Representations p-adiques et equations differentielles - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2001

Representations p-adiques et equations differentielles

Laurent Berger

Résumé

In this paper, we associate to every $p$-adic representation $V$ a $p$-adic differential equation $\mathbf(D)^(\dagger)_(\mathrm(rig))(V)$, that is to say a module with a connection over the Robba ring. We do this via the theory of Fontaine's $(\varphi,\Gamma_K)$-modules. This construction enables us to relate the theory of $(\varphi,\Gamma_K)$-modules to $p$-adic Hodge theory. We explain how to construct $\mathbf(D)_(\mathrm(cris))(V)$ and $\mathbf(D)_(\mathrm(st))(V)$ from $\mathbf(D)^(\dagger)_(\mathrm(rig))(V)$, which allows us to recognize semi-stable or crystalline representations; the connection is then either unipotent or trivial. Along with techniques from the theory of $p$-adic differential equations, the study of $\mathbf(D)^(\dagger)_(\mathrm(rig))(V)$ allows us to give a new proof of Sen's theorem characterizing $\mathbf(C)_p$-admissible representations. Finally we can use the previous results to extend to the case of arbitrary perfect residue fields some results of Hyodo ($H^1_g=H^1_(st)$), of Perrin-Riou (the semi-stability of ordinary representations), of Colmez (absolutely crystalline representations are of finite height), and of Bloch and Kato (if $r \gg 0$, then Bloch-Kato's exponential $\exp_(V(r))$ is an isomorphism), whose proofs (for a finite residue field) relied on the study of dimensions of Galois cohomology groups.
Dans cet article, on montre comment associer à toute représentation $p$-adique $V$, via la théorie des $(\varphi,\Gamma_K)$-modules de Fontaine, une équation différentielle $p$-adique $\mathbf(D)^(\dagger)_(\mathrm(rig))(V)$, c'est-à-dire un module à connexion sur l'anneau de Robba. Cette construction permet de faire le lien entre la théorie des $(\varphi,\Gamma_K)$-modules et la théorie de Hodge $p$-adique. On montre par exemple comment construire $\mathbf(D)_(\mathrm(cris))(V)$ et $\mathbf(D)_(\mathrm(st))(V)$ directement à partir de $\mathbf(D)^(\dagger)_(\mathrm(rig))(V)$, ce qui permet de reconna(\^\i)tre les représentations semi-stables ou cristallines; la connexion est alors unipotente ou triviale. Alliée à des techniques de la théorie des équations différentielles $p$-adiques, l'étude du module $\mathbf(D)^(\dagger)_(\mathrm(rig))(V)$ permet en outre de donner une nouvelle démon\-stration d'un théorème de Sen caractérisant les représen\-tations $\mathbf(C)_p$-admissibles. Finalement on peut utiliser les résultats précédents pour étendre au cas d'un corps résiduel parfait quelconque des résultats de Hyodo ($H^1_g=H^1_(st)$), de Perrin-Riou (sur la semi-stabilité des représentations ordinaires), de Colmez (les représentations absolument cristallines sont de hauteur finie), et de Bloch et Kato (si $r\gg 0$, alors l'exponentielle de Bloch-Kato $\exp_(V(r))$ est un isomorphisme) dont les démonstrations (dans le cas d'un corps résiduel fini) reposaient sur des considérations de dimensions de groupes de cohomologie galoisienne.
Fichier principal
Vignette du fichier
tel-00003571.pdf (500.92 Ko) Télécharger le fichier
Loading...

Dates et versions

tel-00003571 , version 1 (14-10-2003)

Identifiants

  • HAL Id : tel-00003571 , version 1

Citer

Laurent Berger. Representations p-adiques et equations differentielles. Mathématiques [math]. Université Pierre et Marie Curie - Paris VI, 2001. Français. ⟨NNT : ⟩. ⟨tel-00003571⟩
173 Consultations
435 Téléchargements

Partager

Gmail Facebook X LinkedIn More