant :

Théorème 0.1.1. (Cas β = 0) Soit f une fonction C1(R),
– Si f est du type A1 ou A2, alors il existe un front progressif (φ, c) solution de (1).De plus, ce

front est unique à translation près c’est-à-dire, si (φ̃, c̃) est un autre front progressif solution de
(1) alors c = c̃ et il existe un réel τ tel que φ̃(.) = φ(.+ τ).

– Si f est du type B, alors il existe un réel c∗ > 0 tel que pour toute vitesse c ≥ c∗, il existe
un front progressif (ψ, c) solution de (1), et pour toute vitesse c < c∗, il n’existe pas de front
progressif solution de (1).

2 Intérêt de cette modélisation

L’un des intérêts de cette modélisation non-locale de la diffusion est qu’elle permet de
tenir compte de bon nombre d’interactions à longue distance jusqu’alors ignorées. Notam-
ment, lors de la dispersion d’une population soumise à une pression sélective, le terme
J(x − y)dy est considéré comme la probabilité d’un individu à la position y de migrer vers
la position x. En posant p(x, t) la densité de population au temps t et à la position x, la
proportion d’individus qui migrent vers la position x par unité de temps est donnée par
(
∫
R J(x − y)p(y, t)dy)δt. En supposant que la densité globale de population reste constante,

les effets dus à la migration sur la répartition des individus sont donnés par :

δp(x, t) =

(∫

R
J(x− y)p(y, t)dy − p(x, t)

)
δt (4)

3



Introduction générale

En combinant les effets migratoires et ceux dus à la sélection, on obtient l’équation suivante :

∂p(x, t)

∂t
=

∫

R
J(x− y)p(y, t)dy − p(x, t) + f(p). (5)

Cette dernière est en fait un cas particulier de l’équation (3) (i.e γ = 0 et β = 1).

2.1 Quelques exemples de modèles

Cet opérateur de diffusion, par son caractère très général, se retrouve dans de nombreux
modèles. Voici quelques exemples que l’on peut trouver dans la littérature.

A Transition de phase non-locale

Dans [5], Bates, Fife, Ren and Wang introduisent et étudient un modèle général de tran-
sition de phase non-locale qu’ils modélisent par l’équation suivante

∂U

∂t
= J ? U − U + f(U) pour (ξ, t) ∈ R× R+,

où f est une nonlinéarité du type bistable (i.e. du type A1). Cette équation est une gé-
néralisation de l’équation d’Allen-Cahn classique. Notamment elle permet d’étudier des
phénomènes de propagation d’interfaces dans des cristaux. Une manière d’obtenir cette
équation est de considérer le “flot gradient L2” de l’énergie libre de Helmholtz défini par
E(u) = 1

4

∫
R
∫
R J(x− y)(u(x)− u(y))2dxdy +

∫
R F (u)dx avec J un noyau positif symétrique,

d’intégrale 1 et F ′ = f . Cette énergie libre est une généralisation naturelle de l’énergie de
Ginzburg-Landau classique. On peut donc la voir comme une équation analogue à l’équa-
tion de réaction-diffusion classique (1) mais dans un cadre non-local.

Dans les modèles d’Ising, cette équation sort naturellement comme équation limite quand
la densité des particules est considérée très grande. On parle alors de propagation d’instan-
ton. Pour plus d’information sur ce sujet voir [24, 26, 27].

B “Morphogénèse”

L’étude de la formation de cellules fait intervenir des modèles “activateur-inhibiteur”.
Certains de ces modèles comme

{
∂A
∂t −Axx = f(A)− I
−Ixx + I = A

peuvent se reformuler en une équation du type (3). En effet, on peut remarquer que la se-
conde équation peut s’inverser et ainsi on peut expliciter l’inhibiteur I en fonction de l’acti-
vateur A. On obtient alors I = J ? A avec J ? A =

∫
R e
−|ξ−y|A(y)dy et le système précédent

se réécrit
∂A

∂t
= Axx + J ? A−A+ g(A) pour (ξ, t) ∈ R× R+ (6)

où g(A) = f(A)+A. Ces modèles ont été introduits pour expliquer la formation de certaines
structures complexes. Pour plus d’information on peut se référer au livre de James Murray
“Mathematical Biology”[48].

4



2. Intérêt de cette modélisation

C Réseaux neuronaux

On retrouve une forme non-linéaire de l’équation (3) dans l’étude des réseaux neuro-
naux. Dans une étude sur la propagation d’une excitation à travers une membrane, Ermen-
trout et McLeod [28] propose le modèle suivant : on considère un réseau neuronal unidi-
mensionnel, uniformément réparti en espace et qui varie continûment en temps. Ce type de
réseau peut être obtenu en collant bout à bout une série de cellules neuronales. Si on définit
u comme le potentiel membranaire à la position x et au temps t et si on suppose que la ré-
ponse à une excitation d’une cellule neuronal est modélisée par une fonction non-linéaire S
du potentiel u, la propagation du potentiel membranaire à travers le réseau est alors régie
par l’équation suivante :

∂U

∂t
= J ? S(U)− U pour (ξ, t) ∈ R× R+ (7)

où S ∈ C1(R), S′ > 0 dans [0, 1], S(0) = 0, S(1) = 1, S ′(0) < 1, S′(1) < 1 et J est un noyau
positif, symétrique, régulier et d’intégrale 1. Dans le cas d’une onde stationnaire, on remar-
quera que Lv := J ? v − v avec v := S(u) et f(v) := v − S−1(v).

2.2 Équations limites et justification de modèles discrets.

Un autre point d’intérêt de ce cadre non-local est de pouvoir retrouver l’équation clas-
sique de réaction-diffusion comme équation limite pour une suite de noyaux Jε appropriée.
En effet, en dimension 1, en prenant Ψ une fonction paire à support compact de masse unité
et Jε(x) := 1

εΨ(xε ) avec ε > 0 petit. Un rapide calcul montre que

Jε ? u− u =
1

ε

∫
Ψ(

1

ε
y)(u(x− y)− u(x)) dy =

∫
Ψ(z)(u(x− εz)− u(x)) dz

= −ε
∫

Ψ(z)u′(x)z dz + ε2
∫
z2Ψ(z)u′′(x) dz + o(ε2) = dε2u′′(x) + o(ε2),

où d =
∫
RΨ(z)z2 dz représente le deuxième moment de Ψ. Ainsi on peut voir l’équation de

réaction-diffusion classique comme la première approximation de l’équation (3).
De même, d’un point de vue numérique, l’espace n’est plus considéré continu et cette ap-

proche permet de justifier certains résultats sur l’existence de solutions dans le cadre de pro-
blèmes mélangeant les descriptions continues et discrètes. En effet, on retrouve par exemple,
un Laplacien discret en construisant explicitement une suite de noyaux Jε adéquate. Tou-
jours, en dimension 1, soit Ψ une fonction paire à support compact de masse unité et Ψε(x) :=
1
εΨ(xε ) avec ε > 0. On définit Jε de la manière suivante Jε(x) := 1

2 (Ψε(x+ h) + Ψε(x− h))
où h est le pas de discrétisation. Un simple calcul montre que :

Jε ? u− u =
1

2ε

∫
(Ψ(

x− h− y
ε

) + Ψ(
x+ h− y

ε
))(u(y)− u(x)) dy

=
1

2ε

∫
Ψ(
z

ε
) ((u(x− h− z) + u(x+ h− z)− 2u(x)) dz

=
1

2

∫
Ψ(t)((u(x− h− εt) + u(x+ h− εt)− 2u(x)) dt

→ 1

2
(u(x− h) + u(x+ h)− 2u(x)) = h2∆hu quand ε→ 0.
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3 Résultats obtenus

Les résultats obtenus se divisent en deux parties : on établit tout d’abord l’existence et
l’unicité de la solution dans le cas d’une nonlinéarité ignition (i.e. f du type A2) et on étend
les résultats d’existence et d’unicité pour le cas d’une fonction bistable précédemment ob-
tenus par Bates, Fife, Ren, Wang [5] et Xinfu Chen [17]. Puis en utilisant d’autres méthodes
et en collaboration avec Louis Dupaigne, nous avons pu montrer l’existence d’une demi-
droite de solutions pour des nonlinéarités monostables. Les techniques développées lors de
ce travail conjoint, nous ont permis d’autre part de caractériser la vitesse des fronts progres-
sifs par une formule variationnelle et d’obtenir des estimations du comportement à l’infini
des solutions. Par ailleurs, via des techniques de glissement, j’ai pu établir le comportement
monotone des solutions dans la majeure partie des cas et souvent montrer l’unicité de ces so-
lutions. Cependant le comportement exact des solutions en −∞ dans le cas de nonlinéarités
monostables n’est toujours pas connu. Ce comportement nous permettrait de complètement
caractériser les solutions du problème.

3.1 Construction de fronts progressifs

Formulons maintenant de manière précise l’équation vérifiée par un front progressif (en
dimension un) : si f est une nonlinéarité telle que f(0) = f(1) = 0, nous cherchons des
couples (u, c) tels que u ∈ C1(R) et c ∈ R soient solution de





J ? u− u− cu′ + f(u) = 0 dans R
u(x) → 0 quand x→ −∞
u(x) → 1 quand x→ +∞.

(8)

J ? u est le produit de convolution usuel et nous supposerons que J ∈ W 1,1(R) est une
fonction positive, paire et d’intégrale 1.
Dans le modèle de Fisher, ces hypothèses reviennent à postuler que la dispersion des gènes
est homogène dans tout l’habitat et ne dépend que de la distance entre deux niches de po-
pulation données.

Nous imposons également une condition plus technique de décroissance à l’infini sur J :
nous supposons qu’il existe λ ∈ R tel que

∫

R
J(z)eλz dz <∞. (H1)

Pour certains résultats cette condition de décroissance peut être affaiblie : on imposera seule-
ment que le premier moment de J soit fini, en d’autres termes :

∫

R
J(z)|z| dz <∞. (H2)

Les premiers résultats sur l’équation (8) sont dûs à Bates, Fife, Ren et Wang : pour une nonli-
néarité de type bistable (par exemple f(u) = u(1−u)(u−1/2)), ils ont montré l’existence d’un
front (u, c) où u est une fonction croissante. De plus, ce front est unique à translation près : si
(v, c′) est une autre solution croissante, alors c = c′ et il existe τ ∈ R tel que u(x) = v(x+ τ).

En utilisant une méthode de continuité développée par Bates, Fife, Ren et Wang, (cf
Chap1 ) j’ai pu étendre les résultats d’existence et d’unicité à des nonlinéarités de type ig-
nition (i.e. f s’annule sur un intervalle [0, θ] puis reste strictement positive sur [θ, 1]). Les
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estimations obtenues, permettent aussi d’affaiblir certaines hypothèses techniques postulées
par Bates et al. et d’obtenir l’existence d’au moins une solution dans le cas d’une nonlinéarité
monostable (i.e. du type B).

Comme dans le cas (connu) d’une diffusion locale, l’unicité du front n’est plus valable
pour une nonlinéarité de type monostable. Ainsi la méthode de continuité ne s’applique
plus. Néanmoins, en introduisant de nouveaux outils, avec Louis Dupaigne, nous avons
prouvé l’existence d’une vitesse minimale c∗ > 0 telle que l’on puisse construire des fronts
pour toute vitesse c ≥ c∗, alors qu’il n’existe aucun front (croissant) de vitesse c < c∗.

Pour résumer, on obtient le théorème d’existence et d’unicité suivant :

Théorème 0.3.1.
Soit f une fonction C1(R),

– Si f est du type A1 ou A2, alors il existe un front progressif (φ, c) solution de (8).De plus, ce
front est unique à translation près, c’est-à-dire, si (φ̃, c̃) est un autre front progressif solution
de (8) alors c = c̃ et il existe un réel τ tel que φ̃(.) = φ(.+ τ).

– Si f est du type B alors il existe un réel c∗ > 0, tel que pour toute vitesse c ≥ c∗, il existe
un front progressif (ψ, c) solution de (8) et pour toute vitesse c < c∗ il n’existe pas de front
progressif croissant solution de (8).

Remarque 0.3.1. Les résultats établis pour le cas γ = 0, restent valables lorsque le coefficient de
diffusion locale γ est non nul.

3.2 Comportement à l’infini, caractérisation de la vitesse

Dans les trois cas évoqués et sous l’hypothèse d’intégrabilité exponentielle du noyau,
quand un front existe, nous obtenons également son comportement asymptotique au voisi-
nage de ±∞. On montre qu’il existe des constantes C, λ, µ, ν > 0 telles que

C−1e−λx ≤ 1− u ≤ Ce−µx quand x→ +∞
et Ceνx ≤ u quand x→ −∞.

Deplus, si f est du type bistable, ignition ou monostable telle que f ′(0) > 0, alors il existe
des constantes C, ν ′ telles que

u ≤ Ceν′x quand x→ −∞.

Enfin, nous obtenons des formules min-max caractérisant la vitesse du front (dans les cas
bistable et ignition), respectivement la vitesse minimale du front (dans le cas monostable) :

c∗ = min
w∈X

sup
x∈R

{
J ∗ w − w + f(w)

w′

}
,

où X = {w|w′ > 0, w(−∞) = 0, w(+∞) = 1}. Par ailleurs, on établit aussi la dépendance
monotone de la vitesse c∗ en fonction de la nonlinéarité f quand f est une nonlinéarité
bistable ou ignition. On obtient de cette propriété de monotonie une autre caractérisation
de la vitesse minimale c∗ dans le cas monostable. Plus précisément, pour f une nonlinéarité
monostable, il existe une suite de fonction (fn)n∈N de type ignition approximant f tel que

lim
n→+∞

cn = c∗,

où cn est la vitesse du front associée à fn.

7
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3.3 Monotonie et unicité par méthode de glissement

La méthode de glissement développée par H. Berestycki et L. Nirenberg [11] permet entre
autre chose d’obtenir une propriété de monotonie des solutions positives dans le cas de pro-
blèmes classiques. Cette méthode est essentiellement fondée sur une propriété de principe
du maximum vérifiée par l’opérateur. Je me suis intéressé au développement de cette mé-
thode dans un cadre abstrait recouvrant celui d’équations intégrodifférentielles. J’ai obtenu
par cette méthode des résultats de monotonie pour trois grandes classes de nonlinéarités
(bistable, ignition, monostable). Pour clarifier les choses, on étudie le comportement des so-
lutions positives des deux classes de problèmes suivants :

Lu = −f(u) sur R (9)
u(x)→ 0 quand x→ −∞ (10)
u(x)→ 1 quand x→ +∞ (11)

et

Lu = −f(u) sur (a,+∞) (12)
u(a) < 1 (13)

u(ξ)→ 1 quand ξ → +∞ (14)

où L est un opérateur abstrait qui vérifie :

∃k ∈ N L : Ck(R)→ C0(R)

On suppose aussi que L vérifie les propriétés suivantes :
– Soit Uh(.) := U(. + h), alors pour tout h > 0 on a L[Uh](x) ≤ L[U ](x + h) pour tout
x ∈ R.

– Si v est une constante positive, alors L[v](x) ≤ 0 pour tout x ∈ R.
On suppose par ailleurs que L vérifie la propriété suivante qui est une version renforcée du
principe du maximum fort :

Hypothèse 1. Principe du maximum
Soit u une fonction régulière, si u atteint un minimum (resp. maximum) en un point x de R alors on
a l’alternative suivante :

– Soit L[u](x) > 0 (resp. < 0)
– Soit L[u](x) ≤ 0 (resp. ≥ 0) et u est identiquement égale à une constante.

Par ailleurs, on suppose que les nonlinéarités f sont des fonctions régulières et choisies
de telle sorte que les solutions u vérifient 0 < u < 1. On établit trois théorèmes correspon-
dant aux trois types de nonlinéarités f :

Théorème 0.3.2. Soit f ∈ C1((0, 1)) telle que pour un ρ > 0 on ait f |(0,ρ) ≡ 0, f |(ρ,1) > 0,
f(0) = f(1) = 0 et f ′(1) < 0. Alors toute solution positive et régulière de (9)-(11) est strictement
croissante.

8
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Théorème 0.3.3. Soit f ∈ C1((0, 1)) telle que f |(0,1) > 0, f(0) = f(1) = 0 et f ′(1) < 0. Si u
est une solution positive, régulière de (9)-(11) et strictement croissante sur (−∞,−M) pour un M
positif alors u est strictement croissante sur R.

Théorème 0.3.4. Soit f ∈ C1((0, 1)) telle que f |(0,1) ≥ 0, f(1) = 0 et f ′(1) < 0. Alors toute
solution positive et régulière de (12)-(14) est strictement croissante.

Les techniques développées s’adaptent assez aisément en dimension supérieure et per-
mettent d’obtenir des théorèmes analogues aux théorèmes 0.3.2 et 0.3.3 pour des problèmes
posés sur des cylindres infinis Σ = ω × R du type :

Lu = −f(u) sur Σ (15)
u(x′, xN )→ 0 quand xN → −∞ (16)
u(x′, xN )→ 1 quand xN → +∞ (17)

où ω est un ouvert borné de RN−1, et les convergences sont supposées uniformes par rap-
port à x′. On obtient de même un résultat similaire au théorème 0.3.4, en considérant des
problèmes sur des demi-cylindres infinis du type Σ = ω × (a,+∞). Les démonstrations de
ces généralisations ne sont pas présentées dans cette thèse.

3.4 Commentaires et perspectives

De cette analyse ressort en premier lieu le caractère général des solutions du type front
d’onde. En effet, ces solutions persistent dans le cadre de modèles plus généraux prenant
en compte des interactions plus complexes et jusqu’alors ignorées. Une conséquence surpre-
nante est que les théorèmes obtenus sont à peu de chose près les mêmes que ceux existant
pour des équations de réaction-diffusion classiques. Néanmoins, ces résultats étaient pré-
visibles puisque dans certains cas limites, on retrouve les modèles classiques. Ces résultats
soulignent la pertinence des modèles classiques dans l’étude des phénomènes de propaga-
tion.

La principale difficulté rencontrée lors de cette étude a été le développement d’approches
utilisant les outils classiques d’analyse s’adaptant aussi bien à des équations différentielles
que celles considérées dans cette thèse. En effet, le caractère non-local de nos opérateurs
ainsi que leur faible régularité rendent très difficile, voir impossible, une démarche classique
d’approximation sur des sous-domaines bornés. Notamment, dans le cas où le terme de
diffusion locale est absent (i.e. γ = 0) la plupart des approches simples et directes envisagées
ont échoué.

Les perspectives de recherches sont multiples : En effet, je me suis aperçu tout au long de
cette thèse de la forte connexion des opérateurs intégraux considérés avec diverses branches
de l’analyse moderne et de la modélisation. Notamment, du point de vue de l’analyse fonc-
tionnelle, les espaces X = {u ∈ Lp(Rn)|

∫
Rn
∫
Rn J(x− y)(u(x)−u(y))pdxdy <∞} considérés

font l’objet d’études importantes et la compréhension des propriétés de ceux-ci reste un des
objectifs actuels.

Par ailleurs, une voie naturelle de recherches est d’obtenir des résultats concernant d’autres
types de front, par exemple les fronts pulsatoires. Ces fronts pulsatoires apparaissent natu-
rellement lors de l’incorporation dans les modèles d’une inhomogénéité périodique. Cette
inhomogénéité périodique peut se manifester au niveau de l’opérateur de diffusion, sur les

9



Introduction générale

fonctions de réaction ou de manière structurelle (i.e. le domaine sur lequel se pose l’équa-
tion est périodique). De nombreux travaux ont déjà été réalisés dans cette voie pour des
opérateurs différentiels classiques, voir [6]. Une généralisation à un cadre non-local de ces
résultats semble donc envisageable.

Une autre perspective intéressante est l’étude de modèles incorporant des termes de ré-
actions non-locaux. Dans le modèle de Fisher par exemple, le terme de sélection f(u) =
λu(1 − u) est alors remplacé par f(u) = λu(1−K ? u) où K est une autre densité de proba-
bilité. On obtient alors une équation de la forme

ut − γ∆u− β(J ? u− u) = λu(1−K ? u) sur Rn × R+. (18)

Ces équations ont été récemment étudiées du point de vue probabiliste par Méleard [37] et
également par Perthame et Souganidis [50] dans le cas particulier où J = K.

Enfin, l’étude effective du problème parabolique (3) avec donnée initiale à support com-
pact ainsi que la simulation numérique de la propagation de fronts sont en cours.

4 Plan de la thèse

Cette thèse comprend deux parties composées elles même de deux chapitres. La première
partie (Chap1 et Chap2) concerne principalement l’existence et suivant les cas l’unicité ou la
multiplicité de fronts progressifs. Le cas d’une nonlinéarité ignition est étudié dans le cha-
pitre 1. Le chapitre 2 pour sa part est dédié au cas monostable. La seconde partie (Chap3 et
Chap4) concerne les propriétés qualitatives des fronts progressifs. L’étude sur le comporte-
ment des fronts en ±∞ ainsi que la dérivation de formules variationnelles pour la vitesse
minimale c∗ sont obtenues dans le chapitre 3. Le comportement monotone des solutions est
quand à lui traité dans le dernier Chapitre (Chap 4). Suite à des développements récents
dans la manière de voir ces équations, bon nombre de preuves peuvent être simplifiées. Les
différents chapitres sont mathématiquements indépendants et donneront lieu à des publi-
cations. Les chapitres 1 et 4 sont précédés de notes aux Comptes Rendus de l’Académie de
Sciences résumant respectivement pour la première les résultats d’existences et d’unicités
des fronts d’ondes et pour la seconde l’aspect monotone de ces fronts.
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1.1 Introduction

We present here a follow up of previous work by Bates, Fife, Ren and Wang [5] on a
bistable integrodifferential equation modeling biological and chemical phenomenas. Instead
of the bistable nonlinearity, we explore the ignition and monostable cases. Typically we study
the evolution equation below :

∂u

∂t
=

∫

R
J(x− y)u(y)dy −Ku(x) + f(u) (1.1)

Where f and J are sufficiently smooth functions and J satisfies :
• J(x) = J(−x) ≥ 0 ,
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• K =
∫
R J(y)dy > 0 .

The following analysis uses some properties that the linear operator A, defined by Au =∫
R J(x − y)u(y)dy − Ku(x), shares with the Laplace operator, such as a form of maximum

principle. Therefore, we see that our equation (1.1) can be seen as a non-local analog of the
usual reaction-diffusion equation.

∂u

∂t
−∆u = f(u) (1.2)

As in (1.2), depending on the nonlinearity f involved, the evolution equation (1.1) may
model some combustion, chemical or biological phenomenas involving media with proper-
ties varying in space. The possible interest of such an equation lies in the fact that much
more general types of interactions in the medium can be accounted for. Another interesting
point of (1.1) lies in the fact that our equation is a gradient flow for a natural generalization
of the usual Ginzburg-landau functional, i.e.(1.1) is given by ∂u

∂t = −∇E(u). Where E(u) is
the following functional :

E(u) =
1

4

∫ ∫

R2

J(x− y)(u(x)− u(y))2dxdy −
∫

R
F (u(x))dx,

where F (t) =
∫ t

0 f(s)ds for all t ∈ R.

Integrodifferential equations with many of the properties of (1.1) have been also derived
and studied from the point of view of certain continuum limits in dynamic Ising models
[43, 44, 45, 24, 25, 26, 27]. For an excellent review, see [54].

It is well known (see [11, 12, 14, 31, 34, 46] and references therein) that equation (1.2)
possesses travelling-wave solutions (i.e. solutions of the form u(x, t) = û(x + ct) for some
velocity c, with u having limits 0 and 1 as x goes to −∞ and +∞), when

1. f is of bistable type, i.e. for some ρ > 0,f satisfies

– f |(0,ρ) < 0 and f |(ρ,1) > 0
– f(0) = f(1) = 0 and f ′(1) < 0

2. f is of ignition type, i.e. for some ρ > 0, f satisfies

– f |(0,ρ) ≡ 0 and f |(ρ,1) > 0
– f(0) = f(1) = 0 and f ′(1) < 0

3. f is of KPP type, i.e. f(0) = f(1) = 0,f |(0,1) > 0 and f ′(1) < 0.
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1.1. Introduction

0 00 ρρ

bistable ignition KPP

f(s)

1 1 1

Since we know the existence and uniqueness of travelling wave solutions of (1.2) when
f is of bistable, KPP, or ignition type, our principal motivation is to establish similar results
for our equation (1.1).

So we are lead to consider the following problem : we seek a function û(ξ) and a constant
c satisfying :





∫
R J(x− y)u(y)dy −Ku− cu′ = −f(u)
u(−∞) = 0
u(+∞) = 1

(1.3)

Results of existence and uniqueness for (1.3) have been obtained in [5] by Bates, Fife, Ren
and Wang and later by Xinfu Chen [17]. In particular they show :

Theorem 1.1.1. Bates, Fife, Ren, Wang
If we also assume that :

– J ∈ C1(R),
∫
R J = 1,

∫
R J(s)|s|ds < +∞ and J ′ ∈ L1(R)

– f bistable, f ∈ C2(R) and f ′(0) < 0.
then there exists a unique solution, up to translation, of (1.3).

In their proof, they use a homotopy argument. They construct a homotopy between
equation (1.2) and their equation and use an implicit function theorem and some a-priori
estimates to get the existence. The uniqueness of the speed and profile of the solution is
obtained via a maximum principle and suitable sub- and super-solutions.

By using similar ideas, I was able to prove the following result :

Theorem 1.1.2.
If we also assume that :

– J ∈ C1(R),
∫
R J = 1,

∫
R J(s)|s|ds < +∞ and J ′ ∈ L1(R)

– f is of ignition type, f ∈ C1,α(R).
then there exists an increasing function u and a constant c solution of (1.3)
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Furthermore, we obtain an uniqueness result for c and u. More precisely

Theorem 1.1.3.
Let f be an ignition non-linearity, then, up to translation, (1.3) has a unique increasing solution (u,c)
i.e. if (u,c) and (v, c̄) are increasing solutions of (1.3) then c = c̄ and u(x) = v(x+ τ) for some fixed
τ ∈ R.

I was also able to establish existence of a speed c∗ and a function u solution of (1.3) in the
KPP case only by replacing the assumption

∫

R
J(s)|s|ds < +∞ (H)

by the following stronger one :

∀λ > 0

∫

R
J(s)eλsds < +∞ (H∗)

This assumption imposes very restricted behavior for J at infinity. This means that J
must decay faster than any exponential function. (H∗) is satisfied, for example by any kernel
J with compact support or by the standard Gaussian distribution.

The corresponding existence result can be state as :

Theorem 1.1.4.
If we assume that

– J ∈ C1(R),
∫
R J = 1, J ′ ∈ L1(R) and J satisfies (H∗),

– f is a KPP function ,f ∈ C1,α(R),
then there exists an increasing function u and a constant c∗ solution of (1.3). Moreover if c < c∗,
(1.3) has no increasing solution.

The proof of this theorem uses a standard limiting procedure and is strongly related to
the asymptotic behavior at infinity of the solution of (1.3). In fact we will see in section 4 that
under assumption (H∗), the solution of Theorem1.1.2 has exponential behavior at infinity
i.e.

Aeδ1x ≤ u(x) ≤ Beλ1x for x→ −∞
and

Ce−δ0x ≤ 1− u(x) ≤ De−λ0x for x→ +∞

for suitable λ0, λ1, δ0, δ1 > 0.
Existence results for c > c∗ as expected in the KPP theory and some the characterization of
c∗ are still open and give rise to intensive research.
Remark that we can rewrite problem (1.3) as the convolution equation below :

J ? u− u− cu′ = −f(u) (1.4)
u(−∞) = 0 (1.5)
u(+∞) = 1 (1.6)
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In this article we will use the equations (1.4), (1.5) (1.6) instead of (1.3). The paper is
organized as follows : Section 2 is devoted to the proof of Theorem 1.1.2, we then prove
Theorem 1.1.3 in Section 3. Some continuity properties of the speed are derived in Section 4.
Section 5 is devoted to the asymptotic behavior of solution given by Theorem 1.1.2. Finally,
we prove Theorem 1.1.4 in the last section.

1.2 Existence of solutions in the ignition case

As I previously mentioned, Theorem 1.1.2 will be proved using a continuation method.
Let me describe the main ideas of this method. We can break it down into three steps :

– First, we embed our equation (1.4) in a family of equations continuously parametrized
by θ ∈ [0, 1], in such way that when θ = 0, the equation possesses a unique travelling
wave up to translation, and when θ = 1 the equation is (1.4).

– Then, using a continuation argument given by the implicit function theorem, we pass
in increments from 0 to 1, obtaining a sequence of functions for all values in the process.

– Finally, we extract a converging sequence when θ goes to 1.
The family, we will use, is the following :





θ(J ? u− u) + (1− θ)u′′ − cθu′ = −f(u)
u(−∞) = 0
u(+∞) = 1

(1θ)

When θ = 0, it is well known that (1θ) has a unique solution (u, c0), up to translation.
Furthermore u′ > 0 on R, see for example [11, 12].

Remark 1.2.1. : Theorem 1.1.2 remains valid for our family of equations.

So the first step of our method is now complete. Let us proceed to the second step.
The existence for all θ will be proven through a series of lemmas. First of all, we extend f to
the whole line R by letting

f̃(x) =





0 if x ∈ (−∞, 0)
f(x) if x ∈ [0, 1]
f ′(1)(x− 1) if x ∈ (1,+∞)

and study the new family of equations :




θ(J ? u− u) + (1− θ)u′′ − cθu′ = −f̃(u)
u(−∞) = 0
u(+∞) = 1

(1̃θ)

In the first lemma we show that a solution (uθ̃, cθ̃) of (1̃θ) is also a solution of (1θ) and
vice versa. We show that ũθ takes its value between 0 and 1 for all θ ∈ [0, 1].

Lemma 1.2.1.
Let θ ∈ [0, 1] and let (u,c) be a non constant solution of 1̃θ then 0 < u(ξ) < 1 ∀ξ ∈ R.

proof :
If θ = 0 , then the equation becomes a second order elliptic equation. Therefore, we may

apply the maximum principle. A simple computation then shows that u ≤ 1. Indeed, if not, u
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reaches its maximum at some point ξ0. At this point f̃(u(ξ0)) < 0, so u satisfies the following
inequality :

u′′ − cu′ ≥ 0 in V,

where V is some closed neighborhood of ξ0. The maximum principle implies that u is
identically constant in V , so by iteration of the process we get that u ≡ cste = u(ξ0) on R,
yielding a contradiction.
We very easily get u ≥ 0, by observing that from our assumption on f we have f(u) ≥ 0,
thus u satisfies :

u′′ − cu′ ≤ 0 on R

Then, the maximum principle implies that u ≥ 0.
Now, if θ > 0,

suppose that u reaches its maximum at ξ0, and that u(ξ0) ≥ 1, so at this point we have :

u′′(ξ0) ≤ 0 (1.7)

u(y)− u(ξ0) ≤ 0⇒
∫

R
J(y − ξ0)(u(y)− u(ξ0))dy ≤ 0 (1.8)

f̃(u(ξ0)) ≤ 0 (1.9)

and u satisfies :

θ(J ? u− u)(ξ0) + (1− θ)u′′(ξ0) = −f̃(u(ξ0)) ≥ 0 (1.10)

We thus have (J ? u− u)(ξ0) = 0 and

0 = (J ? u− u)(ξ0) =

∫

R
J(y − ξ0)(u(y)− u(ξ0))dy

⇒ u(y) = u(ξ0) ∀ y ∈ ξ0 + suppJ

By iteration of the process, we obtain u(y) = u(ξ0) ∀ y ∈ R. This contradicts u 6≡ cst.
We prove that u > 0 in the same way.

�
Now assume that (u0, c0) is a solution of 1θ0 for some θ0 ∈ [0, 1) and that u′0 > 0 on R. We

shall use the Implicit Function Theorem to obtain a solution for θ > θ0. We take perturbations
in the space :

X0 = {uniformly continuous functions on R which vanish at +∞}
We define L = L(u0, c0, θ0) as the following linear operator :

Lv = θ0(J ? v − v) + (1− θ0)v′′ − c0v
′ + f ′(u0)v (1.11)

where
dom L = X2 = {v ∈ X0/v

′′ ∈ X0}
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Lemma 1.2.2.
L has 0 as simple eigenvalue.

Proof :
If θ = 0, the result is already known, see [13] and references therein

If θ > 0, then we know that 0 is an eigenvalue of L since u′0 solves Lu′0 = 0. We only have
to prove the simplicity of the eigenvalue 0. We show this by contradiction . Suppose that φ
is another eigenfunction with eigenvalue 0, φ 6≡ Au′, and assume also that φ is positive at
some point. We set

φβ = u+ βφ with β ∈ R and

β̄ = sup{β < 0 | ∃ξ ∈ R, φβ(ξ) < 0}

β̄ is well defined since there exists ξ ∈ R such that φ(ξ) > 0. For β < β̄ let ξβ be a point of
negative minimum of φβ . At this point we have the following relations :

J ? φβ(ξβ)− φβ(ξβ) ≥ 0, φ′′β(ξβ) ≥ 0 and φ′β(ξβ) = 0. (1.12)

In fact J ? φβ(ξβ)− φβ(ξβ) > 0, since otherwise φβ ≡ cte . Thus

f ′(u0(ξβ))φβ(ξβ) = φβ(ξβ)− J ? φβ(ξβ)− (1− θ0)φ′′β(ξβ) < 0.

This implies f ′(u0(ξβ)) > 0, so ξβ lies in a compact subset [a, b] of R.

Choose now (βn)n∈N, a sequence which converges to β̄. Let (ξβn)n∈N be the corresponding
sequence of negative minimum. Since ∀nξβn ∈ [a, b], (ξβn)n∈N is a bounded sequence in R.
We can therefore extract a converging sub-sequence (ξβnk )k∈N such that ξβnk → ξ̄.
We obtain at ξ̄ :

f ′(u(ξ̄)φβ̄(ξ̄) = θ0(φβ̄(ξ̄)− J ? φβ̄(ξ̄))− (1− θ0)φ′′β̄(ξ̄) ≤ 0 (1.13)

0 = φβ̄(ξ̄) ≤ φβ̄(ξ) ∀ξ ∈ R (1.14)

So

0 = θ0(φβ̄(ξ̄)− J ? φβ̄(ξ̄))− (1− θ0)φ′′β̄(ξ̄) ≤ 0,

which implies that 0 = φβ̄(ξ̄) − J ? φβ̄(ξ̄) and as in the previous proof, we obtain φβ̄ ≡
cste = 0 which provides the desired contradiction .

�
The formal adjoint of L is given by :

L∗v = θ0(J ? v − v) + (1− θ0)v′′ − c0v
′ + f ′(u0)v

This operator satisfies the same property of simplicity of its eigenvalue 0. Moreover, 0 is
isolated since the same holds true for the operator A :

Av = v′′ − cv′ + f ′(u)v
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(see [2, 8] ) and we can show that the added term θ0(J?v−v) leaves the essential spectrum
unchanged. We now have conditions for the existence of a solution of (1.11) via the Fredholm
Alternative : There exists a solution of Lu = f iff

∫
fφ∗ = 0 where φ∗ is the eigenfunction

associated to the eigenvalue 0 of L∗.
We can now state the continuation result :

Lemma 1.2.3.
Let (u0, c0) be a solution of (1θ0) such that u′0 > 0. Then there exists η > 0 such that for all
θ ∈ [θ0, θ0 + η), the problem (1θ) has a solution (u,c).

Proof :
We will use the Implicit Function Theorem. Without loss of generality we may assume

that u0(0) = ρ. For w = (v, c) ∈ X2 × R and θ ∈ R, we define G ∈ C1(X2 × R × R, X2 × R)
by :

G(w, θ) = [θ(J ?(u0+v)−(u0+v))+(1−θ)(u0+v)′′−(c0+c)(u0+v)′+f((u0+v)), (u0+v)(0)].

At (0, θ0) we have G(0, θ0) = (0, u0) and

DG :=
∂G

∂w
(0, θ0) =

(
L u′0
δ 0

)
,

where δv = v(0). We will show that DG is invertible. To this end, let (h, b) ∈ X0 × R : we
want to show the existence of a unique w = (v, c) ∈ X2 × R solving DG(w) = (h, b).

DG(w) = (h, b)⇐⇒
{
Lv − cu′0 = h
v(0) = b

(])

If we let c =
R
φ?hR
φ∗u′0

, we get, via the Fredholm alternative, a solution v of Lv = h+ cu′0. In
fact, any solution of Lṽ = h + cu′0 can be written as ṽ = v + αu′0, α ∈ R. But since we must
also have v(0) = b, w = (v, c) is the only solution of (]). This shows that DG is invertible. We
then apply the Implicit Function Theorem to prove the lemma.

�

Remark 1.2.2. : The solution uθ, obtained by the Implicit Function Theorem also satisfies the boun-
dary conditions at infinity (1.5) and (1.6).

In order to prove the previous continuation lemma, we needed the condition u′0 > 0.
Thus, if we want to apply this lemma we have to show that for all θ ∈ [θ0, θ0 + η], any
smooth solution uθ of (1θ) previously construted satisfies u′θ > 0.

Lemma 1.2.4.
Let θ ∈ [θ0, θ0 + η) and let (u, c) be a smooth solution of (1θ) given by Lemma 1.2.3. Then u′(ξ) >
0 ∀ξ ∈ R.

Proof :
We first prove that u′(ξ) ≥ 0 ∀ξ ∈ R.

We use a contradiction argument. Assume there exist θ ∈ [θ0, θ0 + η) such that there exists
ξ ∈ Rwith u′θ(ξ) < 0. Let us define
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θ̃ = inf{θ > θ0 | ∃ξ ∈ R, u′θ(ξ) < 0}.
θ0 + η > θ̃ ≥ θ0 is well defined. Since θ̃ < θ0 + η, uθ̃ exists. From the definition of θ̃, there
exists a decreasing sequence θn ↘ θ̃ and a non positive minimum ξθn of u′θn .
At this minimum u′θn satisfies :

f ′(uθn(ξθn))u′θn(ξθn) = θn(u′θn(ξθn)− J ? u′θn(ξθn))− (1− θn)u′′′θn(ξθn) < 0. (1.15)

So f ′(uθn(ξθn)) > 0 and therefore we have ρ ≤ uθn(ξθn) ≤ 1 − γ. By observing that from
Lemma 1.2.3 uθn → uθ̃ uniformaly, the sequence (ξθn)n∈N must stay in a compact subset [a, b]

of R. Extract now a subsequence which converges to ξ̃. By letting n goes to∞ in (1.15) along
this subsequence we get

0 = θ̃(u′
θ̃
(ξ̃)− J ? u′

θ̃
(ξ̃))− (1− θ̃)u′′′

θ̃
(ξ̃) ≤ 0.

As in the previous lemma, it follows that (u′
θ̃
(ξ̃) − J ? u′

θ̃
(ξ̃)) = 0. This implies u′

θ̃
≡ cte = 0

which is a contradiction.
Thus u′θ ≥ 0. The previous inequality also shows u′θ > 0.

�
Next we prove some apriori estimates on the solution uθ of (1θ) for all θ ∈ [0, 1) which

will be useful later. We have

Lemma 1.2.5.
If for some 0 < θ̄ < 1 and all θ ∈ [0, θ̄), there exists a solution (uθ, cθ) of (1θ) then {uθ | θ ∈ [0, θ̄)}
is bounded in C3(R).

Proof :
By Lemma 1.2.1, we already know that u is bounded. Fix θ ∈ [0, θ̄) and let (uθ, cθ) be a

solution of (1θ) obtained using Lemma 1.2.3.
Lemma 1.2.4 shows that u′θ achieves its maximum at some point ξ of R.
At ξ we get :

u′′θ(ξ) = 0, (1.16)
−cθu′θ(ξ) = −f(uθ(ξ))− θ(J ? uθ(ξ)− uθ(ξ)), (1.17)

⇒‖ cθu′θ ‖∞=| −f(uθ(ξ))− θ(J ? uθ(ξ)− uθ(ξ)) |≤ K = (2 + sup
x∈[0,1]

(f(x))), (1.18)

‖ cθu′θ ‖∞≤ K = (2 + sup
x∈[0,1]

(f(x))). (1.19)

Remark 1.2.3. : The bound K does not depend on θ.

Using (1θ) we get a bound for u′′θ . Indeed,

(1− θ)u′′θ = cθu
′
θ − θ(J ? uθ − uθ)− f(uθ), (1.20)

| (1− θ)u′′θ |≤| cθu′θ | + | θ(J ? uθ − uθ) | + | f(uθ) |, (1.21)

⇒‖ u′′θ ‖∞≤
2K

1− θ̄ . (1.22)
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The C3 bound follows by differentiating (1θ) and some a priori bounds on the speed cθ
that we provide in the next lemma.

�

Remark 1.2.4. : We can also get a bound for cθu′′θ in terms of u′θ.
In fact, we have

cθ ‖ u′′θ ‖∞≤ (2 + K̃) ‖ u′θ ‖∞ .

Remarks 1.2.1. : Since f is C1,α, in order to get C2,α bounds, it is sufficient to have a positive bound
from below for the speed cθ.

We need now some estimates on the speed cθ, which will ensure that we can get a solution
as θ → θ̄.

Lemma 1.2.6.
With the same assumptions as those of the previous lemma, the set Aθ̄ = {cθ | θ ∈ [0, θ̄)} is bounded
and there exists a constant e > 0 so that cθ ≥ e ∀ θ ∈ [0, θ̄).

Proof :
We will first show that the set Aθ̄ is bounded.We begin with a computation :

Claim 1.2.1. (J ? uθ − uθ) ∈ L1(R)
‖(J ? uθ − uθ)‖L1 ≤

∫
R2(J(x− y)|uθ(y)− uθ(x)|dydx ≤

∫
R J(z)|z|dz

and
∫
R(J ? uθ − uθ) = 0

Proof :
Let us compute

∫
R |(J ? uθ − uθ)|.
∫

R
|(J ? uθ − uθ)| ≤

∫

R2

J(x− y)|uθ(y)− uθ(x)|dydx. (1.23)

Since uθ is smooth and increasing we have :

|uθ(y)− uθ(x)| = |x− y|
∫ 1

0
u′θ(y + s(x− y))ds.

Plug this equality in (1.23) to obtain :

∫

R2

J(x− y)|uθ(y)− uθ(x)|dydx =

∫

R2

J(x− y)|x− y|
∫ 1

0
u′θ(x+ s(y − x))dsdydx. (1.24)

Make the change of variables z = x− y so that equation (1.24) becomes :

∫

R2

J(z)|z|
∫ 1

0
u′θ(x− sz)dsdzdx. (1.25)

Because all the terms are positive, we may apply Tonnelli’s theorem and permute the
order of integration. We obtain
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∫

R2

J(z)|z|
∫ 1

0
u′θ(x− sz)dsdzdx =

∫ 1

0

∫

R2

J(z)|z|u′θ(x− sz)dxdzds (1.26)

=

∫ 1

0

∫

R
J(z)|z|[uθ(+∞)− uθ(−∞)]dzds (1.27)

=

∫

R
J(z)|z|dz ≤ ∞ (1.28)

Hence J ? uθ − uθ is integrable and we have a bound on its L1 norm.
Let us now compute ∫

R
J ? uθ − uθdx.

We have :
∫

R2

J(x− y)(uθ(y)− uθ(x))dydx.

Let z = x− y so that :
∫

R2

J(z)(uθ(x− z)− uθ(x))dzdx =

∫

R2

J(z)(uθ(y)− uθ(y + z))dydz.

Make the change of variable z → −z in the left integral to obtain :
∫

R2

J(z)(uθ(x+ z)− uθ(x))dzdx =

∫

R2

J(z)(uθ(y)− uθ(y + z))dydz.

Then, apply Fubini’s theorem to the last integral and get
∫

R2

J(z)(uθ(x+ z)− uθ(x))dzdx =

∫

R2

J(z)(uθ(y)− uθ(y + z))dzdy,

which shows that

2

∫

R2

J(z)(uθ(x+ z)− uθ(x))dzdx = 0.

�
Integrate now equation (1θ) over R, to get a bound from below for the speed cθ. Indeed

we have :

θ

∫

R
(J ? uθ − uθ) + (1− θ)

∫

R
u′′θ − cθ

∫

R
u′θ = −

∫

R
f(uθ)

θ

∫

R
(J ? uθ − uθ) + (1− θ)(u′θ(+∞)− u′θ(−∞))− cθ(uθ(+∞)− uθ(−∞)) = −

∫

R
f(uθ)

⇒ θ

∫

R
(J ? uθ − uθ)− cθ = −

∫

R
f(uθ)

From Claim 1.2.1 we have θ
∫
R(J ? uθ − uθ) = 0, therefore

cθ =

∫

R
f(uθ) ≥ 0. (1.29)
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This gives a bound from below for the speed c.

Remark 1.2.5. : Note that this compution holds for any smooth solution of Problem (1θ).

We now establish an upper bound for cθ. First we claim that :

Claim 1.2.2. For every θ ∈ [0, θ̄) we have cθ ≤ (1−θ)u′θ(0)+θκ
ρ where κ is a constant independent of

θ.

Proof :
Without loss of generality we may assume that uθ(0) = ρ for every θ ∈ [0, θ̄).

Now integrate our equation (1θ) over R−, to get :

θ

∫

R−
(J ? u− u)dy

︸ ︷︷ ︸
+ (1− θ)

∫

R−
u′′dy

︸ ︷︷ ︸
− c

∫

R−
u′dy

︸ ︷︷ ︸
= −

∫

R−
f(u)dy

︸ ︷︷ ︸
I1 I2 I3 I4

A quick computation shows that :
– I2 = (1− θ)u′(0)
– I3 = cρ
– I4 = 0

So we have,
cθρ = (1− θ)u′θ(0) + I1.

Since J ? uθ − uθ ∈ L1(R), we have |I1| ≤ θκ where κ is the L1(R−) norm of J ? uθ − uθ.
We then obtain the required bound from Claim 1.2.1 .
More precisely we have :

cθρ ≤ (1− θ)u′θ(0) + θκ, (1.30)

where κ =
∫
R J(z)|z|dz. This ends the proof of the claim.

�
Now multiply (1.30) by cθ to obtain :

c2
θρ− cθθκ ≤ (1− θ)cθu′θ(0). (1.31)

From the apriori estimate (1.19) we have :

c2
θρ− cθθκ ≤ (1− θ)K. (1.32)

This last equation shows that cθ has an upper bound, which ends the proof of the bound-
ness of Aθ.

�

Remark 1.2.6. : Theses two claims remain true for a bistable non-linearity, and give an alternate
proof of the corresponding lemma in [5].

Now, we prove the following claim, and this will complete the proof of the lemma.
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Claim 1.2.3. There exists a constant e > 0 such that ∀θ ∈ [0, θ̄) , cθ ≥ e.

To prove this claim, we will use contradiction argument.
Proof :

Fix ε > 0 and assume there exists a sequence (θn)n∈N → θ̃ such that :
cθn > 0→ 0 and uθn(0) = ρ+ ε.

(uθn)n∈N is a uniformly bounded sequence of monotone increasing functions, so accor-
ding to Helly’s theorem there exists a sub-sequence, still denoted (uθn)n∈N, which converges
pointwise to a monotone increasing function denoted by ū.

Since f is positive, (f(uθn))n∈N is a sequence of positive functions. Apply Fatou’s lemma
to this sequence to get :

0 ≤
∫ +∞

−∞
f(ū)ds ≤ lim inf

n→∞

∫ +∞

−∞
f(uθn)ds = lim inf

n→∞
cθn = 0. (1.33)

Thus f(ū) = 0 almost everywhere, so :

ū(ξ) ∈ [0, ρ] ∪ {1} a.e. (1.34)

Next, we multiply equation (1θn) by u′θn and integrate it. We obtain :

θn

∫

R
(J ? uθn − uθn)u′θn + (1− θn)

∫

R
u′′θnu

′
θn − cθn

∫

R
(u′θn)2 = −

∫

R
f(uθn)u′θndx,

θn

∫

R
(J ?uθn −uθn)u′θn +

(1− θn)

2
((u′θn)2(+∞)− (u′θn)2(−∞))− cθn

∫

R
(u′θn)2 = −

∫ 1

0
f(s)ds.

Therefore uθn and cθn satisfy the following equality

θn

∫

R
(J ? uθn − uθn)u′θn + cθn

∫

R
(u′θn)2 =

∫ 1

0
f(s)ds. (1.35)

We can easily show by integration by parts that the first integral in (1.35) is zero, there-
fore :

cθn

∫

R
(u′θn)2 =

∫ 1

0
f(s)ds. (1.36)

In the same way if we multiply equation (1θn) by 1− uθn and integrate it, we obtain :

−
∫

R
f(uθn)(1−uθn) = θn

∫

R
(J?uθn−uθn)(1−uθn)+(1−θn)

∫

R
(1−uθn)u′′θn−cθn

∫

R
(1−uθn)u′θn ,

⇔ −
∫

R
f(uθn)(1− uθn) =

θn
2

∫

R2

J(x− y)(uθn(x)− uθn(y))2 + (1− θn)

∫
(u′θn)2 − cθn

2
,

⇔ −2

∫

R
f(uθn)(1− uθn) = θn

∫

R2

J(x− y)(uθn(x)− uθn(y))2 + 2(1− θn)

∫ 1
0 f(s)ds

cθn
− cθn .
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Therefore, uθn satisfies

−c2
θn + cθn [θn

∫

R2

J(x−y)(uθn(x)−uθn(y))2 +2

∫

R
f(uθn)(1−uθn)]+2(1−θn)

∫ 1

0
f(s)ds = 0.

(1.37)
According to Claim 1.2.1, (1.37) implies that cθn is the positive root of a second order

polynomial, i.e.

cθn =
Dθn +

√
(Dθn)2 +Kθn

2
, (1.38)

where

Dθn = θn

∫

R2

J(x− y)(uθn(x)− uθn(y))2 + 2

∫

R
f(uθn)(1− uθn),

Kθn = 8(1− θn)

∫ 1

0
f(s)ds.

From our assumption on the sequence (cθn)n∈N, we have Dθn → 0. This implies

θn

∫

R2

J(x− y)(uθn(x)− uθn(y))2 → 0. (1.39)

Now we apply Fatou’s lemma in (1.39) and obtain :

0 ≤
∫

R2

J(x− y)(ū(x)− ū(y))2 ≤ lim inf
n→∞

∫

R2

J(x− y)(un(x)− un(y))2 = 0.

Then, ū(x) = ū(y) a.e. for all x − y ∈ supp(J). Therefore ū ≡ cste almost everywhere.
Since ρ + ε = uθn(0) → ū(0) and ū is a monotone increasing function, we have ū ≡ ρ + ε,
which contradicts (1.34).

�

Remark 1.2.7. : The formula obtained for the speed c remains true for any solution of (1θ) with non
zero speed. Moreover the proof is independent of θ̄, thus the lemma remains true with θ̄ = 1.

Remark 1.2.8. : This lemma combined with the apriori estimates guarantees that we get a smooth
solution as θ → θ̄.

We can now obtain a solution to our problem (1.4),(1.5),(1.6). Let me describe how our
machinery works. Since for θ = 0 there exists a positive increasing solution u0, we may apply
Lemmas 1.2.2 and 1.2.3 to get the existence of a solution to the problem 1θ for θ ∈ [0, η) for
some η positif. Now, let us defined

θ̄ = sup{θ > 0| There exists a positive increasing solution uθ of (1θ)}.

We have θ̄ ≥ η. We will show that θ̄ ≥ 1. We argue by contradiction, assume that θ̄ < 1. Let
(θn)n∈N such that θn ↗ θ̄ and for each n (1θn) has a positive increasing solution denoted by
(un, cn). Recall that (un, cn) satisfies

θn(J ? un − un) + (1− θn)u′′n − cnu′n = −f(un) (1.40)
un(−∞) = 0 (1.41)
un(+∞) = 1 (1.42)
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Without loss of generality we may also normalize un by un(0) = ρ. From Lemmas 1.2.1,
1.2.5 and 1.2.6 there exists a positive constant C independant of n such that for each n we
have ‖un‖C3(R) ≤ C and e ≤ cn ≤ C. Since (un)n∈N is a uniformly bounded sequence of
positive increasing function, according to Helly’s theorem and C3 estimates, there exists a
subsequence, still denoted by (un)n∈N, which converges pointwise andC2

loc to a positive non-
decreasing smooth function ū. Since (cn)n∈N is bounded, up to extraction, (un, cn) → (ū, c̄).
Therefore by letting n→∞ in (1.40) we end up with

θ̄(J ? ū− ū) + (1− θ̄)ū′′ − c̄ū′ = −f(ū). (1.43)

Next we show that ū satisfies the desired boundary conditions. Namely we have

Lemma 1.2.7.
Let θ̄ ≤ 1, the function ū previously constructed satisfies the boundary conditions (1.41) and (1.42).

Assume for the moment that Lemma 1.2.7 is proved. From Lemma 1.2.7 ū is a non-trivial
solution and by Lemma 1.2.4, ū is therefore a positive increasing solution of (1θ̄). Now since
we have assumed that θ̄ < 1, then Lemma 1.2.2 and 1.2.3 holds with ū instead of u0. Thus
there exists a positive increasing solution of (1θ) for θ ∈ [0, θ̄+ η) for some positive η, contra-
dicting the defintion of θ̄. Thus θ̄ ≥ 1 and (1θ) has a solution for every θ ∈ [0, 1).

We obtained a solution for θ = 1 in the same way, let (θn)n∈N such that θn ↗ 1 and
(un, cn)n∈N be the corresponding normalized sequence of solution. From Lemma 1.2.6, we
have cn > e therefore according to Remark 1.2.1 and Lemma 1.2.5, we have ‖un‖C2(R) ≤ C
and e ≥ cn ≥ C for some positive constant C. Again, from Helly’s theorem and apriori esti-
mates there exists a non decreasing function ũ and a constant c̃ such that uθn → ũ pointwise
and cn → c̃. From the C2 estimates, up to extraction, we have uθn → ũ in C1

loc. Therefore ũ
satisfies the following equation

J ? ũ− ũ− c̃ũ′ = −f(ũ).

It remains to prove that ũ satisfies the boundary condition (1.41) and (1.42). This will be
done with the proof of Lemma 1.2.7.
Proof of Lemma 1.2.7 :

Since uθ̄ is a positive bounded nondecreasing function, it admits limits l± at ±∞. Stan-
dard theory and the Lebesgue dominated convergence theorem imply that theses limits are
zeros of the function f and that u′

θ̄
→ 0 as ξ → ±∞. Observe that by construction we have

uθ̄(0) = ρ. Thus l+ = {1, ρ} and l− ∈ [0, ρ]. First we claim that (ū, c̄) must satisfies the
following

Claim 1.2.4. θ̄
∫ 1

0

∫
R J(z)zū(tz)dzdt = c̄ρ− (1− θ̄)ū′(0)

Proof :
Recall that the solution ū is obtained as a limit of a sequence of (un)n∈N and by Lemma 1.2.6
c̄ > 0. For this sequence, we have

θn(J ? un − un) + (1− θn)u′′n − cnu′n = 0 on R−. (1.44)

Let us integrate equation (1.44) over R− to get
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∫ 0

−∞
θn(J ? un − un) = cnρ− (1− θn)u′n(0). (1.45)

Observe that

∫ 0

−∞
(J ? un − un) =

∫ 0

−∞

∫

R
J(x− y)(un(y)− un(x))dydx, (1.46)

=

∫ 1

0

∫ 0

−∞

∫

R
J(z)zu′n(x+ tz)dzdxdt, (1.47)

=

∫ 1

0

∫

R
J(z)z

∫ 0

−∞
u′n(x+ tz)dxdzdt. (1.48)

Let vn =
∫ 0
−∞ u

′
n(x+ tz)dx so that

θn

∫ 1

0

∫

R
J(z)zvn(t, z)dzdt = cnρ− (1− θn)u′n(0). (1.49)

Since |J(z)zvn(t, z)| = J(z)|z|un(tz) ≤ J(z)|z|, we can apply Lebesgue’s dominated
convergence theorem . Therefore, in the limit we get

θ̄

∫ 1

0

∫

R
J(z)zū(tz)dzdt = c̄ρ− (1− θ̄)ū′(0), (1.50)

since u′n → ū′ on every compact set. This ends the proof of the claim.
�

Now, assume that l+ = ρ, then ū satisfies

θ̄(J ? ū− ū) + (1− θ̄)ū′′ − c̄ū′ = 0 in R (1.51)

Since maxu = u(0) = ρ, and u satisfies (1.51) we may apply the maximum principle and
thus u ≡ ρ. Therefore, we have u′n(0)→ 0 and since J is even

∫ 1

0

∫

R
J(z)zū(tz)dzdt = ρ

∫

R
J(z)zdz = 0. (1.52)

From Claim (1.2.4), this implies c̄ρ = 0 which is a contradiction. Thus l+ = 1. It now remains
to prove that l− = 0. We argue again by contradiction. Suppose l− = σ > 0, where σ is any
zero of f less than ρ. Since ū satisfies equation (1.43), in particular

θ̄(J ? ū− ū) + (1− θ̄)ū′′ − c̄ū′ = 0 in R−. (1.53)

Integrate equation (1.53) over R−

∫ 0

−∞
θ̄(J ? ū− ū) = c̄(ρ− σ)− (1− θ̄)u′(0). (1.54)

Since ū is smooth and non trivial, a quick computation shows that
∫ 0

−∞
(J ? ū− ū) =

∫ 1

0

∫

R
J(z)zū(tz)dzdt. (1.55)
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The proof is now straightforward. Substitute (1.55) in equality (1.54) to get

θ̄

∫ 1

0

∫

R
J(z)zū(tz)dzdt = c̄(ρ− σ)− (1− θ̄)ū′(0). (1.56)

This last inequality contradicts Claim 1.2.4. This ends the proof of the lemma and completes
the proof of the existence of a solution since the all proofs holds if θ̄ = 1.

�

1.3 Uniqueness

In this section we present a result about the uniqueness of monotone solutions of (1θ).
We have the following theorem :

Theorem 1.3.1.
Let θ ∈ [0, 1]. Problem (1θ) admits a unique increasing solution (u, c) i.e. if (v, c̄) is another increa-
sing solution of (1θ) then c = c̄ and u(.) = v(.+ τ) for some τ ∈ R.

The main tools in this proof is a construction of appropriate sub and super solution which
trap our solution.
Proof :

Fix θ ∈ [0, 1], and let (v, c̄) and (u, c) be two increasing solutions of (1θ). We break down
our proof into two steps :

– first step : we prove that c = c̄.

– second step : we show that there exists τ ∈ R such that v(ξ) ≡ u(ξ − τ).

1.3.1 Proof of the first step

In order to prove the uniqueness of the speed c, we argue by contradiction. Assume for
example that c̄ > c. Without loss of generality, we may also assume

v(0) = u(0) =
ρ

2
. (1.57)

Now we define some quantities that we will use to construct our sub- and super-solutions.
Let δ <| c̄− c | positive, such that

f ′(p) < −2δ ∀p such that | p− 1 |< δ. (1.58)

Let µ ∈ (0, δ2) and a(s) = µe−δs.
Choose M > 0 and K > 0 such that :

| u(ξ)− 1 |< δ

2
∀ξ > M, (1.59)

u′(ξ) > K in [−1,M + 1]. (1.60)
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Finally define the following function :

b(s) =
µδ̄

K
(1− e−δs), (1.61)

where δ̄ = 1 + max{f ′(p) −1≤p≤2}
δ .

We will further impose that µ ≤ min{ ρ2 , Kδ̄ }.
Now we define our sub- and super-solutions as follow :

ũ(ξ, s) = u(ξ + b(s) + (c− c̄)s) + a(s), (1.62)
ṽ(ξ, s) = v(ξ − z), (1.63)

where z > z0 = inf{z ∈ R | u(ξ) + a(0) > v(ξ − z) ∀ξ ∈ R} is fixed. Let w(ξ, s) =
(ũ− ṽ)(ξ, s). w satisfy the next equations :

−∂w
∂s

+θ(J ?w−w)+(1−θ)wξξ− c̄wξ = −a′(s)−u′(ξ, s)b′(s)+f(v(ξ, s))−f(u(ξ, s)) (1.64)

w(ξ, 0) > 0 ∀ξ ∈ R (1.65)
w(+∞, s) = a(s) ∀s ∈ R (1.66)

By (1.65), (1.66) and continuity there exists s0 = sup{s > 0 | w(ξ, s) > 0 ∀ξ ∈ R}.

Claim 1.3.1. s0 = +∞.

Proof :
We argue by contradiction. If not, there exist s0 < +∞ and ξ0 ∈ R such that

0 = w(ξ0, s0) = min
R
w(ξ, s0). (1.67)

Next, we prove a kind of localization of minimum lemma. More precisely

Lemma 1.3.1.
Let ξ0 ∈ R and s0 previously defined by (1.67), then we have ξ0 + (c− c̄)s0 > −1.

Proof :
w satisfies the equation :

θ(J ? w − w) + (1− θ)wξξ − cwξ = f(v)− f(u) + (c− c̄)v′. (1.68)

So at (ξ0, s0) we have,

θ(J ? w − w)(ξ0, s0) + (1− θ)wξξ(ξ0, s0) ≥ 0,
wξ(ξ0, s0) = 0.

Then f(v)− f(u) + (c− c̄)v′ ≥ 0, which implies that f(v(ξ0, s0)) > 0. Thus,
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v(ξ0, s0) = u(ξ0 + b(s0) + (c− c̄)s0) + a(s0) > ρ

⇒ u(ξ0 + b(s0) + (c− c̄)s0) > ρ− a(s0) >
ρ

2

⇒ ξ0 + (c− c̄)s0) > u−1(
ρ

2
)− b(s0)

⇒ ξ0 + (c− c̄)s0) > −1.

�
This lemma provides a bound from below for the minimum of w. Moreover w satisfies

(1.64), thus at (ξ0, s0) we have :

−∂w(ξ0, s0)

∂s
+ θ(J ? w − w)(ξ0, s0) + (1− θ)wξξ(ξ0, s0)− c̄wξ(ξ0, s0) ≥ 0. (1.69)

Then

Q :=− a′(s0)− u′(ξ0, s0)b′(s0) + f(u(ξ0, s0) + a(s0))− f(u(ξ0, s0)) ≥ 0, (1.70)

=µe−δs0 [δ − δδ̄

K
u′(ξ0 + b(s0) + (c− c̄)s0) + f ′(d)] ≥ 0. (1.71)

Lemma 1.3.1 leads us to consider two cases :
– 1st case : ξ0 + (c− c̄)s0 ∈ [−1,M ].

Then ξ0 + (c− c̄)s0 + b(s0) ∈ [−1,M + 1] and Q would satisfy :

0 > µe−δs0 [δ(1− u′(ξ0, s0)

K
)− u′(ξ0, s0)

K
max{f ′(p) − 1 ≤ p ≤ 2}+ f ′(d)],

which contradicts (1.71).

– 2nd case : ξ0 + (c− c̄)s0 > M .

Then ξ0 + (c− c̄)s0 + b(s0) > M and Q would then verify :

µe−δs0 [δ − δδ̄u′(ξ0, s0)

K
+ f ′(d)] < µe−δs0 [−δ − δδ̄u′(ξ0, s0)

K
] < 0,

which also contradicts (1.71) and prove the claim.

�
Therefore w is positive for any couple (ξ, s) ∈ R× R+. Take now ξ = (c̄− c)s − b(s) ≥ 0

and let s go to +∞. We get

lim
s→+∞

w((c̄− c)s− b(s), s) = u(0)− 1 < 0,

which is a contradiction. Thus c ≥ c̄. By switching the role of u and v in the proof we
achieve c̄ ≥ c and therefore c̄ = c. This ends the proof of the first step.

�
Now we turn our attention to the second part of the uniqueness lemma.
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1.3.2 Proof of the second step

Remember that the second step is the following lemma :

Lemma 1.3.2.
Let u and v be two solution of same speed c of (1θ). Then there exists τ ∈ R such that u(ξ) = v(ξ+τ)
for all ξ ∈ R.

Proof :
We will use once again a contradiction argument. The analysis performed in the first step

remains valid for u and v. So we have :

w(ξ, s) = u(ξ + b(s)) + a(s)− v(ξ − z) > 0 ∀ (ξ, s) ∈ R× R+.

Let s go to +∞ to obtain :

u(ξ +
µδ̄

K
) ≥ v(ξ − z) ∀ ξ ∈ R.

Next let z ↘ z0 :

u(ξ) ≥ v(ξ − (z0 +
µδ̄

K
)) ∀ ξ ∈ R.

We can therefore find a minimal z̄ such that

u(ξ) ≥ v(ξ − z̄) ∀ ξ ∈ R. (1.72)

Claim 1.3.2. We claim that if u 6≡ v then we have a strict inequality in (1.72) and z̄ > 0 since
u(0) = v(0).

Proof :
If not, there exists a point ξ0 such that w(ξ) = u(ξ)− v(ξ − z̄) ≥ w(ξ0) = 0 ∀ ξ ∈ R.

At this point, w verifies :

0 ≤ θ(J ? w − w)(ξ0) + (1− θ)w′′(ξ0) = f(v(ξ0 − z̄))− f(u(ξ0)) = f(u(ξ0))− f(u(ξ0)) = 0.

If θ 6= 0, (J ?w−w)(ξ0) = 0 then, as we have seen before this implies w ≡ 0 contradicting
our assumption. If θ = 0 the maximum principle provides the same result.

�
Fix η > 0 and define :

z(η) = inf{z|u(ξ) ≥ v(ξ − z)− η ∀ ξ ∈ R} (1.73)

This implies that z(η) < z̄ and limη→0 z(η) = z̄. For a fixed N > 0 we claim :

Claim 1.3.3. There exist η(N) > 0 such that for all η ∈ [0, η(N)) we have :

u(ξ) > v(ξ − z(η))− η for | ξ |≤ N. (1.74)
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Proof :
If η(N) > 0 doesn’t exist, then there exists sequences ξn → ξ̄ ∈ [−N,N ] and ηn → 0 such

that :

u(ξn) = v(ξn − z(ηn))− ηn. (1.75)

At the limit we get :

u(ξ̄) = v(ξ̄ − z̄), (1.76)

which contradicts Claim 1.3.2.

�
Set a(s) = µe−δs with µ < η(M) where M and δ are defined by (1.58),(1.59) and (1.60).

Since z(µ) < z̄, we can choose ε > 0 such that 2ε < z̄ − z(µ). Define a new function as
follows :

p(ξ, s) ≡ u(ξ) + a(s)− v(ξ − (z̄ − ε)). (1.77)

By construction of p, we get p(ξ, 0) > 0. We claim that :

Claim 1.3.4. p(ξ, s) > 0 ∀ (ξ, s) ∈ R× R+

Proof :
First we handle the case θ 6= 0. As in the proof of uniqueness of the speed we argue by

contradiction. Assume there exists (ξ0, s0) such that

0 = p(ξ0, s0) ≤ p(ξ, s) ∀ (ξ, s) ∈ R× [0, s0). (1.78)

At this point p verifies

−∂p
∂s

(ξ0, s0) + θ(J ? p− p)(ξ0, s0) + (1− θ)pξξ(ξ0, s0)− cpξ(ξ0, s0) ≥ 0, (1.79)

which implies

−a′(s0) + f(v(ξ0, s0)− f(u(ξ0, s0) ≥ 0, (1.80)
µe−δs0(δ + f ′(d)) ≥ 0, (1.81)

where d ∈ [u(ξ0), u(ξ0) + a(s0)].
As in the proof of uniqueness of c we need a localization lemma to continue the proof.

Lemma 1.3.3.
With (ξ0, s0) defined by (1.78) we have :

1. | ξ0 |> M ,

2. ξ0 > 0.
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Proof of lemma 1.3.3 :
p also satisfy at (ξ0, s0) the following equation :

θ(J ? p− p)(ξ0, s0) + (1− θ)pξξ(ξ0, s0)− cpξ(ξ0, s0) = f(v(ξ0, s0))− f(u(ξ0, s0)) ≥ 0.

Then f(u(ξ0) + a(s0)) > 0 since otherwise we would have :

0 ≤ θ(J ? p− p)(ξ0, s0) + (1− θ)pξξ(ξ0, s0) = 0, (1.82)
⇒ (J ? p− p)(ξ0, s0) = 0, (1.83)

⇒ p(ξ, s0) ≡ 0, (1.84)
⇒ u(ξ) = v(ξ − (z̄ − ε))− a(s0) ∀ξ ∈ R. (1.85)

Passing to the limit as ξ → +∞ in (1.85), we would then get a contradiction.
Since f(u(ξ0) + a(s0)) > 0 we have :

u(ξ0) + a(s0) > ρ, (1.86)

⇒ u(ξ0) > ρ− a(s0) >
ρ

2
, (1.87)

⇒ ξ0 > u−1(
ρ

2
) = 0, (1.88)

which proves the second part of the lemma.

Now we show the first part of the lemma. Since

u(ξ) ≥ v(ξ − (z̄ − ε))− µe−δs0 , for all ξ ∈ R, (1.89)

we have z(µe−δs0) ≤ z̄ − ε. Moreover, µe−δs0 < η(M). Thus by Claim 1.3.3 we have

u(ξ) > v(ξ − z(µe−δs0))− µe−δs0 for | ξ |≤M. (1.90)

Since v is increasing and z(µe−δs0) ≤ z̄ − ε, we have

u(ξ) > v(ξ − (z̄ − ε))− µe−δs0 for | ξ |≤M. (1.91)

Since (ξ0, s0) is a zero of p, (1.91) implies | ξ0 |> M . This concludes the proof of the lemma.
�

Now we return to the proof of Claim 1.3.4. From the localization lemma 1.3.3 we deduce
that | d− 1 |≤ δ. Thus, we have f ′(d) + δ < 0 which contradicts (1.81). This ends the proof of
Claim 1.3.4 in the case θ 6= 0.

In the case θ = 0, for every fixed s, take k positive large enough such that p will verify
the following in-equation :

{
pξξ(ξ, s)− cpξ(ξ, s)− kp ≤ 0
p(+∞) > 0
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Apply the maximum principle, to get p(ξ, s) > 0 ∀ξ ∈ R. This proves Claim 1.3.4.
�

Now, we return to the proof of Lemma 1.3.2. By passing to the limit as s→ +∞ in p(ξ, s)
we obtain :

u(ξ) ≥ v(ξ − (z̄ − ε)) ∀ ξ ∈ R.

This contradicts the definition of z̄ and shows, at the same time, that u ≡ vz̄ .
�

1.4 Continuity of the speed cθ

This section is devoted to some continuity property of the speed cθ(ρ) as a function of θ
and ρ. This is a direct consequence of the uniqueness theorem.

Theorem 1.4.1.
cθ(ρ) is a continuous function of θ and fρ in the following sense for any θ0 ∈ [0, 1] and fρ0 > 0 then
for any sequences fρn → fρ0 uniformaly and θn → θ0), we have cρnθn → cρ0

θ0
.

The main tool in this proof is the previous uniqueness theorem 1.3.1.

proof :
From Theorems 1.1.2 and 1.1.3, we know that for every fρ with ρ > 0 and θ ∈ [0, 1] there

exists a unique increasing solution (uρθ , c
ρ
θ) to the following problem,





(1− θ)(uρθ)′′ + θ(J ? uρθ − u
ρ
θ)− c

ρ
θ(u

ρ
θ)
′ + fρ(u

ρ
θ) = 0 in R

uρθ → 0 x→ −∞
uρθ → 1 x→ +∞

(1.92)

Fixed fρ0 > 0 and θ0 ∈ [0, 1], we will shows that for any sequences fρn → fρ0 unifor-
maly and θn → θ0, we have cρnθn → cρ0

θ0
this will show the continuity of the speed. Let uρnθn

be the normalized associated solution, i.e uρnθn (0) = 1
2 . From the apriori estimates obtained in

Lemma 1.2.6, we have cρnθn bounded as (ρn, θn) → (ρ0, θ0). We can extract a sequence, which
converges to some value γ. From the apriori estimates 1.2.5 on uρnθn , there also exists a sub-
sequence which converges to a smooth nondecreasing function u solution of the following
problem with speed γ.





ε0u
′′ + J ? u− u− γu′ + fθ0(u) = 0 in R

u→ 0 x→ −∞
u→ 1 x→ +∞

(1.93)

According to Theorem 1.1.3, the speed and the profile are unique. Therefore, γ = cρ0

θ0
and u(x) = uρ0

θ0
(x + τ). Since cρnθn is precompact and has only γ as accumulation point, the

sequence cρnθn converge to γ as n goes to infinity. This ends the proof of Theorem 1.4.1.
�
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1.5 Asymptotic behavior of solutions

In this section we establish the asymptotic behavior of the solution u and its derivative,
with the extra assumption (H∗). We prove that u (resp. |1−u|) has exponential behavior near
−∞ (resp +∞). We prove also that u′ has exponential behavior near ±∞. This asymptotic
behavior is one of the key-points in the proof of existence of travelling-front solutions in the
monostable case. To summarize :

Proposition 1.5.1.
Let u be a solution of (1.4) (1.5) and (1.6) where J satisfies (H∗). Then u satisfies :

(i) There exists positive constants A, B, λ0 and δ0 such that

Be−δ0y ≤ 1− u ≤ Ae−λ0y when y → +∞.

(ii) There exists positive constants K, K’, λ1 and δ1 such that

K ′eδ1y ≤ u ≤ Keλ1y when y → −∞.

(iii) There exist two positive constants K̃ and λ2 such that

u′ ≤ K̃e−λ2|y| when |y| → +∞.

Remarks 1.5.1. : Since u goes to 0 and 1 when x goes to ±∞, we only need to prove (iii) to get the
inequalities u ≤ Keλ1y and 1− u ≤ Ae−λ0y.

The proof is based on the constant use of a comparison principle and the construction of
appropriate barrier functions. The comparison principle that we use is the following :

Theorem 1.5.1. Comparison Principle
Assume b(x) in L∞(R)CAP :C(R)
Let u and v be two smooth functions (C1,α(R)) and ω a connected subset of R. Assume that u and v
satisfy the following conditions :

– Lv = J ? v − v − b(x)v′ ≥ 0 in ω ⊂ R
– Lu = J ? u− u− b(x)u′ ≤ 0 in ω ⊂ R
– u ≥ 6≡ v on R− ω
– if ω is an unbounded domain, also assume that lim±∞ u− v ≥ 0.

Then u ≥ v on all R.

Proof :
Let w = u− v , so w will satisfy :
– w ≥ 0, w 6≡ 0 in R− ω,
– Lw ≤ 0 in ω.
Now, we argue by contradiction. Assume that w achieves a negative minimum at x0. By

assumption this point x0 is in ω and is a global minimum of w. So, at this point, w satisfies
this following two inequalities :

0 ≥ Lw(x0) = (J ? w − w)(x0) =

∫

R
J(x0 − z)(w(z)− w(x0))dz, (1.94)

Lw(x0) = (J ? w − w)(x0) =

∫

R
J(x0 − z)(w(z)− w(x0))dz ≥ 0. (1.95)
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This implies that w ≡ w(x0) on Rwhich contradicts our assumption w ≥ 6≡ 0 on R− ω
�

Remarks 1.5.2. : This comparison principle also holds if we consider an integrodifferential operator
with negative zero terms such as Lv = J ? v − v − b(x)v ′ + c(x)v, c(x) ≤ 0.

We now present the proof of the third assertion in Proposition 1.5.1. We will first focus
on the behavior of u′ at −∞.

Proof of (iii) in Proposition 1.5.1
For λ > 0, let g(x, λ) = Deλx. Let L be the following integrodifferential operator :

Lv = J ? v − v − cv′. (1.96)

A quick computation of Lg shows that g satisfies :

Lg(x) = g(x)(

∫

R
J(z)eλzdz − cλ− 1). (1.97)

Observe that the condition (H∗) gives sense to
∫
R J(z)eλzdz, so

Lg = h(λ)g(x), (1.98)

where
h(λ) =

∫

R
J(z)eλzdz − cλ− 1. (1.99)

Remarks 1.5.3. : The assumption (H∗) ensures that h(λ) is a smooth function of λ.

We will now choose our λ such that g will be a super-solution of L. We claim :

Claim 1.5.1. There exists λ > 0 such that Lg ≤ 0.

We only have to prove that there exists λ > 0 such that h(λ) ≤ 0.
Proof :

We first compute h(0).
Since J satisfies (H∗) we have J(z)eλz ≤ J(z)ez for λ ≤ 1, which is an integrable function.
Observe that for every z,

J(z)eλz → J(z) when λ→ 0.

Therefore we can apply Lebesgue’s theorem to obtain

h(0) =

∫

R
J(z)dz − 1 = 0. (1.100)

If we show that h′(0) < 0 the claim will be proved. Again since J satisfies (H∗), we can
use Lebesgue’s derivation theorem, to get :

h′(λ) =

∫

R
J(z)zeλzdz − c. (1.101)
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We claim that ∫

R
J(z)zeλz → 0 as λ→ 0. (1.102)

Indeed for every point z,

J(z)zeλz → J(z)z as λ→ 0.

As above we have J(z)zeλz ≤ J(z)|z|ez , which is integrable according to (H∗). Apply
Lebesgue’s theorem to obtain

h′(0) =

∫

R
J(z)zdz − c = 0.

Since J(z)z is an odd function, we get :

h′(0) = −c < 0.

This ends the proof of Claim 1.5.1.
We define λ1 as the first non-trivial zero of the function h. λ1 is well defined since h(λ)→ +∞
as λ→ +∞.

�

Remark 1.5.1. : It follows from its definition that λ1(c, J) is an increasing function of c. This will be
very useful later.

Now, by taking D =‖ u′ ‖∞, we achieve g(x) > u′(x) on R+. From the translation inva-
riance, without loss of generality, we may assume that u(0) = ρ. Therefore u satisfies Lu = 0
in R−.
We now use the comparison principle 1.5.1 with u′ and g to obtain the desired inequality :

‖ u′ ‖∞ exp(λ1x) > u′(x) on R.

�
We use the same idea to obtain the behavior of u′ near +∞. We present briefly it proof.

Proof :
As above we define for λ > 0, g(x, λ) =‖ u′ ‖∞ e−λx. By our definition we have

g(x, λ) ≥ 6≡ u′ for every x ∈ R−. Then we just have to show the inequality on R+. As in
our previous proof, we construct our barrier function and a linear problem to obtain the
inequality :

g(x, λ) ≥ 6≡ u′ for every x ∈ R. (1.103)

Let L be the following integrodifferential operator :

Lv = J ? v − v − cv′ + f ′(1)

2
v. (1.104)

A quick computation shows that g satisfies

Lg(x) = g(x, λ)(

∫

R
J(z)eλzdz + cλ− 1 +

f ′(1)

2
) for x ∈ R. (1.105)

48



1.5. Asymptotic behavior of solutions

As before, we study the function

l(λ) = (

∫

R
J(z)eλzdz + cλ− 1 +

f ′(1)

2
) (1.106)

in a neighborhood of 0. A quick computation gives :

l(0) =
f ′(1)

2
< 0

and

l′(λ) > 0.

So l has a first zero. Let λ0 be this first zero.

Remark 1.5.2. : The function λ0(c, J) is a decreasing function of c.

As u→ 1 when x→ +∞, by translation invariance and regularity of f , we may assume,
without loss of generality, that f ′(u(x)) ≤ f ′(1)

2 for all positive x. Thus u′ satisfies in R+

Lu(x) = −(f ′(u(x))− f ′(1)

2
) ≥ 0. (1.107)

The comparison principle 1.5.1 with L, u′ and g gives the desired conclusion.
�

By our two computations, u′ satisfies near ±∞ :
– u′ ≤‖ u′ ‖∞ eλ1x,
– u′ ≤ A ‖ u′ ‖∞ e−λ0x.

Thus by taking λ2 = min{λ0, λ1}, and K̃ = sup{A ‖ u′ ‖∞, ‖ u′ ‖∞} we get :

u′ ≤ K̃e−λ2|x|.

This ends the proof of (iii) in Proposition 1.5.1.
�

As we have previously mentioned, we can get some asymptotic behavior of u by integra-
ting the above inequality. So we have :

– u(x) ≤ ‖u′‖∞λ1
eλ1x for x near −∞,

– 1− u(x) ≤ ‖u′‖∞λ0
e−λ0x for x near +∞.

To complete the proof of Proposition 1.5.1, we establish the two inequalities below :

Be−δ0x ≤ 1− u(x) for x near +∞, (1.108)

K ′eδ1x ≤ u(x) for x near −∞ (1.109)

We use the same technique as in the study of the behavior of u′. We first deal with (1.108).
Define g(x, δ) = Be−δ|x|, for δ > 0. Let L be the following operator :

Lv = J ? v − v − cv′ + f(u)

u− 1
v. (1.110)
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Choose k > 0 such that −k < f(u)
u−1 < k. Such a k exists because f is Lipschitz continuous

on [0,1].
Now, we compute Lg for x > 0, this gives :

Lg =B

∫

R
J(y)e−δ|x−y|dy − g(x) + cδg(x) +

f(u)

u− 1
g(x), (1.111)

≥g(x)(

∫

R
J(y)e−δ|y|dy − 1 + cδ +

f(u)

u− 1
), (1.112)

≥g(x)(

∫

R
J(y)e−δ|y|dy − 1 + cδ − k). (1.113)

We are looking for a value of δ such that Lg ≥ 0.
Observe that

m(δ) =

∫

R
J(y)e−δ|y|dy − 1 + cδ − k ≥ 0

for δ ≥ k+1
c . Therefore, for δ0 = k+1

c we achieve Lg(x, δ0) > 0.
Let the constant B be defined by B = 1− u(0). Then for all positive δ, we have :

1− u(y) ≥ (1− u(0))e−δ|y| for all y ∈ R−. (1.114)

By our choice of L we have L(1− u) = 0 in R. Apply the comparison principle 1.5.1 with
1− u and g(x, δ0), to get :

1− u(y) ≥ (1− u(0))e−δ0|y| for all y in R.

Now we will end the proof of the proposition by showing that u satisfies (1.109).
Define the following function g(x, δ) for δ > 0

g(x, δ) :=

{ ρ
2e
δx for x < 0

ρ
2 for x > 0.

Let L be the following operator :

Lv = J ? v − v − cv′ − kv. (1.115)

Choose k > 0 such that −k < f(u)
u < k. Such a k exists because f is Lipschitz continuous

on [0,1].
Now, we compute Lg for x < 0, this gives :

Lg =g(x, δ)

∫ −x

−∞
J(z)eδzdz +

ρ

2

∫ +∞

−x
J(z)dz − g(x, δ)− cδg(x, δ)− kg(x, δ), (1.116)

=g(x, δ)(

∫ −x

−∞
J(z)eδzdz + e−δx

∫ +∞

−x
J(z)dz − 1− cδ − k), (1.117)

≥g(x, δ)(

∫ −x

0
J(z)eδzdz + e−δx

∫ +∞

−x
J(z)dz − 1− cδ − k). (1.118)

Choose R and δ1 such that supp(J)CAP :[0, R] 6= ∅ and
∫ R

0
J(z)eδ1zdz − 1− cδ1 − k ≥ 0 (1.119)
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From (1.118) and (1.119) for x ≤ −R, we have

Lg ≥ g(x, δ1)(

∫ R

0
J(z)eδ1zdz + e−δ1x

∫ +∞

−x
J(z)dz − 1− cδ1 − k) ≥ 0

Observe that u and any translation of u satisfy on R

Lu = −(
f(u)

u
+ k)u ≤ 0.

Therefore we can assume that u(−R) = ρ
2 . Since u is increasing we have g(x, δ1) ≤ ρ

2 < u(x)
for x > −R. Using the comparison principle 1.5.1 with u and g on (−∞,−R), then yields to
g(x, δ1) ≤ u on R, which proves (1.109) and ends the proof of the proposition.

�

Remark 1.5.3. : By its definition, δ0(c) is a decreasing function of the speed c. This will be useful in
the proof of existence of travelling waves in the case where f is monostable.

Remark 1.5.4. : One can observe in the derivation of the exponential behavior at +∞ of a solution
u that the only assumption required on f is f ′(1) < 0. Therefore this computation still holds for
nonlinearities f which belong to the bistable and monostable case. To derive (1.109), the only requi-
red assumption on f is that f is lipschitz, therefore the same argument will hold for bistable and
monostable nonlinearity.

1.6 Existence of c∗

In this section we establish the existence of solutions in the KPP case. We prove the exis-
tence of one value of c, c∗, for which there is a solution u, 0 < u < 1 of





J ? u(x)− u(x)− cu′(x) = −f(u(x))
u(−∞) = 0
u(+∞) = 1,

(1.120)

where f is a monostable non-linearity. To achieve this, we use a standard procedure of ap-
proximation of the non-linearity f by functions fεn of ignition type (i.e type B). So, for each
n ∈ N Theorems 1.1.2 and 1.1.3 yields to existence of a solution (un, cn) and a limiting proce-
dure will give the result.
This approximation can be easily obtained by multiplying f by a “cut-off” function gεn . Let
(εn)n∈N be a sequence of positive numbers which goes to 0 as n goes to infinity. We require
that gεn satisfy the following assumption :

– gεn ∈ C∞0 (R),
– 0 ≤ gεn ≤ 1,
– gεn(s) ≡ 0 for s ≤ εn and gεn(s) ≡ 1 for s ≥ 2εn,
– gεn is a monotone increasing sequence of function (i.e. gεn ≤ gεp for p ≥ n).
Our approximation function fεn = fgεn is now well-defined. We may now apply Theo-

rems 1.1.2 and 1.1.3, according to which there is a unique solution (un, cn) of :




J ? u(x)− u(x)− cu′(x) = −fεn(u(x))
u(−∞) = 0
u(+∞) = 1.

(1.121)
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un is unique modulo translation. After translation, we may normalize un so that :

un(0) =
1

2
. (1.122)

Now, we come to the main point : to obtain upper and lower bounds for cn. To derive the
lower bound, we use the same technique as in Lemma 1.2.6. We claim the following :

Claim 1.6.1. There exists a positive constant e > 0 such that for all n ∈ N, cn ≥ e

Proof
We use a contradiction argument. Assume there exists a subsequence of (cn)n∈N which

converges to 0. Let (un)n∈N be the corresponding subsequence of solutions. First integrate
equation (1.121) over R . A straightforward computation shows that :

cn =

∫

R
fεn(un). (1.123)

(un)n∈N is a bounded sequence of positive, increasing functions, so by Helly’s Theorem,
there exists a sub-sequence which converge pointwise to a non-decreasing non-negative
function ū. By Fatou’s Lemma, from (1.123) we get :

0 = lim inf cn ≥
∫

R
f(ū) ≥ 0. (1.124)

Hence, ū takes its values in the set {0, 1} for almost every x ∈ R. ū is a non-decreasing
function, so by the normalization, ū must satisfy :

ū ≡ 0 almost everywhere in R−, (1.125)
ū ≡ 1 almost everywhere in R+. (1.126)

Now, multiply (1.121) by (1 − un) and integrate over R. An easy computation leads us
to :

cn = 2

∫

R
fεn(un)(1− un) +

∫ ∫

R2

J(x− y)(un(x)− un(y))2dxdy. (1.127)

Again, apply Fatou’s Lemma in (1.127) to get :

0 = lim inf cn ≥ 2

∫

R
f(ū)(1− ū) +

∫ ∫

R2

J(x− y)(ū(x)− ū(y))2dxdy ≥ 0. (1.128)

Thus ∫

R
f(ū)(1− ū) = 0 (1.129)

and
∫ ∫

R2

J(x− y)(ū(x)− ū(y))2dxdy = 0. (1.130)

It follows from (1.130) that ū must satisfy ū(x) = ū(y) for almost every couple (x, y) ∈
R2, x 6= y. But this contradicts (1.125) and (1.126) and ends the proof.
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�
Now we derive an upper bound for cn. This will be done with the aid of a non linear

comparison principle and comparison function denoted by w.

Lemma 1.6.1. Non-Linear comparison principle
Let u and v be two smooth bounded and increasing functions, (u, v ∈ C1,α), and let Ω be a compact
subset of R. If u and v satisfy the following :

J ? u− u− u′ + f(u) ≥ 0 on R, (1.131)
J ? v − v − v′ + f(v) ≤ 0 on R, (1.132)
v(x)− u(x) ≥ 6≡ 0 on R− Ω, (1.133)

then v(x)− u(x) > 0 on R.

The derivation of the upper bound is organized as follows. First we prove the non-linear
comparison principle. We then establish the following lemma.

Lemma 1.6.2.
There exists a positive constant κ such that for all n, κ ≥ cn > 0.

Proof of the comparison principle :
First, observe that if limx→−∞ v(x) ≥ limx→+∞ u(x) there is nothing to prove. So, assume

that

lim
x→−∞

v(x) < lim
x→+∞

u(x). (1.134)

Choose τ > 0 such that wτ = v(x+ τ)− u(x) ≥ 0 for all x ∈ R. Such τ exists according to
(1.133) and the assumption that u and v are increasing functions.
We define τ0 = inf{τ |v(x+ τ)− u(x) ≥ 0 on R}. We claim :

Claim 1.6.2. τ0 ≤ 0.

Observe that by proving this claim we prove the comparison lemma.
Proof :

If not, τ0 is positive and by its definition and according to (1.133) and the assumption that
u and v are increasing, there exists x0 such that for all x ∈ R

wτ0(x) ≥ wτ0(x0) = 0. (1.135)

Therefore x0 is a global minimum of wτ0 . Furthermore at x0 we have u(x0) = v(x0 + τ0).
Moreover x0 ∈ Ω because wτ > v(x)− u(x) ≥ 0 for every τ > 0 and x ∈ R− Ω.
In addition, at x0, wτ0 satisfies :

(J ? wτ0 − wτ0 − w′τ0)(x0) ≥ 0 (1.136)
(J ? wτ0 − wτ0 − w′τ0)(x0) ≤ f(u(x0))− f(v(x0 + τ0)) = 0. (1.137)

Thus (J ? wτ0 − wτ0)(x0) = 0, which implies that wτ0 ≡ 0 and contradicts wτ0 > v(x) −
u(x) ≥ 0 for every x ∈ R− Ω. This ends the proof of Claim 1.6.2 and of Lemma 1.6.1.
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�
Now we present the proof of Lemma 1.6.2

Proof :
Once again we use a contraction argument. Suppose that (cn)n∈N is not bounded, so

cn → +∞.
Fix δ > δ0 and λ < λ1 where δ0 and λ1 are defined in the previous section. This is possible

according to Remarks 1.5.1,1.5.2 and 1.5.3 on the monotony of δ0 and λ1 with respect to the
speed c. Now we construct our comparison function w for an adequate g. Let w be a positive
increasing function, such that w satisfies the following :

– w(x) = eλx for x ∈ (−∞,−N ],
– w(x) ≤ eλx on R,
– w(x) = 1− e−δx for x ∈ [N,+∞),
– w(0) = 1

2 .
for given positive λ and δ such that (H∗) holds. Let x0 = e−λN and x1 = 1 − e−δN . We
have 0 < x0 < x1 < 1. We construct a positive function g defined on (0, 1) which satisfies
g(w) ≥ f(w). Since f is smooth near 0 and 1 we may achieve for κ large enough, say κ ≥ κ0

g(s) = λ(κ− λ)s ≥ f(s) for s ∈ [0, x0] (1.138)

and

g(w) = δ(κ− δ)(1− s) ≥ f(s) for s ∈ [x1, 1]. (1.139)

Therefore g(s) ≥ f(s) for s in [0,1], with g defined by :

g =





λ(κ0 − λ)s for 0 ≤ s ≤ x0

h(x) for x0 < s < x1

δ(κ0 − δ)(1− s) for x1 ≤ s ≤ 1
(1.140)

where h is any smooth positive function greater than f on [x0, x1] so that g is smooth i.e.
(g ∈ C2).

Remark 1.6.1. The definition of g depends only on the nonlinearity f

Since g is well defined, we see that for large κ, w is a supersolution.
Observe that : according to (1.140) for x ≤ −N i.e. for w ≤ e−λN , we have

J ? w − w − κw′ + g(w) = J ? w − eλx − λκ eλx + λ(κ0 − λ)eλx,

≤ J ? eλx − eλx − λκeλx + λ(κ0 − λ)eλx,

≤ eλx[

∫

R
J(z)eλzdz − 1− λ(κ− κ0)− λ2],

≤ 0,

for κ large enough. Furthermore for large κ and w ≥ 1− e−δN ,

J ? w − w − κw′ + g(w) = J ? w − (1− e−δx)− δκ e−δx + δ(κ0 − δ)e−δx,
≤ 1− 1 + e−δx − δκe−δx + δ(κ0 − δ)e−δx,
≤ e−δx[1− δ(κ− κ0)− δ2],

≤ 0.

54



1.6. Existence of c∗

Thus by taking κ large enough, we achieve

g(w) ≥ f(w) and J ? w − w − κw′ + g(w) ≤ 0

for 0 ≤ w ≤ e−λN and w ≥ 1− e−δN .

For the remaining values of w, i.e. for x ∈ [−N,N ], w′ > 0 and we may therefore increase
κ further if necessary to achieve

J ? w − w − κw′ + g(w) ≤ 0 on R. (1.141)

Having now chosen κ such that g ≥ f , we observe that by Proposition 1.5.1 and our
choice of w :

w > un for |x| large, say for |x| > an. (1.142)

Since cn → +∞, there exists n0 such that for every n ≥ n0, cn > κ. Fix p ≥ n0.
Since cp > κ and g ≥ f we have :

J ? w − w − cnw′ + fn(w) < 0 on R.

We now apply the non-linear comparison principle and conclude that w > up on R. But
this contradicts the normalization w(0) = up(0) = 1

2 . The lemma is then proved.
�

We now return to our solution (cn, un). Since the speed cn is bounded, there exists c∗

such that a subsequence of (cn)n∈N converge to c∗. We may then proceed as in Section 2.
By the apriori estimates and Helly’s theorem, there exists a non decreasing function ū such
that un → ū pointwise. From the apriori estimates obtained in Section 2, since we have a
positive upper bound for the speed cn, the sequence of functions (un)n∈N is bounded in the
C2,α
loc topology. Therefore we can extract a sub-sequence of (un)n∈N which converges (in C2,β

loc

) to a function u. Since the limit is unique, we have ū = u. Thus u is a solution of :
{
J ? u− u− c∗u′ + f(u) = 0 on R
u(0) = 1

2

(1.143)

We have to verify that u satisfies the right boundary conditions. Since u is an increasing
bounded function, u achieves finite limits at±∞. Furthermore, u′(ξ)→ 0 and (J?u−u)(ξ)→
0 when ξ → ±∞. Thus these limits must be zeros of the function f . Hence u satisfies





J ? u− u− c∗u′ + f(u) = 0 on R
u(0) = 1

2
u(−∞) = 0 and u(+∞) = 1

(1.144)

and we have established the existence of a solution (u, c∗) of (1.120).
�
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2.1 Introduction

In 1930, Fisher [35] suggested to model the spatial spread of a mutant in a given popula-
tion by the following reaction-diffusion equation :

ut −∆u = u(1− u), (2.1)

57



Chapitre 2. On a nonlocal reaction diffusion equation arising in population dynamics

where u represents the gene fraction of the mutant. Dispersion of the genetic characters is
assumed to follow a diffusion law while the logistic term u(1 − u) takes into account the
saturation of this dispersion process.

Since then, much attention has been drawn to reaction-diffusion equations, as they have
proved to give a robust and accurate description of a wide variety of phenomena, ranging
from combustion to bacterial growth, nerve propagation or epidemiology. We point the in-
terested reader to [31, 48, 41] and their many references.

In this work, we consider a variant of (2.1) where diffusion is modeled by a convolution
operator. Going back to the early work of Kolmogorov - Petrovskii- Piskounov (see [46]),
dispersion of the gene fraction at point y ∈ Rn should affect the gene fraction at x ∈ Rn by
a factor J(x, y)u(y)dy where J(x, ·) is a probability density. Restricting to a one-dimensional
setting and assuming that such a diffusion process depends only on the distance between
two niches of the population, we end up with the equation

ut − (J ? u− u) = f(u), (2.2)

where J : R → R is a nonnegative even function of mass one. More precisely, we assume in
what follows that

J ∈ C1(R), J ≥ 0, J(x) = J(−x) and
∫

R
J = 1, (H1)

∫

R
J(z)|z|dz < +∞. (H2)

For some of our results, we need a stronger assumption on the decay of J at infinity. Namely
we suppose that J decays faster than any exponential in the following sense :

∀λ > 0,

∫

R
J(z)eλzdz < +∞. (H3)

The nonlinearity f in (2.2) can be chosen more generally than in equation (2.1). In the li-
terature, three types of nonlinearities appear, according to the underlined application : we
always assume that f ∈ C1(R), f(0) = f(1) = 0, f ′(1) < 0 and

– we say that f is of bistable type if there exists θ ∈ (0, 1) such that

f < 0 in (0, θ), f(θ) = 0 and f > 0 in (θ, 1)

– f is of ignition type if there exists θ ∈ (0, 1) such that

f |[0,θ] ≡ 0, f |(θ,1) > 0 and f(1) = 0.

– f is of monostable type if
f > 0 in (0, 1)

Observe that equation (2.1) falls in the monostable case. In the present article, we will
focus on the monostable nonlinearity. (2.1) can also be seen as a first order approximation
of (2.2). Indeed if any given niche of the species is assumed to interact mostly with close-
by neighbours, the diffusion term is of the form Jε(x) := 1

εJ(1
εx), where J is compactly

supported and ε > 0 is small. We then have

Jε ? u− u =
1

ε

∫
J(

1

ε
y)(u(x− y)− u(x)) dy =

∫
J(z)(u(x− εz)− u(x)) dz

= −ε
∫
J(z)u′(x)z dz + ε2

∫
z2J(z)u′′(x) dz + o(ε2) = cε2u′′(x) + o(ε2),
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where we used the fact that J is even in the last equality.

We also observe that equation (2.2) can be related to the class of problems studied in [59,
60]. However, our approach differs in at least two different ways : firstly, from the technical
point of view, inverting the operator u→ ut − (J ∗ u− u) in any reasonable space yields no
a priori regularity property on the solution u and the compactness assumptions made in [60]
no longer hold in our case.

Secondly, whereas the author favored discrete models over continuous ones to describe
the dynamics of certain populations, we remain interested in the latter. In particular, we
have in mind the following application to adaptative dynamics : in [37], the authors study a
probabilistic model describing the microscopic behavior of the evolution of genetic traits in a
population subject to mutation and selection. Averaging over a large number of individuals
in the initial state, they then derive in the limit a deterministic equation, a special case of
which can be written as

∂tu = J ∗ u− u+ (1−K ∗ u)u, (2.3)

where J(x) is a kernel taking into account mutation about trait x and K(x) is a competi-
tion kernel, measuring the "intensity" of the interaction between x and y. Equation (2.2) can
therefore be seen as a first step towards solving (2.3).

The aim of this article is the study of so-called travelling-wave solutions of equation (2.2)
i.e. solutions of the form

u(x, t) = U(x+ ct),

where c ∈ R is called the wave speed and U the wave profile, which is required to solve the
equation





J ? U − U − cU ′ + f(U) = 0 in R
U(x)→ 0 as x→ −∞
U(x)→ 1 as x→ +∞.

(2.4)

Such solutions are expected to give the asymptotic behavior in large time for solutions of
(2.2) with say compactly supported initial data : in the Fisher equation, this is equivalent to
saying that the mutant propagates (after some time) at constant speed and along the profile
U . It is therefore of interest to prove existence of such solutions.

The first results in this direction are due to Schumacher [53], who considered the mono-
stable nonlinearity, under the extra assumption that f(r) ≥ h0r−Kr1+α, for some h0,K, α >
0 and all r ∈ [0, 1]. In this case, his results imply existence of travelling waves with arbitrary
speed c ≥ c∗, where c∗ is the smallest c ∈ R such that the ρc : R→ R defined by

ρc(λ) = −λc+

∫
J(z)eλz dz − 1 + f ′(0),

vanishes for some λ ∈ R.
Furthermore if c > c∗ and under some extra assumptions on f , he shows that the profile

u of the associated travelling wave is unique up to translation.
Recently, Carr and Chmaj [15] completed the work of Schumacher. For the "KPP" non-

linearity (i.e. if f is monostable and f(r) ≤ f ′(0)r for all r ∈ [0, 1]) and if J has compact
support, they show that the above uniqueness result can be extended to c = c∗.
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Concerning the bistable nonlinearity, Bates-Fife-Ren-Wang [5] and Chen [17] showed
that in this case sthere exists an increasing travelling wave U with speed c solving (2.4).
Furthermore if V is another nondecreasing travelling wave with speed c′ then c = c′ and
V (x) = U(x+ τ) for some τ ∈ R.

Coville [20] then looked at the case of ignition nonlinearities and proved again the exis-
tence and uniqueness (up to translation) of an increasing travelling wave (U, c). He also
obtained the existence of at least one travelling-wave solution in the monostable case.

Our first theorem extends some of the afore-mentioned results of Schumacher to the
general monostable case :

Theorem 2.1.1.
Assume (H1) and (H3) hold and assume that f is of monostable type. Then there exists a constant
c∗ > 0 (called the minimal speed of the travelling wave) such that for all c ≥ c∗, there exists an
increasing solution U ∈ C1(R) of (2.4) while no nondecreasing travelling wave of speed c < c∗

exists.

Our second result shows that the behavior of the travelling front u near ±∞ is governed
by exponentials. Namely we have the following proposition

Proposition 2.1.1.
Assume (H1) and (H3) hold. Then given any travelling-wave solution (u, c) of (2.4) with f mono-
stable, the following assertions hold :

1. There exists positive constants A,B, λ0 and δ0 such that

Be−δ0y ≤ 1− u(y) ≤ Ae−λ0y as y → +∞

2. If f ′(0) > 0 then there exists two positive constants K and λ1 such that

u(y) ≤ Keλ1y as y → −∞

The proof of Theorem 2.1.1 essentially uses elementary analysis and is based on the study
of two auxiliary problems and the construction of adequate super and subsolutions. Let us
briefly explain the idea of this proof. We break it down in to three steps.

We first start by showing existence and uniqueness of a solution for the following auxi-
liary problem





εu′′ +
∫ +∞
r J(x− y)u(y)dy − u− cu′ + f(u) = −hr(x) for x ∈ (r,+∞)

u(r) = θ
u→ 1 x→ +∞,

(2.5)

with r ∈ R, ε > 0, θ ∈ (0, 1), hr(x) = θ
∫ r
−∞ J(x − y)dy and c ∈ (κ,∞) for some κ > 0. The

existence is obtained via an iterative scheme using a comparison principle and good sub and
supersolutions. In the second step, with a standard limiting procedure, we prove Theorem
2.1.1 for the following problem





εu′′ + J ? u− u− cu′ + f(u) = 0 in R
u→ 0 x→ −∞
u→ 1 x→ +∞,

(2.6)
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for ε > 0. Finally, in the last step we send ε → 0 and extract converging subsequences.
Though elementary in nature, the proof of this result requires a number of lemmas which
we list and prove in Section 2.2. We construct sub and supersolutions in Section 2.3. Section
2.4 deals with existence and uniqueness of solutions of (2.5). Then we construct in Section
2.5 a solution of (2.6) for every c ≥ c∗(ε). Finally existence of solutions for all c ≥ c∗ is given
in Section 2.6. The last section is devoted to the proof of Proposition 2.1.1.

2.2 Linear theory

We start this section with a maximum principle for integro-differential operators defined
on the semi infinite interval Ω = (r,+∞) of the kind :

Lru := εu′′ +
∫ ∞

r
J(x− y)u(y)dy − u+ b(x)u′ + c(x)u, (2.7)

where ε ≥ 0, r < 0,
∫
R J = 1,

◦
supp(J) CAP :Ω 6≡ ∅ and c(x) ≤ 0, b(x) and c(x) are bounded

functions onR. We shall also consider operators of the form Lr+hr(x), where hr is a function
defined for x ∈ Ω by

hr(x) = θ

∫ r

−∞
J(x− y)dy, (2.8)

where θ ∈ R is some given constant.
We prove a strong maximum principle that applies to smooth functions :

Theorem 2.2.1. Strong Maximum Principle
Let u ∈ C2(Ω)CAP :C0(Ω̄) satisfy

Lru ≥ 0 on Ω (resp. Lru ≤ 0 on Ω), (2.9)

then u may not achieve a positive maximum (resp. negative minimum) without being constant.

Similarly we have

Theorem 2.2.2. Strong Maximum Principle
Let u ∈ C2(Ω)CAP :C0(Ω̄) satisfy

{
Lru+ hr(x) ≥ 0 on Ω (resp. Lru+ hr(x) ≤ 0 on Ω)
u(r) = θ ≤ u(x) on Ω (resp. u(x) ≥ θ on Ω)

Then u may not achieve a positive maximum (resp. negative minimum) without being constant.

As a straightforward consequence, we have the following practical corollary :

Corollary 2.2.1.
Let u ∈ C2(Ω)CAP :C0(Ω̄) satisfy





Lru+ hr(x) ≥ 0 on Ω
u(r) = θ ≤ 0
lim supx→+∞ u(x) ≤ 0.

Then

61



Chapitre 2. On a nonlocal reaction diffusion equation arising in population dynamics

– Either u < 0 in Ω
– Or u ≡ 0.

Remarks 2.2.1.
Similarly if Lru + hr(x) ≤ 0, u(r) = θ ≥ 0 and lim infx→+∞ u(x) ≥ 0 then u is either positive or
identically 0.

Remark 2.2.1. A result such as Corollary 2.2.1 can also be directly derived for the operator Lr.

Proof of Theorem 2.2.1 :
We argue by contradiction and assume that u is nonconstant and achieves a positive

maximum at some point x0 ∈ Ω. Since
∫
R J(z)dz = 1 we can rewrite (2.9) as

Lru = εu′′ +
∫ +∞

r
J(x− y)[u(y)− u(x)]dy + b(x)u′ + c̄(x)u, (2.10)

with c̄(x) = c(x)−
∫ r
−∞ J(x− y)dy.

At the positive point of maximum x0 we then have on the one hand

εu′′(x0) ≤ 0,

∫ +∞

r
J(x0 − y)[u(y)− u(x0)]dy ≤ 0 and c̄(x0)u(x0) ≤ 0. (2.11)

On the other hand by our assumption

εu′′(x0) +

∫ +∞

r
J(x0 − y)[u(y)− u(x0)]dy + c̄(x0)u(x0) ≥ 0 (2.12)

(2.11) and (2.12) imply that εu′′(x0) = c̄(x0)u(x0) = 0 and
∫ ∞

r
J(x0 − y)[u(y)− u(x0)] dy = 0. (2.13)

By assumption, J is a continuous nonnegative function with
◦

supp(J) CAP :Ω 6≡ ∅. Let 0 <
a < b be some constants such that [−b,−a]∪ [a, b] ⊂ supp(J) and [a, b] ⊂ Ω. Theses constants
exist since J is an even function and r < 0. Thus we deduce from (2.13) that u(y) = u(x0) for
all y in the set (x0 + supp(J))CAP :Ω and therefore in the set (x0 + [−b,−a] ∪ [a, b])CAP :Ω.
Next we show that u = u(x0) for y ∈ [x0,+∞). Let z ∈ x0+[a, b], observe that at the point z, u
achieves a positive maximum since u(z) = u(x0). We may thus argue as above and conclude
that

u(y) = u(x0) for all y ∈ (x0 + [−b,−a] ∪ [−(b− a), b− a] ∪ [a, b] ∪ [a+ b, 2b])CAP :Ω. (2.14)

Since r < 0, we have u(y) = u(x0) for all y ∈ x0 + [0, b− a]. Now repeat all the computations
with z = x0 + b − a instead of x0 to obtain that u(y) = u(x0) for all y ∈ x0 + [0, 2(b −
a)]. Therefore by repeating infinitely many times this process we obtain u = u(x0) for y ∈
[x0,+∞). Next we show that u = u(x0) for y ∈ [r, x0). From (2.14), we also have u(y) = u(x0)
for all y ∈ (x0 + [−(b − a), 0])CAP :Ω. If x0 − (b − a) ≤ r then we are done. Otherwise we
can again repeat the computations with z = x0 − (b − a) and obtain u(y) = u(x0) for all
y ∈ (x0 + [−2(b−a), 0])CAP :Ω. We then obtain the result by doing so infinitely many times.
Eventually we end up with u(y) = u(x0) for all y in Ω, which is a contradiction.

�
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Remark 2.2.2. Observe that if Ω ⊂ supp(J), the above proof is simplified and we obtain directly
that ũ(y) = cte without using the construction with the compact set [a, b].

Proof of Theorem 2.2.2
Define

ũ(x) :=

{
u(x) on Ω
u(r) = θ on R \ Ω

and observe that we can rewrite equation (2.7) as

{
L̃rũ ≥ 0 in Ω
ũ(x) ≥ θ on Ω

where L̃rũ = εũ′′+J?ũ−ũ+b(x)ũ′+c(x)ũ. We now argue by contradiction and assume that ũ
achieves a positive maximum at some point x0 ∈ Ω and is nonconstant. Since

∫
R J(z)dz = 1

we have :

L̃rũ = εũ′′ +
∫ +∞

−∞
J(x− y)[ũ(y)− ũ(x)]dy + b(x)ũ′ + c(x)ũ. (2.15)

Since u(x) ≥ θ on Ω we have u(x0) > θ and u achieves a global positive maximum at
x0. Arguing as in the proof of Theorem 2.2.1 we end up with u ≡ u(x0) on Ω̄ which is a
contradiction since u(r) = u(x0) > θ = u(r).

�
Next, we provide an elementary lemma to construct solutions to constant-coefficient Di-

richlet problems of the form

Lru = f on Ω = (r,+∞)

u(r) = 0

u(x)→ 0 as x→ +∞

Lemma 2.2.1. Let f ∈ C0(Ω)CAP :L2(Ω) and Lr defined by

Lrv = εv′′ +
∫ +∞

r
J(x− y)v(y)dy − v − cv′ − dv,

where ε > 0, c, d ∈ R, d > 0. Then there exists a unique solution v ∈ C0(R)CAP :L2(Ω) ( additio-
nally v ∈ C2(Ω) ) of 




Lrv = f in Ω
v(r) = 0
v → 0 x→ +∞

(2.16)

Proof
Uniqueness follows from the maximum principle. Let X = H1

0 (Ω) and define the follo-
wing bilinear form A(u, v) for u, v ∈ X by

A(u, v) = ε

∫

Ω
u′v′ +

1

2

∫

Ω

∫

Ω
J(x− y)(u(y)− u(x))(v(y)− v(x))dydx+ c

∫

Ω
u′v + d

∫

Ω
uv

63



Chapitre 2. On a nonlocal reaction diffusion equation arising in population dynamics

We will show thatA is coercive and continuous in X . Existence will then be given by the
Lax-Milgram Lemma. Observe that since 1

2

∫
Ω

∫
Ω J(x− y)(u(y)− u(x))2dydx ≥ 0 we have

A(u, u) ≥ ε
∫

Ω
(u′)2 + c

∫

Ω
u′u+ d

∫

Ω
u2 = ε

∫

Ω
(u′)2 + d

∫

Ω
u2

Thus A is coercive in X . It remains to prove the continuity of A. Observe that by a density
argument, it is sufficient to prove the continuity for smooth functions. Let φ and ψ be two
smooth functions with compact support in Ω.

1

2

∫

Ω

∫

Ω
J(x−y)(φ(y)−φ(x))(ψ(y)−ψ(x))dydx ≤ 1

2

∫

R

∫

R
J(x−y)|φ(y)−φ(x)||ψ(y)−ψ(x)|dydx

From the Fundamental Theorem of Calculus and Cauchy-Schwartz inequality we have :
∫

R2

J(x− y)|φ(y)− φ(x)||ψ(y)− ψ(x)|dydx ≤
∫

R2

∫ 1

0

∫ 1

0
J(z)z2|φ′(x+ tz)||ψ′(x+ sz)|dzdxdtds

≤
∫

R

∫

[0,1]2
J(z)z2

∫

R
|φ′(h)||ψ′(h+ (s− t)z)|dhdsdzdt

≤
∫

R

∫

[0,1]2
J(z)z2 dzdtds‖φ′‖L2(R)‖ψ′‖L2(R)

≤(

∫

R
J(z)z2 dz)‖φ′‖L2(R)‖ψ′‖L2(R)

which shows the continuity of A.
�

2.3 Existence of sub and supersolutions

In this section, we construct various nonnegative sub and supersolutions. We start with
the construction of a supersolution of the following integro-differential equation :





εu′′ + J ? u− u− cu′ + f(u) = 0 in R
u→ 0 x→ −∞
u→ 1 x→ +∞,

(2.17)

where ε is a fixed nonnegative parameter. Using the exponential integrability assumption
on J , we are able to construct a supersolution for a certain positive speed c = κ. We start
with the construction of the supersolution.

Let N be a large positive constant and w be a positive increasing function satisfying
– w(x) = eλx for x ∈ (−∞,−N ],
– w(x) ≤ eλx on R,
– w(x) = 1− e−δx for x ∈ [N,+∞),
– w(0) = 1

2 .
for given positive λ and δ. Let x0 = e−λN and x1 = 1 − e−δN . We have 0 < x0 < x1 < 1. We
now construct a positive function g defined on (0, 1) which satisfies g(w) ≥ f(w). Since f is
smooth near 0 and 1, we have for κ large enough, say κ ≥ κ0,

λ(κ− λ)s ≥ f(s) for s ∈ [0, x0], (2.18)
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and

δ(κ− δ)(1− s) ≥ f(s) for s ∈ [x1, 1]. (2.19)

Therefore we can achieve g(s) ≥ f(s) for s in [0,1], with g defined by :

g(s) =





λ(κ0 − λ)s for 0 ≤ s ≤ x0

l(s) for x0 < s < x1

δ(κ0 − δ)(1− s) for x1 ≤ s ≤ 1
(2.20)

where l is any smooth positive function greater than f on [x0, x1] such that g is of class
C1.

Remark 2.3.1. The definition of g depends only on the nonlinearity f .

Since we have a well-defined function g, we can see that for large κ, w is a supersolution.
According to (2.20), for x ≤ −N i.e. for w ≤ e−λN , we have

εw′′ + J ? w − w − κw′ + g(w) = ελ2eλx + J ? w − eλx − λκ eλx + λ(κ0 − λ)eλx

≤ ελ2eλx + J ? eλx − eλx − λκeλx + λ(κ0 − λ)eλx

≤ eλx[

∫

R
J(z)eλzdz − 1− λ(κ− κ0)− λ2(1− ε)]

≤ 0

for κ large enough, say κ ≥ κ1 =
R
R J(z)eλzdz−1+λκ0−λ2(1−ε)

λ .
Furthermore for w ≥ 1− e−δN we have,

εw′′ + J ? w − w − κw′ + g(w) = εδ2e−δx + J ? w − (1− e−δx)− δκ e−δx + δ(κ0 − δ)e−δx
≤ εδ2e−δx + 1− 1 + e−δx − δκe−δx + δ(κ0 − δ)e−δx
≤ e−δx[1− δ(κ− κ0)− δ2(1− ε)]
≤ 0

for κ large enough, say κ ≥ κ2 = 1+δκ0−δ2(1−ε)
δ . Thus by taking κ ≥ sup{κ1, κ2}, we achieve

g(w) ≥ f(w) and J ? w − w − κw′ + g(w) ≤ 0

for 0 ≤ w ≤ e−λN and w ≥ 1− e−δN .

For the remaining values of w, i.e. for x ∈ [−N,N ], w′ > 0 and we may therefore increase
κ further if necessary, to achieve

εw′′ + J ? w − w − κw′ + g(w) ≤ 0 on R (2.21)

Remark 2.3.2. An easy consequence of this construction is that for κ(ε) := sup{κ1, κ2, κ3} where
κ3 = supx∈[−N,N ]{ ε|w

′′|+|J?w−w|+g(w)
w′ }, w is a supersolution of (2.17) and κ(ε) is a nondecreasing

function of ε.

Observe that given any r ∈ R and θ ∈ (0, 1), some translation of w is also a supersolution
of the following problem :
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



Lru+ f(u) = 0 for x ∈ (r,+∞)
u(r) = θ
u(x)→ 1 as x→ +∞,

(2.22)

where

Lru = εu′′ − cu′ +
∫ ∞

r
J(x− u)u(y) dy − u. (2.23)

Next we show that some constants are respectively super and subsolution of the following
problem 




Lru+ hr(x) + f(u) = 0 for x ∈ (r,+∞)
u(r) = θ
u→ 1 x→ +∞,

(2.24)

with hr(x) defined by (2.8) A simple computation of Lr(θ) + hr(x) and Lr(1) + hr(x) yields

Lr(θ) + hr(x) + f(θ) =

∫ +∞

r
J(x− y)θdy − θ + θ

∫ r

−∞
J(x− y)dy + f(θ) ≥ 0,

Lr(1)+hr(x)+f(1) =

∫ +∞

r
J(x−y)dy−1+θ

∫ r

−∞
J(x−y)dy = (θ−1)

∫ r

−∞
J(x−y)dy+f(1) ≤ 0,

so that θ and 1 are respectively a sub and a supersolution of (2.24).

2.4 Construction of a solution of (2.25)

In this section, we will show that for the speed c = κ, ε > 0 and for any θ ∈ (0, 1) there
exists an increasing solution ur of Problem (2.25) below. Moreover this solution is unique.





Lru+ hr(x) + f(u) = 0 for x ∈ (r,+∞)
u(r) = θ
u→ 1 x→ +∞,

(2.25)

with Lru defined by (2.23) and hr(x) by (2.8). For the uniqueness proof see the appendix of
the thesis. The existence of a solution is obtained via an iterative scheme using sub and super
solutions.

2.4.1 Preliminaries

Fix c = κ > 0, ε > 0 and 1 > θ > 0. Recall that the constants θ and 1 are respectively a sub
and a supersolution of equation (2.25) (see Section 2.3). Let now g ∈ C∞c (R) be a nonnegative
function with ‖g‖L1(R) = 1 and G(x) =

∫ x
−∞ g(t) dt. We can chose g such that G(r) = θ. Now

for λ > 0,r ∈ R define

Tλ,r : C0(Ω)CAP :L2(Ω) → C0(Ω)CAP :L2(Ω)
v 7→ z,
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where z is the unique solution of




Lrz − λz = F (v, x) in Ω
z(r) = 0
z(x)→ 0 x→ +∞,

(2.26)

where F (v, x) = −f(v +G)− λv − LrG− hr(x). Now, using Lemma 2.2.1, to prove that z is
well-defined, it is enough to show that v ∈ L2(Ω)CAP :C0(Ω) =⇒ F (v, x) ∈ L2(Ω)CAP :C0(Ω).

On the one hand since G(x) = 1 for x >> 1, it follows that 1 − G ∈ L2(Ω)CAP :C0(Ω).
On the other hand given v ∈ L2(Ω)CAP :C0(Ω), since f(1) = 0,

|f(v +G)| ≤ ‖f ′‖∞|v +G− 1| ∈ L2(Ω) and lim
+∞

f(v +G) = 0,

so that f(v + G) ∈ L2(Ω)CAP :C0(Ω). Clearly G′, G′′ ∈ L2(Ω). Finally, the following lemma
applied to u = G shows that

∫ +∞
r J(x− y)G(y)dy − G ∈ L2(Ω) and hr(x) ∈ L2(Ω), so we

can conclude that z solving (2.26) is well-defined.

Lemma 2.4.1. Let u ∈ C1(Ω)CAP :L∞(Ω). Then

‖
∫ +∞

r
J(x− y)u(y)dy − u‖L2(Ω) ≤ C(‖u′‖L2(Ω) + ‖j‖L2(Ω)).

with j(x) =
∫ r
−∞ J(x− y) dy ∈ L2(Ω)

Remark 2.4.1. The lemma also implies that hr(x) ∈ L2(Ω) since θj(x) = hr(x).

Proof of the lemma
Using the fundamental theorem of calculus, we have that

∫ +∞

r
J(x− y)u(y)dy − u(x) =

∫ +∞

r
J(x− y)(u(y)− u(x))dy − u(x)

∫ r

−∞
J(x− y)dy

=

∫ +∞

r−x
J(z)(u(x+ z)− u(x))dz − u(x)

∫ r−x

−∞
J(z)dz

=

∫ +∞

r−x
J(z)z

(∫ 1

0
u′(x+ tz) dt

)
dz − u(x)j(x),

with j(x) =
∫ r−x
−∞ J(z)dz. By standard estimation and the Cauchy-Schwartz inequality, it

follows that

|
∫ +∞

r
J(x− y)u(y)dy − u(x)|2 ≤ 2

[(∫ +∞

r−x
J(z)z

(∫ 1

0
u′(x+ tz) dt

)
dz

)2

+ u2(x)j2(x)

]

≤ 2

[∫ +∞

r−x

∫ 1

0
J(z)|z|(u′)2(x+ tz)dt dz ·

∫ +∞

r−x
J(z)|z| dz + u2j2

]

≤ C

[∫ +∞

r−x

∫ 1

0
J(z)|z|(u′)2(x+ tz)dt dz + u2j2(x)

]

Define Γ(x) :=
∫ +∞
r−x

∫ 1
0 J(z)|z|(u′)2(x+ tz)dt dy. We then have
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|
∫ +∞

r
J(x− y)u(y)dy − u(x)|2 ≤ C

[
Γ(x) + j2(x)

]

We thus need to show that Γ is in L1(Ω) and satisfies

‖Γ‖L1(Ω) ≤ C‖u′‖2L2(Ω), (2.27)

and that j is in L2(Ω). The latter comes easily form the definition of j and the exponential
decay of J . Namely, we can bound j from above in the following way :

0 ≤ j(x) =

∫ r−x

−∞
J(z)dz ≤ eδ(r−x)

∫

R
J(z)e−δzdz ≤ Keδ(r−x) ∈ L2(Ω)

The main difficulty is to show that Γ is in L1(Ω) and satisfies (2.27). We show (2.27) through
a direct computation.
By definition of Γ and since all the integrands are positive, using Tonelli’s Theorem, we have :

∫ +∞

r
Γ(x)dx =

∫ 1

0

∫ +∞

r

∫ +∞

r−x
J(z)|z|(u′)2(x+ tz)dzdxdt

=

∫ 1

0

∫ +∞

r

∫ +∞

−∞
J(z)|z|(u′)2(x+ tz)χ{z>r−x}dzdxdt

=

∫ 1

0

∫ +∞

−∞
J(z)|z|

(∫ +∞

r
(u′)2(x+ tz)χ{x>r−z}dx

)
dzdt

=

∫ 1

0

∫ +∞

−∞
J(z)|z|

(∫ +∞

r+tz
(u′)2(s)χ{s>r−z+tz}ds

)
dzdt

=

∫ 1

0

∫ +∞

−∞
J(z)|z|

(∫ +∞

−∞
(u′)2(s)χ{s>r−z+tz}χ{s>r+tz}ds

)
dzdt

Where χO is the characteristic function of the subset O.
Observe now that χ{s>r−z+tz}χ{s>r+tz} ≤ χ{s>r} . Hence we end up with :

∫ +∞

r
Γ(x)dx ≤

∫ 1

0

∫ +∞

−∞
J(z)|z|

(∫ +∞

−∞
(u′)2(s)χ{s>r}ds

)
dzdt

≤
(∫ +∞

−∞
J(z)|z|dz

)
‖u′‖2L2(Ω),

which is the desired conclusion.
�

Remark 2.4.2. Observe that Tλ,r is still well define for any function G such that G(r) = θ, 1−G ∈
L2(Ω) and LrG ∈ L2(Ω).

2.4.2 Iteration procedure

We claim that there exists a sequence of functions {un}n∈N satisfying

u0 = G and for n ∈ N \ {0},
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



Lrun+1 − λun+1 = −f(un)− λun − hr(x) in Ω
un+1(r) = θ
un+1(x)→ 1 x→ +∞.

(2.28)

We proceed as follows. Using the substitution vn = un −G, (2.28) reduces to




Lrvn+1 − λvn+1 = F (vn, x) in Ω
vn+1(r) = 0
vn+1(x)→ 0 x→ +∞,

(2.29)

where F (v, x) = −f(v + G) − λv − LrG − hr(x). Therefore we have vn+1 = Tλ,rvn. Now,
using the previous subsection and induction, to prove that vn is well-defined, it is enough to
show that v0 ∈ L2(Ω)CAP :C0(Ω) which is trivial since v0 = 0.

2.4.3 Passing to the limit as n→∞
Recall that the constants θ and 1 are respectively a subsolution and a supersolution of

(2.25).
It follows easily from induction and the Maximum Principle (Theorem 2.2.2) that for all
n ∈ N \ {0},

θ ≤ un ≤ 1. (2.30)

Choosing λ > 0 so large that −f − λ is nonincreasing, we prove next by induction that

x→ un(x) is a nondecreasing function. (2.31)

First define the following sequence of function :

ũn(x) :=

{
θ if x ∈ R \ Ω
un(x) if x ∈ Ω.

We will prove that (ũn)n are nondecreasing functions, which implies (2.31). Observe that
ũn+1 solves the following problem





Lrũn+1 − λũn+1 +
∫ r
−∞ J(x− y)ũn+1(y)dy = −(f + λ)(ũn(x)) in Ω

ũn+1(r) = θ
ũn+1 → 1 x→ +∞,

(2.32)

which can be rewriten as




ũ′′n+1 − cũ′n+1 + J ? ũn+1 − ũn+1 − λũn+1 = −(f + λ)(ũn(x)) in Ω
ũn+1(r) = θ
ũn+1 → 1 x→ +∞.

(2.33)

For n = 0, we already know that ũ0 is nondecreasing. Fix now n ≥ 1 and assume that ũn−1

is nondecreasing. Also given any positive τ , let w(x) = ũn(x + τ) − ũn(x). It follows from
Equation (2.33) and the assumption that ũn−1 and f + λ are nondecreasing that

εw′′ + J ? w − cw′ − (1 + λ)w(x) ≤ 0 in Ω, (2.34)
w(x) ≥ 0 for x ∈ R \ Ω, (2.35)
w(∞) = 0, (2.36)
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whence by the Maximum Principlew ≥ 0. In particular, ũn(x+τ)−ũn(x) ≥ 0 for any positive
τ . This shows that ũn is nondecreasing.

Using (2.30), (2.31) and Helly’s lemma, it follows that a subsequence of {un} converges
pointwise to a nondecreasing function u satisfying

θ ≤ u ≤ 1.

By the dominated convergence theorem, we have for all x ∈ Ω
∫ +∞

r
J(x− y)un(y)dy − un(x)→

∫ +∞

r
J(x− y)u(y)dy − u(x), as n→∞.

Rewriting (2.28) as

εu′′n+1 − cu′n+1 = un+1 −
∫ +∞

r
J(x− y)un+1(y)dy − λ(un − un+1)− f(un)− hr(x), (2.37)

observing that the right-hand side in the above equation is uniformly bounded and using
elliptic regularity, we conclude that {un} is bounded e.g. in C1,α(ω), where α ∈ (0, 1) and
ω is an arbitrary bounded open subset of Ω. Repeating the argument implies that {un} is
bounded in C2,α(ω). Hence u ∈ C2(Ω) and we can pass to the limit in the equation to obtain
that u satisfies

εu′′ − cu′ +
∫ +∞

r
J(x− y)u(y)dy − u+ f(u) + hr(x) = 0 in Ω. (2.38)

Observing that un(r) = θ and that un converges pointwise to u, we easily conclude that
u(r) = θ. To complete the construction of the solution, we prove that u(+∞) = 1. Indeed,
since u is uniformly bounded and nondecreasing, u achieves its limit at +∞. Using standard
estimates we easily get from (2.38) that u satisfies f(u(+∞)) = 0. Hence u(+∞) = 1. We have
thus constructed an increasing solution u of (2.25). Observe that the construction holds for
any θ ∈ (0, 1), since from Section 2.3 we can construct appropriate sub and supersolutions of
(2.25).

�
We can now turn our attention to the construction of a solution of (2.39), which will be

proved in the next section.

2.5 Construction of solutions of (2.39) for all c ≥ c∗(ε)

In this section, we show that there exists c∗(ε) such that for each c ≥ c∗(ε) there exists a
positive increasing solution of the following problem





εu′′ + J ? u− u− cu′ + f(u) = 0 in R
u→ 0 x→ −∞
u(x)→ 1 x→ +∞,

(2.39)

Namely we have the following

Theorem 2.5.1.
Let ε > 0, then there exists a positif real number c∗(ε) such that for all c ≥ c∗(ε) there exists a
positive smooth increasing solution uε of (2.39). Futhermore if c < c∗(ε), then problem (2.39) has no
increasing solution.
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2.5. Construction of solutions of (2.39) for all c ≥ c∗(ε)

The proof of Theorem 2.5.1 will be broken down in two parts. In the first part, Subsection
2.5.1, we construct a solution of Problem (2.39) for a specific value of the speed c = κ, using
solutions of approximate problems constructed in the previous section and a standard limi-
ting procedure. Then in the second part (Subsections 2.5.2 and 2.5.3) we define the minimal
speed c∗(ε) and construct solutions of (2.39) for speeds c ≥ c∗(ε).

2.5.1 Construction of one solution of (2.39) for c = κ

For the construction of the solution, we use the approximate problem below




Lru+ hr(x) + f(u) = 0 for x ∈ (r,+∞)
u(r) = θ
u(x)→ 1 x→ +∞,

(2.40)

From the previous section, for any real number r and any θ ∈ (0, 1) there exists a unique
solution of (2.40). For fixed r < 0, we claim that the solution of (2.40) satisfies the following
normalization.

Claim 2.5.1.
There exists θ0 ∈ (0, 1) such that the corresponding solution uθ0r of (2.40) with θ = θ0 satisfies the
normalization uθ0r (0) = 1

2 .

Remark 2.5.1. This normalization has no meaning when r is no longer negative.

Proof of Claim 2.5.1
We start with the definition of the following set of acceptable values of θ.

Θ = {θ|uθr(0) >
1

2
}

Choosing any θ ≥ 1
2 and observing that uθr is increasing we have [1

2 , 1) ⊂ Θ. The unique-
ness of the solution uθr and standard a priori estimates imply that θ → uθr(0) is a continuous
over [0, 1]. By continuity, we can therefore conclude that

– Either there exists a positive θ0 such that uθ0r (0) = 1
2

– Or (0, 1) ⊂ Θ.
We show that the latter case can not occur which will prove the claim. For this, we argue
by contradiction. Suppose that (0, 1) ⊂ Θ. Let (θn)n∈N a sequence such that θn → 0. Let
(un)n∈N be the corresponding sequence of solution of (2.40) with θ = θn. Using Helly’s
Lemma and standard a priori estimates, we can extract a subsequence, still denoted (un)n∈N
which converges to a nondecreasing function u. Since un(0) > 1

2 , u(0) ≥ 1
2 and u is thus a

non-trivial function, satisfying the following equation




Lru+ f(u) = 0 for x ∈ (r,+∞)
u(r) = 0
u(x)→ 1 x→ +∞.

(2.41)

Observe that the function w constructed in Section 2.3 is a subsolution of (2.41). One can
show that w > u, which provides a contradiction since 1

2 ≤ u(0) < w(0) = 1
2 . See the

appendix for details.
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�
With the latter normalization, we are ready for the construction of a solution of (2.39). Let

(rn)n∈N = (−n)n∈N and (uθnn )n∈N be the sequence of solutions of the corresponding approxi-
mate problem (2.40) with r replaced by rn and θ = θn, where (θn)n∈N is such that we have
the normalization uθnn (0) = 1

2 . Define (hn)n∈N by

hn(x) = θn

∫ rn

−∞
J(x− y)dy. (2.42)

From Claim 2.5.1 and the previous section such sequences are well defined. Clearly, hn → 0
pointwise, as n→∞. Observe now that (uθnn )n∈N is a uniformly bounded sequence of increa-
sing functions, therefore using Helly’s lemma, there exists a subsequence which converges
pointwise to a nondecreasing function u. Since ε > 0, using local C2,α estimates, up to ex-
traction, the subsequence converge in C2,α

loc . Therefore u ∈ C2,α and satisfies

εu′′ + J ? u− u− cu′ + f(u) = 0 in R. (2.43)

From the normalization and the fact that f( 1
2) 6= 0, u is not trivial. Since u is increasing

and bounded, u achieves its limits l± at ±∞. A standard argument implies that f(l−) = 0
therefore l− = 0 since f is a nonnegative function and l− ≤ 1

2 . Similarly l+ = 1. Therefore
we have constructed a non trivial solution of (2.39).

Remark 2.5.2. Since we know an explicit subsolution on a semi-infinite interval, we can redo this
construction with any increasing smooth supersolution of (2.39) ψ which satisfies ψ ′′, ψ′ ∈ L2(R)
and 1− ψ ∈ L2(R+) .

Let us now turn our attention to the second part of the proof.

2.5.2 Definition of c∗(ε)

Define
c∗(ε) := inf{c > 0 : (2.39) admits an increasing solution} (2.44)

By the previous section, c∗(ε) is well defined. Obviously, from the definition of c∗(ε),
there is no increasing solution to (2.39) for speeds c < c∗(ε). Our goal in this subsection is to
provide a solution of (2.39) for all c ≥ c∗(ε).

First we observe that (2.39) has a solution for c = c∗(ε). Indeed, by definition of c∗(ε),
there exists a sequence of speeds cn converging to c∗(ε). The corresponding solutions un of
(2.39) are increasing (and uniformly bounded by 1) so that we may apply Helly’s lemma
and elliptic regularity as in the previous section to conclude that un converges to an increa-
sing solution of (2.39) for c = c∗(ε), which we denote by uε. Boundary conditions for uε are
obtained as in Subsection 2.5.1.

Fix now c > c∗(ε) and observe that w := uε is a smooth increasing supersolution of (2.39)
(with speed c). Assume for a moment that uε satisfies u′′ε , u′ε ∈ L2(R) and 1 − uε ∈ L2(R+),
then by Remark 2.5.2 the construction of Subsection 2.5.1 applies. Therefore we get a solution
of (2.39) for all c ≥ c∗(ε) which ends the proofs of Theorem 2.5.1. In the next subsection we
prove that uε satisfies the desired L2 estimates.
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2.5.3 L2 estimates on uε

We start out by showing that u′ε and u′′ε vanish at infinity and drop ε subscripts for conve-
nience. It follows from (2.39) that for some ρ(x) ∈ C0(R),

εu′′ = cu′ + ρ(x). (2.45)

Fix δ > 0 and let R > 0 be such that |ρ(x)| < δ for |x| > R. Suppose by contradiction that for
some x0 > R we have cu′(x0) − δ > 0. Then (2.45) implies that u′′(x0) > 0 and in fact that
u′′ > 0 on [x0,∞), contradicting 0 ≤ u ≤ 1. Hence cu′ ≤ δ on [R,∞) i.e.

lim
+∞

u′ = 0.

Similarly, if for some x0 < −R, cu′(x0) − δ > 0, either u remains convex in (−∞, x0], which
is possible only if lim−∞ u′ = 0, either there exists x1 < x0 such that u′′(x1) = 0, whence u is
concave in (−∞, x1] in view of (2.45), which is again impossible. Hence

lim
−∞

u′ = 0

and
lim
−∞

u′′ = 0 by (2.45)

�
Next we show that u′, u′′ ∈ L2(R). Indeed, multiplying (2.39) by u′ and integrating over

R yields

c

∫ (
u′
)2

=

∫
f(u)u′ =

∫ 1

0
f(s) ds <∞.

Multiplying (2.39) by u′′ and integrating over Rwe get

ε

∫ (
u′′
)2

+

∫
(J ? u− u)u′′ − c

∫
u′u′′ =

∫
f(u)u′′.

Integration by parts and uniform bounds yield

ε

∫ (
u′′
)2

= −
∫

(J ? u− u)u′′ −
∫
f(u)u′′ (2.46)

=

∫ (
J ? u′ − u′

)
u′ +

∫
f ′(u)

(
u′
)2 (2.47)

≤ C0

∫
u′ + C1‖u′‖2L2(R) (2.48)

where C0 and C1 are positive constants.
�

Finally, we show that 1− u ∈ L2(R+). We need the following lemma :

Lemma 2.5.1. J ? u− u ∈ L1(R). More precisely,

‖J ? u− u‖L1 ≤
∫

R
J(z)|z|dz and

∫

R
(J ? u− u) = 0

Moreover, f(u) ∈ L2(R).
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Proof :
Clearly,

∫

R
|(J ? u− u)| ≤

∫

R2

J(x− y)|u(y)− u(x)|dy dx. (2.49)

Since u ∈ C1(R),

|u(y)− u(x)| = |x− y|
∫ 1

0
u′(y + s(x− y))ds.

Plug this equality in (2.49) to obtain :

∫

R2

J(x− y)|u(y)− u(x)|dydx =

∫

R2

J(x− y)|x− y|
∫ 1

0
u′(x+ s(y − x))ds dy dx (2.50)

Make the change of variables z = x− y, so that the right-hand side of (2.50) becomes :
∫

R2

J(z)|z|
∫ 1

0
u′(x− sz)ds dz dx (2.51)

Because all terms are positive, we may apply Tonnelli’s Theorem and permute the order
of integration. We obtain

∫

R2

J(z)|z|
∫ 1

0
u′(x− sz)ds dz dx =

∫ 1
0

∫
R2 J(z)|z|u′(x− sz)dx dz ds

=
∫ 1

0

∫
R J(z)|z|[u(+∞)− u(−∞)]dz ds

=
∫
R J(z)|z|dz <∞

These last computations show that J ? u − u is an integrable function and give a bound
on its L1 norm. Let us now compute

∫
R(J ? u− u) dx. We have

∫

R
(J ? u− u)dx =

∫

R2

J(x− y)(u(y)− u(x))dy dx.

Let z = x− y so that
∫

R2

J(z)(u(x− z)− u(x))dz dx =

∫

R2

J(z)(u(y)− u(y + z))dy dz.

Make the change of variable z → −z in the left integral and obtain

I1 :=

∫

R2

J(z)(u(x+ z)− u(x))dz dx =

∫

R2

J(z)(u(y)− u(y + z))dy dz =: I2.

Fubini’s theorem applied to the last integral shows that I1 = −I2, hence I1 = I2 = 0,
which proves the first part of the lemma.

Next, we show that (1− u) ∈ L2(R+). We multiply (2.39) by 1− u and integrate over R

ε

∫ (
u′
)2 −

∫
(J ? u− u)u+ c/2 +

∫
f(u)(1− u) = 0
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2.6. Existence of a solution for ε = 0

Using Lemma 2.4.1 and choosing R so large that f(u) ≥ |f ′(1)|
2 (1− u) on [R,∞),

|f ′(1)|
2

∫ ∞

R
(1− u)2 ≤

∫ ∞

−∞
f(u)(1− u) ≤ C(‖u′‖2L2(R) + 1) <∞, (2.52)

which ends the proof of the L2 estimates of u.
�

2.6 Existence of a solution for ε = 0

In the previous section, we were able to prove that for every positive ε, the following
problem :





εu′′ + J ? u− u− cu′ + f(u) = 0 in R
u→ 0 x→ −∞
u→ 1 x→ +∞,

(2.53)

admits a semi infinite interval of solution, i.e for c ≥ c∗(ε) there exists a positive increa-
sing solution of (2.53). We will see that the same holds true of the following problem.





J ? u− u− cu′ + f(u) = 0 in R
u→ 0 x→ −∞
u→ 1 x→ +∞,

(2.54)

The idea is to let ε→ 0 in the equation and to extract a converging sequence of solutions.
The main problem is to control c∗(ε) when ε→ 0. We prove the following :

Lemma 2.6.1.
For every positive ε0, there exists ν0 > 0 such that c∗(ε) ≤ ν0 for all ε ∈ [0, ε0)

Proof :
According to Remark 2.3.2, κ(ε) is an nondecreasing function of ε, therefore κ(ε) ≤ κ(ε0).

The conclusion easily follows from the definition of c∗(ε), i.e. c∗(ε) ≤ κ(ε).
�

We can now derive existence of solution for (2.54) for every speed c greater than ν0. More
precisely we have the following :

Theorem 2.6.1.
There exists ν0 such that for every speed c greater than ν0, there exists a solution u with speed c of the
equation (2.54).

Proof :
According to the previous lemma, for ε small, say ε ≤ ε0, equation (2.53) has a solution

uε for every c greater than ν0 and ε ≤ ε0. Without loss of generality we assume that for all ε,
uε(0) = 1

2 . From standard a-priori estimates, uε is a bounded smooth increasing function. Let
ε → 0 along a sequence. As in the previous section, uniform a priori estimates and Helly’s
theorem applied to uε, provide the existence of a monotone increasing solution u of

J ? u− u− cu′ + f(u) = 0 in R. (2.55)
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The solution cannot be trivial, according to the normalisation 1
2 = uε(0) → u(0). Boun-

dary conditions are obtained as in Section 2.5 .
�

We can define another minimal speed

c∗∗ = inf{c|∀c′ ≥ c (2.54) has a positive increasing solution of speed c′}. (2.56)

This minimal speed is well defined according to the previous theorem.

Remark 2.6.1. A quick computation, shows that

c∗∗ ≤ lim inf
ε→0

c∗(ε).

Nevertheless to complete the characterization of the set of solutions of (2.54), we have to
prove that there exists no travelling-wave solutions of speed c less than c∗∗. In other words,
if we defined :

c∗ = inf{c| (2.54) has a positive increasing solution of speed c}, (2.57)

we have to show that c∗ = c∗∗. Clearly we have c∗∗ ≥ c∗, the main problem is to prove
c∗∗ ≤ c∗. This will be done with the aid of the monotony of the speed of truncated problems
cθ(ε) and its continuous behavior at zero. More precisely, consider equation (2.58) below





εu′′ + J ? u− u− cu′ + (fχθ)(u) = 0 in R
u→ 0 x→ −∞
u→ 1 x→ +∞,

(2.58)

where ε ≥ 0, θ > 0 and let χθ be such that
– χθ ∈ C∞0 (R),
– 0 ≤ χθ ≤ 1,
– χθ(s) ≡ 0 for s ≤ θ and χθ(s) ≡ 1 for s ≥ 2θ.
We have the following existence and uniqueness theorem

Theorem 2.6.2.
There exists a unique smooth increasing solution uθ with speed cθ(ε) to (2.58). Moreover the speed
cθ(ε) is positive and satisfies

cθ(ε) < c∗(ε) (2.59)
lim
θ→0

cθ(ε) = c∗(ε). (2.60)

A proof of Theorem 2.6.2 can be found in [20, 22], so we do not include it. A natural
corollary of this theorem is the continuity of the speed cθ(ε) with respect to ε and θ. Namely,
we have

Corollary 2.6.1.
Under the above assumptions, the following application

(0, 1)× [0, 1] → R+

(θ, ε) 7→ cθ(ε)

is continuous.

76



2.6. Existence of a solution for ε = 0

Suppose, for a moment that the continuity in θ and ε holds, then we can easily conclude
the proof of c∗ = c∗∗. Namely, suppose that c∗ < c∗∗. Then choose c such that c∗ < c < c∗∗.
Since cθ < c∗ for every positive θ, we have cθ < c∗ < c. Fix θ > 0 : since cθ(ε) is a continuous
function of ε, one has on the one hand cθ(ε) < c for ε small, say ε ∈ [0, ε0]. On the other hand,
according to Remark 2.6.1, we may achieve,

cθ(ε) < c < c∗(ε)∀ε ∈ [0, ε0]. (2.61)

From this last inequality, and according to (2.60), for each ε ∈ (0, ε0] there exists a positive
θ(ε) ≤ θ such that c = cθ(ε)(ε). Let uθ(ε) be the normalized associated solution.
Now we take a sequence θn which goes to 0. From the above construction for each n there
exists εn ≤ θn, and θ(εn) ≤ θn such that c = cθ(εn)(εn) and uθ(εn) is the corresponding norma-
lized solution. From our construction we have,

θ(εn)→ 0.

Use now, as usual, uniform a priori estimates and Helly’s theorem to get a solution ū of the
following problem





J ? ū− ū− cū′ + f(ū) = 0 in R
ū(x)→ 0 x→ −∞
ū(x)→ 1 x→ +∞,

(2.62)

with c > c∗. So we get a non trivial solution of (2.54) for the speed c. Since c is arbi-
trary, there exists a non trivial solution of (2.54) for any speed c > c∗, which contradicts the
definition of c∗∗.

�
Now, let us turn our attention to the continuity of cθ(ε), which will complete the proof.

Proof of Corollary 2.6.1
We know from Theorem 2.6.2 that for every ε ≥ 0 and θ > 0 there exists a unique solution

(uεθ, c
ε
θ) to the following problem,





ε(uεθ)
′′ + J ? uεθ − uεθ − c(uεθ)′ + fθ(u

ε
θ) = 0 in R

uεθ → 0 x→ −∞
uεθ → 1 x→ +∞,

(2.63)

Fix ε0 ≥ 0 and θ0 > 0, we will show that for any sequence (εn, θn) → (ε0, θ0), we have
cεnθn → cε0θ0 . This will show the continuity of the speed. Let uεnθn be the normalized associated
solution, i.e uεnθn(0) = 1

2 . Since cθ(ε) > 0 and using (2.59), we have cεnθn bounded as (εn, θn) →
(ε0, θ0). We can extract a sequence of speeds, which converges to some value γ. From the a
priori estimates on uεnθn , there also exists a subsequence which converges to a smooth function
u solution of the following problem with speed γ.





ε0u
′′ + J ? u− u− γu′ + fθ0(u) = 0 in R

u→ 0 x→ −∞
u→ 1 x→ +∞,

(2.64)

According to Theorem 2.6.2, the speed and the profile are unique. Therefore, γ = cε0θ0
and u(x) = uε0θ0(x + τ). Since cεnθn is precompact and has a unique accumulation point, the
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sequence cεnθn must converge to cε0θ0 . This ends the proof of the continuity and by means the
characterization of the minimal speed c∗.

�

2.7 Asymptotic behavior of solutions

In this section we establish the asymptotic behavior of the solution u near±∞ provided J
satisfies (H3). The behavior of the function near +∞ has been already obtained in a previous
work by one of the authors [20], therefore we only deal with the behavior of u near −∞.

Remark 2.7.1. The behavior of u near ±∞ for bistable and ignition type nonlinearities was also
obtained in [20].

We use the same strategy as in [11] and start by proving the following lemma

Lemma 2.7.1. Assume that (H1) and (H3) hold. Also assume that f is of KPP-type i.e. f ′(0) > 0.
Let u be an increasing solution of problem (P). Then there exists ε > 0 such that

∫ ∞

−∞
u(x)e−εx dx <∞.

Proof
Let ζ ∈ C∞(R) be a nonnegative nondecreasing function such that ζ ≡ 0 in (−∞,−2]

and ζ ≡ 1 in [−1,∞). ForN ∈ N, let ζN = ζ(x/N). Multiplying (P) by e−εxζN and integrating
over R, we get

∫
(J ∗ u− u)(e−εxζN )−

∫
cu′(e−εxζN ) +

∫
f(u)(e−εxζN ) = 0 (2.65)

Since J is even,
∫

(J ∗ u− u)(e−εxζN ) =

∫
(J ∗ (e−εxζN )− e−εxζN )u

=

∫
u(x)e−εx

(∫
J(y)eεyζN (x− y) dy − ζN (x)

)
dx

=

∫
u(x)e−εx

(∫
J(y)e−εyζN (x+ y) dy − ζN (x)

)
dx

≥
∫
u(x)e−εx

(∫ ∞

−R
J(y)e−εy dy ζN (x−R)− ζN (x)

)
dx, (2.66)

where we used the monotone behaviour of ζN in the last inequality and where R > 0 is
chosen as follows : first pick 0 < α < f ′(0) and R > 0 so large that

f(u)(x) ≥ αu(x) for x ≤ −R. (2.67)

Next, one can increase R further if necessary so that
∫∞
−R J(y) dy > (1 − α/2). By conti-

nuity we obtain for some ε0 > 0 and all 0 < ε < ε0,
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∫ ∞

−R
J(y)e−εy dy ≥ (1− α/2)eεR. (2.68)

Collecting (2.66) and (2.68), we then obtain

∫
(J ∗ u− u)(e−εxζN ) ≥

∫
u(x)e−εx

(
(1− α/2)eεRζN (x−R)− ζN (x)

)
dx

≥ (1− α/2)

∫
u(x+R)e−εxζN (x) dx−

∫
u(x)e−εxζN (x) dx

≥ −α/2
∫
u(x)e−εxζN (x) dx, (2.69)

where we used the monotone behaviour of u in the last inequality.
We now estimate the second term in (2.65) :

∫
u′ζNe−εx dx = ε

∫
uζNe

−εx −
∫
uζ ′ne

−εx dx

≤ ε
∫
uζNe

−εx . (2.70)

Finally using (2.67), the last term in (2.65) satisfies
∫
f(u)ζNe

−εx dx ≥ α
∫ −R

−∞
uζNe

−εx dx− C. (2.71)

By (2.65), (2.69), (2.70) and (2.71) we then obtain

(α/2− cε)
∫ −R

−∞
uζNe

−εx dx ≤ C.

Choosing ε < α/(2c) and letting N →∞ proves the lemma.
�

Using Lemma 2.7.1 it is now easy to see that u(x) ≤ Ceεx for all x ∈ R. Suppose indeed
this is not the case and let xn ∈ R be such that u(xn) > neεxn . Since 0 ≤ u ≤ 1, we may pick
a subsequence xnk such that xnk+1

< xnk − 1. But since u is nondecreasing,

∫
u(x)e−εx dx ≥

∑

k≥1

∫ xnk−1

xnk

u(x)e−εx dx

≥
∑

k≥1

nk

∫ xnk−1

xnk

eε(xnk−x) dx

≥
∑

k≥1

nk/ε
(
1− e−ε

)
=∞.

�
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Annexe A

Uniqueness and monotony in
integrodifferential equations on a

semi-infinite interval

A.1 Uniqueness and Monotony of solutions of integrodifferential
equations on semi infinite domain

In this section we show that solution of the following problem are monotone increasing
and if there exists this solution is unique.

Lru+ f(u) + hr(ξ) = 0 on Ω (A.1)
0 ≤ u(r) = θ < 1 (A.2)

u(ξ)→ 1 as ξ → +∞ (A.3)

Where Lru = εu′′ +
∫ +∞
r J(ξ − y)u(y)dy − u− cu′, hr(ξ) = θ

∫ r
−∞ J(ξ − y)dy, Ω is any semi-

infinite interval of the form (r,+∞) and f ∈ C1((0, 1)) satisfies f(1) = 0 and f ′(1) < 0. We
start with some transformation of the problem (A.1)-(A.3) to a equivalent problem posed on
function defined on all R. Let us extented continuously the solution u the following way,

ũ :=

{
θ if ξ ∈ (−∞, r]
u(ξ) if ξ ∈ (r,+∞).

A quick computation shows that the function ũ satisfies the following equations :

Lũ+ f(ũ) = 0 on Ω (A.4)
ũ(ξ) = θ as ξ ≤ r (A.5)
ũ(ξ)→ 1 as ξ → +∞, (A.6)

with Lũ := εũ′′ − cu′ + J ? ũ − ũ. Observe now that any solution of (A.4)-(A.6) is a solution
of (A.1)-(A.3). Therefore by showing the uniquess of solution of (A.4)-(A.6), we obtain the
uniqueness of solution of (A.1)-(A.3). In what follows, we only deal with the latter equations
and for convinience we drop the tilde subscript on the function u. Observe that our opera-
tor L satisfies a strong maximum principle on Ω and is translation invariant i.e. L satisfies
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∀h > 0, L[(u)h](x) = L[u](x+ h) ∀x ∈ Ω.

For positive solution of (A.4)-(A.6), we prove the following,

Theorem A.1.1.
Let u be a nonnegative, smooth solution of (A.4)-(A.6), then the solution is unique. Moreover the
solution is monotone increasing on Ω

The proof of Theorem A.1.1 rely on the following two results. First we show that solution
of (A.4)-(A.6) have a monotone behavior. Namely,

Theorem A.1.2.
Let u be a nonnegative, smooth solution of (A.4)-(A.6), then the solution is monotone increasing on
Ω.

Sencondly, let consider the following problem for function z ∈ C0(R)CAP :C2(Ω),

Lz + f(z) = 0 on Ω (A.7)
z(ξ)→ 1 as ξ → +∞, (A.8)

we have a comparison result. Namely,

Lemma A.1.1. Nonlinear comparison principle
Let z and v be respectively a smooth positive, nondecreasing function satisfying,

Lz + f(z) ≥ 0 on Ω (A.9)
Lv + f(v) ≤ 0 on Ω (A.10)
limξ→+∞z(ξ) ≤ 1, (A.11)
limξ→+∞v(ξ) = 1, (A.12)
v(ξ) > z(r) on Ω (A.13)
v − z ≥ 0 on R \ Ω (A.14)

then z ≤ v on R.

The two functions z and v in the lemma are respectively called subsolution and superso-
lution.
Proof of the Uniqueness :

The uniqueness simply rely on this two results. Indeed, let u1 and u2 be two solution of
(A.4)-(A.6) then u1 and u2 are increasing function from Theorem A.1.2. Since θ is a subso-
lution of (A.4)-(A.6) we have u1(ξ) > θ and u2(ξ) > θ for ξ ∈ Ω. From the definition of u1

and u2 we have u1(ξ) − u2(ξ) = 0 for ξ ∈ R \ Ω. Therefore, since u1 and u2 can be alternati-
vely consider as positive, nondecreasing, sub and supersolution, Lemma A.1.1 implies that
u1 ≤ u2 and u2 ≤ u1. Thus we must have u1 ≡ u2 which proves the uniqueness.

�
The main problem is to prove Theorem A.1.2 and Lemma A.1.1. The proof of theses

results is based on the idea developed in [21].
The first section is devoted to the proof of Theorem A.1.2 and the second concerned with

the proof of Lemma A.1.1.
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A.2 Monotonicity, proof of Theorem A.1.2

As in [21], we break down our proof into three steps :
– first step : we prove that for any solution u of (A.4)-(A.6) there exists a positive τ such

that
u(ξ + τ) ≥ u(ξ) ∀ξ ∈ Ω̄.

– second step : we show that for any τ̃ ≥ τ , u satisfies

u(ξ + τ̃) ≥ u(ξ) ∀ξ ∈ Ω̄.

– third step : we prove that

inf{τ > 0|∀τ̃ > τ, u(ξ + τ̃) ≥ u(ξ) ∀ξ ∈ Ω̄} ≤ 0.

We easily see that the last step provided the conclusion of the theorem. The next three
subsection are devoted to each step of the proof. We will use also some notation all along
this paper. We set Ω̄ := [r,+∞).

A.2.1 Proof of the first step

The first step will be achieve with this following lemma.

Lemma A.2.1.
Let u a positive solution of (A.4)-(A.6) then there exists a positive τ such that
u(ξ + τ) ≥ u(ξ) ∀ξ ∈ Ω̄.

Proof of lemma A.2.1
Let u a positive solution of (A.4)-(A.6). Since the constant θ and 1 are respectively sub

and supersolution of (A.4)-(A.6), using the comparison principle, without loss of generality,
we may also assume that u(r) < u < 1.

We start with some definitions of quantities that we will use all along the proof.
Let δ positive, such that

f ′(p) < −2δ ∀p such that1− p < δ. (A.15)

Choose M > 0 such that :

| u(ξ)− 1 |< δ

2
∀ξ > M. (A.16)

The proof of Lemma A.2.1 is mainly based on the following technical lemma which will
be proved later on.

Lemma A.2.2.
Let u be a positive solution of (A.4)-(A.6) satisfying (A.16). If there exists positive constant a ≤ δ

2
and b such that u satisfies :

u(ξ + b) ≥ u(ξ) ∀ξ ∈ [r,M + 1], (A.17)
u(ξ + b) + a > u(ξ) ∀ξ ∈ Ω. (A.18)

Then we have u(ξ + b) ≥ u(ξ) ∀ξ ∈ Ω.
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Proof of Lemma A.2.1
Assume for the moment that Lemma A.2.2 holds. Then to prove Lemma A.2.1 we just

have to find appropriate constants a and b which satisfy (A.17) and (A.18). We claim that we
can find such constants.

Since u satisfies (A.6) and is constant on (−∞, r], there exists a constant D such that on
the set (−∞,M + 1] we have for every b ≥ D

u(ξ + b) ≥ u(ξ) ∀ξ ∈ (−∞,M + 1].

Now take a = δ
2 , it’s easy to see that we can find a b > D such that u(ξ+b)+a > u(ξ) ∀ξ ∈

Ω. This ends the construction of the constants a and b.
�

Now we turn our attention to the technical Lemma A.2.2.
Proof of Lemma A.2.2

From our assumption on a > 0 and b we have

u(ξ + b) + a > u(ξ) ∀ξ ∈ Ω. (A.19)

Let’s define
a∗ = inf{a > 0 | u(ξ + b) + a > u(ξ) ∀ξ ∈ Ω}. (A.20)

We claim that

Claim A.2.1. a∗ = 0.

Observe that from the Claim we end up with u(ξ+ b) ≥ u(ξ) ∀ξ ∈ Ω which is the desired
conclusion.
Proof of claim A.2.1

We argue by contradiction.
If not, since limξ→+∞ u(ξ + b) + a∗ − u(ξ) = a∗ > 0 and u(ξ + b) + a∗ − u(ξ) ≥ a∗ > 0 for
ξ ∈ (−∞, r], there exists ξ0 ∈ Ω such that u(ξ0 + b) + a∗ = u(ξ0).
Let w(ξ) := u(ξ + b) + a∗ − u(ξ), then we have

0 = w(ξ0) = min
R
w(ξ) (A.21)

Observe that w satisfies also the following equation :

Lw ≤ −f(u(ξ + b)) + f(u(ξ)), (A.22)
w(ξ) ≥ a∗ for ξ ∈ (−∞, r] (A.23)

w(+∞) = a∗. (A.24)

Next, we will prove a kind of localization of minimum lemma. More precisely

Claim A.2.2. Let ξ0 ∈ R be the minimum of w, then we have ξ0 > M + 1.

Proof of Claim A.2.2
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From the assumption on a and b, we know that u(ξ + b) ≥ u(ξ) ∀ξ ∈ (−∞,M + 1].
Therefore, we have

w(ξ) = u(ξ + b) + a∗ − u(ξ) > 0 ∀ξ ∈ (−∞,M + 1].

Thus, ξ0 > M + 1.
�

By the maximum principle property and since ξ0 ∈ Ω, at its minimum ξ0, w satisfies :

f(u(ξ0))− f(u(ξ0)− a∗) ≥ Lw(ξ0) > 0, (A.25)

then

Q = f(u(ξ0))− f(u(ξ0)− a∗) > 0, (A.26)
= f ′(d)a∗ > 0, (A.27)

for some d ∈]u(ξ0)− a∗, u(ξ0)[.
From Claim A.2.2, we have ξ0 > M + 1, therefore (A.16) and a∗ ≤ δ

2 implies |d− 1| < δ.
Thus, Q would verify :

Q = f ′(d)a∗ < −2a∗δ < 0,

which contradicts (A.27). This implies that a∗ = 0, which ends the proof of Claim A.2.2.
�

Now, we turn our attention to the second step in the proof of theorem A.1.2.

A.2.2 Proof of the second step

We achieve the second step with the following proposition.

Proposition A.2.1.
Let u be a positive solution of (A.4)-(A.6) satisfying (A.16). If there exists τ such that

u(ξ + τ) ≥ u(ξ) ∀ξ ∈ Ω. (A.28)

Then, for all τ̃ we have, u(ξ + τ̃) ≥ u(ξ) ∀ξ ∈ Ω.

From Lemma A.2.1, there exists a such τ . The proof of the proposition is based on the
two following technical lemmas.

Lemma A.2.3.
Let u a positive solution of (A.4)-(A.6) and τ > 0 such that u(ξ + τ) ≥ u(ξ) ∀ξ ∈ Ω̄.
Then, we have u(ξ + τ) > u(ξ) ∀ξ ∈ Ω̄.

Lemma A.2.4.
Let u be a positive solution of (A.4)-(A.6) satisfying (A.16) and τ > 0 such that u(ξ + τ) >
u(ξ) ∀ξ ∈ Ω̄.
Then, there exists ε0(τ) > 0 such that for all τ̃ ∈ [τ, τ + ε0], we have

u(ξ + τ̃) > u(ξ) ∀ξ ∈ Ω̄. (A.29)

85



Annexe A. Uniqueness and monotony in integrodifferential equations on a semi-infinite interval

Proof of Proposition A.2.1 :
Assume that the two technicals lemmas holds. We know from the first step that we can

find a positive τ , such that,
u(ξ + τ) ≥ u(ξ) ∀ξ ∈ Ω̄.

Therefore from Lemmas A.2.3 and A.2.4, we can construct a interval [τ, τ + ε], such that for
all τ̃ ∈ [τ, τ + ε] we have

u(ξ + τ̃) ≥ u(ξ) ∀ξ ∈ Ω̄.

Let’s defined the following quantity,

γ̄ = sup{γ|∀τ̂ ∈ [τ, γ], u(ξ + τ̂) ≥ u(ξ) ∀ ξ ∈ Ω̄}. (A.30)

We claim that γ̄ = +∞, if not, γ̄ < +∞ and by continuity we have

u(ξ + γ̄) ≥ u(ξ) ∀ ξ ∈ Ω̄. (A.31)

Recall that from the definition of γ̄, we have

∀τ̂ ∈ [τ, γ̄] u(ξ + τ̂) ≥ u(ξ) ∀ ξ ∈ Ω̄. (A.32)

Therefore to get a contradiction, it is sufficient to construct ε0 such that for all ε ∈ [0, ε0], we
have

u(ξ + γ̄ + ε) ≥ u(ξ) ∀ ξ ∈ Ω̄. (A.33)

Since γ̄ > 0, then we can apply Lemma A.2.3 to have,

u(ξ + γ̄) > u(ξ) ∀ ξ ∈ Ω̄, (A.34)

we can now apply Lemma A.2.4, to find the desired ε > 0. Therefore, from the definition of
γ̄ we get

∀τ̂ ∈ [τ,+∞], u(ξ + τ̂) ≥ u(ξ) ∀ ξ ∈ Ω̄.

Which proves Proposition A.2.1.
�

Proof of lemma A.2.3 :
To prove

u(ξ + τ) > u(ξ) ∀ξ ∈ Ω̄, (A.35)

we argue by contradiction. Assume there exists a point ξ0 ∈ Ω̄ such that

w(ξ) = u(ξ + τ)− u(ξ) ≥ w(ξ0) = 0 ∀ ξ ∈ Ω̄.

We have to consider two cases :
– Either ξ0 ∈ (r,+∞), and at this point, w verifies :

0 ≤ Lw(ξ0) ≤ f(u(ξ0))− f(u(ξ0 + τ)) = f(u(ξ0))− f(u(ξ0)) = 0.

Then, from the maximum principle property, we end up with w ≡ 0. Therefore, u is τ
periodic, which is impossible since limξ→+∞u(ξ) = 1.

– Or ξ0 = r, and then we have u(r) = u(r+ τ) which is also impossible since u(ξ) > u(r)
for all ξ ∈ Ω.
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Since both cases leads to a contradiction, a such ξ0 doesn’t exists. Therefore (A.35) holds.
�

We can turn our attention to the proof of Lemma A.2.4.
Proof of lemma A.2.4 :

Let u a positive solution of (A.4)-(A.6), which satisfies (A.16) and

u(ξ + τ) > u(ξ) ∀ξ ∈ Ω̄ (A.36)

for a given τ . Since u is continuous and satisfies (A.36), we can find ε0, such that for all
ε ∈ [0, ε0], we have :

u(ξ + τ + ε) > u(ξ) for ξ ∈ [r,M + 1]. (A.37)

Let a = δ
2 , then for all ε ∈ [0, ε1], we have

u(ξ + τ + ε) + a > u(ξ) ∀ξ ∈ Ω̄, (A.38)

for some ε1. Let ε3 = min{ε0, ε1}. Observe that for all ε ∈ [0, ε3], b := τ + ε and a satisfies
assumptions (A.17) and (A.18) of Lemma A.2.2. Therefore we can apply Lemma A.2.2 for
each ε ∈ [0, ε3] and get

u(ξ + τ + ε) ≥ u(ξ) ∀ξ ∈ Ω̄. (A.39)

Thus, we end up with
u(ξ + τ̃) ≥ u(ξ) ∀ξ ∈ Ω̄ (A.40)

for all τ̃ ∈ [τ, τ + ε3]. This ends the proof of Lemma A.2.4.
�

A.2.3 Proof of the third step

From Lemma A.2.1 and Proposition A.2.1, we can define the following quantity :

τ∗ = inf{τ > 0| ∀τ̃ > τ, u(ξ + τ̃) ≥ u(ξ) ∀ξ ∈ Ω̄}. (A.41)

We end the proof of theorem A.1.2, with the following lemma

Lemma A.2.5.
Let u a positive solution of (A.4)-(A.6), satisfying (A.16). Then, we have τ ∗ ≤ 0

Observe that this lemma implies the monotony of u, which concludes the proof of Theo-
rem A.1.2.
Proof of lemma A.2.5

We argue by contradiction, suppose that τ ∗ > 0. We will show that for ε small enough,
we still have,

u(ξ + τ ∗ − ε) ≥ u(ξ) for all ξ ∈ Ω̄ (A.42)

and then from the previous step, we will have for all τ̃ ≥ τ ∗ − ε

u(ξ) ≤ u(ξ + τ̃) for all ξ ∈ Ω̄, (A.43)

which contradicts the definition of τ ∗.
Now, we start the construction. From the definition of τ ∗ and by continuity, we have

u(ξ + τ ∗) ≥ u(ξ) for all ξ ∈ Ω̄. (A.44)
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Therefore, from Lemma A.2.3, we have

u(ξ + τ ∗) > u(ξ) for all ξ ∈ Ω̄. (A.45)

Thus, on the compact [r,M+1], we can find ε1 > 0 such that,

∀ε ∈ [0, ε1) u(ξ + τ ∗ − ε) > u(ξ) on the compact [r,M+1]. (A.46)

Now fix ε ∈ (0, ε1), then we can easily find a positive constant a ≤ 1 such that

u(ξ + τ ∗ − ε) + a > u(ξ) for all ξ ∈ Ω̄. (A.47)

We can then apply Lemma A.2.2 to obtain the desired result.
�

A.3 Nonlinear comparison principles, proof of Lemma A.1.1

In this section we prove the nonlinear comparison principle i.e Lemma A.1.1. The proof
is based on the three following lemma which will be proved later on.

Lemma A.3.1. Let z and v be respectively two positive, increasing sub and supersolution, satisfying
(A.9)-(A.14). Then there exists a positive τ such that v(ξ + τ) ≥ z(ξ) for all ξ ∈ Ω̄.

Lemma A.3.2.
Let z and v be respectively smooth positive nondecreasing sub and supersolution satisfying (A.9)-
(A.14). If there exists positive constant a ≤ δ

2 and b such that z and v satisfy :

v(ξ + b) > z(ξ) ∀ξ ∈ [r,M + 1], (A.48)
v(ξ + b) + a > z(ξ) ∀ξ ∈ Ω. (A.49)

Then we have v(ξ + b) ≥ z(ξ) ∀ξ ∈ Ω.

Lemma A.3.3. Let z and v be respectively two positive, increasing sub and supersolution satisfying
(A.9)-(A.14) such that for a positive τ , v(ξ + τ) ≥ z(ξ). Then v(ξ + τ) > z(ξ) for all ξ ∈ Ω̄.

Assume for the moment that these three lemmas holds.
Proof of Lemma A.1.1

We start with some definitions of quantities that we will use all along the proof.
Let δ positive, such that

f ′(p) < −2δ ∀p such that1− p < δ. (A.50)

If limξ→+∞ z(ξ) = 1, choose M > 0 such that :

1− v(ξ) <
δ

2
∀ξ > M, (A.51)

1− z(ξ) < δ

2
∀ξ > M. (A.52)

(A.53)
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Otherwise we choose M such that

v(ξ) > z(ξ) ∀ξ > M. (A.54)

From Lemma A.3.1, there exist a positive τ such that v(ξ + τ) ≥ z(ξ). Therefore the
following quantity is well defined.

τ∗ = inf{τ > 0| v(ξ + τ) ≥ z(ξ) ∀ξ ∈ Ω̄}. (A.55)

We claim

Claim A.3.1. τ ∗ = 0.

Proof :
We argue by contradiction. If not then τ ∗ > 0. We will show that for ε small enough, we

still have,
v(ξ + τ ∗ − ε) ≥ z(ξ) for all ξ ∈ Ω̄, (A.56)

which contradicts the definition of τ ∗.
Let’s start the construction of the desired ε.

By continuity we have
v(ξ + τ ∗) ≥ z(ξ) for all ξ ∈ Ω̄. (A.57)

Using A.3.3 on (A.56), we indeed have

v(ξ + τ ∗) > z(ξ) for all ξ ∈ Ω̄. (A.58)

Since z and v are monotone increasing we can find ε0 such that for all ε ∈ [0, ε0],

v(ξ + τ ∗ − ε) > z(ξ) for all ξ ∈ [r,M + 1]. (A.59)

Let consider the two following cases :
– limξ→+∞ z(ξ) < 1 :

From (A.59) and (A.54) we have our desire contradiction. Indeed, from (A.59) v(ξ +
τ∗− ε) ≥ z(ξ) for all ξ ∈ [r,+∞] and in that case from (A.54) M was chosen such that
v(ξ + τ ∗ − ε) ≥ v(ξ) ≥ z(ξ) for all ξ > M .

– limξ→+∞ z(ξ) = 1 :
In this case for a = δ

2 , using (A.52) and (A.53) we achieve,

v(ξ + τ ∗ − ε) + a > z(ξ) for all ξ ∈ Ω̄.

Then use Lemma A.3.2 to get the desired result.
�

To conclude the section we have to prove Lemma A.3.1,Lemma A.3.2 and Lemma A.3.3.
Since the proof of these three lemmas are, with minor changes, the same as the proof of
Lemma A.2.1, Lemma A.2.2 and Lemma A.2.3, we omit it.

�
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3.1 Introduction

In this article, we are concerned with variational formulas characterizing the speed c of
travelling fronts u arising in the study of a nonlocal reaction-diffusion model. More precisely,
we study the solutions (u, c) of the following one dimensional integro-differential equation





εu′′ + J ? u− u− cu′ + f(u) = 0 on R
u(x)→ 0 as x→ −∞
u(x)→ 1 as x→ +∞

(P)

where J ?u(x) =
∫
R J(x−y)u(y)dy, J is an even positive kernel of mass one, ε a nonnegative

real number (which we emphasize can be taken equal to zero) and f is a given nonlinearity.
We will always assume in what follows that J satisfies the following

J ∈W 1,1(R), J ≥ 0, J(x) = J(−x) and
∫

R
J = 1. (H1)
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The unknowns of this problem are the real number c, which represents the speed of the front,
and u the profile of the front. The speed c can also be viewed as a nonlinear eigenvalue of
the problem. Travelling-front solutions are expected to give the asymptotic behavior in large
time for solutions of the following evolution problem (3.1), with say compactly supported
initial data.

∂u

∂t
= εuxx + J ? u− u+ f(u) (3.1)

It is therefore of interest to characterize the speed of these solutions. Such types of equation
were derived in the early work of Kolmogorov - Petrovskii- Piscounov (see [46]) on the
spread of a gene . The dispersion of the gene fraction at point y ∈ Rn should affect the gene
fraction at x ∈ Rn by a factor J(x, y)u(y)dy where J(x, ·) is a probability density. Restricting
to a one-dimensional setting and assuming that such a diffusion process depends only on
the distance between two niches of the population, we end up with the equation

ut = J ? u− u+ f(u), (3.2)

where J : R→ R is a nonnegative even function of mass one.
Equation (3.1) also appears in the context of pattern formation in Activator - Inhibitor

systems such as {
∂u
∂t − uxx = f(u)− v
−vxx + v = u

Observe that we can inverse the second equation. We can thus rewrite v in terms of u. Na-
mely we have v = J ? u with J(x) = 1

2e
−|x|, so that the system can be reformulated as

∂u

∂t
= uxx + J ? u− u+ g(u) for (ξ,t) ∈ R× R+ (3.3)

where g(u) = f(u) + u. For more information, see the excellent book of J. Murray [48] and
[49]. In these two models the operator A(u) := J ? u− u represents the nonlocal diffusion of
the species through its environment.

In this work, we study three types of nonlinearity f that we present below : f ∈ C1([0, 1])
and

– Case A1 f is of bistable type if for some ρ > 0, f satisfies
– f |(0,ρ) < 0 and f |(ρ,1) > 0
– f(0) = f(1) = 0 and f ′(1) < 0

– Case A2 f is of ignition type if for some ρ > 0,
– f |(0,ρ) ≡ 0 and f |(ρ,1) > 0
– f(0) = f(1) = 0 and f ′(1) < 0

– Case B f is of monostable type if f(0) = f(1) = 0,f |(0,1) > 0 and f ′(1) < 0

These three types of nonlinearities are commonly used in the literature to describe mo-
dels of phase transition, nerve propagation, combustion, population dynamics and ecology :
see [4, 7, 24, 31, 34, 35, 41, 46, 54, 61, 59, 62]. Under some additional assumption on the kernel
J , existence and in some cases uniqueness of travelling-wave solutions have been investi-
gated by Bates, Fife, Ren, Wang [5] and Chen [17] in the bistable case and completed by the
work of one of the present authors [20], for the ignition case. The monostable case is the ob-
ject of a forthcoming publication [23]. We summarize these results in the following theorem.
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Theorem 3.1.1. [5, 20, 23]

– Assume that J satisfies (H1) and the following
∫

R
J(z)|z|dz < +∞. (H2)

and let f be a nonlinearity of type A1 or A2. Then the problem (P) admits a monotone solution
(u, c). Furthermore this solution is unique in the following sense, if (v, c′) is another solution
then c = c′ and u(x) = v(x+ τ) for a fixed τ . Moreover u satisfies u′ > 0.

– Let f be a monostable function and assume further that J satisfies the following integrability
condition

∀λ > 0,

∫

R
J(z)eλzdz < +∞. (H3)

then there exists a minimal speed c∗ > 0 such that for all c ≥ c∗, there exits a monotone
function u such that (u, c) is a solution of (P), while there exists no monotone solution (u, c)
with speed c < c∗.

Remark 3.1.1. The condition (H3) can be weakened : it is enough to assume that (H3) holds for one
given value of λ.

These results of existence and uniqueness are similar to those of the standard reaction-
diffusion problem below,

∂u

∂t
= ∆u+ g(u) in Rn × R+ (3.4)

This is due to the fact that the nonlocal operator shares many properties of the Laplacian
and in some limiting cases reduces to it. Namely letting Jε(x) := 1

εJ(1
εx), for J compactly

supported and ε > 0 small, we have

Jε ? u− u =
1

ε

∫
J(

1

ε
y)(u(x− y)− u(x)) dy =

∫
J(z)(u(x− εz)− u(x)) dz

= −ε
∫
J(z)u′(x)z dz + ε2

∫
z2J(z)u′′(x) dz + o(ε2) = cε2u′′(x) + o(ε2),

where we used the fact that J is even in the last equality.
The characterization by min-max formulas of the wave speed c in the context of (3.4)

is well known. In one space dimension, equation (3.4) reduces to an ordinary differential
equation and the speed of planar fronts satisfies the following min-max formulas

– For f of type A1 or A2, the unique speed c∗ satisfies

c∗ = min
w∈X

sup
x∈R
{w
′′ + f(w)

w′
} (3.5)

c∗ = max
w∈X

inf
x∈R
{w
′′ + f(w)

w′
} (3.6)

– For f of type B, the minimal speed c∗ satisfies

c∗ = min
w∈X

sup
x∈R
{w
′′ + f(w)

w′
}, (3.7)
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where X = {χ ∈ C0(R)|χ is increasing, χ(+∞) = 1 and χ(−∞) = 0}.
With some extra assumption on the nonlinearity f , an explicit formula for the minimal

speed can be given. Kolmogorov,Petrovskii and Piscounov [46] proved in 1937 that the mi-
nimal speed c∗ is given by c∗KPP = 2

√
f ′(0) when f is monostable and satisfies f(s)

s ≤ f ′(0)
for s ∈ (0, 1). This formula was recovered by Berestycki and Nirenberg [11] using a different
approach. Weinberger in [61] generalized it to time-discrete models. In the opposite situa-
tion, when f approaches a Dirac mass centered at one, Zeldovich and Frank-Kamenetskii
[62] were able to give an asymptotic formula for the flame’s front speed. In this case the

speed is given by c∗ZFK '
√∫ 1

0 f(s)ds. More recently, Berestycki, Nikolaenko and Sheurer
[14] have shown that the asymptotic speed c∗ZFK holds for planar-front solutions of a system
of ordinary differential equations. Other asymptotic formulas were also derived in turbulent
combustion : see Clavin and Williams [19]. Clavin [18] also explains the transition from c∗KPP
to c∗ZFK . Min-max formulas for travelling fronts in systems of ODE’s also exist, see Kan-On
[42], Mischaikow- Hudson [47], and Volpert, Volpert, Volpert [57, 58]. The proofs of these
formulas were in most cases deeply related to shooting methods, phase plane analysis and
good asymptotics. Since our equation is nonlocal, we can not carry out most of theses tech-
niques. Nevertheless we can provide min-max formulas for the speed of travelling fronts of
(3.1), analog to those above. Namely we have the following variational characterization of
the wave-speed :

Theorem 3.1.2.

– Assume (H1)and (H2) hold. Then if c∗ denotes the unique front speed in the “bistable” case,
we have

c∗ = min
w∈X

sup
x∈R
{εw

′′ + J ? w − w + f(w)

w′
} (3.8)

c∗ = max
w∈X

inf
x∈R
{εw

′′ + J ? w − w + f(w)

w′
} (3.9)

– Assume (H1) and (H3) holds. Then if c∗ denotes the minimal speed in the monostable case, we
have

c∗ = min
w∈X

sup
x∈R
{εw

′′ + J ? w − w + f(w)

w′
} (3.10)

where X = {χ ∈ C0(R)|χ is increasing, χ(+∞) = 1 and χ(−∞) = 0}.

We should also mention a result of Hamel [39] which generalize min-max formulas to
the setting of multidimensional travelling fronts in a cylinder and those of Heinze, Papani-
colaou and Stevens [40] giving a simple proof (in the usual bistable case) of those variational
formulas for quite general operators.

Remark

The technique developed in this paper also applies to the traditional reaction-diffusion
problem, thus providing an alternate proof of these formulas. In the monostable case, the
existence of solutions (u, c) with speed c > c∗, as in the reaction-diffusion case, has not yet
appeared. In a forthcoming paper the present authors will carry out this analysis. In the
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KPP-like situation we were not able to give an exact explicit formula and only provide an
upper bound in terms of a spectral formula. Namely we show

c∗KPP ≤ inf
λ>0
{ 1

λ
[ελ2 +

∫

R
J(z)eλzdz − 1 + f ′(0)]}. (3.11)

Method and plan

The proof relies on two simple ideas :
– The construction of solutions via the method of sub and supersolutions.
– Let u and v be a sub and a supersolution of a bistable problem then translations of u

and v are ordered.
Though elementary in nature, the proof of these results requires a number of lemmas which
we list and prove in Section 3.2. In Sections 3.3 and 3.4, we present the construction of a
solution via the method of sub and supersolutions. Theorem 3.1.2 is the object of the Sections
3.5 and 3.6. Section 3.5 deals with the min-max formula in the bistable case while Section 3.6
is concerned with the monostable case and the proof of inequality (3.11).

3.2 Linear theory

We start this section with two maximum principles for integro-differential operators de-
fined on the real line of the kind :

Lu = εu′′ + J ? u− u+ b(x)u′ + d(x)u, (3.12)

where ε ≥ 0,
∫
R J = 1, d(x) ≤ 0 and b(x) and d(x) are bounded functions onR. We first prove

a strong maximum principle that applies to smooth functions :

Theorem 3.2.1. Strong Maximum Principle
Let u ∈ C2(R) satisfy

Lu ≥ 0 in R (respectively, Lu ≤ 0 in R).

Then u may not achieve a positive maximum (resp. negative minimum) without being constant.

This theorem immediately implies the following practical corollary :

Corollary 3.2.1.
Let u ∈ C2(R) satisfy {

Lu ≥ 0 on R
u→ 0 |x| → +∞.

Then
– either u < 0
– either u ≡ 0.

Remarks 3.2.1.
Similarly, if Lu ≤ 0 then u is either positive or identically 0.
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The proof of the corollary is a straightforward application of the theorem. Let us prove
the Strong Maximum Principle.
Proof :

We argue by contradiction. Suppose that u is a nonconstant function and achieves a po-
sitive maximum somewhere, say at x0.
Since u is a C2 function, we have d(x0)u(x0) ≤ 0, u′(x0) = 0 and u′′(x0) ≤ 0. Furthermore,
since

∫
R J(z)dz = 1 and u(y) − u(x0) ≤ 0 for every y in R, we have J ? u(x0) − u(x0) =∫

R J(x0 − y)(u(y)− u(x0))dy ≤ 0. Therefore, we have at the point x0 :

εu′′(x0) + J ? u(x0)− u(x0) + b(x0)u′(x0) + d(x0)u(x0) ≤ 0 (3.13)

and by our assumption

εu′′(x0) + J ? u(x0)− u(x0) + b(x0)u′(x0) + d(x0)u(x0) ≥ 0 (3.14)

These two equations imply that d(x0)u(x0) = 0, u′′(x0) = 0 and

J ? u(x0)− u(x0) =

∫
J(x0 − y)(u(y)− u(x0)) dy = 0. (3.15)

By assumption, J is a smooth nonnegative function with
◦

supp(J)6≡ ∅. Thus we deduce from
(3.15) that u(y) = u(x0) for all y in the set x0 + supp(J). If J is supported by R we obtain
a contradiction immediately. If not, we can repeat the previous calculation for every y in
x0 + supp(J), thus u is constant on the set y + supp(J) where y belongs to x0 + supp(J). By
doing so infinitely many times, we cover all of R and thus end up with u(y) = u(x0) for all y
in R, which is a contradiction.

�
Provided ε is nonzero, we also have the following weak maximum principle :

Theorem 3.2.2. Weak Maximum Principle
Suppose ε > 0 and let u ∈ H1(R) sastisfy the following inequality in the weak sense :

Lu ≥ 0 on R.

Then for any compact subset ω of R,
sup
ω
u ≤ sup

∂ω
u+

Remark 3.2.1. A function u ∈ H1(R) satisfies Lu ≥ 0 in the weak sense if for all nonnegative
φ ∈ C∞c (R), ∫

R
−εu′φ′ + b(x)u′φ+ d(x)uφ+ (J ? u− u)φ ≥ 0.

We shall use the following easy corollary :

Corollary 3.2.2. Let u satisfy the assumptions of the above theorem, then u is nonpositive.
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Proof of the corollary
It is sufficient to show that for every positive δ, u ≤ δ. Now fix δ positive.

In one space dimension, H1(R) ↪→ C0(R), so u must go continuously to zero at infinity.
Whence there exists r0 such that |u| ≤ δ for every |x| ≥ r0. In particular u+(±r0) ≤ δ and we
may apply Theorem 3.2.2 with the compact set ω = [−r0, r0].
We end up with u|ω ≤ sup∂ω u

+ ≤ δ. Thus u ≤ δ on R.
�

We now proceed with the proof of Theorem 3.2.2.
Proof of Theorem 3.2.2

The proof follows that of Theorem 8.1 in Gilbarg and Trudinger’s book [38]. For conve-
nience of the reader, we provide its details. Let ω be a compact subset of R. Assume by
contradiction that

sup
ω
u > sup

∂ω
u+ = l.

Define a bilinear operator L on H1
0 (ω)×H1

0 (ω) by

L(u, z) =

∫

ω
εu′z′ − b(x)u′z − (J ∗ u− u)z − d(x)uz dx (3.16)

By assumption, u satisfies L(u, z) ≤ 0 for all nonnegative z ∈ H1
0 (ω) i.e.

∫

ω
εu′z′ − (J ∗ u− u)z ≤

∫

ω
b(x)u′z +

∫

ω
d(x)uz (3.17)

Now let k be such that supω u > k ≥ l. The function v := (u− k)+ is nontrivial and satisfies :

v =

{
u− k when u > k
0 otherwise,

(3.18)

v′ = Dv =

{
Du when u > k
0 otherwise,

(3.19)

so that Γ := supp Dv ⊂ {u > k}CAP :supp Du and v ∈ H1
0 (ω). Also, since d(x) ≤ 0,

∫

ω
d(x)uv =

∫

ω
d(x)v2 + k

∫

ω
d(x)v ≤ 0,

so that applying (3.17) with z = v we obtain
∫

ω
εv′v′ − (J ∗ u− u)v ≤ C

∫

Γ
|v′|v (3.20)

Claim 3.2.1.∫
ω(J ∗ u− u)v ≤ 0

Proof :
Extend v by

ṽ =

{
v in ω
0 otherwise.
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Clearly
∫
ω(J ∗ u− u)v =

∫
R(J ∗ u − u)ṽ and we only need to prove that

∫
R(J ∗ u − u)ṽ ≤ 0.

Observe that for any constant α we have J ∗ α− α = 0 hence
∫

R
(J ∗ u− u)ṽ(x)dx =

∫

R
(J ∗ (u− k)− (u− k))ṽ(x)dx

=

∫

R
J ∗ (u− k)ṽ(x)−

∫

R
(ṽ)2(x)dx

=

∫

R

∫

R
J(x− y)(u− k)(y)ṽ(x)dydx−

∫

R
(ṽ)2(x)dx

Since (u− k)(y)ṽ(x) ≤ (u− k)+(y)ṽ(x) we have
∫

R
(J ∗ u− u)ṽ(x)dx ≤

∫

R

∫

R
J(x− y)(u− k)+(y)ṽ(x)dydx−

∫

R
(ṽ)2(x)dx

≤
∫

R

∫

R
J(x− y)ṽ(y)ṽ(x)dydx−

∫

R
(ṽ)2(x)dx

≤ 1

2

(
2

∫

R

∫

R
J(x− y)ṽ(y)ṽ(x)dydx−

∫

R
(ṽ)2(x)dx−

∫

R
(ṽ)2(y)dy

)

≤ −1

2

(∫

R

∫

R
J(x− y)[ṽ(y)2 − 2ṽ(y)ṽ(x) + ṽ(x)2]dydx

)

≤ −1

2

(∫

R

∫

R
J(x− y)[ṽ(y)− ṽ(x)]2dydx

)
≤ 0

and the claim is proved.
�

From our claim we deduce the following inequality :

∫

ω
ε(v′)2 ≤ C

∫

Γ
|v′|v

≤ C‖v′‖L2(ω)‖v‖L2(Γ)

and end up with :

‖v′‖L2(ω) ≤ C‖v‖L2(Γ) (3.21)

By the one-dimensional Sobolev embedding on compact subsets,

‖v‖L∞(ω) ≤ C‖v′‖L2(ω). (3.22)

Thus v is in L∞(ω) and since

‖v‖L2(Γ) ≤ |Γ|
1
2 ‖v‖L∞(ω), (3.23)

we can combine the last three equations to obtain

‖v‖L2(Γ) ≤ C|Γ|
1
2 ‖v‖L2(Γ). (3.24)

Therefore we have
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C−
1
2 ≤ |Γ| = |supp Dv| ≤ |supp DuCAP :{u > k}|, (3.25)

where C is a constant which only depends on |ω|, ε and ‖b(x)‖L∞(ω).
Since C is independent of k, one can let k go to supω u. By the dominated convergence theo-
rem, the right-hand side of (3.25) converges to |supp DuCAP :{u = supω u}|
This implies that there exists a set of positive measure ω+ where u takes its maximum value
and Du is not identically zero. Since u is in H1, Du = 0 a.e. on its level sets and we obtain a
contradiction.
This ends the proof.

�
Next, we provide an elementary lemma to construct solutions to constant-coefficient li-

near equations of the form Lu = f .

Lemma 3.2.1.
Let f ∈ C0(R)CAP :L2(R) and L defined by

Lv = εv′′ + J ? v − v + bv′ + dv,

where ε ≥ 0, b, d ∈ R, d < 0. Then there exists a unique solution v ∈ C0(R)CAP :L2(R) ( additio-
nally v ∈ C1(R) if b 6= 0, v ∈ C2(R) if ε > 0) of





Lv = f in R
v → 0 x→ −∞
v → 0 x→ +∞

(3.26)

Proof :
We assume first that (ε, b) 6= (0, 0). Uniqueness follows from the maximum principle.

Next, applying Fourier transform to (3.26), we obtain

(−ε|ξ|2 + Ĵ(ξ)− 1 + ibξ + d)v̂ = F̂

Since ‖J‖L1 = 1, |Ĵ | ≤ 1 and since J is even, Ĵ is real-valued, so that

| − ε|ξ|2 + Ĵ(ξ)− 1 + ibξ + d| ≥ | − ε|ξ|2 + Ĵ(ξ)− 1 + d|
= ε|ξ|2 + 1− Ĵ(ξ) + |d| ≥ |d| > 0.

If w is defined by
w := (−ε|ξ|2 + Ĵ(ξ)− 1 + ibξ + d)−1F̂ , (3.27)

it follows that w ∈ L2(R) and that v := F−1(w) ∈ L2(R) solves (3.26) in the sense of dis-
tributions. By the dominated convergence theorem,J ∗ v ∈ C(R) and by elliptic regularity
applied to the operator L̃v = Lv− J ? v, v has the appropriate regularity for (3.26) to hold in
the classical sense.
Also, since either ε or b is nonzero, (3.27) implies that ξw ∈ L2(R) so that v ∈ H1

0 (R) ⊂ C0(R).
When ε = b = 0, (3.26) can be rewritten as

v =
1

1 + |d| (J ? v + f) (3.28)

It follows easily from the dominated convergence theorem that J ? v ∈ C0(R) whenever
v ∈ C0(R), so that the right-hand side of (3.28) is a (strict) contraction in C0(R) and admits a
unique fixed point. The fact that v ∈ L2(R) can be obtained as above.

�
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3.3 Construction of a solution of (P)

In this section, we construct an increasing solution of the following problem




εu′′ + J ? u− u− cu′ + f(u) = 0 on R
u→ 0 as x→ −∞
u→ 1 as x→ +∞

(3.29)

using ordered sub and supersolutions.

Theorem 3.3.1.
Assume there exist two nonnegative smooth functions w and ψ such that w and ψ are respectively a
super and a subsolution of (3.29), satisfying ψ ≤ w. If w is increasing, w ∈ L2(R−) and 1 − w ∈
L2(R+), then there exists a positive increasing solution u of (3.29).

Remark 3.3.1. For ε > 0, since the weak maximum principle holds, the previous theorem remains
true if w and ψ are only assumed to be weak super and subsolutions of (3.29).

Remark 3.3.2. Alternatively, the assumption of monotonicity and L2 integrability on w can be drop-
ped and replaced by the same assumption on ψ.

We break down the proof into two steps. In the first step we construct a sequence of
functions starting from the supersolution. In the second we prove that this sequence has a
subsequence which converges to a solution of (3.29).
Proof :

3.3.1 Iteration procedure

Let w and ψ be the two nonnegative functions such that w and ψ are respectively a super
and a subsolution of (3.29). Also let λ > 0 be a parameter to be fixed later on. We claim that
there exists a sequence of functions {un}n∈N satisfying

u0 = w and for n ∈ N \ {0},




εu′′n+1 + J ? un+1 − (1 + λ)un+1 − cu′n+1 = −f(un)− λun in R
un+1 → 0 x→ −∞
un+1 → 1 x→ +∞.

(3.30)

We proceed as follows : let g ∈ C∞c (R) be a nonnegative function with ‖g‖L1(R) = 1 and
G(x) =

∫ x
−∞ g(t) dt. Using the substitution vn = un −G, (3.30) reduces to





Lvn+1 − λvn+1 = F (vn, x) in R
vn+1 → 0 x→ −∞
vn+1 → 0 x→ +∞,

(3.31)

where Lv = εv′′ + J ? v − v − cv′ and F (v, x) = −f(v +G)− λv − LG.
Now, using Lemma 3.2.1 and induction, to prove that vn is well-defined, it is enough to

show that v0 ∈ L2(R)CAP :C0(R) and that v ∈ L2(R)CAP :C0(R) =⇒ F (v, x) ∈ L2(R)CAP :C0(R).
On the one hand since G(x) = 0 whenever−x >> 1 (and similarly G(x) = 1 for x >> 1),

it follows from the definition of w that v0 = w −G ∈ L2(R)CAP :C0(R).
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On the other hand given v ∈ L2(R)CAP :C0(R), since f(0) = 0,

|f(v +G)| ≤ ‖f ′‖∞|v +G| ∈ L2(R−) and lim
−∞

f(v +G) = 0

and since f(1) = 0,

|f(v +G)| ≤ ‖f ′‖∞|v +G− 1| ∈ L2(R+) and lim
+∞

f(v +G) = 0,

so that f(v + G) ∈ L2(R)CAP :C0(R). Clearly G′, G′′ ∈ L2(R). Finally, the following lemma
applied to u = G shows that J ? G − G ∈ L2(R) and we can conclude that un solving
(3.30) is well-defined.

Lemma 3.3.1.
Let u ∈ C1(R)CAP :L∞(R). Then

‖J ? u− u‖L2(R) ≤ C‖u′‖L2(R).

Proof of the lemma
Using the fundamental theorem of calculus, we have that

J ? u(x)− u(x) =

∫
J(y)(u(x− y)− u(x))dy =

∫
J(y)y

(∫ 1

0
u′(x− ty) dt

)
dy.

By the Cauchy-Schwartz inequality, it follows that

|J ? u(x)− u(x)|2 ≤
∫

R

∫ 1

0
J(y)|y|(u′)2(x− ty)dt dy ·

∫

R

∫ 1

0
J(y)|y|dt dy

≤ C
∫

R

∫ 1

0
J(y)|y|(u′)2(x− ty)dt dy,

hence

‖J ? u− u‖2L2(R) ≤ C
∫

R
J(y)|y|

(∫ 1

0

∫

R
(u′)2(x− ty)dx dt

)
dy ≤ C‖u′‖2L2(R).

�

3.3.2 Passing to the limit as n→∞
Since ψ and w are ordered function i.e. ψ ≤ w, it follows easily from induction and the

maximum principle that for all n ∈ N \ {0},

ψ ≤ un ≤ w (3.32)

Also, if τ > 0 and zn(x) = un(x+ τ)− un(x),we have
{

εz′′n+1 + J ? zn+1 − (1 + λ)zn+1 − cz′n+1 = −(f + λ)(un(x+ τ)) + (f + λ)(un(x)) in R
zn+1 → 0 |x| → ∞.

(3.33)
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Choosing λ > 0 so large that −f − λ is nonincreasing, it follows from induction, the maxi-
mum principle and the fact that w is nondecreasing that for each n ∈ N, zn ≤ 0 i.e.

x→ un(x) is a nondecreasing function. (3.34)

Using (3.32), (3.34) and Helly’s lemma, it follows that a subsequence of {un} converges point-
wise to a nondecreasing function u satisfying

ψ ≤ u ≤ w
By the dominated convergence theorem, J ? un − un → J ? u− u. Rewriting (3.30) as

εu′′n+1 − cu′n+1 = un+1 − J ? un+1 − λ(un − un+1)− f(un), (3.35)

observing that the right-hand side in the above equation is uniformly bounded and using
elliptic regularity, we conclude that {un} is bounded e.g. in C1,α(ω), where α ∈ (0, 1) and ω
is an arbitrary bounded open subset of R. Hence u ∈ C2(R) and by Helly’s lemma,

un → u uniformly in R. (3.36)

Differentiating (3.35), we obtain similarly local C2,α bounds on un so that

un → u in C2,α
loc . (3.37)

Using (3.37), it is now a trivial matter to pass to the limit in the equation. Furthermore,
since ψ ≤ u ≤ w, u also has the desired limits at infinity of (3.29) and we have thus construc-
ted an increasing solution u of (3.29).

�

3.4 L2 estimates of solutions of (3.38)

Our goal in this section is to provide L2 estimates of monotone solutions of (3.38).




εu′′ + J ? u− u− cu′ + f(u) = 0 on R
u→ 0 as x→ −∞
u→ 1 as x→ +∞

(3.38)

Let (u, c) be a smooth solution of (3.38). We start out by showing that u′ vanishes at
infinity. It follows from (3.38) that for some h(x) ∈ C0(R),

εu′′ = cu′ + h(x). (3.39)

Fix δ > 0 and let R > 0 be such that |h(x)| < δ for |x| > R. Suppose by contradiction that for
some x0 > R we have cu′(x0) − δ > 0. Then (3.39) implies that u′′(x0) > 0 and in fact that
u′′ > 0 on [x0,∞), contradicting 0 ≤ u ≤ 1. Hence cu′ ≤ δ on [R,∞) i.e.

lim
+∞

u′ = 0.

Similarly, if for some x0 < −R, cu′(x0) − δ > 0, either u remains convex in (−∞, x0], which
is possible only if lim−∞ u′ = 0, either there exists x1 < x0 such that u′′(x1) = 0, whence u is
concave in (−∞, x1] in view of (3.39), which is again impossible. Hence

lim
−∞

u′ = 0.
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Remark 3.4.1. As a direct consequence of (3.39), we also have lim±∞ u′′ = 0.

Now we show that u′ ∈ L2(R). Indeed, multiplying (3.38) by u′ and integrating over R
yields

c

∫ (
u′
)2

=

∫
f(u)u′ =

∫ 1

0
f(s) ds <∞. (3.40)

Next, we show that f(u) ∈ L2(R). We need the following lemma :

Lemma 3.4.1.
J ? u− u ∈ L1(R). More precisely,

‖J ? u− u‖L1 ≤
∫

R
J(z)|z|dz and

∫

R
(J ? u− u) = 0

Proof :
Clearly,

∫

R
|(J ? u− u)| ≤

∫

R2

J(x− y)|u(y)− u(x)|dy dx. (3.41)

Since u ∈ C1(R),

|u(y)− u(x)| = |x− y|
∫ 1

0
u′(y + s(x− y))ds

Plug this equality in (3.41) to obtain :

∫

R2

J(x− y)|u(y)− u(x)|dydx =

∫

R2

J(x− y)|x− y|
∫ 1

0
u′(x+ s(y − x))ds dy dx (3.42)

Make the change of variables z = x− y, so that the right-hand side of (3.42) becomes :
∫

R2

J(z)|z|
∫ 1

0
u′(x− sz)ds dz dx (3.43)

Because all terms are positive, we may apply Tonnelli’s Theorem and permute the order
of integration. We obtain

∫

R2

J(z)|z|
∫ 1

0
u′(x− sz)ds dz dx =

∫ 1
0

∫
R2 J(z)|z|u′(x− sz)dx dz ds

=
∫ 1

0

∫
R J(z)|z|[u(+∞)− u(−∞)]dz ds

=
∫
R J(z)|z|dz ≤ ∞

These last computations show that J ? u− u is an integrable function and gives a bound
on its L1 norm. Let us now compute

∫
R(J ? u− u) dx. We have

∫

R
J ? u− udx =

∫

R2

J(x− y)(u(y)− u(x))dy dx.
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Let z = x− y so that
∫

R2

J(z)(u(x− z)− u(x))dz dx =

∫

R2

J(z)(u(y)− u(y + z))dy dz.

Make the change of variable z → −z in the left integral and obtain

I1 :=

∫

R2

J(z)(u(x+ z)− u(x))dz dx =

∫

R2

J(z)(u(y)− u(y + z))dy dz =: I2.

Fubini’s theorem applied to the last integral shows that I1 = −I2, hence I1 = I2 = 0.
�

Next, we integrate (3.38) over [R,∞), where R > 0 is chosen so large that f(u(x)) > 0 for
x > R. We get

−εu′(R) +

∫ ∞

R
(J ? u− u) + cu(R) +

∫ ∞

R
f(u) = 0.

Using Lemma 3.4.1, we conclude that f(u) ∈ L1(R,∞). Working similarly on (−∞,−R), it
follows that f(u) ∈ L1(R).

Multiplying (3.38) by u′′ and integrating over R yields

ε

∫ (
u′′
)2

+

∫
(J ∗ u− u)u′′ +

∫
f(u)u′′ = 0.

Since J∗u−u and f(u) are integrable and since u′′ is bounded (by Remark 3.4.1), we conclude
that u′′ ∈ L2(R), which, using (3.38),(3.40) and Lemma 3.3.1, implies that f(u) ∈ L2(R).

We finally prove that u ∈ L2(R−) and 1− u ∈ L2(R+). Using Lemma 3.2.1, we know that
there exists w ∈ L2(R) such that v := w +G (with G ∈ C∞(R), G ≡ 0 in a neighbourhood of
−∞ and G ≡ 1 in a neighbourhood of +∞) solves





εv′′ + J ? v − v − cv′ + f(u) = 0 on R
v → 0 as x→ −∞
v → 1 as x→ +∞

(3.44)

Since both u and v solve (3.44), it follows from the maximum principle that u ≡ v i.e. u
has the desired integrability.

�

3.5 Min-max formula : cases A1 and A2

In this section we prove the min-max formula for the asymptotic speed in the case where
the non linearity is of bistable or ignition type. The proof relies on the construction of appro-
priate sub and supersolutions for the problem (P), and a uniqueness theorem which holds
for solutions of (P) only when f is of bistable or ignition type.

We will prove the following :

Theorem 3.5.1.
Let X = {w ∈ C0(R)| w increasing, w(+∞) = 1 and w(−∞) = 0}, then the (unique) front
speed is given by

c∗ = min
w′>0, w∈X

max
x∈R
{εw

′′ + J ? w − w + f(w)

w′
}. (3.45)
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Proof of Theorem 3.5.1 :
Define c1 by :

c1 = min
w′>0, w∈X

max
x∈R
{εw

′′ + J ? w − w + f(w)

w′
}, (3.46)

with X as above.
Then we just have to show that

c∗ = c1. (3.47)

Since we know from the previous section that there exists an increasing solution (u∗, c∗)
to (P), taking w = u∗ in the definition of c1 yields

c1 ≤ c∗.

The main difficulty lies in the proof of the reverse inequality c1 ≥ c∗. We argue by contradic-
tion and assume that c1 < c∗. Let c be such that c1 ≤ c < c∗. From the definition of c1, there
exists a positive increasing function w which satisfies





εw′′ + J ? w − w − cw′ + f(w) ≤ 0 in R
w → 0 x→ −∞
w → 1 x→ +∞,

(3.48)

Since c < c∗, and (u∗)′ > 0, u∗ satisfies :





ε(u∗)′′ + J ? u∗ − u∗ − c(u∗)′ + f(u∗) = (c∗ − c)(u∗)′ ≥ 0 in R
u∗ → 0 x→ −∞
u∗ → 1 x→ +∞,

(3.49)

Observe that any translation of u∗ and w are also respectively a sub and a supersolution of
the same problem. Therefore, if we can order two translations of u∗ and w, we will be done.
Indeed, from the a priori estimates of Section 3.4 and Theorem 3.3.1, there would exist a
positive solution of the following problem :





εu′′ + J ? u− u− cu′ + f(u) = 0 in R
u→ 0 x→ −∞
u→ 1 x→ +∞,

(3.50)

which contradicts the uniqueness theorem 3.1.1.
�

The proof of Theorem 3.5.1 thus reduces to finding ordered translations of w and u∗. We
claim the following

Lemma 3.5.1.
There exists constants a and b such that w(s+ a) ≥ u∗(s+ b)

Proof of Lemma 3.5.1 :
Without loss of generality, we may always assume w(0) = u∗(0) = θ

2 .
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Now we define some quantities that we will use to construct sub and supersolutions.
Let α positive, such that

f ′(p) < −2α whenever | p− 1 |< α (3.51)

Let µ ∈ (0, α2 ) and define a(s) = µe−αs.
Choose M > 0 and K > 0 such that :

w(ξ)− 1 <
α

2
in (M − 1,+∞) (3.52)

w′(ξ) > K in [−1,M + 1] (3.53)

Define the following function :

b(s) =
µᾱ

K
(1− e−αs),

where ᾱ = 1 + max{f ′(p) −1≤p≤2}
α .

We will assume further that µ ≤ min{ θ2 , Kᾱ }.
We now define a sub and a supersolution as follows :

w̃(ξ, s) = w(ξ + b(s)) + a(s) (3.54)
ũ(ξ, s) = u∗(ξ − τ) (3.55)

where τ > 0 is taken so large that

w(ξ) + a(0) > u∗(ξ − τ).

Let z(ξ, s) = (w̃ − ũ)(ξ, s). z satisfies the next equations :

−∂z
∂s

+ εz′′ + (J ? z − z)− czξ ≤ −a′(s)−w′(ξ, s)b′(s) + f(ũ(ξ, s))− f(w̃(ξ, s)− a(s)) (3.56)

z(ξ, 0) > 0 ∀ξ ∈ R (3.57)
z(±∞, s) = a(s) ∀s ∈ R (3.58)

From (3.57,3.58), by continuity, there exists s0 = sup{s > 0 | z(ξ, s) > 0 ∀ξ ∈ R}.

Claim 3.5.1. s0 = +∞.

proof of Claim 3.5.1 :
We argue by contradiction. If not, s0 < +∞ and there exits ξ0 ∈ R such that

0 = z(ξ0, s0) = min
R
z(ξ, s0) (3.59)

Next, we use a kind of localization of minimum lemma. More precisely we claim
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Claim 3.5.2. Under the previous assumptions, we have ξ0 > −1

proof of Claim 3.5.2 :
Let Z(ξ) = z(ξ, s0), then Z satisfies :

εZ ′′ + J ? Z − Z − cZξ = f(ũ(ξ, s0))− f(w̃(ξ, s0)− a(s0))

So at ξ0 we have,

Z ′′(ξ0) ≥ 0
(J ? Z − Z)(ξ0) > 0

Zξ(ξ0) = w̃(ξ0, s0)− ũ(ξ0, s0) = 0

Thus f(ũ(ξ0, s0))− f(w̃(ξ0, s0)− a(s0)) > 0, which implies f(ũ(ξ0, s0)) > 0.
Recall, that

ũ(ξ0, s0) = w̃(ξ0, s0)

⇒ u∗(ξ0 − τ) = w(ξ0 + b(s0)) + a(s0)

Thus,

u(ξ0, s0) = w(ξ0 + b(s0)) + a(s0) > θ

⇒ w(ξ0 + b(s0)) > θ − a(s0) >
θ

2

⇒ ξ0 > w−1(
θ

2
)− b(s0)

⇒ ξ0 > −1

�
Remark 3.5.1. Claim 3.5.2 bounds from below the minimum of z.

Now, observe that, at (ξ0, s0), z satisfies :

−∂z(ξ0, s0)

∂s
+ εz′′ + (J ? z − z)(ξ0, s0)− czξ(ξ0, s0) ≥ 0

and

−∂z(ξ0, s0)

∂s
+[εz′′+(J?z−z)−czξ](ξ0, s0) ≤ −a′(s0)−w′(ξ0, s0)b′(s0)+f(ũ(ξ0, s0))−f(w̃(ξ0, s0)−a(s0))

So we end up with

Q = −a′(s0)− w′(ξ0, s0)b′(s0) + f(ũ(ξ0, s0))− f(w̃(ξ0, s0)− a(s0)) ≥ 0

Since at (ξ0, s0) we have,
ũ(ξ0, s0) = w̃(ξ0, s0)

and f is a smooth function, we can rewrite Q as

Q = µe−αs0 [α− αᾱ

K
w′(ξ0 + b(s0)) + f ′(d)] ≥ 0 (3.60)

for some d ∈ [w̃(ξ0, s0)− a(s0), w̃(ξ0, s0)].
Now, from Claim 3.5.2, we are lead to considering two cases :
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1. case : ξ0 ∈ [−1,M ]

Then, Q would satisfy :

0 > µe−αs0 [α(1− w′(ξ0, s0)

K
)− w′(ξ0, s0)

K
max{f ′(p) − 1 ≤ p ≤ 2}+ f ′(d)]

which contradicts (3.60).

2. case : ξ0 > M

Then, Q would then verify :

µe−αs0 [α− αᾱw′(ξ0, s0)

K
+ f ′(d)] < µe−αs0 [−α− αᾱw′(ξ0, s0)

K
] < 0

which also contradicts (3.60), thus proving Claim 3.5.1.

�
From Claim 3.5.1, we have z(ξ, s) ≥ 0 for all (ξ, s) ∈ R× R+. Let s go to infinity : we end

up with w(ξ − a) ≥ u∗(ξ − b), where a = µᾱ
K and b = τ . This ends the proof of Lemma 3.5.1.

�

3.6 Min-max formula : the monostable case

In this section we prove the min-max formula for the minimal speed in the case where
the non linearity f is monostable. We are concerned with the following problem.





εu′′ + J ? u− u− cu′ + f(u) = 0 in R
u→ 0 x→ −∞
u→ 1 x→ +∞,

(3.61)

where f is monostable and J has a fast decay near infinity. Uniqueness of solutions no longer
holds in this situation. Nevertheless, the min-max formula still holds :

Theorem 3.6.1.
Let X = {w ∈ C0(R)|w(+∞) = 1 and w(−∞) = 0}, then we have

c∗ = min
w′>0, w∈X

max
x∈R
{εw

′′ + J ? w − w + f(w)

w′
}. (3.62)

Proof :
We define c1 as in the previous section :

c1 = min
w′>0, w∈X

max
x∈R
{εw

′′ + J ? w − w + f(w)

w′
} (3.63)

where X = {w ∈ C0(R)|w(+∞) = 1 and w(−∞) = 0}.
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Then again we just have tho show,

c∗ = c1, (3.64)

As in the previous section, since we know from [20] that there exists an increasing solu-
tion of (3.61), for the speed c∗, we obviously have c1 ≤ c∗. The main difficulty again lies in
the proof of c1 ≥ c∗. Before, showing c1 ≥ c∗, we will characterize the behavior of the speed
of solutions of (3.61) when f is of ignition type.

Lemma 3.6.1.
Let ε ≥ 0, let f and g be two functions of ignition type, such that f ≥ g, f 6≡ g, then the corresponding
speed cf , cg satisfy cf > cg.

From this monotone charaterization of the speed, we easily obtain the following corol-
lary :

Corollary 3.6.1.
There exists a sequence of approximations (fn)n∈N of f such that for each n fn is of ignition type and
the corresponding speed satisfies

lim
n→+∞

cn = c∗

Proof of Corollary 3.6.1 :
Let (δn)n∈N be a sequence of positive numbers converging to 0 as n goes to infinity. And

let χεn satisfy the following assumptions :
– χδn ∈ C∞0 (R)
– 0 ≤ χδn ≤ 1
– χδn(s) ≡ 0 for s ≤ δn and χδn(s) ≡ 1 for s ≥ 2δn
– χδn is a monotone increasing sequence of function (i.e.χδn ≤ χδp for p ≥ n)
Now define a new function fδn = fχδn . Since fδn is of ignition type, there exists a unique

travelling wave solution (un, cn) of (3.65), cf [17].




εu′′n + J ? un − un − c̃nu′n + fδn(un) = 0 in R
un → 0 x→ −∞
un → 1 x→ +∞,

(3.65)

Observe that f(s) ≥ fδn , therefore (u∗, c∗) satisfies




ε(u∗)′′ + J ? u∗ − u∗ − c∗(u∗)′ + fδn(u∗) ≤ 0 in R
u∗ → 0 x→ −∞
u∗ → 1 x→ +∞,

(3.66)

By Lemma 3.6.1, {cn} is an increasing sequence.Now we will show that this sequence is
bounded by c∗. We claim the following

Claim 3.6.1. ∀n ∈ N cn ≤ c∗

Proof :
We argue by contradiction, suppose not. Then, there exists cn > c∗. Since un is monotone

increasing, un satisfies
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



εu′′n + J ? un − un − c∗u′n + fδn(un) ≥ 0 in R
un → 0 x→ −∞
un → 1 x→ +∞,

(3.67)

Therefore (un, c
∗) is a subsolution and (u∗, c∗) a supersolution of (3.65). Since fδn is of

ignition type we can apply Lemma 3.5.1 to get constants a and b such that u∗(s + a) ≥
un(s + b). Then, as in the previous section, we can apply Theorem 3.3.1, which implies the
existence of a non trivial solution (u, c∗) to (3.65) which contradicts the uniqueness of the
solution (un, cn). This proves Claim 3.6.1.

�
Since cn is a bounded increasing sequence, it converges to a constant γ. From standard a-

priori estimates, there exists a subsequence still denoted un which converges to an increasing
function ū solution of (3.61).

Since c∗ = inf{c > 0| (3.61) has a positive increasing solution}, we must have γ = c∗,
which proves Corollary 3.6.1.

�
Now, let us prove Lemma 3.6.1.

Proof of Lemma 3.6.1
Again, we argue by contradiction. Assume that cf < cg. Then, since they are increasing,

uf and ug will be respectively a super and subsolution of




εw′′ + J ? w − w − cgw′ + f(w) ≤ 0 in R
w → 0 x→ −∞
w → 1 x→ +∞,

(3.68)

Since f is of ignition type, we can use Lemma 3.5.1 and Theorem 3.3.1 to get a non tri-
vial solution (u, cg) of (3.68), which violates the uniquess theorem 3.1.1. The strict inequality
follows by the same argument.

�
We are now ready to prove the last inequality

c1 ≥ c∗ (3.69)

Proof of inequality (3.69) :
We argue by contradiction, assuming that (3.69) is not true : there exists c > 0 such that

c1 ≤ c < c∗. Therefore by the definition of c1, there exists a positive increasing function w
such that





εw′′ + J ? w − w − cw′ + f(w) ≤ 0 in R
w → 0 x→ −∞
w → 1 x→ +∞,

(3.70)

Now, by Corollary 3.6.1, there exists δn > 0 and un increasing and cn > 0 such that




εu′′n + J ? un − un − cnu′n + fδn(un) = 0 in R
un → 0 x→ −∞
un → 1 x→ +∞.

(3.71)
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Therefore, if we replace cn by c in (3.71), w and un become a super and a subsolution of
the problem. We can then apply Lemma 3.5.1 and Theorem 3.3.1 to get a solution of (3.71)
with speed c. But this contradicts the uniquess of the speed for problems with ignition non-
linearities.

�
This ends the proof of the min-max formula in the monostable case.
We can give a more precise bound for the minimal speed, if in addition to the common

assumption that f is monostable, we assume further that f ′(0)s ≥ f(s). This new assumption
is known as the KPP assumption. When there is no integral terms, then it is known that
c∗ = 2

√
f ′(0), which can be also formulated as

c∗ = min
λ>0
{ 1

λ
(λ2 + f ′(0))}

. We derive a similar formula when there is an integral term. Namely, we have

c∗ ≤ min
λ>0
{ 1

λ
(ελ2 +

∫

R
J(z)eλzdz − 1 + f ′(0))} = γ.

There are hints that in fact there is equality in the above equation, but we were not able
to prove it. The proof relies on the same ideas : one assumes that the inequality is false
then picks a constant c ∈ (γ, c∗), finds good super and subsolution for an ignition-type pro-
blem and concludes with the existence and uniqueness theorem. We omit the details of the
proof and just present the construction of the super solution. A straight forward computa-
tion shows that exponential functions are eigenfunctions of the operator Lw + f ′(0)w :=
εw′′ + J ? w − w − cw′ + f ′(0)w , i.e.([L+ f ′(0)]eλx = h(λ)eλx).
Therefore, since f is of KPP type, exponential solution satisfy

L(eλx) + f(eλx) ≤ h(λ)eλx (3.72)

where h(λ) = ελ2 +
∫
R J(z)eλzdz − 1− cλ+ f ′(0)

Now use the definitions of γ and c to find some λ such that h(λ) ≤ 0. Then argue as above :
since there exists a supersolution of the monostable problem (3.61), and cn → c∗, we get a
contradiction.

�
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J ? u− u− cu′ + f(u) = 0 in R, (4.1)
u(x)→ 0 as x→ −∞, (4.2)
u(x)→ 1 as x→ +∞, (4.3)

where J is an even nonnegative continuous function on R with
∫
R J(z)dz = 1, c is a

real constant, J ? u(x) =
∫
R J(x − y)u(y)dy is the standard convolution and f : R → R is

appropriately smooth, with f(0) = f(1) = 0.

Remark 4.1.1. The previous problem is invariant under translation, which means that for any real
τ , uτ := u(.+ τ) is still a solution of (4.1)-(4.3).

Such a problem arises in the study of so-called Travelling Fronts ( solutions of the form
u(x, t) = φ(x+ ct)) of the following nonlocal phase-transition problem

∂u

∂t
− (J ? u− u) = f(u) in R× R+. (4.4)

The constant c is called the speed of the front and is usually unknown. The operator Lu =∫
R J ? u − u can be viewed as a diffusion operator. This kind of equation was originally

introduced in 1937 by Kolmogorov, Petrovskii and Piskunov [46] as a way to derive the
Fisher equation (i.e (4.5) below with f(s) = s(1− s))

∂U

∂t
= Uxx + f(U) for (x,t) ∈ R× R+. (4.5)

In the literature, much attention has been drawn to reaction-diffusion equations like (4.5), as
they have proved to give a robust and accurate description of a wide variety of phenomena,
ranging from combustion to bacterial growth, nerve propagation or epidemiology. We point
the interested reader to the following articles for more informations : [6, 7, 31, 35, 46, 48, 62].

For nonlinearities f satisfying f ∈ C1(R), f(0) = f(1) = 0 and for some ε > 0, f ′(s) ≤ 0
in s < ε and in 1 − ε < s, monotonicity and uniqueness of travelling-front solutions of the
reaction-diffusion equation (4.5) is well known, see [6, 9, 10, 11, 34, 55]. By uniqueness of
travelling wave solution, we mean that if (u, c) and (v, c′) are travelling-wave solution of
(4.5) then c = c′ and u(x) = v(x + τ) for some real τ . Observe that the Fisher nonlinearity
(f(s) = s(1 − s)) does not satisfy theses assumptions. For this kind of nonlinearity, it is
known that several travelling-wave solutions exist, see [11, 46]. However, in that case, using
a precise exponential asymptotic expansion of the solutions in a neighborhood (−∞,M)
of −∞, Berestycki and Nirenberg obtained in [11] the monotonicity and uniqueness up to
translation of the travelling-wave solutions of (4.5) (i.e. If (u, c) and (v, c) are travelling-wave
solution of (4.5) then u(x) = v(x+ τ) for some real τ .

For the nonlocal equation (4.1)-(4.3), existence, uniqueness and monotonicity were first
obtained by Bates, Fife, Ren and Wang [5] and later by Chen [17] for a bistable nonlinearity
f , i.e. a nonlinearity f ∈ C1(R) satisfying for some ρ > 0, f |(0,ρ) < 0, f |(ρ,1) > 0, f(0) =
f(1) = 0, f ′(0) < 0 and f ′(1) < 0. In that case, they showed the following

Theorem 4.1.1. [5]
Assume that J ∈ C1(R) is a positive, even, integrable function with unit mass. Let (u, c) and (v, c′)
be solutions of (4.1)-(4.3) with bistable nonlinearity and assume that (u, c) is monotone increasing,
then c = c′. Moreover, if either u or v is continuous or if v is monotone then v(x) = u(x + τ) for
some τ ∈ R.
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Notice that Theorem 4.1.1 contains two distinct uniqueness results. Indeed, it states that
the speed is unique and the profile u is unique. It also shows how rigid Problem (4.1)-(4.3)
is, since it has a positive solution only for one real value of c.

Our first result is a generalization of the uniqueness result for the continuous profile
contained in Theorem 4.1.1 to more general nonlinearities,

Theorem 4.1.2.
Assume that J ∈ C0(R) is a positive, even, integrable function with unit mass. Let f ∈ C1(R),
f(0) = f(1) = 0 be such that f satisfies for some ε > 0, f ′(s) ≤ 0 when s < ε and when 1− ε < s.
Let (u, c) and (v, c) be two continuous solutions of (4.1)-(4.3) then u(.) = v(. + τ) for some real τ .
Moreover, the solution u is monotone increasing.

Note that the assumption on f in the previous theorem covers the case of bistable nonli-
nearities and that in the case of continuous solutions, the existence of a monotone solution u
is not needed anymore.

Also observe that our theorem does not cover the case of discontinuous solutions of (4.1)-
(4.3) which appears when the speed c = 0. However when c = 0, there is an example of exis-
tence of several discontinuous positive solutions of (4.1)-(4.3). A generalization of Theorem
4.1.2 for monotone discontinuous solutions is currently under investigation.

Our second result concerns the uniqueness of the speed c for continuous solutions when
they exist. Namely, we have

Theorem 4.1.3.
Assume that J ∈ C0(R) is a positive even integrable function with unit integral. Let f ∈ C1(R),
f(0) = f(1) = 0 be such that for some ε > 0, f ′(s) ≤ 0 when s < ε and when 1− ε < s . Let (u, c)
and (v, c′) be two continuous positive solutions of (4.1)-(4.3), then c = c′.

As we previously mentioned, the assumptions made on f in Theorem 4.1.2, do not cover
the case of the Fisher nonlinearity. Our next result deals with the monotonicity of solutions in
that case. With some extra assumption on the behavior of the solution in some neighborhood
(−∞,M) of −∞, we show that the solutions are monotone increasing. More precisely we
have

Theorem 4.1.4.
Assume that J ∈ C0(R) is a positive even integrable function with unit mass. Let f ∈ C1(R), f(0) =
f(1) = 0 be such that for some ε > 0, f ′(s) ≤ 0 when 1− ε < s. Let (u, c) be a positive continuous
solution of (4.1)-(4.3), such that u is monotone increasing in some neighborhood (−∞,M) of −∞
then u is monotone increasing in all of R.

Assuming that the solutions u are monotone increasing in some neighborhood (−∞,M)
of−∞may seem strange, however such behavior holds true for travelling-front solutions of
the reaction-diffusion equation (4.5). Indeed, when f is monostable, (f ∈ C1(R), such that
f(0) = f(1) = 0, f |(0,1) > 0) with f ′(0) > 0, the positive solutions (u, c) of (4.5) satisfies the
following expansion near −∞,

u(x) = Ceλ0x + o(eλ0x)

u′(x) = λ0Ce
λ0x + o(eλ0x),

where C is a positive constant and λ0 is one of the positive roots of λ2 − cλ + f ′(0). u′ is
therefore strictly positive in a neighborhood (−∞,M) of −∞, which is our needed assump-
tion. For details on the proof of this expansion, see [1, 11]. For Equations (4.1)-(4.3), it seems
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that such exponential expansion of the solution no longer stands in general. The assumption
on the monotone behavior of the solution in Theorem 4.1.4 fills the lack of such exponential
expansion.

4.1.1 General remarks and comments

For the uniqueness of the speed c (Theorem 4.1.3), we originally required that the solu-
tions are continuous. It appears that the proof of this result can easily be adapted to solutions
u with a finite number of discontinuities. This is briefly discussed in the end of Section 4.3.

In the case of monostable nonlinearities, the uniqueness of the speed c no longer holds,
see [11, 23]. However, the uniqueness up to translation of the travelling-fronts of (4.5) still
holds. We expect to have similar results for positive solution of (4.1)-(4.3), but we were not
able to prove it.

Theorems 4.1.2-4.1.4 stand for more general operators than Lu := J ?u−u−cu′. Namely,
our proofs hold for operators of the form

Lu := αu′′ + β

∫

R
J(x− y)

(
u(y)− u(x)

)
dy − cu′ − du, (4.6)

where α, β and d are non-negative real numbers such that α + β > 0 and J a positive conti-
nuous integrable kernel such that [−b,−a] ∪ [a, b] ⊂ supp(J) for some 0 ≤ a < b. Observe
that when α 6= 0, even in the case of stationary travelling fronts (i.e. c = 0), there is no need
to consider discontinuous travelling fronts since the local elliptic regularity implies that so-
lutions are smooth. Note also that the kernel J does not need to be an even function.

In our analysis for operators satisfying Lemma 4.1.1 below, we have also observed that
some assumptions on L can be weakened, in particular the translation invariance. We sum-
marize below the required condition on L

(H1) For all positive functions U , let Uh(.) := U(.+h). Then for all h > 0 we have L[Uh](x) ≤
L[U ](x+ h) ∀x ∈ R.

(H2) Let v a positive constant then we have L[v] ≤ 0.

Operators satisfying these two conditions are easily constructed. For example, let J be a
positive, even, continuous, integrable kernel of mass one, then the operator Lu :=

∫ +∞
−r J(x−

y)u(y)dy − u where r > 0, is not translation-invariant but satisfies (H1) and (H2).
Most of the results that we obtain can be generalized to multidimensional situations. For

example, Theorems 4.1.2 -4.1.4 can be generalized to the following problem

ε∆u+ β

∫

Σ
J(x− t, y − s)(u(t, s)− u(x, y))dtds+ γ(y)ux + f(u) = 0 on Σ (4.7)

∂u

∂ν
= 0 at ∂Σ (4.8)

u(x, y)→ 0 uniformly in y as x→ −∞ (4.9)
u(x, y)→ 1 uniformly in y as x→ +∞, (4.10)

where Σ := R× Ω is a cylinder.
Here ε and β are nonnegative constants, Ω ⊂ Rn−1, (n ≥ 2) is a bounded domain with a
C2,α boundary for some α > 0 if n > 2, ν is the outward normal to the boundary of R × Ω,
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γ(y) : Ω → R is a smooth function and the spatial coordinates are denoted by (x, y) where
x = x1 and y = (x2, ..., xn). J(x, y) is a positive, continuous, integrable kernel on Σ such that
the support of J contains a set of the form ([−b,−a]∪ [a, b])× ω for some 0 ≤ a < b, where ω
is an open subset of Ω containing 0.
When β = 0, such kind of equations arise in combustion theory to describe the propagation
of flames in a tube. The term γ(y) is usualy compose of two terms γ(y) = c + γ1(x), where
c is the unknown speed of the flame and γ1(x) is a given driving flow. The operator Lu :=
β
∫

Σ J(x− t, y − s)(u(t, s)− u(x, y))dtds is a natural multidimensional generalization of the
one dimensional diffusion operator J ? u− u.

4.1.2 Method and plan

To prove Theorems 4.1.2-4.1.4, we use a sliding technique introduced by Berestycki-
Nirenberg in [11], combined with some ideas of Alikakos-Bates-Chen [3] (see also Chen [17]
and [34]) and Vega [55]. We also use extensively a strong maximum principle that holds for
the operator Lu := J ? u− u− cu′ :

Theorem 4.1.5. Maximum Principle
Let u be a smooth (C1) function on R, such that

L[u](x) ≥ 0 (resp. L[u](x) ≤ 0) in R.

Then u cannot achieve a global maximum (resp. a global minimum) without being constant.

and some property attached to our operator L :

Lemma 4.1.1.
Let u be a smooth (C1) function. If u achieves a global minimum (resp.a global maximum) at some
point ξ then the following holds :

– Either L[u](ξ) > 0 (resp. L[u](ξ) < 0)
– Or L[u](ξ) = 0 and u is identically constant.

Remark 4.1.2. The assumption on the regularity of u in Theorem 4.1.5 and Lemma 4.1.1 have to be
adjusted to the regularity requirements of L. More precisely, if Lu := J ? u− u, C1 regularity is not
really needed. Indeed in that case Lemma 4.1.1 and the Maximum Principle stand for u continuous
by parts and with a finite number of discontinuities. Observe that operators of the form Lu := αu′′+
β
∫
R J(x− y)

(
u(y)− u(x)

)
dy − cu′ − du also satisfy Theorem 4.1.5 and Lemma 4.1.1 when β 6= 0

under the additional assumption u ∈ C2.

Remark 4.1.3. The maximum principle for Lu = J ? u− u needs that u achieves a global extremum
on R. It will be untrue if we only assume that u achieves a local extremum. For the Laplacian operator
the maximum principle holds even if we assume that u achieves a local extremum. This difference is
easily explained by the global/local nature of our operator and the Laplacian operator. This also implies
that local analysis will fails for our operator.

Remark 4.1.4. For general multidimensional operatorsLu :=
∫

Σ J(x−t, y, s)(u(t, s)−u(x, y))dtds
the strong maximum principle stated as in Theorem 4.1.5 no longer holds. However, our proofs will
still hold only by assuming that at a global minimum (x0, y0) (resp.a global maximum), we have

– Either L[u](x0, y0) > 0 (resp. L[u](x0, y0) < 0)
– Or L[u](x0, y0) = 0 and u(x, y) = u(x0, y0) on R× {y} for some y ∈ Ω̄.
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This conditions enables to consider a much greater varitiety of kernels.

Details of the proof of the maximum principle and the previous lemma can be found in
[23]. Let me describe in a few words the idea of the method. We compare translations of two
solutions u and v on R. We show that for some real τ , we have

u(.+ τ) ≥ v(.) on all R. (4.11)

Then, using standard procedures we obtain the desired conclusion. To obtain (4.11), a global
approach is needed, since we deal with nonlocal operators. The method used by Berestycki-
Nirenberg [11, 9] and Vega [55] fails in our case because it rely on comparison results either
on compact set or semi infinite cylinders, which can’t be obtained in our case.

This note is organized as follows : Section 4.2 is devoted to some prelinimary results
which will be used extensively in the other sections. Uniqueness and monotonicity of tra-
velling front solution (i.e. Theorem 4.1.2,4.1.3) is proved in Section 4.3. Theorem 4.1.4 is then
proved in Section 4.4. In the last section we examine some aspect of the multidimensional
problem.

Remark 4.1.5. Even though the Laplacian (i.e. L := ∆) does not satisfy Lemma 4.1.1, one can show
that our proof of Theorems 4.1.2-4.1.3 holds for this operator.

4.2 Preliminary results, Nonlinear Comparison Principle

In this section we present some useful results concerning sub and supersolutions of the
problem

Lu+ f(u) = 0 on R (4.12)
u(x)→ 0 as x→ −∞ (4.13)
u(x)→ 1 as x→ +∞, (4.14)

where f ∈ C1 satisfies the set of conditions in Theorem 4.1.2. For the sake of simplicity,
we will only consider translation-invariant operators L satisfying Lemma 4.1.1 and (H2)
. For convenience, we introduce the notation uτ := u(. + τ). As briefly mentioned in the
introduction, all our proofs rely on a comparison result on translations of two solutions.
So we start by showing a Nonlinear Comparison Principle which will enable us to order
translations of sub and supersolutions of (4.12)-(4.14). More precisely we have the following
result.

Theorem 4.2.1. Nonlinear Comparison Principle
Let f satisfy the assumptions of Theorem 4.1.2. Let u and v be two smooth (C1) functions on R, such
that

Lu+ f(u) ≤ 0 on R (4.15)
Lv + f(v) ≥ 0 on R (4.16)

lim
x→−∞

u(x) ≥ 0, lim
x→−∞

v(x) ≤ 0 (4.17)

lim
x→+∞

u(x) ≥ 1, lim
x→+∞

v(x) ≤ 1. (4.18)

Then there exists a positive real τ such that uτ ≥ v. Moreover, either uτ > v or uτ ≡ v.
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Remark 4.2.1. Observe that by the Maximum Principle (i.e. Theorem 4.1.5) and since f(s) ≥
0 ∀s ≤ 0, the supersolution u is necessarily positive. Similarly, since f(s) ≤ 0 ∀s ≤ 1, the
Maximum Principle implies that v < 1.

Before proving Theorem 4.2.1, we start with some definitions of quantities that we will
use all along this section.
Let 0 < δ ≤ ε

2 such that

f ′(p) ≤ 0 for p < δ and 1− p < δ. (4.19)

Choose M > 0 so that

1− u(x) <
δ

2
∀x > M (4.20)

and v(x) <
δ

2
∀x < −M. (4.21)

The proof of Theorem 4.2.1 is mainly based on the following technical lemma, which will
be proved later on.

Lemma 4.2.1.
Let u and v be as in Theorem 4.2.1 and satisfy Conditions (4.20) and (4.21) above. If there exists a
positive constant b such that u and v satisfy :

u(x+ b) > v(x) ∀x ∈ [−M − 1,M + 1] (4.22)

and u(x+ b) +
δ

2
> v(x) ∀x ∈ R, (4.23)

then we have u(x+ b) ≥ v(x) ∀x ∈ R.

Proof of Theorem 4.2.1 :
Note that if infR u > maxR v, the theorem trivially holds. In the sequel, we assume that

infR u ≤ maxR v. Assume for a moment that Lemma 4.2.1 holds. To prove Theorem 4.2.1, by
construction of M and δ, we just have to find an appropriate constant b which satisfies (4.22)
and (4.23). Since u and v satisfy (4.17)-(4.18) using Remark 4.2.1, there exists a constant D
such that on the compact set [−M − 1,M + 1], we have for every b ≥ D

u(x+ b) > v(x) ∀x ∈ [−M − 1,M + 1].

Now, we claim that there exists b ≥ D such that u(x+ b) + δ
2 > v(x) ∀x ∈ R.

If not then we have,

∀b ≥ D there exists x(b) such that u(x(b) + b) +
δ

2
≤ v(x(b)). (4.24)

Since u is nonnegative and v satisfies (4.17) there exists a positive constant A such that

u(x+ b) +
δ

2
> v(x) for all b > 0 and x ≤ −A. (4.25)

Take now a sequence (bn)n∈N which tends to +∞. Let x(bn) be the point defined by (4.24).
Thus we have for that sequence

u(x(bn) + bn) +
δ

2
≤ v(x(bn)). (4.26)
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According to (4.25) we have x(bn) ≥ −A. Therefore the sequence x(bn) + bn converges to
+∞. Pass to the limit in (4.26) to get

1 +
δ

2
≤ lim

n→+∞
u(x(bn) + bn) +

δ

2
≤ lim sup

n→+∞
v(x(bn)) ≤ 1,

which is a contradiction. Therefore there exists a b > D such that

u(x+ b) +
δ

2
> v(x) ∀x ∈ R.

Since we have found our appropriate constant b, we can apply Lemma 4.2.1 to obtain

u(x+ τ) ≥ v(x) ∀x ∈ R,

with τ = b. It remains to prove that either uτ > v or uτ ≡ v. We argue as follows. Let
w := uτ − v, then either w > 0 or w achieves a non-negative minimum at some point x0 ∈ R.
If such x0 exists then at this point we have w(x) ≥ w(x0) = 0 and

0 ≤ Lw(x0) ≤ f(v(x0))− f(u(x0 + τ)) = f(v(x0))− f(v(x0)) = 0. (4.27)

Then using Lemma 4.1.1, we obtain w ≡ 0, which means uτ ≡ v. This ends the proof of
Theorem 4.2.1.

�

Remark 4.2.2. Note that the construction of b still stands if we only assume that u is continuous
and v < 1 has a finite number of discontinuities.

We now turn our attention to the proof of Lemma 4.2.1.
Proof of Lemma 4.2.1

Let u and v be respectively a super and a subsolution of (4.12)-(4.14) satisfying (4.20) and
(4.21). Let a > 0 be such that

u(x+ b) + a > v(x) ∀x ∈ R. (4.28)

Note that for b defined by (4.22) and (4.23), any a ≥ δ
2 satisfies (4.28). Define

a∗ = inf{a > 0 | u(x+ b) + a > v(x) ∀x ∈ R}. (4.29)

We claim that

Claim 4.2.1. a∗ = 0.

Observe that Claim 4.2.1 implies that u(x + b) ≥ v(x) ∀x ∈ R, which is the desired
conclusion.
Proof of claim 4.2.1

We argue by contradiction. If a∗ > 0, since limx→±∞ u(x+ b) + a∗ − v(x) ≥ a∗ > 0, there
exists x0 ∈ R such that u(x0 + b) + a∗ = v(x0).
Let w(x) := u(x+ b) + a∗ − v(x), then

0 = w(x0) = min
R
w(x). (4.30)
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Observe that w also satisfies the following equations :

Lw ≤ f(v(x))− f(u(x+ b)) (4.31)
w(+∞) ≥ a∗ (4.32)
w(−∞) ≥ a∗. (4.33)

Since w ≥ 6≡ 0, by Lemma 4.1.1
Lw(x0) > 0. (4.34)

By our assumption, u(x+ b) > v(x) on [−M − 1,M + 1]. Hence |x0| > M + 1.
Let us define

Q(x) := f(v(x))− f(u(x+ b)). (4.35)

We now have to consider the two following cases :
– x0 < −M − 1 :

At x0 we have
Q(x0) = f(v(x0))− f(v(x0)− a∗) ≤ 0, (4.36)

since f is non-increasing for s ≤ ε, a∗ > 0 and v ≤ δ
2 < ε for x < −M . Now, combining

(4.31), (4.34) and (4.36) yields the following contradiction

0 < Lw(x0) ≤ Q(x0) ≤ 0.

– x0 > M + 1 :
We argue similarly for that case. At x0 we have

Q(x0) = f(u(x0 + b) + a∗)− f(u(x0 + b)) ≤ 0, (4.37)

since f is non-increasing for s ≥ 1− ε, a∗ > 0 and 1− ε < 1− δ
2 ≤ u for x > M . Again,

combining (4.31),(4.34) and (4.37) yields the contradiction

0 < Lw(x0) ≤ Q(x0) ≤ 0.

Hence a∗ = 0, which ends the proof of Claim 4.2.1.
�

Remark 4.2.3. One can observe that the proof of Lemma 4.2.1 still holds for any δ < ε
2 and M such

that (4.19)-(4.21) hold. In particular, since u and v satisfies (4.17)-(4.18),Lemma 4.2.1 holds if we
increase M .

General remarks and comments :

One can observe that most of the arguments used in the above two proofs hold for the
Laplacian operator (L = ∆). Only the final argument in the alternative fails. We can still
obtain a contradiction, in this case, by arguing as follows :
Set z := u(x+ b) + a∗ and Ω− = {x < −M − 1|w(x) = 0}.
If x0 < −M − 1, we have Ω− 6= ∅ and

Q(x) := f(v(x))− f(z(x)− a∗) = f ′(θ(x))(v − z) + a∗f ′(θ(x)),
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for some θ(x) ∈ [min{v(x), z(x)− a∗},max{v(x), z(x)− a∗}].
Since x0 < −M − 1, we have

z(x0)− a∗ < v(x0) <
δ

2
≤ ε

4
.

Therefore on a small neighborhood V (x0) of x0, z(x)− a∗ < ε
2 and v(x) < ε

2 .
Hence, on V (x0) we have f(θ(x)) ≤ 0. By observing that w = z − v, from (4.31)-(4.33), we
then have on V (x0)

Lw + f ′(θ(x))w ≤ a∗f ′(θ(x)) ≤ 0 on V (x0) (4.38)
w ≥ 0 on V (x0). (4.39)

Apply now the usual Strong Maximum Principle (i.e. Theorem 4.1.5) to obtain w ≡ 0 on
V (x0). Observe that the previous computation holds for any x ∈ Ω−, therefore Ω− is an open
subset of (−∞,−M−1). Sincew is continuous, Ω− is obviously a closed subset of (−∞,−M−
1). By connectedness, we then have Ω− = (−∞,−M − 1), which is a contradiction since
limx→−∞w(x) ≥ a∗ > 0. A similar argument can be used for the case x0 > M + 1.

In the case of a continuous supersolution u and a subsolution v with a finite number of
discontinuities,the first part of Theorem 4.2.1 holds. Similarly, this result also holds if the
subsolution v is continuous and the supersolution u has a finite number of discontinuities.
Recall that u and v satisfy (4.20)-(4.21) for a positiveM . Let us assume that v is discontinuous,
the proof in the other case is similar. Since v has finite discontinuities, we can increase M
further if necessary so that all the point of discontinuities of v ly in (−M,M). By doing so,
w := u(.+ b) + a− v is then continuous on (−∞,−M ] ∪ [M,+∞) for all positive a, b. Using
Remark 4.2.2, there exists b such that u and v satisfy (4.22)-(4.23). As in the proof of Lemma
4.2.1 we can define

a∗ = inf{a > 0 | u(x+ b) + a > v(x) ∀x ∈ R}.

If a∗ > 0, since w > a∗ on (−M − 1,M + 1) and w is continuous on (−∞,−M ] ∪ [M,+∞),
w achieves a global minimum at some point x0 ∈ R \ [−M − 1,M + 1]. Since Lemma 4.1.1
holds for discontinuous functions with a finite number of discontinuities, arguing as in the
continuous case we end up with u(. + b) ≥ v. If u is discontinuous and v continuous, we
choose M such that all the points of discontinuity of u ly in (−M,M). We argue as above,
with the function w̃ := u− v(.− b)− a instead of w.

Theorem 4.2.1 and Lemma 4.2.1 will be used extensively in other proofs.

4.3 Uniqueness and monotonicity of solutions of the integrodiffe-
rential equation on R

In this section we present the proof of Theorems 4.1.2 and 4.1.3. We show that positive
solutions of the following problem are unique up to translation and are always monotone.

Lu+ f(u) = 0 on R (4.40)
u(x)→ 0 as x→ −∞ (4.41)
u(x)→ 1 as x→ +∞, (4.42)
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where f ∈ C1 satisfies the assumptions of Theorem 4.1.2. For a sake of simplicity, in
the sequel we will only consider continuous solutions and translation-invariant operators L
satisfying Lemma 4.1.1 and (H2). Using the comparison principle and the translation inva-
riance, without loss of generality, we may also assume that the solutions satisfy

0 < u < 1. (4.43)

We break down this section in three subsections. In the first two subsections, we show that
the solution is unique up to translation and monotone, which proves Theorem 4.1.2. The
last subsection deals with nonexistence of the solution of (4.40)-(4.43), and as a corollary, we
obtain the uniqueness of the speed c of a travelling wave, which proves Theorem 4.1.3.

4.3.1 Uniqueness up to translation :

Let u and v be two solutions of (4.40)-(4.43).
First we define the following real number :

τ∗ = inf{τ ≥ 0| uτ (x) ≥ v(x) ∀x ∈ R}. (4.44)

Since u and v are solutions of (4.40)-(4.43), they satisfy the assumptions of Theorem 4.2.1 and
therefore τ ∗ is well defined and has an upper bound. Since v is positive and u satisfies (4.41),
there exists τ0 > 0 such that u(−τ) < v(0) ∀τ ≥ τ0. Therefore τ ∗ is bounded from above. By
continuity, we have at τ ∗, uτ∗ ≥ v. We claim the following

Claim 4.3.1. uτ∗(x) = v(x), for all x ∈ R.

Proof :
We argue by contradiction and assume that w := uτ∗ − v ≥ 6≡ 0. We will show that for ε

small enough, we have
uτ∗−ε(x) ≥ v(x) for all x ∈ R, (4.45)

which will contradict the definition of τ ∗.
Let us start the construction of our desired ε. We first show that w > 0. Assume that there
exists x0 in R such that w achieves a nonnegative minimum at this point. Then we have
w(x) ≥ w(x0) = 0 and

0 ≤ Lw(x0) = f(v(x0))− f(u(x0 + τ∗)) = f(v(x0))− f(v(x0)) = 0. (4.46)

Using Lemma 4.1.1, we obtain w ≡ 0, which contradicts uτ∗ ≥ 6≡ v. Therefore, we must have
w > 0.

Choose M > 0 and δ < ε
2 as in Section 4.2 such that u and v satisfy (4.20) and (4.21). By

continuity and since uτ∗ > v, we can then find ε1 > 0 such that

∀ε ∈ [0, ε1) u(x+ (τ ∗ − ε)) > v(x) for all x ∈ [−M − 1,M + 1]. (4.47)

We claim the following

Claim 4.3.2. There exists ε ∈ (0, ε1] such that u and v satisfy

u(x+ (τ ∗ − ε)) +
δ

2
> v(x) for all x ∈ R. (4.48)
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Proof :
We argue by contradiction. If (4.48) fails, then for all ε ∈ (0, ε1) there exists x(ε) ∈ R such

that

u(x(ε) + (τ ∗ − ε)) +
δ

2
≤ v(x(ε)). (4.49)

Now take a sequence (εn)n∈N which tends to zero. Let (xn)n∈N be the sequence defined
by (4.49). Thus u satisfies for each positive integer n

u(xn + (τ ∗ − εn)) +
δ

2
≤ v(xn). (4.50)

Since u and v satisfy (4.20) and (4.21), (xn)n∈N stays in the compact [-M,M]. Therefore we
can extract a subsequence of (xn)n∈N which converges to some x̄ ∈ R. Letting now n go to
+∞ in (4.50) we end up with

u(x̄+ τ ∗) +
δ

2
≤ v(x̄), (4.51)

which contradicts uτ∗ ≥ v.
�

Fix now ε ∈ (0, ε1), such that (4.48) holds. Observe that b := τ ∗ − ε satisfies assumptions
(4.22) and (4.23) of Lemma 4.2.1. Therefore by Lemma 4.2.1 we end up with the desired
contradiction

u(x+ (τ ∗ − ε)) ≥ v(x) for all x ∈ R.

This ends the proof of Claim 4.3.1 and at the same time proves the uniqueness up to
translation.

�

4.3.2 Monotonicity of the solution

Now, we show the second part of Theorem 4.1.2 on the monotone behavior of the solution
of (4.40)-(4.42). More precisely we show

Theorem 4.3.1. Let f be as in Theorem 4.1.2, then the solution u of (4.40)-(4.42) is monotone
increasing.

We break down our proof into three steps :
– first step : we prove that for any solution u of (4.40)-(4.42) there exists a positive τ such

that
u(x+ τ) ≥ u(x) ∀x ∈ R.

– second step : we show that for any τ̃ ≥ τ , u satisfies

u(x+ τ̃) ≥ u(x) ∀x ∈ R.

– third step : we prove that

inf{τ > 0|∀τ̃ > τ, u(x+ τ̃) ≥ u(x) ∀x ∈ R.} ≤ 0.
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We easily see that the last step provides the conclusion of Theorem 4.3.1.
Proof of Theorem 4.3.1 :

First step :
The first step is easily obtained from Theorem 4.2.1 by observing that u is a sub and a

supersolution of (4.40)-(4.42). Therefore we have uτ ≥ u for one positive τ .
Second step :

Choose 0 < δ ≤ ε
2 and M such that

f ′(p) ≤ 0 for p < δ and 1− p < δ (4.52)

and so that u satisfies

1− u(x) <
δ

2
∀x > M, (4.53)

and u(x) <
δ

2
∀x < −M. (4.54)

We achieve the second step with the following proposition.

Proposition 4.3.1.
Let u be a positive solution of (4.40)-(4.43) satisfying (4.53) and (4.54). If there exists τ > 0 such
that

u(x+ τ) ≥ u(x) ∀x ∈ R, (4.55)

then for all τ̃ ≥ τ we have, u(x+ τ̃) ≥ u(x) ∀x ∈ R.

From the previous step we know that such a τ exists.
The proof of Proposition 4.3.1 is based on the following two technical lemmas which will be
proved later on.

Lemma 4.3.1.
Let u be a positive solution of (4.40)-(4.43) and τ > 0 such that u(x+ τ) ≥ u(x) ∀x ∈ R. Then, we
have u(x+ τ) > u(x) ∀x ∈ R.

Lemma 4.3.2.
Let u be a positive solution of (4.40)-(4.43) satisfying (4.53) and (4.54) and τ > 0 such that
u(x+ τ) > u(x) ∀x ∈ R.
Then, there exists ε0(τ) > 0 such that for all τ̃ ∈ [τ, τ + ε0], we have

u(x+ τ̃) > u(x) ∀x ∈ R. (4.56)

Proof of Proposition 4.3.1
We know from the first step that we can find a positive τ such that,

u(x+ τ) ≥ u(x) ∀x ∈ R.

Therefore by Lemmas 4.3.1 and 4.3.2 we can construct an interval [τ, τ + ε], such that for all
τ̃ ∈ [τ, τ + ε] we have

u(x+ τ̃) ≥ u(x) ∀x ∈ R.
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Let us define the quantity

γ̄ = sup{γ|∀τ̂ ∈ [τ, γ], u(x+ τ̂) ≥ u(x) ∀x ∈ R}. (4.57)

We claim that γ̄ = +∞. If not, γ̄ < +∞ and by continuity we have

u(x+ γ̄) ≥ u(x) ∀x ∈ R. (4.58)

Recall that from the definition of γ̄ we have

∀τ̂ ∈ [τ, γ̄], u(x+ τ̂) ≥ u(x) ∀x ∈ R. (4.59)

Therefore to get a contradiction it is sufficient to construct ε0 such that for all ε ∈ [0, ε0] we
have

u(x+ (γ̄ + ε)) ≥ u(x) ∀x ∈ R. (4.60)

Since γ̄ > 0, we can apply Lemma 4.3.1 to get

u(x+ γ̄) > u(x) ∀x ∈ R. (4.61)

We can now apply Lemma 4.3.2 to find the desired ε > 0. Therefore, from the definition of γ̄
we get

∀τ̂ ∈ [τ,+∞], u(x+ τ̂) ≥ u(x) ∀x ∈ R,
which proves Proposition 4.3.1.

�
We now turn our attention to the proofs of the two technical lemmas. We start with the

proof of Lemma 4.3.1.
Proof of Lemma 4.3.1

To prove that
u(x+ τ) > u(x) ∀x ∈ R, (4.62)

we argue by contradiction. Assume there exists a point x0 such that

w(x) = u(x+ τ)− u(x) ≥ w(x0) = 0 ∀ x ∈ R.

At this point, w satisfies :

Lw(x0) = f(u(x0))− f(u(x0 + τ)) = f(u(x0))− f(u(x0)) = 0.

By Lemma 4.1.1 we get w ≡ Cte. Since w(x0) = 0, we have w ≡ 0. Therefore we have
u(x+ τ) = u(x) for all x in R, which says that u is τ periodic.

Now, since τ > 0, we have for any positive integer N,

u(0) = u(Nτ). (4.63)

Letting N go to infinity in (4.63), we end up with

1 = u(0) < 1,

which is a contradiction. Therefore (4.62) holds for every x in R.
�
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We now turn our attention to the proof of Lemma 4.3.2.
Proof of Lemma 4.3.2

Let u be a positive solution of (4.40)-(4.42), which satisfies

u(x+ τ) > u(x) ∀x ∈ R, (4.64)

for a given τ > 0. Observe that since 0 < u < 1 satisfies (4.20) and (4.21) we have for all
ε > 0,

u(x+ τ + ε) +
δ

2
> u(x) ∀x ∈ R \ [−M,M ]. (4.65)

Since u is continuous and satisfies (4.64), we can find ε0, such that for all ε ∈ [0, ε0], we have

u(x+ τ + ε) > u(x) for x ∈ [−M − 1,M + 1]. (4.66)

Therefore for all ε ∈ [0, ε0], we have

u(x+ τ + ε) +
δ

2
> u(x) ∀x ∈ R. (4.67)

Observe that for all ε ∈ [0, ε0], b := τ + ε satisfies assumptions (4.22) and (4.23) of Lemma
4.2.1. Therefore we can apply Lemma 4.2.1 for each ε ∈ [0, ε0] and get

u(x+ τ + ε) ≥ u(x) ∀x ∈ R. (4.68)

Thus, we end up with
u(x+ τ̃) ≥ u(x) ∀x ∈ R, (4.69)

for all τ̃ ∈ [τ, τ + ε0]. This ends the proof of Lemma 4.3.2.
�

Third step :
By the first step and Proposition 4.3.1, we can define the quantity

τ∗ = inf{τ > 0| ∀τ̃ > τ, u(x+ τ̃) ≥ u(x) ∀x ∈ R}. (4.70)

We end the proof of Theorem 4.3.1, by proving the following claim

Claim 4.3.3. τ ∗ ≤ 0.

Proof :
We follow the arguments used in the previous subsection on the uniqueness up to trans-

lation. We argue by contradiction and assume that τ ∗ > 0. We will show that for ε small
enough, we still have,

u(x+ (τ ∗ − ε)) ≥ u(x) for all x ∈ R. (4.71)

Using the previous step, we will have for all τ̃ ≥ τ ∗ − ε

u(x+ τ̃)) ≥ u(x) for all x ∈ R, (4.72)

which will contradict the definition of τ ∗.
The construction of ε is obtained as follows. By the definition of τ ∗ and by continuity, we
have

u(x+ τ ∗) ≥ u(x) for all x ∈ R. (4.73)
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Since τ ∗ > 0, by Lemma 4.3.1, we have

u(x+ τ ∗) > u(x) for all x ∈ R. (4.74)

Therefore, on the compact [-M-1,M+1], we can find ε1 > 0 such that

∀ε ∈ [0, ε1) u(x+ (τ ∗ − ε)) > u(x) for all x ∈ [−M − 1,M + 1]. (4.75)

The arguments used in the proof of Claim 4.3.2 apply to u, therefore there exists ε ∈ (0, ε1]
such that u satisfies

u(x+ (τ ∗ − ε)) +
δ

2
> u(x) for all x ∈ R. (4.76)

Fix now ε ∈ (0, ε1), such that (4.76) holds. Again, observing that b := τ ∗ − ε satisfies
assumptions (4.22) and (4.23) of Lemma 4.2.1 with u as sub and supersolution, we conclude
that

u(x+ (τ ∗ − ε)) ≥ u(x) for all x ∈ R. (4.77)

This ends the proof of Claim 4.3.3 and at the same time proves Theorem 4.3.1.
�

4.3.3 Nonexistence and applications

In this subsection, we obtain nonexistence results. More precisely, we have the following
nonexistence result.

Theorem 4.3.2. Let f be as in Theorem 4.1.2. If there exists a continuous sub or supersolution u of
Problem (4.40)-(4.42), such that u is not a solution of (4.40)-(4.42) then there exists no solution of
Problem (4.40)-(4.42).

Theorem 4.3.2 come as a consequence of the uniqueness up to translation of the solu-
tion. The uniqueness of the speed of a travelling front (Theorem 4.1.3) is then obtained as a
corollary of Theorem 4.3.2 and the monotonicity of the solution. Indeed, let us assume that
Theorem 4.3.2 holds and assume by contradiction that there exist (u, c) and (v, c′) two conti-
nuous solutions of (4.40)-(4.42) with different speeds (c 6= c′).
Recall that

Lu = αu′′ + β

∫

R
J(x− y)

(
u(y)− u(x)

)
dy − cu′ − du.

We note Lc and Lc′ the operator L with parameter respectively c and c′. By the previous
subsection we have u′ > 0 and v′ > 0. Note that u satisfies the set of equations

Lc′u+ f(u) = (c− c′)u′ on R (4.78)
u(x)→ 0 as x→ −∞ (4.79)
u(x)→ 1 as x→ +∞. (4.80)

Since u′ > 0, u is not a solution of (4.40)-(4.42) with speed c′ and is a either a sub or a
supersolution of this problem. Theorem 4.3.2 then provides a contradiction. Thus we must
have c = c′.

Let us turn our attention to the proof of Theorem 4.3.2.
Proof of Theorem 4.3.2
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Without loss of generality we can assume that u is a supersolution of (4.40)-(4.42). We
argue with a contradiction argument. Let us assume that there exists a continuous solution
v to (4.40)-(4.42). Since u and v are respectively a super and a subsolution of (4.40)-(4.42), the
argument developed in the proof of the uniqueness up to translation (i.e. Subsection 4.3.1)
holds. We then have uτ = v for some real τ , which is a contradiction.

�
Remark :

When c′ = 0 and v has finitely many discontinuities, the proof of the uniqueness of
the speed still holds. Indeed, assume by contradiction that (u, c) is another solution with
c 6= 0. Following the previous argumentat, u is continuous and is either a supersolution or
a subsolution of (4.40)-(4.42) with speed c′ = 0. We can assume that u is a supersolution.
The proof in the other case is similar. Using the observation in Section 4.2 on the first part of
Theorem 4.2.1, there exists τ > 0 such that uτ > v. Define as in Subsection 4.3.1

τ∗ = inf{τ ≥ 0| uτ (x) ≥ v(x) ∀x ∈ R}.

Since the Maximum Principle holds for uτ and v, working as in Subsection 4.3.1 yields a
contradiction. Thus we must have c = 0.

4.4 Monotonicity of solutions of the integrodifferential equation :
the monostable case

In this section, we present a proof of Theorem 4.1.4. Recall that we are interested in the
monotonicity of solutions of the following problem.

Lu = −f(u) on R (4.81)
u(x)→ 0 as x→ −∞ (4.82)
u(x)→ 1 as x→ +∞, (4.83)

where f ∈ C1(R) satisfies f(0) = f(1) = 0 and f ′(s) ≤ 0 in 1 − ε < s for some ε > 0. We
start as in Subsection 4.3.2 by breaking down our proof in three steps.

– first step : we prove that for any solution u of (4.81)-(4.83) there exists a positive τ such
that

u(x) ≥ u(x− τ) ∀x ∈ R.

– second step : we show that for any τ̃ ≥ τ , u satisfies

u(x) ≥ u(x− τ̃) ∀x ∈ R.

– third step : we prove that

inf{τ > 0|∀τ̃ > τ, u(x) ≥ u(x− τ̃) ∀x ∈ R} ≤ 0.

We easily see that the last step provides the conclusion of the theorem. The next three
subsections are devoted to each step of the proof.
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Proof of the first step

We show that most of the technical lemmas developed in the previous section can be
adapted to this situation. First we show the following

Lemma 4.4.1.
Let u be a positive solution of (4.81)-(4.83), such that u is increasing in a neighborhood (−∞,−M)
of −∞. Then there exists a positive τ such that

u(x) ≥ u(x− τ) ∀x ∈ R.

Remark 4.4.1. Since f does not satisfy f ′(s) ≤ 0 when s < ε for some ε > 0, Theorem 4.2.1 does
not readily apply. However, in the case of monotonicity, an analogue of Lemma 4.2.1 can be obtained
with minor change to the proof.

Proof of Lemma 4.4.1
Let u be a positive solution of (4.81)-(4.83).

We start with the definition of quantities that we will use all along the proof.
Let δ positive be such that

f ′(p) ≤ 0 ∀p such that 1− p < δ. (4.84)

Choose M > 0 such that :

| u(x)− 1 |< δ

2
∀x > M, (4.85)

u(x) <
δ

2
∀x < −M, (4.86)

u(x) > u(x̃) ∀x̃ < x ≤ −M. (4.87)

Again the proof of Lemma 4.4.1 is mainly based on the following technical lemma which
will be proved later on.

Lemma 4.4.2.
Let u be a positive solution of (4.81)-(4.83) satisfying (4.85)-(4.87) . Assume there exist positive
constants a and b such that u satisfies :

u(x) > u(x− b) ∀x ∈ (−∞,M + 1] (4.88)
u(x) + a > u(x− b) ∀x ∈ R. (4.89)

Then we have u(x) ≥ u(x− b) ∀x ∈ R.

Proof of Lemma 4.4.1
Assume for the moment that Lemma 4.4.2 holds. Then to prove Lemma 4.4.1 we just have

to find appropriate constants a and b which satisfy (4.88) and (4.89).
Since we choseM such that u is increasing on (−∞,−M ], then for every positive b, u satisfies

u(x) > u(x− b) ∀x ∈ (−∞,−M − 1].
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Now, since u satisfies (4.82) and (4.83), there exists a constant D such that on the compact set
[−M − 1,M + 1] we have for every b ≥ D,

u(x) > u(x− b) ∀x ∈ [−M − 1,M + 1].

Therefore, for b greater than D, u satisfies

u(x) > u(x− b) ∀x ∈ (−∞,M + 1].

Now take a = 1 and observe that u(x) + a > u(x− b) ∀x ∈ R. This ends the construction of
the constants a and b.

�
Now we turn our attention to Lemma 4.4.2.

Proof of Lemma 4.4.2
From our assumption on a > 0 and b we have

u(x) + a > u(x− b) ∀x ∈ R. (4.90)

Let us define
a∗ = inf{a > 0 | u(x) + a > u(x− b) ∀x ∈ R}. (4.91)

We claim that

Claim 4.4.1. a∗ = 0.

Observe that by Claim 4.4.1 we end up with u(x) ≥ u(x− b) ∀x ∈ Rwhich is the desired
conclusion.
Proof of Claim 4.4.1

As in Section 4.2 we argue by contradiction.
If not, since limx→±∞ u(x)+a∗−u(x− b) = a∗ > 0, there exists x0 ∈ R such that u(x0)+a∗ =
u(x0 − b).
Let w(x) := u(x) + a∗ − u(x− b), then we have

0 = w(x0) = min
R
w(x). (4.92)

Observe that w also satisfies the following equation :

Lw = f(u(x− b))− f(u(x)) (4.93)
w(+∞) = a∗ (4.94)
w(−∞) = a∗. (4.95)

By the construction of a and b we have

w(x) = u(x) + a∗ − u(x− b) > 0 ∀x ∈ (−∞,M + 1].

Thus, x0 > M + 1.
By the maximum principle property, at its minimum x0, w satisfies :

f(u(x0) + a∗)− f(u(x0)) = Lw(x0) > 0. (4.96)
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Thus

Q = f(u(x0) + a∗)− f(u(x0)) > 0 (4.97)
Q = f ′(d)a∗ > 0, (4.98)

for some d ∈]u(x0), u(x0) + a∗[.
Since x0 > M + 1, (4.85) implies that 1− d < δ.
Thus, Q would verify :

Q = f ′(d)a∗ ≤ 0,

which contradicts (4.98). Hence a∗ = 0, which ends the proof of Claim 4.4.1.
�

Now, we turn our attention to the second step in the proof of Theorem 4.1.4.

Proof of the second step

As in Subsection 4.3.2 we achieve the second step with the following proposition.

Proposition 4.4.1.
Let u be a positive solution of (4.81)-(4.83) satisfying (4.85)-(4.87). If there exists τ > 0 such that

u(x) ≥ u(x− τ) ∀x ∈ R. (4.99)

Then, for all τ̃ we have, u(x) ≥ u(x− τ̃) ∀x ∈ R.

As in Subsection 4.3.2, the proof of the proposition is based on the two following technical
lemmas.

Lemma 4.4.3.
Let u be a positive solution of (4.81)-(4.83) and τ > 0 be such that u(x) ≥ u(x− τ) ∀x ∈ R.
Then, we have u(x) > u(x− τ) ∀x ∈ R.

Lemma 4.4.4.
Let u be a positive solution of (4.81)-(4.83) satisfying (4.85)-(4.87) and τ > 0 be such that
u(x) > u(x− τ) ∀x ∈ R.
Then, there exists ε0(τ) > 0 such that for all τ̃ ∈ [τ, τ + ε0], we have

u(x) > u(x− τ̃) ∀x ∈ R. (4.100)

We omit the details of the proofs since essentially all the arguments developed in the
previous section work. We proceed to the last step.
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Proof of the third step

By Lemma 4.4.1 and Proposition 4.4.1, we can define the quantity

τ∗ = inf{τ > 0| ∀τ̃ > τ, u(x) ≥ u(x− τ̃) ∀x ∈ R}. (4.101)

We end the proof of Theorem 4.1.4 with the following lemma

Lemma 4.4.5.
Let u be a positive solution of (4.81)-(4.83) satisfying (4.85)-(4.87). Then, we have τ ∗ ≤ 0.

Proof of Lemma 4.4.5
Again, we argue by contradiction, suppose that τ ∗ > 0. We will show that for ε small

enough, we still have
u(x) ≥ u(x− (τ ∗ − ε)) for all x ∈ R. (4.102)

Then by the previous step, we will have for all τ̃ ≥ τ ∗ − ε,

u(x) ≥ u(x− τ̃) for all x ∈ R, (4.103)

which contradicts the definition of τ ∗.
Now, we start the construction. By definition of τ ∗ and by continuity, we have

u(x) ≥ u(x− τ ∗) for all x ∈ R. (4.104)

Therefore, by Lemma 4.4.3, we have

u(x) > u(x− τ ∗) for all x ∈ R. (4.105)

Thus, on the compact [-M,M], we can find ε1 > 0 such that,

∀ε ∈ [0, ε1) u(x) > u(x− (τ ∗ − ε)) ∀x ∈ [−M − 1,M + 1]. (4.106)

Since u is increasing on (−∞,−M ], we indeed have

∀ε ∈ [0, ε1) u(x) > u(x− (τ ∗ − ε)) on (−∞,M + 1]. (4.107)

Now fix ε ∈ (0, ε1). We can easily find a positive constant a such that

u(x) + a > u(x− (τ ∗ − ε)) for all x ∈ R. (4.108)

We can then apply Lemma 4.4.2 to obtain the desired result.
�

4.5 The multidimensional case

In this section, we study the extension of the uniqueness results to multidimensional
problems. Let us consider the following integrodifferential problem :
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ε∆u+ θ

∫

Σ
J(x− t, y, s)(u(t, s)− u(x, y))dtds+ β(y)ux + f(u) = 0 on Σ (4.109)

∂u

∂ν
= 0 on ∂Σ (4.110)

u(x, y)→ 0 uniformly in y as x→ −∞ (4.111)
u(x, y)→ 1 uniformly in y as x→ +∞. (4.112)

As we briefly mentioned in the introduction, for general operatorLu := θ
∫

Σ J(x−t, y, s)(u(t, s)−
u(x, y))dsdt + β(y)ux the Strong Maximum Principle as state in Theorem 4.1.5 no longer
holds. However, for operator of the formLu = θ

∫
Σ J(x−t, y−s)(u(t, s)−u(x, y))dsdt+β(y)ux

with a kernel J(x, y) such that the support of J contains a set of the form ([−b,−a]∪[a, b])×ω
for some 0 ≤ a < b, where ω is an open subset of Ω containing 0, we can show the following,

Theorem 4.5.1. Multidimensional Maximum Principle
Let u be a continuous function such that L[u](x, y) ≥ 0 (resp. L[u](x, y) ≤ 0) on Σ. Assume that
u achieves at a global maximum (resp. a global minimum) at some point (x0, y0) ∈ Σ, then there
exists y ∈ Ω̄ such that u(x, y) = u(x0, y0) on R× {y}.

We obtain as a consequence of this maximum principle the following characterization of
such operators,

Lemma 4.5.1.
Let u be a smooth function on Σ̄. If u achieves a global minimum (resp.a global maximum) at some
point (x0, y0) ∈ Σ̄ then the following holds :

– Either L[u](x0, y0) > 0 (resp. L[u](x0, y0) < 0)
– Or L[u](x0, y0) = 0 and u(x, y) = u(x0, y0) on R× {y} for some y ∈ Ω̄ .

Remark 4.5.1. The multidimensional Maximum Principle also holds for operators of the form

L := ε∆u+ θ

∫

R×Ω
J(x− t, y − s)(u(t, s)− u(x, y))dsdt+ β(y)ux (4.113)

provided that ∂u
∂ν = 0 on ∂Σ.

Lemma 4.5.1 can be proved just as Theorem 4.5.1.
Proof of Theorem 4.5.1 :

Recall that

Lu = ε∆u+ θ

∫

R×Ω
J(x− t, y − s)(u(t, s)− u(x, y))dsdt+ β(y)ux.

First assume that ε = 0. Observe that since we only consider the derivatives of u in the
direction x, and that u is continuous, L[u](x, y) is well defined on Σ̄. Assume that L[u](x, y) ≥
0 and achieves a global maximum at (x0, y0) ∈ Σ̄. Then at this point we have

∫

R×Ω
J(x0 − t, y0 − s)(u(t, s)− u(x0, y0))dtds ≤ 0

and
ux(x0, y0) = 0.
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Which implies that
∫

R×Ω
J(x0 − t, y0 − s)(u(t, s)− u(x0, y0))dtds = 0.

Therefore u(t, s) = u(x0, y0) = M for all (t, s) ∈ Σ such that (x0 − t, y0 − s) ∈ supp(J). In
particular since ([−b,−a]∪[a, b])×{0} ⊂ J we have u(t, y0) = M for all t ∈ x0+[−b,−a]∪[a, b].
Next we show that u(x, y0) = M for x ∈ [x0,+∞). Let z ∈ x0 +[a, b], observe that at the point
(z, y0, u achieves a positive maximum since u(z, y0) = u(x0, y0). We may thus argue as above
and conclude that

u(x, y0) = M for all x ∈ x0 + [−b,−a] ∪ [−(b− a), b− a] ∪ [a, b] ∪ [a+ b, 2b]. (4.114)

Thus we have u(x, y0) = u(x0, y0) for all x ∈ x0 + [0, b− a]. Now repeat all the computations
with z = x0 +b−a instead of x0 to obtain that u(x, y0) = u(x0, y0) for all x ∈ x0 +[0, 2(b−a)].
Therefore by repeating infinitely many times this process we obtain u(x, y0) = M for x ∈
[x0,+∞). By using z = x0 − (b− a) in the previous computation, we obtain u(x, y0) = M for
x ∈ (−∞, x0]. Therefore u(x, y0) = M on R× {y0}.

If ε > 0 we argue as follows. As in the above proof assume that L[u](x, y) ≥ 0 and
achieves a global maximum at (x0, y0) ∈ Σ̄. If (x0, y0) ∈ R × Ω, then the previous argument
holds and u is constant on R× {y0}.
If (x0, y0) ∈ R× ∂Ω, then we have the following alternative

– Either
∫
R×Ω J(x0−t, y0−s)(u(t, s)−u(x0, y0))dtds = 0 and then the previous argument

holds.
– Or

∫
R×Ω J(x0 − t, y0 − s)(u(t, s)− u(x0, y0))dtds < 0.

In that case since
∫
R×Ω J(x− t, y0− s)(u(t, s)−u(x, y))dtds is a continuous function on

Σ̄, in a small neighborhood V (x0, y0) = Br(x0, y0)CAP :Σ̄, we have

ε∆u+ β(y)ux ≥ −
∫

R×Ω
J(x− t, y − s)(u(t, s)− u(x, y))dtds ≥ 0.

Applying the Hopf Lemma to Mu = ε∆u + β(y)ux, we obtain a contradiction since
∂u
∂ν = 0. Therefore u = u(x0, y0) on R× {y0}.

�

Remark 4.5.2. In the case ε = 0, the assumption on the normal derivative is not required. However,
in that case there is no Hopf Lemma available.

Remark 4.5.3. The multidimentional Maximum Principle holds for Kernel of the form J(x, y, s) =
k(x)k̃(y, s) with

– k ∈ L1(R) is a positive continuous kernel such that [−b,−a] ∪ [a, b] ⊂ supp(k) for some
0 ≤ a < b .

– k̃(y, s) is a positive continuous kernel, which satisfy the following properties :

∀ y ∈ Ω̄ ∃ sy ∈ Ω̄ such that k̃(y, sy) 6= 0

Remark 4.5.4. Whether generalizations of our Maximum Principle to operators such as L :=∫
R×Ω J(x − t, y − s)(u(t, s) − u(x, y))dtds + d(y)uy hold, is still open. An equivalent of the Hopf

Lemma for that case must be established in order to treat the cases of extrema achieved on the boundary
of the cylinder.
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Using the multidimensional Maximum Principle, Lemma 4.5.1 and the ideas developed
in Section 4.2 we have

Theorem 4.5.2. Multidimensional Nonlinear Comparison Principle
Let f satisfy the assumptions of Theorem 4.1.2. Let u and v be two smooth (C1) functions on Σ, such
that

Lu+ f(u) ≤ 0 on Σ (4.115)
Lv + f(v) ≥ 0 on Σ (4.116)
∂u

∂ν
=
∂v

∂ν
= 0 on R× ∂Ω (4.117)

lim
x→−∞

u(x, y) ≥ 0, lim
x→−∞

v(x, y) ≤ 0 uniformly in y (4.118)

lim
x→+∞

u(x, y) ≥ 1, lim
x→+∞

v(x, y) ≤ 1 uniformly in y . (4.119)

Then there exists a positive real τ such that uτ ≥ v. Moreover, either uτ > v on Σ̄ or uτ ≡ v on R×
{y} for some y ∈ Ω̄.

As in Section 4.2, Theorem 4.5.2 is proved using the following construction.
Let 0 < δ ≤ ε

2 such that

f ′(p) ≤ 0 for p < δ and 1− p < δ. (4.120)

Choose M > 0 so that

1− u(x, y) <
δ

2
∀(x, y) ∈ (M,+∞)× Ω̄ (4.121)

and v(x, y) <
δ

2
∀(x, y) ∈ (−∞,−M)× Ω̄. (4.122)

Lemma 4.5.2.
Let u and v be as in Theorem 4.5.2 and satisfy Conditions (4.121) and (4.122). If there exists a positive
constant b such that u and v satisfy :

u(x+ b, y) > v(x, y) ∀(x, y) ∈ [−M − 1,M + 1]× Ω̄ (4.123)

and u(x+ b, y) +
δ

2
> v(x, y) ∀(x, y) ∈ Σ̄, (4.124)

then we have u(x+ b, y) ≥ v(x, y) ∀(x, y) ∈ Σ̄.

As we have already observed in the previous analysis, the proofs of Theorems 4.1.2-4.1.3
only rely on a nonlinear comparison principle, a technical lemma such as Lemma 4.2.1 and a
good characterization of L[u](x) at a global extremum of u. The generalization of these two
theorems will therefore be straightforward using their multidimensional analog.
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