Skip to Main content Skip to Navigation
Theses

Condensats de Bose-Einstein dans un piège anisotrope

Fabrice Gerbier 1
1 laboratoire Charles Fabry de l'Institut d'Optique / Optique atomique
LCFIO - Laboratoire Charles Fabry de l'Institut d'Optique
Abstract : In this Thesis, we report on the study of Bose-Einstein condensates in anisotropic traps. First, the behavior of the thermal cloud is investigated for temperatures close to the condensation threshold. A shift in the critical temperature and a reduction of the condensed fraction due to interactions are observed, in good agreement with a Hartree-Fock theory of the mixed cloud. A second study focuses on the extraction and propagation of atom lasers created through radio-frequency output coupling. Measurements of the transverse divergence identify as the primary contributor the mean field exerted by the condensate on the outcoupled atoms. The third part is devoted to the study of phase fluctuations in very elongated (quasi-)condensates through Bragg spectroscopy of the momentum distribution. We observe a Lorentzian lineshape of the momentum distribution, characteristic of strongly phase-fluctuating samples. Measurements of the momentum width, along with the observation of suppressed density fluctuations when compared to a thermal-like distribution, confirm the validity of the Bogoliubov approach to describe low-dimensional quasi-condensates.
Complete list of metadatas

Cited literature [222 references]  Display  Hide  Download

https://pastel.archives-ouvertes.fr/tel-00003589
Contributor : Fabrice Gerbier <>
Submitted on : Friday, October 17, 2003 - 2:30:50 PM
Last modification on : Thursday, March 5, 2020 - 6:39:28 PM
Document(s) archivé(s) le : Monday, September 20, 2010 - 11:45:06 AM

Identifiers

  • HAL Id : tel-00003589, version 2

Citation

Fabrice Gerbier. Condensats de Bose-Einstein dans un piège anisotrope. Physique Atomique [physics.atom-ph]. Université Pierre et Marie Curie - Paris VI, 2003. Français. ⟨tel-00003589v2⟩

Share

Metrics

Record views

1022

Files downloads

1321