
HAL Id: tel-00002951
https://theses.hal.science/tel-00002951

Submitted on 4 Jun 2003

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Conception et étude d’une architecture numérique de
haute performance pour le calcul de la fonction

exponentielle modulaire
A. Bernal

To cite this version:
A. Bernal. Conception et étude d’une architecture numérique de haute performance pour le calcul
de la fonction exponentielle modulaire. Autre [cs.OH]. Institut National Polytechnique de Grenoble -
INPG, 1999. Français. �NNT : �. �tel-00002951�

https://theses.hal.science/tel-00002951
https://hal.archives-ouvertes.fr

INSTITUT NATIONAL POLYTECHNIQUE DE GRENOBLE

|_|_|_|_|_|_|_|_|_|_|

THÈSE

pour obtenir le grade de DOCTEUR

de l'INSTITUT NATIONAL POLYTECHNIQUE DE GRENOBLE

Discipline: Microélectronique

présentée par

Álvaro BERNAL NOREÑA

le 22 octobre 1999

Titre

Conception et Etude d'une Architecture Numérique de Haute
Performance pour le Calcul de la Fonction Exponentielle

Modulaire .

Directeur de thèse

M. Alain Guyot

JURY

M. Jean-Claude Bajard Président
M. W.A.M. Van Noije Rapporteur
M. Habib Mehrez Rapporteur
M. Bertrand Hochet Examinateur
M. Alain Guyot Examinateur

Thèse préparée au sein du Laboratoire TIMA-INPG à Grenoble

À Margarita.

L'homme, un dieu quand il rêve,

juste un mendiant quand il pense.

Hölderlin Hyperion.

Remerciements

Ce travail a �t� r�alis� dans le laboratoire TIMA de l'Institut National Polytechnique de

Grenoble dirig� par M. Bernard Courtois, que je tiens � remercier pour son accueil au sein de

ce laboratoire.

Je veux �galement remercier plus particuli�rement M. Alain Guyot, Ma�tre de Conf�rence �

l'ENSIMAG et directeur de cette th�se, pour ses conseils et sa coop�ration.

M. Jean-Claude Bajard pour avoir accept� la pr�sidence de mon jury de th�se, et �galement

Messieurs W.A.M. Van Noije et Habib Mehrez pour avoir accept� dÕ�tre rapporteurs. Par la

m�me occasion je remercie M. Bertrand Hochet. D'une mani�re g�n�rale, je remercie l'ensemble

des personnes que m'ont fait l'honneur d'�tre membres du jury.

Je tiens � remercier tous mes coll�gues de travail et tout l'ensemble du personnel de TIMA

pour leur accueil mais aussi pour l'ambiance chaleureuse qui r�gne au sein du laboratoire.

Egalement Messieurs Kholdoun Torki, Jean-Fran�ois Paillotin, Alejandro Chagoya, Robin

Roland pour leur aide dans la r�alisation des circuits, et pour l'assistance logicielle et test.

J'adresse mes remerciements � l'Universit� del Valle et COLCIENCIAS, pour avoir rendu

possible la r�alisation de ce travail et notamment pour ce qui concerne la partie administrative.

Je tiens particuli�rement � remercier Mlle. Blanca Stella Barona et Mme. Corinne Durand-Viel

pour leur aide logistique et pour le soutien �motionnel qu'elles m'ont aussi apport�.

Evidemment je ne pourrais pas terminer ces remerciements sans citer mes amis et ma famille,

et tout particuli�rement Margarita pour sa pr�sence constante.

Résumé

Au cours de ces dernières années, on assiste à un développement des communications régies par

des réseaux d'ordinateurs et systèmes électroniques; l'extension importante de ces types de

moyens électroniques de communication et d'échange d'information met en évidence les besoins

de sécurité des canaux de transmission.

Les processus de sécurisation d'information privée reposent principalement sur des protocoles

qui utilisent le concept de fonction à sens unique ou fonction très difficilement inversible. Ce

type de brouillage mathématique est fréquemment réalisé par la fonction exponentielle modulaire.

A l'heure actuelle une partie importante de ces protocoles est orientée à l'utilisation des

algorithmes programmés. Dans ce travail se présente la conception d'une architecture

performante qui satisfait aux caractéristiques les plus importantes afin de garantir la viabilité d'un

circuit intégré pour le calcul de la fonction exponentielle modulaire. L'analyse de l'architecture

permet d'évaluer les gains en vitesse qu'une réalisation matériel pourrait permettre par rapport

aux algorithmes programmés.

L'architecture calcule la fonction exponentielle modulaire des numéros représentés en notation

modulaire en combinant les avantages de l'algorithme de Montgomery pour la multiplication et

ceux de la méthode généralise de multiplications répétées, pour l'exponentielle. A partir de ces

résultats deux prototypes ont été dessinés, fabriqués et vérifiés en utilisant une technologie

AMS-CMOS de 0,6 µm. L'architecture présente une bonne performance et une modularité qui

permet d'élargir le nombre de bits des chiffres a être calculés.

D'autre part, la nécessité de performances élevées inhérentes aux applications, soit en cartes à

puce soit en communication par satellite, a fait considérer le AsGa comme une technologie

appropriée pour l'implémentation de ce type de système. La conception de deux des principaux

blocs de l'architecture envisageant la basse consommation a été aussi réalisée.

Mots clés: Cryptographie, Architectures d'Arithmétique Modulaire, Exponentiel Modulaire,

Arséniure de Gallium.

Présentation Etendue de la thèse.

Conception et Etude d'une Architecture Numérique de Haute Performance

pour le Calcul de la Fonction Exponentielle Modulaire.

Table de Matières.

Chapitre 1 Introduction……………………………………………………. i

Chapitre 2 Cryptographie et notation modulaire………………………….. v

Chapitre 3 Architecture pour le calcul de la multiplication modulaire……xiii

Chapitre 4 Architecture pour le calcul de l'exponentielle modulaire……. xxi

Chapitre 5 Technologie de l'Arséniure de Gallium………………………. xxvix

Chapitre 6 Mémoire de basse consommation en AsGa……………………. xxxiii

Chapitre 7 Additionneurs asynchrones de basse consommation en AsGa. xxxix

Abstract

During these last years, the development of computer controlled communication networks
promises effortless and inexpensive contact between people or computers on opposite sides of
the world, replacing most mail and excursions with telecommunications. The significant
extension of these types of electronic means of communication and exchange of information
highlights the needs for security of the data communication channels. Secret digital writing is
being used to avoid message transformations. Techniques to avoid eavesdroppers actions are

known as cryptography.

Currently, cryptosystems are more frequently required in applications as remote cash
dispensers, high speed computers terminals, authentication, digital signatures and private
communication between others. The cryptography processes rest mainly on protocols which
use the concept of one-way function. At present a significant part of these protocols is
directed to be used as programmed algorithms.

The type of mathematical jamming is frequently carried out by the modular exponentiation

function. In this work, the design of an alternative architecture which satisfies the most

significant characteristics in order to guarantee the viability of an integrated circuit for

calculating the modular exponentiation function is presented. In the architecture, the main

advantages of both, generalised square-multiply binary for exponentiation function and the

Montgomery's algorithm for modular multiplication are mixed. The architecture is oriented to

compute the modular exponentiation of large integer numbers. Two prototypes were

designed, fabricated and tested to validate the architecture, which presents a good

performance and a modularity being easily expandable to larger bit-widths.

In addition, as several of cryptography applications use satellite communication where high

performances but principally radiation tolerant integrated circuits are needed, AsGa become

as a suitable technology for the implementation of this type of system. The design of two of

the principal blocks of the proposed architecture considering low power strategies

consumption are also presented.

Keywords: Modular Arithmetic architectures, Modular Exponentiation, Gallium Arsenide.

Table of contents..……………….. I.

List of figures...………………… II.

List of tables...………………… III.

I. Table of contents

1. Introduction..………………… 1

1.1. Cryptography……………………………………………………………… 1

1.1.1. Practical Cryptosystems…………………………………………………. 2

1.2. Gallium Arsenide Technology...…………... 5

1.2.1. Low Power GaAs Circuits...…………… 8

1.3. Objectives...………………. 10

1.4. References..……………….. 13

2. Modular Notation and Cryptography...…......…………. 15

2.1. Introduction..……………….. 15

2.2. Concepts...………………… 16

2.3. Applications...……………….16

2.4. Mathematical basis…………………………………………………………... 17

2.4.1. One-way functions..…………... 17

2.4.2. Trap-door one-way functions...………… 17

2.4.3. Hash functions..……………. 18

2.4.4. One-way hash functions...………….. 18

2.5. Modular arithmetic...…….… 19

2.5.1. Introduction...………. 19

2.5.2. Modular arithmetic operations……………………………………. 19

2.5.3. Underlying functions……………………………………………... 20

2.5.3.1. Euler and Fermat totient function……………………….. 20

2.5.3.2. Euclid's algorithm………………………………………. 21

2.5.3.3. Fermat theorem………………………………………….. 23

2.5.4. The Residue Number System..……….. 23

2.6.4.1. Advantages...……….... 24

2.6.4.2. Disadvantages...………. 24

2.5.5. Chinese Remainder theorem...……….…25

2.5.6. Periodicity properties……………………………………….……... 25

2.6. Algorithms…………………………………………………………………… 28

2.6.1. Discrete logarithm problem...……….. 28

2.6.2. Factoring...………….………….…. 29

2.7. Types of Cryptosystems..……………... 29

2.7.1. Public key distribution systems..……….. 29

2.7.2. Public-key Cryptosystems...…………... 30

2.7.2.1. RSA encryption and signature protocol............…………. 32

2.7.2.2. ElGamal protocol...………... 32

2.7.2.3. RPK Encryption..….……... 33

2.7.3 Analysis signature using Public Key Cryptosystems........…………. 33

2.7.3.1. Diffie-Helman key exchange protocol……….. 34

2.7.3.2. Guillou-Quisquater protocol......……………......………... 35

2.7.3.3. Fiat-Shamir user authentication protocol..........…...……...35

2.7.3.4. Schnorr identification and signatures.........……………... 35

2.7.3.5. Yen-Laih digital signature verification..........…….……... 36

2.8. Conclusions………………………………………………………………….. 37

2.9 References…………………………………………………………………… 39

3. Architecture for Computing the Modular Multiplication….…………………………. 41

3.1. Introduction………………………………………………………………. 41

3.2. Multiplication algorithms………………………………………………… 41

3.2.1. Brickell's algorithm……………………………………………….. 42

3.2.2. Eldridge’s algorithm……………………………………………….. 43

3.2.3. Walter's algorithm…………………………………………………..43

3.2.4. Even's algorithm…………………………………………………… 44

3.2.5. Morita's algorithm…………………………………………………..44

3.2.6. Massey-Omura's algorithm…………………………………………44

3.2.7. Sedlak's algorithm...……………...45

3.2.8. Bucci’s algorithm..………….…..45

3.2.9. Montgomery’s algorithm................................……………………. 45

3.2.9.1. Result analysis………..…………………………………. 47

3.3. Hardware for Computing Modular multiplication algorithm……………….. 48

3.3.1. Carry Save Adders ……..……………………………………….… 50

3.3.2. Hardware implementation…………………………………………. 51

3.3.3. Architecture……………………….……………………………….. 52

3.3.4. Modular Multiplier Cell…………………………………………… 55

3.3.5. 12x12 bits Modular Multiplier Prototype…………………………. 59

3.3.5.1. Control Unit……………………………………………… 60

3.3.6. Simulation results………………………………………………….. 60

3.3.7. Experimental results….……………………………………………. 62

3.3.8. Conclusions…………………………………………………………67

3.4. References………………………………………………………………….. 69

4. Architecture for Computing the Modular Exponentiation …………….……………… 71

4.1. Introduction…………………………………………………………………. 71

4.2. Exponentiation algorithms………………………………………………….. 71

4.2.1. Square and Multiply algorithm................................……………… 73

4.2.2. M-ary method (MM)……….................................………………... 73

4.2.3. Koç's algorithm……......................................…………………….. 74

4.2.4. Findlay's algorithm……......................................………………… 74

4.2.5. Brickell's algorithm……......................................………………… 75

4.2.6. Rooij's algorithm……......................................…………………… 75

4.2.7. Hamano's algorithm……..………… 75

4.2.8. Yongfei's algorithm……..…………. 75

4.3. Hardware for Computing Modular exponentiation.......................…………. 76

4.3.1. Hardware implementation...……… 78

4.3.2. Dynamic of the procedure………………………………………… 79

4.3.3. Architectural implications………………………………………… 83

4.3.4. Modular exponentiation architecture……………………………… 84

4.4. 32-bits Prototype Design……………………………………………………. 89

4.4.1. Modular Multiplier……………………………………………….. 90

4.4.2.Exponent Y Register and Control Part. …………………………… 92

4.4.3. Comparator-Subtractor…………………………………………… 96

4.5. Simulation Results………………………………………………………….. 99

4.6. Experimental Results………………………………………………………. 104

4.7 State of the Art……………………………………………………………… 105

4.8. Conclusions…………………………………………………………………. 107

4.9. References………………………………………………………………….. 109

5. Low Power GaAs Methodologies...………....………..… 113

5.1. Introduction...…………....…... 113

5.2. Gallium Arsenide Technology..………….. 115

5.2.1. Band diagrams……………………………………………………... 116

5.2.2. Electron mobility…………………………………………………... 117

5.2.3. Velocity-Field Relation……………………………………..………117

5.2.4. Schottky Junction…………………………………………………...118

5.2.5. Depletion heights and capacitance………………………………….119

5.2.6. Current flow across a Schottky junction…………………………... 119

5.2.7. Resistivity………………………………………………………….. 120

5.2.8. Radiation resistance………………………………………………... 120

5.2.9. Reliability…………………………………………………………...121

5.3. A brief review of GaAs logic families……………………………….……... 122

5.4. Available technologies………………………………………………………. 127

5.5. Low Power Strategies……………………………………….....................…. 132

5.5.1. Dynamic Switching Power..….. 132

5.5.2. Short circuit current power………………………………………… 133

5.5.3. Leakage current power…………………………………………….. 134

5.5.4. Static biasing power………………………………………………...134

5.5.5. Asynchronous design……………………………………………….135

5.6. References..……………….. 137

6. Low Power Two-Single Port GaAs Memory Cell...............................……………….. 141

6.1. Introduction...………………... 141

6.2. Memory cell design...………………... 144

6.2.1. Read operation..…………….… 146

6.2.2. Write operation...………………. 148

6.3. Basic circuit...……………….. 150

6.4. Sense amplifier...………...……... 150

6.5. Simulation results..…………..…... 152

6.5.1. Worst case...………………...155

6.6. Experimental results...……………..… 155

6.7. Conclusions...………………... 158

6.8. References..………………….159

7. Low Power GaAs Asynchronous Logic..…….…….. 163

7.1. Introduction…………………………………………………………………. 163

7.2. Asynchronous design…………………………………………………………164

7.2.1. Single rail techniques……………………………………………….165

7.2.2. Dual rail techniques……………………………………………….. 165

7.3 A Low-Power Differential Cross-Coupled Logic................................……… 166

7.3.1. Basic structure...……………. 167

7.3.2. Output stage...……………… 168

7.3.3. Simulation results...…………... 171

7.3.3.1. Full adder………………………………………………… 171

7.3.3.2. 8-bit Ripple Carry Adder………………………………… 171

7.3.4. Experimental results..………….. 172

7.4 A Low Power Enable/Disable GaAs MESFET Differential Logic....………. 174

7.4.1. EMDL circuit..…………… 175

7.4.1.1. Basic operation………………………………………… 175

7.4.1.2. Design considerations……………………………………. 176

7.4.2. Performance comparison..…………. 179

7.4.3. Specific applications..………….. 180

7.4.4. Experimental results: 8-bit RCA..……….. 181

7.5. Conclusions...………………. 183

7.6. References..……………….. 184

II. List of figures

Chapter 1.

Figure 1.1 Worldwide semiconductor market......................................……………… 5

Figure 1.2 GaAs ICs European market sectors....................................……………… 7

Chapter 2.

Figure 2.1 Symmetric key cryptosystem..…………………. 30

Figure 2.2 Public key cryptosystem...………………... 31

Figure 2.3 ElGamal protocol representation....................................…………………. 32

Figure 2.4 Diffie-Hellman Scheme..………………... 34

Chapter 3.

Figure 3.1. CSA Unit………………………………………………………………… 50

Figure 3.2. Block Diagram of the CSA technique…………………………………… 50

Figure 3.3 CSA trees for 3,4, and 5 operands……………………………………….. 51

Figure 3.4 Modular exponentiation description..................................………………. 51

Figure 3.5 Modular Multiplier Datapath Architecture.........................……….……... 52

Figure 3.6 Modular Multiplier Hardware System...............................………………. 53

Figure 3.7 Modular architecture of the multiplier………….……………………….. 54

Figure 3.8 Basic cell (a) Schematic capture (b) Connectivity..............……………… 55

Figure 3.9 Timing diagram……………..………………... 56

Figure 3.10 A tree structure for calculating C16………….....................………………. 58

Figure 3.11 Bit slices……………………..………………. 59

Figure 3.12 12x12 bits modular multiplier layout.............................………………… 59

Figure 3.13 Control Unit………………………………………………………………. 60

Figure 3.14 Simulation results...……………….…… 61

Figure 3.15 Test chip microphoto…..……………… 62

Figure 3.16 Functional testing results…..……………… 62

Figure 3.17 Test screen photos…..………………… 66

Chapter 4.

Figure 4.1 Block diagram of the modular exponentiation operator......……………… 78

Figure 4.2 External signals……………………………………….....……….………. 85

Figure 4.3 Modular Exponentiation System Block Diagram……......……….……….86

Figure 4.4 Exponent Register……………………………………......……….……….88

Figure 4.5 Schematic Capture of the System....………………………..…….………. 89

Figure 4.6 Multiplier and Parallel to Serial Unit.…………………....……….……….90

Figure 4.7 Modular Multiplier Diagram………………………………………………90

Figure 4.8 Parallel to Serial Unit………………………………….....……….……….91

Figure 4.9 Parallel to Serial Conversion………………………….....……….………. 91

Figure 4.10 Exponent Register, control part and intermediary memory....…………….92

Figure 4.11 Schematic illustrating main control signals………….......……….……….93

Figure 4.12 Schematic of (a) Control_sig and (b) Pro_Count_Y....……….……..…. 94

Figure 4.13 Schematic of (a) Prog_Count_10 and (b) Prog_Count_6....……….……. 95

Figure 4.14 Registers array………………………………………......……….………. 95

Figure 4.15 Multiplier Subtractor Loop…………………………......……….………. 96

Figure 4.16 (a) CLU scheme (b) 32-bits Carry Look Ahead subtractor....…………. 97

Figure 4.17 Schematic of 32-bits CLA subtractor....……….……………………..…. 98

Figure 4.18 Overflow detection and Subtraction operation………....……….……..…. 99

Figure 4.19 Modular Exponentiation simulation results…………....……….……..…. 102

Figure 4.20 Modular Exponentiation simulation results…………....……….……..…. 103

Figure 4.21 (a) Automatic placement (b) Final Layout……………....……….………. 103

Figure 4.22 Core of the Cryptosystem Layout……………....……….………….……. 104

Chapter 5

Figure 5.1 Energy band structures of silicon and GaAs......................………………. 117

Figure 5.2 Carrier mobility in GaAs and Silicon..................................……………... 118

Figure 5.3 Steady state electron in GaAs and Silicon……………. 118

Figure 5.4 Steady state electron in GaAs and Silicon……………. 118

Figure 5.5 Improvements in GaAs MESFET reliability compared to silicon....……...121

Figure 5.6 SBFL three input NOR………………………………………….....……... 124

Figure 5.7 SCFL Logic Structure…………………………………………......……... 124

Figure 5.8 PRL schematic………………………………………………….....……... 125

Figure 5.9 PCFL schematic………………………………………………......……... 125

Figure 5.10 DPTL schematic…………………………………………………....……...125

Figure 5.11 Two TDFL inverters…………………………………………......……... 125

Figure 5.12 TTDL schematic………………………………………………......……... 126

Figure 5.13 SPDL schematic………………………………………………......……... 126

Figure 5.14 GaAs MESFET structure of Vitesse technology.....................…………... 130

Figure 5.15 Speed-Power performance of silicon and GaAs ICs.................………….. 131

Chapter 6.

Figure 6.1 Conventional memory cell limitations..................................……………. 142

Figure 6.2 New cell diagram...…………………. 144

Figure 6.3 Pull-up delay and current dissipation for different W ratios....……………148

Figure 6.4 Noise margin..…………………… 149

Figure 6.5 Block diagram...…………………... 151

Figure 6.6 PRL sense amplifier..…………………. 152

Figure 6.7 1 Kbit layout..……………………. 153

Figure 6.8 Write and read operations - Wave form................................……………. 154

Figure 6.9 Fully pipelined read/write timing using slow parameters............………... 155

Figure 6.10 Worst case operating conditions…………………………………………..156

Figure 6.11 Test chip microphoto...……...…………... 156

Figure 6.12 Functional testing results...……………….. 157

Figure 6.13 Sense amplifier outputs..………………… 158

Chapter 7.

Figure 7.1 DC2FL Structure...…………………... 167

Figure 7.2 Variation of charging delay versus current consumption............………… 168

Figure 7.3 Output stage schematic ..………………... 169

Figure 7.4 DC2FL inverter dc transfer curve.......................................……….……... 170

Figure 7.5 Power dissipation graph...………………….. 172

Figure 7.6 Test chip layout...………………….. 173

Figure 7.7 Current consumption at different power supply voltage…………………. 174

Figure 7.8 Current consumption waveform………………………………………….. 174

Figure 7.9 Schematic of a EMDL gate..……………….. 175

Figure 7.10 Delay and power consumption versus enable voltage level.........………... 177

Figure 7.11 Transient HSPICE simulation..……………….. 178

Figure 7.12 The 8-bits RCA...…………………... 181

Figure 7.13 EMDL and DCVS Static currents.......................................……………... 182

Figure 7.14 EMDL, DCVS and DC2FL 8-bits RCA...............................……………... 182

III. List of tables

Chapter 1.

Table I. Market of GaAs devices from 1991 to 2000.......................……………… 8

Table II. Low Power Hierarchical Design…………………………………………..11

Chapter 2.

Table I Periodicity example for some module..………… 26

Table II Periods and half periods..………….. 26

Table III Parameters of RNS with small ai and Per(Mi)............................………… 28

Table IV Factoring n difficulty...............................…………………….….………. 29

Table V. Factoring for each length of n ...………… 29

Table VI. Public-key techniques……………………………………………………. 37

Table VII. Cryptography techniques features……………………………………….. 37

Chapter 3.

Table I Techniques for speeding up the calculation.............................…………... 42

Table II Hardware implementation of modular multiplication.................………… 48

Table III Number of levels θ(r) in function of r..……….. 51

Table IV Power consumption of the control part..……… 63

Table V Power consumption of the operative part.....................................………. 63

Table VI Global power consumption…………..……… 64

Table VII Architecture performance……………...……… 67

Chapter 4.

Table I Features of some modular exponentiation algorithms.....................…….. 76

Table II A survey of Hardware implementations......................................……….. 77

Table III Number of bits of the result vs. powering size...............................………. 82

Table IV Function for big word length ………...………. 82

Table V Corrective factors..............................……………………............………. 83

Table VI Cache size………...............................……………………............………. 84

Table VII Maximum number of multiplication..............................…............………. 87

Table VIII Average number of multiplication.…........................……............………. 87

Table IX Operands of the exponentiation…..............................……............………. 99

Table X All multiplication…………….…..............................……............………. 100

Table XI From j=2 to 2d -1…..............................……..........………………………. 100

Table XII Exponent Register Fields…….…..............................……............………. 100

Table XIII Decimal and Modular Products…..............................……............………. 101

Table XIV Architecture performance …..…………………... 105

Table XV State of the art of the cryptosystems .…..………..105

Table XVI Technical characteristics of some Smart Cards systems…………………. 106

Table XVII Comparisons of computation times………………………………………. 107

Chapter 5.

Table I. GaAs / Silicon Electrical Properties....................................……………... 116

Table II Barrier height in volts for various types of semiconductors..........………. 119

Table III Circuit requirements for Very High Speed and Low Power ICs…………. 127

Table IV European GaAs Foundries - World Wide merchant market........………....129

Table V. MESFET model parameters……………………………………………….130

Chapter 6.

Table I MESFET model parameters..……………….. 152

Table II Memory cell performance...………………... 153

Table III Memory cells comparison...………………... 153

Table IV Core current consumption...………………... 157

Table V Control part current consumption......................................………………. 157

Chapter 7.

Table I. Full Adder Simulation results..……………… 171

Table II Latched full adder simulation results....................................…….……… 171

Table III 8-bit ripple carry adder simulation results................................….………. 172

Table IV Test patterns set………………………………………………………….. 173

Table V Current consumption………………………………………………………173

Table VI Full adder HSPICE simulation results....................................…………… 180

Table VII 8-bit RCA HSPICE simulation results…………… 182

1

1. Introduction.

1.1. Cryptography.

In the electronic age, information exchange that could benefit persons or groups can also be

used against such groups or individual persons. Industrial espionage among highly competitive

businesses often requires that extensive security measures be put into place. And, those who

wish to exercise their personal freedom may also wish to encrypt certain information.

Cryptography is the art or science of secret writing, or more exactly, of storing information, is

the art of encoding data in a way that only the intended recipient can decode it, and know that

the message is authentic and unchanged.

There are many reasons for using encryption techniques. Different applications that require

privacy, trust and access control, like electronic money, secure communications, passwords,

and many others, should all use strong encryption methods when possible.

A cryptosystem is a method to accomplish that. The ideal cryptosystem would be an applied

specific system for one particular purpose, which would satisfy the requirements of security,

reliability and ease-of-use : reliability means that the cryptosystem, when used as its designer

intended it to be used, will always reveal exactly the information hidden when it is needed.

Security means that the cryptosystem will in fact keep the information hidden for all those

persons intended to crack the system. Cryptanalysis is the practice of defeating such attempts to

hide information. Cryptology includes both cryptography and Cryptanalysis.

The security of a cryptosystem is always relative to the difficulty of breaking a secret message

and the conditions under which it will be used.

In general, the security of a cryptosystem can only be measured by its resistance to actual

attempts to break it in practice. Those that have resisted the attentions of many cryptanalysts for

many years may be deemed secure, at least until better methods of Cryptanalysis are invented.

2

1.1.1. Practical Cryptosystems.

Still, the methods of data encryption and decryption are relatively straightforward, and easily

mastered. A cryptosystem is designed considering that decryption can be accomplished only

under certain conditions, which generally means, only by persons in possession of both a

decryption engine and a particular piece of information called the decryption key, which is

supplied to the decryption engine in the process of decryption. All modern algorithms use a key

to control the encryption and decryption. The message can only be decrypted if the key matches

with the key used to encrypt it. The key used for decryption can be different from the key used

in encryption, and this divides the algorithms in symmetric (or secret-key) and asymmetric (or

public-key) classes.

Symmetric algorithms, also called secret-key algorithms, use the same key for both encryption

and decryption. The key is not to be leaked to outside enemies, should be changed often and be

sufficiently random. Different symmetric algorithms use different length keys, usually a longer

key means higher security. Symmetric algorithms are generally faster than asymmetric ones and

use a much shorter key.

Public key systems were developed in the 1970s to solve the problem of secure key exchange.

In this system the decryption key is not the same as the encryption key. Such public key

systems can, if used properly, go a long way toward solving the problem of secure key

exchange because the encryption key can be given out to the world without compromising the

security of communication, provided that the decryption key is kept secret.

Although public key cryptography in theory solves the problem of secure key exchange, it does

in general have a couple of disadvantages compared to symmetric (or secret) key systems. The

first is speed. Generally public key systems, such as PGP, are much slower than secret key

systems, and so may be suitable for encrypting small amounts of data. The second disadvantage

of public key systems is that there is a problem of key validation.

There are numerous public key cryptosystems, the most well known being the one based on the

RSA. Messages ciphering and digital signature are two of the most extended cryptography

applications.

The idea behind public key encryption messages ciphering, is that it is computationally

infeasible to calculate the secret key from the public key and that no information can be obtained

about the secret key from any message by knowing the public key.

Digital signatures are a way of signing data in the same way that we sign documents today.

Digital signatures cannot be forged by someone else; the signature is proof that the signer

3

signed the message; the signature is an integral part of the message and cannot be transferred to

another message; the signed message cannot be changed in any way without being detected; the

signer cannot deny signing a message after doing so.

In some cases it is possible to show that cracking a cryptosystem is equivalent to solving some

particular mathematical problem. Most implementations of public key cryptography rely on the

hard problems of factoring large numbers, it means numbers with several hundred decimal.

Whereas it is relatively easy to multiply two large primes, it is currently very difficult to factor

the result back to the two original primes. In the case of RSA algorithm, it is widely believed

that these are secure if and only if the problem of factoring large numbers is insoluble, that is,

computationally infeasible in real time.

There are few operations in mathematics that are truly 'irreversible'. In the case of the RSA

encryption algorithm, it uses very large prime numbers to generate the public key and the

private key. Although it would be possible to factor out the public key to get the private key, the

numbers are so large as to make it very impractical to do.

Modern cryptographic algorithms are meant to be executed by computers or specialised

hardware devices for which there are several different cryptographic algorithms and methods

which rely for its security on the difficulty of factoring large numbers. Traditionally, several

methods can be used to encrypt data streams, all of which can easily be implemented through

software, but not so easily decrypted when either the original or its encrypted data stream are

unavailable.

Although several methods are developed to be implemented through software, some algorithms

and protocols have been oriented to hardware implementation, more specifically, to smart cards

applications. As known, smart cards market is each time more important. The U.S. market has

lagged behind Europe and Asia in using smart cards. The companies concluded that several

factors must be combined to push smart cards successfully into the U.S. market. They included

greater interoperability and the ability to use the chip cards for unattended needs such as

telephones, parking meters, and transit systems. The smart card is currently used mostly in

Europe where it is used as a pay phone calling card or for vending machines. The United States

is beginning to see smart cards in use for GSM phones, laundry, and vending applications.

Smart cards are plastic cards with a credit card size, that have an embedded computer chip. The

card companies are eager to move to smart cards from today's standard magnetic stripes on the

back of cards so that more data or applications can be loaded onto cards. Multifunction cards

include more than one use, for example, loyalty or frequent-user programs on the same card

with e-cash, credit, and debit uses. The magnetic stripe works by encoding an identification on

4

a magnetic tape similar to how a computer writes information onto a floppy disk. This method,

though powerful, has proved to be insecure in many instances.

Magnetic cards are easy to reproduce and many use no form of encryption on their identifier.

The smart card achieves this because the card has a small yet powerful computer built into it.

This computer allows the card to interact with the card reader, not just pass information to it.

Just as there are many different uses for a smart card there are many different flavours of smart

cards not to be confused with optical memory cards.

One of the key benefits of smart cards is the ability for some cards to support on board

cryptography. Cryptographic smart cards open up a whole new realm in information security

because it now allows a secure place for storing of keys and key rings. By doing the actual

cryptography on the card, the keys never have to leave their storage place. This gives the card

holder a secure way of storing keys especially if the key pair was generated on the card. Smart

cards performing cryptographic functions can be utilised in applications such as key and

certificate verification, encryption, and random number generation between others.

Although the uses for smart cards are numerous, there is still the cost issue. Magnetic stripe

cards cost as little as 6 - 8 cents to be made, whereas a smart card can cost up to 10 to 15 times

that cost. For this reason, small size architectures without degradation of performance is very

attractive for this specific application. Modular exponentiation is the operation most widely used

in many protocols and algorithms. The design of the chip for performing modular

exponentiation based on regular and small architectures would allow to implement this function

on smart cards.

Considering that several cryptographic applications require high performance systems, low

power strategies applied to high speed technologies as GaAs must be considered.

1.2. Gallium Arsenide Technology.

Nevertheless, the world-wide semiconductor market in 1996 down 6.2 percent from 1995’s,

this market is still growing and will surpass the $ 300 billion of dollars point in the year 2001.

Semiconductor market analyst explain that the drop was due in large part to the bottom falling

out of the DRAM market in late 1995 and throughout 1996. In 1996, the world-wide

semiconductor market achieved at $ 141.7 billion of dollars. European semiconductor market

consumption revenue achieved at $ 28.5 billion and is expected to grow to $ 62.1 billions by

the year 2001. As can be seen from the Figure 1.1, where both revenue forecast and revenue by

product are presented, the expectations of growth are attractive.

5

0

50

100

150

200

250

300

350

Billions of dollars

1996 1997 1998 1999 2000 2001

Microcomponents

MemoryOther

Logic

Discrete

Analog
Opto

24%

26%

14%

13%

8%

3%

12%

(a) Revenues forecast. (b) Revenue by product.

Figure 1.1. World-wide semiconductor market. [1]

Silicon MOS technology has been the main medium for computer and system applications for a

long time and this technology will continue to fill this role. However, in Silicon MOS

technology several limitations are already becoming apparent in state-of-the-art fast digital

systems [2], due to the fact that, system level requirements quickly surpassed the performance

that silicon was able to deliver. Since a few years, in order to overcome these limitations some

developments in silicon technology have been achieved.

However, with the development of communications and more specifically portable

telecommunication and multimedia systems which require high clock frequency, logic families

as BiCMOS, GaAs and SiGe are becoming more attractive to those types of applications. For

that reason, some parallel significant advances are also beginning to take place with Gallium

Arsenide technologies.

Gallium Arsenide (GaAs) MESFETs became an enabling technology that allows overcome the

silicon limitations in ultra high speed applications. This technology has evolved and changed

over the last 30 years and has finally found its marketplace into the semiconductor's industry.

Nevertheless, some efforts are currently done in order to develop other technologies, GaAs

technology continues to play an important role in communication applications, such as: compact

cell phones, high frequency wireless base stations and global positioning systems (GPS) [3].

Gallium Arsenide’s resurgence also stems from an ever-expanding profusion of applications,

such as medical [4], analogue cellular/PCS handsets, digital cordless handsets, wireless local

loop [5], wide band CDMA, automotive [6] and radar communication (IMT 2000 system).

Analogue and discrete GaAs semiconductors continue to be a very important segment in digital

6

communications system because of the peak power, supply voltage and signal distortion

requirement.

Since a few years, digital GaAs applications have emerged in the form of one company which

has become the market leader: Vitesse Semiconductor. Vitesse has managed important growth

in an area in which digital GaAs is again an enabling technology. The company, whose process

technology is said to address the high-speed needs of telecom and datacom, reported in the third

quarter of 1998 revenue of 46.1 millions of dollars, up 67% from last year and up 15% from

second quarter of 1998 [7].

Currently, the use of compilers for digital GaAs IC design using Vitesse technology is available

[8]. Another data-path compiler for the public domain ALLIANCE CAD System has been also

developed [9].

The market for GaAs beginning 1997, started growing at 50% to 60% a year [10]. Digital GaAs

market reached over $1 billion in 1996. On the other hand, the GaAs wafer industry is expected

8 MSI (million square inches) by the year 2000. Revenue is expected to increase from $ 153

million in 1996 to over $ 400 million in 2000 [1].

The perceived European GaAs IC market from 1984 to 1994 is shown in figure 1.2. The

leading sector until the late 1980’s was analogue MMIC, but that both digital and optoelectronic

ICs will be employed increasingly in systems. The market for digital GaAS integrated circuits in

Europe increased from US $ 58.8 M in 1989 to US $ 1.088 B in 1994.

1984 - US $ 3 M

100% Analogue

1989 - US $ 140 M

42% Digital

2% Opto-electronic
42% Analogue

1994 - US $ 1.876 B

58% Digital

28% Analogue 14% Opto-electronic

Figure 1.2. GaAs ICs European market sectors [11].

7

Top four U.S. producers: Anadigics, TriQuint, Vitesse, Motorola and their homologous

Japanese are the main GaAs ICs industries, corning the GaAs IC world market. In 1992, the

top seven European producers of GaAs devices: Alenia, Alcatel, Daimler-Benz, GEC Marconi

Materials Technology, Philips Microwave Limeil, Siemens and Thomsom-CSF created into the

Eureka Program the EuroGaAs initiative which was oriented to penetrate the GaAs ICs world

market.

In 1995, the European GaAs ICs production represented only 24% of the global market but its

sales achieved hardly 10% of world market. The evolution of the captive market for GaAs ICs

is shown in table I. As can be seen, the market is growing very fast. Specifically for digital

GaAs ICs the market will be increased from 71 millions of dollars in 1991 to 681 millions of

dollars in 2000.

Table I. Market of GaAs devices from 1991 to 2000 [12].

Millon of dollars 1991 1996 2000
Digital ICs GaAs 71 324 681
MMIC GaAs 104 289 643
Discrete GaAs 176 237 341
Total 351 850 1665

However, having discussed the potential of GaAs technology, the performance of GaAs

integrated circuits with reasonable complexity must be also considered. GaAs complex systems

perform better in terms of propagation delay but not in terms of power dissipation. Power

consumption has become a critical concern in both high performance and portable applications.

Over the past years, much effort has been directed towards increasing the speed of digital

integrated circuits and decreasing the area size. Only in recent times the power consumption of

these circuits has been considered as a third constraint during their development. Currently, the

researching in high speed VLSI design has been shifted from high speed to low power

emphasis due to the proliferation and rapidly growing range of portable electronic systems

containing microelectronic devices [13]. This factor has forced a new definition of priorities and

considerations of design.

1.2.1. Low Power GaAs Circuits.

Because of GaAs technology requires also very low power dissipation a large effort has been

spent in the development of both efficient low-power GaAs technologies [14], [15] and high

speed low power GaAs logic styles [16], [17] which should allow the extension of this

attractive technology to high speed low power applications.

Several low-power GaAs circuits techniques concerning reductions in charging capacitance,

operating voltage, static current and leakage current [18], [19], [20], [21], [22], [23], [24]

8

have been published obtaining a reduction in active global power dissipation. In each case, the

speed-power product has been improved.

Methods for solving the power dissipation drawbacks in GaAs technologies are being strongly

studied. The high electronic mobility and low knee voltages of GaAs are ideal for low supply

voltage operations [25]. Low voltage operation has already been one of the most important

design issues for GaAs circuitry not only to further reduce power dissipation , but also to

ensure reliability for devices. In parallel, some important progress in power reduction,

performance and temperature tolerance in several GaAs complex systems have been obtained.

So, Low Power GaAs LSI technology is an attractive researching field in which considerable

attention is being focused. Because this is an important and growing area of electronics, in

1995, Motorola has developed a self aligned complementary GaAs technology for Low-Power,

high speed digital and mixed mode applications. The complementary GaAs (CGaAs) shows a

speed power performance of 0.01µW/MHz/gate at 0.9V in digital circuits [14].

All mentioned and recent exploratory achievements in the movement towards low power

operation seemingly give promise of future improvements. This new researching field promises

to satisfy the speed requirements of present day computers and indeed the super computers.

Low Power Gallium Arsenide technology will not displace silicon but may be used in

conjunction with silicon to satisfy the need for Ultra High Speed Integrated Circuits (UHSI).

The early years of mobile communication were based on first generation analogue systems,

such as NMT/TACS/AMPS, the development of which were regionally based in Europe and the

USA. However, worlwide there is a steady migration underway towards second generation

digital systems, driven largely by the need for increased capacity.

In Europe the migration to digital technology is based on the GSM standard which was

launched in 1992 and was rapidly adopted in Africa, the Middle East and the Asia Pacific

Region. DCS 1800 system is based on the same protocol as GSM but at twice the carrier

frequency. In the USA the move to second generation digital systems started using one of the

two competitive digital standards: TDMA (Time Division Multiple Access) or CDMA (Code

Division Multiple Access).

The different services to be offered following introduction of any digital communication system

included: short message service, calling line identification, conference calls, high speed data and

others. Additionally, there are some extra benefits such as encryption and the ability to provide

a portfolio of data related services based on digital technology [26]. VLSI circuits that accelerate

the encryption and decryption of messages using the RSA encryption technique and circuits

capable of performing long word length modulo multiplication at very high speed attract much

9

interest for cryptography applications. For that reason, designer who research to accelerate RSA

cryptographic processing are looking the high speed advantages of Gallium Arsenide VLSI

technology as an interesting alternative.

1.3. Objectives

Cryptographic methods such as encryption and decryption process and other secret

communication problems require the exponentiation arithmetic function to hidden information.

Exponentiation arithmetic function is executed as repetitive multiplication leading to the long

word length modulo multiplication operation to be the main and more frequently function to be

performed. Arithmetic operators exhibit in general a great activity and dissipate consequently a

significant share of the power supplied to a circuit. That is specifically true for a multiplier

which dissipates much more power than an adder when activated due to the fact that its design

or layout structure is not as regular as an adder.

Considering that, the ultimate performance of an integrated circuit can be substantially improved

by using a full customised macro cells library for its design (being that particularly true for

GaAs circuits where speed performance is critical, the cost of real estate is high, and design

expertise is scarce), the goal of this work is focused on developing an alternative architecture (in

CMOS technology) for executing modular exponentiation which must satisfy the requirements

of speed, power consumption and size for smart card implementation.

Also, low power design GaAs strategies to be used in arithmetic macro blocks implementation

are considered. These structures are conceived to be applied in an eventual Low Power GaAs

Cryptosystem using the same architecture. Up to now there is no arithmetic macro blocks to

complete the development of Low Power GaAs VLSI cryptosystems. Typical delay, average

power consumption and area for each function are the principal features to be characterised.

Compacts and high speed designs combined with new low power strategies which take

advantage of superior performance of GaAs are proposed looking predominantly the power

reduction constraint as a principal goal. In order to minimise the power of these ICs, different

low power methodologies are applied at different abstraction levels of the system design.

Two specific performance parameters which must be improved are consumption and operating

voltage. A reduction in current consumption and operating voltage allows to obtain a significant

reduction of power dissipation. The significance of improvement in these two parameters is the

main motivation.

This work is mainly focused on the reduction of both complexity and power consumption of a

cryptography system in CMOS and GaAs technologies. Several chips were designed

10

considering low power strategies, in order to verify the power reduction that can be achieved.

In order to minimise the power of these ICs, different low power methodologies will be applied

at different abstraction levels of the system design. So, in table II, are shown the five distinct

levels where optimisation techniques must be implemented.

Table II. Low Power Hierarchical Design.
 System design
 Algorithms
 Architecture design
 Circuit design
 Process technology

This work will contain 7 chapters. Chapter 2 presents an introduction of cryptography and

modular notation concepts which will be used along this work. Chapter 3 shows an alternative

architecture for executing modular multiplication, as well as, simulation and experimental

results of the prototypes.

Chapter 4, presents the conceived architecture for calculating modular exponentiation which is

based on multiplier proposed architecture; performance and simulations are discussed. Those

chapters describe in general the internal architecture used to compute modular exponentiation

which is the core operator of the cryptosystem. It could be also used to implement the core of a

Low power GaAs cryptosystem.

Chapter 5 discusses some important characteristics of GaAs technology and comparison on

silicon, the general concepts which will be used for implementing a low power GaAs functions

as well as the low power techniques used in each design.

Cache-memory play an important role in the overall power-efficiency of a cryptographic

system, since it can reduce the data traffic between the arithmetic operator and external memory.

For this reason, we study in chapter 6 a novel Low Power GaAs memory cell. So, as on-chip

memory accesses consume significantly less energy than accesses to off-chip memory, this cell

is appropriated to implement cache high speed memories. Chapter 7 analyses two asynchronous

structures to design low power GaAs arithmetic circuitry. Both approaches were verified

through two full custom eight bits ripple carry adders obtaining significant power consumption

reduction.

The low power functions will be designed with Vitesse III technology (0.6 µm - GaAs) using

the design kit of Vitesse on Cadence environment. All experimental measures were done at

CIME Test Department. The test chips were fabricated through CMP Service. Part of the

research was supported by GARDEN (Galium Arsenide Reliable Design Environment) ESPRIT

project CT93-0385.

11

1.4. References

[1] E.J. Lum, "GaAs semiconductors: New market opportunities and emerging applications

trends.", Invited paper, Proc. IEEE 5th European Gallium Arsenide and related III-V

compounds Applications Symposium, Bologna, Italy, Sept., 1997.

[2] K. Eshraghian, "Gallium Arsenide Integrated Circuits Design", Internal Report,

Electronics Laboratory of the Swiss Federal Institute of Technology, Lausanne,

Switzerland, April, 1989.

[3] E. Fishkill, IBM Eyes Merchant Packaging Services, Hebdo, Electronic Engineering

Times, N.Y., July 13, 1998.

[4] K. Carr, “Use of Gallium Arsenide in Medical Applications”, IEEE GaAs IC

Symposium, USA, 1995.

[5] M. Mitama, "Mobile Communications Systems Trend in Japan and Device

Requirements", IEEE GaAs IC Symposium, USA, 1995.

[6] A. Colquhoun, H. Meinel, “Automotive Applications of GaAs Components”, Proc. IEEE

European Gallium Arsenide and related III-V Compounds Applications Symposium,

Paris, France, 1996.

[7] Margaret Quan, Motorola, AMD Post Losses, Hebdo, Electronic Engineering Times,

Finance, pps. 78-79, July 13, 1998.

[8] R. Oettel, “The use of Compilers for Digital IC Design”, IEEE Gallium Arsenide IC

Symposium, USA, 1993.

[9] O. Beaurin, A. Amara, “A GaAs Data-Path Compiler”, Proc. IEEE European Gallium

Arsenide and related III-V Compounds Applications Symposium, Paris, France, 1996.

[10] L. Armstrong, O. Port, S. Brull, “GaAs Guzzlers on the Info Highway ?, Science and

Technology, Business week , August 19, 1996.

[11] "Critical Design Issues for GaAs VLSI Circuits", Internal Report, Microelectronic Center,

Middlesex University, London, UK, June, 1991.

[12] L. Stéphan, "L’Europe devient compétitive en circuits GaAs ", Hyper 97, Electronics

International, Hebdo, No. 248, January, 1997.

[13] A.P. Chandrakasan, R.W. Brodersen, "Low Power Digital CMOS Design", Kluwer

Academic Publishers, 1995.

[14] B. Bernhardt, M. LaMacchia, J. Abrokwah, J. Hallmark, R. Lucero, B. Mathes, B.

Crawforth, D; Foster, K. Clauss, S. Emmert, T. Lien, E. Lopez, V. Mazzota, B. Oh,

“Complementary GaAs (CGaAs): A high performance BiCMOS Alternative”, IEEE GaAs

IC Symposium, USA, 1995.

12

[15] H. Fawaz, J.F. Thiery, N. Linh, F. Mollot, J. Pesant, M. Francois, M. Muller, E.

Delos, G. Salmer, “III-V Complementary HIGFET technology for low power microwave

and high speed/low power digital integrated circuits”, Proc. IEEE European Gallium

Arsenide and related III-V Compounds Applications Symposium, Paris, France, 1996.

[16] A. Chandna, R. Brown, D. Putti, C.D. Kibler, "Power Rail Logic: a Low Power Logic

Style for Digital GaAs Circuits. IEEE Journal of Solid-State Circuits. Vol.30, No.10,

October, 1995.

[17] K.R. Nary, S. Long, "GaAs Two-Phase Dynamic FET Logic: A Low Power Logic

Family for VLSI”, IEEE Journal of Solid-State Circuits. Vol.27, October, pp. 1364-71,

1992.

[18] R. Kanan, B. Hochet, M. Declerq, "Pseudo-Complementary FET Logic (PCFL): A Low

Power Logic Family in GaAs”, IEEE Journal of Solid-State Circuits. Vol.31, No.7,

July, 1996.

[19] P. Lassen, S. Long, K. Nary, "Ultra-Low Power GaAs MESFET MSI Circuits using

Two-Phase Dynamic FET Logic”, IEEE Journal of Solid-State Circuits. Vol.28, No. 10,

October, pp. 1038-45, 1993.

[20] V. Chandramouli, N. Michell, K. Smith, "A New, Precharged, Low-Power Logic

Family for GaAs Circuits”, IEEE Journal of Solid-State Circuits. Vol.30, No. 2,

February, pp. 140-43, 1995.

[21] D.H.K. Hoe, A.T. Salama, “Pipelining of GaAs Dynamic Logic Circuits”, Proc. IEEE

International Symposium on Circuits and Systems, San Diego, USA, May, 1992.

[22] H. Kawasaki, "A Low Power 128x1-bit GaAs FIFO for ATM Packet Switcher” IEEE

Journal of Solid-State Circuits. Vol.31, No.10, October, 1996.

[23] R. Kanan, A. Guyot, B. Hochet, M. Declerq, "A Divided Decoder-Matrix (DDM)

Structure and its Application to a 8Kb GaAs MESFET ROM", Proc. 30th IEEE ISCAS,

Hong Kong, 1997.

[24] D. Abbott, K. Eshraghian, “SiGe versus GaAs - Is there a challenge ?”, Proc. IEEE

European Gallium Arsenide and related III-V Compounds Applications Symposium,

Paris, France, 1996.

[25] C. Huang, "GaAs ICs for 3 volt Electronic", Proc. of the IEEE 5th European Gallium

Arsenide and related compounds Applications Symposium, Bologna, Italy, Sept., 1997.

[26] K.M. Baughan, "The wireless Communication Market - Is there a Place for GaAs", IEEE

GaAs IC Symposium, USA, 1995.

15

2. Modular Notation and Cryptography.

2.1. Introduction

Most of cryptography applications such as key public cryptosystems incorporate a

exponentiation unit to implement algorithms for executing modular operations. The most widely

used operations are addition, multiplication and exponentiation. The numbers to be operated are

usually represented in modular representation. In this chapter we will briefly introduce the basic

concepts of modular arithmetic as well as some general concepts of cryptography including

some known protocols in order to familiarise oneself with a language.

The development of computer controlled communication networks promises effortless and

inexpensive contact between people or computers on opposite sides of the world, replacing

most mail and excursions with telecommunications. For many applications these contacts must

be secure against both eavesdropping and the injection of illegitimate messages. Secret digital

writing is being used to avoid message transformations. Techniques to avoid eavesdroppers

actions are known as cryptography . The word comes from the Greek words kryptos

(“hidden”) and graph (“writing”). The history of cryptography dates far back. The Spartans

used the “scytale” method as early as 400 BC. Secret writing has been used by many ancient

societies to protect information beyond typical methods.

Currently, cryptosystems are more frequently required in applications as remote cash

dispensers, high speed computer terminals, authentication, digital signatures and private

communication between others. In Europe, the new Smart Card Microcomputer Center will

orient their principal applications to bank and telecommunications security, developing a

cryptoprocessors family [1].

16

Due to the fact that, several of cryptography applications use satellite communication where

principally radiation tolerant integrated circuits are needed, cryptography systems are also

included into the market behaviour of GaAs digital integrated circuits which will be doubled in

the next four year [2].

2.2 Concepts

Several concepts are used in cryptography. First of all, we will define the terms more frequently

used, in order to manipulate a common language:

- Cryptography may be considered as the art and science of both keeping messages secure and

reading messages meant to be secure. In other words, is the study of secret writing and is used

to protect the exchange information between people or computers.

- Encryption (encode) and decryption (decode) are two inverse procedures always used in

cryptography operations. The procedures allow to cipher or decipher a message to be

transmitted through public channels.

- Cryptology is the study of encryption and decryption methods. Is the branch of the

mathematics embodying the art and science of both keeping messages secure and reading

messages to be secure.

- Cryptanalisys consist in breaking a single secret message. To recognise patterns in order to

develop decryption algorithms, find general weakness in encryption algorithm.

In terms of security, two concepts are frequently used: unconditionally secure is a system

which can resist any cryptanalytic attack and is based on the existence of meaningful solutions

to a cryptogram. The another term is computationally secure which denotes a secure system due

to the computational cost of cryptanalysis.

2.3 Applications

In cryptography, mathematical systems are studied in order to solve two security problems:

i. Privacy or secrecy requires that an intruder should not be able to determine the plain text

corresponding to given cipher text and should not be able to reconstruct the key by examining

cipher text for known plain text. In other words, to prevent the extraction of information by

unauthorised parts (ciphering messages). The message must not be vulnerable to eavesdropping

or alteration.

17

ii. Authentication requires that the sender can validate the source of message, that means that

it was transmitted by a properly identified sender and is not a reply of a previously transmitted

message. We can identify two aspects:

- Message authentication or integrity requires the ability to insure that a message

was not modified accidentally or deliberately in transit, by replacement, insertion or

deletion. It is used to prevent the unauthorised injection of messages into a public

channel.

- User authentication service is used to verify that an individual is who he claims

to be. Also is a protection against a sender of message later denying transmission. It is

also known as non repudiation service or digital signature.

The security problems which must be solved by cryptography systems are the insecurity of the

publics channels (eavesdropping, injection of illegitimate messages) and authentication

(illegitimate messages, digital signatures).

Strong security levels are required in applications as: remote cash dispensers, computers

terminals, image compression, access control, authentication, confidentiality protection, key

exchange, digital signatures, distributed network security management, private communication

and hybrid systems.

2.4. Mathematical basis.

The mathematical fundament of the modern cryptography are functions of difficult inversion

like as one-way functions, trap-door one-way functions, hash functions and one-way hash

functions.

2.4.1 One-way functions

The one-way functions are easy to compute but difficult to invert. So, given some variable x
and a one-way function f, is easy to compute f(x), but given f and f(x) is difficult to compute

x . However, there is no proof that one-way functions exist. Mathematical discoveries are

showing that more and more functions considered initially as one-way, are no longer so.

2.4.2 Trap-door one-way functions

Trap-door one-way functions are a subset of one-way functions. For these functions, giving a

secret piece of information makes easy to compute the inverse of the function.

18

2.4.3. Hash functions.

Hash functions are usually many-to-one functions. They are used to characterise a larger piece

of data. A Hash function accepts a variable-size message X as input and outputs a fixed-size

representation H(X) of X, sometimes called a message digest. In general H(X) will be much

smaller than X. H(X) might be 64 or 128 bits, whereas X might be a megabyte or more.

2.4.4. One-way hash functions.

These type of functions are both one-way and hash functions as explained below. They are also

known as compression function, cryptographic checksum, manipulation detection code,

message authentication code, data integrity check or contraction functions.

The one-way hash function has the additional property that given a hash value y, it is difficult

to find a value x such that f(x) = y. There are also hash functions that require a key. Given k

and x, you can compute y, but having any other combination of data does not provide enough

information to easily compute any other data. Additionally, one-way hash functions used in

cryptography are random. Each change in any bit of the input, changes in average half of the

bits in the output. For this reason, one-way hash functions can serve to detect modification of a

message, that is to say, it can serve as a cryptographic checksum.

One-way hash function presents as input a string of arbitrary length and its output is a unique

fixed length number. Example MD5 produces 128-bits hash value. One way property consists

in making computationally infeasible to find two documents with same hash. The properties of

one-way hash functions can be summarised as:

- f can be applied to an argument of any size.

- f produces a fixed-size output.

- f(x) is relatively easy to compute for any given x.

- For any given y, it is computationally infeasible to find x with f(x) = y
- For any fixed x, it is computationally infeasible to find x’≠x with f(x)’ = f(x).

The security of public key systems depends on the fact that the public transformations are

trapdoor one-way functions. Trapdoors permit decoding by recipients. The modular arithmetic

facilitates the wrapping concept. In next section the principal terminology and basically theory

of modular arithmetic will be discussed.

2.5. Modular Arithmetic

19

2.5.1. Introduction

In normal arithmetic, operations like adding or multiplication present usually an important

increasing output natures for each increasing input pattern set. This is not necessarily true in

modular arithmetic. Modular arithmetic is an interesting and viable alternative for doing

arithmetic on large integer numbers.

This “other” arithmetic is based on some simple principles of number theory. It is possible to

represent any integer number X , using several module m1, m2, m3,, mh, that

contain not common factors:

x1 = X mod m1,
x2 = X mod m2,

.

.
xh = X mod mh

Now, having the complete modular representation, it is possible to operate indirectly with
“residues” obtained: X mod m1, X mod m2,,X mod mh, instead of directly with the

number X. It is easy to compute (x1, x2, x3,, xh) from an integer number X, without

lost of information in this process. If xi equals the remainder of X divided by mi, then modular

arithmetic expresses this as: Xmodmi = x i and is read “X modulo m i equals xi” [3] or can

also be expresses as X ≡ ximodmi, and is read “X is congruent to xi modulo mi” Additionally

the notation X≡Y mod M means that M divides X - Y that is X and Y lie in the same residue

class modulo. ModM denotes a number Y such that X≡Y mod M.

2.5.2. Modular arithmetic operations.

Modular arithmetic can be added, subtracted, multiplied and exponentiated, the equivalent of

repeated multiplication. Modular arithmetic satisfies the following properties for all residues α
obtained from a division by an integer M expressed in radix r , that remainders form what is

called the ring of residues modulo M.

i. (α + 0) = (0 + α) = 0 (3)

ii. α + (M - α) = 0 (M - α is the additive inverse of α) (4)

iii. α.1 = 1. α = α
(5)

iv. α.α-1 = α-1. α = 1 (α-1 is the multiplicative inverse of α) (6)

v. (M - 1) mod M = -1 (7)

20

vi. (x + y) mod M = ((x mod M) + (y mod M)) mod M (8)

vii. (x - y) mod M = ((x mod M) - (y mod M)) mod M (9)

viii. (x . y) mod M = ((x mod M) . (y mod M)) mod M (10)

ix. (x exp y) mod M = ((x exp (y-r) mod M) . (x exp r mod M)) mod M (11)

From mentioned properties we have:

- If XYmod M = R then (XS)Ymod(MS)div S = R (12)

- X R-1 + Y R-1 ≡ S R-1mod M if and only if X + Y ≡ S mod M (13)

One can not divide congruencies in all cases. Another interesting and remarkable property

consists in that for any pair of relatively prime integers, multiples of each can always be found

such that their difference is unity. In other words, there always exists some multiple of an

integer p which leaves a remainder of one when divided by another integer prime to it. The

multiplier of p is always a smaller number than the divisor of the product.

x. (a . x) - (b . y) = 1 (14)

This property brings us to the inverse modulo function which is equivalent to finding a number

such that:

xi. (y .x)modM = 1 or y.x ≡ 1modM (15)

For cryptographic applications, we want M to be as large as possible, it is easiest to let m1 be

the largest odd number, and to let m2 be the largest odd number minor than m1 that is

relatively prime to m1.

2.5.3. Underlying functions

2.5.3.1. Euler and Fermat totient function

Also known as only Euler totient function or Euler Φ function. Euler and Fermat identity are

considered as a way to choose the large random numbers m1 and m2. For any integer message

X which is relatively prime to M, it means, gcd(X, M) = 1 then XΦ(M)modM = 1. Let Φ(M) be

the Euler totient function giving the number of positive integers smaller than M which are

relatively prime to M. Unlike Fermat’s little theorem, M does not have to be prime. For this

reason Euler totient function is refereed to as Euler’s generalisation of Fermat’s little theorem.

The Euler totient function presents the following properties for any integer (message) X:

21

i. Euler totient function is multiplicative, so, if Φ(m1)=x and Φ(m2)=y, then Φ(m1m2) = xy.

ii. If m1 is prime, then Φ(m1) = m1-1, since all numbers smaller than a prime are not divisors of

prime.
iii. Then, if M = m1m2, where m1 and m2 are primes we can write Φ(M) = Φ(m1)Φ(m2) and

Φ(M) = Φ(m1-1)Φ(m2-1), so, Φ(M) = M - (m1 + m2) + 1.

So, if we choose a given number d which is relatively prime to Φ(M), it has a multiplicative

inverse e in the ring of integers modulo Φ(M). It is denoted as e.d ≡ 1modΦ(M). Euclid's

algorithm allows to calculate that.

2.5.3.2. Euclid’s Algorithm.

The Euclid's algorithm [4], is very useful in modular arithmetic and basically is used to
calculate the greatest common divider (gcd) of two integer numbers r0 and r1, allowing also to

compute the inverse multiplicative of a number. The algorithm is shown below:

r0 = q1r1 + r2 0 < r2 < r1
r1 = q2r2 + r3 0 < r3 < r2
r2 = q3r3 + r4 0 < r4 < r3

. .

rm-2 = qm-1rm-1 + rm 0 < rm < rm-1

rm-1 = qmrm

gcd (r0, r1) = gcd (r1, r2) = gcd (r2, r3) =........... = gcd (rm-2, rm-1) = gcd (rm-1, rm) = rm
Then gcd (r0, r1) = rm

Euclid’s algorithm can be used to determine if a positive integer b < M, has its module M
inverse multiplicative, that is ∃τ such that τ.bmodM = 1. Replacing r0 = M and r1 = b it is

possible to know the existence of the inverse multiplicative.

Theorem: Let t0,t1,.........tm .be a sequence of recurrences:

t0 = 0

t1 = 1
 .
 .

tj = tj-2 - qj-1tj-1mod r0 if j ≥ 2.

For each j, such that 0 ≤ j ≤ m, we have a rj ≡ tj r1 mod r0 where rj and tj are defined as

below:

22

By mathematical induction procedure we assume that is true for j = 0 and j = 1 and then

we proof that is true for j = i - 1 and j = i - 2, i ≥ 2.

ri - 2 ≡ ti - 2 r1 mod r0
ri - 1 ≡ ti - 1 r1 mod r0

Then we have:
ri = ri - 2 - qi - 1ri - 1
ri ≡ ti - 2 r1 - qi - 1ti - 1r1 (mod r0)

ri ≡ (ti - 2 - qi - 1ti - 1) r1 mod r0
ri ≡ ti r1 mod r0

As a corollary of the last theorem we have that: if gcd (r0, r1) = 1, then tm = r1
-1 mod r0

The inverse modulo function is that number which multiplied by the original number gives one

as the remainder x ≡ y-1 modn. If y and n are relatively primes then x = y-1modn has a unique

solution, on the contrary if y and n are not relatively primes the equation has not solution. If n is

a prime number, then every number from 1 to n-1 is relatively prime to n and has exactly one

inverse in that range. The Euclid’s algorithm which is used to find the inverse multiplicative in

modular representation can be expressed as:

n0 <----- n
b0 <----- b
t0 <----- 0
t <----- 1
q <----- n0 / b0
r <----- n0 - q x b0
While r > 0 do

temp <---- t0 - q x t

If temp ≥ 0 do temp <---- temp mod n

If temp ≤ 0 do temp <---- n - ((-temp) mod n)
t0 <----- t
t <----- temp
n0 <----- b0
b0 <----- r
q <----- n0 / b0
r <----- n0 - q x b0

If b0 ≠ 1 then the inverse multiplicative of b does not exist

If b0 = 1 then b-1 mod n = t

2.5.3.3. Fermat theorem

For any number x, which is not divisible by its exponent p, which is a prime number, in

general we have that: if xp - x = y then y is divisible by p.

23

Now, factoring: xp - x = x(xp-1 - 1) = y, being the entire expression divisible by p, but x is

not divisible by p, so (xp-1 - 1) is divisible by p. The Fermat theorem is: if x is any integer not

divisible by the prime p, then (xp-1 - 1) is divisible by p. In other terms: xp-1 ≡ 1mod n. It is

also known as a Fermat’s little theorem. Can be also expressed as: if for any prime p and any

element a , a < p :

i. apmodp = a or ap-1modp = 1

ii. axmodp = 1 Combining axmodp = 1 = ap-1modp or

iii. x = ap-2modp

This type of representation, is also known as residue arithmetic or modular arithmetic ,

which uses the residue number system representation.

2.5.4. The residue number system.

The residue number system is an integer number system whose most important property is that

additions, subtractions and multiplication are inherently carry-free, allowing add, subtract or

multiply numbers in one step regardless of the length of the number involved [5].

A residue number system is characterised by a base that is not a single radix but an h-tuple of
integers (m1, m2, m3,, mh) where each of these mi (i = 1, 2, 3, h) is called a

modulus or module. An integer X is represented in the residue number system by an h-tuple
(x1, x2, x3,, xh) where xi is a nonnegative integer satisfying:

X = mi qi + xi

(16)

where xi is the largest integer such that: 0 ≤ xi < mi, xi is known as the residue of Xmodulomi.

Next two notations: Xmodmi and Xmi
 are commonly used. As can be seen the number X

does not have to be a positive integer but can be negative as well.

It is easy to compute (x1, x2, x3,, xh) from an integer number X by means of divisions

and it is possible to recompute X from (x1, x2, x3,, xh) provided that 0 ≤ X < M, where

M is the least common multiple (lcm) of the basis xi. Satisfying the last condition we can say

that the residue representation is unique, however the converse is not true. Residue

representation is periodic and for that reason the range must be limited to include the numbers

wanted. The number of the elements in the useful range is the least common multiple of the

module. To get the largest range we must select a module which factors are relatively prime.

24

In cryptography applications, residue number system can be used to compute multiplication and

exponentiations module a very large M, where M requires hundreds or a few thousands of bits.

It is the appropriate and more frequently number system used to implement higher speed

performed cryptosystems.

2.5.4.1. Advantages of RNS

Residue arithmetic or modular arithmetic allows to implement a simple and fast realisation of

addition, subtraction and multiplication. These operations must be performed on relatively short

operands. Residue number system shows an easy range extension increasing the number of

modules or their magnitude. Another advantage consists that in hardware implementation some

modularity can be achieved. The system is also inherently parallel.

2.5.4.2. Disadvantages of RNS.

The residue number system is not weighted and for this reason some disadvantages are present

in this notation system. The disadvantages of a modular representation are that it is

comparatively difficult to test whether a number is positive or negative (sign detection) or to test
whether or not (u1, u2, u3......,u r) is greater than (v1, v2, v3,......,v r) (magnitude

comparison).

Additionally, intermodular operations as scaling and division are difficult to implement. It is

also difficult to detect an overflow when operations as addition, subtraction or multiplication

have been executed. Algorithms using sign detection must be avoided.

From the point of view of hardware implementation, extra converters are needed. Binary -

Residue converters for inputs and Residue - Binary converters for outputs. Also extra bits are

needed to represent numbers, that means extra input and output lines.

The amount of time required to add, subtract or multiply n-digit numbers using modular

arithmetic is essentially proportional to n (not counting the time to convert in and out of modular

representation). This is a disadvantage if let consider add and subtract operations, but it is a

remarkable advantage with respect to multiplication.

Modular representation can be justified only if fast means of conversion between modular and

positional notation are available. Due to the periodic representation of residue, we must limit the

25

range of numbers to include only numbers such that X < M. This is a consequence of the

Chinese remainder theorem.

2.5.5. Chinese Remainder Theorem.

This theorem also known as theorem C, was apparently first stated and proved in its

generality by Chin Chiu Shao (1247), but a very special case of this theorem had been already

stated by the Chinese mathematician Sun Tsü probably between 280 and 473 [6]. The Chinese

Remainder Theorem is a method to solve the congruence problems.

Theorem C:

Let m1, m2, m3,......., mh be positive integers that are already prime in pairs, that

means, gcd (m i , m j) = 1 when j ≠ k, and let a, m1, m2, m 3,......., mh be

integers.

Then there is exactly one integer X that satisfies the conditions:

a ≤ X < a + M, and X ≡ xi (mod mi) for 1 ≤ i ≤ h

With M = m1.m2.m3.....mh

In other words, by Chinese remainder theorem we can express:

 h
X = ∑ Qj Xj mod M where Qj = (M/mj)

mj - 1 mod M (17)
 j = 1

As a consequence of theorem C , it is possible to use modular representation for numbers in any

consecutive interval of M = m1m2m3.......mh integers. Numbers out of this range would

have a repeated representation, that means, the residue representation is periodic. In general, the

residue representation is unique, however the converse is not true due to its periodicity.

2.5.6. Periodicity properties.

The period of the odd module M denoted P(M), is the minimum distance between two distinct

1’s in the sequence of residues of powers of 2 taken mod M:

P(M) = min { i / i > 0 and 2iM = 1 }

(18)

The half period of the module M , denoted as HP(M) is the minimum distance between a pair

of subsequent 1 and M - 1 in the sequence of residues of powers of 2 mod M. P(M) exists for

26

any M, but HP(M) exists for some M only and then 2HP(M) = P(M). In table I, we can see

some periodicity example for some module. In table II, the period and half period for each case

[7].

Table I. Periodicity example for some module.
i 0 1 2 3 4 5 6 7 8 9 10 11 12

2i 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

2i3
1 2 1 2 1 2 1 2 1 2 1 2 1

2i5
1 2 4 3 1 2 4 3 1 2 4 3 1

2i7
1 2 4 1 2 4 1 2 4 1 2 4 1

2i9
1 2 4 8 7 5 1 2 4 8 7 5 1

2i11
1 2 4 8 5 10 9 7 3 6 1 2 4

Table II. Periods and half periods

i P(M) HP(M)

2i3 M(3) = 2 HP(3) = 1

2i5 M(5) = 4 HP(5) = 2

2i7 M(7) = 3 HP(7) = ∝

2i9 M(9) = 6 HP(9) = 3

2i11 M(11) = 10 HP(11) = 5

HP(M) and P(M) can be calculated by using the following recursive equation.

2iM = 22i - 1MM (19)

The global measure of periodicity is:

Per(M) = min {HP(M) , P(M) } (20)

Due to the fact that, periodicity properties allow an extensive use of some arithmetic functions

like carry-save adders (CSAs), and carry-propagate adders (CPAs) with end-around-carry

(EAC), we will briefly mention some additional periodicity properties:

i. The equations to compute HP(M) and P(M) for some M.

HP (2i - 1
 + 1) = (i - 1) (21)

P (2i - 1
 + 1) = 2(i - 1) (22)

If M = kB with k and B odd, then P(M) is a multiple of P(B).

27

ii. For periodicity measures the following inequalities hold:

- a ≤ P(M) ≤ M - 1 (23)

- If HP(A) exits, then a - 1 ≤ HP(M) ≤ (M - 1) (24)

- Per(M) ≤ (M - 1) / 2 (25)

iii. The concept of the period of M allows to generalise the identity.

from: 2ta2
a - 1 = 1, t nonnegative integer (26)

to: 2tP(M) + iM = 2iM t is any nonnegative integer (27)

which holds for any M.

iv. Similarly, given an odd M with HP(M) ‹ ∝, with the concept of the half-period of M, the

well known identity:

2t(a - 1)
 2

a - 1 + 1 = (-1)t , (28)

is generalised to: 2tHP(M) + iM = (-1)t2iM, (29)

As mentioned before, the residue representation is periodic and for this reason the range must

be limited to include only the needed numbers. The number of the elements in the useful range

would be the least common multiple (l.c.m.) of the basis: M = l.c.m (m1m2m3.......mn). So,

to get the largest range we must select a module which factors are relatively prime, two module

mi and mj are said to be relatively prime if:

gcd(mi, mj) = 1 where gcd is the greatest common divisor.

So, if all module are relatively prime, the M range will be optimised, and:

 n
M = ∏ mi (30)
 i=1

Writing as XmodM, the result produces numbers from 0 to n - 1. In table III, can be seen

the range for different module and periods.

Table III. Parameters of RNS with small ai and Per (Mi)

maxi {ai} Max i {Per(Mi)} RNS Range

28

4 4 { 5, 7, 9, 16 } 1.23 . 212

4 5 { 5, 7, 9, 11, 16 } 1.69 . 215

4 6 { 5, 7, 9, 11, 13, 16 } 1.37 . 219

5 4 { 5, 7, 9, 17, 32 } 1.30 . 217

5 5 { 5, 7, 9, 11, 17, 31, 32 } 1.74 . 225

5 6 { 5, 7, 9, 11, 13, 17, 31, 32 } 1.41 . 229

6 7 { 5, 7, 9, 11, 13, 17, 31, 43, 64 } 1.89 . 235

7 7 { 5, 7, 9, 11, 13, 17, 31, 43, 127, 128

}

1.87 . 243

As next useful concept, we will define θ(r) as the minimum number of logic levels on a CSA

tree with r inputs.

2.6. Algorithms

As can be seen from the next summary, all algorithms used in cryptography involve the

modular exponentiation procedure. The security of this scheme is based on the complexity:

- Of computing the discrete algorithms,

- Of big numbers factorisation.

The NP (nondeterministic polynomial) complete problems show promise for cryptographic use,

but no security has still been proved, additionally are too difficult to implement in hardware.

2.6.1. Discrete logarithm problem.

One of the most important one-way functions in cryptography is based on the discrete logarithm

problem in the finite Galois field GF(p). Given a large prime p and a primitive element α ∈

GF(p), it is feasible to compute the value of y = αx
, using Θ (logx) modular multiplication.

It is however infeasible to compute the value of x, given y, α and p.

For the solution of this discrete logarithm problem long integer multiplication are needed.

Similar discrete logarithm problem can be found in finite fields GF(pk) of prime characteristic p

or in the group of points on an elliptic curve.

2.6.2. Factoring.

29

For a given number n, the difficulty of factoring it is related with the required time to

transformate the number and with the performance/costs of the computation machines. In table

IV, this situation is illustrated.

Another interesting considerations are shown in table V. Considering a super computer

performing a million operations per second, and that a network of a million of such computers

is assigned the task, it will take the time shown in table V to execute the factoring for each

length of n.

Table IV Factoring n difficulty.
n(bits) $ Machine Time

100 $ 25.000 2 weeks
150 $10.000.000 1 year
200 $ 10.000.000.000 1 year

Table V. Factoring for each length of n
n Digits # oper. Years

512 154 ------- -------
664 200 1023 3700

1028 308 ------- 1010

2.7 Types of Cryptosystems

A cryptographic system is a single parameter family {SK} Kε{K} of invertible transformations SK

: {M}-->{C}, from a space {M} of plaintext messages to a space {C} of ciphertext messages.
Where M and C are the original and encrypted messages respectively: M = (m1, m2.....mn) and

C = (c1, c2, c3,cn). The parameter K is called the key and is selected from a finite set {K}

called the keyspace [8]. In private communication applications using public channels, two

different approaches have been proposed to transmit information without compromising the

security of the system: public key distribution system or also known as symmetric key

system and public key cryptosystem, also known as asymmetric-key system.

2.7.1 Public key distribution system

In this approach, two users must exchange a key over a secure channel and then use it for both

enciphering and deciphering messages. These users can only use one key in common being

computationally infeasible to compute the key from the information overhead. In figure 2.1 the

scheme is illustrated.

30

Figure 2.1 Symmetric key cryptosystem

With this system a separate key is needed for every pair of users, that means that, n potential

keys to be transmitted would be required if exist n recipients. Then n(n - 1)/2 keys would be

required for n users.

As can be seen from the graph, a transmitter generates a plain text or unciphered message M to

be communicated over an insecure channel to the legitimate receiver. To prevent the
eavesdropper, operates on M with an invertible transformation SK to produce the ciphertext or

cryptogram C= SK (M). The key K , is transmitted only to the legitimate receiver via a secure

channel. The receiver knows K , so, he can decipher C by operating SK
-1

 to obtain the original

message M . In the figure Mˆ represents a non authorised decrypted message.

SK
-1

(C) = SK
-1

(SK (M)) = M (1)

In this system of cryptography, data are encrypted and decrypted using the same key. So, we

have that, for a symmetric system where only one key is used: M = D(K, E(K, M)) . The

strength of this scheme largely depends on size of key. The system is much closer to realisation

and is useful in one-way authentication systems. The drawback of the system consists in that a

secure channel to send the private key is needed. Classical examples of implementation are

Caesar cipher, one time pad, Enigma. Also, several fast and tested algorithms are available,

like, DES, RC4, IDEA.

2.7.2. Public key cryptosystems

The first Public Key Encryption algorithm was proposed by Whitfield Diffie and Martin

Hellman in their seminal paper [8]. Also, Ralph Merkle independently presented the concept in

1976 [9]. Public key transformation is one way encryption with a secret way to decrypt. In this

system each user places in a public file an encryption procedure E. The directory giving the

encryption procedure of each user is a public file. On the other hand, the user keeps secret his

Source

Cryptanalyst

Key

M

K K

C = SK(M) M = SK-1(C)
..........

...............................

Message

M

Message Receiver

31

corresponding decryption procedure D. So, enciphering and deciphering processes are

governed by distinct E and D procedures which must satisfy:

i. D(E(M)) = M

ii. E(D(M)) = M

iii. Both E and D must be easy to compute.

iv. Revealing E, the user does not reveal an easy way to compute D.

So, computing D from E is computationally infeasible, about 10
30

 instructions considering

200-bits number representation. This will be discussed in section 2.7.3.1. This approach is

more powerful and eliminates the need for a secure key distribution channel. For an asymmetric

system where the keys are different we can write

M = D(K D, E(KE, M))

(2)

In figure 2.2, this approach is represented.

Figure 2.2. Public key cryptosystem

Each user has a key pair, a public key and a private key. Each user’s public key is listed in a

public directory and must carefully guard his private key against disclosing. Anything encrypted

with one key may only be decrypted by the other. To make message readable only by B,

encrypt it using B’s public key. Public key encryption relies on the difficulty of factoring a very

large number. The public and private keys are usually functions of a pair of large prime

numbers.

This general scheme allows to implement several protocols oriented to ciphered messages

and/or authentication procedures. It is slower than symmetric cryptography. Between others,

some of the most popular protocols are RSA, ElGamal, Fiat-Shamir, etc. Some of them will be

briefly presented.

Source

Cryptanalyst

Transmitter Receiver

Key 1

M
C = SK(M) M = SK-1(C)

..........

Key 2

Message

M

32

2.7.2.1. RSA encryption and signature protocol

The RSA protocol is named after its three inventors, Ron Rivest, Adi Shamir and Leonard

Adleman [10], who first introduced and patented the algorithm in 1978. RSA system offers

high security, but its speed is quiet low, the method does not readily lend itself to efficient

implementation in hardware, limiting the range of potential applications. RSA encryption

function consists in computing C = X
e
modM, where M = pxq being p and q very large random

primes (p and q remain secret). The RSA algorithm is based on the difficulty of prime

factorisation of large integers. The modular exponentiation of the plaintext X, produces the

ciphertext C using the encryption key e.

The public key is composed by M and a number e relatively prime to (p-1)(q-1). An integer d is

computed from e, p, and q, to be a multiplicative inverse of e.mod(p-1)(q-1). It means that a

private key is computed as d = e-1mod(p-1)(q-1). The encryption process consists in computing

c = xemodM while the decryption process computes x = cd modM.

As can be seen, the decryption process is also a modular exponentiation using the secret key. In

general, compute X
e
modM require both 2log2e multiplication and 2log2e divisions. The RSA

cryptosystem is considered secure if the integers X and M have several hundred decimal digits.

2.7.2.2. ElGamal protocol

The ElGamal protocol [11] consists of a s secret key and a public key which is composed by:

the prime number p, an integer number αmodp and the P integer number modulo p: P = αs.

The scheme is shown in figure 2.3. This digital signature algorithm is 10 to 40 times slower

than RSA for signature verification. Additionally, it has been criticised because of its short key

length.

Figure 2.3. ElGamal representation protocol.

Transfer (C1, C2)

C1 = αamodp

C2 = XPamodp

A

Message X

Secret key - s

B

X = C2/C1s

33

To send a message from A to B, the public key is chosen and two number C1 and C2 are

calculated. C1 = αamodp and C2 = XPamodp, then the message is composed by (C1, C2). To

decrypt the message, it is possible to get X from Pa because it is easy for the receiver to find it

from s. So, Pa =αsa = C1s then M = C2/C1s

2.7.2.3. RPK Encryption

The RPK system [12] is based on the discrete logarithm problem, it means that, the public key

is calculated from a private key using operations mathematically equivalent to exponentiation in

finite fields. In this system each user select a private key which is composed by three numbers

Dm,Dt,Db. The public key of the user A will consist of the states Em,Et,Eb of the three

component generators after Dm,Dt,Db clock cycles respectively. The three numbers Em,Et,Eb

are assumed to be publicly known. When user B, wishes to encrypt a plaintext message M to

be only decrypted by user A using A’s private key, user B generates a true random initialisation

key R = Rm,Rt,Rb to be used during the encryption of M. The random initialisation key is used

to exponentiate the base state generating an open key Q = Qm,Qt,Qb which is included within a

header, preceding the main body of the ciphertext. R is also used to exponentiate the public key

E, generating a final generator initialisation state K. Starting from the state K, the mixture

generator must be activated to obtain a keystream output and combine it with the plaintext M to

obtain the main body of the cipher text C.

To decrypt users A first uses the state given by the open key Q contained in the message header

to compute the generator state. Using the private key, exponentiate the open key Q to compute

the final initialisation key K which will give the state of the mixture generator. Further, for each

block of the ciphertext body, the mixture generator runs to obtain a part of the keystream

output. It will be used to generate a pseudo random permutation table. Running again the

mixture generator is possible to obtain additional keystream which combined with the ciphertext

allow to generate through some permutations the original plaintext. In polynomials terms:

i. K j(x) = [Ej(x)]Rj =modp(x), for j = m, t, b

ii. ER= (XD)R = K = (xR)D = QD

2.7.3. Analysis signature using Public Key Cryptosystems.

Physical, hand-written signatures are used in everyday life to solve many problems. The

signatures are used to prove that a person was in physical contact with a particular document

and usually to certify the reading of the document. Physical hand-written signatures present

some inherent traits that can be used to enforce legal implications, as well as to solve

identification problems. First one, it can not be denied or forged, anyone can identify the author

34

seeing and reading it. Second, the signature cannot be transferred to another document and

finally, it had to be made by deliberate action. Using the two different cryptography systems is

also possible to sign a message. Like as in various protocols of public-key cryptosystems,

digital signature would exist as additional digital information. General attributes of the

procedure are:

i. A uses a digital signature algorithm with his private key to sign the message.

ii. A sends the message to B.

iii. B verifies A digital signature using A public key.

Anyone who has the public key can verify that he signed the message. The signature is a

function of the message, so it cannot be applied to another message. If someone cut the

signature out and copied it to another message, the verification algorithm would indicate that

they do not match. Nobody but A can make the signature, and he needs to apply the algorithm

in order to do so, which shows it was deliberate.

2.7.3.1. Diffie-Hellman key exchange protocol

Like other protocols (ElGamal), the Diffie-Hellman protocol [13] is based on the discrete

logarithm problem over finite fields. This protocol is considered as a public key distribution

system rather than a true public-key cryptosystem.

Figure 2.4. Diffie-Hellman scheme.

The system parameters -as is shown in figure 2.4- are composed by a module which is selected

to be a big prime number p, and an integer number α which is a fixed primitive element of

GF(p). Each user generates an independent, secret and random number 1≤ x ≤ p-1. To

exchange messages, each user places αxmodp in a public file with his name and address. So,

to send a message from A to B, a secret and random number a is chosen for A. The emitter A
sends αa to B. B chooses a second secret and random number b and sends αb to A. The

common secret key would be S = αabmodp. So, the first user , can find s calculating (αb)a, the

second user , can find s calculating (αa)b. Each one can verify the identification without

Transfer

 αa
A

Public file

B

ÒaÓ secret key. ÒbÓ secret key.

 αxmodp

 αb

 s = αabm odp

Common secret key

35

knowing the secret key number. The secret key s is never sent through the public channel. If p

is a prime slightly less than 2n then all quantities are representable as n-bit numbers.

Exponentiation then takes at most 2n multiplications modp while taking logs requires p1/2 = 2n/2.

Then the cryptanalytic effort grows exponentially relative to legitimate efforts. If n = 200, then

at most 400 multiplications are required to compute αamodp from a, yet taking logs modp

requires 2100 or aproximately 1030 operations.

2.7.3.2. Guillou-Quisquater protocol

The Quisquater protocol [14] is used for verification of signatures and keys adaptation. The

system consists of a secret s and a random r keys, a small integer number v which is known

by two users and a big integer number n product of two primes numbers p and q.

s = r-1/vmodn where r < n.

To send a signed message from A to B:

i A sends T = rvmodn to B and B resends u = rsdmodn.

ii. The recipient compares rduv with Tmodn authenticating rduv = Tmodn.

The Quisquater protocol is used in P83C 852 and P83C855 Philips and SCALPS from

Catholic University of Louvain in Belgium.

2.7.3.3. Fiat-Shamir user authentication protocol

The Fiat-Shamir identification protocol [15] allow to verify the identification of an user. The

module is selected to be a big integer number n, which is a product of two big primes numbers

p and q. The protocol consists of two keys. A private key which is a square residue number

module n , that means, x2 ≡ vmodn. The last expression must have a solution and it must be

guaranteed that v-1modn exist. The second key s is a small integer number such that s = (v-

1)1/2modn. To verify the authentication from A to B, A sends x ≡ r2modn to B and B resends a

value b=0 or b=1. A responds with y=r (if b=0) or y=r.s modn (if b=1).

2.7.3.4. Schnorr identification and signatures

The Schnorr identification protocol [16] which is based on discrete logarithms allows to verify

the identification of a user. The identification systems are composed by two primes p and q

such that q ≥ 2140, p ≥ 2512, a number α ∈ Zp with order q as αq = 1modp α ≠ 1, a one-

36

way hash function h: Zq x Z ---> (0,....2t - 1), and its own private and public key. The system

publishes p, q, α, h and its public key.

The user can generate himself his private key s which is a random number in (1,2,...q) and the

corresponding public key v = α-smodp. The scheme to verify the identity implies the generating

of an identification string I, and a signed pair (I, v).

i. A send to B its identification string I and its public key v. B checks v by

verifying the system signature transmitted by A.

ii. A picks a random number r ∈ (0,....q - 1) and computes x ≡ αrmodp

sending x to B.

iii. B sends a random number ∈ (0,....2t - 1) to A;

iv. A sends to B, y ≡ r + se modq

v. B checks that x = αyv.smodp and accepts A’s proof of identity.

2.7.3.5. Yen-Laih digital signature verification

The Yen-Laih digital signature verification protocol [17] allows to verify several signed

messages sent by a user. The system parameters are composed by a prime modulus |M| ≥ 512

where |M| means 1 + [log2M], q a prime divisor of (M-1) with |q| ≥ 140, and a number α ε ZN

with order qmodM. The protocol consists of two keys. Each user selects an integer s ε Zq as

his secret key and corresponding to s, user computes his public key as k ≡ α-smodM. Now, for

generating the signature for a single message X, the signer A computes:

i. y ≡ αrmodM where r ε Zq is a random integer.

ii. e = h(y, X) ε Zq where h() is a one-way hash function.

iii. z ≡ r + sxemodq

Considering that the computation of k ≡ αrmodM is independent of the message to be

transferred it can be precomputed in advance. {X, (x,z)} constitutes the message-signature pair

signed by A with public key k and secret key s. This protocol allows to verify the signature in a

batch manner of several messages improving efficiency. To check the validity of the signature

(y, z) on X signed by A, the verifier B computes:

i. e = h(y,X) ii. αzke ≡ xmodM

As can be seen modular exponentiation is a basic operation widely used in cryptography and

constitutes a computational bottleneck in many protocols.
2.8. Conclusions.

37

It is become clear that public-key cryptography is an indispensable tool for simplifying key

management and enabling secure communication. What is less clear is which of the available

public-key cryptosystem is best. For analyzing this question several criteria must be considered:

security, computation speed, key size and the intended application, being the security the most

important consideration in choosing among public-key technologies. Wiener in its paper [18]

makes it clear that there is no single "best" public key technology, but that the best choice is

situation dependent. The three main uses of public-key techniques are digital signatures,

encryption and decryption for passing symmetric keys, and on-line key exchange, as can be

seen in table VI, all three public-key cryptoystems can be used for each of these purposes.

Table VI. Public-key techniques [18].

After Rivest Shamir Adleman Diffie Helman Elliptic curves
Main uses. RSA DH DSA ECDH ECDSA
Digital Signature. Yes --- Yes --- Yes
Encryption/decryption Yes Yes --- Yes ---
On-line key exchange Yes Yes --- Yes ---
Exponent size 1024 160-256 160 160-200 160-200

DH = Diffie-Hellman key exchange algorithm. ECDH =Elliptic curve key exchange
algorithm

DSA = Diffie-Hellman Digital Signature Algorithm. ECDSA = Elliptic curve Digital Signature Algorithm

There are three main public-key cryptosystems contenders (RSA, DH, Elliptic curves) and to

compare their speeds, it is necessary to decide what key sizes give comparable security levels.

Each technique has a variable key size that can be increased to achieve higher security at the cost

of slower cryptographic operations. So, RSA with a 1024 bit module is used as the basis of the

comparison. On the one hand, to perform a discrete logarithm with 1024 bits Diffie-Hellman or

DSA modules requires about the same run-time than factoring 1024 bits with RSA. On the other

hand to achieve the level of security of 1024 bit-RSA using elliptic curves requires a key size of

multipliers in teh range 171-180 bits. In table VII, a summary of different features is shown.

Table VII. Cryptography techniques features.

Techniques Size key Typical Size exp. Techniques
RSA Module 1024 1024 Involves exponentiation module a

number M that is the product of two
large prime numbers.

DH/DSA Prime p. 1024 160 Involves exponentiation module a
large prime number p

Elliptic curves Prime
number

1024 160-200 Computations with points on an
elliptic curve.

Modular Exponential function is a basic operation widely used in many protocols oriented to

cryptography applications. This condition makes that, modular exponentiation becomes a core

function of the cryptosystems.

38

Because of cryptographic applications must insure the communication between people or

electronic systems, and considering that the security of many algorithms is based on the

difficulty of prime factorisation of large integers, modular representation of numbers is

required. Modular arithmetic is appropriated for executing arithmetic on large integer numbers.

Modular exponentiation function is executed as repeated modular multiplications. So, modular

multiplier architecture looking high performance and simplicity is needed. It is important to

investigate regular configurations with smallest circuit depth in order to improve the

performance. Area size is a constraint to be also considered.

39

2.9. References.

[1] Y. A. Les Investissements en cartes à puce se multiplient, Electronic International

HEBDO, No. 282, 30 Oct., 1997

[2] L’Europe devient compétitive en circuits GaAs. Hyper 97, Electronic’s journal.

[3] D. E. Knuth, Seminumerical algorithms, Second edition, The art of Computer

Programming, Addison Wesley Publishing Co., v. 2 , Massachusetts, 1981.

[4] Stinson, Douglas R., Cryptography Theory and Practice, CRC Press Inc. Florida,

1995.

[5] I. Koren, Computer Arithmetic Algorithms, Prentice Hall, New Jersey, 1993

[6] K. Hwang, Computer Arithmetic, John Wiley, New York, 1979

[7] S. Piestrak, Arithmétic des résidues: applications et conception de matériels, TIMA

Laboratory conference, Grenoble, December, 1996.

[8] W. Diffie, M. Hellman, New Directions in Cryptography, IEEE Transactions on

Information Theory, IT-22, No. 6, Nov 1976, pp. 644-654.

[9] R. Merkle, Secure communication over an insecure channel, Communications of the

ACM, 1976.

[10] R. Rivest, A. Shamir, L. Adleman , A method for obtaining digital signatures and

Public-key cryptosystems, Communication of the ACM, 21, 1978, pp 120 - 126.

[11] T. ElGamal, A Public Key Cryptosystem and a Signature Scheme Based on Discrete

Logarithms, IEEE Transactions of Information Theory, v. IT-31, No. 4, Jul. 1985, pp.

469 - 472.

[12] W.M.Raike, The RPK Public Key Cryptographic System, Technical summary July,

1996.

[13] W. Diffie, M. Hellman, Privacy and Authentication: An Introduction to Cryptography,

Proc. of the IEEE, v. 67, No. 3, Mar 1979, pp. 397-427.

[14] J.J. Quisquater, C. Couvreur, Fast decipherment algorithm for RSA Public-key

Cryptosystem, Electronics Letter, vol.18, pp. 905-907, 1982.

[15] A. Fiat, A. Shamir, How to improve yourself: Practical solutions to identification and

signature problems. Advances in Cryptology - Proc. of Crypto’86, pp. 186-194, 1986.

[16] C.P. Schnorr, Efficient signatures generation for smart cards. J. Cryptology, Vol. 4,

No. 3, pp. 161-174, 1991.

[17] Sung-Ming Yen, Chi-Sung Laih, Improved digital signature suitable for batch

verification, IEEE Transaction on computers, Vol. 44, No. 7, pp. 957-959, July,

1995.

[18] Wiener M.J., Performance comparison of Public-Key Cryptosystems, CryptoBytes,

Vol. 4, Number 1, Summer 1998.

41

3. Architecture for Computing the Modular Multiplication.

3.1. Introduction.

VLSI circuits that accelerate the encryption and decryption of messages using encryption

techniques and circuits capable of performing long wordlength modulo multiplication at very

high speed attract much interest for cryptography applications. The modular multiplication

problem consists in calculating the number C such that: C=X.YmodM, where X, Y and M

have several hundred decimals digits. This long wordlength modulo multiplication has also

applications in other secret communication problems and other cryptographic methods.

Basically, module multiplication can be executed in two ways, the first one consists in mixing

into a single operation the multiplication and reduction steps, as multiplication partial

products are formed, a decision is taken whether or not to perform a reduction on these partial

products. In the second one, multiplication and reduction are separated tasks, with the output

of multiplier feeding the input of the reduction unit.

In this chapter the state of the art of modular multiplication algorithms as well as an

alternative architecture for computing modular multiplication based on MontgomeryÕs

algorithm will be presented. This architecture will be used in next chapter to implement the

architecture for executing the algorithm for bit modular exponentiation.

3.2 Multiplication algorithms.

Since several algorithms have been developed to compute the multiplication function, there

are different possibilities for calculating this function. Existing state-of-the-art dedicated to

hardware for calculating XYmodM, makes use of several techniques for speeding up the

calculation. Some of those techniques are listed in table I.

42

More specifically algorithms based on modular multiplication method have been proposed by

Brickell, Eldridge, Walter, Baker, Omura, Sedlak, Bucci, Montgomery. Some of them will be

briefly reviewed below.

Table I Techniques for speeding up the calculation [1]

Technique Implication

Shift M up so that its most significant digit

always has the same position in the hardware.

This allows module with different number of bits

to be used easily.

Interleave modular subtractions with the

normal calculation of the product by repeated

shift and add.

To save register space. Because the number stay

roughly the size of the modulus M rather than

becoming as large as the product XxY.

Increase the base of the number representation. Reduce the number of digits in the multiplicand,

reducing the number of clock cycles in the

algorithm.

Use a redundant representation for calculations

instead binary representations.

This avoids the unbounded propagation of carries,

allowing add all the digit operation in parallel.

Shift up the multiplicand A and the modulus M

by several places.

Addition of the digit multiple Y* of the multiplier

does not affect the topmost bit used to decide the

multiple M* of M which must be subtracted.

Use the precalcualtion of some or all of the

linear combination Y* ± M*.

Speed up the calculation but can increase the area

of further registers.

Choose modulus having a decomposition as a

product of pairwise coprime numbers

The arithmetic can be done independently module

each Mj allowing use the Chinese Remainder

Theorem

Decide which multiple of M to subtract early

enough.

The adder not to be kept waiting for it.

If the multiplicand X is not already in non

redundant form, convert it.

To produce the digits in the order they are

consumed.

3.2.1. BrickellÕs algorithm

The BrickellÕs algorithm [2] uses a delay carry representation which consists of two registers

of n bits each one for the uncarried carries. This approach allows execute the modular

multiplication in n + 10 cycles clock pulses. Up to n clock ticks may eventually be required to

assimilate the carries at the end of the computation. Eldridge and Walter [3] have reported

several sources of possible error in the hardware implementation and have also done some

contributions to remove those difficulties.

One of the ideas tacit in BrickellÕs algorithm is to calculate XYmodM as XS*YmodMS/S for a

fixed r-power S = rE causing a shift up by E places. The number E of extra digits needed at

the top of the registers is large enough to make the contribution of Y to the partial product R

insignificant in a certain precise way. In conclusion, Brickell has shown how to design a

compact operation based on a radix 2 without frequent data transmission between processors

performing modular multiplication and memories storing data in progress. BrickellÕs

algorithm uses a redundant representation for calculations, this means that numbers may have

43

digits from a range greater than that required, such as {0,1,2} instead of only {0,1} for binary

representations, this avoids the unbounded propagation of carries illustrated by the decimal

addition of 1 and 9999..9, allowing execute all the digit operations of an addition in parallel

with carries influencing only the digit sums in the next one or two places.

3.2.2. EldridgesÕs algorithm

Due to the fact that iterated addition step of the multiplication algorithm may involve

unlimited carry propagation, Eldridge [4] proposes to use a redundant number system in order

to avoid carry propagation. It uses also larger bases (radix 4). The base 4 representation have

approximately half the number of digits. This feature allows speed up calculations. This

algorithm involves both a high radix representation and recoding Y.

 (Si + xi y + M) div 2 if odd.

Si + 1 = 
  (Si + xi y + δiM) div 4 if even.



where δi satisfy Si + xi Y + δiM

The algorithm compute XYR-1mod M, where M is odd. R is a power of 4 and M < R has at

most n binary digits. So, R = 4n and X is expressed as redundant base 4. Each step is simple

leading that hardware may use a faster clock speed.

3.2.3. WalterÕs algorithm.

Walter in its paper [5], presents several details to generalise BrickellÕs fast modular

multiplication algorithm when the number of representations have a general 2-power radix.

The propose consists in using a redundant number system to enable parallel digit operations.

Additionally, the effect of varying the radix, also proposed by Kameyama [6], on the

efficiency of hardware implementations is considered showing that lower order terms in

general hardware are dominated for small values of the base of the number of representation.

So, increasing the base reduces the number of digits in the multiplicand and so reduces the

number of clock cycles in the algorithm. However, the depth of hardware that has to be driven

in a single clock cycle is increased as well, so that a slower clock must be used [1]. The

suggestion consists in taking a small increase above 2 of the radix but shows also that there is

not advantage in taking a much larger radix.

44

The algorithm computes a residue R and an integer quotient Q satisfying X*Y = M*Q + R,

where R is either the smallest non-negative residue of X*YmodM or differs by at most M

from it. This algorithm requires n+E cycles for executing the modular multiplication, where E

represents the power of the radix.

In another paper [7], the same author proposed a new technique for speeding up modular

multiplication which consists in scaling the modulus. The technique truncates the least

significant digits of both modulus and partial product allowing calculate the quotient easier

because it no longer depends on any digits of modulus as they are fixed.

3.2.4. EvenÕs algorithm.

Even [8] presents a systolic array for performing modular multiplication of long integers

which are represented in binary. They are fed serially, least significant bit first, to the first cell

of the n-identical cells array. Consequently the product is supplied serially by the first cell,

least significant bit first. This algorithm is based on the a modular reduction system proposed

by Montgomery requiring per one n-bits modular multiplication 3n clock ticks.

3.2.5. MoritaÕs algorithm

In [9], the BrickellÕs algorithm was extended to be used on a radix higher than two, being the

execution time faster than conventional algorithms based on radix 2. Later [10], a method for

eliminating the slow restoring in modular multiplication was presented.

3.2.6. Massey-OmuraÕs algorithm

The Massey-OmuraÕs algorithm [11] is based on the discrete logarithm problem in the finite

Galois field GF(p). For the finite fields F2
n, an appropriate selection of the ortonormal base

will allow execute the exponentiation of a n-bit number as a sequence of shifts.

So, if N = {e0 ,e1 ,e2 ÉÉÉÉ. ,en-1} is a normal base of the vectorial space Fq
n

 over Fq, being q

the characteristic of F and ei = eq
i

 , then for each integer k we have ei
q

k

 = ei+k , for all

exponent of e reduced module M.

This method converts a modular exponentiation q module M in a cyclic shift of coordinates

for a A-vector. Where A
q
 = {an-1, a0, a1, a2Éan-2} and A = {a0,a1, É..an-1} and k = 1. Omura

has proved that a normal base is optimum when there is 2n-1 terms non zero in its product

matrix. The circuit CY512i of CYLINK uses the OmuraÕs algorithm

45

3.2.7. SedlakÕs algorithm

In this process [12], the exponentiation function is obtained through a sequence of

multiplication, each one, executed as a sequence of additions. Of this form, the modular

operation is reduced to a sequence of subtractions. The maximum number of additions and

subtractions can be predicted by using subalgorithms allowing speed up the multiplication.

Both, the multiplication and division must be accelerated in the same proportions. Using this

approach the multiplication can be executed three times more quickly than using classic

technique.

3.2.8. BucciÕs algorithm

The algorithm of Bucci-Barret [13] is very close to MontgomeryÕs algorithm, in this approach

the integer number to be reduced is replaced by a reduced number. So, the size of the number

to be reduced is limited. For exponentiation function, the ideal size of the number to be

reduced is the half of the size modulus. That represents the principal drawback of the

approach due to the final results are highly degraded. However, the chip RSA512 of ANTEC

uses the BucciÕ s technique.

3.2.9. MontgomeryÕs algorithm.

MontgomeryÕs algorithm [14] is oriented to fast execution of modular multiplication. If n is

the bit length of the modulus M, then modular multiplication is represented as:

C = X.YmodM, where M is an odd integer. X, Y and M are n-bit binary positive integers

related by X, Y ∈[0, M-1].

The MontgomeryÕs algorithm is a method for multiplying two integers modulo M avoiding

division by M. It was proposed to compute XYR-1modM, where R is a power of radix (r)

used for representation of numbers. A non standard way representation called M-residues is

used. Suppose all integer representations are in binary, it means that the radix r = 2. If n is the

bit length of the modulus M, then modular multiplication is represented as XYmodM, where

X, Y and M are n-bit binary integers.

R = 2n - R is a power of radix. R is prime to M

M > 1 is an odd integer.

n is a number of bits of M. So, 2n-1 ≤ M < 2n

M < R has at most n binary digits.

46

0 ≤ Y ≤ M and an integer number R
-1

such that RR
-1

modM = 1 exists.

 n-1

Let X = ∑ Xi2
i where X|i| is the value of the i-th bit.

 i = 0

 n-1

Let Y = ∑Yi2
i where Y|i| is the value of the i-th bit.

 i=0

X = (x0, x1, x2, x3,, xn-1) where each xi, yi is 0 or 1.

Y = (y0, y1, y2, y3,, yn-1) such that 0 ≤ Y < M

X≡YmodM means that M divides X - Y and X and Y lie in the same residue class modulo. A

Òmod MÓ expression denotes a number Y such that X≡Ymod M. Additionally, for every X,

Y ∈ Ζálet X' ≡ XRmod M and Y' ≡ YRmodM be; Then X' and Y' are called the image of X

and Y respectively. In other words:

X2n mod M is a MontgomeryÕs representation of X

Y2n mod M is a MontgomeryÕs representation of Y

A representation of an image has at most n bits, it may exceed M, but is nonnegative. The idea

is to do all the modular operations with images, what it is called the residues field. M(X.Y)

denotes a Montgemery's multiplication.

If we have Y' ≡YR mod M, we can compute Z'

where:

Z ≡XYmodM

T = X'Y'

T ≡ XYR2 modM

T ≡ Z'RmodM

The algorithm computes XYR-1modM. We can generate a sequence where each Si satisfies

the condition: 0 ≤ M + Y ≤ 2M

S0 := 0

For i= 0 to n-1 do

If (Si + xi Y) is even.

Si + 1 = (Si + xi Y) div 2

else

Si + 1 = (Si + xi Y + M) div 2

47

By induction:

 n-1

 2i x Si ≡ ∑ (Xj 2
j) Y mod M, Si + 1 is an integer for i = 0, 1, 2..... n-1,

 j=0

the last expression can also be written as 2i x Si ≡ (xi-1 xi-2 xi-3...x0)YmodM, obtaining that

RSn ≡ XYmodM. Therefore XYR-1modM is either Sn or Sn - M, with 0 ≤ Si < M + Y < 2M.

A division by R-1modM can be easily executed calculating ((XYR-1modM)(R2mod

M))modM. The final result would be XYmodM. For radix=2 then: R2modM = (2n)2modM.

R2modM =4nmodM. If X = Y we will have X2modM.

3.2.9.1. Result Analysis.

Let S0 be the result of the first algorithm iteration, S1 and the following sequences

considering the worst case could be expressed as:

S1 = (S0 + M + Y) div 2

S2 = (S1 + M + Y) div 2

S2 = ((S0 + M + Y) div 2 + M + Y) div2

S2 = S0 2
-2

+ (M + Y) (2
-2

+ 2
-1

)

For the j-th term: Sj = S0 2
-j

+ (M + Y) (2
-j

+2
-j+1

+ 2
-j+2

+ 2
-2

+ 2
-1

)

But :

 h
 ∑ 2-j

 = (2
-h

+2
-h+1

+ 2
-h+2

+ 2
-2

+ 2
-1

) ≈ 1
 j=1

Then we can re-write:

Sj < S0 2
-j

 + (M + Y)

As Y < M, we can note that the length word of S0 will be n + 1. Being Sn the n-th the final

result would be XY2
-n

modM.

This algorithm presents less area requirements and possibility of using segmentation

techniques [15]. Additionally, unlike the previous algorithms, it avoids regular division

replacing it by an operation which requires less time. We can mention as principal drawbacks

that an additional constant must be computed. Besides two additional modular multiplication

must also be executed. MontgomeryÕs algorithm is competitive only if the number of modular

multiplication to be executed is high, like as in modular exponentiation case.

48

This algorithm provides significant reduction in the number of multiplication required to

compute modular exponentiation when n has several hundred bits [16]. MontgomeryÕs

algorithm multiplication process takes a time proportional to the number of digits in X. For

last reason, some authors [17] have proposed increasing the radix of the representation in

order to decrease the number of digits in X.

Using 4-power or 8-power radix representation is possible to speed up the operation. The use

of redundant number system in order to avoid the unbounded propagation of carries allows

execute all the digits operation of an addition in parallel with carries influencing only the digit

sums in the next one or two places [1], this can be seen in [2][18][19]. In table II the principal

features of each hardware implementation are shown.

Table II. Hardware implementation of modular multiplication.

Algorithm Clock pulses Radix(r) Notation Technique

Montgomery ÉÉÉ.. r = 2 Binary Mod. Reduction

Brickell n+10 r = 2 Binary Delayed carry rep.

Eldridges ÉÉÉ. r ≥ 2 RNS Large base

Morita LogM/logr r ≥ 4 Not redund. Compact operators

Even 3n r = 2 Binary Systolic arrays

Walter n+(1/ρ)logS r ≥ 4 RNS Large base

3.3. Hardware for Computing Modular Multiplication Algorithm.

In this section we will examine the characteristics of an alternative two radix architecture for

computing a modular multiplication based on MontgomeryÕs algorithm, useful in performing

the RSA Public Key Cryptosystems. Considering that the ultimate performance of an

integrated circuit can be substantially improved by using optimised architectures, is important

to investigate regular configurations with the smallest circuit depth achievable for executing

the required operation.

Currently, all of the chips perform the exponentiation as a series of modular multiplication.

For that reason the request for fast and inexpensive modular multipliers for long integers

continues. Some efforts have been oriented to achieve that, however, the corresponding

circuits tend to be complex.

49

Arithmetic operators exhibit in general a great activity and dissipate consequently a

significant share of the power supplied to a circuit. Specifically, a multiplier dissipates much

more power than an adder when activated due to its design or layout structure is not as regular

as an adder.

Modular exponentiation can be executed by standard multiplication followed by a modular

reduction or combining multiplication and modular reduction tasks [16]. We have shown that

one of the most widely used algorithms for modular multiplication is the MontgomeryÕ

algorithm [14] which is a method for multiplying two integers modulo M avoiding division by

M. This algorithm execute the modular multiplication as a series of additions. Also, it is

suitable for hardware implementation allowing mix some ideas to overlap the multiplication

and reduction phases.

Several architectures have been reported using residue or redundant numeric representation.

In this case, an alternative architecture using binary representation will be discussed. From

Montgomery' method, the M-residues are represented in a non-standard way. This method is

very useful only if the number of modular computation is high. Our purpose is to examine an

alternative architecture to be used in executing of modular multiplication operation oriented to

cryptography systems design (exponentiation function).

In order to evaluate the architecture performance, a prototype implementation allowing to

check step by step the partial results, each one of the additions, shifting and parity evaluation

is required. For that reason a small 12 bits prototype has been designed. Additionally, using

long bit numbers for the prototype would require a long row of I/O pads, which would define

the total area of the prototype, while the active area would represent a small porcentage of the

global area. With long bit numbers the prototype becomes more expensive and it does not

give greater additional information,

The experimental 12x12 bits modular multiplier prototype has been designed, fabricated and

tested using this architecture. The circuit was fabricated by AMS using 0.6 µm-CMOS

technology. The architecture, its operation and some simulation and experimental results are

presented. The evaluation is provided according to the functionality, power consumption and

performance under the condition of 5V supply voltage. The experimental circuit includes

4100 transistors into an active area of 1.33 x 0.93 mm
2
 .

50

3.3.1. Carry Save Adders

Carry Save Adders are usually used when three or more operands must be simultaneously

added, as shown below. In our case, at most three operands must be added, for this reason the

technique which is called Carry-Save Addition will be used. The carry save adder is a

technique widely used, it accepts three n-bit operands and generates two n-bits results. Is also

called a Òthree inputs WallaceÕs treeÓ. So, as can be seen from figure 3.1, for three inputs x, y,

z, we have two outputs s and c where:

2i 2i 2i

2i2i+1

x y z

sc

Figure 3.1. CSA unit

si = xi⊕yi⊕zi and si = pi ⊕ z, where pi = xi⊕yi

ci+1 = xiyi + zi(xi ⊕ yi) or c = Maj (xi, yi, zi)

or

ci+1 = gi + pi . z, where gi = xiyi

In general xi + yi + zi = 2ci+1 + si.

As can be seen, the CSA cell functions as a counter of Ò1Ós. In carry-save addition, the carry

is propagated only in the last step, while in all the other steps partials sum and sequences of

separately carries are generated. Using two operand adders the time consuming carry

propagation must be repeated several times, if the number of operands is k, then carries have

to propagate (k-1) times.

P-bit cyclic adder

Final converter

CSA tree

Five operands CSA adder

Tree adder

Figure 3.2. Block diagram of the CSA technique.

In carry save addition technique, we let the carry propagate only in the last step, while in all

the others steps we generate a partial sum and a sequence of carries separately. So, in general

terms, CSA technique require both a carry save addition tree and a carry propagation adder

tree as is depicted in figure 3.2.

51

Figure 3.3. CSA trees for 3, 4, and 5 bits operands.

Five operands CSA adder requires three full adder levels. Architecture implementation using

three, four or five operands carry-save adders, requires the topological configurations shown

in figure 3.3. In table III, the minimum number of levels Θ(r) on a CSA tree with r input

operands is shown.

Table III. Number of levels Θ(r) in function of r.

R 3 4 5-6 7-9 10-13 14-19

Θ(r) 1 2 3 4 5 6

But some important hardware considerations can be done. Now, we must define the global

architecture using this approach.

3.3.2. Hardware implementation

In general, the objective consists in obtaining a fast and regular architecture to execute the

modular multiplication based on Montgomery's algorithm, as is described in figure 3.4.

Modular arithmetic operator

(X, Y, M) (X* YmodM)

Inputs Output Output size

W = M(X,Y)

W = Z(2 -n modM) modM

Figure 3.4. Modular exponentiation description

CSA
2i 2i 2i-1 2i-1 2i-1 2i-2 2i-2 2i-2

CSA CSA

CPACPA CPA

2i+1 2i

2i

2i-1 2i-1 2i-22i

2i 2i-1 2i-1 2i-2 2i-2

2i+1 2i

2i

2i-1 2i-22i 2i-1

X i Yi-1Zi Xi-1Yi Zi-2Zi-1 Y i-2X i-2

Si Si-1 Si-2

CSA
2i 2i 2i-1 2i-1 2i-1 2i-2 2i-2 2i-2

2i+1 2i

2i

2i-2 2i-1 2i-22i

2i 2i 2i-1 2i-1 2i-1 2i-2 2i-2 2i-2

2i+1 2i

2i

2i-1 2i-1 2i-22i

2i+1 2i 2i 2i-1 2i-1

2i+2 2i+1

2i+1

2i 2i 2i-12i+1

Vi

X i Y i-1Zi Xi-1Yi Zi-2Zi-1 Y i-2Xi-2

V i-1 V i-2

CSA CSA

Si+1 S i Si-1

CSA CSA CSA

CPACPA CPA

2i 2i 2i-1 2i-1 2i-1 2i-2 2i-2 2i-2

2i+1 2i

2i

2i-1 2i-1 2i-22i

2i 2i 2i-1 2i-1 2i-1 2i-2 2i-2 2i-2

2i+1 2i

2i

2i-2 2i-1 2i-22i

2i 2i 2i-1 2i-1 2i-1 2i-2 2i-2 2i-2

2i+1 2i

2i

2i-2 2i-1 2i-22i

Xi Yi-1Zi Xi-1Y i Zi-2Zi-1 Yi-2Xi-2

2i+1 2i 2i 2i-1 2i-1

2i+2 2i+1

2i+1

2i 2i 2i-12i+1

Vi Vi-1 Vi-2

W i W i-1 W i-2

Si+1 Si S i-1

CSA CSA CSA

CSA CSA CSA

CSA CSA CSA

CPACPA CPA

52

Due to the fact that, MontgomeryÕs algorithm executes the modular multiplication as a series

of additions and shifts, a general architecture of a modular multiplier would be composed by

an adder which uses an accumulator register to accelerate the needed feedback loops.

Additionally, a shifter to execute division by 2 would be also required. A general block

diagram is shown in figure 3.5.

Some authors have proposed different hardware implementations of the MontgomeryÕs

algorithm [1][8]. Other have introduced several modifications [4][5] and have proposed new

algorithms looking for a reduction of the computational complexity in order to speed up

public key cryptographic functions [2][9].

Data Y

Shifter

Modulo M

 Mux.

Adder

Register

Data X

 Mux.

Register

Register

Figure 3.5. Modular Multiplier Datapath Architecture.

3.3.3. Architecture.

The new algorithm implementation allows to speed-up modular multiplication by using only

selectors and three operands Carry Save Adder, which does not have carry propagagtion.

From Montgomery's algorithm, the calculation Si + xiY or Si + xiY + M is performed for each

xi, so, several successive steps are executed.

As known, placing m parallel procesing stages and the interconnection buses require too

much silicon area, this disadvantage becomes more critical if long length numbers are

considered. For that reason, bit-serial processing stage architectures are attractive. These

stages are smaller than their m-bit parallel counterpart by at least a factor of m.

53

In general, bit-serial processing stages are a factor of 1/m as fast as parallel processing stages,

which might negate the gain achieved. However, bit serial multipliers and adders can be

designed to eliminate carry propagation delay. This allows a net processing speed advantage

when n-bit-serial processing stages replace a single n-bit parallel processing stage.

The proposed hardware implementation of a bit-serial modular multiplier used to execute the

operation (XYR-1modM) is showed in figure 3.6. It is basically composed by two functional

blocks: a master synchroniser control part and a regular datapath. The first one includes the

logic gates for generating synchronised control signals. The second one, is constructed by

arranging n modular multiplier cells into an array.

Figure 3.6. Modular Multiplier Hardware System.

The algorithm for this bit-serial multipier requires the multiplicand Y in parallel and the

multiplier X in bit-serial form. During the first iteration, the first bit of the multiplier x0 is

entered and "operated" with the parallel multiplicand Y producing a set of variables which are

added by the full adders to compute a set of partial product. Each step, the parity condition of

the partial product is verified to decide if modulus must be added or not to previous product.

The partial product calculation ends when it is shifted right one bit. This partial product Si-1 is

fed back in order to calculate the next partial product Si. With this organisation, the system

requires a feedback loops for each bit-cell. This operation continues until the multiplier X is

exhausted and the entire modular representation final product is obtained.

Shifter

Modulus (M)

Multiplier (XÕ)

XYR-1modM

CLA-Subtractor

Sn - M

CPA

Array of n cells

Serial input

Control logic

Xi

Reset

Clk

Count

54

In figure 3.7, a schematic capture of four bits of the modular multiplier architeture is shown.

The inputs to the control part are supplied from the outside, and for every 0 < xi < n-1 the

outputs of the control part are the corresponding control inputs to datapath. All control signals

are synchronised by an external signal Count (Counter signal) which can also be generated

internally. This signal allow count the n fields of serial input multiplicand X and is used to

validate the load signal for processing new data.

The modulus M and the multiplier Y are fed parallely to datapath while the multiplicand X

(Xi signal) is fed serially being processed only by the control part. A parity bit signal is

carried out from the least significative bit of the multiplier output to the control part. In order

to generate the appropriate signals to execute Si + xiY or Si + xiY + M, the control part

(ctrl block) samples in each partial result both the serial input entering 0<xi<n-1 and the parity

bit signal of Si-1. The shifter used to execute division by 2 will be embedded into the array.

Figure 3.7. Modular architecture of the multiplier.

As can be seen from the graph, processing stages properly designed, allow individual stages

to be directly connected as they are placed, thereby eliminating interconnection buses. This

technique is known as "interconnection by default" [20] and is very useful for saving layout

time and silicon area.

55

3.3.4. Modular multiplier cell

The modular multiplier datapath is composed by a regular array of n cells. The basic cell is

composed by 5 registers, two full adders, and some logic gates containing about 72 equivalent

gates as is shown in the schematic capture of the cell in figure 3.8(a). In figure 3.8(b) a

connectivity between consecutive basic cells is also depicted.

First of all, we have chosen R to be a power of 2. It means that in this approach both the

positive integer to be multiplied and the modulus are represented in binary form. On the one

hand, bigger radix system can be used in order to reduce the whole process time, which is

proportional to the number of digits in X. But, on the other hand, when bigger radix are used

each step of addition becomes more complex.

(a) (b)

Figure 3.8. Basic cell. (a) Schematic capture. (b) Connectivity.

This implementation requires only six gate delays. The operation of the cell is

straightforward. All flip-flops are set to reproduce a ÒzeroÓ output at time t=0, by a reset

signal. There is a global clock (clk signal) whose pulses synchronise all load signals of the

flip-flops. Both rising and falling edge of a system clock are used to generate the load signals.

Three very simple clocked logic levels (stages) can be observed. In the first one, two

multiplexers are used to choose the appropriate value to be added by the CSA units. After

CPA

Mux

XÕi

0

Mux

Qi

Si

AddM

Mi

2i 2i 2i

2i+1 2i
CSA

Mux

XÕ i-1

0

2i-1 2i-1

Mux

Qi-1

Si-1

2i-1

AddM

Mi-1

2i-1 2i-1 2i-1

2i 2i-1
CSA

Ci-1CiCi+1

2i 2i

2i+1 2i
CPA

Ai Ai-1

2i+1 2i 2i-12i-1 2i-1

2i 2i-1
CPA

2i+1 2i+1

2i+2 2i+1

Ci+2

Ai+1

Stage 1

2i+1 2i-1Stage 2

Stage 3

Si

2i+1

Si+1

2i-1

Si-1

Qi Qi-1Qi+1Qi+2

2i 2i 2i

2i

2i

56

each execution cycle (ti), the previous modulo partial result Si is fedback to be added itself by

xi.yi. Depending of parity bit value, the second tick adds Mi to Qi.

The second one, load the addition executed through one row of CSA (Carry Save Adder)

which have not carry propagation and whose outputs fed one row of the CPA (Carry

Propagate Adder). One second tick would be required if a parity condition is detected. Finally,

the flip-flops of the third stage are used to shift the partial result and their output at time t+1 is

equal to their input divided by two at time t.

The total time to do a modular multiplication consists, therefore, of n execution cycles, each

one requiring five clock ticks if parity condition is detected. Only three ticks would be

required if parity condition is not present. The whole process takes a time proportional to the

number of digits in X. Clock speed is bound by the number of gates on the longest or critical

paths, which is found by adding the lengths of the critical pads needed to compute S and to

perform the addition Si + xiY or Si + xiY + M.

Here, the remaining operation of subtracting M, if necessary is not shown. It will be discussed

in next chapter. Observe that since M is odd, the addition of M to Si + xiY, causes the new Si+1

to be even, in other words the least significant bit of Si+1 will be 0, so any information will be

lost when division by 2 (shifted away) be executed. The diagram timing of the cell is depicted

in figure 3.9.

Figure 3.9. Timing diagram

Computing requires n iterations, but to calculate XYmodM will require 2n iterations. Parity

evaluation and shift operation can be executed in the same execution cycle using a three

...............Clk

Data - X

Stage 1

Stage 2

Stage 3

Parity ? Parity ?Parity ?

Parity = 0 Parity = 1 Parity = 0

Shift Shift Shift

Si -1 Si Si+1

Xi-1 Xi Xi+1

57

operands CSA. To calculate XYmodM is necessary to compute a modular multiplication of

XYR-1modM and 4nmodM. This last quantity can be pre-calculated.

The structure of the proposed hardware is very simple and it does not use long distance

interconnections. This simplicity determines the critical path length in the hardware. Now,

recall that hardware clock speed is limited by the longest path in the circuit from input to

output, so, the clock speed and overall time are also defined by this simplicity.

Generating the new partial product for the next iteration results in a critical path length of six

gate delays. The clock cycle is approximately the sum of delay times associated with the gates

on such path.

If long word operands must be multiplied, ie, 512 bits or more rather than 32 bits, the CPA

array must be implemented using tree structures or Carry Look Ahead adders. If performance

is more important than implementation cost, then Carry Look Ahead adders is more attractive.

However, the implementation cost can be reduced specially when full custom VLSI is

employed. Mentioned schemes are widely used for accelerating carry propagation.

The principal idea behind both schems is an attempt to generate all incoming carries (from

CSA units) in parallel and avoid the need to wait until the correct carry propagates from the

stage (FA) of the adder where it has been generated. If x', y' represent the input coming from

CSA array, the basic cell of the both CLA adder and tree structures could be expressed by the

equation: ci+1 = x'i y'i + ci (x'i + y'i) where:

gi = x'i ∧ y'i denotes the carry generation of the i-th bits.

pi = x'i + y'i denotes the carry propagation of the i-th bits.

There are stages in which a carry-out is generated regardless of the incomig carry, not

requiring additional information on previous input digits. Other stages, are only capable of

propagating the incoming carry, only the stage in which xi yi = 0 does not propagate of carries.

Substituing ci = gi-1 + ci-1pi-1 the equation above yields: ci+1 = gi + gi-1pi + ci-1 pi-1pi and making

more subtitutions we have in general: ci+1 = gi + gi-1Pi + gi-2pi-1pi + ÉÉ..+ c0 p0p2 ÉÉ.. pi.

58

This type of expression allows calculate all the carries in parallel from the original digits of xi'

and yi'. In figure 3.10, the tree structure for calculating C16 is shown. This type of architecture

is more deeply explained in [21].

Figure 3.10. A tree structure for calculating C16.

In the first level we calculate Pi,1 and Gi,1 or also denoted as Gi
(1)

 and Pi
(1)

, in the second level

we calculate Pi,2 and Gi,2 or also denoted as Gi
(2)

 and Pi
(2)

 and so on. The notation is shown

bellow:

Gi,i = gi = x'i ∧ y'i Carry generation of the i-th bit.

Pi,i = pi = x'i ⊕ y'i Carry propagation of the i-th bit.

Gi,k = Gi,j ∨ Pi,j ∧ Gj-1,k Group carry generation between i and k bits, n ≥ i ≥ j ≥ k ≥ 0

Pi,k = Pi,j ∧ Pj-1,k Group carry propagation from k to i bits.

ci+1 = Gi,0 ∨ Pi,0 ∧ c0 Output carry of the i+1-bit

Note that Pi,1 calculates x'i ⊕ y'i instead of x'i + y'i. All the circuits in the second through the

fifth levels are identical allowing to implement a regular layout. We must remember that a

regularity of the design and size of the required area determine the implementation cost. So

this type of adder allows to take advantage of the architecture modularity.

08915 11 10121314 5 4 3 2 17 6

G15

(1)

, P15

(1)

G15

(2)

, P15

(2)

G15

(3)
, P15

(3)

G15

(4)

, P15

(4)

G15

(5)

, P15

(5)

P7,0 , G7,0

c2

P3,0 , G3,0

P1,0 , G1,0

c4

c8

c16

P15,0 , G15,0

 pi and gi calculation

xÕ15 yÕ15 xÕ13 yÕ13 xÕ11 yÕ11 xÕ09 yÕ09 xÕ07 yÕ07 xÕ05 yÕ05 xÕ03 yÕ03 xÕ01 yÕ01

xÕ14 yÕ14 xÕ12 yÕ12 xÕ10 yÕ10 xÕ08 yÕ08 xÕ06 yÕ06 xÕ04 yÕ04 xÕ02 yÕ02 xÕ00 yÕ00

59

3.3.5.12x12 bits Modular Multiplier Prototype.

In order to validate the architecture and demonstrate its performance, a 12x12-bits modular

multiplier prototype was designed and fabricated using 0.6µm AMS-CMOS technology. The

layout of the prototype presents a bit-slice structure, two slices are shown in figure 3.11.

Figure 3.11. Bit slices

Layout automatic edition using placement and routing tools of CADENCE version 4.4.1 were

used. In figure 3.12, a 12x12-bits modular multiplier graphic comparison between a standard

cell based bit slice guided layout and a plain standard cell layout is shown. Including bonding

pads, the bit-slice option, occupies an area of 3.85 mm2 while for the plain standard cell

layout the dimensions are 3.78 mm2. For the first case, the core system occupies 1.24 mm2

containing about 1020 equivalent gates. Nevertheless, the second option require less area, the

high density bit-slices macro cells were used because they contain critical paths.

Control part

Data
Path

(a)
(b)

Figure 3.12. 12x12-bits modular multiplier layout. (a) plain standard-cell.

(b)standard-cell based bit-slice.

60

3.3.5.1. Control unit.

The control unit of the multiplier is shown in figure 3.13, it represents only 8% of the core

size as can be seen in figure 3.12. The control unit contains sequencer, muxes, memory

elements and combinational and sequencial logic. This unit generates all required control

signal for operation. As can be seen it is not very complex, and does not represent an

important hardware overhead.

Figure 3.13. Control part

All required control signals are synchronised by clk signal. Sequencing signals q1, q2, q3 and

select signals m1 and m2 are generated depending of bit xi (Xi signal) and parity condition

(Parity signal). The control unit is also fed by an asynchronous Reset which reachs all flip-

flops and set them to reproduce a zero output, at time t=0.

Counter signal is internally generated. It is used to load a new bit of X, which appear serially ,

least significant bit first.

3.3.6. Simulation results

From behavioural post-simulation results using the 0.6µm CMOS-AMS standard cell library

and Verilog behavioural simulator on CADENCE environment, the execution delay time,

most of which is the delay time of adders is about 42 ns. As each execution cycle has at most

three cycles clock, so a maximum frequency of 72 MHz using typical parameters was

obtained. Two different examples of simulation results of the cell are depicted in figures

3.14(a) and 3.14(b).

61

(a)

(b)

Figure 3.14. Simulation results

Several simulations were done by using a reasonable number of pattern inputs. As shown in

figures 3.14, where two examples of multiplication module 2773 are presented, we have for

cases (a) and (b) M=2773, R=2
12

 = 4096 and consequently R
-1

mod2773 = 262. So, it is

possible to verify that 4096x262mod2773 = 1.

For case (a), we have Y=1198 which is fed in parallel and X = 1134 = [010001101110]

For case (b), we have Y=1169 which is fed in parallel and X = 2070 = [100000010110]

Let remember that X is fed serialy least significant bit first. The binary representation of X

can be observed in signal Xi which is applied during rising edge of Count signal. Note that the

final result is XYR
-1

mod M, for each case R
-1

mod2773 = 262.

So, case (a) 1198x1134x262mod2773 we obtain Z = 1423

Case (b) 1169x2070x262mod2773 we obtain Z = 1697

62

3.3.7. Experimental results

In this section we will illustrate the behaviour of the proposed architecture [22]. The 12x12

bits modular multiplier prototype was fabricated using 0.6 µm CMOS-AMS technology. A

die photo of this experimental circuit using standard cell based bit slice guided layout is

shown in figure 3.15 The active area size is 1.33 x 0.93 mm2 containing a number of

transistors about 4100. Thus the density of transistors is 3.3 k/mm2.

Figure 3.15. Test chip microphoto

Measures in term of functionality, performance and power consumption were done using a

Test Station IMS ATS Blazer System. First, simple functional tests at different frequencies

were done. In figure 3.16, an oscillograph screen illustrating the functional testing results at

both 25 MHz and 50 MHz are presented. The Clock and Count input signals and the four least

significant bits of the modular multiplication result are shown.

Figure 3.16. Functional testing results.

63

In order to evaluate the power consumption of the unit cell, the prototype was designed using

three separated supply pads for the cell array core, control part and pads. Five prototypes were

tested. The current consumption measures for both the control and operative parts at several

frequencies are shown in tables IV and V respectively.

Table IV. Power consumption of the control part.
Fq. Prot. 1 Prot. 2 Prot. 3 Prot. 4 Prot. 5

Mz µA µA µA µA µA

 1 14 14.6 14.5 14.6 14.7

 5 73 73 72 72 72

 10 100 146 145 145 146

 20 300 296 298 290 293

 30 443 440 441 439 442

 40 594 593 590 588 594

 50 741 741 738 735 741

 60 888 887 885 880 888

 70 1.00 mA 1.02 mA 1.01 mA 1.01 mA 1.02 mA

 80 1.16 mA 1.16 mA 1.15 mA 1.15 mA 1.16 mA

 90 1.31 mA 1.31 mA 1.30 mA 1.30 mA 1.31 mA

100 1.51 mA 1.46 mA 1.50 mA 1.45 mA 1.46 mA

Table V. Power consumption of the operative part.
Frq. Prot. 1 Prot. 2 Prot. 3 Prot. 4 Prot. 5

MHz mA mA mA mA mA

 1 0.04 0.04 0.03 0.04 0.04

 5 0.26 0.26 0.25 0.25 0.23

 10 0.54 0.55 0.51 0.53 0.53

 20 1.14 1.14 1.06 1.12 1.11

 30 1.73 1.73 1.63 1.70 1.71

 40 2.34 2.34 2.20 2.30 2.30

 50 2.98 3.00 2.81 2.93 2.94

 60 3.61 3.63 3.40 3.54 3.56

 70 4.23 4.25 3.99 4.13 4.19

 80 4.89 4.89 4.58 4.74 4.81

 90 5.56 5.57 5.20 5.43 5.48

100 6.22 6.23 5.79 6.07 6.06

Power consumption of the control part.

0

200

400

600
800

1000

1200

1400

1600

1

1
0

1
9 2
8

3
7

4
6

5
5

6
4

7
3 8
2

9
1

1
0
0

Frequency (MHz)

C
u

rr
e
n

t
c
o

n
s
u

m
p

ti
o

n

(u
A

)

S�rie1

S�rie2

S�rie3

S�rie4

S�rie5

64

In table VI, the average global current consumption of the chip considering several operating

frequencies is presented. All measures were done using a power supply voltage of 5V. As

can be seen, the current consumption increases linearly in accordance with the increase in the

frequency.

Table VI. Global power consumption
F MHz 1 5 10 20 30 40 50 60 70

PmA 0.052 0.322 0.668 1.409 2.141 2.887 3.671 4.433 5.17

From experimental results and using a reasonable number of input patterns, the circuit was

found to be operational at a maximum frequency of 71 MHz. Figures 3.17. (a)(b)(c), show the

time scale, a set input patterns used during one of the several testing procedures and their

waveform. All figures correspond to print screens of the Test Station System.

Power consumption of the operative part

0

1

2

3

4

5

6

7
1 9

1
7 2
5

3
3

4
1

4
9

5
7

6
5

7
3 8
1

8
9

9
7

Frequency (MHz)

C
u

rr
e
n

t
c
o

n
s
u

m
p

ti
o

n

(m
A

)

S�rie1

S�rie2

S�rie3

S�rie4

S�rie5

Global average power consumption

0

1

2

3

4

5

6

1 8

1
5 2
2

2
9

3
6

4
3

5
0

5
7

6
4

Frequency (MHz)

C
u

rr
e
n

t
c
o

n
s
u

m
p

ti
o

n

(m
A

)

S�rie1

65

(a)

(b) Test pattern1 (b) Test pattern2

(b) Test pattern3 (b) Test pattern4

66

(c) Test pattern1

(c) Test pattern2

(c) Test pattern3

Figure 3.17. Test system screen plots.

67

Considering mentioned features a summary of the basic cell performance is given in table VII.

Table VII. Architecture performance [23].
Modulus (M) 12 bits 2n > M > 2 n-1

Multiplicand (X) 12 bits (Bin)

Multiplier(Y) 12 bits (Bin)

Product n + 1 bits (XYR-1modM)

Multiplication time 540 ns

Power dissipation 93.5 mW (at 70 MHz)

Active area size 1.33 x 0.93 mm2

Transistor count 4100

Frequency 71 MHz

128 bit [seg] 5.76 x 10-6

Chip size 3.85 mm2.
Density of transistors 3.3 k/mm2.
Technology 0.6µm-CMOS

The generalised architecture can employ a n-operand adder module M realised using carry

save adders where the longest path in the circuit from input to output involves only six gate

delays. M is a dynamic range and n = log2M. The architecture has the advantage that is easily

expandable to larger bit-widths. For long word length numbers, ie, 512 bits the CPA array

must be implemented using tree structures or Carry Look Ahead adders. Carry Look Ahead

adders technique is more attractive if performance must be improved.

3.3.8. Conclusions.

An alternative architecture for computing modular multiplication based on MontgomeryÕs

algorithm has been presented. A 12x12-bits modular multiplier prototype has been designed

and fabricated using AMS-0.6 µm CMOS technology. The architecture requires the modulus

to be odd and the size of the modulus to be 2n > M > 2n-1. Due to its simple logic, the

proposed architecture present a good performance. This implementation requires only six gate

delays. Carry delay must be added if a carry propagate adder is used. In order to optimise the

critical paths, the layout of the prototype presents a high density standard cell based bit-slice

guided layout structure. Including bonding pads the chip size is 3.85 mm2. The active area

size is 1.33 x 0.93 mm2 containing about 4100 transistors. CADENCE tools version 4.4.1

were used.

In this architecture, the hardware clock speed is limited by the longest path in the circuit from

input to output, being the shortest possible execution cycle approximately the sum of delay

times associated with the gates on such path.

68

This implementation take the one argument in serial bit, least significant bit first, and produce

the partial product in bit parallel form, giving the final result in θ(n) execution cycles where

each one takes at most three clock cycles.

From experimental results we must conclude that an execution cycle of 42ns has been

obtained. It means that the multiplier was found to be functional at a maximum frequency of

71 MHz. The whole process takes a time proportional to the number of digits in X. The

standard cell gates used to implement the modular multiplier operate at a supply voltage of

5V.

The power dissipation is 93.5 mW at the frequency of 70 MHz. This architecture has the

advantage that they are very simple, allowing a cellular construction and are easily

expandable to larger bit-widths. For this reason, this architecture can be easily used in

implementing cryptography systems to execute modular exponentiation of long wordlength

numbers.

69

3.4. References.

[1] S. Eldridge, C. Walter, Hardware Implementation of MontgomeryÕs Modular

Multiplication Algorithm, IEEE Transaction on Computers, Vol. 42, No. 6, June 1993.

[2] E.F. Brickell, A Fast Modular Multiplication algorithm with applications to two key

cryptography, Advances in cryptology, Proc. of Crypto 82, New York, 1982, pp51 -

60.

[3] C. Walter, S. Eldridge, A Verification of BrickellÕs Fast Modular Multiplication

Algorithm, Inter. Journal Computer Math., Vol. 33, 1990, pp. 153-169.

[4] S. ELdridge, A Faster Modular Multiplication Algorithm, Inter. Journal Computer

Math., Vol. 40, 1991, pp. 63-68 .

[5] C. Walter, Fast Modular Multiplication using 2-Power Radix, Inter. Journal Computer

Math., Vol. 39, 1991, pp. 21-28.

[6] M. Kameyama, S. Wei, T. Higuchi, Design of an RSA encryption processor based on

signed-digt multivalued arithmetic circuits, Syst. Comput. Japan, Vol. 21, pp. 21-31,

1990

[7] C. Walter, Fast Modular Multiplication by Operand Scaling, CryptoÕ91, International

Conference on the theory and Applications of Cryptography and Information security,

Santa Barbara California 1991, pp. 313-323.

[8] S. Even, Systolic Modular Multiplication, CryptoÕ90, International Conference on the

theory and Applications of Cryptography and Information security, Santa Barbara

California 1990, pp. 619-624.

[9] H. Morita, A Fast Modular Multiplication Algorithm based on a Higher Radix,

CryptoÕ89, International Conference on the theory and Applications of Cryptography

and Information security, Santa Barbara California 1989, pp. 387-399.

[10] M. Abe, H. Morita, Higher Radix Nonrestoring Modular Multiplication Algorithm and

Public-key LSI Architecture with Limited Hardware Resources, Proc. AnacryptÕ94,

1994, pp. 363-375.

[11] Charles C. Wang, T. K. Truong, Howard M. Shao, Leslie J. Deutsch, Jim K. Omura,

Irving S. Reed: VLSI Architectures for Computing Multiplications and Inverses in

GF(2m). IEEE Transactions on Computers 34(8): 709-717, 1985

[12] H. Sedlak, The RSA Cryptography Processor, Advances in Cryptology, Eurocrypt 87,

June, 1987

[13] P. Barret, Implementing the Rivest, Shamir, and Adleman, Public Key Encryption

Algorithm on a Standard Digital Processor, Advances in Cryptology, Crypto 86, pp.

311-323, 1986

[14] P.L. Montgomery, Modular Multiplication without trial division, Mathematics of

Computation , 44, 1985, pp 519 - 521.

70

[15] J. Morechand, Projet Cryptographie: analyse de cryptoprocesseurs, Internal Report,

Telecom, Paris, 1996.

[16] P.A. Findlay, B.A. Johnson, Modular Exponentiation Using Recursive Sums of

Residues, Advances in Cryptology - CryptoÕ89, International Conference on the theory

and Applications of Cryptography and Information security, Santa Barbara, California,

1989, pp. 371-386.

[17] C. Walter, Optimal parameters for on-line Arithmetic, Inter. Journal Computer

Math.,Vol. 56, 1995, pp. 11-18.

[18] J.C. Bajard, L.S. Didier, P. Kornerup, A RNS Montgomery's Modular Multiplication,

Journal IEEE Transaction on Computers, Vol. 47, No. 7 July, 1998.

[19] R. Bouraoui, A. Guyot, K. Khoumsi, Prototype of a circuit for the GCD and Extended

GCD of very Large Numbers, Proc. of the 1991 International Conference on

Microelectronics, ICM'91, Cairo, Egypte, 1991, pps. 83-86.

[20] R. Geiger, P. Allen, N. Strader, VLSI Design Techniques for Analog and Digital

Circuits, McGraw Hill, New York, 1990.

[21] I. Koren, Computer Arithmetic Algorithms, Prentice Hall, Englewood Cliffs, New

Jersey, 1993.

[22] A. Bernal, A. Guyot, Hardware for Computing Modular Multiplication Algorithm,

24TH European Solid-State Circuits Conference, La Hague, The Netherlands, 1998.

[23] A. Bernal, A. Guyot, Design of a Modular Multiplier based on Montgomery's

Algorithm, XIII Conference on Design of Circuits and Integrated, Madrid, Spain,

Nov., 1998.

71

4. Architecture for computing the Modular Exponentiation.

4.1 Introduction

As has been reviewed, modular exponentiation operation is the main and more frequently
used function to process hidden information, it is a basic operation widely used in
cryptography and constitutes a computational bottleneck in many protocols. It plays important
roles in several public key cryptosystems where encryption and decryption processes require
the modular exponentiation arithmetic function which is executed as multiple repetitive
modular multiplication.

In this chapter, a summary of the most known modular exponentiation algorithms will be

presented to finally describe the overall circuit implementing the algorithm for bit modular

exponentiation. An alternative architecture for computing modular exponentiation based on

generalised square-multiply binary method and using Montgomery’s algorithm will be

presented.

The architecture used to execute the modular exponentiation was verified by an experimental

32-bits exponentiation prototype which was designed, fabricated and tested using 0,6 um

CMOS-AMS technology and including 8400 equivalent gates into an active area of 2.30 x

1.73 mm2. In this chapter, the architecture, its operation, some simulation and experimental

results for exponentiation operations are presented. The evaluation is provided according to

functionality, power consumption and performance under the condition of 5V supply voltage.

4.2. Exponentiation algorithms.

72

Modular exponentiation of integers is the operation most widely used for several well known

signature [1][2][3][4] and encryption [5][6][7] protocols in public-key cryptosystems [8][9].

Different approaches for executing modular exponentiation have been published and several

algorithms for performing it already exist. Some authors have proposed multiple bit scan

techniques [10][11] while others have used redundant number representation system [12] in

order to avoid carries and implementations to reduce the computational complexity [13].

Similarly to multiplication case, the different algorithms can be divided into algorithms that

are suitable for hardware implementation, such as [14][15][16], and those that are suitable for

software implementation [15][17][18]. Due to the fact that our goal is oriented toward

hardware implementation, we will focus on the more popular hardware suitable

implementation algorithms.

Most of the common algorithms for modular exponentiation are based on the square-and-

multiply method, such as the binary method. In general, exponentiation of the form XYmodM

is performed by repeated squaring operations, with conditional multiplication by the original

X. So, if we can express the standard exponentiation function as:

XY = (XY/2) 2 -----> if Y is even XY = X.XY-1 -----> if Y is odd

Considering modular arithmetic properties, we can write the modular exponentiation as

following:

XY mod M = ((XY-I mod M) . (XImod M)) mod M (1)

Now, repeated squaring operations would be executed of that way:

(XY)ZmodM = (XYmod M)Zmod M (2)

So,

XYmodM = (X2mod M)Y/2 mod M

XYmodM = (X2mod M)2mod M)Y/4 mod M

73

For i iterations :

XYmodM = (((....(X2mod M)2mod M)2mod M)2...i....mod M)2mod M)2)Y/2i mod M

Some of the most known algorithms for calculating the modular exponentiation will be briefly

reviewed.

4.2.1. Square and Multiply algorithm or Binary method

The best known algorithm for computing the modular exponentiation function Z = XymodM,

is called the binary method [19], which is based on repeated squaring of X and multiplication

whenever the corresponding bit of Y is 1. The binary method given below scans the bits of

the exponent Y from left to right. Another version of this algorithm scans the bits of Y from

right to left. This algorithm is briefly described:

Let n be the number of bits of Y, X and M

n-1

X = ∑xi2i

i=0

n-1

Y = [yn-1 yn-2yn-3.......y1y0] Y = ∑ yi 2i

i=0
 n-1

yi ∈{0,1} and n = [log2Y] + 1. The multiplication can be expressed as: XY= ∏(x2i
)yi.

 i=0

where yn-1 is the most significant bit, then the left to right version of the algorithm works as

follows:

Input: X, Y, M, n where n = log2Y + 1

Output: Z = XY mod M

If yn-1 = 1 Z = X else Z = 1

For i = n - 2 to 0 do {
Z = Z*Z modM;

if y i = 1 then Z = Z*X modM;

}

74

This algorithm requires on average 1.5n modular multiplication for an n-bit exponent. In the

case of 512 bit integers, the algorithm performs on average 766 modular multiplication of 512

bits number [20].

4.2.2. M-ary method (MM)

The binary method can be generalised to the m-ary method [21] which scans the digits of Y

expressed in radix m. Restricting the attention to the case when m = 2d, the algorithm can be

briefly described as follows: the exponent Y can be partitioned into k sections of d bit each

for kd = n. If d does not divide n , the exponent is padded with at most d-1 zeros. So, we have:

 n-1 n-1 k-1
X = ∑xi2i Y = ∑yi2i = ∑F(i) 2id

 i=0 i=0 i=0

 d-1
where F(i) = [yid+d-1 yid+d-2 yid+d-3...... yid] = ∑yid+t2t

 t=0

First, the values of Vj = VjmodM are computed for j = 2 , 3 ..2d-1 Then, the bits of Y are

scanned d bits at a time from the most significant to the least significant, then the left to right
version of the algorithm works as follows: Inputs: X, Y, M, n and d, where n = [log2Y]+1
and n=kd, for k ≥ 1.

Set V0 = 1 and V1 = X

From j = 2 to (2d-1) do {

V j = Vj-1 XmodM;

From i=k-1 to 0 do
d-1

 F(i) = ∑yid+t2t

t=0

Set Z = VF(k-1)

From i=k-2 to 0 do
From j=0 to (d-1) do

Z = Z*ZmodM

If F(i) ≠ 0 then Z = Z*VF(i) modM

Halt

4.2.3. Koç’s algorithm

Koç [21], has proposed an algorithm that makes use of high radix and bit recoding techniques

to perform modular exponentiation. The algorithm is based on high radix representations due

75

to the fact that high radix methods with optimal choice of the radix provide significant

reductions in the number of multiplication required for modular exponentiation. Besides, bit

recoding techniques applied of Y are used to further reduce the total number of multiplication

when Y has several hundred bits. This algorithm requires fewer multiplication than the binary

method but suffers from excessive latency and a slow clock [19].

4.2.4. Findlay

Findlay [16] presents a method for computing a modular exponentiation useful in performing

the RSA public key algorithm. The method uses conventional multiplication followed by a

partial modular reduction based on sums of residues. The hardware implementation uses a

serial data and one-dimensional semi-systolic array. A serial multiplier array is coupled with a

unique serial sum-of-residues reduction array. The partitioned sums-of residues method can

use look-up tables (table of residue values) which allow to speed-up the reduction calculation

or use an additional architecture for sum-of-residues calculation; in each case the hardware

overhead is important.

4.2.5. Brickell's algorithm

Considering that by storing a set of precomputed values it is possible to reduce the global

number of multiplication needed, Brickell et al. [22] proposed a method of speeding up the

modular exponentiation operation precomputing some specific values. So, precomputing and

storing Xm0,Xm1 ………,Xmr-2 ,Xmr-1, for some integers m0, m1…… mr-2, mr-1, and finding a

decomposition expression taking the form:

 r-1
Y = ∑ai mi
 i=0

where 0 ≤ ai ≤ h for 0 ≤ i ≤ m, then it is possible to compute:

 h
XY = ∏Cd

d where Cd = ∏ ai = dX
mi .

 d=1

4.2.6. Rooij algorithm

Rooij [23] presents an algorithm for exponentiation with precomputation which is based on

two approaches, the first one splits the exponentiation into the product of a number of

exponentiation with smaller exponents. The second one uses the techniques of vector addition

chains to compute this product of powers. Mixing these approaches is possible to speed-up

76

the multiplication and squaring procedures. Nevertheless, this algorithm is slower than the

method from Brickell.

4.2.7. Hamano’s algorithm.

A Θ(n)-depth polynomial-size combinational circuit algorithm was proposed by Hamano [24]

for computing n-bit modular exponentiation. The algorithm is a generalisation of the square

and multiply method. The principal drawback consists in implementing the modular

reduction. Additionally, a RNS to binary conversion must be done in each round.

4.2.8. Yongfei

The systolic modular exponentiation system presented by Yongfei [19] is based on k-SR

representations and fast modular multiplication. The central point in the systolic approach is

to ensure that once an information item is brought into the system it can be used effectively

and repetitively while is being “pumped” from cell to cell through the system. The scheme

exploits the fact that the k-SR algorithm is faster than the signed-digit algorithm because it

needs less modular multiplication and no pre-computation of M-1.

In table I, a comparison of some parameters between different mentioned algorithms is done.

Table I. Features of some modular exponential algorithms.

Algorithm Depth Notation Technique
Brickell Ø(logn/loglogn) µp Binary Precomputation

Yongfei ……… k-SR Systolic arrays

Koç ……… Not redundant High radix-Bit recoding

Findlay Ø(n) Binary Serial multiplier array

Hamano (1+α)n/α RNS MODEXP based alg.

Square-bin Ø(nlogn) Binary Repeated squaring

4.3. Hardware for computing modular exponentiation.

The problem of efficiently evaluating powers has been widely studied. In the case of the RSA

public key cryptosystem, where the algorithm is independent of X but depends on Y, the

problem consists in executing the function Z = XYmodM, where M = pq for primes p and q.

The modular exponentiation of the plain text (message) X, produces the cipher text Z using

the encryption key Y. The decryption process is also a modular exponentiation using the

77

secret key. As mentioned, RSA cryptosystem is considered secure if both integers X and M

have several hundred decimal digits.

Many research activities on hardware implementation oriented to speed up public key

cryptosystems have also been done to introduce new strategies. Methods based on a higher

radix [25], systolic architectures [19] or generalisation of the binary method [24] have been

studied. Also, methods to reduce the computational complexity of the algorithms. Another

one consists in utilising parallel techniques to perform faster implementation. Nevertheless,

some of the proposed architectures demand excessive hardware resources or sophisticated

implementation which is a constraint to install it in small size hardware.

As can be seen from table II, since some of the chip manufacturers give their speeds assuming

the use of the Chinese Remainder Theorem while others do not, it is often difficult to compare

the performance of the different chips.

In table II, a survey of hardware implementation of some RSA chips and their performance

features is shown. More recently hardware implementations are presented in section 4.7.

Table II. A survey of Hardware implementations [26].

Company Year Tech. Bits/chip Clock baudrate Clk/512bits
Sandia 1981 3 µm 168 4 MHz 1.2k (336) 4.0 x 106

Bus. Sim. 1985 G. Array 32 5 MHz 3.8k (512) 0.67 x 106

AT &T 1987 1.5 µm 298 12 MHz 7.7k (1024) 0.4 x 106

Cylink 1987 1.5 µm 1024 16 MHz 3.4k (1024) 1.2 x 106

Cryptech 1988 G. Array 120 14 MHz 17k (512) 0.4 x 106

CENT 1988 1.0 µm 1024 25 MHz 5.3k (512) 2.3 x 106

Brit. Tel. 1988 2.5 µm 256 10 MHz 10.2k (256) 1.0 x 106

Plessy 1989 ------ 512 ------- 10.2k (512) -------

Sandia 1989 2.0 µm 272 8 MHz 10k (512) 0.4 x 106

Philips 1989 1.2 µm 512 16 MHz 2k (512) 4.1 x 106

The security of the cryptosystems is based on the difficulty of factoring integers. So, the word

lengths and key lengths in modular exponentiation should be significantly greater than those

used in conventional general purpose computer hardware, requiring typical word length

around 256 bits or more, and it will grow in the future as the cryptanalysis makes progress.

The requirements of the lengths makes RSA slow. When bulk data are transmitted in mobile

telecommunication systems, cryptographic algorithms are also required to be fast and cheap

78

for the encryption and decryption of bulk data. Hence it is quite natural to speed up modular

exponentiation.

The main idea to speed up modular exponentiation is reducing the number of multiplication

and the depth of the path used to execute modular multiplication. For this reason it is

important to investigate the smallest circuit depth achievable for this operation. As known,

radix 2 arithmetic has a very short critical path. Based on mentioned idea, selecting radix 2

and mixing a generalised binary method with a three operands Carry Save Adder modular

multiplier system functioning at high frequency, it is possible to meet the required features.

In next section we will present an alternative implementation describing the overall circuit to

execute the algorithm for bit modular exponentiation. Operands are expressed in binary

representation (radix 2). A generalised binary method to reduce the number of multiplication

and a three operands carry save adder modular multiplier architecture to reduce the depth

achievable for this operation are mixed. Some numerical example of modular exponentiation

using this architecture, some simulation and experimental results are also presented.

4.3.1. Hardware implementation.

The core operation of exponentiation is modulo multiplication and as mentioned in last

chapter, it can be performed using conventional multiplication where the multiplication and

reduction can be combined or considered as separate tasks. That means that module reduction

can be performed by division, which is slow, or by trial subtractions incorporated into the

multiplication, that modify the partial products formed in the multiplication process. But it is

suggested that neither of these is used as a reduction method [16].

Another method consists in using modular reduction. This method makes necessary some

procedures to convert an integer to an M-residue field and vice versa. Module reduction is

associative, so can be carried out at each stage to prevent the intermediate results from

growing too large. Multiplication is best performed in a bit-serial form using a multiplier as

described in last chapter. So, hardware implementation will be described for executing the

79

fast modular exponentiation based on both the extension of binary method and modular

multiplication Montgomery’s algorithm. A small depth combinational architecture is

proposed for n-bit modular exponentiation.

In figure 4.1, a general block diagram of the modular exponentiation is shown. As can be

seen, the system is based on a modular exponentiation operator which requires five inputs: X,

Y, M, the partial products and the reduction factor. However, using multiplexing techniques,

it is possible to use carry save adders for only three operands.

Figure 4.1. Block diagram of the modular exponentiation operator.
Before presenting the proposed architecture, it is necessary to review both the mathematical

concepts used in the general procedure and the selected algorithms to be mixed.

4.3.2. Dynamic of the procedure.

The computation of XYmodM can be executed for arbitrary integers X, Y and M represented

as n-bit binary integer positives, within bounds 2n-1 < M < 2n and 0 < X, Y < M. For

cryptography applications M is an odd integer. M= pq being p and q very large random

primes.

R = 2n - R is a power of radix and is prime to M. R is an integer satisfying RR-1modM =1.

It means that inverse multiplicative of RmodM exists. See section 2.5.3.2 in chapter two.

XYmodM

X Y M

XiR-1modM

Modular operator

RimodM

XYmodM

R = r n

Radix = 2

RimodM

4nmodM

X Y M

Exponentiation

function

R = 2 n

80

Binary representation are denoted as:

 n-1

M = ∑mi2i M = (m0, m1, .. mn-1) where each mi is 0 or 1

 i=0

 n-1

X = ∑xi2i X = (x0, x1, .. xn-1) where each xi is 0 or 1

 i=0

 n-1 k-1

Y = ∑yi2i = ∑F(i) 2id Y = (y0, y1, .. y n-1) where each yi is 0 or 1

 i=0 i=0

 d-1

where F(i) = [yid+d-1 yid+d-2 yid+d-3...... yid] = ∑yid+t2t

 t=0

In general, using the square-multiply method, the number of multiplications required is equal

to the number of nonzero bits in the binary representation of Y. For this reason, it seems thus

worthwhile to investigate techniques to recode Y in order to increase the number of zero bits

in its representation. In this case, Y is expressed in radix m, we are going to restrict the

attention to the case when m = 2d. The algorithm is again presented below.

Set V0 = 1 and V1 = X

From j = 2 to (2d-1) do

V j = Vj-1 XmodM

From i=k-1 to 0 do
d-1

 F(i) = ∑yid+t2t

t=0

Set Z = VF(k-1)

From i=k-2 to 0 do

81

From j=0 to (d-1) do
Z = Z*ZmodM

If F(i) ≠ 0 then Z = Z*VF(i) modM

Halt

From square-multiply binary method, the number of multiplications required by the algorithm

to compute the modular exponentiation consists in two parts. First, X2, X4, X6,….,X2n-1

(modM). This step requires (n-1) multiplication (squaring) operation. Second, we must

continue to compute the exponentiation multiplying the partial result with 2i power of X if the

ith bit of the exponent is nonzero, this step requires also (n-1) multiplication. So, binary

method requires in general a maximum number of multiplication equivalent to 2(n-1).

Generalised method uses a smaller number of multiplications as will be discussed later.

Because of, modular exponentiation will be executed as a series of modular multiplications

XWmodM, where X=W, it is necessary to define the bounding of the operands involved into

the operation. So, if W denotes the partial product which is fed back to be multiplied by itself

or by X, we can extend the Montgomery's restrictions to the previous partial product W:

So, let W = (w0, w1,, wn-1) be such that 0 ≤ W < M, and let M(X.W) denote a

Montgomery multiplication of X and W, now M(X.W) ≡ XWR-1modM defines an M-residue

to be a residue class modulo M. So, if we have X' ≡ XRmodM, (which convert an integer X to

an M-residue X') we can compute Z-1, if we have the expression: Z ≡ XWmodM; and

T=X'W'; then T≡XWR2modM.

The algorithm will compute XWR-1mod M. This result is a Montgomery number. The

generated sequence Si must satisfy the condition: 0 ≤ M + W ≤ 2M. Each sequence Si

represents the partial product result for each xi = 1 of the multiplicand. So , we have:

S0 := 0

If (Si + xi W) is even.
Si+1

= (Si + xi W) div 2

82

else
Si+1 = (Si + xiW + M) div 2

By induction:

 n-1
 2i x Si ≡ ∑ (Xj 2j) W mod M, Si + 1 is an integer for i = 0, 1, 2..... n-1,
 j=0

Consequently, the last expression can also be written as 2i x Si ≡ (xi-1 x i-2... x0)WmodM,

obtaining that:

RSn ≡ XWmod M. and therefore XWR-1modM is either Sn or Sn - M,

with 0 ≤ Si < M + W < 2M.

As was shown in chapter three, this method introduces an unwanted factor of R-1modM into

the product A.B. So, to convert a M-residue to an integer a division by R-1modM is executed

calculating ((XWR-1modM)(R2modM))modM. The final result would be XWmodM which is

a non Montgomery number. For radix=2 then: R2modM = (2n)2modM = 4nmodM.

The concluding multiplication by R-1modM could be done using the same algorithm again by

taking the output Sn and R-1modM as the new multiplicands, the latter having been previously

calculated once and for all by some other means. However, when further modular arithmetic

is involved, it is better to start by using the algorithm to premultiply all inputs using R-1modM

as the other input.

Due to the fact that in each case the previous partial product is fed back to be multiplied by

itself or by X. we have that, for Y even the next partial result to the power of four would be:

X4 modM = ((X2 2-n modM)(X2 2-n mod M)modM. Then: Z = ((X2 2-n.X2 2-n) 2-n modM

When the partial result is fed back to the modular multiplier, the new result to the power of

four would be n+2 size, then, we have:

= ((X4 2-2n.2-(n+1)) modM

The result to the power of eight would be n+3 size, then, we have:

83

= (X4 2-2n.2-(n+1) X4 2-2n.2-(n+1) 2-(n+2))modM

= (X8 2-4n.2-2(n+1) 2-(n+2))modM

The result to the power of 16 would be n+4 size, then, we have

= ((X8 2-4n.2-2(n+1) 2-(n+2)) (X8 2-4n.2-2(n+1) 2-(n+2)) 2-(n+3))modM

= (X16 2-8n.2-4(n+1) 2-2(n+2) 2-(n+3))modM

The result to the power of 32 would be n+4 size, then, we have

= ((X16 2-8n.2-4(n+1) 2-2(n+2) 2(n+3)) (X16 2-8n.2-4(n+1) 2-2(n+2) 2-(n+3)) 2-(n+4))modM

= (X32 2-16n.2-8(n+1) 2-4(n+2) 2-2(n+3) 2-(n+4))modM

In general, the result to the power of 2i and with a size of n + i bits:

(X2i
 2-n2 (i-1)

2-(n+1) 2 (i-2)
 2-(n+2) 2 (i-3)

 ……. 2-2(n+i-2) 2-(n+i-1))modM

From the last expression we obtain the bits number of the result vs. powering size as is shown

in table III:

Table III. Bit number of the result vs. powering size.

Power(2i) k Function Nbits

2 1 2-n n+1

4 2 2-2n2-(n+1) n+2

8 3 2-4n2-2(n+1)2-(n+2) n+3

16 4 2-8n2-4(n+1) 2-2(n+2) 2-(n+3) n+4

32 5 2-16n2-8(n+1)2-4(n+2)2-2(n+3)2-(n+4) n+5

2i i 2-n2 (i-1)
2-(n+1)2 (i-2)

2-(n+2)2 (i-3)
 ..……. 2-2(n+i-2)2-(n+i-1) n+i

So, for the big word length we can infer the values shown in table IV.

Table IV. Function for big word length

Power(2i) i Function Nbits

128 7 2-26n2-(n+1)25
2-(n+2)24

 ……..2-2(n+5)2-(n+6) n+7

256 8 2-27n2-(n+1)26
2-(n+2) 25

 .…….2-2(n+6)2-(n+9) n+8

512 9 2-28 n2-(n+1)27
2-(n+2)26

 ……..2-2(n+7)2-(n+8) n+9

1024 10 2-29n2-(n+1)28
2-(n+2) 27

 ……..2-2(n+9)2-(n+10) n+10

84

2048 11 2-210n2-(n+1)29
2-(n+2)28

 ……..2-2(n+9)2-(n+10) n+11

4096 12 2-211n2-(n+1)210
2-(n+2)29

……..2-2(n+10)2-(n+11) n+12

So, it is possible to convert a M-residue partial product to an integer multiplying each time by

4nmodM and then to execute the next step. However, is also possible to execute the repeated

squaring operations and then to multiply the final result by a factor 2p(n,k), where k is the

power number. In table V, some corrective factors are listed.

Table V. Corrective factors.
i Power(Xi) Corrective factor Nbits

2 X2 = X1 X1 R2modM n+1

3 X3 = X2 X1 R3modM n+1

4 X4 = X2 X2 R4modM n+1

16 X16 = X4 X4 R16modM n+1

17 X17 = X16 X1 R17modM n+1

n Xn = Xn-1 X1 RnmodM n+1

4.3.3. Architectural implications

The modular exponentiation system must compute XYmodM. The common method for

performing this operation is the square and multiply algorithm. In the square and multiply

algorithm, the number of multiplication required for computing modular exponentiation is

equal to the number of nonzero bits in the binary representation of Y. Some authors [21], are

researching for new recoding strategies of the exponent in order to reduce the number of non

zero values in Y, however the overhead hardware requirements for doing that are not

attractive.

So, considering that a generalised square multiply method requires a smaller number of

multiplication for executing the modular exponentiation, in this work an alternative hardware

implementation which performs in effect modular reduction systems based on Montgomery's

method is proposed. A modular exponentiation function mixes both the generalised method

and the proposed alternative architecture used to execute the Montgomery's algorithm.

The design of a chip for performing cryptographic operations based on this architecture, is

simple and allows very high clock rates. These two advantages make such a chip competitive

with currently known designs.

85

As can be seen from the algorithm, the exponent Y expressed in radix m is partitioned into k

sections of d bit each for kd = n. If d does not divide n, the exponent is padded with at most

d-1 zeros.

First, the values of Vj = VjmodM are computed for j = 2 , 3 ..2d-1. Then, the bits of Y are

scanned d bits at a time from the most significant to the least significant.

As will be discussed later, due to the fact that it is possible to select d for a given n such that

the maximum number of multiplications is minimised, the cache memory size required for

storing the partial modular products computed for j = 2 , 3 ..2d-1 can be also defined. The size

of the cache memory and the value of d optimum denoted as d* for a given n can be seen in

table VI [28]. Note that the cache memory does not require a very large storage capacity. The

dependence between n and d* will be discussed later.

Table VI. Cache size

n d* cache

32 3 8

64 3 8

128 4 16

256 4 16

512 5 32

1024 6 64

2048 6 64

Additionally, as modular multiplication is done by repeated cycles involving shifting and

addition together with a simultaneous modular subtraction in order to satisfy the condition

0≤ Si < M + W < 2M, a comparator/subtractor is needed. In the modular multiplier both the

modulus (M) and the multiplier (X) are fed parallely to datapath while the multiplicand (W) is

fed serially, so a parallel to serial converter is also required.

4.3.4. Modular exponentiation architecture.

86

The architecture of the proposed hardware is very simple and it uses not long distance

communications. Basically, the architecture presents as data inputs X, Y, M, R and four

control signals: Reset, clk and start which are used to initialise the procedure, and Load_inv

signal used to load the inverse multiplicative number. Left to right version of the algorithm

requires as inputs: X, Y, M, n and d, where n = log2Y+1 and n=kd, for k ≥ 1, nevertheless,

it is possible to define an optimum value of d (d*) for different n = 4, 8, 16…1024 in order to

obtain a minimum number of multiplications required by the algorithm, we can consider that

this value is predefined according to the bits length.

One output signal Stop is supplied by the control part when modular exponentiation is

computed. This flag indicates that the modular reduction must be done, it means the final

result must be multiplied by the corrective factor. In figure 4.2, the external signals are

shown.

Figure 4.2. External signals.

All flip-flops are set to reproduce a zero output, at time t = 1, by a Reset signal. The start

synchronised signal initialises the control part to generate the internal control lines necessary

to execute the modular exponentiation.

M

0
Mn

-1
.... n

 b
its

Mn

-2
M1

M
0

X

0xn-1 n bitsxn-2 x1 x0

Y

0
y
n
-1

..
..

 n
 b

it
s
 .

..
.

y
n
-2

y
1

y
0

RÕ

0
r n

-1
..

..
 n

 b
it
s
 .

..
.

r n
-2

r 1
r

0

Reset

clk

Load_inv

Stop

Start

87

A block diagram of a practical hardware modulo exponentiation system is presented in figure

4.3. The architecture consists of a set of registers/multiplexer, a CLA comparator/subtractor, a

small size RAM, a parallel to serial transformer, a modular multiplier and the control part.

From binary algorithm it is possible to observe that two steps can be clearly defined. In the

first one, the values Vj = VjmodM are computed for j = 2 , 3 ..2d-1. It means 2d-1 modular

multiplication could be done by taking X and each partial product Xj as the new

multiplicands.

Also, in this step each partial product Vj would be stored into the intermediary RAM using as

field address the content of F(i), as can be seen in figure 4.4. So, 2d-2 read memory operations

must be done. The partial products will be used to calculate Z*VF(i) modM.

Figure 4.3. Modular Exponentiation System Block diagram.

In the second step, each partial result is raised to the 2
d
 power, requiring (k-1)d multiplication

and then is multiplied with V F(i), where F
(i)

is the value of the current bit section of the

Base - X

Output register

S = X YmodM

Inverse - R

Modular Multiplier

Mux_2

Module - M
Paralell to serial

transformation

Mux_3

Address

signals

R
e
g
_
Y

Counter
R A M

RegisterControl

Comp_Subt.

Exponent - Y

M
u
x
_
4

88

exponent Y. If F
(i)

 = 0, modular multiplication is not executed, so, this procedure requires at

most (k-1) multiplication.

Summing the number of multiplication required, we obtain:.

Tmax(n, d) = 2d
- 2 + (k-1)d + (k-1) = n + n/d +2

d - d - 3 since n =kd

From this expression, it is possible to select d for a given n such that Tmax(n, d) is minimised.

Derivating the expression with respect to d and in order to find the optimal value of d

minimising the maximum number of multiplication executed by the algorithm, we need to

solve:

∂Tmax(n, d)/∂d = - n/d2 + 2d loge2 - 1 = 0

By enumeration, a value of d = d* optimum can be found such that ∂Tmax(n, d*) is as close to

zero as possible.

In table VII, the optimum values of d* for n =4, 8, 16…1024, together with the values of

Tmax(n) and Tmax(n, d*) for binary method (BM) and generalised method (MM) are shown. Tmax

represents the maximum number of multiplications required by the radix m algorithm.

Table VII. Maximum number of multiplications.
BM MM

N Tmax(n) d* Tmax(n, d*)
4 6 2 5

8 14 2 11

16 30 2,3 23

. . . .

. . . .

128 191 3,4 167

256 383 4 325

512 767 5 635

1024 2046 6 1250

89

. . . .

n 2(n-1) n+n/2+2d-d-3

Considering that, if F(i)
 = 0, modular multiplication is not executed, it is possible to find an

expression to denote the average number of multiplications and subsequently minimised in

order to find an optimum d*. In table VIII, the average number of multiplications required by

algorithms binary method (BM) and generalised square multiply (MM) with the optimum

values of d, are presented [21].

Table VIII. Average number of multiplications.

BM MM
n Tave(n) d* Tave(n, d*)
4 5 2 5

8 11 2 11

16 23 2,3 23

. . . .

. . . .

128 191 3,4 167

256 383 4 325

512 767 5 635

1024 1535 6 1250

. . . .

n 3/2(n-1) n+[(n/d)-1][1-(1/2d)]+2d- d - 2

Square and multiply algorithm for modular exponentiation requires on average 1.5n modular

multiplication for an n-bit exponent [20]. In the case of 512-bit integers, the algorithm

performs on average 766 modular multiplications.

90

Figure 4.4. Exponent register.

As is shown in figure 4.4, the content of each n field F(k-i) is interpreted as an address signal

for storing the partial modular product. A decoder and an incrementer can be used to facilitate

this procedure. As mentioned, the number of multiplication required in this step for any value

of the exponent is 2d - 2, for this reason 2d - 2 access cache memory must be done for storing

V jmodM values coming from the comparator/subtractor. The incrementer/decoder block

allows scan each one of the k-sections into the exponent Y to generate the RAM accessing

addressing signal where each V jmodM partial product will be stored.

The modulus (M) and the partial products (W) are fed concurrently to modular multiplier

while the multiplicand which can be either X or V j or VF(i), is fed serially through Mux_3,

being processed only for the parallel to serial transformation unit. The parallel to serial

transformation unit is responsible for generating one output serial signal which is one of the

operands to be fed to modular multiplier. The parallel to serial transformation and modular

multiplication are concurrently performed.

Each partial result of the modular multiplication is compared with modulus using the

overflow signal supplied by subtractor. Mux_2 and a Carry Look Ahead (CLA) subtractor act

Y..........

n = kd

k-sections of d-bits each

n bits

k-1 k-2 k-3 2 1 0
..........

.. ..
F(k-1) F(k-2) F(k-3) F(0)F(1)F(2)F(i)

FF

Dec

Inc

+1

... Address signal

X2

X3

X4

X5

.

Xd - 2

Xd - 1

.

.

.

From multiplier

To multiplier

RAM

91

when running the modular multiplication algorithm, performing extra subtractions of the

original modulus as necessary after the main loop to obtain the least non-negative residue, the

result can be stored into the RAM or fed back to modular multiplier through selectors Mux_3

and Mux_4. Nevertheless, Montgomery multiplication produces a result less than twice the

modulus, so only at most one subtraction is needed

During the second step and depending of the F
(i)

, several cache memory access are executed.

In general, access memory are done if F
(i)

 ≠ 0. When F
(i)

 = 0, modular multiplication is not

performed. If

F

(i)
 = 1, a modular multiplication occurs, but cache memory is not accessed, due

to the new operand is X. In this step, each access memory requires a write operation in order

to transfer the data from RAM, through Mux_4, and through the parallel to serial

transformation unit in sequence to be finally supplied to modular multiplier. As can be seen,

at most (k-1) access memory must be executed.

Finally, a flag (Stop signal) is used to indicate the end status of the modular exponentiation

function validating the input signal Load_inv to load the corrective factor.

4.4. 32-bits prototype design.

In order to validate the architecture, a 32-bits modular exponentiation system has been

designed and fabricated by using 0.6um CMOS-AMS technology. In figure 4.5, a capture

schematic of the system is shown.

Expo_function

Mux_3

Mux_2

M
u

x
_
4

Modular multiplier

Output

CLA_subtractor

Serial

R
A

M

R
e
g

_
Y

Y
_
E

x
p

o
n

e
n

t

X_Base

M
_
M

o
d

u
le

R_
In

v
_
m

u
lt

.

Register

Z = XYmodM

92

Figure 4.5. Schematic capture of the system.

The evaluation of the architecture will be provided according to functionality, power

consumption and performance under the condition of 5V supply voltage. Excepting registers

and multiplexers blocks which present a standard operation, all other functional blocks will be

briefly discussed as follows:

4.4.1. Modular Multiplier.

Modular exponentiation is executed by repeated modular multiplication. As mentioned in

chapter 3, the multiplier design is oriented to fast execution of modular multiplication. As can

be seen from figure 4.6, two operands are fed parallely while one second operand coming

from partoser1 unit is fed serially. The modulus is always fed in parallel.

Figure 4.6. Multiplier and parallel to serial unit.

The modular multiplier (expo32) consists of 32 identical cells as can be seen in figure 4.7.

The design of the cell is depicted in figure 3.8(a), in chapter 3. The inputs to multiplier are

supplied from different functional blocks.

Figure 4.7. Modular multiplier diagram.

93

During the first step of the algorithm, the operands involved are X, which is an external input,

and V
j
 which is the output of the CLA_subtractor. In the second step, the operands are VF(i)

and depending of F
(i)

, V
j
 or X. In each case, X (first case) or VF(i) (second one) is fed parallely

to partoser1 conversion unit, and for every 0 ≤ i ≤ n-1, an output serial signal (serial_out) is

carried out to modular multiplier. The logic needed to implement this conversion is shown in

figure 4.8.

Figure 4.8. Parallel to serial unit

Once, the bits of X or V
j
 are available in the input register, a control signal (Load_X_M) loads

the partial product and the shift internal signal is activated to start the conversion procedure.

In Figure 4.9 it is possible to see both partial product (Part_P - in binary) and Serial_out

signals (al_out) which correspond to the serial output related to Part_p parallel input. As can

be seen, each serial bit, -least significant first-, is used to produce in parallel a multiplication

partial product. Thus a flag is used to indicate to the control part the end of the operation

(Mult). This flag is activated by shift internal signal.

94

Figure 4.9. Parallel to serial conversion.

4.4.2. Exponent Y register and control part.

Specifications for the operation of the exponentiation system are more frequently given for

the exponent Y register. The exponent Y defines the number of multiplications, the number of

memory accesses for executing read or write operation. The connectivity between the

exponent Y register, RAM and the control part is presented in figure 4.10.

Figure 4.10. Exponent register, control part and intermediary memory.

This part of the system is composed by sequential machines implemented as forward path

containing combinational logic and several feedback paths that include storage elements as

flip-flops and latches. The control part is composed by five different state machines included

into four blocks: Prog_count10, Pro_count_Y, Prog1_count_6, and ctrl_sig. These state

machines include clocked input drivers and clocked output buffers. They generate all required

control signals for operation.

In its simplest form, Ctrl_sig block is responsible for generating the main clocked control

signals needed to realise correctly the required function. Register and multiplexers load

signals, multiplexer selection signals, write and several secondary control signals are

distributed from it to overall system. Secondary control signals are used as command lines to

activate sequentially other state machines. In this block are generated six primary load

95

signals: Load_X, Load_R, Load_X_M, Load_sub, Load_add and Load_sub1 which are used

to load new data into the registers.

Besides, selection signals of the multiplexers: S1, S0, S1X, S0X and S0A are also generated.

Each one of this load and selection signals represented as Sel1 [S1, S0], Sel2 [S1X, S2X] and

S0A are generated according to several feedback informations coming from other functional

blocks as multiplier (Parity), Subtractor (Cout) or Serial-bit processing unit (Shift) between

others. In figure 4.11, the main control signal are illustrated.

Figure 4.11. Schematic illustrating main control signals.

During the first step of the algorithm, the second component Pro_count_Y is a structure that

allows the contents of all V
j
 partial products be calculated and stored into the RAM. This state

Mux_2

CLA_subtractor

Output

Register

R
A

M

Y
_
E

x
p

o
n

e
n

t
R

_
In

v
_
m

u
lt

.

X_Base
M

u
x
_
4

Mux_3

Serial-bit

Modular multiplier

M
_
M

o
d

u
le

R
e
g
_
Y

Z = XYmodM

Ctrl

Ctrl

Ctrl

Ctrl

Sel1

S
e
l2

S0A

Load_X

L
o
a
d
_
R

Load_sub

Load_add

Load_sub1

Load_sub1

Load_X_M

Load_X_M

L
o
a
d
_
X

96

machine includes a NOR decoder to generate sequentially the select lines required for reading

operations. Once a given row is selected, a Read signal is activated in order to store data from

Register executing a read operation.

Additionally, as shown in chip architecture, 3 bits coming from Reg_Y must be also decoded

to generate 8 row select lines. If F
(i)

 = 0 or F
(i)

 = 1, write operation is not executed, signals fi

and f1 detect those conditions respectively. In figure 4.12, schematics of Pro_count_Y and

ctrl_sig subsystems are depicted.

(a) (b)

Figure 4.12. Schematics of (a) Ctrl_sig and (b) Pro_count_Y

The exponent Y register has 32-bits input partitioned into 11 sections of 3 bits, so, we have

that kd = 33. The 33-th bit is zero. Each one of the sections of the exponent is scanned by the

state machine Prog_count10, its output signals are sequentially generated in order to activate

in Reg_Y the group of bits [F
(i)

] to be scanned. The content of this group Y2,Y1,Y0 is carried

out to Prog_count_Y.

Scanning section tasks are synchronised by a signal ck_S01 which is generated by

Prog1_count_6. This block includes two state machines, its function is to count the number of

multiplications to be executed for each i-section, so if F
(i) ≠ 0, then four multiplications will be

required, on the contrary only three modular multiplications will be executed. When this flag

is active (ck_S01), an evaluation of a new section of the exponent Y is started. Signal Write, is

also generated at the beginning of 4
th

 multiplication only if F
(i) ≠ 0 and F

(i) ≠ 1, it means if

internal signals fi = 1 and f1 =1, respectively.

97

All that procedure is executed during the second step of the algorithm, signal five is used for

all state machines to identify which step of the algorithm is being executed. In figure 4.13,

schematic corresponding to Prog1_count_6 and Prog_count_10 state machines are presented.

(a) (b)

Figure 4.13. Schematics of (a) Prog_count_10 and (b) Prog_count_6

Several software tools provide the opportunity of creating dense array of small memory cells

in order to optimise the RAM design and improving the data storage capability. Usually,

RAM generators are available for large size memories. Due to small storage requirements, the

intermediary RAM was implemented using both registers and latches.

This array which is presented in figure 4.14, is organised so that 32 bits along the selected

row enabled by the row address are accessed simultaneously. The effective address

calculation is executed by Pro_count_Y coding a 3-bit field statement coming from the

exponent register. This field is used to specify indexed address mode through sel[0-7] signals.

98

Figure 4.14. Registers array.

4.4.3. Comparator subtractor.

Due to the fact that a bit-serial multiplier architecture adds the respective input summands to

compute a set of partial product bits, where each partial product must satisfy the condition

0≤Si<M+W<2M, so, we can conclude that modular multiplication is executed by repeated

cycles involving shifting and addition and usually together with simultaneous modular

subtraction in order to satisfy the condition Sn < M. For this reason, a subtraction function is

required in order to establish the comparison and subtraction if needed.

The comparator/subtractor is the other important part of the data path to be discussed. As its

names suggests, the comparator/subtractor must provide comparison and subtraction

operations on data furnished from modular multiplier. A block diagram of a 32-bits wide

subtractor showing the inputs coming from Module Register and Modular Multiplier outputs

passing through a multiplexer is given in figure 4.15. Two parallel 32-bit buses feed the

functional block. This allows both inputs to receive data simultaneously, one of the two

parallel buses is used to carry out the result to the register word_32 once the Sn < M condition

is verified.

99

Figure 4.15. Multiplier/ Subtractor loop.

The subtractor execution time may limit the maximum clock frequency of the system unless

special care is taken for arithmetic operations. These operations are slowed by carry or

borrow propagation delays across the width of the subtractor. So, in this implementation we

use a Carry Look Ahead approach in order to speed carry propagation across groups of

adjacent stages. As only subtraction operation is required, a Carry Look Ahead (CLA) adder

structure will be used [29]. The Carry Look Ahead approach allows calculate early the value

of the carry rather than to propagate it. This implementation provides an important speed

enhancement. The Carry Look Ahead Unit (CLU) used in this implementation is depicted in

figure 4.16(a).

The subtraction is executed encoding the two's complement operand in order to reduce the

number of loops to be done. This makes the operator faster and uses less hardware. To realise

the two's complement of a binary number, first the number is inverted and then a logic "1" is

added to it. The adder circuit includes the "1" to be added if necessary The analysis of the 32-

bits Carry Look Ahead adder, shown in figure 4.16(b), can be extended to n-bits and applied

to an implementation of the CPA array of the multiplier.

In this case, each bit of M must be inverted and an input carry = 1 must be set. Using XOR

logic operators with each mi and the input carry =1, a representation two's complement of

module is obtained. So, the operation to be executed will be Sn + (-Μ +1). Figure 4.17, shows

a detailed diagram of this architecture. The adder must execute a fast subtraction of Sn - M,

only if Sn > M condition is detected, This is announced by an overflow situation which is

flagged by Cout signal. Overflow condition is implemented by using the XOR logic operation

with the two last Carry signals.

Cout signal is sensed by the control part. If Cout = 1 condition is detected, the state machine

generates the control signal required to execute subtraction operation loops before continuing

with the general procedure. In figure 4.18, this situation is illustrated.

100

Figure 4.16. (a) CLU scheme. (b) 32-bits Carry Look Ahead subtractor.

Figure 4.17.Schematic of 32-bit CLA Subtractor.

When Cout = 1, both Load_sub and Load_add load signals are repeated while the generation

of all not required control signals is suspended. As can be seen from figure 4.11, these signals

allow load the partial product to be fed back to subtractor. During this procedure, a select

signal S0A is activated in order to transfer the partial product to be subtracted.

In this case, a product partial 3168643542 > 3100785095 is obtained. Cout signal is "one", a

subtraction using new data (3168643542 - 3100785095 = 67858447) as new partial product is

executed. Once Cout = 0 condition is achieved, the state machine continues to generate the

previous control sequencing.

This Carry Look Ahead architecture can execute 32-bits subtraction in 5 ns, so, a subtraction

operation does no take a significant time speed to overall time. Only at most one subtraction

101

is needed each time, because Montgomery multiplication produces a result less than twice the

modulus.

Figure 4.18. Overflow detection and subtraction operation.

4.5. Simulation results

Several simulations of the exponentiation system using typical parameters were done. Post-

simulations were executed using Verilog simulator. This architecture is fast because, first, the

number of multiplications is reduced, and second because steps for addition, shifting and

eventually subtraction present a good performance, leading to have a compact operator with

n-bit-serial word. The system requires small amount of hardware, it executes the

exponentiation by using only selectors and carry save adders which have no carry

propagation. So, this architecture allow speed-up the multiplication function. In order to

analyse the simulation results, an example will be studied. Let calculate X
Y
modM where the

operands are presented in table IX:

Operation: ((297606960417292808)mod 3100785095) = 1336894240

R = 2nmodM R` = (2n)2modM

Table IX. Operands of the exponentiation
Binary (2i) - iop Decimal

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

102

X 297606960 0 0 01 0 0 0 1 1 0 1 1 1 1 0 1 0 0 0 1 1 1 1 1 0 0 1 1 0 0 0 0

Y 417292808 0 0 01 1 0 0 0 1 1 0 1 1 1 1 1 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0

M 3100785095 1 0 11 1 0 0 0 1 1 0 1 0 0 1 0 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 1

R 1194182201 0 1 00 0 1 1 1 0 0 1 0 1 1 0 1 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1

R` 1915139751 0 0 10 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 0 0 1 1 0 0

d 3 -

Z 1334514530 0 1 00 1 1 1 1 1 0 0 0 1 0 1 1 0 0 0 1 0 0 1 1 0 1 1 0 0 0 1 0

Applying generalised square multiply algorithm, it is possible to execute the exponentiation

performing 39 modular multiplications. During first step six multiplications are executed

while 33 are executed in the second one. In table X, the number of required multiplications

for executing modular exponentiation is shown.

Table X. All multiplication are Montgomery's number.

C

J i = 8 i = 7 i = 6 i = 5 i = 4 i = 3 i = 2 i = 1 i = 0

0 X6 X48 X396 X3182 X24468 X203756 X1630050 X13040400 X104323202

1 X12 X96 X7920 X63640 X50936 X407512 X3260100 X26080800 X208646404

2 X24 X192 X1584 X12728 X101872 X815024 X6520200 X52161600 X417292808

F(i) 0 6 ≠ 0 7 ≠ 0 6 ≠ 0 6 ≠ 0 1 ≠ 0 0 1 ≠ 0 0

C - X192X6 X1584X7 X12728X6 X101872X6 X815024X - X52161600X -

Cf X24 X198 X1591 X12734 X101878 X815025 X6520200 X52161601 X417292808

In tables XI and XII, the values of Vj and the content of the different sections of the exponent

Y are shown. As can be seen, only the first calculated values of Vi must be stored. For 128-

bits length numbers, only seven values must be stored. This method does not require much

store overhead. In general (2d-2) elements must be stored. It is possible to store only the odd

powers through use of a sliding-windows method, but the system will become more complex.

Table XI. From j = 2 to 2d-1.

j V j CVj

0 V0 = 0 1

1 V1 = 1 XmodM

2 V2 = X. XmodM X2modM

3 V3 = X2.XmodM X3modM

4 V4 = X3.XmodM X4modM

5 V5 = X4.XmodM X5modM

6 V6 = X5.XmodM X6modM

7 V7 = X6.XmodM X7modM

103

Table XII. Exponent register fields.

F(i) Bin Dec

F(9) 011 3

F(8) 000 0

F(7) 110 6

F(6) 111 7

F(5) 110 6

F(4) 110 6

F(3) 001 1

F(2) 000 0

F(1) 001 1

F(0) 000 0

In table XIII, a detailed description of the number of multiplications to be executed are

presented. Multiplications are classified according to steps of the algorithm. As shown, Read

operations are required only during first step of the algorithm while Write operations are

executed in the second one.

Table XIII. Decimal and modular products
Product Decimal Representation Product

2 to 2d-1 Decimal Modular

X2modM (297606960 x 297606960) 88569902640441600 1220819910

X3modM (1220819910 x 297606960) 363324502122573600 2446309785

X4modM (2446309785 x 297606960) 728038818332103600 588220545

X5modM (588220545 x 297606960) 175058528206993200 230579675

X6modM (230579675 x 297606960) 68622116114538000 2421749705

X7modM (2421749705 x 297606960) 720729567585946800 1088410215

I = 8

X6modM (2446309785 x 2446309785) 5984431564186746225 2421749705

X12modM (2421749705 x 2421749705) 5864871633667587025 959486135

X24modM (959486135 x 959486135) 920613643257238225 2845492880

F(8) = 0
X24modM ------------------------------ 920613643257238225 2845492880

I = 7

X48modM (2845492880 x 2845492880) 8096829730130694400 3054400745

X96modM (3054400745 x 3054400745) 9329363911056555025 279690895

X192modM (279690895 x 279690895) 78226996745901025 2771104150

F(7) = 6
X198modM (2771104150 x 2421749705) 6710920657786775750 1055815655

I = 6

X396modM (1055815655 x 1055815655) 1114746697343079025 2931251230

X792modM (2931251230 x 2931251230) 8592233773376512900 2396536315

X1584modM (2396536315 x 2396536315) 5743386309113779225 757893075

F(6) = 7
X1591modM (757893075 x 1088410215) 824898564707761125 2019467110

I = 5

X3182modM (2019467110 x 2019467110) 4078247408371752100 1512481145

X6364modM (1512481145 x 1512481145) 2287599213980511025 2408263975

X12728modM (2408263975 x 2408263975) 5799735373282800625 1276250550

104

F(5) = 6
X12734modM (1276250550 x 2421749705) 3090759392968587750 1299764255

I = 4

X24468modM (1299764255 x 1299764255) 1689387118575705025 116562455

X50936modM (116562455 x 116562455) 13586805915627025 2841312675

X101872modM (2841312675 x 2841312675) 8073057717115655625 830139625

F(4) = 6
X101878modM (830139625 x 2421749705) 2010390391952560625 427086680

I = 3

X203756modM (427086680 x 427086680) 182403032233422400 184917350

X407512modM (184917350 x 184917350) 34194426331022500 864799135

X815024modM (864799135 x 864799135) 747877543896748225 2340178210

F(3) = 1
X815025modM (2340178210 x 297606960) 696453322936341600 1397806095

I = 2

X1630050modM (1397806095 x 1397806095) 1953861879219149025 3080141940

X3260100modM (3080141940 x 3080141940) 9487274370546963600 2053533270

X6520200modM (2053533270 x 2053533270) 4216998890996892900 2326786995

F(2) = 0
X6520200modM ------------------------------ 4216998890996892900 2326786995

I = 1

X13040400modM (2326786995 x 2326786995) 5413937720101130025 1701027820

X26080800modM (1701027820 x 1701027820) 2893495644413952400 2013237725

X52161600modM (2013237725 x 2013237725) 4053126137363175625 1416995150

F(1) = 1
X52161601modM (1416995150 x 297606960) 421707618926244000 2592698160

I = 0

X104323202modM (2592698160 x 2592698160) 6722083748867385600 2227692430

X208646404modM (2227692430 x 2227692430) 4962613562679304900 1693762415

X417292808modM (1693762415 x 1693762415) 2868831118466632225 1334514530

F(0) = 0
X417292808modM ------------------------------ 2868831118466632225 1334514530

Simulation results of the exponentiation function is depicted in figure 4.19. This figure shows

104

a window of the computation of X
Y
modM where X,Y and M are given in table IX .

Figure 4.19. Modular exponentiation simulation results.

"Serial_out" signal corresponds to a serial-bit input of the modular multiplier coming from

serial-bit conversion, while "Mult" and "Output" are the partial multiplication and partial

exponentiation results respectively.

Signal "Cout" indicates a Sn > M condition starting extra subtractions of the original

modulus. "Oper" set signals is generated by the state machine for counting the number of

multiplications to be executed in each cycle and addressing a cache memory when F(i)=0.

From behavioural simulation results using the 0.6µm standard cell library, the execution cycle

delay time is at most 54 ns. So, a minimum clock period of 18ns was observed giving a

maximum clock frequency of 55 MHz using typical parameters.

Several simulations considering a reasonable number of inputs were done. In figure 4.20,

simulation results for a new calculation are presented.

Figure 4.20. Modular exponentiation simulation results.

Layout automatic edition using placement and routing tools of CADENCE version 4.4.1 were

used. In figure 4.21(a) and 4.21(b) an initial placement and final layout are presented.

104

Figure 4.21. (a) Automatic placement (b) Final layout.

4.6. Experimental results

As mentioned in last chapter, from experimental results, the execution cycle delay time for a

single multiplication was about 42 ns, each execution cycles needs at most three clock cycles,

so it means that for a multiplier a maximum clock frequency of about 70 MHz was obtained.

However, considering all interconnection of the data path in the modular exponentiation

function, a reduction of clock frequency was verified obtaining a clock frequency of 55 MHz.

The architecture includes 8400 equivalent gates into an active area of 2.30 x 1.73 mm2,

giving a density of 2107 equivalent gates/mm
2
. The layout prototype shown in figure 4.22

presents block, soft block and placement class region mixed layout strategies. Design size is

limited by theI/O pad ring composed by 116 pads occupying an area of 4 x 3.9 mm
2
.

Figure 4.22. Core of the cryptosystem layout.

104

The average number of multiplications is given by n+[(n/d)-1][1-(1/2
d
)]+2

d
-d-2, where each

modular multiplication takes n execution cycles. So, a 32-bits modular exponentiation is

executed in average 44 multiplications each one using three clock periods. Each restoring

operation takes a half clock period and each subtraction operation takes one clock period.

Computing 32-bits modular exponentiation takes in average 2.3 µs with twelve cache memory

accesses.

In general a n-bits modular exponentiation will take in average :

n[n+[(n/d)-1][1-(1/2
d
)]+2

d
-d-2] execution cycles.

Main characteristics of the modular exponentiation architecture are given in table XIV. The

generalised architecture can employ a n-operand adder module M realised using carry save

adders and tree structures to substitute a CPA array.

Table XIV. Architecture performance [32].
Modulus (M) 32 bits 2n > M > 2n-1

Multiplicand (X) 32 bits (Bin)

Multiplier(Y) 32 bits (Bin)

Product n + 1 bits (XYmodM)

Exponentiation time 1.7 µs

Active area size 2.30 x 1.73 mm2

Equivalent gates 8400

Frequency 55 MHz

1024 bit [seg] (average) 73.6 x 10-6

Chip size (bonding pads) 15.6 mm2.
Density of transistors 8.4 k/mm2.
Technology 0.6µm-CMOS

Algorithm M-ary/Montgomery

Cache memory Eight words

4.7. State of the art

In the interests of cryptographic application, estimates should be given for the speed of

cryptographic operations such as RSA or Diffie-Hellman. The new designs are fast and

smaller than previous ones. In table XV, is contained some of RSA chips and their main

characteristics.

Table XV. State of the art of the cryptosystems [30].

104

Chip RAM Tech.
(µm)

Fabric. Clock
(MHz)

n
(bits)

Algorithm

ST16CF54 352 1.2 SGS 5 768 Montgomery

ST16KL74 608 1.2 SGS 5 1024 Montgomery

SLE44C200 256 1.0 Siemens 5 540 Sedlak

P83C855 512 1.2 Philips 10 648 Quisquater

MC68HC5S 512 1.2 Motorola 5 1328 Quisquater

SCALPS 128 1.5 UCL 10 512 Montgomery

CY512i 768 1.5 Cylink 15 512 Massey/Omura

CRIPT ext. 1.2 CNET 25 1024 bit wise

In recent years, public-key cryptosystems has gained increasing attention from both

companies and end users who wish to use this technology to add security to a wide variety of

applications. One consequence of this trend has been the growing importance of public key

smart cards to store a user's private key and to provide a secure computing environment for

the private key operation.

Many chip manufacturers are therefore proposing ever better and faster implementations of

public key algorithms using dedicated crypto-coprocessors on their chips. The most widely

used smart cards with crypto-coprocessors are listed in table XVI. In this table we presents the

standard field size of such chips in terms of on-board memory sizes (RAM), operating voltage

and frequency, and the maximum public key size supported for RSA or DSA public modulus

and elliptic curves.

Table XVI. Technical characteristics of some Smart Cards Cryptoprocessors [31].

Name Manuf. Max RAM Voltage Clock Ext. Clock Int. Tech
H8/3111 Hitachi 576 800B 3v & 5v 10Mhz 10Mhz 0.8µm

H8/3112 Hitachi 576 1312B 3v & 5v 10Mhz 10Mhz 0.8µm

H8/3113 Hitachi 1024 1.5KB 3v & 5v 10Mhz 14Mhz 0.5µm

T6N29 Toshiba 1024 512B 3v & 5v --- --- 0.6µm

T6N37 Toshiba 1024 512B 3v & 5v --- --- ----

T6N39 Toshiba 1024 512B 3v & 5v --- --- ----

T6N42 Toshiba 2048 512B 3v & 5v --- --- ----

ST16CF54 SGS-Th 512 512B 5v±10% 5Mhz 5Mhz ---

ST19CF68 SGS-Th 512 960B 3v,5v±10% 10Mhz 10Mhz 0.6µm

ST19KF16 SGS-Th 1088 960B 3v,5v±10% 10Mhz 10Mhz 0.6µm

P83W854 Philips 2048 800B 2.7v to 5.5v 8Mhz --- ----

P83W858 Philips 2048 800B 2.7v to 5.5v 8Mhz --- ----

P83W8516 Philips 2048 2304B 2.7v to 5.5v 8Mhz --- ----

P83W8532 Philips 2048 2304B 2.7v to 5.5v 8Mhz --- ---

104

SMARTXA Philips 2048 1.5/2K --- --- --- ---

SLE44CR80S Siemens 540 256B 3v to 5v 7.5Mhz 7.5Mhz 0.7µm

SLE66CX160S Siemens 1100 1280B 2.7v to 5.5v 7.5Mhz 7.5Mhz 0.6µm

µPD789828 NEC 2048 1KB 1.8v to 5.5v 5Mhz 40Mhz 0.35µm

Those chips are becoming bigger, more versatile faster and increasingly secure. The new

range of public key sizes for RSA or DSA is now generally up to 1024 bits and some chips

can even handle 2048-bit computation. Every architecture has its own optimizations for

computing modular multiplication and exponentiation, naturally the best internal architecture

of a co-processor relies strongly on the choice of modular multiplication algorithm. Table

XVII, lists the computation times (measured in ms) on different chips for different public key

algorithms.

Table XVII. Comparison of computation times [31].

Name Application H

8

/

3

1

1
1

-

2

H

8

/

3

1

1
3

S

T

1

6

C

F
5

4

B

S

T

1

9

C

F
6

8

S

T

1

9

K

F
1

6

P P

8 8

3 3
W W

8 8

5 5

4 8

P P

8 8

3 3
W W

8 8

5 5

1 3
6 2

S

L

E

4

4

C
R

8

0

S

S

L

E

6

6

C
X

1

6

0

µ
P
D

7

8

9

8

2
8

DES 64 bits --- --- 10 --- --- 10 10 3.7 3.7 4

SHA 512bits --- --- 15.2 8.2 8.2 10 5 5.6 5.6 2

MDS 512 bits --- --- 12 --- --- --- --- 9 9 ---

RSA 512 Sign with CRT 202 --- 142 70 20 45 37 60 37 16

RSA 512 Sign without CRT 514 68 389 195 55 140 93 220 110 52

RSA 512 Verify --- --- 9 4.5 2 22 10 20 10.3 2

RSA 768 Sign with CRT --- --- 377 189 50 182.5 88 250 124 52

RSA 768 Sign without CRT --- 210 --- --- 165 385 220 --- 437 164

RSA 768 Verify --- --- 190 100 3 36 18 --- 18.4 4

RSA 1024 Sign with CRT --- --- 800 400 110 250 160 450 230 100

RSA 1024 Sign without CRT --- 480 --- --- 380 800 400 --- 880 360

RSA 1024 Verify --- --- 265 150 5 50 25 --- 24 7

RSA 2048 Sign with CRT --- --- --- --- 780 2180 1100 --- 1475 750

RSA 2048 Sign without CRT --- --- --- --- --- 21 s 6.4 s --- 44 ---

RSA 2048 Verify --- --- --- --- 100 156 54 --- 268 45

DSA 512 Sign --- --- 163 84 25 75 58 95 50 31

DSA 512 Verify --- --- 283 146 40 115 82 175 90 70

DSA 768 Sign --- --- --- --- 50 145 100 --- --- 57

DSA 768 Verify --- --- --- --- 80 230 145 --- --- 150

104

DSA 1024 Sign --- --- --- --- 100 215 150 --- 143 ---

DSA 1024 Verify --- --- --- --- 160 355 225 --- 271 ---

ECDSA 135 Sign --- --- --- --- --- --- --- 185 185 ---

ECDSA 135 Verify --- --- --- --- --- --- --- 360 360 ---

ECDSA 255 Sign --- --- --- --- --- --- --- --- --- 81

ECDSA 255 Verify --- --- --- --- --- --- --- --- --- 380

Internal Clock Frequency (MHz) 3.57 14 5 10 10 Ind. Ind. 5 5 40

4.8. Conclusions.

An alternative and very general modular architecture has been proposed for performing

modular exponentiation based on a generalised square-multiply binary method and

Montgomery's algorithm using serial data. This implementation requires a smaller number of

modular multiplications than the well known binary method. The system consists of a serial

multiplier array coupled with a small size cache memory and some multiplexers.

Based on this architecture, it is possible to build an easily expandable RSA engine with an

average number of multiplications given by n+[(n/d)-1][1-(1/2d)]+2d-d-2, where each modular

multiplication takes n execution cycles. The calculation time is estimated by considering the

number of average multiplications required for computing the exponentiation and the number

of clock cycles needed for each single multiplication execution cycle.

This implementation takes the one argument in serial bit, least significant bit first, and

produces the partial product in bit parallel form. The architecture has been presented and

verified and the efficiency of hardware implementation discussed. Due to its simple logic, the

proposed architecture presents a good performance. In general a n-bits modular

exponentiation will take in average: n[n+[(n/d)-1][1-(1/2d)]+2d-d-2] execution cycles.

From experimental results we must conclude that at most an execution cycle of 54ns is

required using a clock cycle of 18ns. It means that the modular exponentiation system is

functional at a maximum frequency of 55 MHz. The whole process takes a time proportional

to the number of digits in X. The standard cell gates used to implement the modular multiplier

operate at a supply voltage of 5V. The architecture has the advantage that it is very simple,

allowing a cellular construction and is easily expandable to larger bit-widths. So, it can be

easily used in implementing cryptography systems to execute modular exponentiation of long

104

word length numbers. It can be installed in some cellular phones which operate at about 15

MHz or into some smart cards.

The generalised architecture can employ a n-operand adder module M realised using carry

save adders where the longest path in the circuit from input to output involves only six gate

delays and tree structures to substitute a CPA array. The architecture has the advantage that it

is very simple, allowing a cellular construction and is easily expandable to larger bit-widths.

So, it can be easily used in implementing cryptography systems to execute modular

exponentiation of long word length numbers.

This architecture is fast because, first, the number of multiplications is reduced, and second

because steps for addition, shifting and eventually subtraction present a good performance,

leading to have a compact operator with n-bit-serial word. The system requires small amount

of hardware, it executes the exponentiation by using only selectors and carry save adders

which do not have carry propagation. So, this architecture allows speed-up the multiplication

function. The architecture can be installed in some cellular phones which operate at about 15

MHz or into a smart card which has available only 5x5 mm2 and operates at about 4MHz.

104

4.9. References.

[1] E.F. Brickell, K.S. McCurley, An interactive identification scheme based on discrete

logarithms and factoring. J. Cryptology, Vol. 5, No. 1, pp. 29-39, 1992.

[2] C.P. Schnorr, Efficient signatures generation for smart cards. J. Cryptology, Vol. 4,

No. 3, pp. 161-174, 1991.

[3] Sung-Ming Yen, Chi-Sung Laih, Improved digital signature suitable for batch

verification, IEEE Transaction on computers,Vol. 44, No. 7, pp. 957-959, July, 1995.

[4] W. Diffie, M. Hellman, Privacy and Authentication: An Introduction to Cryptography,

Proc. of the IEEE, v. 67, No. 3, Mar 1979, pp. 397-427.

[5] J.J. Quisquater, C. Couvreur, Fast dechipherment algorithm for RSA Public-key

Cryptosystem, Electronics Letter, vol.18, pp. 905-907, 1982.

[6] A. Fiat, A. Shamir, How to improve yourself: Practical solutions to identification and

signature problems. Advances in Cryptology - Proc. of Crypto’86, pp. 186-194, 1986.

[7] T. ElGamal, A Public Key Cryptosystem and a Signature Scheme Based on Discrte

Logarithms, IEEE Transactions of Information Theory, v. IT-31, No. 4, Jul. 1985, pp.

469 - 472.

[8] W. Diffie, M. Hellman, New Directions in Cryptography, IEEE Transactions on

Information Theory, IT-22, No. 6, Nov 1976, pp. 644-654.

[9] R. Merkle, Secure communication over an insecure channel, Communications of the

ACM, pp, 1976.

[10] P. Barret, Implementing the Rivest, Shamir, and Adleman, Public Key Encryption

Algorithm on a Standard Digital Processor, Advances in Cryptology, Crypto 86, pp.

311-323, 1986

[11] H. Sedlak, The RSA Cryptography Processor, Advances in Cryptology, Eurocrypt 87,

June, 1987

104

[12] M. Abe, H. Morita, Higher Radix Nonrestoring Modular Multiplication Algorithm and

Public-key LSI Architecture with Limited Hardware Resources, Proc. Anacrypt’94,

1994, pp. 363-375.

[13] L.C.K. Hui, K.Y.Lam., Fast square-and multiply exponentiationfor RSA, Electronic

letters, 30 (17), pps 1396-1397.

[14] P.W. Baker, Fast computation of ABmodN, Electron. Letters, Vol. 23, No. 15, pp.

794-795, July, 1985.

[15] E.F. Brickell, D.M. Gordon, K.S. McCurley, D.B. Wilson, Fast exponentiation with

Precomputation (Extended abstract), Advances in Cryptology, Eurocrypt'92,

Workshop on the theory and Applications of Cryptographic techniques. Balatonfured,

Hungary, 1992, pp. 201-207.

[16] P.A. Findlay, B.A. Johnson, Modular Exponentiation Using Recursive Sums of

Residues, Advances in Cryptology - Crypto’89, International Conference on the

theory and Applications of Cryptography and Information security, Santa Barbara,

California, 1989, pp. 371-386.

[17] G.R. Blakley, A Computer Algorithm for Calcualting the Product ABModulo, IEEE

Transactions on Computers, Vol. C-32,No. 5, May,1983 pp. 497-500.

[18] A. Selby, C. Mitchell, Algorithms for software implementations of RSA, IEEE Proc.,

Vol. 136E, pp. 166-170, 1989.

[19] Y. Han, C.J. Mitchell, D. Gollmann, A Fast modular Exponentiation for RSA on

Systolic Arrays, Inter. Journal Computer Math., Vol. 63, 1997, pp. 215-226.

[20] V. Bokio, M. Peinado, R. Venkatesan, Speeding up Discrete Log and Factoring Based

Schemes via Precomputations, 17th International Conference on the theory and

Applications of Cryptographic techniques. Spoo, Findland, 1998, pp. 221-235.

[21] C. Koç, High -Radix and Bit Recoding Techniques for Modular Exponentiation, Inter.

Journal Computer Math., Vol. 40, 1991, pp. 139-156.

104

[22] E.F. Brickell, D.M. Gordon, K.S. McCurley, D.B. Wilson, Fast exponentiation with

Precomputation (Extended abstract), Advances in Cryptology, Eurocrypt'92,

Workshop on the theory and Applications of Cryptographic techniques. Balatonfured,

Hungary, 1992, pp. 201-207.

[23] P. Rooij, Efficient Exponentiation using Precomputation and Vector Addition Chains,

Eurocryp’94, Workshop on the theory and Applications of Cryptography Techniques,

Perugia, Italy, May, 1994, pp. 389-399.

[24] T. Hamano, N. Takagi, S. Yajima, F. Preparata, “O(n)-Depth Circuit Algorithm for

Modular Exponentiation, 1995, pp. 188-192.

[25] H. Morita, A Fast Modular Multiplication Algorithm based on a Higher Radix,

Crypto’89, International Conference on the theory and Applications of Cryptography

and Information security, Santa Barbara California 1989, pp. 387-399.

[26] E. Brickell, A Survey of Hardware Implementations of RSA, Advances in Cryptology

- Crypto’89, International Conference on the theory and Applications of Cryptography

and Information security, Santa Barbara, California, 1989, pp. 368-369.

[27] I. Koren, Computer Arithmetic Algorithms, Prentice Hall, New Jersey, 1993.

[28] D. E. Knuth, Seminumerical algorithms, Second edition, The art of Computer

Programming, Addison Wesley Publishing Co., v. 2 , Massachusetts, 1981.

[29] J.M. Muller, Arithmétique des ordinateurs, Masson, Paris, 1989.

[30] D. Naccache, D. M'Raihi, Arithemetic co-processors for Public-key cryptography: The

state of the Art, IEEE Micro, pp.14-24, June, 1996.

[31] Handschuh H, Paillier P. Smart, Card Crypto-Coprocessor for Public-Key

Cryptography, CryptoBytes, Vol. 4, Number 1, Summer 1998.

[32] A. Bernal, A. Guyot, Hardware Implementation of M-ary Modular Exponentiation

Algorithm, To be published in XIV Conference on Design of Circuits and Integrated

Systems, DCIS'99, Palma ed Mallorca, Spain, Nov., 1999.

113

5. Low Power GaAs Methodologies.

5.1 Introduction.

Super fast systems with sub-nanoseconds cycle time, and multi-gigabit per second

telecommunication systems were the motivations behind the development of high speed VLSI

circuits, where speed was the main constraint and power consumption was not a limiting factor.

As mentioned before, MOS is by far the most often used technology for VLSI circuits.

Currently, in order to obtain high speed and MOS ICs high density scaling methods are used.

MOS technology becomes more competitive than other technologies (ECL, I2L) when scaling

process are applied. Scaling MOS technology shows lowest speed-power product.

However, when device miniaturisation is continued, the second order effects on device

characteristics become significant, making it non-viable at a certain geometry. Additionally,

channel length reduction must be accompanied by a supply voltage reduction, causing a narrow

noise margin and high sensitivity to variations in the supply voltage. The mentioned drawbacks

in MOS sub-micron geometry for Ultra-High Speed VLSI circuits lead to seek other

technologies to obtain faster devices which can be used in designing more sophisticated

systems.

Some cryptography applications use satellite communication where, high speed and principally

radiation tolerant integrated circuits are needed. Recently, advances in high speed VLSI circuits

and with the development of portable telecommunication and multimedia systems, which

demand high clock frequency.

Considering mentioned reasons, GaAs technology becomes an excellent candidate to implement

ultrahigh speed cryptographic applications. GaAs logic families are considered as an attractive

alternative, if both high speed and radiation tolerance are required. Today’s modern electronic

114

communication systems with a need for very high levels of performance consider GaAs

components. However, although GaAs logic families have better power-delay products than

others logic families, their power consumption is still large. This in particular prevents the

realisation of VLSI circuits in GaAs to be used in portable communication.

Smart cards are plastic credit cards containing built in electronics. They are widely used in

Europe, and are likely to become similarly pervasive in the US. Recently, some smart cards

have been also designed with RF communication representing a convergence of the RF ID and

smart card concepts. In the future, the convergence of RF ID and smart cards technology will

probably continue and these cards may gradually take over most monetary transactions, greatly

reducing the need for card currency.

On the one hand, GaAs is one of the technologies more widely used in RF communication

applications. On the other hand, cryptographic techniques show that a VLSI circuit capable of

performing long wordlength (>256 bits) modulo multiplication at very high speed must form

part of any high speed cryptosystem. The encryption algorithms built into smart cards protect

them from unauthorised use, yet allow many clever ways in which the owner may use them in

place of cash. So, a compact cryptosystem design combined with a regular architecture which

takes advantage of superior performance of GaAs technique attract much interest.

Due to long word length modulo multiplication has applications in other secret communication

problems and other cryptographic methods, a functional design of GaAs modular

exponentiation would be available for incorporation into a variety of other systems that will

attract outside interest.

Nevertheless, the smart cards usually have small electrical contacts so that the cards reading

machine can provide the necessary electrical power, excessive power dissipation create a

technical barrier for high integration on a single chip.

These consideration reveal the urgency of reducing the power dissipation in GaAs integrated

circuits and more specifically in functions required for implementing cryptosystems.

In other words, a low power GaAs cryptochip would demonstrates the well-known potential

advantages of Gallium Arsenide VLSI technology and would be very attractive for several high

speed cryptosystems applications. For that reason, currently the cryptography systems are also

included into the market behaviour of GaAs digital integrated circuits.

115

The development both of efficient low-power GaAs logic cells and novel design strategies to

achieve low power consumption have been lately started. Low Power Gallium Arsenide

technology, has been proposed as a viable alternative which overcomes both the MOS

limitations in Ultra-High Speed applications and significant standard GaAs power dissipation of

VLSI ICs.

This chapter is focused on the reviewing of GaAs technology to be used in designing low

power functional blocks of the cryptosystem. Besides, some power reduction strategies will be

presented. These strategies will be further used for implementing GaAs low power by mixing

mentioned approaches. Nevertheless, the GaAs foundry fix the technology parameters,

reductions of the supply voltage level can be also done.

So, for implementing a low power GaAs cryptosystem, low power GaAs level structures for

typical logic level functions like flip flops, muxes, full adders, etc, must be studied. In next

chapters, low power GaAs level structures for intermediary memories are presented.

Additionally, a simple, but very power efficient logic style, the branch based logic for designing

full adders is discussed.

5.2 Gallium Arsenide Technology

Gallium Arsenide is a compound semiconductor that has been widely used since the late 1960

for microwave application and light emission. Its dominance in the microwave area is still

retained. The use of GaAs MESFET for digital applications began in 1974 with some relatively

high power, high speed SSI divider circuits [1]. The technology developments over the years

have allowed to design integrated circuits which have been well characterised by higher speeds

and power levels comparable with silicon MOSFET.

To explore the potential of the GaAs technology, a direct comparison between GaAs and silicon

must be done. Considering the electrical properties of the two materials, -which are summarised

in table I,- is possible to define briefly the advantages of GaAs over silicon as a base material

for Ultra-High integrated circuits implementation. In table I, m0 represents the free electron

mass while NA and ND are the acceptors and donors concentration respectively.

Table I. GaAs / Silicon Electrical Properties at 300°K [2].

Properties Units GaAs Silicon

Effective mass electron 0.063 mo 0.33 mo
Effective mass hole 0.090 mo 0.16 mo

Electron mobility (at ND=1017 cm-3) cm-2/v-s 6000 1200

Hole mobility (at NA=1017 cm-3) cm-2/v-s 350 480

Maximum electron drift velocity cm/s 8 x 106 6.5 x 106

116

Dielectric constant 13.1 eo 11.9 eo
Energy gap ev 1.42 1.12
Type of gap Direct Indirect
Density of states in conduction band cm-3 5 x 1017 3 x 1019

Density of states in valence band cm-3 7 x 1018 1 x 1019

Maximum resistivity Ω-cm 109 105

Minority carrier life time sec 10-8 2.5 x 10-3

Surface state density cm-2 1012 1010

Breakdown field kv/cm 4 x 105 m 3 x 105

5.2.1. Band diagrams.

One of the main advantage of GaAs over silicon for high speed FETs can be understood by

considering the energy band diagrams features. On the one hand, GaAs is a direct gap

semiconductor, that means, that the minimum energy separation between the conduction band

minimum and valence band maximum occurs at the same momentum k, at the Brillouin zone

centres, as can be seen from figure 1.1 (a). On the other hand silicon is an indirect-gap

semiconductor due to its conduction band minimum is separated in momentum from the valence

band maximum figure 5.1 (b).

Th energy band structure of GaAs is responsible of its virtues. Narrow and sharply valleys in

the band structure correspond to electrons with low effective mass state, while wide and gentle

curvature valleys correspond to electrons with larger effective mass. Those characteristic lead to

some desirable consequences for the electron transport such as: higher mobility for low energy

electrons and appropriate velocity-electric field characteristics.

(a) (b)

Figure 5.1. Energy band structures of GaAs (a) and silicon (b) [3].

5.2.2. Electron mobility.

117

Mobility depends upon concentration of impurity and temperature and varies inversely with

electron effective mass [2]. As can be seen from table I, for GaAs the effective mass of these

electrons is 0.063 times the mass of a free electron. For that reason the low energy electrons in

GaAs show a higher mobility than the more energetic electrons.

From an electrical point of view the principal advantage that GaAs has over silicon is that

mobility of electrons in GaAs is six to ten times higher than in silicon. Therefore, transit times

as short as 15 - 10 picoseconds, corresponding to current gain-bandwidth products in the range

15 - 25 GHz can be obtained for GaAs transistors for typical gate lengths of 0.5 - 1.0 µm. That

represents three to five times improvement over silicon devices. In figure 5.2, the mobility

values for both electrons and holes for each material as a function of impurity atom

concentration are shown. Notice further that the hole mobility in GaAs is significantly less than

that in silicon.

5.2.3. Velocity-Field Relation.

The band structure of GaAs material leads to the velocity-electric field characteristic for

electrons show in figure 5.3 and 5.4. The characteristic is obtained through simulation at

different values of donor concentration. In these figures the same characteristics for silicon are

given.

Figure 5.2. Carrier mobility in GaAs and silicon [2].

In GaAs the electron velocity is a non linear function of the electric field. The velocity in semi-

insulating GaAs reaches its peak value of about 2.2 x 107 cm/s at approximately 3 kv/cm and

117

decays to a saturation value of about 1.4 x 107 cm/s. Thus, at a doping level of 1 x 1017 cm-3,

the electron drift mobility is quite high for a low electric field [4]. This provide low resistivity in

thin film layers and high electron velocity at low applied voltage. Nevertheless at normal doping

levels the saturation drift velocity for GaAs and silicon are almost equal, the saturation velocity

in GaAs is achieved at electrical fields about four times lower than in silicon.

Fig. 5.3. Steady state electron in GaAs/Si [5]. Fig. 5.4. Steady state electron in AsGa/Si [6].

5.2.4. Schottky Junction (Barrier heights).

The height of the depletion region under the metal-semiconductor interface is known as

Schottky junction. The height of the depletion region depends upon the gate voltage. Schottky

barrier diode is one of the high performance components available in GaAs technology and is

extensively used in the design of GaAs circuits.

It may find application as a level-shifting element, limited to forward bias operation

emphasising low series resistance and high junction capacitance. In other case, can be used as

logic-switching element where both forward and reverse-bias operation are needed, obtaining

low series resistance and low capacitance. Also, is often used by itself as a diode for both level

and logic shifting.

In opposition to silicon, the barrier height of the metal/GaAs junction for a n-type device is

nearly independent of the work function of the metal that form the junction. For that reason,

Schottky barriers can be realised on GaAs with large variety of metals (eg. aluminium,

platinum, titanium) leading to high quality Schottky junctions with excellent ideally factors, see

table II.

Table II. Barrier height in volts for various types of semiconductor [5].

Semicond

.

Type Ag Al Au Pt Ti W

Silicon n 0.78 0.72 0.80 0.90 0.50 0.67
Silicon p 0.94 0.58 0.34 0.61 0.45
GaAs n 0.88 0.80 0.90 0.84 0.80
GaAs p 0.63 0.42

5.2.5. Depletion heights and capacitance.

GaAs field effect transistor does not have any p-n junction around its drain and source terminals

and therefore the interelectrode capacitance in a GaAs device is much smaller.

5.2.6. Current Flow Across a Schottky junction.

117

Since the current density Js (1), (2) in both GaAs and MOS device is proportional to the

electron velocity, the amount of current available to charge or discharge a particular load

capacitance in a GaAs device is three to five larger and the switching speed is therefore three to

five higher than in a silicon device with the same dimension, it means, with the same channel

length, channel width and channel electron concentration. On the other hand, fairly low reverse

currents are obtained (Js < 1 µA/cm2).

Js = qnv = qnµE (1)

Js = [R*T2 exp (- qØBn / KT)][exp (qv / nKT) -1] (2)

5.2.7. Resistivity.

Gallium Arsenide is capable of being grown in a high resistivity form which is called as semi-

insulating GaAs. The semi-insulating property of GaAs material (resistivity in the range of 107 -

109 Ω-cm at room temperature) is another advantage for high performance devices. It not only

minimises the parasitic capacitance for interconnections on the GaAs surface but also allows for

easy electrical isolation of multiple devices on a single substrate.

The low capacitance presented by an interconnect line on a GaAs substrate can be much less

than that of an interconnect line on silicon, due to the fact that silicon is fairly conductive. This

is other reason why digital GaAs gates can switch faster than their bulk silicon counterparts.

5.2.8. Radiation resistance.

The nuclear radiation encountered in certain military and space environments and in the nuclear

industrial field is the most demanding ambient which semiconductor devices are exposed. For

these type of applications (space and military), radiation hardness is a desirable property. In the

study of radiation effects in semiconductor devices, several types of radiation, radiation damage

and semiconductor devices must be considered. Electronic circuits are affected by several

radiation types such as neutrons, protons, gamma rays, cosmic rays and electrons. These

radiation types induce three fundamental effects : displacement of atoms from their lattice sites,

ionisation of atoms and internal energy changes.

The two basic damage mechanism: displacement and ionisation which result from cumulative

exposure to fast neutrons, generate defects in the crystal lattice by displacing lattice constituents,

thus introducing additional energy states in the energy band gap. This effect is negligible for the

GaAs MESFET. Different experimental test data and theoretical analyses have demonstrated the

tolerance of GaAs discrete JFETs and MESFETs and planar integrated circuits to fast neutrons

117

and ionising radiation both under transient and cumulative conditions. Outstanding total dose

ionising radiation behaviour is attributed to the p-n junction or Schottky barrier gate structure

which is free of charge build-up [7]. In other words, GaAs is more radiation resistant than

silicon due to the absence of gate oxide.

5.2.9. Reliability.

Traditionally, reliability has been expressed in terms of failure rates and is the form of

expressing reliability today. But, in GaAs technology the suppliers do not measure failure rates

directly but a distribution of failures which are measured by life testing and characterising

distribution parameters. The lifetime and the spread of the distribution are two commonly

parameters which are measured using highly accelerated test. The temperature is the primary

method used to accelerate the test.

1970 1975 1980 1985 1990 1995

Year

2000

10

100

1000

0

Failure rate

GaAs
Silicon

Figure 5.5. Improvements in GaAs MESFET Reliability compared to silicon [8].

As can be seen from the figure 5.5, GaAs reliability relative to silicon is growing because of the

lifetimes have exhibited improvements over time at a rate apparently superior to changes in

silicon technology. The evidence of the inherent superiority of MESFETs and gold-based

interconnects may be accepted before the 21st century.

Marginal improvements are generally made as a result of other changes such as: process and

control improvements, design rule changes, assembly and packaging control, electrical

measurements guard-bands, overall product maturity, changes in handling and shipping

procedures and changes in application conditions. The key to make a change toward the next

generation of GaAs reliability focus has to move from measuring to controlling. The emphasis

must move to understanding and especially controlling each of the parameters which determine

premature failures [8].

117

Finally, the direct band gap of GaAs allows efficient radiative recombination of electrons and

holes allowing to use the p-n junctions as light emitters and in consequence an efficient

integration of electrical and optical functions can be achieved.

Additionally, because of its larger band gap, GaAs devices can operate over a wider temperature

range (from -200° to 200°).

Considering that remarkable advantages over silicon, much effort is being dedicated to the

development of GaAs ICs technologies. Therefore, GaAs technology maturity in the processing

of digital integrated circuits in early 90’s was equivalent to silicon technology maturity of the

mid 1970’s. Nevertheless, the expected higher performance of GaAs compared with silicon

should be studied not only on the basis of the material properties but also in terms of the actual

logic gates and integrated circuits implemented in GaAs technologies and their inherent power

dissipation.

5.3. A brief review of GaAs Logic families.

There are several device choices for high-speed GaAs ICs, each with certain advantages and

disadvantages. The most mature of these device technology is the depletion-mode FET (DFET).

This device has a large current drive capacity per unit device width, contributing to its high

speed, low fan-out sensitivity and higher power dissipation.

Enhancement-mode FET (EFET) is another device which is obtained by increasing the pinch-

off voltage of the DFET. This device shows a low current and a low power dissipation. On the

other hand, when the Schottky barrier of the EFET is replaced with an implanted p-region that

forms a p-n junction for the gate, the result is a junction EFET, known as E-JFET. Today,

GaAs MESFET are far more widely used than GaAs JFETs because lower parasitic result in

superior high-frequency performance. Several logic GaAs families which are based on the

mentioned devices have been proposed. The most popular approaches to high speed GaAs logic

circuits will be briefly mentioned.

The Buffered-FET Logic (BFL) [1] was developed by Hewlett Packard in 1974. This approach

used single and dual-gate FET as the switching transistors with an active load and level shifting

diodes and a source follower in the output circuits, it represents the fastest gate for a reasonable

fan-outs, but dissipates the most power. The function of the source follower with level shifting

diodes consists in restoring the required logic levels voltages (+0.7V and to -Vth or below)

required by the inputs FETs.

117

Unbuffered FET Logic (UFL) [9], was obtained from design variations of BFL family. Using a

quite different circuit structure where the load driver source follower is omitted, the new circuit

configuration consumes less power. In this case, the circuit shows higher sensitivity to high

fanout because there is no buffer between the switching transistor and the output node.

In order to reduce the BFL power consumption several approachs have been proposed. One of

them is the Capacitor Diode FET Logic (CDFL) [10] which add a Schottky diode in the voltage-

shift section of the circuit causing that this section is always reversed-biased. The Schottky

diode acts as a capacitor providing capacitive coupling between stages through which the high

frequency signal is transmitted.

Another approach to minimise area and power dissipation is known as Schottky-Diode FET

Logic (SDFL) [11][12][13][14], proposed in 1978, used a small Schottky barrier switching

diodes as logic inputs and a single driven D-MESFET for output inversion and buffering This

approach dissipates about one-fifth the power of the BFL, however, it is slower by about a

factor of two. This approach offers saving s in circuit area, since the logic is implemented using

diodes that occupy a smaller area than FETs. Both BFL and SDFL families were extensively

employed for the design of depletion-mode GaAs integrated circuits.

Buffered Diode FET Logic (BDFL) [15], family resulted from some variations of SDFL such

as buffered inputs. This configuration shows low input capacitance, buffered inputs and also no

dc current loading on the output. However, the configuration circuit, if not buffered is sensitive

to fanout.

Another GaAs FET logic approach developed in 1977 and called Direct Coupled FET Logic

(DCFL) [16][17], is the most common circuit design approach based on E-MESFETs. In this

approach enhancement-mode rather depletion-mode FETs are used. Using this configuration no

level shifting is required. The main characteristic is that the power dissipation can be very low.

Since enhancement -mode FETs are used, the logic swings are much smaller than for BFL and

are also less than SDFL. For this reason, material and processing requirements are more severe

due to require strict uniformity control of the device threshold in a logic structure [18]. From a

static point of view, DCFL has very good fanout capability determined by the very low leakage

currents. From a dynamic point of view, the switching speed of DCFL gates is reduced by the

gate capacitance loading of the output node.

117

Additionally, the small width D-MESFET used in DCFL cause that the output rise time of the

circuit with high fanout is slower.

Super Buffer FET Logic (SBFL) [19] use a quasi-complementary output driver in order to

improve the peak load current-static current ratio of DCFL family. Due to the fact that fan-out

and capacity load sensitivity for the DCFL is high, the use of the output driver (superbuffer)

allow implement circuits with higher performance and better peak load current-static current

ratio. In figure 5.6, a SBFL three input NOR is shown.

Figure 5.6. SBFL three input NOR Figure 5.7. SCFL Logic structure.

In order to overcome the limitations of FET threshold control in DCFL, the Capacitor-Coupled

FET Logic or Source Coupled FET logic SCFL [20][21] was proposed. A differential amplifier

and two follower buffers with diode level shifters composed the inverter configuration. This

logic family has been used to design circuits which have demonstrated a wide range of tolerance

to threshold voltage and partial immunity to temperature variation. Figure 5.7 shows a SCFL

logic structure.

Some SCFL family characteristics make it suitable for implementing high speed, low power

circuits. First one, the gate-drain capacitance is small because the drain voltage at the ON state

may be higher than any other logic family by design. Second, the discharge time of the

differential amplifier outputs is short because the discharging current is dominated by the

saturation current of the switching transistors. Another important characteristics that SCFL

shows a good fan-out capability. However, Source Follower Direct Coupled FET Logic SCFL

family show unacceptable levels of power consumption for complex portable

telecommunication and multimedia systems applications.

All logic families and in fact all GaAs MESFET logic families thus far reported, dissipate static

power. Therefore, their performance is tied to constant power delay curves. Another important

characteristic of these logic families is that their logic swing is determined by the width and

Vdd

OUT

A

B

C

117

length ratios of load and switching FETs, limiting both gate fan-in and circuit densities.

Additionally, all those logic families are consumptive of power and consequently the scale

integration of circuits made from these gates is limited by the power budget divided by the

power dissipation per gate.

Power Rail Logic [22] was proposed as a new logic style which offers smaller area and lower

dissipation than DCFL while its speed is quite similar. Topologically, the gate is identical to a

DCFL gate with an input signal that is used to control the power rail of the gate, as can be seen

in figure 5.8. The style allows to break down to ground the remaining gates that are not used in

the information processing reducing the global power dissipation.

Figure 5.8. PRL schematic. Figure 5.9. PCFL schematic.

A pseudo-Complementary FET logic (PCFL) low power family [23] uses a complementary

signals to control the pull-up -and the pull-down networks of the gate. For this reason the gate

delivers complementary output signals. Using this approach, the circuit itself must be

duplicated. The low threshold voltage of enhanced-mode transistors would limit the degradation

of the high logic level. This family allows design high speed GaAs digital systems with

reasonable power consumption. A PCFL schematic is depicted in figure 5.9.

Figure 5.10. DPTL schematic. Figure5.11. Two TDFL inverters

Vdd

J3

Vout

Vout

Vin

J1

J2

Vin

J4

c
+

-

 DPTL

buffer

c
 -

+

c
 -

+

B
- +

A- +

F
+

-
Vp+
Vp -

Vo+
Vo -

Vc+
Vc -

c
+

-

Out = A.(B + C)

A

B

T1

T2 T3
C

117

While static circuits in Gallium Arsenide MESFET technology have been quite exhaustively

studied, dynamic circuits have been relatively unexplored. Only, a relatively low number of

dynamic GaAs logic circuits works have been reported. Dynamic logic gates topologies are

enough different from static gates. Dynamic gates require a clock to perform combinational

logic. Additionally, dynamic gates can be non ratioted, it means, the logic levels are not

determined by length and width ratios of load and switching FETs.

Differential Pass Transistor Logic (DPTL) [24] approach, which was derived from DPTL

CMOS technology, has shown reasonable results. DPTL GaAs technology shows significant

advantages in speed, area and power consumption. Its operation is similar to the NMOS pass

element. As well as other pass transistor approachs, GaAs DPTL makes extensive use of

complementary input signals. A differential pass element and a three input xor logic are shown

in figure 5.10.

Figure 5.12 TTDL schematic. Figure 5.13. SPDL schematic.

Within the dynamic families Two-Phase Dynamic FET Logic [25] (TDFL - figure 5.11) shows

a configuration which is based on an extension of NMOS dynamic circuit techniques. This

approach offers advantages in power dissipation but is limited to basic logic gate

implementations. Another drawback of the TDFL gate is that it is sensitive to clock skew

andclock feed through problems which may result in errors in logic evaluation.

Trickle Transistor Dynamic Logic (TTDL) [26] (figure 5.12) was proposed as an alternative

logic configuration. This approach uses a self-biased transistor to compensate for leakage loss

and an external voltage reference to control the operation of diode inserted in the inverter stage.

The performance of the logic gate using this configuration could be affected by variations in the

external voltage reference.

V ref
D1

D3

D2D4

VssVss

VddVddVccVcc

IN-a

IN-n

Td-1

Td-7Td-5

Td-4

Td-a

Te-6Td-3Td -2

Td-n

CLK

Input stage Inverter stage Source follower

Out

VddVddVddVdd

IN-a T e-a

IN-n T e-n

Td -1

Te-4

T e-6Td-3Td-2CLK

Input logic E-Tree Sp lit Phase inverter

Te-7T d-5

Out

117

Additionally, the necessity for several supplies complicates the design. In order to overcome

those limitations, Law [27] proposed in 1994 its Split Phase Dynamic Logic (SPDL - figure

5.13). In this new configuration the diode controlled buffer is replaced with a split phase

inverter eliminating also the external voltage reference.

However, there are several drawbacks associated with dynamic gates: the need to supply clock

signals to every gate in the circuit. Also, dynamic circuits have a minimum frequency of

operation associated with the leakage of charge from isolated nodes in the circuit. Besides, two

factors degrade performance as chip complexity is increased. First, a higher percentage of the

chip area must be devoted to interconnect wiring and the increased capacitive load on the logic

gate degrades speed performance. Second, limits on the chip thermal dissipation restrict the

drive current available from each logic.

The gate delay caused by the capacitive loading of the wiring demand on the logic gate is a

function of the current drive of the logic gate, the logic swing and the average wiring

capacitance per cell. The first two factors depend upon the type of GaAs logic gate used while

the third factor can be estimated as a function of gate count [28].

5.4. Available technologies.

The choice of a particular FET device for implementing integrated circuits is dependent on the

circuit performance requirements of the integrated circuits and the fabrication process of the

device. If the circuit requirements are high speed and low power, similar device characteristics

must be desirable. Table III relates the circuit requirements and consequent device features.

Table III. Circuit and device requirements for Very High Speed and Low Power ICs [29].

Circuit requirements. Device features.

Small logic voltage swing.

Low Power.- 1/ 2 C ∆V2
Very uniform threshold voltages for active devices.

Low device and parasitic capacitance Low input capacitance devices.
Semi-insulating substrate for low parasitic

High switching speeds with reasonable
Fanout loading at low switching voltages

Very high current gain bandwidth.
Very high power bandwidth.
Fast increase in transconductance above threshold.

Device electric characteristics. Physical parameters.

High transconductance at control voltages
Low above threshold.

High carrier mobilities.

117

Very uniform threshold voltages. Very low threshold voltage sensitivity to horizontal
Geometry variations.
Low threshold voltage sensitivity to vertical
Geometry variations and doping variations.

Very low input capacitance. Small geometries and low carrier storage effects.
High current and power gain bandwidths. High carrier mobilities and saturation velocities.

Small geometries.
Good thermal design.

Considering device and physical features we can note that the appropriated process selection is

strongly important. A validated technology intended for easy structuring and improved

reliability featuring small sensitivity to temperature and process variation is required. These

issues, as well as performance goals in terms of small area, low power and high speed are very

important for widespread industrial acceptance of GaAs technology.

Gallium Arsenide integrated circuits and systems require quite different design approaches from

these that are common in silicon. System clock speeds running at several Gigahertz mean that

every element of the system including the interconnect wiring itself must be designed and

treated as a complex circuit element.

Although, in last years the technology was confronted with some problems and constraints, the

recent advances in material processing, fabrication, testing and packaging have brought about

an environment whereby it is now possible to design in this medium. More number of

foundries providing Gallium Arsenide fabrication are now in operation such as: Vitesse

Semiconductor Corporation, Systems and Process Engineering Corporation - SPEC,

Anadigics, TriQuint semiconductor, Motorola Inc. Additionally, many other computer

companies such as Digital Equipment Corporation, Compaq, Computer and others, are working

in partnership with GaAs vendors to develop devices for speed critical bottlenecks such as data

encryption, error detection and correction and cache control motivated by demands placed by

ever-faster microprocessors [30]. All that, makes possible the realisation of a new generation of

products with lower levels of power dissipation.

Digital GaAs emerged as the starting material for integrated circuits with one million or more

transistors per chip. Particularly, Vitesse semiconductor Corp. produces GaAs ICs that form

part of a supercomputers central processing unit. These chips use four levels of metal and

contain more than 1.2 million of transistors [31]. HGaAs III Vitesse process is one of the most

mainly used technology in digital GaAs applications. The Gallium Arsenide foundry “Vitesse

Semiconductor Corporation” has finished 1996 with sales of 65 million of dollars, which

represents about 51% of growing respect to 1995. This data is due to the fact digital GaAs to

communication application [32].

117

The GaAs competition in those applications is up-market silicon bipolar technology rather

CMOS. TriQuint semiconductor Inc, also makes GaAs ICs for both computers and digital to

communication applications [33]. In Europe, it is now six year since the EuroGaAs Initiative

was launched. That EC supported programme was oriented to enhance the manufacturing

capability of the seven major European GaAs component manufacturers. In table IV, the

progress and the impact on the world wide merchant market is shown.

Table IV. European GaAs Foundries - World wide merchant market [34]
Year. World Wide

Sales
(million)

European
Sales (million)

Market share.
(%)

1992 87 1.8 2
1993 100 6 6
1994 123 12.3 10
1995 208 28 14

The Vitesse H-GaAs III technology is offered as an advanced process for the fabrication of high

performance GaAs VLSI digital circuits. Five levels of interconnection are provided in order to

design low power dissipation and high speed at high levels of integration, (more than

1.000.000 active devices can be implemented).

The designers can use two versions of the H-GaAs III process: the first one uses polyamide as

the intermetal insulator reducing the routing capacitance and leading faster loaded gate delays,

its maximum temperature operation is 100° C. The second version, uses SiO2 as the intermetal

dielectric obtaining circuits that are ~20% slower but can operate over a wider temperature range

(~125° C).

Three active devices are available: an enhancement mode MESFET, a depletion mode MESFET,

and a Schottky-barrier diode. The transistors are used for switching and as active loads while

the Schottky barrier diodes are used primarily for level shifting. The minimum sized devices

have nominal gate lengths of 0.6 µm [35].

Additional, H-GaAs III is a self-aligned process which reduces the effects of series resistance.

Vitesse H-GaAs III allows five levels of interconnection where M1, M2 and M3 levels are

typically used for signal routing while M4 and M5 are used for power and ground busses.

Circuits containing up to several thousand gates can be designed using a two version using only

9 mask layers.

Currently, GaAs VLSI manufacturing has more in common with silicon CMOS technology than

with earlier GaAs. However, fewer steps are required to produce GaAs circuitry due to only

four mask levels are needed to define the GaAs transistor compared with six for the silicon

117

device. A cross sectional representation of a FET after completion of the fabrication cycle is

shown in figure 5.6.

Figure 5.14. GaAs MESFET structure of Vitesse technology [35].

In table V, some MESFET model parameters of the Vitesse process are shown.

Table V. MESFET Model Parameters.
Device Param. Units Slow Typ. Fast

VT0 V 0.35 0.22 0.15
E-JFET IDS[max] µA 100 180 600

RS Ω <170
VT0 A/V 2 -0.63 -0.87 -1.0

D-JFET IDS[max] µA 200 600 1400
RS Ω

Currently, in communications, a prime use for high-performance digital electronics is in the

interface to the optical-fibre trunk lines of serial data links. At this interface, digitised phone

conversations, e-mail, bank transactions and more are multiplexed into a single serial high-

frequency data stream, converted into optical pulses and transmitted along optical fibre cable, an

application that is ideal for GaAs VLSI with its optical affinities. An important criterion of the

117

device technology, but not the only criterion, is the gate delay at a given power. In figure 5.7 is

shown the performance projection for some technologies.

Figure 5.15. Speed-Power Performance of Si. and GaAs ICs. [17].

In the area of the devices for handy phone and PCS/PCN application, GaAs MESFETs,

HEMTs and HBTs have been actively investigated to have low voltage operation and low

power consumption. The market has started to expand. In the field of the data processing,

GaAs LSIs have established its position for the highest speed logic in a computer system..

A GaAs device is becoming inevitably necessary for the equipment we have to use in daily life

such as for communication, broadcasting and data processing. In the field of a supercomputer,

GaAs LSIs have been used in high speed data processing and will be used widely in the near

future [36].

The design of power-efficient high performance digital electronics is a relatively new area of

interest, driven by the recent growth in battery-powered computer based products. Power-

efficient design will play a key role in making these portable products feasible. Battery

technology is being improved, but it is unlikely that a dramatic solution to the power problem is

forth coming. This puts a sever constraint on the power that may be consumed by these

devices.

Since electrical power is a physical quantity and since it is converted into heat in the resistive

switches and wires of the physical device a thorough understanding the physical effects is

necessary. Focuses on the design for low power at the circuit and logic level, we must

determine the main reasons of power dissipation and the best form of overcoming those

problems: drawbacks as clock frequency, delay and complex architectures. Besides, some

strategies oriented to reduce the circuit activity or capacity without sacrificing performance will

be briefly reviewed.

5.5. Low Power GaAs Strategies.

Four approaches are commonly used to overcome the problem of power dissipation: dynamic

switching power due to charging/discharging circuit capacitances, leakage currents power from

reverse biased diodes and subthreshold conduction, short circuits current power due to finite

signal rise/fall times and static biasing power found in some types of logic styles. Each topic is

briefly analysed.

5.5.1. Dynamic Switching Power.

117

The principal requirements of high speed VLSI circuits are: a small feature size, high process

yield and extremely low dynamic switching energy. This last characteristic becomes the most

important of all. The dynamic switching energy or power-delay product, is the

minimum energy that a gate can dissipate during a clock cycle. So, a power dissipation for a

chip with Ng gates with an average gate clocking frequency Fc will be:

P(chip) = 2 x Ng x Fc x (Pd x td) (3)

where: Pd ------> Dynamic power dissipation

td ------> Clock period

Dynamic switching energy requirements for high speed VLSI are quite severe. For that reason,

in several technologies many efforts are being done to reach a lower speed-power product. So,

technologies allowing combine high levels of integration with high speed performance are very

attractive.

One possibility to accelerate the switching is the reduction of the maximum input level, for

example by reduction of the input voltage range. Another possibility is to reduce the capacitive

loads at the switches using smaller transistors widths. A third alternative is the optimisation of

the switch or the application of a new circuit concept.

The logic switching speeds and speed-power products of the FET gate are dramatically in

GaAs. For the same logic voltage swing, a GaAs MESFET would give about 4 - 6 times higher

switching speeds than silicon counterpart. The factor of switching reduction is approximately 1

/ N, where N is the number of loading gates.

From the point of view of dynamic switching, a larger gain in power reduction can be achieved

at the register transfer and higher design levels being the task of the design the definition of the

clocking scheme and the datapath architecture, the designer’s freedom lies in the utilisation of

parallelization, sequentialization and pipelining.

Power efficient state encoding is the consideration of state and state transition probabilities; the

number of transition can be reduced by using combinational circuit optimisation: technology

dependent and technology independent techniques for the minimisation of the power

consumption of combinational circuits. In many cases the power can be further reduced by state

reencoding or retiming, for that reason, several authors have used RNS notation to represent the

operands. Also power reduction is achieved by shutting down parts of the circuit

117

5.5.2. Short-circuit current Power.

Second, the speed or for that matter the delay of this circuit type is unaffected by power supply

voltages down to about 1V, meaning that power dissipation can be reduced without degrading

performance. This fact is consequential, for as features size are reduced in any VLSI

technology, the external voltages must be reduced, otherwise the electric fields internal to the

transistor will not remain below breakdown. This fact will loom larger as VLSI feature sizes

descend into the deep submicrometer range, below 0.5 µm. This is not possible to do in CMOS

technology. In CMOS chips, a shrinking supply voltage slows the signal unless offset by

shrinking transistors in successive generations of technology.

5.5.3. Leakage current Power.

Since the dynamic power consumption of a circuit is proportional to a CV2f, low power and

low voltage digital design has to be performed at several levels such as architecture, logic and

basic cell levels in order to minimise these three terms, capacitance, voltage and frequency.

However, activity must be also considered as well as the static power consumption due to

switching and leakage currents.

The basic physical mechanism for subthreshold current, that is thermionic emission/diffusion

over a potential barrier, is the same for both MOSFETs and MESFETs. However, due to the

larger threshold voltage of typical MOSFETs compared with threshold voltage of E-type

MESFET (0.7V vs 0.2V respectively) and the small logic low level obtained by CMOS, a more

negative Vgs - Vt is obtained in the off state for CMOS than for DCFL GaAs circuits.

Therefore, the observed drain current in the off state is five to six orders of magnitude larger

than that of the MOSFETs. This implies that the subthreshold leakage currents easily dominates

circuit operation. On the other hand, due to the Schottky barrier in the gate electrode of the

MESFET, leakage current flows into the gate.

Low standby power consumption with impact in power/sleep down modes and their wake up

latency, higher Vt for process to minimise the transistor leakage currents at the expense of

reduced speed and possible constraint for lower system speed, are also some proposed

techniques. The main goals of such design methods are the activity reduction as well as the

capacitance and leakage currents reduction. However, supply voltage reduction is the most

effective way to save power.

5.5.4. Static biasing Power.

117

Considering that in the electric field regime of below 104 V/cm, electrons in GaAs move at three

to five times the velocity of electrons in silicon. This advantage will be most apparent in low

voltage applications. The power consumption of digital integrated circuits, such as logic,

memories and digital signal processors, is directly proportional to the square of supply voltage.

The supply voltage squarely influences the dynamic power consumption and for this reason it is

obvious to look for the lowest possible supply voltage. Therefore, reducing supply voltages,

the power consumption of digital electronics is strongly reduced .

In summary the characteristics of a power-efficient system as: a small area, low voltage

operation, high code density, flexible clocking and goods design tools, are also very important

factors to achieve power reduction.

Low power reduction can be achieved minimising activity and capacitance in digital logic

modules as well as in optimised libraries. The low power optimisation criteria must be well

specified, since the adequate and relevant solutions, circuit techniques or software tools can be

very different. It means, optimised design of architectures and cells is mandatory, but it is not

necessarily the case that the optimum organisation for performance is the same as the optimum

organisation for power-efficiency. First one, involves techniques to reduce the dissipated

power based on the technology used, like as device scaling or variations of the supply voltage.

Another one, consider different strategies or design style, e.g., static versus dynamic logic,

synchronous versus asynchronous circuits. Also are included the architectural conception which

reduce the global power consumption of the system optimising critical paths or applying several

pipeline stages. This approach, contains different techniques for reducing power consumption

by means of improving the underlying algorithms which looking for the optimisation of the

computation complexity.

5.5.5. Asynchronous design.

Since clocked circuits waste power by clocking all parts of the chip whether or not they are

doing useful work, recently new alternatives to fully synchronous electronic circuits have been

studied. Those alternatives are known as asynchronous circuits. In several applications

asynchronous circuits are more power-efficient than their clocked equivalents.

Additionally, clocked design assumes global synchrony, and any deviation from this

assumption must be compensated by margins whitin each clock cycle, reducing the circuit's

performance. On high-performance chips the clock drivers are also responsible for a significant

proportion of the total power consumption.

117

Although gated clocks can reduce the wastage, they are generally only practical at a coarse

granularity. Besides, simple clocked design requires the same clock to be applied to all parts of

the circuit, but its frequency can only be optimised for one function. So, many parts of the

circuit must operate at a higher frequency than is necessary, wasting power. Asynchronous

circuits, on the other hand, are inherently data driven and are active only when doing useful

work. Parts of the circuit that receive less data will automatically operate at a lower average

frequency. So, low average consumption with impact on reduction of overall power

consumption will be achieved.

The basic idea behind low-power processor, coprocessors or memories is to reduce the number

of basic steps and clock cycles for the execution of a given task. In addition to these

architectural issues, important power savings are obtained by lowering the supply voltage.

In next chapters some low power considerations will be taken into account to design, fabricate

and test a high speed and low power Gallium Arsenide prototypes, exploring new low power

GaAs approaches. Mainly, two functional blocks used in performing modular exponentiation at

very high speed. The significance of the work lies in the combination of a new architecture for

accelerating modular exponentiation and low power GaAs design strategies.

All aspects of design for low power in GaAs based systems ranging from process technology

over circuit techniques up to architecture and systems design are considered. Like as CMOS

technology, a decreasing power dissipation per logic function has become as primary concern in

virtually all GaAs chips designed today.

117

5.6. References

[1] R.V. Tuyl, C. Liechti, “High Speed Integrated Logic with GaAs MESFETs”, IEEE

Journal of Solid-State Circuits. Vol.SC-9, pp.269-76, October, 1974.

[2] S. M. Sze, “Physics of Semiconductors Devices”, (2 Ed.), Wiley Pub., New York,

1988.

[3] S. I Long, S. E. Butner, “Gallium Arsenide Digital Integrated Circuit Design”, Mc-

Graw-Hill Publishing Company, 1990.

[4] J.S. BLakemore, “Semiconductor and other Major Properties of Gallium Arsenide”,

Journal of Applied Physic. Vol.53, pp.R123-R181, October , 1982.

[5] O. Wing, “Gallium Arsenide Digital Circuits”, Kluwer Academic Publishers, London,

1990

[6] J.A. Cooper, Jr and D.F. Nelson, “Measurement of the High-Field Drift Velocity of

electrons in Inversion Layers of Silicon”, IEEE Electronic Device Letters. Vol.EDL-2,

No. 7, pp.171-173, , July, 1981

[7] R. Zuleeg, “Radiation Effects in GaAs Integrated Circuits”, VLSI Electronics:

Microstructure Science, Vol. 11, Academic Press, Orlando 1985.

[8] W. Roesch, “GaAs IC Reliability, The Next generation”, Proc. IEEE Gallium Arsenide

Symposium, USA, 1993.

[9] A. Barna, C. Liechti, “Optimization of GaAs MESFET Logic Gates with

Subnanoseconds Propagation Delays”, IEEE Journal of Solid-State Circuits. Vol.SC-

14, pp.708-15, August, 1979.

[10] R.C. Eden, “Capacitor Diode FET Logic (CDFL) Circuit Approach for GaAs d-

MESFET ICs”, Gallium Arsenide IC Symposium Proc., Boston, Mass., pp 11-14,

October, 1984.

[11] R.C. Eden et al, “Low Power Depletion Mode Ion-Implanted GaAs FET Integrated

Circuits”, IEEE Transaction on Electron Devices , Vol.ED-24, pp.1209, September,

1977.

[12] S.I. Long et al, “MSI High Speed, Low Power, GaAs Integrated Circuits using

Schottky Diode FET Logic”, IEEE Trans. on Microwave Theory and Techniques,

Vol.MTT-28, No. 5, pp.466, May, 1980.

[13] P.J.T. Mellor, A.W. Livingstone, “Capacitor-Coupled Logic using GaAs Depletion

mode FETs”, Electron Letters, Vol.16, pp.749, September, 1980.

[14] A.D. Welbourn et al, “A High Speed GaAs 8-Bit Multiplexer using Capacitor-Coupled

Logic”, IEEE Journal of Solid-State Circuits. Vol.SC-18, No. 3, pp.359, June, 1983.

[15] R.C. Eden, B.M. Welch, R. Zucca, S.I. Long, “The Prospects for Ultrahigh-Speed

VLSI GaAs Digital Logic ”, IEEE Transaction on Electron Devices, Vol.ED-26,

pp.299-317, April, 1979.

117

[16] A. Peczalsky et al, “Design Analysis of GaAs Direct Coupled Field Effect Transistor

Logic”,, IEEE Trans. on Computer Aided Design, Vol.CAD-5, No. 2, April, 1986.

[17] K. Esrhaghian, “Design Methodology and Layout Style for Very High Speed Circuits

and Subsystems”, Internal Report, University of Adelaide South Australia, January,

1992.

[18] W.R. Wisseman, W.R. Frensley, “GaAs Technology Perspective”, VLSI Electronics

Microstructure Science, Vol. 11, Academic Press, Orlando, 1985.

[19] H. Nakamura et al. “A 390 ps 1000 Gate Array Using GaAs Super-Buffer FET Logic”,

Dig. of Tech. Papers, Int. Solid State Circuits Conference, pp. 204-205, February,

1985.

[20] S. Katsu, S. Nambu, A. Shimano, G. Kano, “A Source Coupled FET Logic - A New

Current Mode Approach to GaAs Logics”, IEEE Trans. Electron Devices, vol. ED-32,

pp1114-18, June, 1985.

[21] A. Tamura et al, “High Speed GaAs SCFL Divider”, Electronic letters, Vol. 21, No. 5,

pp.605-606, July, 1985.

[22] Chandna, A.; Brown, R.B.; Putti, D. & Kibler, C.D. Power Rail Logic: a low power

logic style for digital GaAs circuits. IEEE Journal of Solid-State Circuits. Vol.30,

No.10, Oct.95, pp.1096-100.

[23] R. Kanan, B. Hochet, M. Declercq, Pseudo-Complementary FET Logic (PCFL): A

Low-Power Logic Family in GaAs”; IEEE Journal of Solid-State Circuits. Vol.31,

No.7, pp.992-999, July, 1996.

[24] J.H. Pasternak, C.A.T. Salama, “GaAs MESFET Differential Pass-Transistor Logic”,

IEEE, Journal Solid State Circuits, Vol. SC-26, pp. 1309-1316, September, 1991.

[25] K.R. Nary, “Gallium Arsenide Metal-Semiconductor Field Effect Transistor Dynamic

Logic Gate Topologies”, Ph.D. These, December, 1992.

[26] Hoe, D.H.K. & Salama, C.A.T. “GaAs Trickle Transistor Dynamic Logic”. IEEE

Journal of Solid-State Circuits. Vol.26, No.10, pp.1441-48, Oct. 1991

[27] Law, O.M.K. & Salama, C.A.T. “GaAs Split Phase Dynamic Logic”. IEEE Journal of

Solid-State Circuits. Vol.29, No.5, pp.617-22, May, 1994.

[28] P.T. Greiling, C.F. Krumm, “The Future Impact of GaAs Digital Integrated Circuits”,

VLSI Electronics Microstructure Science, Vol. 11, Academic Press, pp. 133-171,

Orlando, 1985.

[29] N. Kanopoulos, “Gallium Arsenide Digital integrated Circuits: A System Perspective”,

Prentice Hall, North Carolilna, 1988.

[30] I. Deyhimy, "Gallium Arsenide Joins the Giants", IEEE Spectrum, February, 1995.

[31] S. Lande, "Customer acceptance of GaAs ICs", Proc. IEEE European GaAs and related

III-V Compounds Application Symposium, Torino, Italy, 1994.

[32] “Circuits GaAs: Ventes en hausse de 51% pour Vitesse Semiconductor”, Electronic

International, HEBDO, No. 237, Octobre 10, 1996.

117

[33] T. Smith, "Wafer Fab Line Yield Improvement at TriQuint Semiconductor", Proc. IEEE

European GaAs and related III-V Compounds Application Symposium, Torino, Italy,

1994.

[34] J. Turner, “The competitiveness of European GaAs Foundries”, Proc. IEEE European

Gallium Arsenide and related III-V Compounds Applications Symposium, Paris,

France, 1996.

[35] Vitesse Foundry Design Manual, Vitesse Semiconductor Corporation, May, 1995.

[36] M. Fukuta, "Recent Development of GaAs Devices in Japan", Proc. IEEE European

GaAs and related III-V Compounds Application Symposium, Torino, Italy, 1994.

141

6. A Low Power Two-Single Port GaAs Memory Cell.

6.1. Introduction

The second great functional block of the exponentiation system when implemented in GaAs

technologie responsible of a considerable power consumption would be the cache RAM. In this

chapter a new low power and high speed GaAs memory cell is presented. The cell memory was

conceived to be used in small size cache memory.

Due to a great demand for low power and high speed digital system, low power GaAs LSI

technology is becoming an important and growing area of electronics. In particular, GaAs

SRAM is an area of this technology in which considerable attention has been focused [1][2][3].

For GaAs SRAMs there has been also a strong requirement for low power. For that reason, in

early days, GaAs SRAM development has been focused on low power applications, especially

with very low standby and data retention power.

Much effort has been dedicated to the development of GaAs SRAMs and some remarkable

progress in power reduction [4][5], performance [6][7], radiation [8][9] and temperature [10]

tolerance have been obtained. Nowadays, more emphasis has been placed on low-power, high-

speed rather than large memory capacity, primarily led by cache applications in high speed

microprocessors. Consequently, some of currently developed GaAs MESFET static memories

are restricted to small static memories [11][12]. Several high-speed on-line GaAs memories are

being designed to be applied to high-speed GaAs microprocessors which use small amount of

memory on-chip in order to exploit the hierarchical high-speed memory benefits.

Six transistors conventional memory cell usually has been used to implement static RAM,

however this cell presents important limitations to implement GaAs SRAM structures. On the

one hand, high speed GaAs direct coupled conventional cell configuration require high power

consumption. On the other hand, as is shown in figure 6.1, there are some additional problems

in using that conventional cell. First one, when the word line level is "high", the low and high

142

nodes of the cell become capacitevely coupled to the bit lines (i). Current is also injected into the

cell through the direct-biased gate-source diode of the access transistor (ii), causing one of the

more important mechanism that can generate destructive readout which is itself an strong yield

limiting factor for GaAs SRAMs.

0 1

Leakage

1

0

Leakage

1 0

BL BLN

Word line

Word line

Word line

1

(i)

(ii)

(iii)

(iv)

(iv)

(i)

(iii)

Figure 6.1. Conventional memory cell limitations.

In addition, MESFET leakage current flows through the "low" node from the bit line in non

selected cells, then the number of memory cells and the combination of the stored data in each

column define the sum of the leakage currents per bit line and not only the leakage currents in

the individual access transistor (iii). Moreover, a reduction of the "high" internal node level can

be caused by the increase both of the drain to source leakage current in the driver enhancement

FET and of the Schottky current from the gate to the source in the driver enhancement FET in

the succeeding stage (iv).

Due to the temperature variation, the bit-line potential, a stability of the memory cell and in

consequence the circuit operation of GaAs SRAM are strongly affected by the leakage current

increment in the access transistors of memory cells.

Several authors have proposed diode or ground shifting techniques to reverse bias the non

selected access MESFET [7][8][10][12], in order to limit the leakage current flowing through

the transistor. Other have applied built-in redundancy [2] or current mirror techniques [13][14]

to GaAs SRAM [11], but additional control logic or several voltage levels are required

increasing the complexity and the access time. As is known, there should preferred be only one

supply voltage to minimise the access time.

143

Recent exploratory achievements in the movement toward low voltage operation seemingly give

promise of future improvements. Low voltage operation has already been one of the most

important design issues for integrated circuits, since it is essential not only to further reduce

power dissipation, but also to ensure reliability for miniaturised devices.

In this chapter the characteristics of an experimental and novel low power high-speed GaAs

Two-Single Port static memory cell [15] which allows significant power dissipation reduction

by reducing both its operating voltage and leakage current flow are discussed. The memory cell

has been implemented using a mix of several techniques already published in order to

overcome some of their principal drawbacks related to ground shifting, destructive readout and

leakage current effects.

The cell size is 36 x 37 µm2 using a 0.6 µm GaAs MESFET technology. An experimental 32

word x 32 bit array has been designed. From simulation results, an address access time of 1ns

has been obtained.

A small 8 words x 4 bits protoype was fabricated. The cell can be operated at the single supply

voltage from 1V up to 2V. The evaluation is provided according to the functionality and power

dissipation. Measured results show a total current consumption of 14 µA/cell when operated at

1V.

Good performance and operational margin over a reasonable temperature range are its principal

features. The final 1 kbit SRAM array can be used in high speed systems with sub 2 ns on-

line memories requirements. The cell structure, its operation and some experimental results are

presented.

6.2. Memory cell design

GaAs digital systems can suffer from several technology related-problems, and RAM memory

cells are obviously included. Therefore, the design of the memory cell must be taken into

consideration that technology-related issues during the architectural conception phase. The

usual design criteria of a static random access memory are density, power consumption and

read and write access time. To minimise power dissipation, from point of view of the cell, the

leakage currents and operating voltage must be reduced. Leakage current reduction is obtained

back biasing the Schottky diodes of the cell rows which are idle at a given time to minimize the

Schottky diode currents. So, not significant Schotkky diodes current would be drawn.

144

From point of view of the decoding and addressing blocks as well as sense amplifier must be

disconnected from the supply voltage during its standby state. In order to minimise the access

time, the pull-up and pull-down delays of the circuits should be small, as was mentioned, there

should preferred be only one supply voltage. All mentioned criteria design are considered in the

new cell configuration. The schematic of the proposed high-speed new cell is shown in Figure

6.2 [15].

VDD

GND

M1 M2

D1 D2

M3 M4M5 M6

Read word line

Write word line

Bit write line Bit read line

Q
1

Q
0

Figure 6.2. New cell diagram.

The cell consists of four enhancement MESFETs, two depletion MESFETs and two diodes.

Source-gate back biasing in the depletion transistors M1 and M2 are used as sub threshold

current reduction circuit in order to reduce the power dissipation of the cell [16]. The back

biasing is obtained using D1 and D2 diodes. The depletion transistor and diode combination

acts as a weak pull-up current supply and must be designed considering the pull-up time

requirements, power reduction and the necessary current to compensate the sub-threshold

leakage and Schottky currents through the enhancement devices in order to keep the high level

in the respective node. The pull-up delay time is defined as the time elapsed when the output

voltage reaches some fraction of its steady sate value. From (eq. 1), we can observe that the

pull-up delay is proportional to the ratio WD / WE. So, to reduce the pull-up delay that ratio

must be large.

The weak current source formed by M1-D1 must provide a quite larger equivalent current than

the M4 and M6 gate to source and gate to drain Schottky inverse currents plus M3 source to

drain sub threshold current. On the other hand, the weak currents source formed by M2-D2

must provide a quite larger equivalent current than the M5 and M4 sub threshold currents (eq.

2) plus M3 gate Schottky currents (eq. 3) .

145

All currents depend on the transistor sizes and their biasing voltages. So, a transistor saturation

region current (eq. 4) and both direct and reverse diode Schottky current expressions must be

considered. The voltages variables in next equations {U,Uds} are normalised by thermal

voltage.

tpu = f (WD/ WE) (1)

Isub = C1.W.no.(1- e
-Uds)/L (2)

ISh = W.L.(C2.e
-Uds) e

U
(3)

Ids = §.(Vgs - VT)2(1 + lVds)tanh(aVds) (4)

 where C1 = 2.LB.q.Dn and C2 = q.ND.V

WD = channel width depletion transistor.

WE = channel width enhancement transistor.

no- equilibrium minority carrier concentration;

LB - the extrinsic Debye length;

Dn - the diffusion constant;

ND - the doping concentration;

V depends both drift and diffusion velocities.

The latch formed by the cross-coupled transistors M3 and M4, provides a robust storage

element with reduced static power dissipation. Transistor M5 implement one write-only port,

while transistor M6 acts as read-only port.

The operation of the cell is straightforward. The read and write cycles occur on opposite phases

of a system clock. The write cycle begin on the rising edge of the clock and the read cycle on

the falling edge. The cell mixes the advantages of the conventional and full current mirror cells

overcoming some of their drawbacks.

6.2.1. Read operation

In order to reduce the power consumption of the non selected cells, the following reading

mechanism is used. The cell is read by pulling down the read word line which is maintained at

1V before the read cycle. The word line for selected row is lowered to 0V, while the word lines

of the remaining non selected rows are held at 1V. So, it does not make any difference if the

stored data into the internal node Qo corresponds either a low or high logic levels. M6 transistor

Schottky diodes will be always back biased.

146

In conventional cell during read operation, when the word line level is "low" and the memory

cell store "low" data, it should be noted that the leakage currents flows through the access pass

transistor, due to the bit line level being at higher potential, and as the number of cells attached

to a column is increased, leakage currents through non selected access transistor can overwhelm

the active current of the selected cell [17].

In this configuration the gate-drain and gate-source diodes of the M6 access transistors of non

selected cells are reversed biased appearing as additional capacitance to the storage node

overcoming the mentioned conventional cell problem. This capacitive coupling from the read

word lines is less than that in conventional cell. On the other hand, the access transistor of the

selected cell cannot inject current into the storage nodes causing a non destructive read

operation.

If the cell stores a low value at Q0, not significant currents appear through access transistor and

the precharged bit line value is held. In this case, precharge operation not only speeds up the

read access reading operation of high logic level, but also eliminates the possible charges

accumulated on the bit line.

Contrary to high level reading operation, if the cell stores a high value at the internal node Q0

(low in Q1) and the read word line is lowered to 0V, a saturation current flows through M6

transistor pulling down the bit read line which must be precharged at 1V before each read

operation.

This reading mechanism occupies a significant portion of the total time, due to the fact that the

amount of drain-to-source current is determined by its drain-to-source and gate-to-source

voltages, a reduction of 9% in the voltage values generates a reduction of 30% in the drain

current. On the other hand, the MESFET drain current also varies with channel width (W), thus

it is possible to avoid an excessive diminution of the drain current by manipulating the

parameter W.

Because the read operation is made in single-ended mode and due to both operating voltage

reduction and reverse bias of depletion transistor, we can observe a pull-up delay measured

from node Q0 slower than that in Q1. As was mentioned before, the pull-up delay reduction is

achieved by increasing the ratio (WD/ WE). Nevertheless, the current consumption of the cell

will be increased as the ratio is increased. This is confirmed in figure 6.3 (a) and 6.3(b) in

which the computed results of the pull-up delay and the current consumption for different

values of the ratio are shown.

147

(a)

W1

W 2

W3

W4

W 5

(b)
Figure 6.3. Pull-up delay (a) and cell power dissipation (b) for different W ratios.

It is seen that the pull-up delay is not a strong sensitive function of the ratio (WD/ WE);

however some trade-off will have to be made. In recently GaAs applications, an ultrahigh-

speed circuit combined with low power strategies is becoming the principal concern. Extra

access transistors are added in order to increase the power-delay product [18]. For pull-down

delay of the cell, any problem can be present. Unlike the conventional cell, the M6 access

transistor can be dimensioned independently of the driver transistor.

6.2.2. Write operation

The write operation is similar to that in a conventional six-transistor cell; data are placed on the

bit write line, and the write word line is raised; the cross-coupled transistors force the internal

nodes to change to appropriated voltage levels maintaining the state of the cell. In order to

obtain a high speed write operation, the access transistor M5 must be dimensioned respect to

M3 pull down transistor.

Usually, a ratio of M3 = 3M5 is required. To write a low level, the low voltage bit line is

connected through one of the pass transistors to a cell storage node pulling that storage node

147

low and causing the opposite cell storage node to be driven high. In order to write a high level it

must be guarantee that, VG ³ Vi + VTH if VBL > Vi, where VG is a gate voltage of access

transistor, VBL is a bit line voltage level and VTH is the threshold voltage, Vi would be the

internal storage node. Using the mentioned voltage levels the write operation is reliable.

Reading data from the cell involves discharging the bit read line through a M6 access transistor.

Transferring data from the bit write line to the cell involves discharging the storage node

through a M5 pass transistor. The resistance of the channel of a transistor is a non linear

function of the drain source voltage and is given in the region of operation by:

rds = [¶Vds/ ¶Id] ½ Vgs=cte (5)

So, neglecting the term (1+lVds) in (4) the expression would be:

rds = cosh2(aVds) / b.a. (Vgs - VT)2 (6)

As the voltage drop across rds is reduced, a lower channel resistance is obtained. For cell

currents between 10 and 20 µA, this writing mechanism allow faster write times than writing

mechanism used in full mirror cells. Unlike the reported full current mirror cell [4], where the

gain in speed of the cell could be a deceptive since the output bit line capacitor must discharge

through a number of series connected diodes making the pull-down delay too large, in this

configuration no multiple diodes are present in writing process. Besides, the cell grounds not

must be driven causing that less control circuitry would be required. In this new cell, only a

single voltage of 1V is used, but can also be operated at 2V. In general, the memory cell

designed presents good stability and access speed.

The noise margins of the MESFET cell using both typical and slow parameters are shown in

figure 6.4. The noise margins were obtained superimposing the simulated transfer curves

during the read operation . The maximum square noise margin definition [19] was used.

2 00 mV

19 4 mV

147

Figure 6.4. Noise margin.

6.3. Basic circuit

To analyse the stability of the memory cell HSPICE simulations were carried out. The circuit

includes a 32-word x 32-bits memory array, the bit line precharge scheme, I/O circuitry and the

sense amplifier. Figure 6.5 shows the 1 kbit RAM block diagram.

The delay time from the address input to the word line is called word-line selection time [20]

and is responsible for a large part of the access time. In order to reduce this selection time the

following method was applied for the row selection circuit.

A 1 kbit memory array is divided into four 8 x 32 blocks and the address signals are categorised

into two groups. The first group (S4, S3), is used for block selection, while the second group

(S2, S1, S0) is used for row selection. A hierarchical block decoding method [21] uses power

rail logic [22] decoders in order to reduce their power dissipation; when one block has been

selected, the remaining three row decoders are disactivated because their power rail control

lines are brought down to ground, forcing their unused outputs low.

It is an important technological requirement to reduce the word line RC delay and the array

current for preventing the lowering of the high level [23]. Using the above method, a

significant reduction in both delay time and power consumption is achieved. As the temperature

increases, the high level decreases by the parasitic Schottky diodes in the decoder circuit. The

operational margin for the temperature is also improved by this power rail decoding method. To

reduce the transient time of the data line signal in read operation, column sense amplifiers were

used in each column.

The output stage consists of a register that regenerates and stores the output sense amplifier

voltage levels, providing a good fanout and noise margin characteristics. The register limit the

output high voltage at 0.7 V to satisfy the input voltage requirements of the driven circuitry.

6.4. Sense amplifier

A PRL [22] sense amplifier to achieve lower consumption during no reading operation is

proposed. The sense amplifier shown in figure 6.6, consists of a SBFL inverter and two cross-

coupled PRL NOR gates. When a read operation is started, the read signal is buffered through

the SBFL inverter supplying the power rail of NOR SR latch.

147

The two cross-coupled transistors M4 and M5 avoid charge leakage on the uncharged internal

node. This scheme provide a positive feedback which allow to switch rapidly when a small

voltage differences are sensed between the output nodes.

Figure 6.5. Block Diagram.

Direct and complementary bit read line signals are connected to M6 and M3 MESFETÕs

respectively. Since only a single read bit line is required for each memory cell, an inverter is

used with the PRL NOR cross-coupled amplifier to generate the complementary signal for the

sense operation. The global access time becomes dependent on the threshold level of that

inverter. This is the weak point of the sense amplifier configuration used.

The internal voltage levels are then buffered by the push-pull output driver of the sense

amplifier offering a suitable fanout capability and furnishing the appropriated voltage levels. All

of the logic functions were designed in the Vitesse semiconductor 0.6 µm process.

Representative HSPICE MESFET model parameters are listed in table I.

.

.

.

.

PRL Row Dec oders

(S4,S0)

(IN0 - IN31)

(OUT0 - OUT31)

R/W Input registers

Memory array

Sense ampli fier

Output registers

147

Figure 6.6. PRL sense amplifier.

Table I. MESFET Model Parameters

Param. Units E-JFET D-JFET

VT0 V 0.24 -0.80

Beta mA/V2 2.91 2.32

Alfa W-mm 6.53 3.5

Lambda V-1 0.072 0.050

GDS ms/mm 14.5 27.0

RS W-mm 0.83 0.59

RD W-mm 0.83 0.59

6.5. Simulation results.

The cell area is 36 x 37 µm2 using eight transistors. In figure 6.7, 1 kbit chip layout used for

postsimulation analysis is presented. From HSPICE simulation results the total cell read/write

access times were found to be 760 ps and 150 ps, respectively. An active current of 20-µA (at

1Ghz) wasÊobtained. Using this memory cell, the memory array can accommodate 32 cells in a

single column. Simulations were done considering arrays with only 32 cells per row and 32 cell

per column. The column circuitry of this SRAM include input/output registers and sense

amplifiers.

A global write and read access time of 1 ns was measured from the input to the output buffers.

The single-ended mode read operation cause that the read access time be longer than the write

access time because of the regeneration process necessary to magnify the small bit line voltage

difference to full voltage swing. However significant reduction in a global access time has been

observed.

Read

Pow er rail

SBFL INV

GND

M7

M8

OUT

M1

M3 M4 M5 M6

Bit read line

Power rail

M2

147

Figure 6.7. 1 kbit layout.

A summary of the memory cell performance (from simulation results) is given in table II. In

table III, a comparison between the new cell and some of the reported cells is presented.

Table II. Memory cell performance

Technology 0.6 µm - GaAs

Chip Organisation 32-word x 32-bit, 2-port

Memory Cell Size 35.9 x 36.9 µm2

Access Time 1 ns

Min. Write Pulse 150 ps

Power Supply 1 v

Core Power Dissipation 20.5mW

Cell Current 20 µA

Read Time 760 ps

Table III. Memory Cells Comparison

Cell SRAM Access Tech. Power Size
Tse [2] 16 KB 7.5 ns ------ 1 w 33x34

Cha [4] 1 KB 2.3 ns 0.6 µm 0.8 w 18x20

Fie [5] 4 KB 3.6ns 1.0 µm 1.9 w ------

Mat [6] 16 KB 5 ns 0.7 µm 2 w 36x23

Mat [7] 16 KB 7 ns 0.7 µm 2.1 w 36x23

Mak [11] 4 KB 7 ns 1.0 µm 0.85 w 35x29

Law [17] 1 KB 2.5 ns 1.0 µm 0.5 w 26x31

Ber [24] 1 KB 1ns 0.6 µm 0.15 w 36x37

High speed and stable operation was accomplished for a temperature range between 5 and 70¡C

when operated at 1V. In figure 6.8, the address input and data output wave form for a write (a)

and read (b) cycle of the memory cell are shown.

147

Figure 6.9 shows the address input and data output wave form for a read and write cycle

considering parametric variations (worst case parameters) and operating at 1V. A range the

temperature between 20 - 60¡C was also considered.

Writing data

150 ps

Write signal

Address input

Ò0Ó logic

Writing data

Write signal

Address input

Ò1Ó logic

160 ps

(a)

340 ps

Address input

760 ps

Ò0Ó logic

Ò1Ó logic

Read signal

Read signal

Address input

Read signal

(b)

Figure. 6.8. Write (a) and Read (b) operations - Wave forms.

147

Write word signals

Sense amplifier
 output

output register

Bit write line

Read word signals

Figure. 6.9. Fully pipelined read/write timing diagram using slow parameters.

6.5.1. Worst case

For all the non selected cells, the Read word line voltage is set to 1V with an exception of one

active cell for which the voltage on the Read line should be zero. If the voltage in all the internal

nodes of the cells (Q0) is high i.e. VQ0 = 0.7V, then all the M6 transistors in the non selected

cells (31 in total) are operating in the inversion regime with their source node connected to the

bit Read line. They are working as Source followers while the M6 transistors of the active cell

is operating in normal mode and should discharge the bit Read line. This operating condition

correspond to a worst case. In figure 6.10, simulation results show the read/write timing

diagram of the SRAM when fully pipelined [25][26] considering worst case mode operation at

1V. The dependence of the address access time with the temperature is also shown, a range of

temperature between 5 - 70¡ was considered. Write and read consecutive operations for cells

attached to two differents column are shown.

6.6. Experimental results.

To demonstrate the performance of the cell a 8-words x 4-bits prototype was fabricated using

Vitesse III - GaAs technology. A die photo of this experimental circuit is shown in Figure 6.11.

The layout of prototype, including bonding pads, occupies an area of 1.15 mm2. The test chip

was tested at a power supply voltage of 1V and 2V.

147

precharge

1 logic

0 logic

Sense amplifier
 output output register

5¡

70¡

Figure. 6.10. Worst case operating conditions.

First, a simple functional tests at different frequencies were done. A GENRAD LV500 test

equipment was used. Figure 6.12, is an oscillograph screen illustrating the functional testing

results as well as some internal waveforms using a supply voltage of 1V.

Figure 6.11. Test chip microphoto [27].

147

Figure 6.12. Functional testing results.

The test chip was designed using two separate supplies for the cell array core and the control

part. Thus, the core was found to be operational over a range of power supply voltages of 1V

and 2V. Similarly, the cell was found to operate properly for sense amplifier supplies ranging

from 1V to 2V. Five prototypes were tested. The current consumption per cell can be inferred,

obtaining 14 µA/cell at 1V. This result is 30% lower than results obtained through simulation.

In table IV, the standby current consumption of the core is shown for supply voltages of 1V

and 2V.

Table IV. Core current consumption [mA].

Supply Chip1 Chip2 Chip3 Chip4 Chip5

1V 0.27 0.32 0.16 0.33 0.15

2V 0.38 0.48 0.48 0.49 0.36

In table V, the current consumption of the control part is shown. This current includes the clock

and output drivers, the sense amplifiers, I/O registers and the pads. As can be seen the power

saving in the control part is not much more significant, using another technique for addressing

and decoding recently published [28], more significant power consumption reduction could be

achieved.

Table V. Control part current consumption [mA].

Supply Chip1 Chip2 Chip3 Chip4 Chip5

1V 25.7 25.4 26.4 26.2 24.8

2V 40.2 38.5 41.6 41.0 39.7

Due to the test equipment features, the read and write signals could not be synchronised with

the clock signal causing the additional delays. Figures 6.13 (a) and 6.13 (b) show the time scale

of transients produced in the sense amplifier outputs for each logic level in reading operations.

As can be seen, the sense amplifier introduced an small instability due to the positive feedback

provided by the two cross-coupled transistors M4 and M5 and the delay time elapsed in

inverting bit read line signal. So, the global access time becomes dependent on the threshold

level of that inverter, this being the weak point of the sense amplifier configuration.

147

(a)

(b)

Figure 6.13. Sense amplifier outputs.

6.7. Conclusions.

A novel low power memory cell structure [29] has been developed to implement static RAM in

GaAs technology. The new cell present low power dissipation and high operating speed. The

RAM was designed and a test chip fabricated using Vitesse III - GaAs technology.

With the improvement of the structure an address access time of 1ns with a cell power

dissipation of 14 µA/cell has been obtained. The RAM operates at only supply voltage of 1V up

to 2V. This RAM can be easily used in implementing high-speed cache memory systems with

sub 2 ns on-line memories requirements.

Input

Output

147

6.8. References

[1] W. White, A. Taddiken, H. Shichijo, M. Vernon, Integration of GaAs 4 Kbit Memory

with 750-Gate Logic for Digital RF Memory Applications, Proc. 11th GaAs IC

Symposium, San Diego California, pp. 37- 40, 1989.

[2] T. Tsen, J. Kwiat, E. Walton, K. Elliot, S. Tiku, A. Cappon, A Low Power 16K

GaAs HMESFET Static RAM with Built-in Redundancy, Proc. 12th IEEE GaAs IC

Symposium, pp. 155-157, New Orleans, Louissiana, October, 1990.

[3] A. Fiedler, J. Chun, D. Kang, A 3-ns 1K x 4 Static Self-timed GaAs RAM, Proc. 10th

IEEE GaAs IC Symposium, Nashville, Tenneessee, pp 67-70, November, 1988.

[4] H. Nakano, M. Noda, M. Sakai, S; Matsue, T. Oku, K. Sumitani, H. Makino, H.

Takano, K. Hishitani, A High-Speed GaAs 16Kb SRAM OF 4.4ns/2W using Triple-

level metal Interconnection, Proc. 12th GaAs IC Symposium, New Orleans, Louisiana,

USA, pp. 151- 154,, 1990.

[5] Y. Kaneko, H. Shimizu, K. Nagata, M. Koyanagi, M; Okamoto, M. Suzuki, S;

Yokokawa, S. Shimizu, T. Maejima, J. Wada, H. Kawada, S. Ueno, M. Minamizawa,

I. Yaegashi, A 25k-Gate BDCFL G/A with a Differential Push-Pull ECL I/O, Proc.

15th GaAs Symposium, San jose California, pp. 141- 144, 1993.

[6] M. Suzuki, S. Notomi, M. Ono, N. Kobayashi, E. Mitani, K. Odani, T. Mimura, M.

Abe, A 1.2-ns HEMT 64-kb SRAM, IEEE Journal of Solid State Circuits , Vol. 26,

No. 11, pp. 1571-1576, November, 1991.

[7] S. Matsue, H. Makino, M. Noda, H. Nakano, S. Takano, K. Nishitani, S. Kayano, A

5-ns GaAs 16-kb SRAM, IEEE Journal of Solid State Circuits , Vol. 26, No. 10, pp.

1399-1406, October, 1991.

[8] S. Matsue, H. Makino, M. Noda, N. Tanino, S. Takano, K. Nishitani, S. Kayano, A

Soft Error Improved 7ns/2.1W GaAS 16 KB RAM, Proc. 11th IEEE GaAs IC

Symposium, pp. 41-44, San Diego, California,1989.

[9] T.R. Weatherford, J.R. Hauser, S.E. Diehl, Comparisons of Single Event Vulnerability

of GaAs SRAMS, IEEE Transactions on Nuclear Science. Vol. NS-33, No.6, pp.

1590- 1596, December, 1986.

[10] H. Makino, S. Matsue, M. Noda, N. Tanino, S. Takano, K. Nishitani, S. Kayano, "A

7-ns/850-mW GaAs 4-kb SRAM with Little Dependence on Temperature", IEEE

Journal of Solid State Circuits , Vol. 25, No. 5, pp. 1232-1238, 0ctober, 1990.

[11] A. Chandna, R. Brown, An Asynchronous GaAs MESFET Static RAM Using a New

Current Mirror Cell, IEEE Journal of Solid State Circuits , Vol. 29, No. 10, pp. 1270-

1276, October, 1994.

[12] O.M.K. Law, C.A.T. Salama, GaAs Schmith Trigger Memory Cell Design, IEEE

Journal of Solid State Circuits , Vol. 31, No. 8, pp. 1190-1192, August, 1996.

147

[13] S. Flannagan, P.H. Pelley, N. Herr, B.E. Engles, T. Feng, S. Nogle, J.W. Eagan,

R.J. Dunnigan, L.J. Day, R.I. Kung, A 8-ns CMOS 64Kx4 and 256Kx1 SRAM`s,

IEEE Journal of Solid State Circuits , Vol. 25, No. 5, pp. 1049-1055, October 1990.

[14] Ch.Ch. Chao, B. A. Wooley, A 1.3-ns 32-Word x 32-Bit Three-Port BiCMOS

Register File, IEEE Journal of Solid State Circuits , Vol. 31, No. 6, pp. 758-765,

June, 1996

[15] A. Bernal, A. Guyot, New Two-Single Port GaAs Memory Cell, Proc. 23rd European

Solid State Circuits Conference, ESSCIRCÕ97, pp. 180-183, Southampton, England,

September, 1997.

[16] K. Itoh, K. Sasaki, Y. Nakagome, Trends in Low-Power RAM Circuit Technologies,

Proc. of the IEEE, Vol. 83, No. 4, pp. 524-543, April, 1995.

[17] O.M.K Law, C.A.T. Salama, GaAs Dynamic Memory Design, IEEE Journal of Solid

State Circuits , Vol. 31, No. 8, pp. 1193-1196, August, 1996.

[18] E. Busheri, V. Bratov, A. Thiede, V. Staroselsky, D. Clark, Design and Analysis of a

Low Power HEMT SRAM Cell, Electronic Letters, 31, (21), pp. 1828-1829, 1995.

[19] S. Long, M. Sundaram, "Noise-Margin Limitations on Gallium-Arsenide VLSI", IEEE

Journal of Solid-State Circuits.Vol.23, No.4, pp.893-900, August, 1988.

[20] A Fiedler, D. Kang, A GaAs Pin-for-Pin Compatible Replacement for the ECL 100474

4K SRAM, Proc. 12th IEEE GaAs IC Symposium, New Orleans, Louissiana, pp. 147-

150, October, 1990.

[21] T. Hirose, H. Kuriyama, S. Murakami, K. Yuzuriha, T. Mukai, K. Tsutsumi, Y.

Nishimura, Y. Kohno, K. Anami, A 20-ns 4 mb CMOS SRAM with Hierarchical

Word Decoding Architecture, IEEE Journal of Solid-State Circuits. Vol.25, No.5, pp.

1068- 1073, October, 1990.

[22] A. Chandna, R. Brown, D. Putti, C.D. Kibler, "Power Rail Logic: A Low Power

Logic Style for Digital GaAs CircuitsÓ, IEEE Journal of Solid-State Circuits. Vol.30,

No.10, pp. 1096- 1100, October, 1995.

[23] H. Kawasaki, S.I. Long, A Low-Power 128 x 1-bit GaAs FIFO for ATM Packet

Switcher, IEEE Journal of Solid State Circuits, Vol. 31, No. 10, pp. 1547-1555,,

October, 1996.

[24] A. Bernal, R. Ribas, A. Guyot, GaAs MESFET SRAM using a New High Speed

Memory Cell, Proc. 5th European Gallium Arsenide and Related III-V Compounds

Applications Symposium, Bologna, Italy, pp. 255- 258, September, 1997.

[25] T. Chappell, B; Chappell, S. Schuster, J. Allan, S. Klepner, R. Joshi, R. Franch, A 2-

ns cycle, 3.8-ns Access 512-kb CMOS ECL SRAM with a Fully Pipelined

Architecture, IEEE Journal of Solid-State Circuits. Vol.26, No.11, pp. 1577- 1585,

November, 1991.

147

[26] D. Koe, C. Salama, Pipelining of GaAs Dynamic Logic Circuits, Proc. IEEE

International Symposium on Circuits and Systems, San Diego, California, USA, , pp.

255- 258, May, 1992.

[27] A. Bernal, A. Guyot, New High Speed GaAs Memory Cell, Proc. XII Design of

Circuits and Integrated Systems Conference, Sevilla, Spain, pp. 441- 446, November,

1997.

[28] J.F. Lopez, K. Esrhraghian, R. Sarmiento, A. Nu�ez, D. Abbot, "GaAs Pseudo-

Dynamic Latched Logic for High Performance Proccesor Cores", IEEE Journal of

Solid-State Circuits.Vol.32, No.8, pp.1096-1100, Aug., 1997.

[29] A. Bernal, A. Guyot, A New Low-Power GaAs Two-Single Port Memory Cell, IEEE

Journal of Solid-State Circuits.Vol.33, No.7, pp.1096-1100, July., 1998.

163

7. A Low-Power GaAs Asynchronous Logic.

7.1. Introduction

As it has been presented in the previous chapters, the full adder cell is one of the functions that

is used with greater recurrence in the architecture of the exponentiation system. It is possible to

see it both in the CSA or CPA adjustment. Similarly this operator is used into the control part of

the multiplier as well as in the one of the global system. It is also used in the implementation of

the substractor. For these reasons, strategies for reducing the power consumption in the full

adders implementation using asynchronous topologies were researched. In this chapter we will

analize two differents approachs.

In digital circuits, GaAs has been investigated since 70's, but because of the high static

consumption, it has not reached similar CMOS widespread use. GaAs synchronous digital

circuit associated worrisomes, such as static power dissipation, clock skew and signal

synchronization are the greatest barriers to overcome in the face of increasing both operation

speed and design complexity.

Nevertheless, being particularly fast, GaAs technology is becoming good candidate for global

clock free design (asynchronous design). Due to, asynchronous circuits do not require a clock

to govern the timing of state changes, not having skew and signal synchronization problems

[1], the use of self-timed differential structures has been proposed as a way to avoid the

discussed troubles [2][3].

Currently, GaAs asynchronous design starts to be considered, due to it is possible to avoid high

clock distribution troubles and static currents in unused parts of the circuit [4][5][6]. Of this

form, asynchronous approach avoids the precharge and discharge of parasitic capacitances in

164

portions of a unused circuit during the current computation, reducing the global power

consumption.

For that application, several differential structures [7][8][9][10], using dual-rail output signals

to detect operation completion, have been proposed. These structures conceived in order to

increase the gate complexity and reduce consequently, the power dissipation per logic function

represent an efficient strategy to build asynchronous circuits.

7.2. Asyncrhonous design

The underlying principle of asynchronous circuits consists in detecting logic evaluation

detection through acknowledge signals and use that signal to trigger through a request signal

evaluation below. The decision of which and when function blocks must operate is taken by an

asynchronous interfece device, commonly called handshake circuit.

The use of handshake circuit in asynchronous design makes it run as fast as possible, giving

automatic adaptation to physical properties and easier design migration due to the less timing

considerations [4].

Using that principle of operation is possible to achieve lower levels of power consumption in

high-speed ICs design because of asynchronous approach avoids the precharge and discharge

of parasitic capacitances in portions of a unused circuit during the current computation; another

asynchronous advantage is the average case instead of the worst-case performance, bacause it

senses when a computation has been completed while synchronous ones must wait until all

possible have completed before latching the results; asynchronous circuits automatically adapt to

variations on fabrication, temperature and power-supply voltage; Subsystems can be easily

substituted into the asynchronous systems. It would allow increase the global performance of

the circuit since other internal circuits or structures would not be affected.

Several techniques have been proposed to generate the acknowledge signals: single rail and dual

rail techniques will be briefly reviewed.

7.2.1. Single-rail techniques.

Sutherland [11], in its paper presents the technique called Micropipeline, which implement delay

elements that represent the worst-case propagation delays of function bloks and generate the

acknowledge signal. For that, it must be guaranted that only the outputs are ready before the

transition of the delay element output; this method is technology independent and specifically in

GaAs MESFET micropipelines approach enhances the circuit performance and can be used to

165

reduce the power consumption cutting-off temporarily the power-supply to portions of the

circuit in stand-by.

Asynchronous circuit can be also implemented building functions with ternary logic [12].

Ternary logic gates must take into account three distinct input/output voltage levels

corresponding to the values true ('1'), undefined ('u') and false ('0'). Stand-by state and not

ready signals are identified by the 'u' condition.

CSCD ciruits ("Current Sensing Completion Detection") [13], monitors dynamic currents

during logic transition (evaluation) to generate the acknowledge signal when the operation is

finished, it means, when no dynamic currents are detected; CSCD GaAs MESFET

implementation are unfeasible because of the static currents discussed above.

7.2.2. Dual rail technique.

In dual rail signalling, every Boolean variable is encoded onto two wires, called an encoding

pair. This encoding provides a means for logic functions completion detection as well as a valid

data transmission by observing the two wires (St,Sf). The two wires encode ternary values, so

let (St,Sf) be the pair of wires:

• Precharge phase or not ready. - (St,Sf) = (0,0);
• Ready data '1' - (St,Sf) = (1,0);
• Ready data '0' - (St,Sf) = (0,1);
• Never used - (St,Sf) = (1,1)

Valid data transmissions are always separated by the intermediate state (St,Sf) = (0,0) to

stablish standby state (precharge phase) before the next evaluation in function blocks making

possible the completion detection.

The handshake circuit [14] must prevent "runaway" conditions, it means, data overwritten at the

input to next block, if that block has a long computation latency. It must also prevent "continual

feeding", this is, data computed more than once by next block if previous block has a long

latency. So, an acknowledge signal is necessary to indicate when a next block has completed its

task and is ready for the next. Handshake circuit must also guarante that the next block is in

stand-by condition while the previous block execute the computation.

Dual rail function blocks can be easily built with CMOS standard logic gates by implementing

dual-logic cells (direct and complementary logic implementations). In GaAs circuits, the absence

of P-type transistors and the difficulty to build NAND gates in the standard DCFL MESFET

logic family lead to the dual-logic NOR-NOR PLA configuration. However, differential

166

structures are widely used not only in the asynchronous CMOS ICs design but also in GaAs

technology increasing the speed of operation with similar levels of power consumption [8].

In next section, we analyse from experimental results two asynchronous structures to implement

low power self-timed circuits. The first one, a DC2FL structure which was conceived keeping

in mind mentioned properties, but at the expense of speed performance and the second one, the

Enable/Disable MESFET Differential Logic (EMDL) which is also presented as a solution to

implement dual-rail synchronous and asynchronous circuits, with no power consumption in

standby state and keeping speed performance comparable to DCFL.

7.3. A Low-Power Differential Cross-Coupled FET Logic.

A DC2FL low-power differential MESFET logic structure mixes several features of previous

techniques, achieving lower levels of power-delay product than DCFL gates and as low as

DCVS ones. Additionally, it can be also used to reduce the static power consumption of

asynchronous circuits during the standby state, showing further significant advantages when

applied to built self-timed rings [15].

A fully functional 8-bit ripple carry adder was designed by using Vitesse GaAs III technology

[16] at 2V power-supply voltage. The structure is totally compatible with DCFL, DPTL and

DCVS topologies.

7.3.1. Basic Structure

Unlike the most of previous precharged differential structures presented [8][9][10], DC2FL is

based on predischarging internal nodes. The basic structure is illustrated in figure 7.1, the direct

and complementary logic function branches are involved in the EFET logic tree, providing two

internal outputs a and b which are required to delay-insensitive asynchronous applications.

When fi is high (fin is low) the predischarge phase is started and both internal nodes are

discharged through M2 and M3 transistors, while M1 isolates the logic tree from the supply

voltage, so no significant currents flow into the EFET logic tree.

167

Then, during the evaluation phase (fi is low, fin is high), either a or b node is charged up to

0.6V according to the logic tree function and the input variables. The cross-coupled transistors

M4 and M5 connected to such nodes, provide a positive feedback avoiding charge leakage on

the uncharged internal node, during the evaluation phase, switching fastly when small voltage

differences are sensed. The internal voltage levels are after buffered by the output stage,

offering a suitable fanout capacity.

Figure 7.1. - DC2FL structure.

The two predischarge transistors M2 and M3, like as the cross-coupled ones M4 and M5 can be

made as small as possible due their size do not affect the global performance. M1 transistor is

sized similar to the logic tree transistors because the number of EFET devices involved in the

logic part define the current used to charge the respective internal node.

So, as can be seen in figure 7.2, the logic tree transistors size (W) is a compromise between the

charging delay (td) responsible for the speed performance, and the current flow through the tree

(I), that contributes to the power dissipation. This analysis was realized over a inverter and full

adder (Fig. 7.1), but it can be extended to more complex gates.

A constraint of this approach, like as DPTL and DCVS techniques, consists in restricting the

high input voltages (Vin < 0.7V) to prevent the forward biasing of the MESFET Schottky

barrier in DC2FL tree transistors. Design considerations about the output stage are discussed in

next section.

7.3.2. Output Stage

In1

Out

In3

In2 In2

f i n

(next stage)

Logic tree

output

buffer

In2

In3

In1

f i f i

Out

In3 In3

In2

Inputs

M1

M2 M3M4 M5

a b

168

The output stage consists of a buffer that regenerates the internal voltage levels, providing a

good fanout and noise margin characteristics. Moreover, it must to be no inverting circuit,

because these outputs can be connected to either a similar next stage or a DCVS one [10] and

they have to be low during the predischarge phase for the proper operation of these circuits.

Furthermore, this stage must limit the output high voltage at 0.7V to satisfy the input voltage

requirements of the next stage. The evident approach of two cascating DCFL inverters for each

output is unsuitable due to the significant power dissipation of this approach.

0

2

4

6

8

10

12

0 5 10 15 20

F AD

INV

INV

FAD

td(10 -10)

I (10 -6)

W (u)

Fig. 7.2. - Charging delay (td) and current consumption (I) vs tree transistor width.

A new and particular output stage to achieve lower consumption during standby state is

proposed. The circuit is shown in figure 7.3, and consists of a pullup NOR gate configuration,

a SBFL inverter and a NOR SR latch implemented with Power Rail technique [17].

The NOR gate detects when either a or b node is charged above to approximately 0.2V, and

generates a signal which buffered through the SBFL inverter supplies the SR latch. The latch

senses small voltage differences in the nodes a and b, like as DPTL buffer [7], switching fastly

and furnishing the appropriated voltage levels 0.1V and 0.7V.

Fig. 7.3. - Output stage schematic.

169

The pullup NOR output is raised up at 0.6V by fi signal during the predischarge phase. The

logic tree input variables could not be available or even a or b nodes not be properly charged

when the evaluation phase is started. It would discharge the output NOR leading a bad

functioning of the circuit. Then, a weak pullup current source (M7 and D1) is used to

compensate the subthreshold currents through M8 and M9 transistors. Such configuration keeps

NOR output voltage at approximately 0.6V.

This weak current source must provide an equivalent current to M8 and M9 subthreshold

currents (I
sub

) plus SBFL inverter gate currents (I
Sh

). Both currents depend on the transistor

sizes and their biasing voltages. So, I
M7-D1

 ≥ 2.I
sub

 + 2.I
Sh

 condition must be satisfied.

However, with NOR output at 0.6V, ISh is much lower than I
sub

 and can be neglected.

Furthermore, M7 device is always operating in saturation region, then [18]:

ß
7
(V

gs
-V

T
)2tanh(αV

ds
) ≥ C

1
.W

8
.no(1- e-U

ds
)/L

8 (1)

where

no - equilibrium minority carrier concentration;

C
1
 = 2.L

B
.q.D

n

L
B is the extrinsic Debye length and

D
n
 is the diffusion constant.

Considering W
8
=2µ and L

8
=1µ, the M7 device size W

7
=4µ and L

7
=2µ is obtained. The

dimensions W
1
=2µ and L

1
=2µ of D1 device were found by using the expression [19]:

I
Sh = W

1
.L

n
1(C2.e

-Uds
) eU

(2)

Where:

C2 = q.N
D
.V

N
D is the dopant concentration and

V depends both drift and diffusion velocities.

The voltages variables {U,Uds} are normalized by thermal voltage.

Design considerations of the SBFL and Power Rail latch can be found in [20] and [17],

respectively. In figure 7.4, the dc transfer curve of a DC2FL inverter using such output stage is

shown.

170

In the case of latched gates, used frequently to implement asynchronous pipelines and self-timed

rings, SR DCFL NOR latch can appropriately replace the DC2FL output stage acting as a buffer

and storage element. In DCVS approach, such substitution is not possible because the

correspondant SR NAND latch version is difficult to be built with DCFL gates [18].

Fig. 7.4. - DC2FL inverter dc transfer curve.

7.3.3. Simulation Results

7.3.3.1. Full adder

Full adder circuits were used to evaluate and compare this structure with DCFL, DPTL and

DCVS ones. The DC2FL sum circuit is presented in fig. 7.1, HSPICE simulation results at 166

Mhz at a supply voltage of 2V are summarized in table I.

Table I - Full adder simulation results.

td (ps)
fi-out/in-out

Pot (mW)
Prech./eval.

Pot∞td
(fJ)

#
trans.

DCFL 137.5* 3.76* 517.0 42
DPTL 44.3 / - ** 1.16 / 1.02 48.3 36
DCVS 210.4 / 238.8 1.15 / 1.02 243.7 56
DC2FL 449.4 / 358.5 0.47 / 1.05 307.0 58

* In DCFL, there are not fi signal and precharge phase.

** In DPTL, the inputs must be available in the evaluation.

The power-delay products (Potxtd) were obtained considering average values. Power

dissipation of DPTL, DCVS and DC2FL full adder versions during standby state and evaluation

phase are also presented in figure 7.5. Otherwise, latched gates were also taken into account in

order to evaluate the differential structure performance, as shown in Table II. For latched DPTL

and DCVS gates, it was necessary to add the SR DCFL NOR latches in the outputs to storage

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Vout (V)

Vin (V)

171

data. A significant power reduction as well as the expected lower power-delay product were

verified to DC2FL.

Table II - Latched full adder simulation results.

td (ps)
fi-out/in-out

Pot (mW)
Prech./eval.

Pot∞td
(fJ)

#
transistor

DPTL 181.6 / --- 1.96 / 1.83344.1 50
DCVS 317.3 / 344.0 2.16 / 2.13 709.2 70
DC2FL 622.1 / 584.3 1.01 / 1.02 363.5 42

7.3.3.2. 8-bit ripple carry adder

A 8-bit ripple carry adder circuit was chosen as a vehicle to demonstrate the DC2FL advantages.

The Ripple Carry Adder was chosen to be an architecture-neutral evaluation and the worst

possible delay for a 8-bits adder. A test chip containing DC2FL and DCVS versions was

designed and fabricated by CMP services using Vitesse GaAs III technology. The chip layout is

shown in figure 7.6. Table III presents the HSPICE simulation results.

Table III - 8-bit ripple carry adder simulation results.

td (ns) Pot (mW) Pot∞td (pJ) # transistor
DCVS 0.903 8.93 8.06 448
DC2FL 1.641 6.08 9.98 464

Figure 7.5. Power dissipation graph [21].

The most important feature of DC2FL is its compatibility with DCVS which permit replace some

portions of its functional blocks where timing is not critical, saving power on standby state.

Such design strategy can be easily extended to synchronous circuits, implementing critical paths

of DC2FL circuits using DCVS topology. For example, the same 8-bit ripple carry adder

operating in synchronous mode presents approximately 25% power saving in precharge phase

172

when designed using DC2FL-DCVS mixed circuit, maintaining the same speed performance that

DCVS version.

7.3.4. Experimental results

To demonstrate the performance of the structure five prototypes were designed and fabricated

using Vitesse III GaAs technology. First, an exhaustive functional test was done using a

GENRAD LV500 test equipment. The full functionally prototypes were tested at a power

supply voltage of 1V, 1,5V, 1,8V and 2V. The exhaustive functional test of each adder was

done using the test patterns set shown in table IV. This test pattern set includes all possible

required combination to execute the exhaustive functional verification of the adders.

Figure 7.6. - Test chip layout.

The 8-bit adder was implemented in both DCVS and DC2FL structures to compare the power

consumption with varing power supply voltage.

Table IV. Test patterns set.

Hexad. Binary Notation

A B A7-B7 A6-B6 A5-B5 A4-B4 A3-B3 A2-B2 A1-B1 A0-B0 Cin

00 00 0 - 0 0 - 0 0 - 0 0 -0 0 - 0 0 - 0 0 - 0 0 - 0 0
aa aa 0 - 0 1 - 1 0 - 0 1 - 1 0 - 0 1 - 1 0 - 0 1 - 1 0
55 55 1 - 1 0 - 0 1 - 1 0 - 0 1 - 1 0 - 0 1 - 1 0 - 0 1
00 ff 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0
00 ff 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 1
ff 00 1 - 0 1 - 0 1 - 0 1 - 0 1 - 0 1 - 0 1 - 0 1 - 0 0
ff 00 1 - 0 1 - 0 1 - 0 1 - 0 1 - 0 1 - 0 1 - 0 1 - 0 1
ff ff 1 - 1 1 - 1 1 - 1 1 - 1 1 - 1 1 - 1 1 - 1 1 - 1 1

In table V, the current consumption measures of each prototype and of each structure are

shown. In figure 7.7, the average power consumption with varing power supply voltage is

depicted.

Table V. Current consumption.

173

Est.. / Chip 1.0 V 1.5 V 1.8 V 2.0 V

DCVS(mA) fi=

1

fi=0 fi =1 fi=0 fi=1 fi=0 fi=1 fi=0

Chip 1 4 .
7

4.6 5.6 5.7 5.7 5.7 5.8 5.8

Chip 2 5 .
5

5.8 5.9 6.2 6.4 6.3 6.5 6.4

Chip 3 5 .
2

5.7 5.7 5.9 6.1 6.1 6.2 6.1

Chip 4 5 .
4

5.9 5.8 5.9 6.1 6.0 6.2 6.0

Chip 5 4 .
6

4.7 4.8 4.8 5.0 5.1 5.0 4.9

DC2FL(mA) fi=

1

fi=0 fi =1 fi =0 fi=1 fi=0 fi=1 fi=0

Chip 1 1 .
8

0.36 2.6 0.58 2.6 0.5
6

2.6 0.60

Chip 2 1 .
9

0.47 2.9 0.58 2.9 0.6
0

3.0 0.60

Chip 3 2 .
0

0.51 2.8 0.62 3.0 0.6
0

3.1 0.63

Chip 4 2 .
6

0.48 2.8 0.62 2.9 0.6
2

3.1 0.59

Chip 5 1 .
7

0.46 2.4 0.55 2.6 0.5
6

2.6 0.50

DCVS(eval.)

DCVS(prec.)

DC 2FL(prec.)

DC 2FL(eval.)

1,0 1,5 1,8 2,0
0,0

2,0

4,0

6,0

Vdd(V)

I(mA)

Figure 7.7. Current consumption at different power supply voltage.

The significant power reduction achieved by DC2FL structure during the stand-by state at a

power supply voltage of 2V is shown in figure 7.8, which correspond to an oscillograph screen

of the equipment test.

The adders were designed to operate with a carrier frequency of 70 MHz. However due to

limitations in the test board, reliable measurements were possible only up to 10 MHz. Except

for some coupled capacitive effects associated to the input/output pads when high frequencies

174

were applied, the delay results are predictable.

Figure 7.8. Current consumption waveform.

7.4. A Low-Power Enable/Disable GaAs MESFET Differential Logic

In this section, the Enable/Disable MESFET Differential Logic (EMDL) is presented as a

solution to implement dual-rail synchronous and asynchronous circuits, with no power

consumption in standby state and keeping speed performance comparable to DCFL.

Particularly, iterative networks and micropipelines represent the most attractive architectures to

be implemented with EMDL gates, also permitting an easy design migration to or from CMOS

ECDL logic without timing constraints. Such an application is exemplified through a fully

functional 8-bit ripple carry adder (RCA) fabricated using Vitesse H-GaAs III technology.

7.4.1. EMDL Circuit.

The EMDL functionality is similar to CMOS ECDL structure proposed by S. L. Lu [22]. The

absence of P-type MESFET is compensated by the Power Rail Logic (PRL) technique, used

here to establish the standby and evaluation phases.

7.4.1.1. Basic Operation

The basic structure is shown in figure 7.9, two distinct parts are identified: the logic and load

parts. The logic part consists in a E-MESFET logic tree (E-tree) composed by two branches,

corresponding to the direct and the complementary logic, necessary to generate the dual-rail

outputs. The load part, in turn, is built with two cross-coupled PRL inverters that decide the

correct logic evaluation according to the E-tree configuration. The load part also acts as an

output buffer. The additional DCFL NOR gate, seen in figure 7.9, is discussed in further

In2

In1

In3In3 In3 In3

In1

In2In2In2

In
p

u
ts

2.5/2.52.5/2.5

10/1 10/1

Out Out

f i

ack

f i signal
(next stage)

2

DCFL

175

section.

Figure 7.9. Schematic of a EMDL gate.

When the enable signal (fi) is brought low to ground, the depletion load transistors in the load

part remain on and ensure that the outputs are driven low, independently from the input signal

levels. So, the standby state is established and no power-to-ground path is present, avoiding

the undesirable static currents. Due to the cross-coupled inverter configuration, when fien rises

up to approximately 1V, one output is forced to ground while the other goes to 0.7V, according

to the E-tree arrangement and the input vector already available.

It is important to observe that the branches in E-tree do not need to discharge internal nodes

previously precharged, like in [8][9][10], or vice-versa, that is, to charge such nodes previously

predischarged [23]. Small differences in currents are enough to avoid metastable state or

mismatches in the load part, during the evaluation. It allows to use ratioless transistors in the E-

tree, simplifying the transistor sizing task and providing noise margin immunity.

Moreover, logic trees normally use less transistor than logic networks found in DPTL to build

the direct and complementary logic branches, because additional logic is required in order to

avoid undefined high-impedance states and guarantee the correct DPTL functionality.

Furthermore, because of such additional logic and the source transistor input connections, the

fanin in pass-transistor network configurations becomes higher than in logic trees.

Like other MESFET differential structures, the main constraint is the limitation of high input

voltage levels at 0.7V to prevent the forward biasing of the MESFET Schottky barrier in the

logic part (Vih < 0.7V). Note that, when EMDL stages are cascaded such constraint is

respected by the cross-coupled inverter output configuration.

Additionally, as discussed above, the input data must be available before the evaluation phase.

Finally, due to a possible performance degradation, the fi signal is suggested to be higher than

1V; more details about it are presented bellow.

7.4.1.2. Design Considerations

One of the principal characteristics of EMDL is its straightforward design. The logic part is

implemented with well-known logic tree configuration. The load part, in turn, gives the speed

and fanout characteristics, since the fi signal generator does not limit the charge currents, and

the classical equations of the ratioed DCFL could be used to obtain good output voltage levels.

176

As can be observed in figure 7.10, the fi signal high level is a compromise between the delay

propagation and the power consumption during the evaluation phase. This enable signal can be

driven by a DCFL gate or by any type of super buffer but in a well-controlled manner, i.e., the

driver that feeds it cannot also be used to drive other types of logic gates, such as a DCFL or a

DPTL one [7]. Figure 7.10, correspond to an EMDL inverter with fanout 1 and 4. The values

are normalized (fo=1 / fi=1V).

Two procedures to optimize the NMOS tree logic were presented by Chu and Pulfrey [24] and

can be directly applied here. Moreover, although the use of ratioless transistors are allowed in

the E-tree, minimum transistor dimensions could generate mismatches and might be avoided.

0

1

2

3

4

5

6

0.6 0.8 1 1.2 1.4 1.6 1.8 2
Enable signal - high voltage level (V)

N
or

m
al

iz
ed

 v
al

ue
s

td (fo=1)

td (fo=4)

Pd (fo=1)

Pd (fo=4)

Figure 7.10. Delay and power consumption versus enable voltage level.

When the calculation is started (fi goes high) both outputs try to arise until current differences

are detected, as illustrated in figure 7.11.

However, depending on the transistor width selected for an E-tree arrangement, parasitic

currents in the false path could be momentarily higher than the current flowing to ground,

unbalancing the output metastable state in the wrong direction and producing an incorrect

evaluation.

177

HSPICE transient analysis
0ns 0.4ns 0.8ns

0.2V

0.4V

0.6V

1.2V

0.8V

1.0V

0.0V
0.2ns 0.6ns

enable signal

outputs
(w=10µ)

outputs
(w=2µ)

Fig. 7.11. Transient HSPICE simulation: evaluation of the 4-input EMDL NAND

gate with 2µm and 10µm E-tree transistor width.

In the MESFET operation, the parasitic source and drain access resistances (Rs and Rd) between

the source/drain contact and the edge of the gate must be considered; these resistances reduce the

externally applied gate-to-source (Vgs) and drain-to-source (Vds) voltages. This situation is

described by the equations bellow, where Vgsi and Vdsi are the terminal internal voltages [18]:

Vgsi = Vgs - Ids.Rs (3)

Vdsi = Vds - Ids (Rs + Rd) (4)

When both outputs try to arise, we consider small values of Vds, and for this reason the E-

FETs of the logic tree would operate in linear region, according to (Vdsi < Vgsi - VT). So, the

current through the devices would be:

Ids =2β[(V gsi-VT)Vdsi1/2Vdsi
2)](1+λVdsi)tanh(αVdsi) (5)

The amount of drain-to-source current is determined by its drain-to-source and gate-to-source

voltages, a reduction of 9% in the voltage values generates a reduction of 30% in the drain

current one. The MESFET drain current also varies with channel width (W), thus it is possible

avoid an excessive diminution of the drain current by manipulating the parameter W.

Additionally, the transconductances gm and gds, which relate the increase in Ids to an increase

in either Vdsi or Vgsi, are also affected.

gm = [∂Id / ∂Vdsi]  Vgsi=cte (6)

gm = [∂Id / ∂Vgsi]  Vdsi=cte (7)

178

The voltage drop across Rs causes a similar effect on the transconductances. Specifically, gm

could be reduced by the small source resistance by almost 30%, reducing the voltage gain and

offering smaller current values. The variations of the transconductances according to the drain

and source resistances are described by the equations below, where gmi and gdsi are the internal

values:

gm = gmi [1 / (1 + gmi.Rs)] (8)

gds = gdsi [1 / (1 + gmi.Rs + gdsi.Rs)] (9)

Due to both gds and gm are proportional to the transistor width and also are both function of the

terminal voltages, an increase of W would lead to keep appropriated voltage gain values [18].

The terminal external voltage reduction is more critical when several series devices are

connected. This condition generates a strong reduction of the internal nodes values, obtaining

drain currents too close to zero and leading to the mismatch problems discussed. For more than

three serie-transistor configurations, a transistor width at least equal to 10µm is suggested in the

logic tree.

7.4.2. Performance comparison

In order to provide a comparison with other MESFET logic families, a full adder was used as a

benchmark circuit. The HSPICE simulation results obtained using Vitesse H-GaAs III typical

process parameters, 2V supply voltage and ambient temperature are shown in Table VI. The

power-delay products were obtained taking into account the average values.

Note that the use of the PRL technique in the EMDL load part slows it down in respect to

DPTL. However, a real consumption reduction is confirmed in standby state, giving a better

power-delay product than others. The simple design is also observed with the smallest transistor

number. The generation of the enable signals is not taken into account in this analysis.

Table VI. Full adder HSPICE simulation results

MESFET
Structures

td (ps)
fi-out/in-out

Pd (mW)
stand./eval.

Pd X td
(fJ)

#
trans.

DCFL 137.5* 3.76* 517.0 42

DPTL 44.3** 1.16 / 1.02 48.3 36

DCVS 210.4 / 238.8 1.15 / 1.02 243.7 56
DC2FL 449.4 / 358.5 0.47 / 1.05 307.0 58
EMDL 99.1** 0.02 / 0.91 46.1 26

*DCFL is not a dynamic structure (only in-out delay).
** DPTL and EMDL have available inputs in evaluation (fi-out delay).

179

7.4.3. Specific applications

The use of EMDL in synchronous circuits is obvious: the clock signal is applied to the enable

input establishing the precharge phase between each calculation (evaluation phase), when the

input data are already available. In the case of asynchronous design, a request signal replaces

the enable one and an additional DCFL NOR gate is necessary to detect the operation completion

(ack), as illustrated in figure 7.9. It should be noted, however, that only speed independent

circuits are possible because of the input availability when the calculation is started.

Two interesting applications are iterative networks and micropipelines, discussed in [22] and

[25] respectively. An iterative network consists of a one-dimensional array of one or more

identical blocks, which are connected only to their neighbors.

Its major advantages are the regular design and the simple connections, and the test easiness. In

such applications, the completion signal generated by the DCFL NOR is used to enable the next

block. However, shorter data routing delays than combined NOR gate and the completion signal

routing delays must be respected to guarantee the correct data flow.

Micropipelines, in turn, can be implemented without explicit delay elements required to satisfy

the timing requirements, because the EMDL structure generates its own completion signals, as

discussed above. It simplifies the process of synthesizing micropipeline stages and the

portability of such circuits between CMOS and MESFET technologies.

7.4.4. Experimental results: 8-bit RCA

To demonstrate the EMDL structure functionality, a 8-bit ripple carry adder (RCA) implemented

as an iterative network was fabricated through CMP-France services, using Vitesse H-GaAs III

technology. The block diagram and the microphotograph of the circuit are illustrated in figure

7.12.

(a)

b1b0 a1

s2s1

a0 a2 b2

Co2

s0

Co1Co0Cin

Req
F ADFAD FAD

en ack en ack en ack

Co7

s7

a7 b7

FAD

en ack compl.

Co7

180

(b)

Figure 7.12 The 8-bits RCA: (a) block diagram and (b) microphotograph.

HSPICE simulation results are shown in Table VII, and compared with previously published

DCVS and DC
2
FL results [23]. Note that, the DCVS and DC

2
FL RCA versions are composed

by delay-insensitive gates and the request signal is common to all blocks. So, the delay results

(td) presented in Table V correspond to average values. In the EMDL version, due to the

iterative network configuration, always the worst-case propagation delay gives the speed

performance.

All prototypes were verified fully functional and the performance measures were found

acceptable. The static currents in standby and evaluation phases were observed at low frequency

operation and are shown in figure 7.13, in comparison with the DCVS RCA version. In figure

7.14, a microphotograph of the chip including EMDL, DCVS and DC2FL approachs is shown.

Table VII. 8-bit RCA HSPICE Simulation Results

td (ns) Pd (mW) Pd X td
(pJ)

#
transistor

DCVS 0.903 8.93 8.06 448
DC2FL 1.641 6.08 9.98 464
EMDL 1.558 5.99 9.34 264

Figure 7.13. Static currents observed in EMDL and DCVS 8-bit RCA circuits [26].

181

Figure 7.14 EMDL, DCVS and DC2FL 8-bit RCA circuits.

7.5. Conclusions

A new GaAs MESFET differential structure for self-timed circuits has been presented. The

structure requires only one 2V power supply and uses predischarge technique, achieving lower

levels of power consumption. The most important feature of DC
2
FL is its compatibility with the

DCFL, DPTL and DCVS families.Lower levels of power-delay product than DCFL and as low

as DCVS are obtained.

The Ripple Carry Adder was chosen to be an architecture-neutral evaluation and the worst

possible delay for a n-bits adder. A 8-bit ripple carry adder chip test has demonstrated that

DC
2
FL is an appropriate structure to implement delay-insensitive asynchronous circuits. If

extended to synchronous circuits significant power saving ranges are obtained, when mixed

circuits are implemented using DC2FL .

The new Enable/Disable GaAs MESFET Differential Logic (EMDL) has been proposed and

applied to asynchronous design to show the significant savings in power dissipation. Firstly,

because such a differential structure increases the gate complexity, reducing total power

consumption per logic function. Secondly, because in asynchronous circuits the functional

182

blocks are kept in standby state until a calculation is required, avoiding static currents in unused

parts of the circuit. The easy design, speed performance characteristics, noise immunity and

full compatibility with DCFL, DPTL, DCVS and DC
2
FL gates make it also useful to

synchronous circuits. A 8-bit ripple carry adder was successfully fabricated and tested, proving

the EMDL functionality and features.

A 8-bit ripple carry adder circuit was chosen as a vehicle to demonstrate the advantages of both

structures. The Ripple Carry Adder presents the worst possible delay for a n-bits adder.

However, other adder topologies with recognized higher performance can be also designed

using the mentioned techniques. The pipeline scheme used by two studied asynchronous

structures, their performance and power consumption demonstrate the richness of the

asynchronous approach. Future projects could be oriented to build long word length adders

choosing better adder architectures for this purpose.

183

7.6. References

[1] Hauck, Scott. Asynchronous Design Methodologies: an overview. Proceedings of the

IEEE. Vol.83, no.1, Jan.95, pp.69-93.

[2] Ribas, R.P. & Guyot, A. DCFL- and DPTL-based approaches to self-timed GaAs

circuits. ESSCIRC 95. Proceedings, Lille, France, Sep.95. pp.186-89.

[3] Chandramouli, V.; Brunvand, E. & Smith, K.F. Self-timed design in GaAs - case

study of a high-speed, parallel multiplier. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems. Vol. 4, no.1, Mar.96, pp.146-49.

[4] Tierno, J.A.; Martin, A.J.; Borkovic, D. & Lee, T.K. A 100-MIPS GaAs

asynchronous microprocessor. IEEE Design & Test of Computers. Summer, 94,

pp.43-49.

[5] R. P. Ribas, and A. Guyot, "DCFL- and DPTL-based approaches to self-timed GaAs

circuits," Proceedings of the 21th European Solid-State Circuits Conference, Lille -

France, Sep. 95, pp. 186-189.

[6] G.M. Jacobs, R.W. Brodersen, A Fully Asynchronous Digital Signal Processor

using self-timed circuits, IEEE Journal of Solid-State Circuits, Vol. 25, no. 6, Dec.

90, pp. 1526-1537.

[7] Pasternak, J.H. & Salama, C.A.T. GaAs MESFET differential pass-transistor logic.

IEEE Journal of Solid-State Circuits. Vol.26, no.9, Sep.91, pp.1309-16.

[8] Hoe, D.H.K. & Salama, C.A.T. GaAs trickle transistor dynamic logic. IEEE

Journal of Solid-State Circuits. Vol.26, no.10, Oct.91, pp.1441-48.

[9] Law, O.M.K. & Salama, C.A.T. GaAs split phase dynamic logic. IEEE Journal of

Solid-State Circuits. Vol.29, no.5, May.94, pp.617-22.

[10] Chandramouli, V.; Michell, N. & Smith, K.F. A new, precharged, low-power logic

family for GaAs circuits. IEEE Journal of Solid-State Circuits. Vol. 30, no.2, Feb.95,

pp.140-43.

[11] I.E. Sutherland, Micropipelines, Communications of the ACM, Vol., 32, no. 6, June,

1989, pp. 720-738.

[12] T.H. Meng, Synchronization Design for Digital Systems, Kluwer Academic

Publishers, Massachusetts, 1991

[13] M.E. Dean, D.L. Dill, M Horowitz, Self-Timed Logic Using Current Sensing

Completion Detection (CSCD), Journal of VLSI Signal Processing, 7, 1994, pp 7-16.

[14] G. Birtwistle, A. Davis, Asynchronous Digital Circuit Design, Springer, 1995

[15] Williams, T.E. Performance of iterative computation in self-timed rings. Journal of

VLSI Signal Processing, 7, 1994. pp. 17-31.

[16] Lee, G.; Donckels, B.; Grey, A. & Deyhimy, I. A high density GaAs gate array

architecture. IEEE Custom Integrated Circuits Conference. Proceedings. San Diego,

CA, 1991.

184

[17] Chandna, A.; Brown, R.B.; Putti, D. & Kibler, C.D. Power rail logic: a low power

logic style for digital GaAs circuits. IEEE Journal of Solid-State Circuits. Vol.30,

no.10, Oct.95, pp.1096-100.

[18] Long, S.I. & Butner, S.E. Gallium arsenide digital integrated circuit design.

McGraw-Hill Publishing Company . 1990.

[19] Mathieu, H. Physique des semiconducteurs et des composants electroniques. Masson.

1990.

[20] Wing, Omar. Gallium arsenide digital circuits. Kluwer Academic Publishers. 1990.

[21] R. P. Ribas, A. Bernal, and A. Guyot, Low-power differential cross-coupled FET

logic for GaAs asynchronous design, Proc. of the European Gallium Arsenide and

Related III-V Compounds Application Symposium, Paris - France, Jun. 96, pp. 2A5.

[22] S. H. Lu, Implementation of iterative networks with CMOS differential logic, IEEE

Journal of Solid-State Circuits, vol. 23, no. 4, Aug. 88, pp. 1013-1017.

[23] A. Bernal, R.P. Ribas, A. Guyot, Low-Power Differential Logic, Energy and

Computation Magazine, Vol. 7, No. 1, Ed.-13, January, pps:13-19, 1998

[24] K. M. Chu, and D. Pulfrey, Design procedures for differential cascode voltage switch

circuits, IEEE Journal of Solid-State Circuits, vol. 21, no. 6, Dec. 86, pp. 1082-1087.

[25] S. H. Lu, Implementation of micropipelines in enable/disable CMOS differential logic,

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 3, no. 2,

Jun. 96, pp. 338-341.

[26] R.P. Ribas, A. Bernal, A. Guyot, A low-Power Enable/Disable GaAs MESFET

Differential Logic, Proc. IEEE 18th GaAs IC Symposium, Orlando, USA, Nov.,

1996.

Abstract

Currently. the cryptography processes rest mainly on protocols which use the concept of one-

way function. This type of mathematical jamming is frequently carried out by the modular

exponentiation function. In this work, the design of an alternative architecture which satisfies

the most significant characteristics in order to guarantee the viability of an integrated circuit

for calculating the modular exponentiation function is presented. In the architecture, the main

advantages of both, generalised square-multiply binary for exponentiation function and the

Montgomery's algorithm for modular multiplication are mixed. The architecture is oriented to

compute the modular exponentiation of large integer numbers presenting a good performance

and a modularity being easily expandable to larger bit-widths. In addition, as several of

cryptography applications use satellite communication where high performances but

principally radiation tolerant integrated circuits are needed, AsGa become as a suitable

technology for the implementation of this type of system. The design of two of the principal

blocks of the proposed architecture considering low power strategies consumption are also

presented.

Keywords: Modular Arithmetic architectures, Modular Exponentiation, Gallium Arsenide.

R�sum�

Les processus de s�curisation d'information priv�e reposent principalement sur des protocoles

qui utilisent le concept de fonction � sens unique ou fonction tr�s difficilement inversible. Ce

type de brouillage math�matique est fr�quemment r�alis� par la fonction exponentielle

modulaire. Dans ce travail on pr�sente la conception d'une architecture performante qui

satisfait aux caract�ristiques les plus importantes afin de garantir la viabilit� d'un circuit

int�gr� pour le calcul de la fonction exponentielle modulaire. L'analyse de l'architecture

permet d'�valuer les gains en vitesse qu'une r�alisation mat�rielle pourrait permettre par

rapport aux algorithmes programm�s. L'architecture calcule la fonction exponentielle

modulaire des num�ros repr�sent�s en notation modulaire en combinant les avantages de

l'algorithme de Montgomery pour la multiplication et ceux de la m�thode g�n�ralis�e de

multiplications r�p�t�es, pour l'exponentielle. D'autre part, la n�cessit� de performances

�lev�es inh�rentes aux applications, soit en cartes � puce soit en communication par satellite, a

fait consid�rer l'AsGa comme une technologie appropri�e pour l'impl�mentation de ce type de

syst�me. La conception de deux des principaux blocs de l'architecture envisageant la basse

consommation a �t� aussi r�alis�e.

Mots cl�s: Architectures d'Arithm�tique Modulaire, Exponentielle Modulaire, Ars�niure de

Gallium.

ISBN 2-913329-30-6 broch�

ISBN 2-913329-31-4 �lectronique

