J. S. Lewis, W. J. Lackey, and S. Vaidyaraman, Model for prediction of matrix microstructure for carbon/carbon composites prepared by forced flow-thermal gradient CVI, Carbon, vol.35, issue.1, p.35, 1997.
DOI : 10.1016/S0008-6223(96)00121-2

P. Dupel, R. Pailler, and F. Langlais, Pulse chemical vapour deposition and infiltration of pyrocarbon in model pores with rectangular cross-sections, Journal of Materials Science, vol.28, issue.5, p.1341, 1994.
DOI : 10.1007/BF00975086

H. J. Jeong, H. D. Park, J. D. Lee, and J. Park, Densification of carbon/carbon composites by pulse chemical vapor infiltration, Carbon, vol.34, issue.3, pp.34-417, 1996.
DOI : 10.1016/0008-6223(95)00208-1

P. Delhaès, CVD and CVI processes of carbon materials, Chemical vapor deposition : Proc. of 14 th Inter. Conf. and EuroCVD-11, pp.97-122, 1997.

S. Belorgey-beaugrand, Etude du procédé de densification rapide par caléfaction pour l'élaboration de composites carbone-carbone, Thèse de Doctorat, 2000.

C. R. Kleijn and C. Werner, Modeling of Chemical Vapor Deposition of Tungsten Films, 1993.
DOI : 10.1007/978-3-0348-7741-1

E. A. Mason and A. P. Malinauskas, Gas transport in porous media : the Dusty-Gas model, Chemical engineering monographs, BIBLIOGRAPHIE II, vol.18, 1983.

S. Whitaker, Chemical reactor analysis : concept and design, Gordon Breach, 1986.

A. Ern, V. Giovangigli, and M. D. Smooke, Numerical Study of a Three-Dimensional Chemical Vapor Deposition Reactor with Detailed Chemistry, Journal of Computational Physics, vol.126, issue.1, p.21, 1996.
DOI : 10.1006/jcph.1996.0117

E. W. Thiele, Relation between Catalytic Activity and Size of Particle, Industrial & Engineering Chemistry, vol.31, issue.7, p.916, 1939.
DOI : 10.1021/ie50355a027

E. E. Petersen, Reaction of porous solids, AIChE Journal, vol.3, issue.4, p.443, 1957.
DOI : 10.1002/aic.690030405

S. Middleman, The interaction of chemical kinetics and diffusion in the dynamics of chemical vapor infiltration, Journal of Materials Research, vol.43, issue.06, p.1515, 1989.
DOI : 10.1063/1.338180

N. H. Tai and T. W. Chou, Theoretical Analysis of Chemical Vapor Infiltration in Ceramic/Ceramic Composites, MRS Proceedings, vol.58, p.185, 1988.
DOI : 10.1016/0022-5088(86)90612-0

N. H. Tai and T. W. Chou, Analytical Modeling of Chemical Vapor Infiltration in Fabrication of Ceramic Composites, Journal of the American Ceramic Society, vol.57, issue.2, p.414, 1989.
DOI : 10.1111/j.1151-2916.1989.tb06145.x

E. Fitzer, W. Fritz, and G. Schoch, Modelling of the chemical vapour impregnation of porous (carbon) substrates with SiC, High Temperatures ? High Pressures, vol.2, p.343, 1992.

R. Fédou, Modélisation de l'infiltration chimique en phase vapeur (CVI) isotherme et isobare, Etude de l'infiltration d'un pore rectiligne par diverses céramiques, Thèse de Doctorat, p.792, 1992.

R. Fédou, F. Langlais, and R. Naslain, A model for the isothermal isobaric CVI in a straight cylindrical pore. Application to the CVI of SiC, J. of Mater. Synth. and Proc, vol.1, p.43, 1993.

R. Fédou, F. Langlais, and R. Naslain, A model for the isothermal isobaric CVI in a straight cylindrical pore. Application to the CVI of SiC, J. of Mater. Synth. and Proc, vol.1, p.61, 1993.

G. Schoch, W. Fritz, and E. Fitzer, Ceramic/ceramic composite materials. Modelling of CVI process, Tech. Rep. EURAM contract MAIEC, 1991.

S. B. Desu and C. Tsai, Contribution of gas-phase reactions to the deposition of SiC by forced-flow CVI process, Mat. Res. Soc. Symp. Proc, vol.250, p.227, 1992.

M. Grujicic, An analysis of the isothermal isobaric chemical vapor infiltration of TiB2, Calphad, vol.18, issue.1, p.81, 1994.
DOI : 10.1016/0364-5916(94)90009-4

J. P. Dekker, R. Moene, and J. Schoonan, The influence of surface kinetics in modelling chemical vapour deposition processes in porous preforms, Journal of Materials Science, vol.128, issue.11, p.3021, 1996.
DOI : 10.1007/BF00356018

H. C. Chang, T. F. Morse, and B. W. Sheldon, Minimizing Infiltration Times during Isothermal Chemical Vapor Infiltration with Methyltrichlorosilane, Journal of the American Ceramic Society, vol.8, issue.5, p.1805, 1997.
DOI : 10.1111/j.1151-2916.1997.tb03055.x

M. Gupte and J. A. Tsamopoulos, Densification of Porous Materials by Chemical Vapor Infiltration, Journal of The Electrochemical Society, vol.136, issue.2, p.555, 1989.
DOI : 10.1149/1.2096681

T. L. Starr and N. Hablutzel, Measurement of Gas Transport through Fiber Preforms and Densified Composites for Chemical Vapor Infiltration, Journal of the American Ceramic Society, vol.43, issue.9, p.1298, 1998.
DOI : 10.1111/j.1151-2916.1998.tb02481.x

M. A. Dourges, O. Coindreau, N. Reuge, G. Vignoles, and R. Pailler, Caractérisation de solides poreux complexes : Etudes des propriétés de transport de gaz, 2001.

J. Y. Ofori and S. V. Sotirchos, Structural model effects on the predictions of CVI models, J. Electrochem. Soc, vol.143, p.962, 1996.

M. M. Tomadakis and S. V. Sotirchos, Effects of Fiber Orientation and Overlapping on Knudsen, Transition, and Ordinary Regime Diffusion in Fibrous Substrates, MRS Proceedings, vol.50, p.250, 1992.
DOI : 10.1002/aic.690370107

S. V. Sotirchos and M. M. Tomadakis, Modeling transport, reaction and pore structure evolution during densification of cellular or fibrous structure

R. R. Melkote and K. F. Jensen, A Model for Chemical Vapor Infiltration of Fibrous Substrates, MRS Proceedings, vol.649, p.67, 1990.
DOI : 10.1557/JMR.1989.1515

G. L. Vignoles, Modelling Binary, Knudsen and Transition Regime Diffusion Inside Complex Porous Media, Le Journal de Physique IV, vol.05, issue.C5, p.5, 1995.
DOI : 10.1051/jphyscol:1995517

URL : https://hal.archives-ouvertes.fr/jpa-00253842

O. Coindreau and G. Vignoles, Etude 3D de composites C/C par microtomographie X synchrotron " , La revue de métallurgie (hors série) : Journées d'Automne de la SF2M - 5 ème symp, 2001.

J. Kim, P. K. Liaw, D. J. Mcguire, and D. K. Hsu, Nondestructive Evaluation of Nicalon/Sic Composites by Ultrasonics and X-Ray Computed Tomography, Ceram. Eng
DOI : 10.1002/9780470294444.ch34

J. Y. Ofori and S. V. Sotirchos, Multicomponent Mass Transport in Chemical Vapor Infiltration, Industrial & Engineering Chemistry Research, vol.35, issue.4, p.1275, 1996.
DOI : 10.1021/ie9503252

S. V. Sotirchos, Dynamic modeling of chemical vapor infiltration, AIChE Journal, vol.37, issue.9, p.1365, 1991.
DOI : 10.1002/aic.690370909

J. Y. Ofori and S. V. Sotirchos, Optimal pressures and temperatures for isobaric, isothermal chemical vapor infiltration, AIChE Journal, vol.42, issue.10, p.2828, 1996.
DOI : 10.1002/aic.690421013

J. Y. Ofori and S. V. Sotircos, Multidimensional Modeling of Chemical Vapor Infiltration:?? Application to Isobaric CVI, Industrial & Engineering Chemistry Research, vol.36, issue.2, p.357, 1997.
DOI : 10.1021/ie960487d

G. Y. Chung, B. J. Mc-coy, and J. M. Smith, Chemical vapor infiltration: modelling solid matrix deposition for ceramic composites reinforced with layered woven fabrics, Chemical Engineering Science, vol.47, issue.2, p.311, 1992.
DOI : 10.1016/0009-2509(92)80022-5

X. Hou, H. Li, Y. Chen, and K. Li, Modeling of chemical vapor infiltration process for fabrication of carbon???carbon composites by finite difference methods, Carbon, vol.37, issue.4, p.669, 1999.
DOI : 10.1016/S0008-6223(98)00243-7

M. K. King, Modeling study of effects of temperature profiling on CVI processing of woven graphite preforms with dimethyldichlorosilane, Journal of Materials Research, vol.9, issue.08, p.2174, 1994.
DOI : 10.1557/JMR.1994.2174

D. J. Skamser, H. M. Jennings, and D. L. Johnson, Model of chemical vapor infiltration using temperature gradients, Journal of Materials Research, vol.12, issue.03, p.724, 1997.
DOI : 10.1557/JMR.1997.0107

J. I. Morell, D. J. Economou, and N. R. Amundson, A Mathematical Model for Chemical Vapor Infiltration with Volume Heating, Journal of The Electrochemical Society, vol.139, issue.1, p.328, 1992.
DOI : 10.1149/1.2069194

V. Midha and D. J. Economou, A Two-Dimensional Model of Chemical Vapor Infiltration With Radio Frequency Heating, Journal of The Electrochemical Society, vol.144, issue.11, p.4062, 1997.
DOI : 10.1149/1.1838137

D. Et and J. W. Evans, A mathematical model for CVI with microwave heating and external cooling, J. Amer. Ceram. Soc, vol.76, p.1924, 1993.

D. Gupta and J. W. Evans, A mathematical model for chemical vapor infiltration with microwave heating and external cooling, Journal of Materials Research, vol.9, issue.04, p.810, 1991.
DOI : 10.1016/0167-577X(87)90121-2

D. Leutard, G. Vignoles, F. Lamouroux, and B. Bernard, Monitoring density and temperature in C/C composites processing by CVI with induction heating, J. Mater. Synth. and Proc, 2002.

T. Tago, M. Kawase, Y. Ikuta, and K. Hashimoto, Numerical simulation of the thermal-gradient chemical vapor infiltration process for production of fiber-reinforced ceramic composite, Chemical Engineering Science, vol.56, issue.6, p.2161, 2001.
DOI : 10.1016/S0009-2509(00)00492-9

M. Sasaki, Gas flow simulation of isothermal chemical vapor infiltration, J. of Mat

V. G. Minkina, Chemical vapor deposition in a porous body, Theoretical Foundations of Chemical Engineering, vol.31, p.281, 1997.

P. Mcallister and E. E. Wolf, Simulation of a multiple substrate reactor for chemical vapor infiltration of pyrolytic carbon within carbon-carbon composites, AIChE Journal, vol.39, issue.7, p.1196, 1993.
DOI : 10.1002/aic.690390711

T. L. Starr, Model for CVI of Short Fiber Preforms, Ceram. Eng. Sci., Proc, vol.8, p.951, 1987.
DOI : 10.1002/9780470320402.ch53

T. L. Starr, Modeling of Forced Flow/Thermal grdient CVI, Proceedings of International Conference on Whisker and Fiber-Toughened Ceramics

S. Vaidyaraman, W. J. Lackey, P. K. Agraval, and T. L. Starr, 1-D model for forced flow-thermal gradient chemical vapor infiltration process for carbon/carbon composites, Carbon, vol.34, issue.9, p.1123, 1996.
DOI : 10.1016/0008-6223(96)00086-3

N. Tai and T. Chou, Modeling of an improved Chemical Vapor infiltration Process for Ceramic Composites Fabrication, Journal of the American Ceramic Society, vol.84, issue.6, p.1489, 1990.
DOI : 10.1021/cr50003a004

J. Y. Ofori and S. V. Sotirchos, Investigation of the Potential of Forced-Flow Chemical Vapor Infiltration, Journal of The Electrochemical Society, vol.144, issue.1, p.274, 1997.
DOI : 10.1149/1.1837396

M. Jones and T. L. Starr, Enhacements to the Georgia Technology Institute CVI process model for ceramic matrix composites, Ceramic Engineering and Sciences Proceedings, p.829, 1995.

S. V. Sotirchos, Dynamic modeling of chemical vapor infiltration, AIChE Journal, vol.37, issue.9, p.1365, 1991.
DOI : 10.1002/aic.690370909

J. Y. Ofori and S. V. Sotirchos, Dynamic convection-driven thermal gradient chemical vapor infiltration, Journal of Materials Research, vol.250, issue.10, p.2541, 1996.
DOI : 10.1002/aic.690370302

S. Bertrand, R. Hadi, J. F. Lavaux, R. Pailler, and G. Vignoles, The thermal gradientpulse flow CVI process : a new chemical vapor infiltration technique for the densification of fibre preforms, J. Eur. Ceram. Soc, vol.81, p.1682, 1998.

R. Taylor and R. Krishna, Multicomponent mass transfer, 1993.

C. F. Curtiss and J. O. Hirschfelder, Transport Properties of Multicomponent Gas Mixtures, The Journal of Chemical Physics, vol.17, issue.6, p.550, 1949.
DOI : 10.1063/1.1747319

T. P. Cofee and J. M. Heimerl, Transport algorithms for premixed, laminar steady-state flames, Combustion and Flame, vol.43, p.273, 1981.
DOI : 10.1016/0010-2180(81)90027-4

R. J. Kee, G. Dixon-lewis, J. Warnatz, M. Coltrin, and J. A. Miller, A Fortran Computer Code Package for the Evaluation of Gas-Phase Multicomponent Transport Properties, SANDIA National Laboratories Report, pp.86-8246, 1986.

E. P. Bartlett, R. M. Kendall, and R. , An analysis of the coupled chemically reacting boundary layer and charring ablator -Part IV : a unified approximation for mixture transport properties for multicomponent boundary layer applications, 1968.

C. Descamps, Modélisation de l'infiltration chimique en phase vapeur isobare (I-CVI)

C. Desmeuszes and G. Duffa, Termes de diffusion dans les écoulements hors équilibre chimique, Nantes, 1993.

C. N. Satterfield, Mass transfer in heterogenous catalysis, 1970.

E. A. Mason and A. P. Malinauskas, Gas transport in porous media : the Dusty-Gas model, Chemical engineering monographs, 1983.

P. J. Kerkhof, A modified Maxwell-Stefan model for transport through inert membranes: the binary friction model, The Chemical Engineering Journal and the Biochemical Engineering Journal, vol.64, issue.3, p.319, 1996.
DOI : 10.1016/S0923-0467(96)03134-X

P. J. Kerkhof, New Light on Some Old Problems:?? Revisiting the Stefan Tube, Graham's Law, and the Bosanquet Equation, Industrial & Engineering Chemistry Research, vol.36, issue.3, p.915, 1997.
DOI : 10.1021/ie960542i

P. J. Kerkhof, New developments in membrane transport phenomena, Latin American Applied Research, vol.28, p.15, 1998.

C. Descamps and G. L. Vignoles, Extension of the bifurcation method for diffusion coefficients to porous medium transport, Comptes Rendus de l'Acad??mie des Sciences - Series IIB - Mechanics, vol.328, issue.6, p.465, 2000.
DOI : 10.1016/S1620-7742(00)00038-6

URL : https://hal.archives-ouvertes.fr/hal-00327610

V. Giovangigli, Mass conservation and singular multicomponent diffusion algorithms, IMPACT of Computing in Science and Engineering, vol.2, issue.1, p.208, 1990.
DOI : 10.1016/0899-8248(90)90004-T

S. V. Patankar and D. B. Spalding, A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, International Journal of Heat and Mass Transfer, vol.15, issue.10, p.1787, 1972.
DOI : 10.1016/0017-9310(72)90054-3

P. V. Danckwerts, Continuous flow systems. Distribution of residence times, Chem. Eng. Sci, vol.2, p.3857, 1953.

A. L. Hines and R. N. Maddox, Mass Transfer ? Fundamentals and Applications, éd. par P T R, BIBLIOGRAPHIE III, 1985.

N. Tai and T. Chou, Analytical Modeling of Chemical Vapor Infiltration in Fabrication of Ceramic Composites, Journal of the American Ceramic Society, vol.57, issue.2, p.414, 1989.
DOI : 10.1111/j.1151-2916.1989.tb06145.x

S. Middleman, The interaction of chemical kinetics and diffusion in the dynamics of chemical vapor infiltration, Journal of Materials Research, vol.43, issue.06, p.1515, 1989.
DOI : 10.1063/1.338180

V. G. Minkina, Chemical vapor deposition in a porous body, Theoretical Foundations of Chemical Engineering, vol.31, p.281, 1997.

P. Mcallister and E. E. Wolf, Simulation of a multiple substrate reactor for chemical vapor infiltration of pyrolytic carbon within carbon-carbon composites, AIChE Journal, vol.39, issue.7, p.1196, 1993.
DOI : 10.1002/aic.690390711

F. Loumagne, F. Langlais, and R. Naslain, Experimental kinetic study of the chemical vapour deposition of SiC-based ceramics from gas precursor, Journal of Crystal Growth, vol.155, issue.3-4, p.198, 1995.
DOI : 10.1016/0022-0248(95)00180-8

F. Loumagne, F. Langlais, and R. Naslain, Reactional mechanisms of the chemical vapour deposition of SiC-based ceramics from gas precursor, Journal of Crystal Growth, vol.155, issue.3-4, p.205, 1995.
DOI : 10.1016/0022-0248(95)00181-6

G. D. Papasouliotis and S. V. Sotirchos, On the Homogeneous Chemistry of the Thermal Decomposition of Methyltrichlorosilane, Journal of The Electrochemical Society, vol.141, issue.6, p.1599, 1994.
DOI : 10.1149/1.2054969

G. Schoch, Die chemische gasphasenimprägnierung poröser festkörper mit SiC und TiN, thèse de doctorat, 1990.

G. G. Schoch, W. Fritz, and E. Fitzer, Ceramic/ceramic composite materials. Modelling of CVI process, Tech. Rep. EURAM contract MAIEC, 1991.

J. Y. Ofori and S. V. Sotirchos, Structural Model Effects on the Predictions of Chemical Vapor Infiltration Models, Journal of The Electrochemical Society, vol.143, issue.6, p.1962, 1996.
DOI : 10.1149/1.1836933

P. V. Danckwerts, Continuous flow systems. Distribution of residence times, Chem. Eng. Sci. BIBLIOGRAPHIE IV, vol.2, p.3857, 1953.

R. O. Grisdale, A. C. Pfister, and W. Van-roosbroeck, Pyrolytic Film Resistors: Carbon and Borocarbon, Bell System Technical Journal, vol.30, issue.2, p.271, 1951.
DOI : 10.1002/j.1538-7305.1951.tb03660.x

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, issue.6348, p.56, 1991.
DOI : 10.1038/354056a0

F. Tombrel and J. Rappeneau, Préparation et structure des pyrocarbone", Les Carbones ? Dixième partie : Les pyrocarbones, chap. 25, édité par A, 1965.

J. C. Bokros, The structure of pyrolytic carbon deposited in a fluidized bed, Carbon, vol.3, issue.1, p.17, 1965.
DOI : 10.1016/0008-6223(65)90023-0

F. Tombrel and J. Rappeneau, Propriétés physiques des pyrocarbone", Les Carbones ? Dixième partie : Les pyrocarbones, chap. 26, édité par A, 1965.

H. Bockhorn, Soot Formation in Combution : Mechanisms and Models, 1994.

R. E. Franklin, Croissance des cristallites dans les carbones graphitables et non graphitables, Mémorial des Services Chimiques de l'état, p.173, 1951.

J. Goma and &. M. Oberlin, Graphitization of thin carbon films, Thin Solid Films, vol.65, issue.2, p.221, 1980.
DOI : 10.1016/0040-6090(80)90256-4

A. Oberlin, Carbonization and graphitization, Carbon, vol.22, issue.6, p.521, 1984.
DOI : 10.1016/0008-6223(84)90086-1

L. F. Coffin, Structure-Property Relations for Pyrolytic Graphite, Journal of the American Ceramic Society, vol.47, issue.10, p.473, 1964.
DOI : 10.1111/j.1151-2916.1964.tb13793.x

L. Trognon, Elaboration, densification et caractérisation de préformes fibreuses modèles pour la validation d'un code de CVI du pyrocarbone, 2001.

R. O. Grisdale, The Formation of Black Carbon, Journal of Applied Physics, vol.24, issue.9, p.1082, 1953.
DOI : 10.1063/1.1721452

T. J. Hirt and H. B. Palmer, Kinetics of deposition of pyrolytic carbon films from methane and carbon suboxyde T, Carbon, issue.1, p.65, 1963.

J. C. Bokros, Variation in the crystallinity of carbons deposited in fluidized beds, Carbon, vol.3, issue.2, p.201, 1965.
DOI : 10.1016/0008-6223(65)90049-7

J. C. Bokros-Édité-par, P. L. Walker-jr, and M. Dekker, Deposition, structure and properties of pyrolytic carbon, Chemistry and Physics of Carbon, vol.5, p.1, 1969.

R. J. Diefendorf, The deposition of pyrolytic graphite, J. Chim. Phys, vol.57, p.815, 1960.

R. J. Diefendorf, Deposition of pyrolytic carbons Reactivity of solids, p.461, 1969.

P. Lieberman and H. O. Pierson, Effect of gas phase conditions on resultant matrix pyrocarbons in carbon/carbon composites, Carbon, vol.12, issue.3, p.233, 1974.
DOI : 10.1016/0008-6223(74)90065-7

H. O. Pierson and P. Lieberman, The chemical vapor deposition of carbon on carbon fibers, Carbon, vol.13, issue.3, p.159, 1975.
DOI : 10.1016/0008-6223(75)90226-2

P. Loll, P. Delhaes, A. Pacault, and A. Pierre, Diagramme d'existence et proprietes de composites carbone-carbone, Carbon, vol.15, issue.6, p.383, 1977.
DOI : 10.1016/0008-6223(77)90327-X

F. Doux, Analysis Magazine, p.31, 1994.

P. A. Tesner, Kinetics of pyrolytic carbons formation, Chemistry and Physics of Carbon, vol.19, p.65, 1984.

K. M. Sundaram and G. F. Froment, Kinetics of coke deposition in the thermal cracking of propane, Chemical Engineering Science, vol.34, issue.5, p.635, 1979.
DOI : 10.1016/0009-2509(79)85108-8

R. Zou, Q. Lou, H. Liu, and F. Niu, Investigation of coke deposition during the pyrolysis of hydrocarbon, Industrial & Engineering Chemistry Research, vol.26, issue.12, p.2528, 1987.
DOI : 10.1021/ie00072a025

L. F. Albright and J. C. Marek, Mechanistic model for formation of coke in pyrolysis units producing ethylene, Industrial & Engineering Chemistry Research, vol.27, issue.5, p.755, 1988.
DOI : 10.1021/ie00077a006

D. B. Murphy and R. W. Carroll, Kinetics and mechanism of carbon film deposition by acetylene pyrolysis, Carbon, vol.30, issue.1, p.47, 1992.
DOI : 10.1016/0008-6223(92)90105-6

M. Frenklach, On surface growth mechanism of soot particles, Proc. of Twenty-Sixth Symposium (International) on Combustion
DOI : 10.1016/S0082-0784(96)80056-7

M. Frenklach and J. Warnatz, Detailed Modeling of PAH Profiles in a Sooting Low-Pressure Acetylene Flame, Combustion Science and Technology, vol.87, issue.4-6, p.265, 1987.
DOI : 10.1080/00102208308923692

S. Bammidipati, G. D. Stewart, J. Richard-elliot-jr, S. A. Gokoglu, and M. J. Purdy, Chemical vapor deposition of carbon on graphite by methane pyrolysis, AIChE Journal, vol.42, issue.11, p.3123, 1996.
DOI : 10.1002/aic.690421112

J. Lahaye, P. Badie, and &. J. Ducret, Mechanism of carbon formation during steamcracking of hydrocarbons, Carbon, vol.15, issue.2, p.87, 1977.
DOI : 10.1016/0008-6223(77)90022-7

C. J. Chen and M. H. Back, The simultaneous measurement of the rate of formation of carbon and of hydrocarbon products in the pyrolysis of methane, Carbon, vol.17, issue.2, pp.175-180, 1979.
DOI : 10.1016/0008-6223(79)90026-5

J. Y. Lee, J. H. Je, and H. S. Kim, A study of the properties of pyrolytic carbons deposited from propane in a tumbling and stationary bed between 900 and 1230°C, Carbon, vol.21, p.523, 1983.

R. Keller, Polyaromatic Hydrocarbons and the Condensation of Carbon in Stellar Winds, Polycyclic aromatic hydrocarbons and astrophysics, A. Leger, L.B. d'Hendecourt et N
DOI : 10.1007/978-94-009-4776-4_37

P. Mc-allister, J. F. Hendricks, and E. E. Wolf, The infiltration of carbon fiber felts and composites by pyrolytic carbon deposition from propylene, Carbon, vol.28, issue.4, p.579, 1990.
DOI : 10.1016/0008-6223(90)90056-5

P. Lucas and A. Marchand, Pyrolytic carbon deposition from methane: An analytical approach to the chemical process, Carbon, vol.28, issue.1, p.207, 1990.
DOI : 10.1016/0008-6223(90)90115-F

F. Fau-canillac, F. Carrere, A. Reynes, C. Valhas, and F. Maury, Mass spectroscopy study of the gas phase during the chemical vapor deposition of pyrolytic carbon, J. de Physique IV, vol.5, p.89, 1995.

J. S. Lewis, W. J. Lackey, and S. Vaidyaraman, Model for prediction of matrix microstructure for carbon/carbon composites prepared by forced flow-thermal gradient CVI, Carbon, vol.35, issue.1, p.103, 1997.
DOI : 10.1016/S0008-6223(96)00121-2

G. F. Glasier and P. D. Pacey, Formation of pyrolytic carbon during the pyrolysis of ethane at high conversions, Carbon, vol.39, issue.1, p.15, 2001.
DOI : 10.1016/S0008-6223(00)00079-8

G. F. Glasier, R. Filfil, and P. Pacey, Formation of polycyclic aromatic hydrocarbons coincident with pyrolytic carbon deposition, Carbon, vol.39, issue.4, p.497, 2001.
DOI : 10.1016/S0008-6223(00)00156-1

W. Benzinger, A. Becker, and K. J. Hüttinger, Chemistry and kinetics of chemical vapour deposition of pyrocarbon: I. Fundamentals of kinetics and chemical reaction engineering, Carbon, vol.34, issue.8, pp.34-957, 1996.
DOI : 10.1016/0008-6223(96)00010-3

W. Benzinger and &. K. Hüttinger, Chemical vapour infiltration of pyrocarbon: I. Some kinetic considerations, Carbon, vol.34, issue.12, pp.1465-1471, 1996.
DOI : 10.1016/S0008-6223(96)00117-0

A. Becker and K. J. Hüttinger, Chemistry and kinetics of chemical vapor deposition of pyrocarbon???II pyrocarbon deposition from ethylene, acetylene and 1,3-butadiene in the low temperature regime, Carbon, vol.36, issue.3, p.177, 1998.
DOI : 10.1016/S0008-6223(97)00175-9

A. Becker and K. J. Hüttinger, Chemistry and kinetics of chemical vapor deposition of pyrocarbon ??? III pyrocarbon deposition from propylene and benzene in the low temperature regime, Carbon, vol.36, issue.3, p.201, 1998.
DOI : 10.1016/S0008-6223(97)00176-0

A. Becker and K. J. Hüttinger, Chemistry and kinetics of chemical vapor deposition of pyrocarbon ??? IV pyrocarbon deposition from methane in the low temperature regime, Carbon, vol.36, issue.3, p.213, 1998.
DOI : 10.1016/S0008-6223(97)00177-2

A. Becker and K. J. Hüttinger, Chemistry and kinetics of chemical vapor deposition of pyrocarbon ??? V influence of reactor volume/deposition surface area ratio, Carbon, vol.36, issue.3, p.225, 1998.
DOI : 10.1016/S0008-6223(97)00178-4

P. Dupel, R. Pailler, and F. Langlais, Pulse chemical vapour deposition and infiltration of pyrocarbon in model pores with rectangular cross-sections, Journal of Materials Science, vol.28, issue.5, p.1341, 1994.
DOI : 10.1007/BF00975086

P. Dupel, R. Pailler, X. Bourrat, and R. Naslain, Pulse chemical vapour deposition and infiltration of pyrocarbon in model pores with rectangular cross-sections, Journal of Materials Science, vol.17, issue.4, p.1056, 1994.
DOI : 10.1007/BF00351432

P. Dupel, X. Bourrat, and R. Pailler, Structure of pyrocarbon infiltrated by pulse-CVI, Carbon, vol.33, issue.9, p.1193, 1995.
DOI : 10.1016/0008-6223(95)00029-D

O. Féron, CVD-CVI du pyrocarbone Analyse in-situ de la phase gazeuse, Etudes cinétiques et structurale Thèse de doctorat, p.1867, 1998.

O. Féron, F. Langlais, R. Naslain, and J. Thébault, Analysis of the Gas Phase by In Situ FTIR Spectrometry and Mass Spectrometry During the CVD of Pyrocarbon from Propane, Chemical Vapor Deposition, vol.5, issue.1, p.1343, 1999.
DOI : 10.1002/(SICI)1521-3862(199901)5:1<37::AID-CVDE37>3.0.CO;2-8

O. Féron, F. Langlais, and R. Naslain, On kinetic and microstructural transitions in the CVD of pyrocarbon from propane, Carbon, vol.37, issue.9, p.1355, 1999.
DOI : 10.1016/S0008-6223(98)00329-7

J. Lavenac, CVD/CVI de pyrocarbones laminaires à partir du propane, Processus chimiques homogènes et hétérogènes Thèse de doctorat, p.2274, 2000.

J. Lavenac, F. Langlais, O. Féron, and R. Naslain, Microstructure of the pyrocarbon matrix in carbon/carbon composites, Composites Science and Technology, vol.61, issue.3, p.339, 2001.
DOI : 10.1016/S0266-3538(00)00125-1

C. Descamps, Modélisation de l'infiltration chimique en phase vapeur isobare (I-CVI)

C. Descamps, G. L. Vignoles, O. Féron, F. Langlais, and J. Lavenac, Correlation Between Homogeneous Propane Pyrolysis and Pyrocarbon Deposition, Journal of The Electrochemical Society, vol.148, issue.10, p.695, 2001.
DOI : 10.1149/1.1402981

URL : https://hal.archives-ouvertes.fr/hal-00337417

A. D. Anna, A. Violi, and A. , Formation of high molecular mass structures in premixed flames, Third International Conference ICE. Experiments and modeling, 1997.

N. M. Marinov, W. J. Pitz, C. K. Westbrook, M. J. Castaldi, and S. M. Senkan, Modeling of Aromatic and Polycyclic Aromatic Hydrocarbon Formation in Premixed Methane and Ethane Flames, Combustion Science and Technology, vol.96, issue.1-6, pp.116-117, 1996.
DOI : 10.1139/v89-235

H. , L. Poche, and F. Langlais, Mécanismes de formation des pyrocarbones laminaires par voie gazeuse à partir du précurseur propane ? Influence de la pression de dépôt, 11 ème journée Grand, 2001.

H. and L. Poche, Rapport interne, pp.0-01, 2000.

H. and L. Poche, Rapport interne, pp.0-02, 2000.

L. Trognon, Elaboration, densification et caractérisation de préformes fibreuses modèles pour la validation d'un code de CVI du pyrocarbone, 2001.

G. L. Vignoles, Modelling Binary, Knudsen and Transition Regime Diffusion Inside Complex Porous Media, Le Journal de Physique IV, vol.05, issue.C5, p.5, 1995.
DOI : 10.1051/jphyscol:1995517

URL : https://hal.archives-ouvertes.fr/jpa-00253842

O. Féron, CVD-CVI du pyrocarbone Analyse in situ de la phase gazeuse. Etudes cinétiques et structurale, Thèse de doctorat, p.1867, 1998.

P. Dupel, R. Pailler, X. Bourrat, and R. Naslain, Pulse chemical vapour deposition and infiltration of pyrocarbon in model pores with rectangular cross-sections, Journal of Materials Science, vol.17, issue.4, p.1056, 1994.
DOI : 10.1007/BF00351432

H. S. Park, W. C. Choi, and K. S. Kim, Process ? Microstructure Relationships of Carbon/Carbon Composites Fabricated by Isothermal Chemical Vapor Infiltration, Journal of Advanced Materials, p.34, 1995.

C. Descamps, Modélisation de l'infiltration chimique en phase vapeur isobare (I-CVI)

J. Lavenac, CVD/CVI de pyrocarbones laminaires à partir du propane, Processus chimiques homogènes et hétérogènes Thèse de doctorat, p.2274, 2000.

H. and L. Poche, Rapport interne, pp.1-04, 2001.