P. Y. Yu and M. Cardona, «Fundamentals of semiconductors», 1999.

I. Daruka and A. L. Barabasi, Dislocation-Free Island Formation in Heteroepitaxial Growth: A Study at Equilibrium, Physical Review Letters, vol.79, issue.19, pp.79-3708, 1997.
DOI : 10.1103/PhysRevLett.79.3708

J. Eymery, B. Daudin, D. Brun-le-cunff, N. Boudet, and S. Tatarenko, Anisotropic relaxation during the first stages of the growth of ZnTe/(001) CdTe strained layers studied by reflection high energy electron diffraction, Applied Physics Letters, vol.66, issue.25, pp.66-3456, 1995.
DOI : 10.1063/1.113386

K. Georgsson, N. Carlsson, L. Samuelson, W. Seifert, and L. R. , Wallenberg, «Transmission electron microscopy investigation of the morphology of InP Stranski- Krastanow islands grown by metalorganic chemical vapor deposition», Appl. Phys. Lett, pp.67-2981, 1995.

P. S. Kop-'ev, Z. I. Alferov, S. S. Ruvimov, A. O. Kosogov, P. Werner et al., Heydenreich, «Ordered arrays of quantum dots: formation, electronic spectra, relaxation phenomena, lasing», Solid-State Electron, pp.40-785, 1996.

R. Leon and S. Fafard, Stranski-Krastanow transformation, Physical Review B, vol.58, issue.4, pp.1726-1729, 1998.
DOI : 10.1103/PhysRevB.58.R1726

J. Marzin, J. Gérard, A. Izrael, D. Barrier, and G. Bastard, Photoluminescence of Single InAs Quantum Dots Obtained by Self-Organized Growth on GaAs, Physical Review Letters, vol.73, issue.5, pp.73-716, 1994.
DOI : 10.1103/PhysRevLett.73.716

J. W. Matthews, Accommodation of misfit across the interface between single-crystal films of various face-centred cubic metals, Philosophical Magazine, vol.2, issue.126, pp.1207-1221, 1966.
DOI : 10.1063/1.1713768

J. W. Matthews, S. Mader, and T. B. , Light, «Accomodation of misfit across the interface between crystals of semiconducting elements or compounds», J. Appl. Phys, pp.41-3800, 1970.

J. W. Matthews and A. E. Blakeslee, «Defects in epitaxial multilayers, I. Misfit dislocations» 118-125, «Defects in epitaxial multilayers, II. Dislocation pile-ups, threading dislocations, slip lines and cracks», J. Cryst. Growth J. Cryst. Growth, vol.27, issue.29, pp.273-280, 1974.

. Phys, 117-122. «Crystal Interfaces. Part II. Finite overgrowths», J. Appl. Phys, vol.34, issue.34, pp.123-127, 1963.

C. Messmer and J. C. Bilello, The surface energy of Si, GaAs, and GaP, «The surface energy of Si, GaAs, and GaP», pp.4623-4629, 1981.
DOI : 10.1063/1.329342

A. Moll, E. Kley, M. Pehlke, and . Scheffler, GaAs equilibrium crystal shape from first principles, Physical Review B, vol.54, issue.12, pp.8844-8855, 1996.
DOI : 10.1103/PhysRevB.54.8844

URL : http://arxiv.org/abs/mtrl-th/9607005

P. Müller and R. Kern, The physical origin of the two-dimensional towards three-dimensional coherent epitaxial Stranski-Krastanov transition, Applied Surface Science, vol.102, pp.6-11, 1996.
DOI : 10.1016/0169-4332(96)00009-8

R. D. Feldman, R. F. Austin, P. M. Bridenbaugh, A. M. Johnson, W. M. Simpson et al., Effects of Zn to Te ratio on the molecular???beam epitaxial growth of ZnTe on GaAs, Journal of Applied Physics, vol.64, issue.3, pp.1191-1195, 1988.
DOI : 10.1063/1.341883

D. J. Gil, J. Dunstan, H. Calatayud, J. P. Mathieu, and . Faurie, «Electronic structure of CdTe-ZnTe strained-layer superlattices under pressure» Phys, Rev. B, pp.5522-5528, 1989.

M. Gurioli, J. Martinez-pastor, M. Colocci, C. Deparis, B. Chastaingt et al., As quantum-well structures, «Thermal escape of carriers out of GaAs/AlGaAs quantum well structures», pp.6922-6927, 1992.
DOI : 10.1103/PhysRevB.46.6922

H. Hartmann, J. Cibert, F. Kany, H. Mariette, M. Charleux et al., Feuillet, «CdTe/MgTe heterostructures : Growth by atomic layer epitaxy and determination of MgTe parameters», J. Appl. Phys, pp.80-6257, 1996.

N. P. Kobayashi, T. R. Ramachandran, P. Chen, and A. , Madhukar, «In situ, atomic force microscope studies of the evolution of InAs three-dimensional islands on GaAs(001), Appl. Phys. Lett, pp.68-3299, 1996.

P. R. Kratzert, M. Rabe, and F. Henneberger, Comment on ???Dynamics of Ripening of Self-Assembled II-VI Semiconductor Quantum Dots???, Physical Review Letters, vol.83, issue.1, p.83, 1999.
DOI : 10.1103/PhysRevLett.83.239

G. Lentz, A. Ponchet, N. Magnéa, and H. Mariette, Growth control of CdTe/CdZnTe???(001) strained???layer superlattices by reflection high???energy electron diffraction oscillations, Applied Physics Letters, vol.55, issue.26, pp.1191-1195, 1988.
DOI : 10.1063/1.101938

]. R. Leon-98, S. Leon, and . Fafard, Stranski-Krastanow transformation, Physical Review B, vol.58, issue.4, pp.1726-1729, 1998.
DOI : 10.1103/PhysRevB.58.R1726

H. Mariette, J. Chevallier, and P. , Leroux-Hugon, «Local-environment effect on the nitrogen bound state in GaAs 1-x P x alloys : experiments and coherent-potential approximation theory», Phys. Rev. B, vol.21, issue.5706, 1980.

H. Rouvière and . Mariette, «Zero-dimensional excitons in CdTe/ZnTe nanostructures», Journal of Applied Physics, vol.91, pp.4936-4943, 2002.

H. Rouvière and . Mariette, «Formation of II-VI nanostructures on vicinal surfaces», Microelectronics Journal, vol.30, issue.329, 1999.

D. Martrou, «Étude par microscopie à effet tunnel de la croissance par épitaxie de CdTe», thèse de l'Université Joseph Fourier ? Grenoble I (26 janvier, pp.85-91, 2000.

A. Mycielski, A. Szadkowski, E. Lusakowska, L. Kowalczyk, J. Domagala et al., Parameters of substrates???single crystals of ZnTe and Cd1???xZnxTe (x<0.25), obtained by physical vapor transport technique (PVT), Journal of Crystal Growth, vol.197, issue.3, pp.423-426, 1999.
DOI : 10.1016/S0022-0248(98)00740-4

C. Niquet, C. Priester, H. Gourgon, and . Mariette, Inhomogeneous strain relaxation in etched quantum dots and wires: From strain distributions to piezoelectric fields and band-edge profiles, Physical Review B, vol.57, issue.23, pp.14850-14859, 1998.
DOI : 10.1103/PhysRevB.57.14850

I. Nomura, T. Morita, A. Kikuchi, and K. Kishino, Novel compound system grown on InP substrates by MBE and theoretical investigation of 550???640 nm range lasers, Journal of Crystal Growth, vol.159, issue.1-4, pp.11-15, 1996.
DOI : 10.1016/0022-0248(95)00876-4

P. Peyla, Y. Merle-d-'aubigné, A. Wasiela, R. Romestain, H. Mariette et al., Exciton binding energies and the valence-band offset in mixed type-I???type-II strained-layer superlattices, Physical Review B, vol.46, issue.3, pp.1557-1563, 1992.
DOI : 10.1103/PhysRevB.46.1557

M. Lowisch and F. Henneberger, «Self-assembled CdSe quantum dots formation by thermally activated surface reorganization», J. Cryst. Growth, vol.184185, pp.248-253, 1998.

K. Seki, O. Sato, and . Oda, Solution growth of ZnTe single crystals by the vertical Bridgman method using a hetero-seeding technique, Journal of Crystal Growth, vol.171, issue.1-2, pp.32-38, 1997.
DOI : 10.1016/S0022-0248(96)00687-2

Y. Sato, Y. Seki, O. Matsuda, and . Oda, Recent developments in II???VI substrates, Journal of Crystal Growth, vol.197, issue.3, pp.413-422, 1999.
DOI : 10.1016/S0022-0248(98)00739-8

J. Tersoff, Band Lineups at II-VI Heterojunctions: Failure of the Common-Anion Rule, Physical Review Letters, vol.56, issue.25, pp.2755-2758, 1986.
DOI : 10.1103/PhysRevLett.56.2755

]. B. Deveaud, F. Clérot, N. Roy, K. Satzke, B. Sermage et al., Enhanced radiative recombination of free excitons in GaAs quantum wells, «Enhanced radiative recombination of free excitons in GaAs quantum wells», pp.2355-2358, 1991.
DOI : 10.1103/PhysRevLett.67.2355

J. Feldmann, G. Peter, E. O. Göbel, P. Dawson, K. Moore et al., «Linewidth dependence of radiative exciton lifetimes in quantum wells», Phys. Rev. Lett, pp.59-2337, 1987.

M. Godlewski, R. Narkowicz, T. Wojtowicz, J. P. Bergman, and B. , Monemar, «Quasizero-dimensional excitons in quantum well structures of CdTe/CdMnTe», J. Cryst. Growth, vol.214, pp.215-420, 2000.

M. Gurioli, J. Martinez-pastor, M. Colocci, C. Deparis, B. Chastaingt et al., As quantum-well structures, «Thermal escape of carriers out of GaAs/AlGaAs quantum well structures», pp.6922-6927, 1992.
DOI : 10.1103/PhysRevB.46.6922

J. Gutowski, P. Bäume, and K. , Hauke, «Free and bound exciton binding energies in widegap II-VIs», 'Properties of wide bandgap II-VI semiconductors, EMIS Datareviews Series from INSPEC, pp.17-134, 1997.

G. Karczewski, S. Mackowski, M. Kutrowski, T. Wojtowicz, and J. Kossut, Photoluminescence study of CdTe/ZnTe self-assembled quantum dots, Applied Physics Letters, vol.74, issue.20, pp.74-3011, 1999.
DOI : 10.1063/1.123996

R. F. Kopf, E. F. Schubert, T. D. Harris, and R. S. Becker, Photoluminescence of GaAs quantum wells grown by molecular beam epitaxy with growth interruptions, Applied Physics Letters, vol.58, issue.6, pp.58-631, 1991.
DOI : 10.1063/1.104551

T. Kümmell, R. Weigand, G. Bacher, A. Forchel, K. Leonardi et al., Selke, «Single zero-dimensional excitons in CdSe, ZnSe nanostructures» Appl. Phys. Lett, pp.73-3105, 1998.

B. Rabe, F. Stegermann, M. Henneberger, V. Grundmann, and D. Türck, Bimberg, «Zero-dimensional excitons in (Zn,Cd)Se quantum structures», Phys. Rev. B, vol.54, pp.11074-11077, 1996.

H. Rouvière and . Mariette, «Zero-dimensional excitons in CdTe/ZnTe nanostructures», J. Appl. Phys, vol.91, pp.4936-4943, 2002.

T. Passow, K. Leonardi, H. Heinke, D. Hommel, D. Litvinov et al., Forchel, «Quantum dot formation by segregation enhanced CdSe reorganization», J. Appl. Phys, pp.92-6546, 2002.

S. Terai, K. Kuroda, T. Takita, and Y. Okuno, Masumoto, «Zero-dimensional excitonic properties of self-organized quantum dots of CdTe grown by molecular beam epitaxy», Appl. Phys. Lett, vol.3757, p.73, 1998.

[. Wei and A. , Zunger, «Calculated natural band offsets of all II-VI and III-V semiconductors : Chemical trends and the role of cation d orbitals», Appl. Phys. Lett, pp.72-2011, 1998.

S. H. Xin, P. D. Wang, A. Yin, C. Kim, M. Dobrowolska et al., Furdyna, «Formation of self-assembling CdSe quantum dots on ZnSe by molecular beam epitaxy», Appl. Phys. Lett, pp.69-3884, 1996.

R. R. Yang, H. Lowe-webb, P. C. Lee, and . Sercel, Effect of carrier emission and retrapping on luminescence time decays in InAs/GaAs quantum dots, «Effect of carrier emission and retrapping on luminescence time decays in InAs/GaAs quantum dots», pp.13314-13320, 1997.
DOI : 10.1103/PhysRevB.56.13314

H. Yu, S. Lycett, C. Roberts, and R. Murray, Time resolved study of self???assembled InAs quantum dots, Applied Physics Letters, vol.69, issue.26, pp.69-4087, 1996.
DOI : 10.1063/1.117827

@. W. Hügel, M. Wegener, Q. T. Vu, L. Banyai, H. Haug et al., Differences between quantum kinetic phonon beats and Raman beats, «Differences between quantum kinetic phonon beats and Raman beats», pp.153203-153204, 2002.
DOI : 10.1103/PhysRevB.66.153203

@. F. Tinjod, B. Gilles, S. Moehl, K. Kheng, and H. Mariette, II???VI quantum dot formation induced by surface energy change of a strained layer, Applied Physics Letters, vol.82, issue.24, pp.82-4340, 2003.
DOI : 10.1063/1.1583141

@. F. Tinjod, S. Moehl, K. Kheng, B. Gilles, and H. Mariette, «CdTe/Zn 1-x Mg x Te self-assembled quantum dots: Towards room temperature emission», à paraître au 1 er janvier, J. Appl. Phys, 2004.
DOI : 10.1063/1.1631755

@. S. Moehl, F. Tinjod, K. Kheng, and H. Mariette, «Reduction of exciton-phonon interaction due to better confinement in single quantum dots», en cours de rédaction pour Phys, Rev. B

@. K. Kheng-(-invité-), L. Besombes, L. Marsal, F. Tinjod, B. Gilles et al., Optical Properties of Excitons Confined in a Single CdTe Quantum Dot, physica status solidi (a), vol.400, issue.215, pp.459-465, 2002.
DOI : 10.1002/1521-396X(200204)190:2<459::AID-PSSA459>3.0.CO;2-0

@. F. Tinjod, K. Kheng, J. Bleuse, and H. Mariette, Thermal escape of carriers out of CdTe/ZnMgTe nanostructures, Physica E: Low-dimensional Systems and Nanostructures, vol.17, pp.17-68, 2003.
DOI : 10.1016/S1386-9477(02)00775-0

@. F. Tinjod, I. Robin, R. André, K. Kheng, and H. , Mariette (invité), «Key parameters for the formation of II-VI self-assembled quantum dots», Journal of Alloys and Compounds

M. @bullet-henri, Frank Tinjod, «Atomic layer epitaxy: a growth process suitable for the fabrication of II-VI semiconductor quantum dots»

@. M. Brun, N. Chevalier, A. Drezet, S. Huant, H. Mariette et al., Woehl, «Carrier-diffusion-limited remote optical addressing of single quantum dots»

@. F. Tinjod and H. , Mariette (invité), «Self-assembled quantum dot formation induced by surface energy change of a strained two-dimensional layer», à paraître en mars, Phys. Stat. Sol. (c), 2004.

@. F. Tinjod, S. Moehl, K. Kheng, and H. Mariette, «Influence of Mg on the temperaturedependent optical properties of CdTe quantum dots embedded in ZnMgTe», Phys. Stat. Sol. (c)

@. Robin, R. André-le-si-dang, H. Mariette, F. Tinjod, K. Kheng et al., Schikora «How to avoid non-radiative escape of excitons from quantum dots?, Phys. Stat. Sol. (c)

@. Semaine-thématique-daniel-dautreppe and H. Mariette, «Nanomonde : exploration et futur», exposé : «De la formation de boîtes quantiques semiconductrices en épitaxie par jets moléculaires», pp.22-26, 2001.

@. Gdr-relax, «Groupement de Recherche sur la Relaxation des contraintes dans les couches nanométriques épitaxiées», Tinjod et al., exposé : «Contrôle du mode de croissance pour la fabrication de boîtes quantiques semiconductrices II-VI», pp.19-21, 2002.

@. Zinc, C'est un métal de transition du groupe IIB connu depuis l'antiquité. Il est relativement abondant (120g/tonne d'écorce terrestre), blanc-bleuâtre, de symétrie hexagonale, peu malléable, pour ne pas dire cassant à température ordinaire. Il devient malléable à température élevée. On le trouve dans la nature à l'état de sulfure : la blende ZnS appelée aussi sphalérite (qui a donné son nom à la structure cubique par opposition à la structure hexagonale)? Le zinc est très largement utilisé, que ce soit pour faire du laiton (alliage zinc-cuivre) mais aussi dans certains bronzes

. Avant-de-recharger-le-creuset-en-zinc, la charge Zn doit être dégraissée (bains successifs avec ultra-sons : trichlo. chaud, trichlo. froid, acétone, méthanol ) et attaquée (bain dans un mélange bouillant acide nitrique/méthanol jusqu'à ce que la charge prenne un bel aspect brillant

G. Lentz, A. Ponchet, N. Magnéa, and H. Mariette, Growth control of CdTe/CdZnTe???(001) strained???layer superlattices by reflection high???energy electron diffraction oscillations, Applied Physics Letters, vol.55, issue.26, pp.1191-1195, 1989.
DOI : 10.1063/1.101938

R. People and J. C. Bean, /Si strained???layer heterostructures, Applied Physics Letters, vol.47, issue.3, pp.322-324, 1985.
DOI : 10.1063/1.96206

B. A. Joyce, J. H. Neave, P. J. Dobson, and P. K. Larsen, Analysis of reflection high-energy electron-diffraction data from reconstructed semiconductor surfaces, Physical Review B, vol.29, issue.2, pp.814-819, 1984.
DOI : 10.1103/PhysRevB.29.814

B. A. Joyce, P. J. Dobson, J. H. Neave, K. Woodbridge, J. Zhang et al., Bôlger, «Rheed studies of heterojunction and quantum well formation during MBE growth ? from multiple scattering to band offsets», Surface Sci, pp.168-423, 1986.

M. Lowisch and F. Henneberger, «Self-assembled CdSe quantum dots formation by thermally activated surface reorganization», J. Cryst. Growth, vol.184185, pp.248-253, 1998.

-. J. Harris, B. A. Joyce, and P. J. Dobson, L441, «RED intensity oscillations during MBE of GaAs», Surface Sci «Comments on 'RED intensity oscillations during MBE of GaAs'», Surface Sci, pp.444-446, 1981.

A. G. Références-de-l-'annexe, H. Binnig, C. Rohrer, and E. Gerber, Weibel, «Tunneling through a controllable vacuum gap», Appl. Phys. Lett, vol.40, pp.178-180, 1982.

G. Binnig, C. F. Quate, and C. Gerber, Atomic Force Microscope, «Atomic Force Microscope», pp.930-933, 1986.
DOI : 10.1103/PhysRevLett.56.930

R. M. Feenstra, J. A. Stroscio, J. Tersoff, and A. P. , Fein, «Atom-selective imaging of the GaAs (110) surface», Phys. Rev. Lett, pp.58-1192, 1987.

H. C. Manoharan, C. P. Lutz, and D. M. , Quantum mirages formed by coherent projection of electronic structure, Nature, vol.22, issue.6769, pp.512-515, 2000.
DOI : 10.1038/35000508

D. Martrou, J. Eymery, and N. , Equilibrium Shape of Steps and Islands on Polar II-VI Semiconductors Surfaces, Physical Review Letters, vol.83, issue.12, pp.2366-2369, 1999.
DOI : 10.1103/PhysRevLett.83.2366

R. Young, J. Ward, and F. , Scire, «Observation of metal-vacuum-metal tunneling, field emission, and the transition region», Phys. Rev. Lett, pp.27-922, 1971.

*. , +. Haute-tension, and =. Danger, en plus de celui d'un faisceau laser de quelques Watts. ? Laser 'Titane-Saphir' en mode impulsionnel doublé

. Au-contraire-du-laser-argon, le 'titane-saphir' est un laser à milieu amplificateur solide : un cristal de saphir (d'alumine donc, Al 2 O 3 ?tout comme le rubis d'ailleurs?), dopé par des ions de titane : Ti 3+ , d'où son abréviation correcte de saphir

. En, le laser délivre une impulsion toutes les 13 ns ; ce taux de répétition de 76 MHz correspond à un aller-retour dans la cavité laser longue d'environ deux mètres (3.10 8 /2² = 75.10 6 ) Un cristal doubleur KDP** permet ensuite de récupérer des photons d'énergie suffisante pour exciter nos matériaux dans leurs barrières : à environ 3, eV donc (N.B. pour les nitrures, il faut même tripler l'énergie du saphir:Ti)

*. *-phosphate-dihydrogéné-de-potassium, cristal non centro-symétrique (-42m) au sein duquel deux photons d'énergie E se couplent pour n'en donner plus qu'un d'énergie 2E ! N.B. Cet effet non linéaire de l'optique ondulatoire qu'est la génération de seconde harmonique