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Optical content and resolution of  near-®eld optical images: In uence
of the operating mode
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Recent experimental work has shown that the contrast of near-®eld optical images depends on the
path followed by the tip during the scan. This artifact may misguide the interpretation of the images
and the estimation of the optical resolution. We provide a rigorous theoretical study of this effect
based on three-dimensional perturbation theory and two-dimensional exact numerical calculations.
We guantitatively study the dependence of the artifact on the illumination/detection conditions and
on the scattering potential of the sample. This study should provide guidelines for future
experimental work. ¢ 1997 American Institute of Physic€0021-8979D7'06813-8¢

I. INTRODUCTION PSTM/STOM? 3! In the constant-distance modehe tip is
) . S forced to follow a surface5 f(x,y) by an auxiliary non-

Optical resolution beyond the Rayleigh limit has beengptical distance-control mechanism. The optical signal that is
demonstrated in the past ten years in scanning near-®eld oRscorded isS @,y,f(x,y)# The distance-control mechanism
tical microscopy-SNOM!.>? Among the various techniques can use a scanning tunneling microscof@TM! 35 an
that have been proposed, two categories can be distingomic force microscopeAFM!,’ or the lateral friction
guished: illumination-mode and collection-mode SNOM. In{5ces between the tip and the sampsbear forcas!®n
illumination-mode SNOM, a tipnanosourcelocally illumi- 5 these cases, the tip follows more or less the topography of
nates the sample and one collects the ®eld scattered into thg sample, andl(x,y) is the convolution of the sample pro-
far zone>* Examples of nanosources are a tapered metalg|e by a function which describes the probe geometry.
coated optical ®ber with an aperture at the tip dphexthe A comparative study of mode4! and-2! was presented
tetrahedral tip introduced recenfly.n collection-mode iy Ref. 12. It was shown that the two modes are equivalent,
SNOM, the sample is illuminated by an extended ®eld, as if, the sense that a constant-intensity imageh(x,y) and
classical microscopy, and the scattered near ®eld is collectgge constant-height imag8 (x,y,z), with 2,5 M(X,y)&

by a local probe. This probe can be the tip of an opticalare proportional. The brackets denote the background value
®berd or a scattering tip as that used in aperturelessy 4 function of &,y).

SNOM.”® A particular case of collection-mode SNOM is the Concerning mode3!, thez motion of the probe, induced
photon scanning tunneling microscof@STM or STOM in  py 3 non-optical distance regulation mechanism, can couple
which the sample is illuminated by an evanescent wave prog the purely optical information of the imadé3 This cre-
duced by total internal re”ectioh. ates an artifact that may lead to a wrong interpretation of the
Let S (x,y,z) be the optical signal that is detected whenjmages. It was demonstrated experimentally in Ref. 4 that the
the tip is located at the pointx(y,z). The z direction is  SNOM image may contain two different contributions: a
chosen to be normal to the mean plane of the sample Surfacgurely optical one and one reproducing the motion of the tip.
In order to get sub-wavelength resolution, part of the signaRecently, a systematic experimental study of this artifact was
must come from the conversion of evanescent waves intBresented? and showed thanany experimental images pre-
propagating waves. This holds whatever the technique. Thugjously reported might be dominated by non-optical contrast

the tip ~either illuminating or detectirighas to be kept at  mechanismsThe origin of the artifact was discussed with a
subwavelength distance from the sample during the scarjmple approach which we summarize hi&hé*

Three differeqt operating_modes have been used S0 far to | the constant-distance mode, we shall write the path
regulate the tip-sample distancé! In the constant-height  fjiowed by the tip asz5 zo1 of(x,y) wherezy5 A (X,y)&

mode the tip is moved in a plane5 z,, and one records An expansion of the optical signgs to ®rst order in
S (X,y,20). 2! In the constant-intensity modehe optical 45 supuf(x,y)uleads to:

signalS is kept constant with a feedback system, forcing the

tip to follow a surfacez5 h(x,y). This surface does not in S @,Y,z5 f~X,y!# "S ~z,!&8 S ~x,y,z;!

general reproduce the topography of the sample. Recording S

the motion of the tip@e., the surface5 h(x,y)] produces 1 ]—~x,y,20! afx,y!. Y
the image. This mode has been used extensively in ]z

The ®rst term in Eg:l! is the background value of the im-
3Electronic mail: rcarmina@icmm.csic.es age, the second one gives a purely optical contrast and the
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third one re ects the coupling between the optical informa-
tion and thez motion of the tip. Due to this last term, the
optical image will depend on the path followed by the tip
af(x,y), leading to the presence of the artifact discussed in
Ref. 13. Note that this problem does not occur in constant-
height mode becaus# (x,y)5 0 and the last term in Ecd!
always vanishes.

As an illustration, let us consider a worst case scenario.
Suppose, for example, that the third term dominates the
right-hand side in Eg:l! and that] S /] z is a slowly varying
function of (x,y). Then, the detected signal given by the

left-hand side of Eg-1! is proportional to the motion of the FiG. 1. Section of the three-dimensional geometry used in the perturbation

tip of(x,y). The resulting image is mainlgn optical read-
out of the motion of the tjpas that obtained with a conven-
tional AFM. This image does not contain any information on
the optical properties of the sample. Moreover, the resolution
of such an image does not result from optical mechanisms,
but only from the interaction used to control the tip-sample
distance.

The presence or not of this artifact, and its relative
weight compared to the purely optical information, depend2!
on both the experimental parameteis the illumination
conditions and on the sample under study. As pointed out in
Ref. 13, this makes the interpretation of constant-distance
images a very dif®cult task. A precise study is necessary and
constitutes the scope of the present work. Our purpose is to
analyze rigorously the origin of the artifact and to identify
the cases in which it may dominate the image contrast. The
paper is organized as follows: In Sec. Il, we consider the
case of weak scattering samples, as that often used in
SNOM. We use the three-dimensional perturbation theory to
study analytically the origin of the artifact and to discuss the
in‘uence of both the experimental parameters and the
sample. In Sec. lll, we illustrate the discussion of Sec. Il
with exact two-dimensional numerical simulations based on
a resolution of a volume integrakippmann+Schwingér
equation for the electric ®eld. The samples studied in Sec. |
consist of localized particlesdielectric or metallit depos-
ited on a "at dielectric substrate. In Sec. IV we study what
happens when the sample is a very rough extended surface.

may depend onz.

theory.

generality of our study. Reciprocity can be used to ex-
tend all the results to the illumination-mode con®gura-
tions. It has been shown that there exists an equivalent
collection-mode setup for any illumination-mode
setup®®

We assume that the probe is a passive point-like detec-
tor. This means that the sign8l(x,y,z) is proportional

to the local near-®eld intensity, de®ned as the squared
modulus of the electric ®elE(x,y,z)f. The passive
probe assumption has been studied recently on a rigor-
ous basig®*8|t was also demonstrated that the probe
may be passive even if its presence modi®es the near-
®eld distribution around the sampfe® On this basis,

we do not take into account the presence of the tip. In
what follows, we shall consider the structure of the near-
®eld evaluated without the presence of the deteeting
illuminating! tip.

We point out that the coupling ef®ciency of the probe
This occurs, for example, under

p-polarized illumination, when the tip is very close to the
ﬁample~a precise study will be reported elsewher€his z
dependence may induce another kind of artifact. This artifact
is not studied here because our model does not describe the
coupling with the probe.

In this case the scattered ®eld cannot be described with pek- Perturbative expression for the intensity

turbation theory. This discussion gives a complete picture of
the scattering mechanism responsible for the presence of tkﬂﬁ

We consider a three-dimensional sample with variations

both topography and dielectric constafitig. 1!. This
sample is a layer of pro®& S(x,y) and inhomogeneous
isotropic dielectric constang,(x,y,z), deposited upon a
semi-in®nite homogeneous isotropic substrate of dielectric
constant ¢, -half space z, 0). The upper medium
@. S(x,y)#is assumed to be a vacuum or air. The system is

In this section we analyze in detail the origin of the . . . o — .
. . . . . .._illuminated in transmission or re ection by a monochromatic
artifact presented in the introduction. We de®ne this artifac ) T
eld of wavelength . This ®eld is either a plane wawveo-

as the presence in the detected signal of a cross term betwegn : o
. . . erent illuminatioh or a set of uncorrelated plane waves
the light scattered by the sample and theaotion of the tip. . . . . .
. . ; . ~spatially incoherent illuminatidn In both cases, the inten-
We will describe analytically the properties of the SNOM . S
sity of the incident ®eld depends only »n

images in three dimensions, in the following context: Let us write the total near ®elE5 E©1 E® where

~1! We focus the discussion on a collection-mode con®guE® is the ®eld re ected or transmitted by the “at interface
ration in which the sample is illuminated by an extendedz5 0 andE™) is the ®eld scattered by the inhomogeneous
®eld either in re ection or in transmission. After interac- layer. In many cases of practical interest in near-®eld optics
tion with the sample, the near ®eld is detected by a tipNFO!, the object is weakly scattering so that the condition
~see Fig. L This choice is in no way a limitation of the (EMG ME@y with 4! 1, is ful®lled. Instances in which

artifact. Sec. V summarizes our conclusions.

Il. PERTURBATIVE MODEL FOR WEAKLY
SCATTERING SAMPLES
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this condition is not satis®ed will be examined in Sec. IV. Proceeding as in Ref. 13, we introduce the following
When the tip is moved along a surface of equationparameter:

75 f(x,y), the detected intensity to ®rst-order/inis: 1 do

l@,y,25 fx,y!1#6 1 0@x,y# 1@y, fxy# 2 G5 Txyzl dz ~Zq! 4!

wherel @5 ([EOF and1 M5 2 Re@(c_))*-E(l)# Re denoting  which measures the optical content of the ima@g.0 cor-
the real part and the complex conjugate. A ®rst-order ex- responds to a purely optical image. A large valueust

pansion of Eq-2! aroundzy5 "f(x,y)&leads to: corresponds to a low optical content of the image, and a
d1© domination of the contrast by the artifact. In any relevant
l@,Y,25 f~x,y!#5 170~z 1 Wi(,! afx,y! NFO image Gushould be minimized.
The value ofG depends on both the operating conditions
117x,y,2!. 3 and the properties of the sample under study. This makes the

prediction of the presence of this artifact very dif®cult. We
ﬁhall address separately the cases corresponding to an illumi-
nation in transmission with propagating waves, in transmis-
sion with evanescent waves, and in re ection.

In order to determine the domain of validity of the preceding
equation, we proceed as in Ref. 12. We introduce the lengt
scales Lo and L; of 1 and IY), respectively, and
af5 supof(x,y)u Equation-3! is valid if of! L; and
af; AL,. Note that these conditions involve only the struc-
ture of the near ®eld, whatever the physical system whic
produces this near ®eld. Thus, E§! applies to a large ) L _ _
variety of problems. In the case of a sample with a linear, €t Us ®rst consider the situation in which the sample is
inhomogeneous dielectric permittivity and an arbitrary sur-!lUminated in transmission from the lower mediuffig. 1

face pro®le, the conditions of validity of Eq! are equiva- With @ ®eld composed of one monochromatic plane wave

lent to those of ®rst-order perturbation theory in the neafcoherent illuminatiohor a set of uncorrelated plane waves
®elgl22122 ~“ncoherent illuminatioh at an angle of incidence smaller

than the critical oney,5 arcsir@®e;)? *# The illuminating
®eldE(® contains only homogeneous waves, and the illumi-

. llumination in transmission with propagating
aves

Equation-3! reveals the content of the near-®eld optical
image. The ®rst term is independent &y and contributes o ity (0) (0)
to the background of the image. The two other terms ard&ating intensity I does not depend oam (dI™/dz5 0).
responsible for the contrast of the image, and two origins forl "US: G5 0 and no artifact is encqupteré?_quuatlon 3!
this contrast are clearly identi®ed. The second term is pro2nOWs that the image in this case is identical to a constant-
portional to the path followed by the detecting @(x,y). hg|ght image, taken at the heigth z,. This is rather sur-
The constant of proportionality depends only on the illumi-PriSing because one can hawg, supS(x,y)u In true

nation conditions. Thus this term does not contain any infor-COnSt"’mt'height mode, one always hag _supS(x,y)u
mation on the sample, and is oray optical readout of the z Thus, we expect thahe constant-distance image will look

motion of the tip In the best case, i.e., when the tip follows like a constant-height image, but with a better resolution.

the topography of the sample, this term produces a signei'l-his will be con®rmed by the numerical simulation of Sec.
proportional to the topography of the sample, and does ndt!-

produce any additional information to the shear force, STM, _ 1he previous remarks apply to collection-mode SNOM
or AFM signal. In contrast, the third terhi)(x,y,z,) carries with an illumination in transmission with only homogeneous

purely optical information on the sample propertieielec- waves. By reciprocit} it also holds for illumination-mode

tric constant and topographyits relationship to the topog- SNOM in which the light is detected in transmission at
raphy and the dielectric constant variations of the sample i@ndles smaller than the critical ong ~ allowed light" in

in general not simple. It can be described with the conceptgef' 24.

of impulse response and equivalent surface pro®lkhis

point will be useful in the following discussion 2. lllumination in transmission with evanescent

waves

The situation in which some or all the plane waves of the
incident ®eld have an angle of incidence greater than the
critical one is different. The corresponding zero-order trans-

The right-hand side in Eg3! shows that the most gen- mitted waves are evanescent. ThES) contains inhomoge-
eral image is a superposition of a purely optical sigtltd  neous waves creatingzadependence it®). In the case of a
termi and a term proportional to the path followed by the tip single plane wave, the transmitted zero-order ®eld is of the
~second term Hence, Eq.3! gives a rigorous theoretical form Eyexp(ki™.r;1 ig™"z), with g5 (k32 ki"?)12 and
basis to the experimental observations put forward in Refs. £,5 v/c. We have used the notation5 (x,y). An inci-
and 13. The relative weight of these two terms determinesglence in total internal re ection correspondsdd‘cu Ko.
the optical content of the near-®eld optical image. If the secthus ¢ is imaginary, with the determination
ond term dominates, the use of NFO does not add any inforim(g™®). 0, Im denoting the imaginary part. It follows that:
mation to the AFM, STM, or shear force images. NFO is of

B. Optical content of the image

. . - : . . . ~g'"Cl
interest only in _the S|tua_t|ons in which the contrast is domi- 25! Im-g™ [E fexp@ 2 Im~g™™ z# 5|
nated by the third term in Eq3!. Xy, Zo!
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It is worth noting that the numerator & +e., d1(9/d2) is
negative in this case. Hence the artifact appears as a super-
position to the purely optical image of a signal proportional
to the path followed by the tip imverse contrastThis point

will be illustrated by numerical simulation in Sec. Ill.

The present discussion applies to collection-mode tech-
nigues in which the sample is illuminated in transmission
with part of-or all! the light being totally internally re ected,
as in PSTM/STOM. By reciprocit}, it also applies to the
illumination-mode con®gurations in which the light is de-
tected in transmission at angles greater than the critical one , _ _ ,
~“forbiddenlight” in Ref. 24!. The presence of the artifact FIG. 2. Geo_metry of_thg twp-dmensmnal sgmple used in the exact numeri-
. ; ) ) s s cal calculations. Solid line: path followed in the constant-height calcula-
in ~“forbidden light" images in illumination mode, and the tions. Dashed line: path followed in the constant-distance calculations.
fact that the non-optical signal represents the path followed
by the tip in contrast reversal was demonstrated experimen-
tally in Ref. 13. Our model explains this observation.

1 N
SeqTi!S mE @,:,2!2 1#dz -8l
3. lllumination in re ection S 0
Note that in the case of a homogeneous sampi® (),
the upper mediumFig. 1!. The illuminating intensityl @ is  Sed:) reduces to the true topographic pro®(e;). H isan
an interference pattern between the incident ®eld and tH8'PUlSe response and is independent on the sample. Its exis-

®eld re ected by the “at interface. Therefor® exhibits a  [€NC€ IS not postulated but comes out from the analysis
z modulation which may lead to an artifact. This modulationthrough ®rst-order perturbation theoky.is known analyti-

will depend on the value of the re ection factor at the inter- Cally in Fourier space, its expression being given in Ref. 19.

facez5 0. Keeping the same notations, in the case of a singlé! déPends on the illumination conditiorpolarization, di-
incident plane wave, one obtains: rection of incidence, cohereng¢®n the dielectric constant of

_ the substrate, and on the detection distangg. Therefore,
49" * in H contains the dependence I8} on the experimental con-
— 7 i gz I
5 I'x,y,zo! Im[E ¥ Eo exp-2ig™zo!], ! ditions, while Sgq contains the properties of the sample.
wherel is a matrix of Fresnel re ection factors at the inter- These concepts of impulse response and equivalent surface

. ro®le describe all the scattering process by weakly scatter-
face z5 0. Here g"° is real. Equation-6! shows that the P gp y y

i ) =~ ing samples and are very useful in the description of NFO
artifact may become important for large values of the re ec'imaginglg

tion factors. Moreover, the sign of the numerator®fde- Equation-7! shows that the value df? depends on the

pends on the value of those factors, and may change fro%lative variations of the functioni(r,) and Sefr,). Any

one sample tp another. Thus the artifact may appear as & ation may be encountered. At ®xed experimental condi-
signal proportional to the path followed by the tip either in tions both H and d1©®/dz ®xed, a sample may create a

real or in inverse contrast. strong scattered intensity®), thus a smallGy and another

, The.presEnt ,d'SCUSS'On ?‘pp"?s t'o Collecuonjmode teChéample a low scattered intensit{") and a largesGu The
nigues in re ection. By reciprocity it also applies to the

: L : , _ same problem arises for a given sample by varying the illu-
illumination-mode techniques in reectidi.In both cases, P g p'e Dy varying

h it il be i £ th b h high mination conditions. The conclusion is that it is not possible
the _af“ act wi D€ |mportant_ It esu strate has a high re-, give a universal rule governing the presence of the artifact
ectivity. We will illustrate this point in Sec. Ill.

in the image. Nevertheless, it is possible to study a typical
sample in order to gain insight. This will be done in the next

Let us consider now an illumination in re ection from

_ section.
4. In uence of the sample
The paramete® de®ned in Eq4! depends on the value
of the purely optical contributiom™). The aim of this sec-
tion is to analyze the dependencel 8¢ on the sample prop- |iI. NUMERICAL RESULTS
erties.
1Y) is a complicated function of both the experimental In this section we study the near-®eld scattered by one or
conditions and the sample properties. The analysis througtwo particles deposited on a “at semi-in®nite substrate. The
perturbation theory leads to the following expression: scattering geometry is depicted in Fig. 2. This system is il-
luminated in transmission or in re ection by a monochro-
I, ,20!5 Eqiz FB,kinC,es,Zo!Seq*fﬂ dr8. 71 matic plane wave of wavelengths 633 nm, with an angle

of incidenceu, . We provide exact humerical calculations of
Seq IS an equivalent surface pro®le connecting the topograhe total near-®eld intensity either at a constant height or at a
phy and the dielectric constant variations of the sample: constant distance from the sample.
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A. Numerical method

The numerical scheme is based on a volume integral
formulation of the electric ®eld derived from Maxwell equa-
tions. At any pointr5 (x,y,z), the electric ®eld is given
by:?®

E~r!15 EO~11 k3 E@p~r&2 145~ r8E~8dr§
\
9

whereb is the Green dyadic of the reference system consist-
ing of a "at interface atzb 0 separating the substratiealf
spacez, 0, dielectric constang;) from vacuum-half space
z. 0). E© is the ®eld in the reference system and the inte-
gral gives an exact expression of the scattered ®eld. It is
restricted to the domaiW occupied by the particles, having
a position-dependent dielectric constagy(r§. In general
Eq. 9 can only be solved numericaly, and several
schemes have been proposed, in two-dimensionahd
three-dimensional geometriés.Here we will consider a
two-dimensional geometry, for both andp-polarized light,  FIG. 3. Near-®eld intensity above the sample in Fig. 2 with only one surface
and solve Eq-9! by a moment methof? In this method the particle.s polarization; illumination in transmissions5 OE; particle size:
volume V is discretized in a mesh of rectangular cells of %2 -1, h50.013 . Solid line: constant-height calculations with
. . . . 2,5 0.0225 . Dashed line: constant-distance calculations with
dimensionsdx anddy' The ®eld and the dielectric constant d5 0.0075 . Two values of the particle dielectric constamtare used. The
are assumed to be constant in each cell. Equaibis trans-  dielectric constant of the substrates 2.25 is ®xed.
formed into a linear system involving the integral of the
Green dyadic over each cell. Note that this integration regu-
larized the Green dyadic, which possesses a non-integrable In both polarizations and for the two particles, the
singularity at the origin irp polarization?’ In all the calcu- ~ constant-height and constant-distance curves are similar.
lations presented here, the size of the cells isThis con®rms the discussion of Sec. Il. At normal incidence
dx5 dy5 0.003 . in transmission,d1(®/dz vanishes. ThusG5 0 and the
constant-distance image is purely optical. Reotion arti-
fact is to be expected and the constant-height and constant-

B. Images of one localized particle with different distance images are similar. Yet the constant-distant curves
scattering potentials exhibit a slightly better resolution than the constant-height

We @®rst consider the sample in Fig. 2 with one singlecur\(e,s' This is seen in Figs. 3 and 4yvhere the dashed curves
particle. Its width isw5 0.1 , its heighth5 0.018 and its exhibit faster variations than the solid curves. As discussed

dielectric constang,, assumed homogeneous, is a variable
parameter. We compare the near-®eld intensity calculated
along a line at a constant heigisolid line in Fig. 2 and the
intensity calculated at a constant distance from the surface
pro®le~dashed line in Fig. 2 Our goal is to check the pres-
ence of the artifact due to the motion of the tip in the
constant-distance mode, in light of the discussion of Sec. .

1. lllumination in transmission

The results in the case of an illumination in transmission
at 15 OF are displayed in Fig. 3 polarization and Fig. 4
(p polarization. We have used two different particles having
the same dimensions but a different dielectric consteaht:
6,5 2.25-glasg, b! 6,52 91 i ~gold. Varying €, is a way
to vary the scattering potential of the sample, and thus the
level of the scattered intensity?) @ee Eqs~7!+-8l# The
substrate is glasse(5 2.25). The solid curves correspond to
constant-height calculations along the solid line in Fig. 2
with zy5 0.0223 ~14 nm. The dashed curves correspond to
constant-distance calculations along the dashed line in Fig. 2
with d5 0.0073 ~5 nm. The location of the particle is in-
dicated at the bottom of the ®gures. FIG. 4. Same as Fig. 3 fqu polarization.
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FIG. 5. Same as Fig. 3 with an illumination in total internal re ection FIG. 6. Same as Fig. 5 fgr polarization.
(15 60E).

in Sec. Il, the constant-distant curve is a constant-heigh?ffeCt is particulgrly 5”?"‘”9 inp_polarization @ig. Gbl#
curve taken at the heighf (x,y)&which is smaller than the where the _metalllc particle creates a very stror_wg scattered
heightz, of the constant-height curve. This explains the bet-®_e_|d‘ In this case the presence of the artifact is no longer
ter resolution. visible.

It is also worth noting the very high level of signal in the
case of a metallic particle ip polarization@ig. 4 -b!# This L
is due to an enhancement of the ®eld inside the particles,,' Hllumination in re ection
which creates a very strong scattered ®eld. Even in this case We now consider an illumination in re ection from the
there is no appreciable difference between the two kinds ofipper mediumsee Fig. 2 We have shown in Sec. Il that
images. G does not vanish in this case. Its expression, given in Eq.
-6!, shows that its strength should increase with the re ec-
tivity of the substrate. We thus present the calculations for

We show in Figs. 5 and 6 the same calculations as ironly one kind of particle €,5 2.25), but for two values of
Figs. 3 and 4, but for an incidence in total internal re"ectione;: ~a &5 2.25 and-b! g5 16. The result is displayed in
(u5 60F). As seen in Sec. lIG does not vanish in this case, Fig. 7 (s polarization. With the values ofe; used here, the
its value being given in Eg5!. Moreover,d1(®/dzis nega-  Fresnel re ection factors appearing in the matrii Eg. 6!
tive, and one expects a contribution in the intensity of a termare negative. Thus the numerator®@{d1(®)/dz) is positive
proportional to the path followed by the tip in inverse con-and thez-motion artifact should appear as a superposition to
trast @econd term in Eg3# This is clearly seen in Figs. the purely optical image of a signal proportional to the path
5-al and 6al. Here the constant-heightsolid lined and  followed by the tip-no contrast reversalin Fig. 7-a ~ow
constant-distancedashed line curves look different. A su- re ective substrate the constant-heightsolid lind, and
perposition of a purely optical signaftooking like a  constant-distancedashed line curves are only slightly dif-
constant-height signabnd a signal proportional to the path ferent. The contribution of the artifact in the constant-
followed by the tip in contrast reversadrtifact can be easily distance curve is lower than that of the purely optical term.
identi®ed in the constant-distance curves. The scattering p&onversely, in Fig. ! ~high re ective substrate the arti-
tential of the particle being smalg(5 2.25), the purely op- fact appears clearly through the addition in the constant-
tical contributionl () does not dominate the contrast of thesedistance intensity of a signal proportional to the path fol-
curves. Thus they are strongly dominated by feotion  lowed by the tip. This calculation con®rms that in re ection

2. lllumination in total internal re ection

artifact. the artifact is more important when the substrate has a high
When the scattering potential increas@igs. 5b! and  re ectivity.
6-bl# the contribution of the optical tertf?) increases. For Although we do not display the results for the sake of

a gold particle®igs. 5b! and 6b'# the purely optical con- brevity, we have observed the same effecpipolarization.
tribution is so important that the presence of the artifact isMoreover, increasing the scattering potential of the particle
strongly attenuated. This means that the contrast is nouncreases the contribution of the optical term in the detected
dominated by the third term in Eg3!. The constant-height signal. As in the case of TIR examined previously, this re-
and constant-distance curves are practically identical. Thiduces the weight of the artifact in the image.
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FIG. 7. Near-®eld intensity above the sample in Fig. 2 with only one surfac&I1G. 8. Near-®eld intensity above the sample in Fig. 2 with two particles
particle; s polarization. lllumination in re"ection from the upper medium, separated by a distan¢® 0.073 . The dielectric constants; and g, are

u;5 OE. The particle dielectric constagb 2.25 is ®xed. Two values of the ®xed.~a: 5 OE;-b!: 45 60E. Other parameters as in Fig. 3.

substrate dielectric constagf are used. Other parameters as in Fig. 3.

ity with a ~“forbiddenlight" detection in illumination-mode
SNOM!. In conclusion, the resolution in the constant-
distance image does not have its origin in an optical interac-
In the previous Section we have shown how the pureltion with the sample, but in an optical readout of theno-
optical information of the image could be hidden by the ar-tion of the tip.
tifact induced by thez motion of the probe. We shall now The same behavior is seen in Fig. 9 which is identical to
discuss the resolution issue. Fig. 8 but forp polarization. Note that the separation be-
It was pointed out in Ref. 13 that the artifact may lead totween the two particles is clearly resolved in Fig. 9, even in
a wrong interpretation of the purely optical resolution. Wethe constant-height images. This is consistent with previous
illustrate this important point with exact numerical calcula- studies that showed that on dielectric substrates the light lo-

tions of the ®eld scattered by two particles§ 2.25) de-  calization around the object was better fn than in s
posited on a at glass substrate,$ 2.25) and separated by

a distancd5 0.078 ~47 nnl. The geometry is displayed in
Fig. 2. The illumination is done in transmission.

Figures 8al and 8b! show the constant-heighsolid
line! and constant-distancelashed link curves foru5 OE
and 4,5 60E, respectively. The wave sspolarized. In Fig.
8-a the presence of the artifact is not visible. As shown
previously see Fig. 8 at normal incidence the constant-
height and constant-distance curves are almost identical. The
constant-distance curve exhibits a slightly better resolution,
as seen in Fig. ®8l. In contrast, in total internal re ection
@®@ig. 8hl# the two images are clearly different. In the
constant-height curve, the intensity distribution does not re-
produce the surface pro®le. Even the presence of the two
particles is not clear in thispurely optical image. In con-
trast, the constant-distance curve exhibits strong variations at
the precise location of the particles, with an extremely high
resolution. But, these strong variations of the signal have
their origin in the second term in Eg3!, which is respon-
sible for the artifact. In fact, a signal proportional to the path
followed by the tip in inverse contrast can be easily recog-
nized in the intensity at constant distance. This is the signa-
ture of the z-motion artifact with an illumination in total
internal re ection in collection-mode SNOMbr by reciproc- FIG. 9. Same as Fig. 8 fqu polarization.

C. Artifact and resolution
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polarization?>?® Note that this polarization effect may be
different with metallic substrates supporting polaritéhsn

Fig. 9!, due to the presence of the artifact, the constant-
distance image appears in contrast reversal. But once again,
this contrast reversal is a pure effect of the artifact, and does
not reveal any particular optical property of the sample.

IV. CASE OF A STRONGLY SCATTERING EXTENDED
SURFACE

The analysis in Sec. Il, based on perturbation theory,
shows that the origin of the-motion artifact is thez varia-
tion of the illuminating intensityd1(®)/dz. This term com-
petes with the ®rst-order scattered intensity to produce
the contrast of the image. In the perturbative analysis of Sec.
Il, the z variation of 1Y) was neglected because it was a
second-order contribution. We have seen that this model pre-
dicts the behavior of the images of small localized patrticles,
dielectric or metallic, as that studied numerically in Sec. Ill.
This study is relevant for NFO applications.
Nevertheless, in order to get a complete picture of the
scattering process responsible for thenotion artifact, in
this section we shall analyze the behavior of a strongly scat-
tering extended non- at surface. Note that, with constant-
distance regulation, it is possible to study such highly corru-
gated samples with NFO microscop8sin this case the
scattered intensity is no longer weak compared to the illumifiG. 10. Near-®eld intensity above a homogeneous surface of pro®le
nating intensity, and it may even dominate the total intensityS(x)5 h cos(px/p), with p5 0.5 . Dielectric constant of the surface
Hence, presently, the perturbative development used in Se€§5 2.25. Solid [ine: cons'tan.t—height qalculation. Dashed line: constant-
. . . . . distance calculatiors polarization: ;5 OE.~a: h5 0.01 ; -b!: h5 0.19 .
Il is not meaningful. This is a well-known fact in scattering
from rough surfaces: when the roughness increases, the

amount of energy in the specular directieire., 1(9) de- of 119, In fact, the mechanism is the following. The total
creases, the energy being transferred to the scattered part Qtctric ®eld can be writteB5 E(1 E.. In this decompo-

the ®eld. In this case we may expect thatzheariation of oy E_ denotes the scattered ®eld. The total intensity is
the scatteredintensity may induce a newmotion artifact.

In order to check this hypothesis, we have calculated the o o
near-®eld scattered by a one-dimensional grating of pro®le !5 1711 2 Re@™ "~ ..Es!#l 1!, -0

25 S(x) with S(x)5 hcos(px/p). The pro®le is represented \yherel 5 (Eyf. The high-roughness grating creates a strong

on the top in Fig. 10. The upper medium is a vacuum, whilescattered ®elk, and the last two terms in EgL0! contrib-

the lower medium is assumed to be glags5(2.25). The e to the scattered intensity. The last one is not negligible,

period isp5 0.9 . The sample is illuminated in transmission ang may even dominate. Moreover, becaligeontains both

from the lower medium with a monochromatic plane waveprgpagating and evanescent waves, the scattered intensity

(I'5 633 nm at normal incidence. _ depends strongly on, and induces the-motion artifact pro-
We show in Fig. 1@ the calculations when portional to thez derivative of the scattered intensity. Calcu-

h50.01, in s polarization. The solid curve corresponds to a|ations of the total intensity versusclose to the surfacenot

constant-height calculation, the dashed line to a constankjsplayed hereshow that the derivative of the intensity is

distance calculation. As expected, with this smooth gratingsoyr times greater in the case in Fig.~bDthan that in Fig.

the conclusion of Secs. Il and IIl remains valid. At normal 1041, This explains the visibility of &-motion artifact in

incidence in transmission, the two curves are almost identicatig 1041,

and noz-motion artifact may be detected in the constant- ~ 5o, not shown for the sake of brevity, the same results

distance curve. It is so because the small grating heighfayve peen obtained ip polarization.

makes it a smooth scattering sample, for which the ®rst-order

perturbation theory is valid. Thus, E€! correctly describes

the behavior of the near-®eld intensity and theariation V. CONCLUSION

of the scattered intensity is a negligible second-order For weakly scattering samples, the scattering process

correction. does not induce any artifact in collection-mode SNOM when
We show in Fig. 18! the same calculation with the sample is illuminated in transmission with propagating

h5 0.139 . The result is completely different. Even at normal waves. This also holds for illumination-mode SNOM with a

incidence in transmission, the two curves are not identical. Adetection in transmission at angles smaller than the critical

z-motion artifact appears, but its origin is not theariation  one. In collection-mode SNOM with some of the waves be-
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Theory of electromagnetic ®eld imaging and spectroscopy in scanning
near-®eld optical microscopy
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We derive a general expression for the signal in scanning near-®eld optical microscopy. This
expression, based on the reciprocity theorem of electromagnetism, is an overlapping integral
between the local electric ®eld and a function that characterizes the tip. In particular, it includes the
dependence on wavelength, illumination conditions, and polarization. To illustrate the potentiality
of this theory, we discuss the polarization behavior and the spectral response of the apertureless
setup. * 2000 American Institute of Physic@0021-89790102821-8¢

I. INTRODUCTION In this article we introduce an exact and general expres-
sion for the signal as a function of both the local electromag-
Scanning near-®eld optical microscofBNOM! has at-  netic ®eld and the tip properties. This expressibmeveals
tracted considerable attention in the past ®fteen years aswhich physical quantity is detected in a SNOM experiment
technique to obtain optical images of surfaces with subwaveand-i! provides a useful tool to analyze experimental results
length resolutiort:? In addition to surface-structure imaging, and to calculate the SNOM signal. To illustrate the potenti-
SNOM has proven its ability to generate and image con®nedlity of this approach, we concentrate on the apertureless
electromagnetic ®elds such as surface plasthoogietect  setup'® We describe the polarization behavior and the spec-
single molecule “uorescende, to perform near-®eld tral response, in agreement with recent experimental
spectroscopy’ or to observe light localization on disordered results®*6 In view of these results, the approach looks par-
surfaces. In addition, SNOM is a good tool to control light ticularly suitable to the description of near-®eld optical spec-
propagation in guiding microstructufeand optoelectronic  troscopy.
components. In these applications, where the main interest
is in the detection of the electromagnetic ®eld itself rathef; THEQRY
than in imaging a surface structure, SNOM appears as a

privileged technique compared to other scanning probe mif- General expressions of the SNOM signal

croscopies. In order to obtain an expression for the signal, we use
Several theoretical studies about SNOM have been prehe reciprocity theorem of electromagneti$hihis theorem
sented in the last ten years, based on numericalas the basis of a SNOM model derived previously for im-
simulations®**?or analytical model$>'* Concerning imag-  aging of surface structurédand of a model for light emis-
ing of con®ned electromagnetic ®elds, a ®rst description &on in scanning tunneling microscop.The reciprocity
obtained by assuming that the signal is proportional to theheorem involves two different situations.
square modulus of the electric ®eld at the tip locatfort. The ®rst one, called experimental situation, is a generic
Another point of view is to describe the tip by a pointlike experimental SNOM setup, as illustrated in FigallIn this
scatterer that scatters the near ®eld towards a far-®edgperimental situation, a physical system described by a
detector.”** Although these approaches are well suited formonochromatic current densify{(v) radiates the ®eld to be
some particular cases, they do not tackle important aspectgbserved. This physical system is either a primary source
such as the tip shape effects and the nonlocality of the dee.g., a molecule or an emitting optoelectronic devicea
tection process. Hence, how the signal depends on the locgkcondary source excited by a primary point source with cur-
electromagnetic ®eld and on the tip in a real situation rerent densityj,(v) placed in the far ®elee.g., a plasmon
mains an open issue. Another important point, which retesonance on a metal surface or a guided mode in a micro-
mains unstudied, is the in uence of the near-®eld detectioBtructure excited by an incident laser béaffhe ®eld radi-
and the tip properties on the spectral response of the SNOMted by the physical system is probed by a local tip and the
setup. This issue is essential in order to understand the spesignal is recorded in the far ®eld by a point detector. The
troscopic experiments. There is absolutely no reason to asegion between the tip and the physical system is assumed to
sume that a SNOM setup has a at spectral response. Thuge homogeneous and free of souregap regioh.
normalizing a near-®eld spectrum by a far-®eld spectrum |n the second situation, called reciprocal situation and
does not suppress all the instrument spectral properties. represented in Fig.4!, the collecting systentip1 detection
opticd is illuminated by a hypothetical monochromatic point

aAuthor to whom correspondence should be addressed; electronic maifOUICej re_c(V) placed at the dE't_eCtor posi.tion, in absen_ce of
remi@em2c.ecp.fr the physical system and the primary soujgg(v). The di-
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plitude denoted bye;,(K), while €,(K) corresponds to
waves which propagate or decay towamsQ. A similar
angular spectrum can be written for the magnetic ®eld

HexR,2!5 EéX,;K!EX[H K"R1 igz!dK

1 ngp«!expa' K'R2 igz!dK, 3l

with, as a consequence bfaxwell's equations
k83 €5,;K!5 v mphgK!, 4!

wherek® 5 (K,6 g) andm, is the magnetic permeability of
vacuum.

Similar expressions can be used for the ®é&gs and
H,ec In the reciprocal situatiorsee Appendix A However,
the angular spectra of these ®elds only contain waves which
propagate or decay towards 0, because there are no
sources below the probe in the reciprocal situati@ee
Fig. 1-hl# Inserting the angular spectra of all ®elds into the
integral in Eq.~1! and collecting terms, we obtain the fol-
lowing expression for the ®eld at the detector positese
Appendix A for details:

Edet"j re§ Erec’~r souI "j sou

8p?
2 v E«!eregz K !"eg, K ! dK, 5!

FIG. 1. Schematic views of the two situations considered for the application

of the_remproqty theoremal: sketch (_)f the exper|menta] S|tuat|or_1,wherea where the integral is extended over &Kyl ° and de-
generic experimental SNOM setup is considerdxd: reciprocal situation,

where the collecting system is illuminated by a point source located at tht,Scribes the detection Of_ both propagating and _evanescem
detector position. components of the experimental ®ei;lp(K). An equivalent

expression is obtained by transforming E&! into real
spacesee Appendix A
rection ofj,.. corresponds to that of an analyzer placed be- £ E
fore the detector in the experimental situation. The applica- det]rec® Erect'soul Jsou
tion of the reciprocity theorefi leads to the following 2i Erec

n—=1
expression for the electric ®el},, at the detector position: 2 vm =z R, zI"Eg R, ZIAR, 6!
Egelied Erect cod *jeoll EEexp3 Ho Eod Hexl*dS, where the integral in the second term is now evaluated in a
s P plane at a constant heightin the gap regionsurfaceS in

1! Fig. 1! Eéxp denotes the experimental ®eld containing waves
WhereEe,p e @ndHexppec are, respectively, the electric and that propagate or decay towards 0, whose angular spec-
magnetic ®elds in the experimentaéciprocal situation, trum is given by the ®rst integral in Eep!.
dS5 dSA wheredis the unit vector of the axis, andr g, is
the position of the source. In the gap region, the electromag-
netic ®elds in both situations can be expressed in terms of a§l piscussion
angular spectrum of plane wavEsFor instance, at a point

r5 (R,2) in the gap regionEey, can be written in the form Both Egs.-5! an_d~6! are exact expr_essi_ons of the com-
ponent of the electric ®eld along the directj of an ana-
E. R7I5 E KlexpiK'R1 igz!dK lyzer at the detector position in the experimental situation.
exp T4 Xp . :

They rely on the validity of the reciprocity theorem, namely,
the collecting systertip 1 detection opticshas to be made
1 Exp’K!EXP‘i K'R2 igz!dK, 21 of linear materials with symmetric constitutive tensérs

This restriction applies to the bodies entering the reciprocal
where g(K)5 (k%2 K?)*2, with k5 v/c ~ being the fre- situation in Fig. #b!. In particular, it does not apply to the
qguency andc being the speed of light in vacuunand the  physical system, which may contain, for example, magnetic
determination Rg. 0 and Img. 0. The integrals in Eq2! materials. We also put forward that both expressions take
are extended to OWKyl °, so that they contain both into account multiple scattering between the physical system
propagating (Kw k) and evanescentu{u k) waves. and the tip. Indeediéxp is the ®eld illuminating the tip in the
Waves which propagate or decay towardsO have an am- presence of the tip.
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The ®rst termE{rso)"jsou IN the right-hand side of Equations-6! and~/! are two equivalent expressions of the
Eqgs.-5! and-6! describes direct radiation of the illuminating same quantity. The former connects the signal at the detector
source-e.g., a lasédrtowards the detector. It does not carry to the electric ®eld illuminating the tiEéxp, whereas the
any information on the physical system. Moreover, it van-latter relates the signal to the magnetic ®eld illuminating the
ishes in experimental situations in which the physical systentip Héxp. In this case, the response function which character-
is itself the primary sourcee.g., a "uorescent molecule or an izes the detection process is proportional t6]¢)H,... The
emitting optoelectronic devite Both expressions can be fact that the signal may be expressed as a function of either

useful to describe a given experiment: the electric or the magnetic ®eld is not surprising because
. Expression-5! ~Fourier space describes how each both are linked by Maxwell's equations. Nevertheless, de-
spatial frequency of the experimental ®eld is detected. ThePeNding on the shape of the response fU”CtngO Erecand
coupling factor is proportional te,{2 K). Hence, a given (//]2)Hrec, the signal may resembig;,; or H,, Note that
frequencyK is ef@ciently detected if it is present in the spec-the shape of the response function depends only on the tip
trum of E,.., the ®eld produced by the collecting systemanq the'collectmg optics. In the case of the experiment de-
~especially the tibwhen it is illuminated from the detector. SCTibed in Ref. 23, the dielectric tip may produce a response

In other words, a tip is able to detect high spatial frequencie&unction (/]2) ErecWhiCh"_iS highly localized and symmetric,
if it itself creates high spatial frequencies when illuminatedS© that the signal5 (Eqe{jedf closely follows the distribu-

from the far ®eld. tion of the electric ®eld. Conversely, the gold coated ®ber tip
. Expression-6! ~real spack shows that the detected may_produce a highly Iocalized.and symmetric response

®eld is given by an overlapping integral between the experifUnction (/]z)Hrec, so that the signal closely follows the

mental ®eld and a term proportional to the derivative of th&listribution of the magnetic ®eld.

reciprocal ®eld [/] z)E,... The latter is a response function

of the instrument, describing the spatial localization of the

detection process, the polarization effects, and the spectrgl. APPLICATION: APERTURELESS SNOM
response.

Finally, we note that an expression of the SNOM signall
exhibiting the same structure as Ego! was derived
recentl’ as a generalization oBardeen's formul&!??
originally developed for electron tunneling between two

Equation-6!, or equivalently Eq.-5!, can be used to
analyze experimental results in SNOM. The key quantity,
which characterizes the tip and the collecting system, is the
reciprocal ®eld, .. Different models are available, that al-
Ow an approximate and practical description of this ®eld.

VSVEI?JI(IGI/ ;:(;Ipslsgmﬁl:aiﬁgﬁ;inThlﬁiCrrizlég ﬁg.?,fm s:;r\l/vgeth or instance, for an aperture SNOM, the Bethe+Bouwkamp
g g ' modef* could be used®?° For an apertureless SNOfus-

handled using the same formalism. There are two differences . o
between Eq-6! and the result in Ref. 20i! The latter was ing a Eomf:al metall:cc t'pErfeC c?n be crjnod_eled ggé;r:;(?eld
derived under the assumption of weak tiptsample coupIiné‘eaI‘r]t edtlrl) arrJ]ex ora per: ectly cond gctlhqg co! | - Wit id
whereas EQ-6! is exact.+i! The result in Ref. 20 was for- uch models, the approach presented in this article provides a

. . . versatile and useful tool to analyze experimental results and
mally put in the symmetrized form of a current operator as in

Bardeen's original article. o identify the key parameters.

A. Tip model

In order to illustrate the potentiality of the theory, from
C. Electric or magnetic ®eld? now on we focus on the apertureless SNOM. As mentioned
?bove, the ®el&,.. can be modeled in this case by the ®eld

Before closing this section, we address the question o . . : .
whether a SNOM detects preferentially the electric ®eld of €& the tip apex of a perfectly conducting cone illuminated
y an electric dipole placed at the position of the detector

the magpeUc ®eld._ This question was rgused receptly m.“ghﬂ.e., in the far ®eld At short distance from the tip apex
of experiments using a photon scanning tunneling micro

Tlerl 27
scope PSTM with either dielectric or metal-coated (krt 1), one ha¥

probes?® Dielectric probes seem to detect a signal propor- 1 F u, J G

tional toEg, ;¥ whereas gold coated ®ber tips seem to detect ES k~r!™ “sinblu,1 — Ju ~Up, U, al, 8!
a signal proportional tméxpﬁ. We shall see that the preced- ] ) o

ing analysis allows to discuss this issue. wherea is a function of the angle of incidenag , the angle

Starting from Eq~L! and using Eqs=2!+-4!, it is pos- of observationy, and the semiangle of aperture of the cone

sible to derive an expression of the electric ®eld at the de- The other parameters are the wave vektw /c and the

tector in terms of magnetic ®elds only. One obtains in thingle of polarizationb of the incident wave-b5 0 for an
case illumination in s or TE polarization,b5 p/2 for an illumi-

nation inp or TM polarization. u, andu, are the unit vec-
£ E o i tors in spherical coordinates.is a positive number smaller
det]rec® Erecsot Jsoul ve, than 1 which depends on the cone arf§léote that al-
though Eqg-8! is an asymptotic expression, it is not an elec-
3 EHrecﬂ,z!-Héx R,zIdR. 71 trostatic approximation. Thereforg, it includes rgtardation ef-
s ]z P fects. Remarkably, the ®eld given by Ed! is highly
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enhanced near the tip apex, and its spatial distribution doedipole being, in this case, placed at the position of the detec-
not depend on the illumination conditions. This model fortor. The experimental ®eIE(19Xp contains several contribu-
the tip was introduced in near-®eld optics by Cetyal?”  tions, e.g., the ®eld re ected by the “at mirrewithout in-

We will show that, together with Egé!, it allows to explain  teraction with the tipand the enhanced ®eld at the tip apex,
the polarization dependence and the spectral response mea-ected by the surface. The latter is given by the product of

sured on an apertureless setup using a metallic tip. Eg.-8! and a re ection factor which does not depend on the
frequency. In the case of a confocal detection, as in Ref. 6,
B. Polarization dependence the signall is given by the interference between these two

contributions. Therefore, it is proportional to the integral
Rerm in Eq.~6!, in which bothE . and Eéxp are described by
Eq.-8!. Finally, we end up witd} v2"1, For different tip

The polarization effect in apertureless SNOM has bee
recently studied experimentall§.In that work, the sample

was a at silicon surface, probed by a tungsten tip, illumi- 50165 the signal predicted by this model versus the incident
nated at a wavelength5 647 nm. The dependence of the | elength is shown in Fig. 2 in Ref. 6. An excellent agree-

signal on the polarization of the incident wave was Mea1ant with the experiment is found

sured. The polarization state of the incident wave is de- Finally, we note that if the tip apex were modeled by a

Scﬂbe.d b_y the a_ngl@ The signal versug, megsured N small dipole sphef@ the spectral dependence expected for
re ection in the direction normal to the su_rface, is shown iny, o signal would ber*, in disagreement with the experimen-

Fig. 2 in Ref. 16. The result canl be explained using 8. 5 requits. Therefore, modeling a conical metallic tip by a
t_ogether W'th the tip model Eq-8 The s_|gnall IS Propor- gyl dipole in apertureless SNOM leads to wrong predic-
tlonaI. 0 E ge{f redf- _Th'_s quantity is described by the mtegrql tions, at least for spectroscopic applications. In view of this
term in Eq.-6!, which involves the enhanced ®eld at the tip gt \ve believe that the approach in the present article

apex@e @rst term in the right-hand side in EG! gives a 14 @nd broad applications in near-®eld spectroscopy.
negligible contribution in this setdpWhen the tip is at a few

nanometers from the surface, the ®Eﬁjp illuminating the
tip is mainly the enhanced ®eld re ected by the surfacelV. CONCLUSIONS
Therefore,EéXp is proportional to the ®eld given by E!,
and thus to sim. Finally, the signal id} sir? b. This predic-
tion is in agreement with the experimental resske Fig. 2
in Ref. 18. Thus, Eqg.~6!, together with Eq-8! correctly
describes the polarization behavior of an apertureless SNO
using a metallic tip.

In conclusion, by means of the reciprocity theorem of
electromagnetism, we have derived an exact and general ex-
pression for the signal in SNOM. This expression connects
the ®eld at the detector position to the local ®eld illuminating

e tip. It is valid in the presence of multiple scattering and
can be applied to any type of SNOM probe. We have illus-
trated the potentiality of this approach by analyzing the ap-
C. Spectral response ertureless setup. We have described the polarization effect

We now turn to the study of the spectral response. It hagnd found a result in agreement with experiméfitt/e have
been found experimentally very recently that the spectral re@lso studied the spectral response which was measured ex-
sponse of an apertureless SNOM using a metallic tip is noperimentally very recentfyand we have shown that its de-
~at, and that it depends on the tip sh&b@his unexpected pendence on the tip shape was fully described by our ap-
behavior is of great importance in near-®eld optical spectrogroach. Besides, it turns out that a dipole model for the tip
copy, where the recorded spectra have, in principle, to béoes not account for the spectral response observed experi-
corrected by the response function of the instrument. Ifmentally. Therefore, we believe that the general expression
Ref. 6, a confocal geometry was used. The sample was der the SNOM signal introduced in this article should be
aluminum mirror~at spectral response in the visible, with a helpful for quantitative analysis of future experimental re-
re ectivity R5 0.9'. The signal was measured versus the in-Sults.
cident wavelength, and normalized by the far-®eld spectrum
repordgd under the same conditions. The resullts fo_r two '[.'piCKNOWLEDGMENTS
with different angles of aperture are shown in Fig. 3 in
Ref. 6. We shall show that Eg6!, together with the tip The authors thank L. Aigouy, J. C. Rivoal, and A. C.
model Eq.-8!, quantitatively describes this behavior. First, Boccara for many helpful discussions. We acknowledge ®-
we note that although an electrostatic model can correctlypancial support from the TMR program Near-Field Optics
describe the spatial structure of the ®eld near the tip pex,for Nanotechnology under Contract No. ERBFMRXCT98-
it cannot account for a spectral dependence due to geomet®242 from the European Union.
cal effects. Therefore, the use of a tip model including retar-

dation effects is of great importance for spectroscopic appli-
cations. APPENDIX A: DERIVATION OF EXPRESSIONS ,5...

The ®eld near the apex of a perfectly conducting conéA‘ND 6

iluminated by a point source placed in the far ®eld has a  Using the vector identity

frequency dependendg} v", wheren only depends on the i R "

angle of aperture of the ti@ee Eq.-8!# This model cor- b3 cl5 b"™~c3 al5 c-a3 bl, AL
rectly describes the reciprocal ®el.., the illuminating one can cast Egd! in the form
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Edet"j rec,5 Erec"r souI 'j sou
1 g&exp""Hrec3 A2 Hexp"'”g Ered #R.

-A2!

The experimental ®elds have angular spectra given by
Egs.2! and-3!, related by the Maxwell Eq4!. The angular
spectrum representations of the reciprocal ®elds read

EecR,z!5 E,egl(!exm K"R2 igz!dK, ~A3!

HecR,2!5 E,ec«!exm‘ K'R2 igz!dK. A4l

They are related by the Maxwell equation
k? 3 €ocK!5 v mphecK!. ~A5!

Inserting Eqs-2!, 3!, ~A3! and-A4! into Eq.-A2! leads to
Eq.-b! after little algebra without any approximation. During
this manipulation, some simpli®cations occur due to the
transversality of the ®elds in the gap region, which yields, in
terms of angular spectra

k6 "ed K15 0,

exp
k® "ng,K!5 0,
k? "gecK !5 0,
k2 "h,ocK 15 0. ~A6!

_ In order to obtain the real-space eXpreSSi@n one has  gig. 2. schematic views of the two situations considered for the application
to invert the angular-spectrum representation of both ®elds the reciprocity theorem when the presence of the substrate is explicitly
1 ; 7 ! e "y
Eexp @aNd Erec. From Eq.-2!, one obtains accounted for-al: sketch of the experimental situatiot!: reciprocal situ
ation, where the collecting system is illuminated by a point source located at
the detector position in the presence of the substrate.

1
el K expigz!5 ap? Eéxp—R,z!epr iK'R!dR,

|
i w containing waves that propagate or decay towad® and
and from £q-AS1, one obtains z. 0. EquationsA3! and-A4! have to be changed into
2 igeec2 Klexp2 igz!
1 EErec ) ErecR,2!5 E(lec“K!EX[}i K"R1 igz!dK
5 ap? ]—Z~R,z!exp-| K"R!dR. A8l

Inserting Eqs-A7! and-A8! into Eq.-5! leads to Eq-6!. 1 ecKIOXPiIK'R2 1gZidK, Bl

Hrec“Ryz! 5 E,:—Lec"{’( ! eXLH' K"R1 |gZ' dK
APPENDIX B: INCLUSION OF A FLAT SUBSTRATE IN
THE GEOMETRY

. N . 1 CRZK!expiK"R2 igz!dK. B2!
In many experimental situations, the real sample is de- Erec P g

posited on-or included in a substrate. It may be useful in the 14 angular spectra of both ®elds are related by
description of such experiments to clearly separate the in u-
ence of the two. The purpose of this appendix is to show how  k®3 €%K!5 v mphp,K!. B3
the presence of the substrate can be accounted for in “T\ﬂoreover, both ®elds are transverse, so that
model.

The experimental geometry we consider is depicted in k® "e?ec*K!5 0,
Fig. 2-al. It is identical to that in Fig. 4!, except that the K6 "hS K15 0 B4
substrate is now separated from the real sample described by rec Tt E T '
the current density,,,. The reciprocal situation, represented Following the same procedure as in Appendix A, one
in Fig. 2!, includes the substrate as well. In these condi-obtains the following expression for the electric ®eld at the
tions, the reciprocal ®elds. andH ;. have angular spectra detector position:
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" " 8p2
Edet]rec5 lErec"rsotrl JSOL2 m

3 E«!@fec~2 K1"eh K12 €52 K1"ej K 1#K. -B5!

This expression is an extension of E§! to the case where -e.g., plasmon coupling The main difference is that
the substrate is included in the reciprocal geometryin this representation, botﬁéxp and Eﬁxp enter the relation-
This means that its presence is completely described bghip.

the reciprocal ®el&,.. In particular, this ®eld may account The expression in real space is obtained, as in Appendix
for a strong interaction between the tip and the substratd, by inverting Eqs-2! and-B1!

. . 2i
Edet"] re§ Erec’"rsoul "J 301.2 m

Erzec w1 ]Erlec w2 &
3 EE7R2ELR 2L T RAELR 2R, -B6!

As we discussed previously, it is also possible to derive an expression of the signal in terms of magnetic ®elds only. We
obtain in this case

_ , 2i
Edet"] re:,5 Erec"fsouhjsoul v_eo
H2 JHL &
3 S]—ZreC~R,z!"HéXp~R,z!1 R, zI"HE R, 2 DR B7!
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Scanning near-®eld optical microscopy has been recently applied to the imaging of magnetic samples.

It was

shown experimentally that an apertureless microscope suffers a substantial loss of resolution when used for
magneto-optical imaging compared with that for conventional imaging. No such change is observed for aper-

ture microscopes.

We explain this observation by developing a model for the imaging process that incorpo-

rates the response of the probe. We calculate real observable properties such as the rotation of polarization at
the detector or the circular dichroism signal and thus simulate magneto-optical images of a domain structure

in cobalt for both aperture and apertureless microscopes.

» 2002 Optical Society of America

OCIS codes: 180.5810, 350.5730, 260.1960, 260.2110, 210.3820.

1. INTRODUCTION

Scanning near-®eld optical microscopy (SNOM) is a tech-
nigue that has enabled the diffraction resolution limit in
optical microscopy to be beaten through the use of
subwavelength-sized probes scanned in close proximity to
a sample.**®* The optical nature of the technique has led
to applications in a wide range of areas, including "uores-
cence microscopy local spectroscopy,® plasmons,®’ and
magneto-optical imaging. &°

SNOM seems to be an ideally suited tool for magneto-
optical imaging for two reasons. Unlike magnetic force
microscopy, magneto-optical SNOM (MO-SNOM) imaging
allows passive measurement of the sample ®eld without
introduction of an external magnetic ®eld. MO-SNOM
should also be able to provide a resolution superior to that
of far-®eld optical techniques. Nevertheless, the imaging
process is not completely understood.

Magneto-optical contrast is due to the rotation of polar-
ization of the illuminating ®eld caused by the magnetiza-
tion in a sample. The magneto-optical signal can be dis-
tinguished from the conventional optical signal by
measurement of the Faraday or Kerr rotation through po-
larization analysis at source and detector 8*% or by mea-
surement of circular dichroism induced by the sample
magnetization. 16*1° In the latter, the illumination is
modulated between left and right circular polarizations,
and lock-in detection is used to measure a difference in
absorption between the two polarization states. In the
most commonly used geometry, the sample is locally illu-
minated by an aperture probe, and a signal is detected in
the far ®eld, through an analyzer oriented differently to
the illumination polarization. ~ &10+12

Complete control of the polarization is dif®cult. No
matter how well polarized is the light coupled into the ®-
ber, the light emerging from the small aperture at its tip
typically has an extinction ratio of the order of 1:20.
This is a limiting factor in the accuracy to which the angle
of rotation can be measured. > Substantially better po-
larization control is achievable in an apertureless experi-

10,11
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ment, in which the probe and the sample are illuminated
by an external focused laser beam. *°

While spatial resolutions as good as 10 nm have been
obtained in conventional optical experiments with aper-
tureless SNOM, apertureless MO-SNOM experiments
have not demonstrated resolutions better than a few hun-
dred nanometers. 1¢171°  This gross disparity in the
achievable resolution is even observed when the same ap-
paratus is used for both conventional optical and
magneto-optical imaging. 1’ On the other hand, aperture
microscopes seem to obtain a similar resolution in optical
and magneto-optical experiments, this being as good as
30450 nm.® Understanding the response of the probe is
clearly important if this problem is to be explained, since
different results are obtained in aperture and aperture-
less experiments. A number of theoretical studies of
near-®eld magneto-optical imaging have been performed
previously. 2°*2*  Usually, the electric ®eld distribution in
the near ®eld of a sample has been calculated, and a
magneto-optical signal is determined based the angle of
rotation of polarization or the absorption of different cir-
cular polarization states. However, none of these models
studies the response of the probe, and therefore none of
them can explain the observed loss of resolution.

The objective of this paper is to develop a model for the
magneto-optical imaging process that takes into account
the probe response, making it possible to answer some of
the open topics regarding MO-SNOM, particularly that of
understanding the loss of resolution of MO-SNOM for ap-
ertureless probes. The formalism will be applied to both
aperture and apertureless experiments, and a response
function to the sample magnetization will be developed
for both cases.

2. DEVELOPMENT OF A GENERAL
EXPRESSION FOR THE SIGNAL

In previous papers, Greffet and Carminati 2°> and Porto
et al.?® have used the electromagnetic theorem of reci-
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Fig. 1. (a) Scheme of a general SNOM setup and (b) ®ctitious
reciprocal situation.

procity to develop an expression for the response of a
near-®eld microscope. A key feature of this approach is
that it yields an exact expression for the signal that ac-
counts for the properties of the tip. The theorem of reci-
procity relates the electric and magnetic ®elds created by
two different current distributions in the presence of a
scattering object with linear and symmetric constitutive
tensors.?>2728 |n this paper, the magnetically induced
currents in the sample are treated as an external source
term, and the probe and the substrate are treated as the
scattering object. The probe and the substrate, being
nonmagnetic, have symmetric constitutive tensors, and
thus the requirements of the reciprocity theorem are sat-
is®ed.

Let us consider a general SNOM setup, as depicted in
Fig. 1(a). An inhomogeneous sample is deposited on (or
embedded in) a "at homogeneous substrate. It is illumi-
nated either through the tip (illumination-mode SNOM)
or with an external beam (collection-mode and aperture-
less SNOM). The signal is recorded by a point detector
placed in the far ®eld at a position rg4. We assume that
an analyzer is placed in front of the detector, with a po-
larization direction de®ned by the unit vector B.
Through application of the reciprocity theorem, the com-
ponent A of the electric ®eld at the detector along the di-
rection of the analyzer has been shown to be 2°

. 1
A5 Eexp'"rdet! * A5 ; - rec ® JeXpdl’. 1)

In this expression, Jgy, and E (1 ger) are the current den-
sity in the sample and the electric ®eld at the detector po-
sition, respectively, in the experimental situation corre-
sponding to Fig. 1(a). E, is the electric ®eld that would
be produced by a dipole source of amplitude P placed at
the detector position rg4e in the absence of the sample.
This ®ctitious reciprocal situation is represented in Fig.
1(b). Note that the reciprocal situation contains the tip
and all of the illumination z*detection system (only the
sample is removed). Therefore the reciprocal ®eld E, is
the key quantity that contains all the information about

the response of the setup to the excitation of a current
Jexp in @ given sample.
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3. RESPONSE FUNCTIONS FOR A
MAGNETIC SAMPLE

The current density induced in a magnetic sample is

I, vI52 ive@, v! 2 L#te Egpt, v, 2

where &(r, v) is the frequency-dependent dielectric ten-
sor. It can be written as a sum of nonmagnetic and mag-
netically induced terms:

J5 3.1 Jy52ive@«q2 L1Eq,1 iftM A3 Eqp#
®3)

where M 5 M dis the magnetization in the sample, dis a
unit vector, and f is a constant of proportionality. The de-
pendence on the magnetization is entirely within the sec-
ond term, which is antisymmetric. If the magnetization
is directed along the z axis, Eg. (3) corresponds to a dielec-
tric tensor

« 0 O 0 2iftM 0
5 |0 « O ifM 0 o\ 4)
0 0 « 0 0 0

We will consider the magnetization to be in an arbitrary
direction @in the following.

Isolating the component of the ®eld at the detector that
has a dependence on the magnetization, we obtain the fol-
lowing from Egs. (1) and (3):

Amag 5 2 if«q E/hé\s Eexp! * Erecdr, (5)
\Y
which can be rearranged to give
Amag 5 2 if«g E{I A ~Eexp 3 Erecldr. (6)
\%

Note that both E and Eg,, depend implicitly on the
position of the tip, rg, . If we de®ne a constant-height
amplitude response for the magnetization in the sample
plane z (probe at height zg), Hmpag(X2 X4,y
2 ytip v Z, Ztip)l by

AmagTip! 5 E{magﬂ 2 Ryp, 2, Zgp!M~ldr, (7)

with R 5 (x,y), then this response function is
H mag } é" fexp 3 Erec!r (8)

to within a constant factor. Similarly, a response func-
tion H . for the variation of «; in a nonmagnetic sample,
de®ned by

AmsorTip! S E’«"‘R 2 Ry, Z, Zgpleg~rtdr,  (9)

can be shown to be proportional to
H.} "Eexp * Erec!, (10)

from Egs. (1) and (3).

In the following sections, the response functions  H 4
and H . will be the key concepts. They will be evaluated
for both apertureless and aperture microscopes, making it
possible to discuss the magneto-optical imaging proper-
ties of these two experimental setups.



574 J. Opt. Soc. Am. A/Vol. 19, No. 3/March 2002

4. OBSERVABLE MAGNETO-OPTICAL
SIGNALS: ROTATION OF POLARIZATION
AND CIRCULAR DICHROISM

The quantity A that we have associated with a signal up
to here is the amplitude of the ®eld at the position of the
detector, projected along the axis of an analyzer. Of
course, this is not what is actually measured in the course
of a SNOM experiment. In conventional SNOM, it is the
intensity of the ®eld, either alone or with a coherent back-
ground. In a magneto-optical experiment, often the mea-
surable quantity is the angle of rotation of polarization by
the magnetic sample, or the dichroic signal as the inci-
dent polarization is modulated between left and right.

In this section, we will show how this theory makes it
possible to completely determine the complex vectorial
electric ®eld at the detector, from which all measurable
quantities can be determined. We demonstrate the exis-
tence of a response for such measurements as ®eld polar-
ization direction and circular dichroism signals. An ex-
pression for the ellipticity is given in Appendix A.

Equation (1) gives the component of the electric ®eld at
the detector directed along a unit vector A. We can thus
determine the components of the ®eld along two orthogo-
nal axes (& and W) in a transverse plane at the detector.
These two ®eld components are labeled E o, and Egeyy -
The full electric ®eld at the detector is given by

Edet 5 Edet,u@i‘l Edet,v)a\- (11)

Given the amplitudes of the two vector components and
their relative phase d one can calculate the direction of
polarization of the ®eld, an angle urelative to the A axis,
by using 2°

tan2 u5 21E det U g cosd. (12)
LEdet,u& 2 LEdet,vL? .

The circular dichroism signal can be approximated as
the difference between the intensities measured when the
experiment is illuminated with right and left circular po-
larizations, (E®G and (E()E.  The dichroic signal can
also be expressed in terms of the ®elds at the detector
with s- and p-polarized illumination:

|d|chr0|c 5 l‘Edet& 2 l‘Edetl} 52 Re@Edet et *H# ( )
13

A fuller development of these expressions is given in
Appendix A.

5. APPLICATION TO APERTURELESS
SCANNING NEAR-FIELD OPTICAL
MICROSCOPY

Magneto-optical apertureless SNOM experiments have
been performed in both reection and transmission
modes.?>!”  We will discuss the re ection-mode experi-
ment in this paper, but the same arguments are appli-
cable to a transmission-mode experiment. A simpli®ed
illustration of a re ection-mode experiment is given in
Fig. 1(a). In apertureless SNOM, both the illumination
and the detection are external, and the tip acts as a local
scatterer (no coupling with guided modes in a ®ber). We
use the Born approximation for the experimental ®eld,
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which is justi®ed by the weak levels of magnetically in-
duced ®elds (2 orders of magnitude smaller than the con-
ventional optical ®elds induced in cobalt, for example,
with «; 52 1231 i184 and ifM 52 0.42 i0.1 at 633
nm). In this approximation, the experimental ®eld is
simply the ®eld scattered by the probe and the substrate
when illuminated by the experimental source in the ab-
sence of the magnetic sample, labeled E§3..

The reciprocal situation is depicted in Fig. 1(b). To de-
termine the reciprocal ®eld, we placed a dipole source at
the detector position and removed the sample (i.e., M is
put to zero). The reciprocal ®eld E,.. is the ®eld dif-
fracted by the probe and the substrate with illumination
from the detector position, labeled E{s.. Thus the ®eld
response function to magnetization for an apertureless
experiment, from expression (8), with  r and r, dependen-
cies suppressed for clarity, is

Hinag } & @Som, 3 Eehott (14)

The ®eld response function for the linear component of
the dielectric tensor from expression (10) is

Ho} @5 Enenett (15)

To explore the consequences of this result, we will use a
speci®c model for the probe, that of a perfectly conducting
cone3%3  This has been experimentally validated %2 and
is a good model for apertureless SNOM performed by us-
ing metallic tips. *3*35 One of the main features of this
model is the existence of a singularity of the electric ®eld
at the cone tip. The ®eld enhancement and con®nement
that this produces are responsible for the good signal and
resolution normally obtained with this type of probe.
The full ®eld under the tip consists of a number of modes,
of which only one contains the singularity. The other
modes are much lower in amplitude, are less well con-
®ned near the probe tip, and do not provide a signi®cant
contribution to the imaging properties of the probe in con-
ventional imaging.

Before we continue, it is worth brie'y reviewing the
origin of the magneto-optical signal. The theorem of reci-
procity shows that the components of the ®eld at the de-
tector are given by the expression [Eq. (1)]

1
AS — - et ® Jexpdr. (16)
The reciprocal ®eld represents the response of the
probe to sample currents. In the Born approximation,
the induced current density in the sample,  J¢, is given
by [Eq. (3)]

17
The magnetically induced current density  J is always
orthogonal to the ®eld that induces it, ES§3., because of

the cross product. In the following sections, we shall
demonstrate that the reciprocal and experimental ®elds
[ESeh. and E§20] associated with the singularity are al-
ways parallel to each other, no matter what direction and
polarization of detection or illumination are used. The
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magnetically induced current density produced by the
probe singularity ( Jy,) is thus orthogonal to the reciprocal
®eld @ (oh#everywhere.  As a result, the ®eld at the de-
tector due to current density Jy [Egs. (16) and (17)] is
identically zero.

The immediate conclusion that is to be drawn from this
is that the probe singularity alone does not contribute to
the magneto-optical signal. This is not to say that it is
impossible to record a magneto-optical image by using a
metallic  apertureless  probe. The experimental
evidence®®!" clearly contradicts this false conclusion.
The magneto-optical signal that is recorded is due to non-
singular components of the probe ®elds; these being less
well con®ned, the attainable resolution is poorer.

This result is true no matter what detection technique
is used: a measurement either of the polarization of the
outgoing beam or of the dichroism in the sample. The
®eld at the detector due to the singularity alone (which
normally provides the good resolution) is completely in-
sensitive to variations in magnetization in the sample.

To demonstrate this conclusion, we ®rst discuss the
mathematical origin of the singularity and look in some
detail at the form of the electric ®eld scattered from the
probe. The consequences for imaging resolution are then
illustrated in Subsection 5.C.

A. Cone Model for the Probe

We give a brief outline of some of the relevant mathemati-
cal features of the electric ®eld scattered by an in®nite
perfectly conducting cone, 3 a model that has given re-
sults in quantitative agreement with experiment. 32 In
particular, the presence of a ®eld singularity and the form

of the ®eld associated with it will be developed. We con-
sider a cone illuminated by a plane-wave source, incident
from an angle u, to the positive vertical axis, forming an
angle 7, with the xz*z plane, and polarized at an angle b
with the normal to the plane of incidence ( b5 p/2 corre-
sponds to p polarization, b5 0 corresponds to s polariza-
tion). This geometry is depicted in Fig. 2. For this situ-
ation, the total ®eld is calculated from Debye potentials u
and v, in polar coordinates, by using

Fig. 2. Cone and illumination geometry: de®nitions of vari-
ables for calculation of Debye potentials for a cone.
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2
E,5 $—21 kZDul,
r

1 ]2 ik 2 v

v sinu <q  Jf’

E;5 ! I’ ~u! 2 ik S’EDZ— (18)

Jv
rsinu]jr]f <o Ju

The Debye potentials for a cone illuminated by a plane
wave can be written as

u~,u, f1!'5 .g f~r, u, uy, m, p!
» P

_ P ~COS Uy
3 |-m sinmf cosb! -
sin Uy

1 ~cosmf sin b!—Ppm~cosu0!G
] to

v, u f15 n( g~, u, U, m,p!
P

1
3 F~cosmf cosb! — P'~cos up!
Tuy

P ~C0S Uy
2 ~msinmf sin bl —— (29)
sin Uy

The ®eld created by a transverse (no A component) unit
dipole source at distance rq (kro @ 1) is the same but is
multiplied by a factor k2 exp(ikr o)/(4p«oro). Further de-
tails are given in Appendix B and in Ref. 31.

The potentials, and consequently the ®elds, are a sum
over a number of modes. Several of these are shown in
Fig. 3 for increasing values of a mode index m. Two clear
characteristics can be seen. First, the m index governs
the azimuthal dependence of the ®eld, with higher modes
having higher orders of rotational symmetry. The ®eld
has a mixed cosmf and sin mf dependence on the azi-
muthal angle f. Second, the higher the mode number,
the less well con®ned the ®eld. For small r (i.e., close to
the probe tip), the ®eld depends on r like ( kr)P?!, where p
is a second index that is always greater than m.

In fact, the ®rst mode ( m 5 0) is divergent at the probe
tip. For a cone of interior half-angle 30E, the ®rst value
of p is approximately 0.346, giving a leading-order ®eld
dependence of (kr)?%6% The two dominant components
of the electric ®eld (E, and E,) consequently diverge at
the probe tip. This is the case for any cone. It can be
seen in Fig. 3(a) that while the m 5 0 ®eld is very large
immediately beneath the probe tip, it falls to zero very
rapidly. The presence of a singularity in the response
function leads to strong signal levels and good resolution
in the image.

The dielectric response function H ., as de®ned above,
is shown in Fig. 4(a). The component of this response
due to the nondivergent modes is shown in Fig. 4(b). The
dominance of the singular component can be clearly seen.
This term has also been shown to be responsible for the
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Fig. 3. Azimuthal ®eld behavior for different values of ~ m: intensity of the ®eld components shown in a horizontal plane 1 nm below the
probe. The m index determines the azimuthal symmetry of the ®eld, and for increasing m the ®eld is less well con®ned.

Fig. 4. Dielectric response function: ®eld response to variation in the permittivity of a nonmagnetic material, evaluated for a plane 1
nm below the probe. (a) Component due to the singularity alone and (b) nonsingular component.
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spectroscopic response of a metallic apertureless probe. 32

In conventional optical imaging, all the physics comes
from the singularity at the probe tip.

B. Null Magnetic Response Due to the Field Singularity
The magnetic response function, as we have seen [rela-
tion (14)], is proportional to
Hiag} &* @Gnd 3 Econeth (20)

where ES% is the ®eld below the cone when illuminated
by the experimental source in the absence of sample and
EC is the ®eld below the cone when illuminated by the
reciprocal source placed at the detector.

The singular electric ®eld terms from Egs. (18) and (19)

are
E, 5 : 1k Dﬂ u, uy, 0 o]
r r2 2 y Uy U1, Yy 1!

I
3 ~sin b! — P~cosuy!,
] to

pr
E,5 |- rf~r, u, u,0,pq!

r Jrju

3 ~sin b! ]—Pg~cosu0!, (21)
Tuy
with the angle vy equal to the angle of incidence from the
experimental source or detector and the polarization b
equal to the source polarization or direction of polariza-
tion at the detector for Eg, and Eg, respectively. A
®rst-order expression for these ®elds is given in Appendix
B.

The spatial distribution of the ®eld is determined en-
tirely by the function f(r, u, u;, 0, p4), which is indepen-
dent of the illumination direction (  ug, f o) and polariza-
tion (b). Changing the illumination conditions changes
only the amplitude of the ®eld.  ES% and EY®Y) are iden-
tical except for an amplitude factor. The magneto-optical
response in relation (20) due to the singularity alone is
thus zero! This is contrary to the case of conventional
optical imaging [relation (15)], where it is almost exclu-
sively the ®eld singularity that produces the image.

Any detectable magneto-optical signal is due to the full
spectrum of nondivergent ®eld modes below the probe.
The higher-order modes being less well con®ned, it will be
seen that the best attainable resolution (determined by
the width of the response function) is much poorer for the
magnetic signal than for the conventional optical signal.
Subsection 5.D shows calculations of this response func-
tion for a few experimental situations.

C. Magnetic Response Functions

We calculate the magnetic response functions for imaging
of a magnetic sample with a magnetization aligned verti-
cally, out of the sample plane. The response functions
are evaluated for a horizontal plane 1 nm below the
probe. The ®rst two geometries considered here are
shown in Fig. 5. Both are with  p-polarized illumination
from the right-hand side. The ®rst response function is
calculated for detection from the opposite side of the
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probe from the illumination, with crossed polarization ( s).
Figure 6 shows the response function for this situation.
The sharp peak due to the overlap of the singularity with
the higher-order modes can be seen in the response func-
tion, but it is not signi®cantly stronger than the broad
®eld around it. The width of the function is of the order

of a few hundred nanometers for the probe +sample sepa-
ration.

The second geometry uses the same illumination
source, but with detection in a perpendicular direction,
where the ®eld component is polarized vertically, as illus-
trated in Fig. 5. Although not shown for the sake of brev-
ity, the response function is of a similar width to that ob-
tained in the ®rst case.

These response functions for two different geometries
show the same qualitative features: a broad function
with a width of several hundred nanometers and no
strong central peak. To illustrate their use, we have
simulated magneto-optical images of an arti®cial cobalt
sample, with «; 52 1231 i184 and ifM 52 04
2 i0.1. For simplicity, we take a sample with no lower
surface, i.e., a semi-in®nite slab. The sample geometry is
depicted in Fig. 7. It has been magnetically modi®ed to
contain three stripe domains with vertical magnetiza-
tions, of widths 180, 140, and 180 nm, respectively. Else-
where, the magnetization is taken to be zero. The do-

Fig. 5. lllumination and detection geometries for which
magneto-optical impulse response functions have been calcu-
lated.

Fig. 6. Response function H .4 for detection and illumination
on opposite sides of the probe, with crossed polarizations.
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Fig. 7. Magnetic domain structure imaged in Figs. 8 and 9.

Fig. 8. Calculated image of the magnetic domain structure
shown in Fig. 7, as measured through the rotation angle of the
®eld at the detector relative to its direction in the absence of
magnetization.

Fig. 9. Calculated image of the magnetic domain structure
shown in Fig. 7, as measured by using circular dichroism as the
imaging mechanism. The difference between intensities at the
detector when using right and left circularly polarized illumina-
tion is given. These intensities have been calculated in the ab-
sence of a background at the detector.

mains lie at the surface and extend to a depth of 10 nm.
This is a simpli®ed representation of a thin magnetic ®m.
We calculate rotation of the electric ®eld at the detector as
a function of probe position for a distance of 5 nm between
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the probe and the upper surface of the sample. The re-
sulting image is shown in Fig. 8.

This image has been calculated for p-polarized illumi-
nation from within the plane of the scan, at an angle of
pl4 to the vertical probe axis, and for detection from the
symmetrically opposite position. The plot shows the
angle of rotation of the electric ®eld at the detector as a
function of probe position during a constant-height scan
across the domains. The rotation angle has been calcu-
lated from the complex ®eld amplitude at the detector by
using Eq. (12). Two comments can be made: First, that
the shape of the structure seen in the rotation of the ®eld
bears little resemblance to the actual domain structure in
the sample, and second, that the resolution in the image
is very poor, of the order of a few hundred nanometers.
The central domain, with a weaker magnetization, is not
seen.

An image has also been calculated for the same sample
by using circular dichroism as the imaging mechanism.
Here the intensity at the detector has been calculated for
both left and right circularly polarized illumination, and
the difference in intensities is given as the signal, as
shown in Eq. (A14). The result is shown in Fig. 9. Itis
of interest to note that the form of the measured pro®le is
qualitatively similar to that obtained by measuring the
®eld rotation at the detector but that there are nonethe-
less clear differences between the two signals. This un-
derlines the fact that it is important to take not only the
probe, but also the mode of detection, into account when
calculating a SNOM image.

These results show that even if a sample does contain a
nanometric domain wall or domain structure, it will be
unresolvable with an apertureless near-®eld optical mi-
croscope and a metallic probe. The smallest resolvable
structure in the image will be of the order of several hun-
dred nanometers in width. This is a problem intrinsic to
the response of the probe and will be the case for any
magnetic sample.

Let us now look at the signal that will be recorded in an
aperture experiment.

6. APPLICATION TO APERTURE
SCANNING NEAR-FIELD OPTICAL
MICROSCOPY

In this section, the formalism of Section 2 will be applied
to aperture SNOM magneto-optical experiments. The
example of an illumination-mode experiment will be
given, as this is probably the more commonly used geom-
etry, but the results are easily generalized to collection-
mode or illumination-collection-mode experiments. An
illustration of the experiment is given in Fig. 10(a). A
source (depicted as being within the probe ®ber) produces
a ®eld that is emitted from the probe aperture. This ®eld
excites currents in the sample, which in their turn pro-
duce an electric ®eld, and the whole radiates toward a de-
tector in the far ®eld.

As in the apertureless case, we will use the ®rst Born
approximation to determine the ®eld in the sample. This
will be the ®eld that would be present in the absence of
the sample, the ®eld from the source diffracted by the ap-

erture, EGOL: ie., Eexp 5 ESOM..
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The reciprocal situation is shown in Fig. 10(b). The
sample is removed, and the sample and the probe are il-
luminated by a source placed at the actual position of the
detector. The reciprocal ®eld is the ®eld produced by this
dipole source; if the detector is in the far ®eld (usually the
case), then the reciprocal ®eld can be approximated by a
plane wave; i.e., E,oc 5 @2 exp(ikr )/r#A.

If we take the reciprocal ®eld to be a y-polarized plane
wave (this corresponds to an analyzer oriented in the vy di-
rection), then the magnetic response function is simply
reduced to the x component of the probe ®eld:

Hinag } A+ @53 3 Erect5 ESom + A (22)

The nonmagnetic response function H . for this system
is simply a function proportional to the y component of
the probe ®eld:

Ho} ESS e Erec5 ESON « A (23)

No matter what model we use to represent the probe,
the response to the magnetization M will be the same as
the response to the permittivity  «; that would be obtained
by detection through an analyzer aligned with the illumi-
nation polarization. The magneto-optical response of an
aperture probe will be the same as its response in a non-
magnetic experiment. This is in sharp contrast to the
apertureless case, where the probe properties were dras-
tically different for conventional and magneto-optical
SNOM imaging.

The expression in Eq. (22) with Eq. (7) makes it pos-
sible to determine an image directly from the distribution
of magnetization in the sample, with knowledge only of a
component of the electric ®eld distribution emitted by the
probe.

Fig. 10. (a) Experimental geometry of an illumination-mode
MO-SNOM and (b) geometry of the reciprocal illumination-mode
experiment.
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Fig. 11. Calculated image of the magnetic domain structure
shown in Fig. 7, recorded with an aperture SNOM of aperture di-
ameter 100 nm.

A. Model for the Probe

To give an example of the application, we will use the
Bethe £Bouwkamp model to simulate the ®eld emitted by
the probe, although it is clear that Egs. (22) and (23) are
easily applicable to any probe, provided that it is possible
to calculate the emitted ®eld. The Bethe Bouwkamp
model gives the electric ®eld distribution produced by a
small circular hole in an in®nite conducting screen in the

z 5 0 plane when illuminated by a polarized plane wave
from above.®® In the case of x-polarized, normally inci-

dent illumination, the ®eld within an aperture of radius a
is
2a%22 x?22 2y? Xy
EX 5 2! 1/2° Ey S

__aZ 2 XZ 2 y2!1/2'
(24)

a2 x22y

The z component of the ®eld is zero in the aperture, and
the x and y components are zero outside the aperture.

B. Response Functions

The response functions H .4 and H . for x-polarized illu-
mination and detection along the y axis have been calcu-
lated for an aperture radius of 50 nm and at a distance of

5 nm from the aperture plane. Although not shown here,
both functions have approximately the same width as the
probe: in this case, 100 nm.

In this paper, we present for comparison a simulated
image of the magnetic sample discussed in Subsection
5.C, using the response function calculated above. The
rotation of the ®eld at the detector as a function of probe
position is shown in Fig. 11. Contrary to the image ob-
tained with the apertureless microscope, all the domains
are now clearly visible in the recorded image. The do-
main walls are also clearly localized and appear with
much greater resolution in the image.

C. Other Probe Models

The Bethe +Bouwkamp model for aperture near-®eld
probes is a simpli®ed one, which makes it possible to ob-
tain a number of relatively straightforward results ana-
lytically. However, in reality, the ®eld emitted by near-
®eld aperture probes may vary from this model. For
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example, small defects in the coating of a probe or in the
shape of its aperture may lead to signi®cant changes in
the distribution of the emitted ®eld.

Interactions between the probe and the substrate can
also lead to depolarization of the emitted ®eld, 3" which
is a serious problem for magneto-optical imaging. These
problems have not been dealt with in this paper. We
have restricted ourselves to the fundamental demonstra-
tion that the signi®cant resolution loss seen in aperture-
less imaging is not predicted for aperture MO-SNOM.

However, the procedure that has been presented is per-
fectly well suited to determining the imaging response in
any of these more complicated situations. As the sample
magnetization is handled as an external current source,
the only requirement is to be able to calculate the ®eld
that would be present in the absence of magnetization.

The problem of simulating the ®eld emitted by an ap-
erture probe in three dimensions, has been rarely tackled
in the past; most work has concentrated on two-
dimensional simulations. Novotny et al. have calculated
the ®eld emitted by probes in both two and three dimen-
sions by using the multiple multipole method. 3840
These calculations account for the presence of a substrate
below the probe and show that the Bethe tBouwkamp
model is no longer a good approximation for this situa-
tion. The ®nite-difference time-domain method has been
applied to the study of the emission of an aperture probe
above a surface®**® and is another technique for deter-
mining the ®eld distribution below a probe in the pres-
ence of a substrate, even metallic.

With use of the results from models such as these, it is
straightforward to calculate the magneto-optical signal as
given by Eq. (22). With little additional calculation, the
response function for a number of experimental geom-
etries can be easily determined.

7. CONCLUSION

This paper has used the electromagnetic theorem of reci-
procity to develop ®eld response functions for both the di-
electric constant and the magnetization in a sample. The
magnetic sample is treated as an external current source
rather than a scattering object, and thus the asymmetry
of its permittivity tensor does not contradict the funda-
mental requirements of the theorem of reciprocity. This
manner of treating the problem makes it possible to de-
termine a linear response to the magnetization, even
when dealing with metallic samples.

The ®eld response functions are related to a reciprocal
®eld, the ®eld that would be present in the absence of
magnetization with illumination from the detector. The
response of the probe is thus directly taken into account,
as is the experimental geometry. In the example of an
apertureless magneto-optical experiment, the properties
of this ®eld, determined by scattering from the probe, are
such that magneto-optical images differ greatly from
their conventional optical counterpart.

Because of the existence of a response function for the
complete electric ®eld at the detector, it is possible to
simulate images that would be obtained with a number of
detection techniques. It is possible, for example, to cal-
culate the rotation of the polarization of the ®eld at the
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detector for an arbitrary geometry of illumination,
sample, and probe. A response function for the ®eld ob-
tained with circularly polarized illumination has also
been illustrated. Images of a magnetic sample have been
shown by using rotation of polarization at the detector for
aperture and apertureless probes and using circular di-
chroism for an apertureless microscope.

The theory predicts that the best resolution attainable
with an apertureless microscope with a metallic probe is 2
orders of magnitude worse in a magneto-optical experi-
ment than in a conventional optical experiment. This is
due both to the probe properties and to the asymmetric
nature of the permittivity tensor. No such difference is
predicted for aperture probe experiments. These predic-
tions are in accordance with experimental observations.
If this theory were combined with a numerical technique
to evaluate the ®eld below an aperture probe above a sub-
strate, it would be possible to realistically simulate
magneto-optical imaging, taking into account multiple
scattering between probe and substrate and thus the de-
polarization effects that occur.

Finally, let us stress that these results indicate that it
is essential to consider the properties of the probe when
calculating the signal in a SNOM experiment and that a
simple calculation of the electric ®eld above the sample is
inadequate for determining the signal that will be mea-
sured. The framework developed in this paper is easily
applicable to any experimental geometry and makes pos-
sible a real characterization of the imaging properties of
the system.

APPENDIX A: EXPRESSIONS FOR THE
FULL VECTORIAL FIELD AT THE DETECTOR
AND OBSERVABLE SIGNALS

Equations (1), (7), and (9) give the projection of the ®eld at
the detector along an arbitrary direction ~ B. Let us con-
sider this direction to be in a transverse plane at the de-
tector; this corresponds to detection of a ®eld polarized
within this plane.

We determine the polarization state of the ®eld propa-
gating toward the detector, Eget 5 Eexp(r ger), fOr a ®xed in-
cident polarization. For uniformity of notation, we de®ne
two mutually orthogonal axes that are also orthogonal to
the direction of propagation to the detector: A and WA
These directions could correspond to ( s) and ( p) polariza-
tions with respect to the plane of detection, or the A and
directions. We can calculate the projection of the ®eld at
the detector along either of these directions by using Egs.
(1), (7), and (9).

The complex ®eld Egy, projected along each of these
vector directions, is found by using the reciprocal ®elds
E{) and E{) created by a unit dipole oriented, respec-

rec

tively, along @ and &

'E

Eoeru 5 1, LR * o dV, (A1)
E.

Eget,v 5 ; rec * JexpdV, (A2)
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where Egey 5 Eger® A and Egey 5 Egee* A We can
now specify the total electric ®eld Eg . Itis

Edet 5 Igi‘Edet,u 1 [\Edet,v‘ (A3)

or

o SO
Eg5 — Eec 1 WEGH® JopdV.  (A4)

The term in brackets is a tensor, not a scalar product.
The entire expression could be written more concisely:

‘B
Eget 5 ; e Jexp dv. (A5)

The tensor E{Y) is the response function that relates the
®eld E 4¢; to the current density J,, and is de®ned by

Ew's WAEY 1 AEY L. (AB)

With both ®eld components, E g and E gy , it is pos-
sible to completely characterize the state of polarization
of the ®eld at the detector.

1. Rotation of Polarization, Ellipticity
The complex ®eld at the detector,

Eget 5 alh 1 b exp~i ahi, (A7)

with exp( 2 ivt) time dependence, traces out an ellipse
during each cycle of the wave. By knowing the ampli-
tude of each component, a 5 E g uand b 5 E 4 U and
their relative phase d we can determine the orientation of
the major axis of the ellipse (the direction of
polarization). 2° It is at an angle « with respect to the
axis, where uis de®ned by

2ab

tan2 u5 ———cosd. A8
b2 2 a? (A8)

The ellipticity, de®ned as the ratio of minor axis to ma-
jor axis of the ellipse,
A5 minlEUmaxEy (A9)

is given by
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The ®eld at the detector with circularly polarized illu-
mination can be viewed as a superposition of the ®elds ob-
tained with two orthogonal linearly polarized illumina-
tion states.

If we de®ne the currents J), and J{?) as the currents
induced in the sample with s- and p-polarized illumina-
tion, respectively, then the electric ®eld at the detector

due to each of these is
~s! 1 E'-UV! ~s!
Edet 5 ; rec ° J exp av,
~p! 1 Eﬂvl ~p!
Edgt- 5 E rec * Je)?b dv. (Al1)

For a geometry where the unit vectors ( & B, ,.) form
a right-handed coordinate system, the circularly polarized
basis is given by

.1 .1
R5 —-A2 ipl, As —-A1 ipl. (A12)

e e

The currents induced by right and left circularly polar-
ized illumination are, respectively,

1 1
a5 FE@:X!"Z iIoh# Jepb 5~ op 1 1350#

(A13)

These currents produce ®elds ER)5 @), 2 iE(PHiR
and EQ) 5 @8, 1 iEDHAR at the detector.

In the absence of a background, the measured intensi-
ties are [ER)E and (EL)E. The dichroic signal can be ap-
proximately represented as

Idichroic 5 LEaEtll} 2 LE:iLetll} 52 Re@Eai!tEagt!*#'
(A14)

a’1 b%22 ~a22 b21@ 1 ~4a?b?co al/-a? 2 h21242

h5
a2l b%21 -a?2 b21@ 1 4a®b?cod adt/-a? 2 b212f?

(A10)

if a. b. The numerator and the denominator are inter-
changed for b, a.

2. Circular Dichroism Signal

When circular dichroism is used as a measurement tech-
nique, the incident polarization is modulated between left
and right circular, while the variation in the signal is de-
tected with a lock-in detector. The formalism presented
here makes it possible to calculate the signal obtained
with any state of incident polarization. We will write ex-
plicit statements for the signal with left and right circu-
larly polarized illumination. As a ®rst approximation,
the difference between these signals gives the dichroic
signal.

APPENDIX B: FULL EXPRESSION OF THE
FIELD AT THE CONE APEX

The expressions given here are to be found in Ref. 31.
The cone and illumination geometry is illustrated in
Fig. 2.

The dependence on cone geometry (u;) and coordinates
(r, u) has been separated from the dependence on illumi-
nation conditions ( Uy, f o, b) and azimuthal coordinate
(f)in Egs. (19). For notational simplicity, the 7, term is
also suppressed in this equation; this amounts to de®ning
the coordinate system so that the source of illumination is
above the positive x axis. The functions f and g are given

by
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2i 2pl1
- “m
ksinu, p~p1l 1!

)

expyg —i

p pr

iy
S—D?fosu1!$—Dg‘~cosul!
th p

3 jpkr!Pg~cosul, (B1)

f~,u, u,m,p!'5

22i & [
g, u, uy, m,p!'5 —— <
ksinu, my

291 1

expd - iqp

2
Pg~cosu,! q~cosuy!
qj th

3 jqkr!Pg~cosul. (B2)

The singular electric ®eld in Egs. (21), to lowest order,
is

e ipuo )
epd vl AT i

1
2p12 lGSl 1 —D
2

P, ~cosu! P;l~cos Up!'sin b
3 : (B3)

1 J— 1
Ppl~cosu1. 7 Pp1~cosul.

E;sing! 5 .
sin Uy

)
I exp Elplp A;._kr!pﬁl

E~sing! 5

u sin uy 1
2P21GY, 1 -

2

] ) .
~1/p,! ]—uPplfosu!prcosuo!sm b
3 - (B4)
P;l~cosu1! Tos Pp,~cosu;!
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Phase properties of the optical near ®eld
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This paper presents a theoretical and numerical study of the phase properties of the optical near ®eld. A
model based on the ®rst Rytov approximation for three-dimensional electromagnetic vector ®elds describes the
relationship between the phase variations and both the topographic and optical properties of the scatterer. It is
shown that strong polarization effects can lead to subwavelength phase variations around nanometric struc-
tures. The conclusions of the model are illustrated by exact numerical calculations. This study should ®nd
broad experimental applications in near-®eld optical interferometric phase measurements.
@1063-651X97'51705-3¢

PACS numbes!: 45.25.Fx, 07.79.Fc, 61.16.Ch, 03.80.

Optical resolution beyond the Rayleighr diffraction lent pro®le connects the topographic and dielectric properties
limit can be achieved by detecting the electromagnetic ®eldf the scatterer. Subwavelength phase variatisnghase
at subwavelength distance from the obje@ This has con®nement!'and polarization effects will be demonstrated
opened new perspectives for light microscopy with the dein order to put forward the power and the limitations of near-
velopment of scanning near-®eld optical microscopy®eld phase imaging. The conclusions of our model will be
-SNOM! @# In SNOM, a tip of subwavelength dimension illustrated by exact numerical calculations of the near ®eld
~either illuminating or detectirigis placed at subwavelength scattered by two-dimensional structures.
distance from the object. The scattering process transfers part Let us consider a three-dimensional sample consisting of
of the light energy from the near zone to the far zone. Re@ at interface separating a vacuum 0! from a homoge-
cording the far-®eld energy versus the relative tip-sampl&eous substrate oefrequency dependentlielectric constant
position provides the image. The key point in this techniquegs (z, 0). An inhomogeneous object described by its topo-
is the conversion of evanescent waves into propagatingraphic pro®le5 S(x,y) and its-frequency-dependentli-
waves, which allows one to overcome the diffraction limit. electric constang(x,y,z) is deposited on the interface. An
In order to understand the properties of the optical near ®elg¢xample of such a sample is shown in Fig. 1. When this
a lot of work has been concentrated on the description of theystem is illuminated by an incident monochromatic ®eld of
light intensity ~often assumed to be the square modulus ofvavelength|, the total ®eld forz. S(x,y) obeys the
the electric ®eldin close proximity of scatterers of arbitrary Lippmann-Schwinger equatio@3# a temporal dependence
shape and compositio@# Light con®nement and polariza- expR ivt) is assumed for all ®eltls
tion effects around nanometric structures have been de-
scribed by different theoretical approach@st& and ob-
served with a photon scanning tunneling microsc@e E~15 E%~11k3 %.fgz 146512 r8,2,28 E48d°r8
Recently, interferometric measurements have provided a |
way to record the phase of the near ®eld, in the microwave -
regime@# and with visible light®,10% These new kinds of
near-®eld optical measurements are promising, since a nang-is the Green dyadic for the system with “at interface at
metric resolution was obtained with the set up of R8¢ 75 0, E(® js the ®eld that would exist in this systeire.,

The @rst theoretical study of the phase properties in SNOMjjithout the objedt The integral describes the scattered ®eld
was presented in Re@1# A scalar model showed that such

a resolution was strongly dependent on the sample properties

~efractive index and topographyMoreover, this model put

forward that the phase of the scattered near ®eld should

closely follow the surface pro®Hn the case of a homoge-

neous sample It was stated that phase measurements could

represent a breakthrough in SNO®@1#

In this paper, we will study the near-®eld phase properties

with a model based on the Rytov approximation for three-

dimensional vector ®eld@2# It will be shown that, under

certain conditions that are strongly dependent on the polar-

ization of the incident ®eld, the phase of the scattered ®eld

closely follows an “equivalent surfapeo®Ie." This equiva- FIG. 1. Example of scattering system. The theoretical model
applies to three-dimensional geometries. The system represented
here is the one used in the two-dimensional numerical simulations,

*Electronic address: rcarmina@icmm.csic.es and is invariant in the direction.

1063-651X/97/5%!/49014!/$10.00 55 R4901 « 1997 The American Physical Society
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and is extended to the volume of the object. The notations
r5 (x,y,2), ri5 (x,y), andky5 v/c5 2p/l are used.

When the object has a smooth pro®le
@5 supBS(x,y)d | # and a low dielectric contrast
De5 g(r)2 1 -this is expected to be the case with most of
the sample studied in SNOMthe ®rst Rytov approximation
can be used to describe the scattered @=. We write the
a component of theotal ®eld in the form

E. !5 EX'rlexp@ ,~'# EX'w1@L F M1z 2

Note that Eq-2! implies that each component of the electric
®eld is scattered independently. This means that no energy is
transferred from one component to another during the scat-
tering process. This hypothesis is consistent with the weak
scattering assumption, and will be con®rmed below by the
numerical simulations. Equationd! and-2! lead to-n the

®rst Rytov approximatidn@4#

A
11 0
fa ~15 m 82 14G 4,2 r8,2,28!
3 EX'~+8d%8 3
FIG. 2. Imaginary part of the components of the Green dyadic
The integral in Eq-3! corresponds to the ®rst Born approxi- versusx. y5 0 andz,5 6 nm.~al ;5 0E ! 45 50E~otal internal
mation for thea component in Eg-1!. To proceed further, re ection!.
we expand this integral to ®rst order il . This leads to

~see Ref.@5#for more details 5

~ | v |
o ~i.z0!5 expikozol ~e2 1!
k2
~1 0 _
Fa15 g a2 L Eaa#.z rB,z,0! 3 EaﬁiZ B200S BB 6
3 E)'4BOISBdr8 ~4!  where we have assumed that the phase was measured in a

planez5 z,. The relationship between the phase difference
where the integral is now a surface integral extended to thém(f §”) and the object propertieS,, is governed by the
entirex-y plane.S,4 is an equivalent surface pro®le connect-imaginary part of the componen®,, of the Green dyadic.
ing the dielectric constant variation and the topography offhey are plotted in Fig. 2, versus for y5 0 andz,5 6 nm.
the object@5#: According to Eg.-6!, the convolution of ImG,,) by the
equivalent surface pro®,, gives the phase variation. At
o normal incidence@®ig. 2-a# Im(G,,) is sharply peaked
Seqi!5 ~62 1121 E @-;,z!2 1#dz 5! aroundx5 0 -and symmetrit; so that the phase IM(")
0 will closely follow the equivalent surface pro®le. Subwave-
length phase variations phasecon®nement!' will be ob-
In the case of a homogeneous sam@® €;), Seq reduces to  served around the inhomogeneities of the object. On the con-
the true topographic pro®le. trary, Im(G,,) has a width of about one wavelength,
Equation~4! is our starting point for a discussion of the eliminating the possibility of subwavelength resolution with
phase properties in the near ®eld. frfj) 4m denoting the  phase imaging. The case 8, is not worth being discussed
imaginary pattis the phase difference between thecom-  because at normal incidence, thecomponent of the scat-
ponent of thetotal ®eld and thea component of the illumi- tered ®eld is so weak that a measuremen‘t%* would not
nating ®eldE®). Equation-4! describes how this phase dif- be appropriate. For an illumination in total internal re ection
ference is connected to the properties of the objibet latter  @ig. 2-bl# Im(G,,) and Im(G,,) are peaked arounx5 0,
being described b$,,!. The resemblanceor lack of it be-  |m(G,,) being almost symmetric but in contrast reversal.
tween Im( () andS, strongly depends on the illuminating Moreover, as for normal incidence, I@(,) only exhibits
®eld and the direction of theg component of the ®eld with suprawavelength variations, with a very low contrast. In
respect to theeventual privileged directions of the equiva- summary, Eq-6! and Fig. 2 demonstrate a very strong po-
lent surface pro®Ile. This leadsghasepolarization and con- larization effect in near-®eld phase imaging. They also indi-
®nement effects, as those observed in the intensiy, cate the circumstances under which the phase variations will
(E¥! @+ 7 Let us consider the simple case in which thefollow the equivalentsurface pro®le of the object.
illuminating ®eld is a transmitted plane wave at normal inci- In order to check and illustrate the conclusions of the
dence E)(r)5 Eyexp(ko,2). Equation-4! becomes above model, we present exact numerial simulations of the
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FIG. 3. Numerical calculation of the ®eld along the line FIG. 4. same as Fig. 3 wit;5 50E~total internal re ectioh.
25 40 nm above the sample in Fig. w5 15 h5 30 nm. 45 0E.  E,f and In¥ () are also displayed ip polarization.
~al lEyL? in s polarization-dashed ling LE\ ine with circled and

LE,\f ~solid lind in p polarization.-b! f y in s polarization-dashed . . . .
linel, 7, in p polarization withDe5 1.25 -bold solid ling and ~ IENEOUS sample with dielectric contras é2 1 increased

Dé5 2.5 <hin solid ling. _by a factor of 2~ 3.5, 5 2_.25 y th_e phasg v_ari_ation also
increases by a factor of &olid thin lind. This is in agree-
ment with Eq.-6!, which shows that the phase variation is

®eld scattered by the sample in Fig. 1. The numerical SChenlﬁ‘oportionaI to theequivalentsurface pro®le.

consists of solving Ecd! using a moment method, without ~ We show in Fig. 4 the results for an illumination in total

any approximation. This scheme is described in R®&%  internal re ection. The illuminating ®el©® is in this case

For the sake of computer time and memory space, the geomm evanescent wave, as in photon scanning tunneling micros-

etry is two-dimensionat.e., invariant alongy!. All quanti-  copy @,10%# The results for the intensity are plotted in Fig.

ties are calculated along a line at a constant heagh,. 4-al. In s polarization, the situation is unchanged in compari-
We show in Fig. 38l the intensity (EWf) calculated for  son to the illumination in transmission. mpolarization, the

255 40 nm, in boths ~TE! and p ~-TM! polarizations. The incident ®eld has two nonvanishing componeBis and

structure is homogeneouseq g5 2.25), with wS h51  E, and so has the total ®eld. The square modulus of the

5 30 nm. ltis illuminated at normal incidence with a mono- electric vector ®eld follows more or less the structure, with-

chromatic plane wave of wavelengttb 633 nm. The light  out any contrast reversal. Moreover, the variationsEjif

intensity is more con®ned around the structurp i#n con-  and (E,\f clearly demonstrate that this effect mainly stems
trast reversalthan ins polarization, in agreement with cal- from thez component. This was explained theoretically and
culations previously reporte@# Moreover, the intensity of demonstrated experimental®,7 What is striking is that

the total vector ®eld and that of tirecomponent alone are the same con®nement occurs for the phase, as shown in Fig.

practically identical inp polarization. This con®rms the hy- 4-!. The phase of the component of the ®eld ip polar-

pothesis of weak cross-polarization scattering that was madgation follows the lateral variations of the structuie con-

in our model@ee Eq.-2!# At normal incidence, the incident trast reversal, according to Fig! @ith an excellent resolu-

®eld is polarized in thex direction, and the total ®eld re- tion. Note that the resemblance between the phase variations

mains~in a very good approximatidrpolarized in the same and the equivalent surface pro®le is perturbed by the phase
direction. of the illuminating ®eldE'®, which is nonzero at non-
Figure 3b! represents the phase If{")) in s polariza-  normal incidence®ee Eq.-4# In addition, the phase is

tion ~dashed curdeand Im(f 5(1)) in p polarization-solid  polarization does not exhibit any subwavelength variation.

bold curve. According to the model presented previously, In conclusion, we have demonstrated that the near-®eld

the phase follows the object structure m polarization phase exhibits polarization and con®nement effects, similar

@, is implied; see Eq-6' and Fig. 2al# and does not to those already known for the intensity. An important result

follow the structure ins polarization-Gy, is implied. In is that, for an illumination at normal incidence, the phase of

fact, the phase irs polarization does not exhibit any sub- the parallel component of the total ®eld follows the equiva-
wavelength variation. Moreover, in the case of an inhomo-ent surface pro®le with an excellent resolution. For an inci-
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dence in total internal re ection, the phase of the normal
component of the total ®eld follows the equivalent surface
pro®le in inverse contrast. We have presented a model, based
on the Rytov approximation for electromagnetic vector
®elds, which contains the essential physics of the phase be-
havior in the near-®eld zone. It describes the polarization
effects. It also explains how the topographic and dielectric
constant variations of the object in uence the phase of the
near ®eld. This is a very important point in SNOM, where
the purely optical properties of the sample are of great inter-
est. The conclusions of our model have been illustrated by
exact numerical simulations of the near ®eld scattered by
two-dimensional structures of nanometric dimensions.
Finally, we would like to show that the observed polar-
ization and con®nement effects are pure near-®eld effects
that are encountered in the scattering by nanometric struc- FIG. 5. f, in s polarization andf , in p polarization for the
tures only. Figure 5 shows the phaseflﬁ‘? and I (M in ~ sample in Fig. 1 withw5 633 nm, h5 63 nm, |15 2.5 mm, and
s and p polarization, respectivel@s in Fig. 3bl# for the  Zo° 175 nm.u5 OE.
sample in Fig. 1 witth5 63 nm,w5 633 nm, and5 2.5 mm. ) _ _ i o
It can be seen that the phasesiandp polarizations are very €aching the domain of physical optics, the polarization-
similar, both of them following the sample structure. This is 9€Pendent phase con®nement effect disappears.
precisely the result that is predicted by a scalar description of | would like to thank the EC for ®nancial support. Helpful
the ®eld, as in physical opti@7# Thus, with increasing the discussions with N. GafefJ.-J. Greffet, A. Sentenac, and
structure lateral size up to one wavelength or more, i.e., byyl. Nieto-Vesperinas are also appreciated.
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1. INTRODUCTION

Reciprocity is a well-known property of wave propagation
and scattering, whose ®rst formulation is often attributed
to Helmholtz. * In modern scattering theory, this prop-
erty is expressed by the symmetry of the scattering (or S)
matrix. The S matrix was introduced to relate the far-
®eld amplitudes of the incoming and outgoing states in
quantum potential scattering 2® and in acoustic* and
electromagnetic ® scattering. In the S-matrix formalism,
reciprocity appears as an asymptotic property of wave
®elds2*® |tis also well known that the Green function of
the wave equation in the presence of a scatterer satis®es
reciprocity. ©  This property holds whatever the distance
between the scatterer and the observation points. Nev-
ertheless, the role of the evanescent waves does not come
out in a simple manner from this formalism. The main
reason is that the Green function connects a ®eld distri-
bution to a source distribution, and not two ®eld distribu-
tions as the S matrix does.

More recently, the angular spectrum representation of
scalar wave ®elds led to the introduction of a partitioned
S matrix, whose elements have the meaning of general-
ized transmission and re ection coef®cients. %° In this
representation one chooses an arbitrary z direction and
separates the entire space into two half-spaces R?2
(z, 0)and R! (z. L), the scatterer being included in
thestrip0 , z, L (seeFig.1). Ingeneral, the ®elds in
R?2 andin R?! have an angular spectrum containing both
homogeneous and evanescent waves. Nevertheless, reci-
procity relations were obtained for the generalized trans-
mission and re ection coef®cients corresponding to  homo-
geneous waves only®*% The reason is the following:
The derivations of reciprocity relations in electromagnetic
scattering, either for the S matrix, 5 for plane-wave
scattering, ® or for the generalized transmission and re-
“ection coef@®cients, 10 have in common the use of an in-
tegral theorem that is due to Lorentz. ! In Refs. 9 and
10, Lorentz's theorem was applied without sources at ®-
nite distance from the scatterer. This implies dealing

0740-3232/98/030706-07$10.00

with source-free ®elds,? namely, ®elds without evanes-

cent components. Hence, whether or not the evanescent
waves obey reciprocity is still an open issue.

In recent years the question of reciprocity of the eva-
nescent components has acquired a renewed interest in
optics. For example, reciprocity is implied in the surface-
plasmon polariton mechanism, which leads to enhanced
backscattering on weakly corrugated metallic rough
surfaces,® and in the conversion of evanescent waves into
propagating waves in the illumination and detection pro-
cesses in near-®eld optical microscopy. 14

To answer this question, we propose to follow the pro-
cedure of Ref. 10 but with a different starting point. We
shall use Lorentz's reciprocity theorem  with sources at ®-
nite distance from the scatterer. The derivation of this
theorem can be found in Ref. 15. For reasons of compre-
hensiveness, and because the two forms of the theorem
(with and without sources) are not clearly related in the
literature, the derivation is reproduced in Appendix A of
the present paper. With this procedure we shall demon-
strate that reciprocity of the generalized transmission
and re ection coef®cients also holds for the evanescent
components of the angular spectrum. Moreover, we shall
consider vector ®elds, for which the generalized re ection
and transmission coef®cients are tensor operators. In
view of this result, we shall also discuss the relationship
between reciprocity and time reversibility, often ad-
dressed in the literature (see, e.g., Ref. 16).

2. GENERALIZED TRANSMISSION AND
REFLECTION TENSOR COEFFICIENTS

In this section we de®ne the generalized transmission
and re ection tensor coef®cients. These were introduced
for scalar ®elds in Ref. 8.

Let us consider a scatterer of arbitrary shape and com-
position, made up of one or several bodies. Its properties
are assumed to be linear and local. They are de®ned by
the (frequency- and position-dependent) complex constitu-

» 1998 Optical Society of America
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tive tensors &r, v) and M#(r, v). &is a generalized di-
electric tensor containing both the dielectric and the me-
tallic response of the material. & is the magnetic
permeability tensor. The only restriction that we impose
on & and #is their symmetry, which is a necessary condi-
tion for reciprocity (see Appendix A). To analyze the con-
tribution of the evanescent waves in the reciprocity rela-
tions, we introduce the angular spectrum of the ®elds and
thus choose an arbitrary z direction (see Fig. 1). We as-
sume that the scatterer is situated within the strip
0, z, L, and we call R2 and R! the half-spaces
z, Oand z. L, respectively.

In a ®rst situation, let Ei1 be a monochromatic ®eld of
frequency v propagating toward z. 0 in R?. We as-
sume that this ®eld is emitted by sources situated in the
region z, z, at ®nite distance from the scatterer (see
situation 1 in Fig. 1). At any point r 5 (R, z) with z;
, z, 0, one can write® [a temporal dependence
exp(2 ivt) is assumed for all ®elds]

El~15 IKlexp~<K *« R 1 igz!d®K

for z,, z, 0, (1)

where el (K) is the angular spectrum of E!(r) and
gK15 A2 K¢
for Ku< k -homogeneous components!, (2)
gK15 iAKE 2 k2
for Ku. k -~evanescent components!, (3)

with k 5 v/c, ¢ being the speed of light in vacuum. All
integrals in this paper are extended to 2 , K,, 1°
and 2° , Ky, 17, and we use the notation d 2K
5 dK,dK,. e}(K) in Eq. (1) is assumed to decay as uKu
increases, in such a way that the integral converges. We
shall see below that this is the case when the incident

Fig. 1. Scattering geometry and de®nition of the half-spaces R 2
and R1.

Vol. 15, No. 3/March 1998/J. Opt. Soc. Am. A 707

®eld is created by a dipole source. The angular spectrum
e} (K) is proportional to exp( 2igz;), ensuring the conver-
gence of the integral.

Upon interaction with the scatterer, a transmitted ®eld
E} and a re’ected ®eld E are created in R* and R 2, re-
spectively. They can be represented by their angular
spectrum:

El~15 E}K!exp-ﬁ'K-Rl igzld®k  for z. L,

(4)

Ei~!5 TKlexp~iK « R 2 igz!d’K

for z,, z, 0. (5)

Because the scatterer is linear, the angular spectra e}
and e are related to e by8*1°

el K15 E«, K8 « e)-K8d’K g (6)

ejK!5 E~K, K8 « el -K8d?K 8 (7

where t and | are the generalized transmission and re-
“ection tensor coef®cients, respectively, for an incident
®eld in R 2.

In a second situation, let E‘2 be a monochromatic ®eld of
frequency v propagating toward z, 0 in R!. We as-
sume that this ®eld is emitted by sources situated in the
region z, z, at ®nite distance from the scatterer (see
situation 2 in Fig. 1). At any point r 5 (R, z) with
L, z, z,, onecan write

ELr15 L~Klexp~iK « R 2 igz!d?K

for L, z, z,. (8)

As in the previous situation, eiz(K) in Eq. (8) is assumed
to decay as K uincreases, to ensure the convergence of the
integral. We shall see below that when the incident ®eld
is created by a dipole source, e}(K) is proportional to
exp(igz,).
Let us call ES and E}, the transmitted and re ected
®elds created in R? and R !, respectively. One can write
E)b~!5

LKlexp~K « R 2 igz!d?K for z, O,

9
E)!5 s~Klexp~K « R 1 igz!d*K

for L, z, z,. (10)

Similarly, one has

ebK! 5 E~K, K8 « e,~K8d?K 8 (11)

eh-K!5 E«, K8 « e,-K8d?K 8 (12)

where t and t are the generalized transmission and re-
“ection tensor coef®cients, respectively, for an incident
®eldin R1.
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Note that the ®elds evaluated in vacuum satisfy * « E
5 0, so that their angular spectrum is transverse, i.e.,
e(K)« k5 0with k5 (K, g). Thus e(K) has only two
independent components, and the four generalized tensor
coef®cients have only four independent components.

We shall now derive reciprocity relations for the four
generalized tensor coef®cients, starting from Lorentz's
reciprocity theorem with sources at ®nite distance from
the scatterer. These relations are valid for both homoge-
neous and evanescent components of the ®eld angular
spectrum.

3. RECIPROCITY RELATIONS

A. Transmission

To illustrate our arguments, let us consider a dipole  p;
situated at a point r, in R? (situation 1 in Fig. 2). For
z,, z, 0 this point source radiates a ®eld propagating
toward z . O (incident ®eld), X" given by Eq. (1), with the
angular spectrum 18

imyv?
8p°g

el K!5 VK1 ep, exp2iK*R;,2 igz,!,
(13)

where g5 g(K).
The operator P is the projection on the direction trans-
verse to the k vector:

k~ Kk
k2

P15 {2 (14)

where ~ is a dyadic product, namely, ( k ~ k); 5 kikj,

and | denotes the unit tensor. Note that when P acts on

Fig. 2. Geometry considered in the demonstration of the reci-
procity of the generalized transmission coef®cient. Situation 1:
The dipole source p, is in R 2, and the scattered (transmitted)
®eld is evaluated in R'. Situation 2: The dipole source p, is
in R1, and the scattered (transmitted) ®eld is evaluated in R 2.
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a transverse ®eld (i.e., a ®eld perpendicular to k), P be-
comes the unit tensor. ° This property will be useful be-
low.

Introducing Eq. (13) into Eq. (6), and the resulting
equation into Eq. (4), leads to the expression of the trans-
mitted ®eld in R in the presence of the scatterer:

2

i myv
El~«!5 P EdZK expiK e R 1 igz!
P1
3 Ld?K8tK, K8 +«PK8+ —
g8
3 exp2iK8¢ R; 2 ig&,!, (15)

where g85 g(K8§.

Let us now consider a dipole p, situated at a point r, in
R?! (situation 2 in Fig. 2). For L, z, z, this point
source radiates a ®eld propagating toward z, O (inci-

dent ®eld), given by Eg. (8), with the angular spectrum
i myv?
p%g

PK1 e p, exp2iK *R,1 igz,!.
(16)

According to Egs. (9), (11), and (16), the transmitted
®eld in R 2 in the presence of the scatterer is given by

e,K!1 5

imv?
8p?

ELr!5 EZK exp~iK e R 2 igz!

p
3 ke« kg Pxa. =
g8

3 exp2iK8s R, 1 ig&,!. a7

The application of Lorentz's reciprocity theorem with
sources leads to [see Eq. (All) of Appendix A]

p1* E5~(!15 p,e El~r,l. (18)

Introducing Egs. (15) and (17) into Eq. (18) yields, after a
little algebra,

g8®(2K8 2K! « P2K!]T5 gtK, K8 « VK8,
(19)

where the superscript T denotes the transposed tensor.

The generalized tensor coef®cients t and ¢ are de®ned
by their action on angular spectra e that are transverse
®elds. For such ®elds the operator V is the unit tensor.
Thus one always has t(K, K8+ P (K8 +e(K9
5 b(K, K8+ e(K8. This means that the tensors t « P
and t coincide. The same result holds for ¥. Thus Eq.
(19) may be rewritten in the form

g8®-2K8 2K!# 5 gtK, K8, (20)

which is the reciprocity relation for the generalized trans-
mission tensor coef®cient.

It should be remarked that the presence of the factors g
and g8in Eq. (20) is a consequence of the de®nition of the
angular spectra by integration over K. For Ku, k and
K&, k, gand g8 are only directional cosines. Note
that with a de®nition of the angular spectra using angu-
lar variables, corresponding to spherical coordinates for
the k vector, these factors g and g8 disappear from the
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reciprocity relations. ®° One performs in this case an in-
tegration over the solid angle V,withd V 5 d?K/g. Nev-
ertheless, when the angular spectra contain evanescent
waves, this representation involves complex angles.
Hence a representation in K looks more convenient.

B. Re ection

Reciprocity relations for the generalized re ection tensor
coef®cients can be derived along similar lines. In the
®rst situation, the dipole p; is situated at a point r; in R 2
(situation 1 in Fig. 3). The ®eld created by this point
source (incident ®eld) is given by

Ellv15 1KlexpdK « R 1 igz!d®K

for z,, z, 0, (21)

with the angular spectrum
imyv?
8p°g

PK! e p, exp2iKe*R;2 igzq!,
(22)

ell KI5

or by

E2v15 Eiler(!exp~iK-R2 igz!d’K for z, z,

(23)
with the angular spectrum
_ v2
el?K!5 -—PK!ep; exp2iK*R; 1 igz,!.
8p“g
(24)

Fig. 3. Geometry considered in the demonstration of the reci-
procity of the generalized re ection coef®cient. Situation 1:
The dipole source p, is in R 2, and the scattered (re ected) ®eld
is evaluated in R 2. Situation 2: The dipole source p,isin R 2,
and the scattered (re"ected) ®eld is evaluated in R 2.
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According to Egs. (5), (7), and (22), in the presence of
the scatterer, the reected ®eld in R?2, for zb Zq, IS

given by
imyv?
Ei~!5 552 EZK exp~Ke*«R 2 igz!
p
5 P1
3 K8FK, K& « P-K8 + —
g8
3 exp2iK8+ R; 2 ig&,!. (25)

In another situation a dipole  p, is situated at a point r,
in R2 (situation 2 in Fig. 3). The ®eld created by this
point source (incident ®eld) is given by

Elv15 E‘21~K!6Xp~iK *R1 igz!ldK

for z,, z, 0, (26)

with the angular spectrum

2

. imv
el K!'5 g PK!ep, exp2iK * R, 2 igz,!,
(27)
or by
ERX~15 PKlexpiK + R2 igz!d’K for z, z,,
(28)
with the angular spectrum
, i myv?
e KI5 ———PKlep,exp2iK+R,1 igz,!.
8p°g
(29)
The reected ®eld in R 2, for z b z,, is given by
: e Ez | 2 i
E>~+!5 K exp~K ¢« R igz!
2 8p2 p g
) P2
3 K8F-K, K&+ P-K8+ —
g8
3 exp2iK8e R, 2 ig&,!. (30)

Without any loss of generality, we suppose that z;
, Z,. Lorentz's reciprocity theorem with sources reads
in this case [see Eq. (A11) of Appendix A] as

P11 i22~r1! 1 Er2~rl'#5 Po e @ill"rz! 1 Er1~1’2'#
(31)

Note that the incident ®eld also satis®es the reciprocity
theorem

py* EX~115 poe EY -y, (32)
and thus, from Eqg. (31), one ®nally has
pl A Erz-ﬂ’l' 5 p2 b Eg_"‘rzl (33)

Introducing Egs. (25) and (30) into Eq. (33) leads, after
a little algebra, to

g8®2K8 2K!« P2KI#F 5 gtK, K8 « PK8g.
(34)



710 J. Opt. Soc. Am. A/Vol. 15, No. 3/March 1998

Using the same argument as that in Subsection 3.A,
one shows that the tensors I+ P and t coincide, so that
Eq. (34) can be rewritten in the form

g8@2 K8 2K!# 5 gtK, K8. (35)

Proceeding in a similar way with an incident ®eld
propagating toward z, 0in R, one can derive

g8®@-2K8 2K!# 5 ghK, K&. (36)

Equations (35) and (36) are the reciprocity relations for
the generalized re ection tensor coef®cients.

C. Discussion
Relations (20), (35), and (36) express the reciprocity rela-
tions that are valid for any value of WKu They include
reciprocity between homogeneous waves (WKu< k and
WK 8u< k), between evanescent waves (Ku. k and K8u
k), and between one homogeneous wave and one eva-
nescent wave (LKu< k and K8u. k). We have thus ex-
tended to evanescent waves and to vector ®elds the reci-
procity relations of the partitoned S matrix introduced in
Ref. 8.
This work also brings together two usual formulations
of the reciprocity theorem:

1. The symmetry of the S matrix, 3*° or of the general-
ized transmission and re ection coef®cients correspond-
ing to homogeneous waves only. 810 Both of these formu-
lations involved ®eld amplitudes evaluated either at
in®nity or far from sources. Lorentz's reciprocity theo-
rem without sources at ®nite distance from the scatterer
was the basis of these formulations.

2. Relation (A11), which involves the global ®eld (and
not its angular spectrum), without any restriction on the
distance between the scatterer and both the source and
the observation point. This formulation is the one used,
for instance, in antenna theory. %2° |t is a consequence
of Lorentz's reciprocity theorem applied with sources at
®nite distance from the scatterer.

Our approach enlarges the generality of both formula-
tions. It shows that each plane wave of the angular spec-
trum obeys reciprocity (and not only the global ®eld), and
this occurs whatever the distance from the source and the
observation point to the scatterer. This is a more general
statement than the one given by Eq. (A11) in formulation
2, which applies to the global ®eld. This is also an exten-
sion of formulation 1 to vector ®elds containing evanes-
cent components.

4. RECIPROCITY AND TIME
REVERSIBILITY

When studying time reversibility of a scattering process
in wave optics, one has to take care of the behavior of both
homogeneous and evanescent waves. For example, in
the domain of phase conjugation, the link between time
reversal and phase conjugation was discussed a few years
ago.?1?? |t was shown that homogeneous and evanescent
waves are transformed differently under phase conjuga-
tion, and this was presented as a proof of the nonequiva-
lence between phase conjugation and time reversal. 22
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Concerning the reciprocity theorem, a scrutiny of the
literature shows that its relationship with time reversibil-
ity has been the subject of many discussions.

In quantum elastic scattering, the symmetry of the S
matrix can be obtained as a consequence of time-reversal
invariance of the process. 3 For instance, in a textbook, 3
it is stated: “'In other words, time-reversal invariance
implies that the S matrix is symmetric. The symmetry
condition is also called reciprocity." In this case the
probability waves undergo no absorption, and the S ma-
trix is also unitary. When a complex potential is used to
describe inelastic scattering, the unitarity condition is
lost. Because the probability waves undergo absorption,
time reversibility is also lost. Nevertheless, the S matrix
remains symmetric, indicating that reciprocity still
holds.?3

Similarly, in electromagnetism, reciprocity and time re-
versibility are equivalent when only lossless media are
involved.?* In the optics of transparent media, one
speaks of optical reversibility rather than reciprocity.
Nevertheless, with Lorentz's theorem, reciprocity rela-
tions can be derived even for a scatterer with losses (i.e.,
with complex constitutive tensors). 589102425  QOnce
again, reciprocity is conserved, even for a time-
irreversible process.

The fact that reciprocity relations hold in irreversible
processes is a consequence of general microscopic rela-
tions obtained from a statistical approach by Onsager. 2%
A discussion of these relations and an application to the
derivation of symmetry relations in heat conduction or
electronic network theory can be found in papers by
Casimir 27 and also in Ref. 24. As an example, reciprocity
of the resistance tensor of four-poles was obtained. 2%’

In conclusion, reciprocity and time reversibility in elec-
tromagnetic scattering are not equivalent. Nevertheless,
as demonstrated in this paper, both homogeneous and
evanescent waves satisfy the same reciprocity relations.

APPENDIX A: LORENTZ'S RECIPROCITY
THEOREM WITH SOURCES

We recall in this appendix the derivation of Lorentz's reci-
procity theorem with sources at ®nite distance from the
scatterer. 1°

In a ®rst situation, let V,; be a source volume with a
current density J,(r) radiating at a frequency v. Letus
call E,(r) and H(r) the ®elds created by this source in
the presence of a scatterer described by its constitutive
tensors &(r, v) and M#(r, v). In a second situation, let
V, be a source volume with a current density J,(r) radi-
ating at the same frequency v. Let us call E,(r) and
H,(r) the ®elds created by this source in the presence of
the same scatterer (see Fig. 4).

The ®elds in each situation satisfy Maxwell's equa-
tions, that is, with k5 1, 2,

13 E,5 ivBy, 13 H,5 J,2 ivDy, (A1)
together with the constitutive relations
Dy!5 e, vie Egl,

B! 5 nmpdrr, vIe Her!l. (A2)
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From Egs. (A1) one easily obtains for each point r the fol-
lowing equality:

H,+1 3 E; 2 Ejel 3 Hyl
1 E,*1 3 H;2 Hyet 3 E,!
5 iv-B;eH,2 Hye Byl
2 iv-D,*E,2 E;e Dyl 1 JyoEy2 Jye By
(A3)

The left-hand side of Eq. (A3) can be rewritten in the form

1t «(E;3 Hy,2 E,3 H,;). With the use of Egs. (A2),
one shows that the ®rst two terms on the right-hand side
vanish, provided that & and A1are symmetric tensors:

&115 @14, 15 @i (A4)
Finally, one obtains for each point r the following:

1 e«-E;3H,2 E,3 Hy!5J;°E»2 J,eE;.
(A3)
Equation (A5) with J; 5 J, 5 0 gives the usual form of
Lorentz's reciprocity theorem. ' Thus Eq. (A5) is a gen-
eralization of Lorentz's theorem to the case where sources
are present, and we shall refer to it as Lorentz's reciproc-
ity theorem with sources.

By integrating Eq. (A5) over all space, we transform
the left-hand side into a surface integral over a sphere
whose radius tends to in®nity. The asymptotic expres-
sions of the ®elds for kr ! * in a direction de®ned by the
vector k 5 (K, g) are'®

R ) exp~kr !

E,~kr ! 15 2ipgKle~K! - (A6)
) exp~kr !

Hekr ! 15 2ipgK!lhK! - (A7)

with, as a consequence of Maxwell's equations,

By making use of Egs. (A6) +(A8), one shows that E;
3 H, 2 E, 3 H; vanishes identically in the far ®eld, so

Fig. 4. Geometry considered in the derivation of Lorentz's reci-
procity theorem with sources.
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that its integral over a sphere of in®nite radius disap-
pears. Finally, one is left with

E]1~r!'E2~r!d3l'5 EJz*f!'El*{!dsr, (Ag)

Vi Vo
which constitutes a reciprocity theorem with sources.  *°
In the case of dipole sources, the current densities are

given by

Jy!152 ivpda 2 !, (A10)
which gives, after introduction into Eq. (A9),

p1* Exry!5 pye Eqrol. (Al11)

This last equation constitutes a customary statement of
the reciprocity theorem, namely, the component of the
electric ®eld in the direction of polarization of the source
is unchanged when the positions of source and detector
are interchanged. This form of the reciprocity theorem is
well known, for example, in antenna theory. %2° Equa-
tions (18) and (31) of the present paper are a direct appli-
cation of Eq. (A11).
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We derive general relationships of tBamatrix of ®elds containing evanescent components. Our formalism
covers time-independent quantum scattering as well as scattering of classical scalar waves. We show that
reciprocity, energy-or probability conservation, and time-reversal symmetry in the presence of evanescent
waves lead to relationships that extend the well-known relations previously derived in asymptotic scattering.
On this basis, we discuss the link between reciprocity and time-reversal symmetry. We also address the
experimental feasibility of time reversal of a ®eld containing evanescent components.

PACS numbes!: 03.65.Nk, 03.5@ z, 42.25.Fx, 11.52. m

[. INTRODUCTION niques developed that involve scattering and/or direct mea-
surement of evanescent wavesar ®elds For example,
The scattering matrix § matrix was introduced by evanescent-wave scattering is involved in the emission pro-
Heisenberg to describe a scattering process without any asess of an atom or a molecule close to a surt@3#or in the
sumption about the details of the interacti@ In this for-  surface-plasmon-polaritofSPR mechanism which leads to
malism, the process is thought of as a transformation of athe enhanced backscattering of light on slightly rough metal
incoming stateC;, into an outgoing stat€ ,,;, which de-  surfaces@4# It is also the basic principle of near-®eld scan-
scribe the system far away from the interaction potentialning probe microscopies, using either elect@s#or photon
Hence, theS matrix describes the scattering procesymp-  @6# tunneling. Modeling the image formation in scanning
totically. The mathematical transcription of this transforma-near-®eld optical micoscop$NOM! requires a precise de-
tion is an operator relationshif ,,5 SC;,, where S is  scription of a mechanism involving scattering of evanescent
called theS matrix @,3# It is well known that theS matrix ~ waves@7# The advent of SNOM has also allowed a direct
exhibits some properties that are independent of the speci®@xperimental study of SPP excitation and scatte@&and
problem under study. In particular, it is unitary and symmet-Anderson localization of surface excitatio@9#and stimu-
ric, these two properties re ecting probabilitpr energy  lated theoretical works on SPP scattering by surface rough-
conservation in elastic scattering and reciprocity, respecness or localized object®0# In all these ®elds, the descrip-
tively @# The general aim being to get maximum informa- tion of the coupling between an incident evanescent wave
tion about theS matrix with minimum knowledge about the and a scattered propagating or evanescent wave is of funda-
interaction itself, other properties may be derived, based, fomental interest. Al5-matrix formalism, with a de®nition in-
example, on dispersion relations and causality conditi@#is cluding the near-®eld components, should be very useful in
The existence of such general properties of $heatrix is  this context. TheS matrix also provides a useful formalism
the reason why it has become a fundamental tool in mosdio discuss time reversal of wave ®elds, and especially its link
areas of theoretical physics, e.g., in quantum scatte@®  with reciprocity ~symmetry of theS matrix and probability
in particle physicg®# in ®eld theory, and in statistical phys- or energy conservatiofunitarity!. In particular, the question
ics @# Its de®nition and its use have also been extended tof time reversal of ®elds containing evanescent components
scattering of classicalcoustic and electromagnétiwaves has recently received increasing attention, with the demon-
@,8% For example, thé&s matrix has become a fundamental stration of phase conjugation of optical near ®e®@isf and
tool -as well as a practical ohéo compute scattered ®elds in of time reversal of acoustic wave®2# In this last case, the
physical optics@4 This formalism has also found a wide S matrix formalism was used to discuss the properties of a
range of applications with the development of random-time-reversal acoustic cavity, without taking into account the
matrix theory@0# which has recently acquired renewed in- role of evanescent wave@3# Nevertheless, the question of
terest through its use in quantum- and classical-wave transubwavelength focusing of a ®eld by time reversal was
port in random media@1,12# raised. This is an important issue, whose discussion requires
The S matrix was originally de®ned as an operator actinghe use of a formalism including the evanescent components
on asymptoticstates. In scattering by a time-independent po-of the ®eld.
tential -we shall restrict our discussion to this chsthis Finding general properties of th® matrix, extended to
means that th& matrix relates the far-®eld amplitudes of the evanescent waves, is of major importance in understanding
incoming and outgoing ®eld®,7,8t Nevertheless, in the and modeling all phenomena and devices involving near-
last ten years, new effects have been observed and new tedBeld scattering. To our knowledge, this problem has received

1050-2947/2000/62!/0127127!/$15.00 62 012712-1 +2000 The American Physical Society
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sumed con®ned within the strip, z, z,, and independent

of the ®eldHinear scattering The regionsz, 0 andz. L
contain sources, the presence of which, at ®nite distance
from the scattering region, is necessary to ensure the exis-
tence of incident evanescent waves in b&R andR!.

The evanescent waves explicitly appear when the angular-
spectrum representatiofor plane-wave expansibrof the
®eld is used. In this representation, the ®€ldsin R ? and

Cl inR?! are written@#

6 6 e ; 2
FIG. 1. Scattering geometry and notation. C°~15 E ~KlexpiK+R1 igz!d°K

I|ttl.e attention until now, except in eI_ectromagnetm wave- 1 Eﬁ«!exm KeR2 igz!d?K, 2
guide theory where reciprocity and unitarity relations for the

S matrix in the presence of evanescent modes have been 7 2 L2
brie'y discussed@4# In this work, we concentrate on reci- Whereg(K)s A2 K2 for K< k? -homogeneous or propa-

procity, unitarity, and time-reversal symmetry in the frame-9ating componentsaandg(K)5 I A2 K2 for K2 Kk -nho-

work of scattering from a localized potential, in the presencé"09€neous or evanescent componeiiée use the notations

of evanescent waves in both the incoming and outgoing?® (X,¥) andK5 tKu Except when the integration domain

®elds. The formalism we use covers time-independent quat® SPeci®ed, all integrals in this paper are extended to

tum scattering as well as scattering of classical scalar waves. (Kx.Ky),1 . Note that Eq-2! is a representation of the

In Sec. Il, we de®ne th® matrix based on the angular rep- ®eld valid in region® # andR * wherelzuremains ®nite,

resentation of the ®eld, sometimes called paetitioned S SO that there is no divergence of evanescent waves wten

matrix in the literature®,25% In Sec. lll, we give a general INCreases. _ -

derivation of theS matrix reciprocity for scalafquantum and In the angular-spectrum representati@h the partitioned

classical ®elds, in the presence of evanescent waves. In Se®. matrix relates the outgoing  vector C°“(K)

IV, we show that energyor probability conservation in 5 @°(K) a'(K)# to the incoming vector C'"(K)

scattering of ®elds containing evanescent components leafs@” (K) b (K)# by the relation®,25

to generalized unitarity relations of tt®matrix. These rela-

tions extend those previously derived for source-free ®elds CoutKig E_K,Kacin.KgdZKg 3

+.e., ®elds without evanescent compone@g25% and those

obtained in electromagnetic waveguide the@g# In Sec.  \yhereSis a 23 2 matrix, sometimes called the partitionsd

V, we address thg problem of time-reversal symmetry ofp,5trix @®,25¢ which can be written in the form

wave ®elds containing evanescent components. We show

that the time-reversal invariance condition leads to a differ- F~K,K8! z‘~K,K8!G

ent relationship for the matrix. On this basis, the link be- SK,K85 KK r-K.K8 4

tween reciprocity, unitarity, and time-reversal invariance is

discussed. This problem is of fundamental and practical imThe four elements,t,r,t have the meaning of generalized

portance, due, for example, to its potential application tore ection and transmission coef®cier@25% Their de®ni-

time reversal of acoustic wave@2# Finally, we give a sum- tion can easily be extended to vector ®elds, as in electromag-

mary and a general conclusion in Sec. VI. netic scattering. In this case, the four coef®cients become
tensor operator@6#

II. DEFINITION OF THE S MATRIX
Ill. RECIPROCITY RELATION
Let us consider the scattering problem depicted in Fig. 1. . ) ] )
The regions 0 z, z; andz,, z, L, denoted byR 2 and For incoming and outgoing ®elds without evanescent
R, respectively, are assumed to be of constant potential, sgPmponentssource-free ®eldsreciprocity and unitarity re-
that the wave ®eld in these regions obeys the timelations for the partitionedS matrix are well established

independent wave equation ®@,25¢ They were derived as a conseguence qf the symmetry
and unitarity of the asymptotidar-®eld S matrix. Extend-
12C 11 k?C~150, ~! ing these relations to general wave ®elds with evanescent

components requires a different procedure. Note that reci-
where r5 (x,y,z). In Eq. ~!, C(r) is either the time- procity of evanescent waves was derived previously in spe-
independent wave function of a state of enely@>  ci®c cases, such as electromagnetic waveguide th@dty
5 2m/\ 2(E2 V), whereV is the potential andh the mass of electromagneticvector ®eltl scattering @6t and elastic-
the particlé¢ or a monochromatic classical wave of fre- wave scattering at a solid-solid interfa@7# In these ex-
quencyv (k5 v/c, wherec is the phase velocity in the amples, a suitable formulation of the reciprocity theorem was
mediunt. The wave numbek? is real, but can be negative, used for each particular case. In this paper, we give a proof
e.g., in a tunneling barrier. The scattering potential is asof reciprocity of theS matrix for scattering of both homoge-

012712-2
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neous and evanescent scalar waves from a localized poten-
tial, starting from a general formulation of reciprocity valid
for any kind of scalar wave.

Let C, and C, be two ®elds that are solutions of the

scattering problem depicted in Fig. 1. With reference to Fig.
2, let us consider the volumé delimited by the closed sur-
face S composed of two planes5 z> and z5 z! and a
sphere of radiuRR centered at the center of the potential
region. The application ofsreen's second identity leads to

E 1C, chD
“C2DC12 ClDCZIdVS 2 C]_]_n Sy
\

where]/]n5 ne! andn is the outward normal on the sur-
faceS. BothC, andC, satisfy Eq.~! in R? andR !, so
that the integrand in the left-hand side in E§! vanishes.
Moreover, in the far-®eld asymptotic limku! ° , one has
JC;/]r5ikr?*C;, so thatC,]C;/Jn2 C,JC,/]n van-
ishes identically on the sphere surface when its radius FIG. 2. Closed volume used for the application of Green's iden-
tends to in®nity. Finally, Egb! leads to the following equal- tity and the energyor probability balance.
ity:
IV. EXTENDED UNITARITY RELATIONS

C Cc
E 2]—12 C 1]—2D2R The second basic property of tBanatrix is unitarity. It is
2522 ]z ]z satis®ed by th& matrix of a lossless systemalastic scatter-
ing!. It is often assumed that the unitarity condition involves
E 1C._  1Cy]), ; e LNt
5 . 2]—22 C 1]—2 R. 6! only propagating waves. This belief is, in fact, based on the
7257z

use of asymptotic ®elds in the derivation. Indeed, unitarity
has been studied extensively in far-®e&dymptoti¢ scatter-
ing @# or scattering of source-free ®elds in the angular-
spectrum representatiq®,25 Conversely, the extension of
unitarity relations to wave ®elds containing evanescent com-
ponents has received little attention until now, except in the
context of electromagnetic waveguide the@# Neverthe-
less, as discussed in the Introduction of the present paper,
extended unitarity relations could be helpful in various re-
E E«! b} K I#g~K!SK,K8 cent applications, such as time-reversed acoustics, near-®eld
optics, or propagation through random media from the view-
Eg K8 G point of random-matrix theory. In this section, we show how
2 g-K8S™-2 K82 K!9 1 K d?K & 0, 71 such relations may be derived in the framework of free-space
b; K& scattering from a localized potential.

In eitherR ? or R', the current density associated with
where the superscripk denotes the transposed matrix. Be-the ®eld isJ(r)5 AIm$C * (r)1C (r)% whereA is a con-
cause Eq.-~7! must be satis®ed for any incoming vectorsSstant, Im denotes the imaginary part, and the asterisk is the
@7 (K) by (K)#in situation 1 and@j3 (K) b3 (K)#in  complex conjugate. With reference to Fig. 2, energy

Equation-6! is a scalar version of Lorentz's reciprocity theo-
rem, originally derived for the electromagnetic ®@8# In
order to obtain a reciprocity theorem for tigematrix, we
introduce the angular-spectrum representation-2qof the
®eldsC ; andC, into Eq.-6!. After some algebra, one ob-
tains the following expression:

situation 2, one ®nally obtains probability conservation states that the total “ux
5 * JendS owing outside the volumeé/ vanishes. When the
gKISK,K85 g-K8S'™-2 K82 K. 8! radiusR of the sphere tends to in®nity, the contribution of
the "ux through the portions of the sphere surface between
Equation-8! is valid for 0, Kyl ° and O K8J1 ", the two planess5 z2 andz5 z! vanishes. Finally, energy

i.e., for propagating and evanescent waves. Note that they probability conservation reads
presence of the factorg in Eq. 8! is a consequence of the
de®nition of the angular spectrum of the ®@d,. 2!# by f 25 Ffa 9l
integration over the parallel wave vectér When using an e
integration over the solid angké, with k dV 5 d?K/g, these
. . . . where
factors disappear from the reciprocity relations. Neverthe-
less, the presence of evanescent waves would involve com-
plex angles in th&/ representation, so that thé represen- f 65 E JR.Z%1en d?R. 40
tation looks more appropriate. z 75 28 '

012712-3
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Using the angular-spectrum representation #¢. the cur-  the generalized Stokes relations to evanescent ®elds. Such
rent f .5 accross a plane5 z® in R® can be cast in the relations may be useful, e.g., in the context of surfaces, thin

following form: ®Ims, and multilayers optics. The generalized Stokes rela-
tionships and their extension to ®elds containing evanescent
f 65 A E g@° K132 b® K1 2K components are given in the Appendix.
. ! !
K< k2

V. TIME-REVERSAL INVARIANCE

1AE g@°% KI1b®*~K12 a®*K1b® K1#%K. , , , _ .
K2, K2 In this section we discuss time-reversal invariance for

41 classical scalar wavesve exclude from the discussion the
question of time reversal in quantum mechanics which is

This expression for the current deserves some comment. dlif®cult to separate from the measurement probhlem
explicitly shows two separated contributions, one stemming
from propagating wavesk(< k?), and the other stemming A. Time reversal in angular-spectrum representation
from evanescent waves onliKf. k?). Note that the latter is _ _ _ _
a crossed term between counterdecaying evanescent waves L€t € (I,1) be a classical scalar ®6hi the time domain
For a givenK such thatk2. k2, if either a(K) or b(K) and C(r,v_) its _frequency spectrum. Becaué_le(r,t) is a
vanishes, then the associated current also vanishes. For th*funCt'O”' its frequency spectrum satis€egr,v)
aim pursued in this section, it is precisely the existence oP € (r,2 v). From this condition, it is straightforward to
this contribution to the current that leads to the extendedhow that the time-reversed ®dld(r,2 t) has a frequency
unitarity relations of theS matrix. Introducing Eq-11! into ~ SPectrum C*(r,v). Hence time reversal ofC(r,t) is
Eq. 9!, and using the de®nition of th® matrix 3!, one equivalent to com_plex conjuga'qon @‘(r,v_) throughout all
obtains the three following relations, involving scattering be-SPace. Note that time reversal is not equivalent to phase con-
tween two propagating waves, between two evanescedi¢dation in only one plang%# We shall come back to this

waves, and between one evanescent and one propagatiRgint later.

wave: Let us see what time reversal means in terms of the an-
gular spectrum of the monochromatic ®€ldr) -the vari-
gK9 ablev is omitted in the following. From complex conjuga-
——SK,K8S-K9K8d?K8 tion of Eq. 2! and the change of variabl&! AK, one
K8k gK8 obtains
5 dK2 KU for K< k,KX K, 42
C*~15 E*~2 KlexpiK*R2 ig*z!d’K
5 SK,K9 for K< kKA K, ~13!
5SK,K92 S*~2 K,2 K9 1 E*~2 KlexpiKeR1 ig*z!d’K. 15
for K. k,K9 k, ~14

The symbol$ have been omitted in Egl5! because we do
whereU is the 28 2 unit matrix. The superscript 2 denotes not need to specify at this stage whether the ®eld propagates
the conjugated and transposed matrix. inR Y orin R 2. We see that, in terms of angular spectrum,

Equation12! is the well-known unitarity condition of the time reversal is equivalent to the transformation
S matrix restricted to the homogeneous components of thg(K)exp(gz)! a*(2 K)expRigz) and b(K)expQ igz)
®elds, which was obtained previous®,3,23t Using the 1 p*(2 K)exp(g*2) for all values of zn eitherR* orR 2.
partitioned form of theSmatrix Eq.~4!, this condition can be  Note that Eq~15! is valid in regions of space for whictzu
developed in terms of the generalized re ection and transremains ®nite, so that there is no divergence of time-reversed
mission coef®cients. The resulting four expressions are th&,anescent waves wheruincreases.
generalized Stokes relations of surface optics, which were
derived in @5# Equations~13! and ~14! express, in thes
matrix formalism, probability-or energy conservation in a
scattering process in which the incoming and/or the outgoing In order to study the implication of time-reversal invari-
®elds contain evanescent components. Hence, they can #&ece for theS matrix, let us consider a monochromatic ®eld
considered as extended unitarity conditions for 8watrix ~ C 1(r) which is a solution of the scattering problem depicted
of ®elds containing evanescent components. Becausg thein Fig. 1, the scattering potential being described by $he
matrix formalism is used in many ®elds of theoretical phys-matrix S. Let C ,(r) be the time reversal of the ®el(r).
ics, and because there has been increasing interest in phe-terms of the angular spectrum, this means that
nomena involving direct use and measurement of evanescent 1 ) 1 i
®elds, we believe that this result may have important conse- a2 ~K!exp-igz!1 b; Klexp-2 igz!
guences and applications. For example, the development of
Egs. 43 and ~14! in terms of generalized re ection and
transmission coef®cients leads to relationships that extend ~6!

B. Time-reversal invariance: consequence for th& matrix

5a}*~2 Klexp2 ig*z!1 b] *~2 Klexpd g* z!
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for all values ofzin R? and the reciprocity condition Eg8!. Moreover, a scattering sys-
tem may be reciprocal, without being conservatiig. 8! is
as Klexpigz!l b Klexp2 igz! satis®ed, but not Eqsl21+~141# In this case, the system is

not invariant under time revers@qs.~12'+~14! cannot be
satis®e! These conclusions hold for ®elds with or without
47 evanescent components.

5a3*~2 Klexp2 ig*z!1 b3 *~2 Klexp-ig*z!

for all values ofzin R 2. The scattering problem is invariant D. Experimental feasibility of time reversal
under time reversal if, and only i€; ,(r) is also a solution of
the scattering problem, described the same Snatrix S.
This means that the outgoing vectorsC $"(K)

5 @7 (K) aj (K)#and C9"(K)5 @3 (K) a3 (K)# are
connected to the incoming  vectors C''(K)

5 @2 (K) bi(K)#and CH(K)5 @3 (K) b3 (K)# re-
spectively, by relation3!. Introducing these conditions into
Egs.~16! and~17! leads to the following relations:

An important problem is the experimental achievement of
time reversal in a situation involving wave scattering. In op-
tics, the development of phase conjugating mirrors provides
a practical tool to produce ®elds that are conjugates of each
otherin a given plane Nevertheless, it has been shown that
this type of phase conjugation is not equivalent to time re-
versal when the ®elds involved contain evanescent compo-
nents@94 The subject of time reversal of ®elds containing
evanescent components is of particular interest in the context

E SK,K8S*~2 K8§K9Ad?K8 of time-reversed acousti@2# In this technique, the acous-
K8 k tic ®eld in a direct situation is recorded on a given surface
5 0K1KIU for K< k. K K 48 after scattering by an arbitrary object. In the reversed situa-

tion, the time-reversed ®eld is emitted from the surface
the presence of the same scattering object. In the frequency
domain, the ®elds in the two situations are complex conju-
gates of each other dd. Thus, this experiment is equivalent
552 K,K92 SK,2 K9 to achieving acoustic phase conjugation on the surack
for K. k,KQ k, 20 both optics@1#and acousticg224 the possibility of achiev-
ing time reversal of both the homogeneous and evanescent

where the asterisk denotes the conjugated matrix. These ré9mpPonents of the ®eld by phase conjugation may be ques-
lations express the condition of time-reversal invariance irfloned- o _
terms of theS matrix of ®elds containing evanescent compo- '€ @rst part of the answer is given by showing that phase
nents. conjugation on the surface of a closed cavily equivalently
The set of Eqs-18'+-20! is very similar to the set of Eqs. @/0ng two planeg5 z; andz5 z,) is equivalent to time re-
-121+-14), which describes energy conservation. In fact, it isVersal at all pointsnside the cavity -or in the stripz,, z
easy to see that these two sets of equations are equivalentZ2)- This assertion is a consequence of the following re-
provided that the reciprocity relatio! is satis®ed. Indeed, Sult: two ®elds de®ned inside the stzrip z, z, that are
Eqgs.~18+-20! are transformed into Eqs121+-14! by using ~ COmplex conjugates in the two planes z, and z5 z, are
Eq. 8! and changingK9 2 K9 The result we have ob- complex conjugates a_t all points within the stap z, z,.
tained can be summarized as follows: the condition of time-Therefore, they are time reversed from each other in the
reversal invariance is equivalent to both energy conservatiof@Vity. This result holds for ®elds containing evanescent
~extended unitarity conditidnand reciprocity-symmetry of ~components. It can l:_Je dgrlved_ by extending t.he d|§cu55|on in
the S matrixi. Although this result was already known for Ref. @9#to a situation involving phase conjugation along
source-free ®eld@34 we have demonstrated that it holds WO planesz5 z, and z5 z,. Consequently, phase conjuga-

for ®elds containing evanescent components. tion on aclosedsurface-or along two planédsmay be a
practical way to achieve complete time reversal of a ®eld.

The second part of the answer must take into account the
presence of sources inside the cavity in the direct experi-

The results in this paper also provide a basis to discuss thment. In theory, reversing time leads automatically to the
link between time-reversal symmetry and reciprocity, whichtransformation of all primary sources into sinks. Therefore,
is sometimes confusing in the literatu@# see also a dis- to achieve time reversal experimentally, the ®eld on the sur-
cussion of this point in Ref@6#! For a scattering system in face of the cavity has to be time reversead the sources
which energy is conserve@gs.~12 +~14! are satis®etithe  have to be transformed into sinks. This is probably the great-
conditions of time-reversal invarianc@gs. 18/ +-20# and  est experimental challenge. This is also the necessary condi-
reciprocity @g. 8!#are equivalent. This is probably the rea- tion to obtain complete time reversale., with evanescent
son why time-reversal symmetry and reciprocity are oftenwaves includetdand achieve, for example, time-reversed fo-
mistaken. In particular, reciprocity is often presented as ausing below the diffraction limit. The necessity of replacing
consequence of time-reversal invariar@# This is in gen-  sources by sinks in the time-reversed situation can be under-
eral incorrect. For example, we have seen that imposingtood as follows. In the direct situation, a subwavelength
time-reversal invariance leads to Eg48 +20! and not to  source radiates a localized ®eld whose angular spectrum con-

52 SK,2 K9 for K<k,K9 Kk, ~19

C. Time-reversal invariance and reciprocity
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tains evanescent waves. In the reversed situation, the sink i

equivalent to a source with opposite phase. This localized d’K8@-K ,K8t*~K9K81 t~K,K8r* ~K9K8#g—
source also radiates evanescent waves which allow the time-K8&k

reversed ®eld to focus below the diffraction limit. 50 Al

VI. CONCLUSION
2. Relations involving conversion of homogeneous

In summary, we have derived general properties ofShe to evanescent waves

matrix of ®elds containing evanescent components. In par-

ticular, we have shown that energgr probability conser- Relations valid forK< k andK9 k:

vation leads to relationships that extend the well-known uni- 9
tarity condition of the asymptoticS matrix. Using the 2 * *
partitionedS matrix, we have shown that these relationships kg kd K@K KB I7KIKEL tK Kar NKQK&#%;

lead to extended Stokes relations. We have also obtained
different relationships as a consequence of time-reversal in- 5 t-K,K9, -A5!
variance. On this basis, we have discussed the link between

unitarity, time-reversal symmetry, and reciprocity. With the 9
increasing interest in techniques based on measurement anE d?K8@-K,K8r*-K9K81 t«,th*«gKg#g_
control of evanescent waves, we think that this work should K8k g8
®nd broad applications. In particular, we have brie'y dis-

cussed its implications in time reversal of scattered ®elds by 5 rK.K9, AG!
phase conjugation.

E d’K8@K,K8r*~-K9K81 t-K,K8 t*~K9,K8!#&9
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E d’K8@K,K8t*-K9K81 t«,K&r*«gK&%
g
APPENDIX: GENERALIZED STOKES RELATIONS

FOR FIELDS CONTAINING EVANESCENT WAVES 5 tK,K9. ~A8!
In this Appendix, we summarize the relations that are o . .
obtained by inserting the coef®cients of the partitioiged 3. Relations involving conversion of evanescent
matrix Eq.~4! into relations~121+~14!. The ®rst four rela- to evanescent waves

tions are the generalized Stokes relationships obtained in Relations valid folK. k andK9Q k:
Ref. @5# The other relations are extensions of the Stokes

relationships to ®elds containing evanescent componentsE 9

We use the notationg® g(K8 and g% g(K9. = kd2K8@~K,K8 1*~-K9K81 t~K,K8r*-K9K8#g—8
K g

1. Relations involving homogeneous waves only 5tK,K92 t*~2 K,2 K9, ~A9!

Relations valid forK< k and K% k:

9
9 2 * *
E d2K8@~K,K8t*~K9K8!1t~K,K8!r*~K9K8!#g—8 E&kd KA@H KArTKAKB L Ka «gKa#Z_g
g

K8 k

5rK,K92 r*-2 K,2 K9, -Al10!
50, Al!

9 . . 9
E& o|2K8@~+<,K8!r*~KQKa1t~K,Kat*~K9|<8!#CL8 E&kdeS@%K&r K9K81 tK,K81t ~K9K8!#%;
K8 k g

5 0K ?2 Kg, ~A2! 5rK,K92 r*-2 K,2 K9, Alll

9 9
E d’K8@K,K8r*~-K9Kg1 l‘-K,K8!l‘*-K9K8#& E d’K8@K,K8t*~-K9K8 1 l‘-K,K8!r*-—K9,K8!#£
K& k g8 K8 k 98

5 /K2 K9, -A3! 5 tK,K92 t*2 K,2 K9. Al2!
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We propose a new theoretical approach to near-field microscopy, which allows one to deal with scan-
ning tunneling microscopy and scanning near-field optical microscopy with a unified formalism. Under
the approximation of weak tip-sample coupling, we show that Bardeen'’s perturbation formula, originally
derived for electron tunneling, can be derived from a scattering formalism which extends its validity
to electromagnetic vector fields. This result should find broad applications in near-field imaging and
spectroscopy.

PACS numbers: 61.16.Ch, 03.65.Nk, 07.79.Cz, 73.40.Gk

The development of scanning tunneling microscopy(PSTM) were introduced by analogy between optical and
(STM) in the early eighties [1] opened the way to real-electron tunneling [17]. Nevertheless, there is no unified
space surface study at the atomic scale. Since thefprmalism and theoretical proof of a clear and general anal-
various techniques of scanning probe microscopy (SPMdgy. (ii) An explicit SNOM theory was developed some
have been proposed [2,3], based on local interactioyears ago [15], which gave an interpretation of the signal
between a sharp tip and the sample under study. Scannind clarified the role of spatial filtering and polarization
near-field optical microscopy (SNOM) [4] is one of these effects. Nevertheless, a general formalism allowing to in-
techniques, which uses optical interaction in the visible otroduce in a natural way an appropriate tip model seems to
near-infrared range. SNOM has proven its ability to imagebe missing [18].
optical fields and surface structure at a subwavelength In this Letter, we propose a new approach to near-field
scale [5]. In the field of microscopy, spectroscopy, andmicroscopy which deals with both STM and SNOM with
surface madification on the nanometer scale with visiblea unified formalism. We first derive an expression of
or infrared light [6], SNOM looks complementary to other the current in the gap [19] which is valid for STM and
SPM techniques. SNOM. This expression allows an original discussion of

In the context of STM, some theories were developedhe tunneling contribution to the SNOM signal. Then,
shortly after the first experimental demonstrations, basednder the approximation of weak tip-sample coupling,
on self-consistent methods and numerical calculationsve derive a general expression of the signal in SNOM,
[7,8] or on analytical models [9-12]. Many of these which generalizes Bardeen’s formula to scattering of vec-
theories [8—10] have in common the use of Bardeen’sor electromagnetic fields. This generalization allows one
perturbation formula, originally derived for electron to deal with SNOM using the standard formalism of STM
tunneling between two weakly coupled electrodes [13]modeling.

In particular, the approach of Tersoff and Hamann [9] Let us consider the general SNOM setup depicted in
remains an explicit and practical description of the STM.Fig. 1(a), and the general STM setup in Fig. 1(b). In the
An important result in this approach was the directSNOM situation, the tip-sample system is illuminated by
interpretation of the STM signal as a measurement of tha light source of arbitrary size and state of coherence, and
local electron density of state of the sample. Althoughpart of the scattered energy is collected by a detector of
this result is valid under weak tip-sample coupling, it wasarbitrary shape. The gap region (between the sample and
a breakthrough in understanding the STM images [2]. the tip) is assumed to be vacuum or air. At this stage of

Similarly, in the context of SNOM, several theoretical the discussion, we concentrate on the tunneling current in
methods and numerical simulations [14], as well as anaboth STM and SNOM, and we do not take polarization ef-
lytical models [15,16], have been developed, in order tdects into account. In the STM situation, we assume that
improve the capability of the technique and to understandhe central part (with respect to thedirection) of the gap
the measured signals. Although the underlying physics beegion is of constant potential. The state of the elec-
hind SNOM is understood to a certain extent, an overlookromagnetic field at a given frequency, or a stationary
at the current state of SNOM leads to the two followingstate of the electron of energy, are both represented by
remarks. (i) The analogy between STM and SNOM is of-a scalar wave function . We assume that the tip re-
ten qualitatively put forward. In particular, some SNOM mains situated above the highest point of the surface to-
setups such as the photon scanning tunneling microscopegraphy (although the path followed during the scan may

5156 0031-900700 84(22) 5156(4)$15.00 © 2000 The American Physical Society
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)
Although Eg. (2) simply expresses the total current flow-
ing through the gap region, it was never used before, to
our knowledge, in the context of near-field microscopy. In
STM, except for a constant factor, is exactly the tun-
neling current which is measured in the experiment. In
SNOM, is proportional to theotal energy flux, includ-
ing the flux flowing through channels that do not end up
_ _ at the detector. In many SNOM experiments, only part of
FIG. 1. (a) Scheme of a SNOM setup. Light coming from this flux is actually collected and contributes to the signal.
the source is scattered towards the detector through near-field - . C o
coupling between the tip and the sample. (b) Scheme of a STM Would be an exact expression of the signal in situa-
setup. The current is created by tunneling electrons betweefions in which a hemispherical detector is used to col-
the tip and the sample. (c) SNOM setup with hemisphericalect all the flux traveling in a half space, as shown in
detection. Fig. 1(c). An example of such a configuration is the tun-
neling near-field optical microscope [21] when complete
be arbitrary). In the gap region, the wave field can be writ"€mispherical detection is performed, and its reciprocal
ten in the form of an angular spectrum of plane waves [20]8€tup, namely, a PSTM using hemispherical incoherent il-
lumination [22,23].
Two separate contributions are clearly identified in
exp Eq. (2). The first integral describes the contribution of
waves that are homogeneous in the gap region. It simply
expresses the balance between two currents flowing in
opposite directions through propagating channels. The

exp (1)  second integral describes a current flowing through
evanescent (or tunneling) channels. In the case of STM,
this is the only contribution to the current. This term
where for (homogeneous simply reflects the net flux traveling through the tunneling
or propagating components) and for  channel , and vanishes if . Note that, if
(inhomogeneous or evanescent components). Weither or vanishes, then the contribution of
use the notations , , and . this tunneling channel also vanishes. This reflects the
For the electromagnetic field, , being the speed fact that tunneling is essentially a consequence of the
of light in vacuum. For the electron wave function, presence of two interfaces at close proximity (e.g.,
, where is the electron mass andis the sample and the tip). Equation (2) also demonstrates
Planck’s constant. The integrals are extended to the existence of an optical tunneling contribution in any
. Note that, in the case of electron tunneling in STMSNOM configuration. Moreover, it shows that the SNOM
( and ), the wave function in the gap region current travels through both propagating and tunneling
contains evanescent waves only. channels in the gap, whereas in STM the current flows
The current density associated with the wave functioronly through tunneling channels. This is a fundamental
is Im , where Im denotes the difference between SNOM and STM.

imaginary part and the complex conjugate. This formula  In practice, computing the SNOM or STM signal from
represents either the momentum density of the electrd=q. (2) requires the knowledge of the angular spectra

magnetic field in the scalar representation or the proba- and of the wave function in the gap region.
bility current in quantum mechanics [20]. The constantThese are solutions of a difficult scattering problem in a
may be determined by identifying the current flux atconfined geometry, which can, in general, be solved only
the detector with either the energy flux of the electromagnumerically. Nevertheless, under the approximation of
netic field (in the case of SNOM) or the electronic cur-weak tip-sample coupling, it is known in STM modeling
rent (in the case of STM). Using Eqg. (1), the total currentthat Bardeen’s formula can be used to describe the tunnel
across a plane at a constan the gap  ing current [2,8—10]. We shall now give a new derivation
region (dashed line in Fig. 1) can be cast in the followingof this formula, based on a scattering formalism. This
form: approach generalizes Bardeen’s original formula, by
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showing that (i) it describes both the tunneling current and
the current flowing through propagating channels, and
that (ii) it also applies to vector electromagnetic fields.

Let us consider the general SNOM setup depicted in
Fig. 2(a). The illumination is done by a plane wave with
a wave vector , a unit amplitude, and a state of po-
larization described by the complex unit vector. The
signal is recorded by a detector placed in the far field, in
a direction defined by the wave vector . We assume
that the detection is performed with a polarizer (analyzer)
whose polarization direction is defined by the unit vector

Note that this represents the most general configu-

ration, because an extended and/or unpolarized source pIG. 2. (a) General SNOM setup with directional illumination
detector can be described by adding the contributions aind detection. (b) lllustration of the meaning of the sample
a set of incoming or outgoing plane waves. Dependingvave function . (c) lllustration of the meaning of the tip
on the experimental setup, the summation should be doréave function
with a properly defined degree of coherence and/or polar-

ization [23]. Without loss of generality, we have chosenthe signal can be calculated from the transmission coeffi-
the transmission geometry shown in Fig. 2(a), but the argjents of the sample and the tip, considered as independent
gument can be easily extended to any SNOM setup. Usingystems. We will now transform Eq. (4) into an expression
a scattering formalism, we describe the sample, the tign direct space, involving two wave fields that are solutions
and the entire setup by their generalized transmission Cgf the two scattering problems in Figs. 2(b) and 2(c). This
efficients : , and . These  will lead to a generalization of Bardeen’s formula to scat-
coefficients are elements of the scattering matrix of eackering of electromagnetic vector fields. Let be the
system in a plane-wave basis [24]. The signals the  (vector) electric field, in the gap region, that results from
flux of the Poynting vector (current density) at the detec-scattering of the illuminating plane wave (wave vector,

tor position (i.e., in the far field). The far-field asymptotic polarization state ) by the sample, in the absence of the

expression of the electromagnetic field in the direction  tip. Let be the (vector) electric field, in the gap re-

can be obtained by the stationary-phase technique [20]. Igion, that results from scattering by the tip of a plane wave

this condition, the expression of the signal is of amplitude unity coming from the direction of the detec-
tor (wave vector , polarization state ). The explicit

(3)  expressions of these wave fields are

This result shows that the basic quantity to compute is
, which is analogous to the exp
elastic tunneling matrix element in Bardeen’s formalism (5)
[13]. We now assume that the coupling between the tip and
the sample is weak. In the scattering picture, this means
that the current in the gap results from fields that have been exp
scattered once at the tip or at the sample. In this case, the
transmission coefficient of the system is (6)

4) where is related to by the reciprocity theorem
, the super-
where the integral is extended to both propagating and turcript ~ denoting the transposed tensor [24]. From

neling channels. We see that, in the case of weak couplind;ds. (4)—(6), one obtains the following expression for the
| matrix element  :

— — ()

where the integral is performed along a plane at a consfant
in the gap region. that the complex conjugation of the tip wave function
Equation (7) is the main result of this Letter. It is simi- does not appear in Eq. (7). This point is not fundamental.
lar to Bardeen’s formula for the elastic tunneling matrix Bardeen’s formula is exactly retrieved when using a tip
element between a state of the probe and a state wave function , hamely, thetime reversedof
of the sample [see, e.g., Eq. (3) in Ref. [9]]. Notethe wave function introduced in Eqg. (6). When the
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A theoretical approach to electrostatic scanning probe microscopy is presented. We show that a
simple perturbation formula, originally derived in the context of scattering theory of electromagnetic
waves, can be used to obtain the capacitance and the electrostatic force between a metallic tip and
an inhomogeneous dielectric sample. For inhomogeneous thin dielectric ®ms, the scanning probe
signal is shown to be proportional to the convolution between an effective surface pro®le and a
response function of the microscope. This provides a rigorous framework to address the resolution
issue and the inverse problem. 2000 American Institute of Physic®0003-69530/04820-8¢

Since the development of scanning tunnelingtive analytical approach is checked by comparison with exact
microscopy and atomic force microscopyn the early eight- numerical calculations. In the important case of imaging of
ies various techniques of scanning probe microsc&BM thin dielectric ®Ims deposited on metallic substrates, we
have been proposédbased on different local interactions show that the forceor capacitandesignal closely follows an
between a sharp tip and the sample under study. The longquivalent surface pro®IeThis equivalent surface pro®le
range nature of electrostatic interactions makes them sp&onnects the ®Im topography with the dielectric inhomoge-
cially suitable to perform noncontact SPM imaging of both neities, providing a simple physical picture of the contrast
conducting and insulating materials. By applying a voltagemechanism in EFM.
between a force microscope tip and a sample, electro- We consider a three-dimensional sample with both topo-
static force microscopy-EFM! has been used to study graphic and dielectric constant inhomogeneitese Fig. 1
capacitancé, surface potentid, charge or dopant dis- This sample is a ®nite layer of pro®I¢x,y)5 Z(r;) and
tribution® topography and dielectric properties of metallic dielectric constant(r) on top of a reference sample. For
and insulating’ surfaces and to deposit and image localizedsimplicity, we will take a semi-in®nite homogeneous (
charges on insulatofsin analogy with the magnetic force - 0) substrate of dielectric constam as the reference
microscop€, EFM has been used to image the domain strucSample. Our approach would equally apply to any reference
ture of ferroelectric crystal¥ Polarization forces have also sample surface with known dielectric response, however.
been used to imaging weakly bound materials and lidéids ~ Under a constant tip-sample bi¥s the electrostatic en-
and to perform electrostatic spectroscdpy. ergy of the reference systefe., in the homogeneous case

As in other SPM techniques, the interpretation of theiS given by:

EFM images is not always evident. Since EFM is a nonlocal

_techniq_ue due to th_e long range na_lture c_>f the eIectrostatic Uo5 E anzder ECOVZ, Al
interaction, the detailed shape and dimensions of the tip must 2 2

then be taken into account for a precise calculation of both ) _ ) _

force and capacitancd. Most of the theoretical work on whereE, is the electric ®eld an@, is the capacitance. The
EFM has been focused on a better understanding of tip shafectrostatic forcenormal to the sample surfacgo, can be
effects on the electric ®eld, force, and capacitanddAl-  Written as the energy gradient:

though the in uence of the tip shape is now more or less well ] 1]

u_nderstood for at and homogeneous samp!es, therg ISNo F 52 Z-U,52 =VZ&-C,. 2
simple way to directly relate the electrostatic image with the ]z 2]z

dielectric and topographic properties of the sample. In this

letter, we propose a theoretical approach to electrostatic

probe microscopy that represents a ®rst step to ®ll this gap.

In analogy with previous theoretical work on scanning near-

®eld optical microscopySNOM!,*> we will show that the

EFM image is related to both the topography and dielectric

inhomogeneities of the sample through a response function

which describes all the instrument properties. Our perturba-

@Electronic mail: juanjo.saenz@uam.es FIG. 1. Schematic con®guration of an EFM.
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The presence of surface or volume inhomogeneities in-
duces a change in the electrostatic enewgyh respect to the
reference samplg®

1
DU52 S E"E0d3r, -3l
\Y

whereE, is the reference ®eld aftd g,@(r)2 1#E, being

E the total ®eld. In practice, computing the electrostatic en-
ergy +.e., the force or/and the capacitahdeom Eq.-3! re-
quires the knowledge of the total self-consistent ®eld in the
gap region. These are solutions of a dif®cult Laplace prob-
lem in an open geometry, which can only be solved numeri-
cally. In order to handle this problem we will make use of a
simple perturbative approach which was shown to be useful
in scattering from rough surfacés.

Following a simple Born-like approach one could re-
place the total ®elH in Eq.-3! by the nonperturbed ®elg},.
However, this simple approach is known to give wrong re-
sults in scattering from rough surfac€sOne way to im-
prove this approximation is to take into account the discon-
tinuity of the normal component of the ®eld at the

boundarie¥’ . .
FIG. 2. Hop! Geometry of a typical testing sample. Numericaxact"
9 results can be found in Ref. 18bottom Calculated EFM image at two
1 E@*—f #FEOZ 2 G?’ different constant heights. The force signal is normalized to the force of the
DU52 56 121 71 Eo\O°r. 4l reference surface.
A e~!

The force signalor the capacitandeis directly obtained pared with a typical ®eld gradient length scale, Eg,(ry
from DU throughDF5 ]DU/] z, -or DC5 V2DU/2). Equa- 21,22 2)" Eg,(rs2 1i,2,), the energy will take the simple
tion ~4! is the main result of our letter. This is an important form of

result since the signatmage is related to the topography 1
and dielectric properties of the sample through a response DU’ Pk Bzefrri!-ngrtiZ r,z) 9%, 5!
function which depends only on the tip shape and the geom- So

etry of the reference sample. Although, in general, it is onlywhere

a perturbative result, it is worth noticing that this equation |

gives the exact result for a parallel plate capacitor. Zoi [ " erl2 1dz 8
In order to check the validity of our perturbative ap- ’ el

proach we have compared our results with an extensive s an equivalent surface pro®feconnecting the dielectric

merlcgl ca.lculatlon‘.. In this case, the _reference systgm 'S @:onstant variation and the topography of the sample. The
spherical tip of radiu®k5 50 nm and a at substrate with the signal DF5 ]DU/]z ~or DC5 V2DU/2) will then be a
1

geometry dep|cted in Fig. Zop!. We _have cal_culated the simple two-dimensional convolution between the equivalent
®eld E, in this reference system using the image-charge

method. The force is then computed from E4].and a deri- surface pro®l& 4 and theresponse function of the micro-
vation with respect ta;. The calculated EFM images at two
different constant heightg are shown in Fig. 2. Forces are
normalized to the force on the reference sample. Figure 3
shows scans alongr at X5 100nm +.e., across two
maximd. These results can be compared directly with nu-
merical results obtained by using a self-consistent integral
equation formalismsee Figs. 8 and 9 in Ref. 18Taking
into account the simplicity of our model, the agreement be-
tween the perturbative approach and the exact numerical re-
sults is remarkable.
In order to get a deeper understanding on the nature of
the image contrast, let us consider a common experimental
situation in which a dielectric soft sample is on a substrate
with metallic charactefi.e., ! "~ .! In this case, the electric
®eld parallel to the substrate surface will be close to zero and
the main contribution to the signal will come from the nor- Fig. 3. Force scans corresponding to the images in Fig. 2, afoagX

mal electric ®eld. If the dielectric thickness is small com-5 100 nm-.e., across two maxinia
Downloaded 03 Oct 2001 to 128.151.240.143. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/aplo/aplcr.jsp
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On comparison with the usual propagating scalar waves, the attenuation of diffuse photon density waves gives
rise to important differences in structural information, such as higher spatial resolution in detection at short
distances from objects and deviation from the Rayleigh limit at larger distances. This damping also estab-
lishes a minimum spatial resolution threshold for diffusive waves, which occurs by illumination in continuous
mode, and demonstrates that in most cases spatial resolution is not improved by increasing the modulation
frequency. Assessments of this formulation with numerical simulations of scattering and wave-front recon-
struction in the presence of noise are given. « 1999 Optical Society of America [S0740-3232(99)01706-8]

OCIS codes: 170.5270, 290.1990, 170.7050, 100.6640.

1. INTRODUCTION

The study of light transport through strongly scattering
media has recently received increasing attention because
of its application to medical diagnosis. 2 In particular,
much research is motivated by the ability of optical radia-
tion to diagnose human breast cancer. In many practical
situations the diffusion approximation is suf®ciently ac-
curate to describe visible or near-infrared light transport
within turbid media such as human tissues. '** Several
imaging methods have been analyzed. 2%  The
frequency-domain methods use a light source modulated
at a frequency v. In this case the average intensity
U(r,t) 5 U(r)exp(2iv t)within the turbid medium obeys
the Helmholtz equation with the wave number,

ko5 2m,/D 1 ivn/cD!¥2, 6N}

where m, is the absorption coef®cient, c is the speed of
light in vacuum, n is the index of refraction, and D
5 1/3(m, 1 n® is the diffusion coef®cient. nBis the re-
duced scattering coef®cient, de®ned as (1 2 g)m,, where
g is the average cosine of the scattering angle and m, is
the scattering coef®cient. The solutions U(r) of the
Helmholtz equation are called diffuse photon density
waves (DPDW's). Their wave number ko5 k, 1 ik; is
complex, with k., 5 2p/l g and k; 5 2p/l,, | ; being their
wavelength and |, their decay length. In practice, with
typical modulation frequencies and human tissues, | yisa
few centimeters, whereas the attenuation takes place
within distances shorter than a wavelength. Therefore
DPDW's are strongly damped waves, and their detection
is performed at subwavelength distances from the sources
or the hidden objects, i.e., in the near ®eld. This point is
of great importance as far as the potential spatial resolu-
tion of the technique is concerned. In fact, it is well
known that near-®eld imaging allows spatial resolution
beyond the Rayleigh limit of | /2. The problem of spatial
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resolution with DPDW's has been addressed in both ex-
perimental and theoretical works. 4*1%2% Nevertheless, to
our knowledge, no rigorous and general discussion of this
topic can be found in the literature.

In this paper we present a rigorous theoretical analysis
of the spatial resolution in imaging with DPDW's, and we
illustrate the results by exact numerical simulation of the
scattering of DPDW's by two objects hidden in a turbid
medium. We address spatial resolution in its standard
meaning (see Ref. 24), that is, as the ability to separate
two object points, or ®ne details, on measurement at a
certain distance from the scattering object. As will be
shown, this spatial resolution depends only on the me-
dium in which the wave propagates and on the detection-
plane distance to the scattering object. The limits of re-
covery of the object's optical parameters by inverse
scattering constitute a related subject that should not be
confused with the term spatial resolution. Even so, a
simple backpropagation scheme is presented to demon-
strate the effects of this fundamental limit of spatial reso-
lution. We ®nd an analytical expression for the resolu-
tion limit of DPDW's, and we compare it with that known
for the usual propagating scalar waves (PSW's). This
concept can be applied for estimating the expected reso-
lution in object reconstruction in any particular diffusive
medium. As a consequence, we ®nd that for DPDW's in a
very few realistic cases, one obtains greater resolution by
increasing the frequency of the incident wave, and in
most practical cases illumination in the dc regime yields
the same resolution as in the ac regime. On the other
hand, if the main goal is to estimate the optical properties
of the object, then ac or time-resolved measurements
must be performed. 26 The issue of the effects of noise in
both the resolution and the contrast is also studied, and
exact numerical results are shown. In Section 2 we use
the angular-spectrum representation of the wave ®eld

* 1999 Optical Society of America
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U (r) to derive a resolution criterion for DPDW's. In par-
ticular, we contrast the behavior of DPDW's with that of
PSW's. Then we discuss the transition toward the elec-
trostatic limit, de®ned as the region where the retarded
effects are neglected, i.e., the dc regime for DPDW's. Fol-
lowing Rayleigh's resolution criterion, we ®nd the analyti-
cal expressions for the full width at half-maximum
(FWHM) of both the propagation transfer function and of
its Fourier transform in real space, namely, the propaga-
tion impulse response. Hence these FWHM's give us di-
rectly the estimation of the spatial resolution limit either

in frequency (FWHM of the transfer function) or in real
space (FWHM of the impulse response).

The electrostatic limit can be found as one approaches
the limit of in®nite wavelength ( | 4! ) in the expres-
sions for the two FWHM's. Section 2 also shows a com-
parison of our results with experimental results previ-
ously presented by other authors. As an illustration of
the discussion in Section 2, we present results of scatter-
ing numerical simulations in Section 3. The FWHM ana-
lytical expressions are veri®ed with numerical examples.
We also examine the effect of noise on the spatial resolu-
tion limit and illustrate it with numerical results with ad-
ditive numerical noise, thus demonstrating how the na-
ture of DPDW's allows a ®ltering of the image that
substantially eliminates the noise contribution without
much distortion of this image, and therefore reinforcing
the use of the resolution limit put forward here. The ef-
fect of this ®Iltering on the backpropagation of the scat-
tered wave front is discussed in Subsection 3.C. Finally,
in Section 4 we summarize the main conclusions.

2. THEORETICAL ANALYSIS

A. Angular Spectrum for Diffuse Photon Density Waves
Let us consider a homogeneous multiple-scattering me-
dium separated into two half-spaces z, Oandz. O (see
Fig. 1). It is assumed that the domain z, O contains
sources and scatterers (hidden objects), whereas the do-
main z . O is source free. At any plane z 5 constant,
with z . 0, we can express the scattered wave U (r) by its
angular-spectrum representation of plane waves. That
is, by a superposition of such waves of amplitude A (K)
and wave vector k 5 (K, q), Kku5 kg (Refs. 27+29):

Fig. 1. Geometry used for the angular-spectrum representation.
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Fig. 2. Values of (a) g, and (b) q;, normalized to k,: solid
circles, PSW's; open circles, DPDW's.

U~R,z!5 EA-K!exp@K-Rl igK!z#K, (2)
>

where R5 (x,y), KEF 1 g25 k% ie, K5 (Ky, K,)is
a real vector and q(K) 5 (ko2 2 K@)Y2 For DPDW's,
since kg is a complex number, q(K) 5 g, 1 iq; is always
complex; that is, q,,q; P 0. In Eqg. (2) we choose q,

0 and g;. O so that the ®eld propagates toward z

0 and satis®es the radiation condition at in®nity.

Note that for PSW's in the same geometry (the back-
ground turbid medium is replaced by a transparent di-
electric), ky 5 k, would be real. In this case, q(K) 5 q,
5 (ko?2 KWF)Y? for Ku< k, (homogeneous compo-
nents), and q(K)5 iq;5 i(KE 2 ko?)*¥2 for Ku. kg
(evanescent components). This difference is important
for spatial resolution. For PSW's in a transparent me-
dium, high spatial frequencies W&Kuare exponentially at-
tenuated, whereas low spatial frequencies always propa-
gate. The cutoff frequency &k, is well de®ned and
underlines the diffraction limit of resolution in optical im-
aging. On the other hand, for DPDW's in a multiple-
scattering medium, even without absorption there are al-
ways both propagation and attenuation at any spatial
frequency. This difference is illustrated in Fig. 2, in
which we plot q, [Fig. 2(a)] and q; [Fig. 2(b)] versus W« ufor
both DPDW's and PSW's. The values taken for &, and k;
correspond to breast tissue illuminated with light at a
wavelength of 780 nm ! and a modulation frequency v
5 200 MHz (where a 2 p factor is assumed), with param-
eters | o5 7.53cm, 1,5 0.066cm, m, 5 0.035cm?!, nB
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5 15cm?!, and n 5 1.333. Figure 2 shows that for
PSW's the regions of propagation ( \(Ku< k,) and attenu-
ation (WKu. k,) regimes are clearly separated; however,
for DPDWS', g, and q; are of the same order of magnitude
for Ku. k,, so that there is no sharp transition between
these two regimes. Nevertheless, as shown by these ®g-
ures, DPDW's behave asymptotically like PSW's for Ku
@ k.

B. Transfer Function and Impulse Response
From Eq. (2) one obtains

1
A Klexp@y~K!'!z#5 PH EU~R, zlexp2iK « R!dR.
p- 2

®)

Equation (3) shows that A (K)exp@(K)z# is the two-
dimensional Fourier transform of the wave ®eld U (R, z)
in the plane z 5 constant. The spatial-frequency ®lter
F(K,z) 5 exp@(K)z# constitutes the propagation trans-
fer function.

The amplitude and the phase of F(K, z) are repre-
sented in Fig. 3 for a two-dimensional geometry, namely,
K5 (K,0), and for several propagation distances z.
Both transfer functions for PSW's (left column) and DP-
DW's (right column) are shown. For DPDW's the values
of k, and k; correspond to the breast tissues' parameters
as in Fig. 2.

Fig. 3. Amplitude [(a) PSW's and (b) DPDW's] and phase [(c) PSW's and (d) DPDW's] of

z5 | ; opencircles, z5 0.5 ; stars, z5 0.1l ; squares, z5 0.05I .

Ripoll et al.

For PSW's the propagating and attenuation regions are
clearly visible. For Wu< k, the transfer function is only
a phase factor, whereas for \Ku. k., itis a real low-pass
®lter. For large Ky one has q(K). WKy so that the
transfer function is exp( 2 &K w), and high spatial frequen-
cies are exponentially attenuated. Thus for PSW's a
given spatial frequency K has a decay length 1/ Ky and
the cutoff frequency in the plane 2z 5 constant is 1/z.
These properties are well known in near-®eld optics. 3°

However, for DPDW's, the behavior of the transfer
function is substantially different from that of PSW's. As
we already noticed in Fig. 2, now there are no longer two
separated propagation and attenuation regions. For a
given observation distance z, the amplitude has its maxi-
mum at K5 0 and decreases for Ku. 0. The peak
value tends monotonically to zero as z increases, owing to
the factor exp @ q;(K)z# whereas its width broadens.
The phase varies less abruptly than in the case of PSW's.

A description in direct space is also useful for discuss-
ing the spatial resolution conveyed in DPDW's. We in-
troduce the impulse response H (R, z), namely, the Fou-
rier transform with respectto K of F(K) 5 exp@(K)z#

H~R,z!5 EF~K,z!exp~iK-R!dK. (4)
>

In terms of this impulse response, from Eq. (3) with z
5 0 and from Eq. (2), the wave function can be written as

F (K, z) for different values of z: solid circles,
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Fig. 4. Amplitude of H(R, z) for (a) PSW's and (b) DPDW's for different values of z: solid circles, z 5 | ; open circles, z5 0.5l ; stars,

z5 0.1l ; squares, z5 0.05I .

UR,z!'5 EH~R2 R8 z!U~-R8 z5 0!dR8 (5)
>

The FWHM of the amplitude of the impulse response
yields the limit of spatial resolution in the wave ®eld
U(R, z) on the plane z 5 constant. As an illustration,
the amplitude of H(R, z) for a two-dimensional con®gu-
ration @ 5 (x, 0)#is shown in Fig. 4, at different values
of z, for both DPDW's and PSW's. As z tends to zero, H
tends to a delta function. It is also important that, at a
given z, the width of this function is smaller for DPDW's
than for PSW's. The consequences of this fact are dis-
cussed next.

The features of Figs. 3 and 4 can be further quanti®ed
in the following way. The FWHM of both the transfer
function and the impulse response can be evaluated ana-
Iytically. In the case of PSW's, the FWHM of the transfer
function is obtained from the condition

FK, zIu5 exp@ ~KWU 2 ky2z!Y2#5 1/2, (6)
which, by taking logarithms on both sides, gives us
WKE 2 k25 ~n2/z!12, )

It follows that the FWHM of F (denoted by DKy and
that of H (denoted by Dd) are, respectively,

DWKu5 2@2 1 4n2/z!2#2, 8)
Dd/l o5 126l 1 @r2/2pz/l ol #%Y2, 9)

where we used the relationship between the FWHM of a
function ( H in our case) and that of its Fourier transform
(F): Dd5 2p/DKu

Dd/l o is the spatial resolution limit in units of the
wavelength. When zincreases, we see in Eq. (9) that the
spatial resolution limit tends to | (/2, that is, we retrieve
the well-known Rayleigh limit, for z @1 o, of optical im-
aging. In frequency space, Eq. (8) shows that as z in-
creases, DK utends to 2 k.

In the case of DPDW's, the value of K that brings the
normalized transfer function to its half-maximum is given
by

K, zlu

1
— 5 ex K12 ki#z9 —, (10
F-K 5 0,z!u PR @ ' 2 (10)

Fig. 5. Spatial resolution limit  Dd in centimeters as zincreases,
for the following cases: DPDW's in breast tissue ( m,
5 0.035cm??, 85 15cm?Y):  solid curve, v 5 0 [dc]; dotted
curve, v 5 100MHz (l,5 13.38cm); dashed curve, v
5 200MHz (145 7.53cm); dotted-dashed  curve, v
5 300MHz (1 35 5.60cm). PSW's: squares, dc; solid circles,
I o5 13.38cm; open circles, 1 35 7.53cm. In all cases n
5 1.333.

so that, proceeding as with the PSW's, the FWHM of F
and H are, respectively,
kiz krz Gz

In2
DWKu5 2Bi 1 —Dl k22 k2 ——————
z ~k; 1 In2/z!

(11)
Dd 1 |& In2 D &D
—5 — 1 2 11
I o 2 a 2pzll a
S In2 Dz 1/2
2 J1 . (12)

2pz/l,

As z increases, z @1 5, we see in Eq. (11) that DKu
tends to zero. Also, Eqg. (12) shows that Dd/I ¢ has no up-
per limit and tends to in®nity as  z increases, monotoni-
cally worsening the resolution. Hence, in contrast to the
case of PSW's, all components of spatial frequencies K al-
ways propagate into z. 0, even though attenuation of
the signal exists in the whole K range owing to diffusion.

The spatial resolution limit is seen in Fig. 5, which
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shows the values of the spatial resolution limit both for
DPDW's and PSW's versus the observation distance z.
However, since in practical cases the values of z are small
(of the order of a few centimeters), we ®nd in Fig. 5 that in
many cases the loss of resolution as z increases is less
critical for DPDW's than for PSW's (compare in Fig. 5 the
cases with | 5 7.53 cm for PSW's and DPDW's in the in-
terval [0, 3 cm], for example).

C. Electrostatic Limit
Since DPDW's are damped waves, the detection of the
wave ®eld U (R, z) is usually done in the near ®eld, i.e., at
subwavelength distance from the source object (consid-
ered either as a primary source or as a scattering object).
In this range, if all distances involved are much smaller
than the wavelength, retardation effects can be neglected.
This property is well known, for example, in near-®eld
optics.®®  When retardation effects are neglected, one is
in the domain of the electrostatic limit.

At a given frequency v, this electrostatic limit is ob-
tained when | ;! Then, for PSW's, the limit of reso-
lution within the electrostatic limit can be obtained from

Eqg. (9):
Dd 5 ~p/in2!z. (13)

Whereas for DPDW's, we ®nd from Eg. (12) that the reso-
lution limit in the electrostatic limit is

1 In2 D 1/2
Dd5 — 1 —J2 . (14)
a 2pz a

2

It is interesting to note from Egs. (13) and (14) that, in
the electrostatic limit, resolution does not depend on the
background medium for PSW's, whereas in the case of
DPDW:'s, resolution still depends on the background me-
dium, through the decay length 1,. In the limiting case,
in which the absorption coef®cient is negligible (i.e., m,

0), the expression Dd for DPDW's does not depend on
the background medium, and we then obtain Dd ; z, as

Fig. 6. DPDW's spatial resolution limit ~ Dd in centimeters as we

increment z, in dc regime (v 5 0), for the following cases: solid

curve, breast parameters m, 5 0.035cm??, 85 15cm??; dotted
curve, abdomen parameters m, 5 0.09cm?!, nB5 9.5cm?%;
short-dashed curve, back parameters m, 5 0.09cm?!, nB8
5 10.5cm??; long-dashed curve, white matter m, 5 0.22 cm??,
mB5 9.1cm?!;  dotted-dashed curve, grey matter m,
5 0.27cm?%, 85 20.6cm?l. Inall cases n 5 1.333.
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previously found by Ref. 25 in the time domain. The
transition to the electrostatic limit when z decreases can
be clearly seen in Fig. 5, for both DPDW's and PSW's. As
seen, at low z, one does no longer increase the resolution
by lowering the incident wavelength, so that the behavior
is similar to that observed with constant illumination,
i.e.,,dcregime (v 5 0). However, it is important to note
that, in the case of DPDW's, the electrostatic region ex-
tends to higher values of z and therefore is a good ap-
proximation even at modulation frequencies of the order
of v 5 100 MHz. We also observe that, for modulation
frequencies lower than 100 MHz, no increase in spatial
resolution is obtained in ac, and therefore it is cheaper,
and experimentally simpler, to perform measurements in
dc if one is interested only in the location of the objects,
that is, in obtaining an image. For modulation frequen-
cies higher than 100 MHz we ®nd that, even though the
spatial resolution limit increases very quickly for such
frequencies, the decay length |, is considerably smaller
and therefore the attenuation is much stronger, thus
making detection at practical distances dif®cult.

The analysis presented here can be used to discuss ex-
perimental data, as those reported in Ref. 8. In Fig. 2 of
Ref. 8, the authors characterize two diffusive objects with
a relative diameter of . 0.1l ;,, 3.26 cm apart, embedded
in a 0.75% Intralipid solution, illuminated by a modu-
lated source of v 5 100 MHz (in this case |,. 15.12cm
andl,. 7.7cm). If we take alook at our Fig. 5, approxi-
mating the diffusive parameters of the Intralipid solution
to those of breast tissues, we see that two objects 3.26 cm
apart can be resolved as long as we are measuring at dis-
tances z < 2 cm. This resolution is what is observed in
Fig. 2 of Ref. 8, in which the measurements are performed
at a distance of 2 cm and are therefore within the limit of
spatial resolution discussed above.

An important consequence of the existence of this elec-
trostatic limit is that measurements in dc (i.e., at v5 0),
performed within the domain of validity of this limit, give
the same spatial resolution as measurements in ac. To
illustrate this point, we show in Fig. 6 the values of the
spatial resolution limit Dd as z increases in several hu-
man tissues, corresponding to a dc illumination. These
curves give the spatial resolution that can be reached at a
given observation distance z, in each situation. If we
once again refer to the situation depicted in Fig. 2 of Ref.
8, we see that at a distance of 2 cm, it is possible to re-
solve two objects 3.26 cm apart by measuring in dc (see
the solid curve in Fig. 6). Thus we infer that in the case
of Ref. 8, measurements in dc would have led to the same
spatial resolution.

3. SCATTERING NUMERICAL RESULTS

To illustrate the discussion of Section 2 and to check the
resolution criteria derived above, we now present rigorous
numerical results on scattering of DPDW's. The geom-
etry under consideration is two dimensional and depicted

in Fig. 7. It consists in two diffusive in®nite cylinders
(the hidden objects), with axis along QY, both with radius
R and separated by a distance d. The cylinders are em-
bedded in an in®nite, homogeneous, diffusive medium.
Constant index of refraction n 5 1.333 is supposed
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throughout all the media. A point source with modula-
tion frequency v is located at r¢y,c, and the detection is
performed in a plane z5 Zges- In this geometry we
solve the diffusion equation without any approximation.
The method uses a surface-integral formalism, which is
an extension to diffusive media of the surface-integral
method used in electromagnetic scattering from arbitrary
interfaces. 31*33  The procedure is described in Ref. 34 in
the case of diffusive scatterers in diffusive media and in
Ref. 35 when index-mismatched interfaces are dealt with.
This method consists basically in applying Green's theo-
rem to the diffusion equation for the average intensity
and to the corresponding equation for the Green function,

Fig. 7. Scattering geometry.

Fig. 8. Scattered amplitude corresponding to two diffuse cylinders of
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thus obtaining a closed set of coupled surface-integral
equations. These integral equations are numerically
solved without approximations, the numerical scheme be-
ing reduced to the solution of a linear system of equa-
tions. This method allows us to deal with multiple-
scattering objects in interaction, and also with index-
mismatch domains, although this case is not considered
now (for a discussion on boundary conditions of DPDW's
see Refs. 35 and 36, for example). In the following, we
shall be interested in the amplitude of the scattered
DPDW, de®ned by wW9u5 w 2 Uy where U repre-
sents the total DPDW on interaction with the objects and
U {n®) corresponds to the incident DPDW, namely, that
created by the point source in the absence of the two ob-
jects.

A. Diffuse-Wave Images of Two Hidden Objects
Following experimental procedures (see, for example,
Refs. 37 and 38), we have considered a point source emit-
ting light at a wavelength of 780 nm, with a modulation
frequency v 5 200 MHz. The parameters chosen for the
background medium correspond to breast tissue, with
m, 5 0.035cm2! and nB5 15cm?l.  For the cylinders,
we have used the parameters of a breast tumor, m,
5 0.24cm?!and n85 10cm?l. In all cases, the refrac-
tive index in the mediais n 5 1.333. To reach numerical
convergence, owing to the small sizes of the cylinders un-

R 5 0.1cm with breast tumor parameters m, 5 0.24 cm?!, nB

5 10cm??, embedded in breast tissue ( m, 5 0.035cm??!, mB5 15cm??), with the source located at r gy 5 (0, 2.0 cm) with modulation
frequency v 5 200 MHz, separated by distances(a) d 5 1cm, (b)d 5 1.5cm, (c)d 5 2.0cm, (d)d 5 2.5 cm for the following Z detector
distances: solid curve, Zgeeq 5 0.2cm; dotted curve, Zggee 5 0.4 cm; short-dashed curve, Zgeeq 5 0.6 cm; long-dashed curve, Zgeect
5 0.8cm; dotted-dashed curve, Zgger 5 1.0cm. Inall cases n 5 1.333.
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Fig. 9. Values of the noise-free contrast G (%) as we vary the
detector-plane distance zgee IN the case of two cylinders of ra-

dius R5 0.1cm, with breast tumor parameters my
5 0.24cm?!, nB5 10cm?!, embedded in breast tissue ( /m
5 0.035cm??, 785 15cm??), with the source located at rgoyrce
5 (0,2.0cm) with modulation frequency v 5 200 MHz, sepa-
rated by the following distances: solid curve, d 5 1 cm; dotted
curve, d 5 1.5cm; short-dashed curve, d 5 2.0 cm; long-dashed
curve, d 5 25cm. Inallcases n 5 1.333.

der study, we have used a discretization ds 5 0.004cm
for the surface of the cylinders.

Figure 8 shows the amplitude of the scattered DPDW,
W (59y at different detection planes and for different cyl-
inder distances, when the two diffusive cylinders have a
radius R 5 0.1cm. As expected, the farther apart the
cylinders are from each other, the better they are re-
solved, and as we locate the detection plane farther away,
this resolution power diminishes. To compare these re-
sults with the conclusions of the previous section, we refer
again to Fig. 5, for breast tissue illuminated with a modu-
lation frequency v 5 200MHz (dashed curve). In the
range of cylinder distances represented in Fig. 8, i.e., for d
from 1 cm to 2.5 cm, Fig. 5 indicates that, to be within the
spatial resolution limit, we must place the detection plane
between 0.5 cm and 1.5 cm. This is precisely what is ob-
served in Fig. 8. If we look at Fig. 8(a) for the case of
Zgetect © 1 €m, we ®nd that for a separation distance d
5 1cm, the objects are not spatially resolved. In this
ideal noiseless situation, the cylinders start being re-
solved at a detector-plane distance Zzgget 5 0.4 cm [dotted
curve in Fig. 8(a)].

Once data are above the spatial resolution limit, it is
convenient to de®ne another quantity that allows us to
discriminate the image signal from a certain noise level
present in the data, i.e., the contrast. It is also useful, in
order to compare with previous de®nitions of contrast, to
introduce ®rst a noise-free contrast (nf), which we ex-
press in percentage (%) as

~SC! ~SC!
w max uz2 Ww min u

3 100. 15
UJmax~SC!U1 LlJmin ~SC!U ( )

Gy %! 5
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In Eq. (15) W Ouis the noise-free scattered amplitude,
and W, ®uis the minimum value of W SOy between
maxima W ,,,,S%u In Fig. 9 we plot this noise-free con-
trast G, for two cylinders, in the same situation as in Fig.
8, versus the detection distance Zggei- The modulation
frequency is 200 MHz. Results for different separation
distances d of the two cylinders are shown. These curves
give us the basis to deal with more realistic data, that is,
with noise. Calculations for noise-free scattering data
from cylinders with smaller radii R are not presented
here because the resulting contrast curves are similar to
those of Fig. 9. This similarity occurs because, to the ex-
tent that noise is not taken into consideration, the main
effect of reducing the size of the scattering object is a de-
crease in the amplitude of the scattered wave, but the re-
duction has no effect in the resolution limit. An exten-
sive study on the issue of noise can be found in Ref. 39.
However, to derive useful consequences when Fig. 9 is ap-
plied to actual (noisy) experimental data, a contrast
threshold must be introduced into Eq. (15) and, thus into
the curves of this ®gure, below which no signal can be dis-
criminated from the noise background. The effect of
noise, and the threshold that it produces, is next ad-
dressed.

Fig. 10. Values of (a) Bee(K,z5 1cm), (b) UGO(K,z
5 1cm), (€)Bh(K,z5 1cm) 5 USOK, z5 1 cm)N (K) for a
detector-plane distance zgeet 5 1 cmin the case of two cylinders

of radius R 5 0.1cm, with breast tumor parameters m,
5 0.24cm?!, nB5 10cm?!, embedded in breast tissue ( m,
5 0.035cm??, mB5 15cm??), with the source located at I gyyce
5 (0,2.0cm) with modulation frequency v 5 200 MHz, sepa-
rated by a distance of d 5 25cm. N (K) is a Hanning ®Ilter

with K¢ 5 15k,. Noise parameters: /5 10% and s; 5 10E.
In all cases n 5 1.333.
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Fig. 11. Normalized scattered amplitude in the case of two cylinders of radius
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R 5 0.1cm, with breast tumor parameters

5 0.24cm?!, mB5 10cm?!, embedded in breast tissue (m 5 0.035cm2!, mB5 15cm?l), with the source located at rgoyce
5 (0, 2.0 cm) with modulation frequency v 5 200 MHz, separated by a distance d 5 2.5cm in the following cases. (a) Measured at a
plane-detection distance of Zgeet 5 1 €M with noise parameters /75 10% and s; 5 10E. (b) Measured at a plane-detection distance of

Zgetect D 1.5 cm with noise parameters /45 30% and s; 5 10E. (c) Solid curve, after ®ltering by a Hanning ®lter with
image obtained in (a); dotted curve, direct measurement without noise at

Ket 5 15k, the
Zgetect D 1 CM; solid circle, after ®ltering by a Hanning ®lter

with K¢, 5 15k;, an image with noise parameters /5 30% and s; 5 10E. (d) Solid curve, after ®ltering by a Hanning ®lter with
Keit 5 15k, an image with noise parameters /5 10% and s; 5 10E; dotted curve, direct measurement without noise at  Zgeect

5 1.5cm; solid circle, after ®ltering by a Hanning ®Iter with

B. Effects of Noise on Resolution

Let U .ise b€ @an image containing additive noise in ampli-
tude N and in phase j. We express it in terms of the
DPDW scattered by the object U as

Uhoise R, 2! 5 @JSC!"R,Z!U]. N-R!#
3 expf@ R,z!'1 j-R!'# (16)

where f is the phase of the scattered DPDW. The ran-
dom variables N(R) and j(R) are Gaussian distributed
with correlation length T 5 0 (i.e., white noise) and root
mean square sy and s;, respectively. The noise-to-
signal ratio /(%) of this image, in percentage, is intro-
duced as

A%! 5 sy /W e >'u3 100, a7

W 11 S9ubeing the signal peak amplitude. Then we de-
®ne the contrast C(%) in the presence of noise as

C%! 5 Gy%!2 h%!. (18)

With this de®nition of contrast, /s the aforementioned
contrast threshold, as shown in Fig. 9. That is, resolving
two objects requires placing the detector at such a dis-
tance z that the contrast remains above /4. Once the larg-
est detection distance z that yields a given resolution

Kt 5 15k,, the image obtained in (b). Inallcases n 5 1.333.

limit Dd has been derived from Fig. 5, the maximum data
uncertainty / that allows observation of signal contrast,
and hence details with this resolution Dd, can be found
from Fig. 9.

To estimate the scattered signal from the noisy data
U hoises the signal's high-frequency components are ®I-
tered out:

cut =«
UgrR, 2! 5 E BhoiseK, ZIN Klexp~K « RIdK,
2 Keut
(19)

where Ugy, is the ®ltered image and (K, z) is the
K-Fourier transform of U ise(R,2). K¢y is the cut-off
frequency. N denotes a low-pass ®lter. In our computer
simulations, this is a Hanning ®lter, which we de®ne as

1 1 Ky 1 1 K,
N~-K!5 =1 —co p =~ 1 —co p
27 2 at, 27 2 o,

(20)

bearing in mind that in the case of a two-dimensional con-
®guration K 5 (K, 0), Kot 5 (Kgyts 0).

Owing to high damping and low re ectivity, DPDW's
are not subjected to strong interference processes as
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PSW's are. Therefore the scattering and diffraction pat-
terns of DPDW's do not present high-frequency interfer-
ence fringes, which means that the Fourier spectrum of
DPDW's is mostly concentrated at frequencies K < Ky}
thus the ®ltering neither substantially alters the image
nor appreciably reduces resolution. Then, after ®ltering,
one can estimate that Gy (%) . Gy (%), Ggi: being the con-
trast of W “u  This can be seen in Fig. 10 in which we
plot the values of ﬂoise(K), E?(K, z), and 6\®“(K, z),
where 6\®,t(K, z)5 @‘noise(K, z)N(K) for z5 1cm and
Ket 5 15k,. These quantities are computed for data
from two diffusive cylinders with the same parameters as

in Fig. 8, radius R 5 0.1cm, separated a distance d
5 2.5cm, with the detection plane at  Zgeet 5 1.0Ccm. A
numerical noise has been added to the scattered ®eld, as
described by Eqg. (16). The noise amplitude N(R) has a
rato /5 10%, and the phase noise has s; 5 10E. A
comparison of Figs. 10(b) and 10(c) con®rms that this ®I-
tering does not appreciably remove information in the
spectrum, as we believe should be the case in most prac-
tical situations with DPDW's. The corresponding scat-
tering amplitudes in real space, both before and after ®I-
tering, are shown in Fig. 11.

Fig. 12. Normalized scattered amplitude backpropagated onto

Ripoll et al.

As regards the simulation of Fig. 11, notice that, ac-
cording to Fig. 9, the contrast that we can expect in data
takenat z5 1cm [Fig. 11(a)land z 5 1.5cm [Fig. 11(b)],
for a cylinder separation distance d 5 2.5cm, is approxi-
mately 20% and 10%, respectively. In Fig. 11(a) we have
h'5 10%, and therefore we still have 10% of signal con-
trast above the threshold for z5 1cm. However, in Fig.
11(b) we have considered a rather extreme situation in
which 25 30%, which inthe z5 1.5cm case places the
contrast under the threshold. Even so, once the image is
®ltered, we ®nd that in the z5 1cm case [Fig. 11(c)],
which is above the threshold, the ®ltered image is very
close to the noise-free image. Surprisingly, this outcome
occurs also for the case z5 1.5cm [Fig. 11(d)], which is
under the threshold for both values of 4, i.e., 75 10%
and 75 30%. That is, even in very unfavorable signal
detections, we ®nd no effective threshold for the ®ltered
image amplitude.

C. Backpropagation

Let us now see the effect of the characteristics of the de-
tected signal discussed so far, on the wave ®eld close to
the scattering objects. To reconstruct this wave front, we

z 5 0.2cm in the case of two cylinders of radius R 5 0.1 cm, with breast

tumor parameters ( m, 5 0.24cm??, nB85 10cm??), embedded in breast tissue ( m, 5 0.035cm??!, 785 15cm??), with the source located
at reouee 5 (0, 2.0 cm) with modulation frequency v 5 200 MHz, separated by a distance d 5 2.5cm, for the following. (a) Solid line,

noise-free image taken at zyqet 5 1.0 cm backpropagated with K., 5 10k,; dotted curve, direct measurement at  Zgget 5 0.2cm.  (b)
Solid curve, noise-free image taken at zget 5 1.5 cm backpropagated with K., 5 10k,; dotted-curve, direct measurement at  Zggect
5 0.2cm. (c) Solid curve, image taken at Zgeet 5 1.0cm with noise parameters  s; 5 10E, #5 10% backpropagated with K,
5 10k.; dotted curve, image taken at Zgereet 5 1.0 cm with noise parameters s; 5 10E,/ 5 30% backpropagated with K¢, 5 8k;. (d)
Solid curve, image taken at  Zgeret 5 1.5 cm with noise parameters s; 5 10E, /75 10% backpropagated with K., 5 7k;; dotted curve,
image taken at Zgee 5 1.5 cm with noise parameters s; 5 10E, /75 30% backpropagated with K. 5 6k,. Inall cases n 5 1.333.
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now backpropagate the image from the detection plane,
which is done by means of Egs. (2) and (3). A detailed
description of this procedure can be found in Ref. 7. To
carry out the backpropagation, we have ®Iltered the back-
propagated image in K space once again, by means of a
Hanning ®lter.

In Fig. 12 we show the backpropagated amplitudes
from the detection planes z5 1cmand z5 1.5cm, onto
the plane z5 0.2cm. This backpropagation is per-
formed for all cases shown in Fig. 11, i.e., noise-free and
®ltered images. As stated above, the noise parameters
for data shown in Fig§. 12(c) and 12(d) are s; 5 10E, /7
5 10% and s; 5 10E,/# 5 30%, respectively. As shown
in Fig. 12, and as already mentioned before, since the dif-
fraction patterns from the scattered waves at z5 1cm
and z5 1.5cm do not present appreciable interference
fringes, the backpropagation in these cases basically con-
stitutes an increase in contrast. Once again, we can see
in Fig. 12 that the backpropagated ®Iltered images corre-
sponding to /75 30% are approximately the same as
those corresponding to # 5 10%. Also, since the image
taken directly at z5 0.2cm does not have a high-
frequency contribution, the backpropagated image is a
very good approximation to this image [see Figs. 11(a)
and 11(b)]. The reason for this is that the frequency cut
for the ®lter does not have to be very high for retrieving
information from the reconstructed wave. The asymme-
try of the backpropagated noisy images with respect to  x
5 0 is due to residual noise in the ®ltered images at the
detection z plane [cf. Figs. 11(c) and 11(d)]. We wish to
emphasize that we have not undertaken any additional
processing of these data to ®Ilter out this effect. In prac-
tice, however, an averaging over several image record-
ings, together with any standard apodization procedure
on these images before the backpropagation operation,
can still considerably improve the results shown in Figs.
12(c) and 12(d). We do not pursue these aspects any fur-
ther, since these are accessory to the main purpose of the
present work.

4. CONCLUSION

In this paper we have addressed the variation of the
transfer function and the impulse response on propaga-
tion of DPDW's and have compared it with the known
case of PSW's. We have put forward an analytical ex-
pression for the spatial limit of resolution of DPDW's,
which is given by the FWHM of the impulse response.
This spatial resolution has been studied versus the propa-
gation distance from the scattering object, and its electro-
static limit has been discussed for DPDW's on the basis of
near-®eld optics considerations. To illustrate the use of
this limit of spatial resolution, we have presented an ex-
act numerical computation, within the diffusion approxi-
mation, of the scattering of DPDW's from two cylinders
with breast tumor parameters embedded in breast tissue.
The effect of noise on the resolution contained in these
data has been included.

The issue of whether it is more convenient to measure
DPDW's in ac or in dc has been discussed as regards this
spatial resolution limit. We demonstrate that in many
practical cases, measuring in ac does not increase spatial
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resolution, and therefore with spatial resolution (i.e., ob-
taining an image) one can take advantage of the cheaper
and experimentally simpler measurements in dc. Once
again we must state that if the main concern is to extract
the diffusive properties of the objects, then ac or time-
resolved measurements must be performed, as shown in
Ref. 26. Detection of DPDW's is performed in the near
®eld, and we show that in the majority of cases the con-
tribution of the electrostatic limit dominates. On the ba-
sis of these results, we recommend the employment of
this resolution-limit expression as a guide before under-
taking experimental measurements. When measuring in
dc, we obtain a lower value of the noise-to-signal ratio.
This value increases as the modulation frequency grows.
Therefore we conclude that, in most cases, measuring in
dc not only does not reduce the spatial resolution but di-
minishes the noise-to-signal ratio, thus making detection
of smaller objects more feasible.

The theory presented here constitutes a rigorous math-
ematical formulation that makes possible the under-
standing of the information content on propagation of DP-
DW's and underlines the interpretation  of
backpropagation results such as, for example, those of
Ref. 7. Speci®cally, we have found that, owing to the
high-damping property of DPDW's, their spectra is con-
centrated in the low-spatial-frequency range. Therefore
considerably high noise levels can be ®ltered out with
minimum loss of information, that is, of resolving power.
We have shown that this is true even when the detected
image contrast is under the threshold imposed by noise.
That is, after ®ltering, we ®nd no effective contrast
threshold for the DPDW data.
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We present a theoretical and numerical study of the scattering of a diffusive wave by an object
embedded in a semi-in®nite substrate. We derive exact integral equations for the scattered wave,
usingGreen's theorem and appropriate Green's functions. We show that two methods can be used,
leading either to a purely surface-integral formalism or to a formalism involving a volume integral
and a surface term. In the ®rst case, we derive an extinction theorem for diffusive waves and present
an ef®cient numerical procedure to solve exactly the scattering problem. In the second formalism,
physically more explicit, we apply an improved Born approximation, and study its range of validity

by comparison with rigorous numerical results. Our approach also suggests a simple way to
determine the depth of the object. In this article, we focus on thermal waves. Yet the formalism can
be applied to photon-density waves. 2000 American Institute of Physics.

@0021-897900108811-3¢

I. INTRODUCTION posed yet. In the bustling ®eld of DPDW, the direct problem
has been addressed with various methods like ®nite
Thermal wave scattering has received a lot of attentiorelement&! and Green's theorerif. The extinction theorem
in the past 20 years as a tool for noninvasive detection anfkads to a surface integral formalism worth noting, which is
imaging of defects buried in the bulk of an opaque matérial. suitable for the exact numerical solution of the direct
It has applications in numerous ®elds, such as microelectroproblem’ Green's techniques in the frequency domain have
ics, material process control, or environmental monitofing. also been applied to thermal wave scatteffy'*More re-
Thermal waves are usually generated by irradiating the sureently, integral equations have been used to derive perturba-
face of an absorbing material with a light beam of harmoni-tive solutions based on the Born approximattdrthis ap-
cally modulated intensity. The absorption of light in a thin proximation is valid when the scattered ®eld is a small
layer at the surface generates a local temperature “uctuatiogorrection to the incident ®eld and leads to a simple inver-
that diffuses into the bulk. Imaging techniques rely on measion scheme by deconvolutidf.However, because of the
surements of the surface temperature ®eld to detect subsuliscontinuity of the gradient of the temperature ®eld on the
face heterogeneities. For the modulated part of the temper&oundary of the object, a dif®culty arises in properly ap-
ture ®eld, the heat diffusion equation takes the form of theroximating the normal derivative of the temperature ®eld.
Helmholtz equation with a complex wave numBefrom a The present article is devoted to the presentation of an
theoretical point of view, thermal waves are very analogougf®cient, exact numerical solution of the heat-diffusion equa-
to diffuse photon-density waveDPDW! in turbid media tion in the frequency domain. Surface integrals are solved by
that have received increasing attention in the past few yearsa moment method inherited from electromagnéfiesd pro-
In the frequency domain and under the diffusion approximavide an exact solution of thermal wave scattering by an ar-
tion, the photon-density transport in such media is also govbitrary object. The article is organized as follows: Secs. I
erned by the Helmholtz equation with a complex waveand Ill are devoted to the derivation of surface-integral equa-
vector>® Although the present work refers to thermal waves tions for the temperature ®eld and to the description of the
its formalism can easily be extended to DPD\8tudies of  numerical procedure. For numerical reasons, we have de-
thermal waves and DPDW have the same goal of detectingcribed and implemented this procedure in a two-
and imaging objects hidden in an opaque or turbid environdimensional2D! geometry, but we provide equations to
ment. Solving the direct problem is essential in this contextsolve the three-dimensione8D! problem as well. An alter-
either for direct imaging or for inverse scattering, since anynative formulation involving both volume and surface inte-
inversion method is based on a particular formulation of thegrals is outlined in Sec. IV. Although less convenient for
direct problenf*10 exact humerical solution, this formulation allows us to dif-
Apart from the case of one-dimensiondD! structures ferentiate the role of thermal conductivity variations from
where an analytical solution can be derived, the direct probthat of heat capacity variations in the scattering process and
lem for thermal wave scattering has to be solved numericallys well suited for the Born approximation. Special care is
and no exact solution for arbitrary scatterers has been pragiven to correctly evaluate the dominant term in the ®eld
normal derivative. Numerical simulations in Sec. V are used
2Author to whom correspondence should be addressed; electronic maif©® Validate the exact solution and to check the range of va-
remi@em2c.ecp.fr lidity of the Born approximation. Simplistic analytical crite-
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FIG. 2. Notations and surfaces used for the application of Green's theorem.

FIG. 1. Geometry of the system. The substratieject has a thermal con-
ductivity k, (k) and a thermal diffusivityp, (D,). The interfacez5 0 is
heated by a plane wave with intensymodulated at a frequenay. T,~ud " I50. -5l

The heat ux is also continuous at the interfafe0, and we

ia of validi f thi . . | dered. W assume thatd! the radiative and convective losses at
ria of validity of this approximation are also considered. €5 02 and 2! the conductive ux atz5 0% are negligible

®nally obtain a simple inversion scheme to estimate th‘?:ompared to the laser "ux. This additional condition is
depth of buried objects.

written
ITs | |
Il. STATEMENT OF THE PROBLEM ]—Z~x,y,25 o!5 0. 6!
We consider a at interface separating a vacutnme- Using Green's theorem and appropriate Green's func-

dium z, 0) from a semi-in®nite substratenediumz. 0)  tions, we will now transform Eq-2!, together with the
with uniform thermal conductivity; and diffusivityD, -see  poundary conditions Eqs3!+-6! into a set of integral equa-
Fig. 1. An object of arbitrary shape, with uniform thermal tions, involving either surface integratSec. Illl, or a sur-
conductivity k, and diffusivity D, is embedded in the sub- face integral and a volume integrebec. IM. We will see
strate~subsurface objett This system is heated by a laser that the ®rst formulation is suitable for numerical calcula-
beam illuminating the interface5 O, the beam intensit®  tions, whereas the second approach is helpful for a physical
being modulated at a frequenay. The total temperature analysis of the scattering problem. We note that the problem
®eld at a given point5 (x,y,z) with z. 0 can be written  de®ned by Eqgs2!+-6! is very similar to the problem of
T 115 Tyl Re@~rlexp2 ivt!# 1 photon—densit_y waves. It suf®ces to replace the_ tgmperature
_ ) _ T by the density of photons; the thermal conductivitk by
whereT, is a uniform background and(r) is the complex  the inverse of the transport length, and the thermal diffu-

modulated heating of the surface. of light.

In the half-space. 0, the temperature ®eldr) obeys

the partial differential equation

oy I1l. SURFACE INTEGRAL FORMALISM: EXTINCTION

1 2Tj~r!1 kaTJ-~r!52 T 2 THEOREM FOR THERMAL WAVES
! A. Green's theorem
wherekas iv/Dj, j5 (1,2), andT; denotes the temperature
®eld evaluated at a point inside the substrgiel() or inside
the object {5 2). Q is the volume heat source produced by
the absorption of the laser beam.
foursbtz)l\ljlr?galriq. 2! for j5 (1,2) requires the speci®cation of Eul 2y2 v1 241d3r5 5]—\/2 V]—UDZF. ~/!
y conditions. The temperature ®eld and the heat %7 s ]n In

“ux are continuous at the surfa&, of the buried object. For

Let u(r) andv(r) be arbitrary scalar ®elds de®ned in a
volume V bounded by a closed surfa& Green's second
identity states that

rons, where the normath is chosen to beutwardfrom the volume
V.
Ti~15 Tol, 3! With reference to Fig. 2, we denote B and S, the
1T, 1T, volume and the surface of the object, respectively. The
k1]—n~r!5 k2]—n~r!, ~4 complementary volume, enclosed by the plaGe) ~denoted

by S,), the surfaceS, and an hemispher&. of in®nite
where]/]n5 ne! | n being the outward or inward normal to radius is denoted by,. We will apply Green's theorem in
the surface. Moreover, the temperature ®eld is unperturbéd;, andV, successively, using two different Green's func-
forud ° inside the medium tions G; andG,. Let us ®rst choos&, obeying
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12G,~,r81 kiG,~,r852 a~2r8 -8l

and satisfying the boundary conditions Eg5!' and -6!,
namely,G,(u2 r81 " )50 and]G;/]z(x,y,z5 0)5 0. In
a 3D geometry, thi$sreen's function is given by
expik,u2 rad  expik,u2 rdu
I
Gt r85 4pu2 rau ! 4pu2 ru ’ <
wherer& (x8y82z8 andr§}5 (x8y82 z§. In a 2D geom-
etry ~ranslational invariance along tlyeaxid, it is given by

i i
G,~,r85 ZHgl>~|<1u2 rail ZHglLkluZ rgu, ~10

where H{Y is the Hankel function of ®rst kind and order

zero.
We now apply Eq~7! in V; with u5 T, andv5 G;. In

Thibaud, Carminati, and Greffet

G a5 exp-ik,u2 ral 16

2T 4pu2rgu ' e
whereas in a 2D geometry, it is given by

G,,r85 H(1)~k2u2 ral. 47!

Applying Eq. ~7! with u5 T, andv5 G,, and making
use of Egqs~5 and-2! with j5 2, we obtain

Eea®
E ]Gz“r r8
5 8 ——F—2 G,1,r8

re ETﬂS! a2 r8d%8
]T2~r8!G2
7n8 rg

~18

the following, the normah8is outward with respect to the In the case of a plane-wave illumination, if we denote by
object-see Fig. 2 The left-hand side can be simpli®ed usingP(v) the power densityper unit arebof the laser beam, the

Egs.-8! and-2! with j5 1, and we obtain

Q8
Eova

Vi

. EFr 8]Gl-r r8!

r& ETl~r8 42 r8d8

IT+8( .,
8 ]n8 GFS

~1

where]V,5 S,8 S,8 S-

satis®ed byl; and G, the integrals or5, andS- vanish.

Depending on whether the observation painis inside or

outsideVy, we obtain a pair of integral equations.
ForrP V,

E:F ]G,~,r8
Ti=15 T 11 ~8——F

/n8
2 G,18 ]ler:;& Gzrs 42
and forrP V,,
Trert!1 E:f <al G};rsra
2 Gy ,18 ]ler:;& Gzras 0, 43
where
TrerT!5 E{31~r r r8 ~14!

. Due to the boundary conditions

volume source term is

exp2 z/1,!

Q!5 g,P~v! , ~19

In
wherea,, is the absorptivity of the surface at the frequermcy
of the laser, and,, is the absorption lengthk.e., the inverse
of the absorption coef®ciéntin a typical metal,l,; 10

2 100 nm. Equation19 shows thatQ vanishes inside the
volumeV,, provided that the distance from the object to the
boundaryz5 0 is much larger than the absorption length

in the substrate at the frequencyof the laser light. We
assume that this condition is ful®lled in the following. Fi-
nally, we obtain a second pair of integral equations.

ForrP V,
]T2~r8!G2
8 7n8 rg8
~20!

G~rr8
T,4152 E:r 8!] 2

and forrP V,

H;_ ]G,,18
48 ————F—2 G,,r8

S, ]n8

T,+8
]]2n8 Gzr$ 0.
21

Equations12! and-20! enable us to obtain the temperature
®eld at any point with z. 0, provided that the source func-
tions T4, Ty, JT,/]n8and]T,/]n8are known on the ob-
ject surfaceS,. The integral in Eq~12! represents the scat-
tered ®eld in the substrate. Equatid3! expresses how the
reference ®eld is cancelled inside the object by this scattered
®eld. This constitutes the equivalent of the extinction theo-
rem in electromagnetic scatterif.

is the ®eld produced in the semi-in®nite medium without the

presence of the objecteference ®eld The expression of
T,ef iN the case of a plane-wave illumination of the surface is

given in Appendix A. We now apply Green's theorem\ip
using the Green's functio®, obeying

12G,,r81 k3G,~,r852 o~2r8

and satisfyingG,(u2 r8i
given by

~15!

" )5 0. In a 3D geometry, it is

B. Equations for the source functions

Using Eqg.~4!, let us de®ne two unknown source func-
tions T(r) andF (r) for r on the surfaces, of the object

T~15 T~15 Tor!, 22
ki]Ty 1T>

15 ————~15 —— 1 213

F~!5 k, In ~15 ]n~r 23
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A pair of coupled integral equations fdrandF is obtained vs @1, T3,... TNFLFE2 ... FNg
from Eqs.~12! and~13! and~20! and-21! by lettingr tend to 1 - N
a point on the surfacs,. In this operation, much care hasto ~ Vre® @ren Tre - - - 1 Trer, 0,0, . ., O 28!

be taken for the singularities of both ti@reen’s functions \ye can transform Eqs26! and-27! into a linear system
G; and their normal derivativepG;/[n8atr5 r8 In par- i vl

ticular, the singularity of G;//n8is nonintegrable, and its Vied MUV 29
extraction is performed following Refs. 17 or 19. In the limit The 2N3 2N matrix M of the linear system has the form
rt S,, Egs.~12 and~13! lead to the same integral equation

i i B
involving T andF M5 Fé DG 301
T~r! | E ]1Gi,r8
5 O Tert!1 PV SZT%E! ~—In8 r where A, B, C and D are N3 N matrices whose explicit
expressions are
k o
2 k—2 EGl~r,r8F~rad2r8 24 1/2 if i5 ]
S
b As | G 31
where PV stands for the principal value of the integral. Simi- 2 TDS it ibj,
larly, Egs.~20 and-21! lead to a second integral equation !
involving T andF for rP S k
g 2 E Gyt rid?r  if i5]
T~! G,,r8 celli
o pvErea 8 g B,5 32
2 S, In8 2 o
—Gy;,r!DS  if iP],
E H“
2 ~
1 = >, r8F~8d“r8 25! 1/2 if i5 ]
Once the source functiors andF are calculated from the CiiS | /P! DS if ibj, =33
system of Eqs=24! and-25!, we can obtain the temperature In;
®eld at any point in the substrate or in the object by intro-
ducingT andF into Egs.~12! and-20!, respectively. E Gy rid?r if i5 ]
Except in very particular geometries, the system of Egs.  D;j5 celli 34
~24! and-25! has to be solved numerically. The details of the 2 Goj,r!DS  if ibj.

numerical procedure that we have used are given in the fo

lowing section. I'I'he evaluation of the diagonal elements of the matriBes

andD has to be performed with care, due to the singularity
C. Numerical procedure of the Green functions at the origin. The integral on the cell
domain is performed analytically, in the limit where the cell
size tends to zero. For the 2D case, the evaluation of the
diagonal elements is performed in Appendix B of Ref. 20.
of them having coordinates5 (x; ,z) and being the center Note th_at the procedu_re used to convert the integral equation
b into a linear system is known as the moment method. The

of a cell with sizeDS;. The wo unknown functions and reader is refered to Ref. 17 for more details on this method.

F are assumed to be slowly varying functions at the scale 0E)nce the linear syster29! is solved by standard procedures,

the cell size. When the object is regular enough, it is p053|bl(,?he source functior andF are known on each point of the
to choose equally spaced points, so that the cells have th

same sizeDS. We will assume this condition to be ful®lled oeoject surfaceS,. We can then calculate the temperature

in the following. Equations24! and~25! are then rewritten ®eld at any point in the substrate or in the object by using
Egs.~12! and-20!.

To solve Egs.24! and 25!, we convert them into a
matrix equation, which is then solved numerically. We do
this by introducing a set dfl points on the surfacg,, each

as
i . ]G, G
52 (3 T = a7 IV. VOLUME INTEGRAL FORMALISM
jPi cellj j
Another formulation of the scattering problem may be
1 (‘ |:JF2 E Gy ,r!erG ‘ref, 26! obtained by using only the Green functi@), and applying
' k1 el Green's theorem successivelyVh andV,. This procedure
T FE ]Gy 1! G leads to an expresgion of the temper_ature ®eld involving a
51 j(>i T Ce”dezr well-known volume integral and a previously unreported sur-

face term. We will ®rst derive the exact integral equation for
, the total ®eld, and then show how the Born approximation
2 (‘ F! G ,”dsz 0. 27" can be used to obtain an explicit expression of the scattered
cell ®eld. We will also derive analytically some criteria of valid-
We have used the notatiof$5 T(r;) andF'5 F (r;). If we ity of this approximation, and compare the approximate re-
introduce the two following vectors of lengthi\2 sults to exact numerical calculations in Sec. V.
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A. Alternative formulation

The use ofGreen's theorem iV, with the Green func-
tion G, leads to Eqs-12 and~13! derived in Sec. lll. Let us
now apply Green's theorem M,, with u5 T, andv5 G;.
Making use of Eqs=8! and-2! with j5 2, we obtain:
for rP V,

T,~15 k32 kil EGl~r,r8T2~r8!d3r8
Va

E:F ]Go+.,r8 ]T2~f862
2 s 8 TZ G,,r8 8 r8
~35
and forrP V,
E:f ]1G,~,r8 ]Tﬂ&G2
= 248 WZ Gz~r,r8! ng r8
5 k32 k31 Eeﬁ,raTﬁaoPra -36!

2

In Egs.-35! and-36!, the normaln8is outward with respect
to the objectsee Fig. 2 As in the previous section, we have
assumed that the source tefnis zero inside the object, so
that the integrals oveY, involving Q in the integrand van-
ish. Substracting Eg35! from Eq.~13! ~for rP V,), and Eq.
~36! from Eqg.~12 ~for rP V,), and using the boundary con-
ditions Eq.~4!, one obtains

T~r15 Trert!1 K52 K31 EGl~r r8T,~8d°r8
Vs,

1 SZ [EGl
S,

8!

d’r8 37

1

Equation37! is an exact expression of the temperature ®eld,

valid at any point5 (X,y,z) with z. 0. It involves a volume

integral, extended to the volume of the object, and a surface

integral, extended to its boundary.

Thibaud, Carminati, and Greffet

simply makes the approximatiof,(r8. T,.{r8. The sur-
face integral has to be handled with care becddsg ] n8is
discontinuous across the bounda8s. Thus, replacing
] T,/]n8by ] T,e/] n8would be incorrect. A careful analysis
shows that JT,(r8/]n8 ag]T,.(r8//n8 with ag
52hk1@2h2 1)k,1 k# where 45 2 for a 2D problem
and /75 3 for a 3D problemsee Appendix B for detailsIn
the Born approximation, Eg37! yields

T~r15 Trert!1 K52 K21 Efo,raTrerfa d’r8

Vo
] Tert8

82 kz[]EG 8
1 ap k_1 = 1,r ing

Some criteria of validity of Eq-38 may be obtained by
requiring that the scattered ®eld remains a ®rst-order correc-
tion to the reference ®eld on the integration domain, namely,
that

th!z Trert! U
sUppv, J1.

Trerr '

A rough estimation of the two integrals in E€8! leads to
suf®cient conditions of validitysee Appendix C for details
For a 3D geometry, these conditions are

d’r8 -38

~39!

B,5 K52 kiu—— Ve ~40!
%od 2pd : '
6,2 kouS,lkqu
| |
BSS Skik, 2pd b A1
whereas for a 2D geometry, they are
Vv
B,5 k22 k%qu @n-~d/a;!' W exp2 didyl# 1, 42!

3k.1 K,
where @5 @n(k,)# ! is the thermal diffusion length in me-

B5 ———@n~d/aj'u exp2 d/aj'# 1, 43

This formulation of the problem has the advantage ofdium 1,V, is the volume of the objec8, the surface of its

clearly presenting the diffusivity variation and the conductiv-

boundary, andl its diameter. The preceding conditions give

ity variation as the origin of scattering. Moreover, the two a rough estimate of the range of validity of the ®rst Born
contributions are separated: the diffusivity variation yields agpproximation for thermal-wave scattering and in particular
volume effect and the conductivity variation yields a surfacethe in"uence of each physical parameter on this approxima-
effect. The existence of two such contributions to the scattjon.

tered ®eld has been discussed in the case of DPBHW.

B. Born approximation

Although numerical procedures can be used to solve thé'

scattering problem exacthgee Sec. , explicit approximate

V. NUMERICAL SIMULATION
De®nition of the complex contrast

In a typical photothermal imaging experiment, the

solutions are also useful to get insight into the physics of anodulated temperature ®eld at the surface of the sample is
given system and/or to get a fast evaluation of the temperascanned at different times using radiometric, optical or other
ture ®eld. Such a solution can be obtained by performing thmeasurement method$?! Frequency ®ltering allows us to

®rst Born approximation in Eg37!. This approximation

compute the phase and amplitude of the signal at each point.

also leads to a natural solution to the inverse problem, byrhe absolute value of the temperature does not matter in

deconvolution procedures.

detecting objects, but rather the departure of the temperature

The ®rst Born approximation amounts to approximatgrom the unperturbed reference ®eld. Therefore, the quantity
the ®eld inside the scattering object by the reference ®elaf interest at the interface5 0 is the complex temperature

Tef- In the case of the volume integral in E€B7!, one

contrast
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T~12T !
Cr1p o el 44
Tref"r!
When the scattered ®eld is a small correction to the reference
®eld, we may use the approximation

~! D
C~!. In ~45!
ref"r!

Equation45' shows that the real part of the contrast repre-
sents the logarithm of the amplitude of the temperature ®eld,
whereas the imaginary part represents its phase difference
with the reference ®eld.

B. Numerical tests

We present in this section numerical results, based on
the resolution of Egqs:24! and 25 by a moment method,
without approximation. We will also compare the results
with those obtained within the ®rst Born approximation,
namely, by a direct calculation of the integrals in Eg8!.
Note that apart from the expression of the reference ®eldb
see Eq.-A3!Pthermal conductivities appear only through
the ratio k,/k4 in all the equations of the problem. Since
T,e(z5 0) is a scaling parameter for all the temperature
®elds, the conductivity rati&,/k; is the relevant physical FiG.3. complex contrast along a line of constamoing through the center

parameter to determine the contrast. In the following, all ob-of an elongated rectangular objesee insét We compare the surface in-
jects are centered ab 0. tegral calculation with the analytical solution for an in®nitely wide object.

i order o valdate our numerical results, we compare il g, ITIEIES o B St o S mesnsooeie
Fig. 3 the numerical calculation for a rectangular object such s 1 5 mm, ¢5 0.98 mm, &5 1.13 mm, k, /k,5 3.
that its widthL, is much larger than; with the analytical
solution for a layered mediuri.e., an object withL,! ~,
see Appendix D The object in the numerical simulation is a
rectangle centered at depths 1.5 mm with dimension&,  clearly in a worse agreement with the converged result. We
520mm, L,5 0.5mm, and a diffusivityD,5 40mn?s*%.  conclude that this factor signi®cantly improves the accuracy
The modulation frequency i$5 v/2p5 10Hz. The sub- of the Born approximation when this approximation is valid.
strate has a diffusivityp,5 30 mn? s’ L. We see that the nu- In Fig. 4b!, the diameter is doubled.6 0.2 mm) and
merical solution tends towards the analytical result when thehe conductivity ratio is increased th,/k;5 50. In these
mesh size decreases, thus proving the good convergence of
the method. Figure 3 also shows that the numerical result
diverges near the boundaries of the object, where the normal
derivative of the temperature has a discontinuity. This diver-
gence appears numerically at a distance of the order of the
mesh size.
We show in Fig. 4 the real and imaginary parts of the
complex temperature contrast along the interfabed for
two different objects. The substrate and the objects have a
diffusivity D5 D,5 30mnts’! ~conductivity variation
only!. The modulation frequency of the laser beamfis
5 10Hz. The 2D object is a small disk. In Fig-gll, the
diameter isL5 0.1 mm and the conductivity ratid,/k,
5 2. The calculation is plotted for different mesh sizes. We
see that convergence is ensured when the mesh size is much
smaller than the attenuation distance. Another interesting
point is that the Born approximation coincides with the con-
verged calculation, showing that with these parameters, the
Born approximation gives accurate results. To illustrate the

relevance of the factog. introduced in Eq~38. we also FIG. 4. Complex contrast on the surface in the case of a conductivity varia-
B 4%, tion. The 2D object is a small disk with diameter The numerical solution

show the result of a Born apprpximation whgr€, /] n8is ~ is shown for several mesh-sizBS. 8l k,/k35 2, L5 0.1 mm.-b! kp/k;
approximated by]T,,/]n8 This second Born result is 550,L5 0.2mm. Other parameters;5 0.3 mm, ;5 &,5 0.98 mm.
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FIG. 5. Complex contrast on the surface in the case of a diffusivity varia-
tion: &;5 0.98 mm, &5 0.40 mm. The 2D object is a square box with size
L. The numerical solution is shown for several mesh-si& -a L
50.1mm,z.,5 0.3mm.~b! L5 1 mm, z.,5 2 mm.

FIG. 6. Polar representation of the complex contrast as a function of the
depth of the object in the monodimensional calsg/d,5 0.089, k,/k,
50.3, &5 3.1 mm, 4,5 1.13 mm,f5 1 Hz. Symbols 8 ) are separated by

a 0.5 increment o,/ .

conditions, the Born approximation loses its accuracy, as

predicted by the increase of the fac®g from 0.4-al to 2.6 ) o 1
ey k,/k,5 0.3 in a substrate with diffusivitpp;5 30 mnfs? L.

The same calculation is presented in F|g 5’ for two Ob_The behavior of the contrast in this case can he|p to under-
jects with no conductivity variation,/k,5 1), diffusivity ~ Stand why the better way to image an object can be to mea-
D,5 5mmPs! in a substrate with diffusivity D,  Sure either the amplitude or the phase of the temperature
5 30 mnt <2 1. We see that convergence is ensured when thetictuation at the surface. Indeediepending on z the
mesh size is much smaller than the attenuation distance f#ominant part ofC is real-see, for examplez./d;. 0.4) or
both media-with the above parameterg;5 0.98 mm and imaginary ¢./c5 1).
@5 0.40mm). In Fig. 5a, the object is a square of size  ConsideringC as a function of the frequendy we see
L,5 L,5 0.1 mm-~see the inset in Fig.!5The Born approxi- thatz. may be obtained fronC by the slope of the curves
mation yields a good result in this case. In Figb!5 the 1 z,
object size is increased to 1 mm. The Born approximation is  INC~f 12 Eln f52 271 Cte, A7
not accurate in that case, as predicted by the increase of the 1
factorB, from 0.2-al to 4 h!. Z. 3p

We have proven the convergence and validity of our  IM#n@-~f 1#9% 2711 - ~48!

numerical method through comparison with an analytical re-

sult. We have used it as a reference method to check thigr an object of arbitrary shape, using B¢j7! or Eq.~48! in
validity of the Born approximation in several cases, thusorder to determinate its de.pth Ieads to reasonaply gccurate
validating simple coef®cients that allow us to infer whethe€Sults that may be useful in practice. We show in Fig. 7 a
the Born approximation should be valid in a particular caseNumerical example of depth determination for a mineral in-
In the Born approximation, we have proven that the normaflusion in a steel plate. The modulation _frequency varies
derivative of the ®eld is better approximated when using &0m f5 0.1 t0f5 1.5Hz. We plot the logarithm aiCuand
corrective factor that takes into account the discontinuity ofth® phase o€ vs 1/a)5 Im(k,), the latter being proportional

the thermal conductivity at the boundary of the object. @ #¥. From the slope of the curves, the estimated depth is
z85 2.52 mm with the amplitude anzf5 2.93 mm with the

phase, whereas the exact valugds 3.0 mm. Note that the

size of the object does not strictly satisfy the condition of

In the case of a layered medium, the complex contrast ojalidity of Eq. 46! sincetk,L ,uvaries between 0.5 and 2 in
the interfacez5 0 has the formsee Appendix D this range of frequency.

C. Determination of the object depth

Cc~f15 ik2LZ$2 erp~2iklzC!, 46 CONCLUSION

wherer5 (k,/k;)A,/D;. L, andz, are the width and the We have presented a method to solve exactly the heat
depth of the layer, respectively. This expression is obtainediffusion equation in the frequency domain within a homo-
in the limit of small widthik,L,u @r/(11 r)# geneous substrate containing an arbitrary object. We have
Figure 6 shows the complex contrast as a function of thelerived an extinction theorem for thermal waves which is
depthz, of the object. The object is a layer of thickndss  analogous to that used in electromagnetic scattering. This
5 0.1 mm with diffusivityD,5 4 mn?s?, conductivity ratio  formulation leads to surface-integral equations which are
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We now make use of the plane-wave representatio pf
~or Weyl expansioff!

i
Gq~,r85 W EXF@K"‘RZ R8#

3 exp- g2 z811 exp-igul z8l q
g9

2K

A2!

whereR5 (x,y), g5 (k32 K?)'2 with Re(g). 0 and Img)
. 0. Introducing Eg-A2! into Eqg.-Al! leads to
ia,P~v!

Tier!'5 w7 E @xp-i gu2 z84
2lpkiky o

1 expd gwl z8l#exp2 z81,'dz8 ~A3!

Equation-A3! is an exact expression of the reference tem-
perature ®eld when the interfagb 0 is illuminated by a

FIG. 7. Example of inversion of the complex contrast for the depth of theplane wave.

heterogeneity. The frequendyvaries from 0.1 to 1.5 Hz. The estimated When the absorption in the substrate is hig’h (O), we

depth is 2.52 mm with the amplitudé ) and 2.93 mm with the phase )  can see that the laser beam is absorbed within an in®nitely

?15(.:6 m:?hsez 1’%(:‘5“0;2‘;2 Sz'fff”flg pgis 1§t2e;hep§£?er2teit:i::3ett_ thin layer atz5 0. In this case, one can derive a simpli®ed

angular box with dimensiong:,5 1.0 mm,L,5 0.5 mm. expression foff .. The integral in Eq-A3! can be split into
two contributions: that of®, z# and that of@,” # In the
limit 1! 0, one can easily show that the ®rst integral equals

well suited for an ef®cient numerical solution. Although we 2l ,exp(k;2), whereas the second integral tends to zero. Fi-

have presented only 2D numerical results, the implementadally, we end up with the expression ff in the surface-

tion of our numerical procedure in 3D is easily feasible.absorption model

Also, whereas we have only presented results for a single ia,P~v!

object, generalization to multiple domains is straightforward.  T!5 ————exp-k,z!. ~A4!

: - kiky
Second, we have derived a mixed surface and volume

integral formulation and have applied the Born approxima-This expression oT . is valid whenz@l ,,.

tion. We have shown that a corrective factor arising from the

discontinuity of the thermal conductivity at the boundary OfAPPENDIX B

the defect must be taken into account to approximate the

normal derivative of the ®eld. Exact solutions of the direct In this Appendix, we derive the correct form of the Born

problem allow us to check and validate approximations thaapproximation in the surface-integral term appearing in Eq.

are often used to solve the inverse problem. Especially, the38!. Taking the gradient of Eq37! leads to

Born approximation is valid for small defects and small

variations of the thermal conductivity and diffusivity. We 1 T—r151 T 11 k32 k2! El G1~,r8T,+8dr8

have expressed simplistic analytical criteria of validity that

Va
correctly predict the in"uence of each physical parameter on S k [E T
2 2
1J2 — ,Gy,r8
ki~ s,

the accuracy of the Born approximation. -8 d’rg8 -B1!
Third, the analytical solution for the temperature contrast In8
at the surface of a multilayered medium suggests a way t@ecause of the nonintegrable singularity'aiG,(r,r8 atr
estimate the depth of an object with multiple frequency meas r8in the surface integral, we cannot simply state that the
surements. We have performed computations showing thateroth order approximation for T is ! T,y. Instead, we
such a method gives a precision that can reach a few percemieed to extract this singularity in a similar fashion as in
deriving Eqs.24! and-25!. Because this is a slightly differ-
ent situation from that in Ref. 19, we detail this derivation
hereafter. We consider a pointon S, and a half spher¥,
In this Appendix, we give the explicit expressions of the ~half disk in 20 insideV, centered om with in®nitely small
reference ®eld ; appearing in Egs2! and~14!. We as- radiuse S, is the boundary oV, ~see Fig. 8 The surface
sume that the heating laser beam is a plane wave, incident antegral in Eq.-B1! is split into the contribution ofS,/S,

APPENDIX A

the surfacez 0 at normal incidencesee Fig. L and that ofS.. The singularity is evaluated by taking the
Introducing Eq.~19! into Eq.~14!, we obtain limit at vanishinge of
a,P~v!
Trert!5 ?k EGl~r,r8!exp~2 z81,d%8 A1l |5 En-l G1~,r8ngt T,~48d*r8 B2
n™1 Vi Se
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with k35 k;. The boundary conditions of the problem are

2 15 4, Tl D2!
Ydz 77"t dz ¢ '
lim 1d— 0 -D3!
FIG. 8. Geometry for the extraction of the singularitytinG,(r,rg. rANN z

_ _ S _ and the continuity of the temperature ®eld and of the normal
Since T is analytical insidev,, we may introduce the fol- “ux at z5 z.6 L,/2, that yield four additional relations. By
lowing Taylor expansion into EgqB2!: substituting the expressiofD1! into the boundary condi-

1 T,4851 To~r!1 u2 r8F-,r8, g3 tions, six linear relations between the unknowis A;, As,

. _ . _ B, B,, B3 are obtained. After some algebra, one gets
whereFuis ®nite. Using the asymptotic term

1 (R o015 2Rc%*b%2 1! ou
! rGl'"r’r&; 2-h2 1|p u ru’7’ B4l ' 12 bZR 22 RCZ"bZZ 1! ’ .
where /25 2 in 2D and/5 3 in 3D, we obtain where b5 exp(k.L,), c5 exp(k,@2 L, /2#, and R5 (1
1 2 r)/(11 r) with r5 (k;/k,)PD,/D;. Expression46l is
lim15 1 Torle 5H0 B5!  obtained by approximating the denominator of Eg4! by

e 0

(12 R ?) under the conditionb?2 1u 12 R 2.
Finally, the zeroth order solution of EeB1! is

]TZ 2hkl ]Tref
—~!. ~!, ~B6! 1 ; 1 .
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Quantitative measurements of diffuse media, in spectroscopic or imaging mode, rely on the generation of
appropriate forward solutions, independently of the inversion scheme employed. For complex boundaries, the
use of numerical methods is generally preferred due to implementation simplicity, but usually results in great
computational needs, especially in three dimensions. Analytical expressions are available, but are limited to
simple geometries such as a diffusive slab, a sphere or a cylinder. An analytical approximation, the Kirchhoff
approximation, also called the tangent-plane method is presented for the case of diffuse light. Using this
approximation, analytical solutions of the diffusion equation for arbitrary boundaries and volumes can be
derived. Also, computation time is minimized since no matrix inversion is involved. The accuracy of this
approximation is evaluated on comparison with results from a rigorous numerical technique calculated for an
arbitrary geometry. Performance of the approximation as a function of the optical properties and the size of the
medium is examined and it is demonstrated that the computation time of the direct scattering model is reduced
at least by two orders of magnitude.

DOI: 10.1103/PhysRevE.64.051917 PACS numbler87.101 e, 42.25.Fx, 42.30.Wb, 42.62.Be

[. INTRODUCTION computationally costly. A fast method that can be applied to
arbitrary geometries is needed for real time diagnostics. A
The study of light transport through highly scattering me-good candidate is the Kirchhoff approximatiokA!, also
dia, such as tissue, has been the focus of recent researchlled the tangent-plane meth@b,26# This approximation
geared towards medical diagnosti@t% This has been is a linear method that does not involve matrix inversion
motivated by the fact that light offers unique contrast mechawhile solving the forward problem. The KA can be used to
nisms while probing structural and functional tissue characgenerate the sensitivity functiorsr weights of the system,
teristics. Furthermore, the associated technology employso that inversion schemes such as algebraic reconstruction
nonionizing radiation and is generally low cost. Imagingtechniques-ART! @1# amongst others, may be applied.
through tissues using light in the near infrar®R! spectral  Also, since it generates the complete Green function for any
region offers penetration capability of several centimetershree-dimensionai3D! geometry, it is possible to apply it to
due to the low absorption by tissue in the 700+850 nm spedmprove the already existing reconstruction methods that use
tral region. Lately, rigorous mathematical modeling of light the Born or Rytov approximation®+9,11+18
propagation in tissuesee Ref@0#for a review, combined The KA is a well-known approximation in physical optics
with technological advancements in photon sources and dehat has been under study for over 30 years, and, in particu-
tection techniques, has made possible the application of tdar, extensively employed in studies of scattering from rough
mographic principles@1#for NIR three-dimensional imag- surfaces-see Ref.@6# and references thereinin these
ing of the internal optical contrast of tissue, using acases, the validity of the KA has been usually studied versus
technique generally termed diffuse optical tomographythe angle of incidence. We here study the performance of the
DOT! @+22 KA for a point source in an arbitrary diffusive medium in
At the moment, powerful numerical methods are availableorder to demonstrate the potential of the KA in diffuse opti-
for accurately solving the direct scattering problemcal tomography. We would like to state that a more rigorous
@7,18,2% for arbitrary geometries, but these methods arestudy of the limits of validity of the KA would imply calcu-
lating the error for each frequency component of the incident
wave, but this is out of the scope of the present paper.
*Email address: jripoll@iesl.forth.gr In this work, we present the theory of the Kirchhoff ap-
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plicity. If the incident light impinging on the medium is
modulated at a frequency, the average intensityJ(r,t)

5 U(r)exp@ ivt# detected ar represents a diffuse photon
density waveDPDW! @#and obeys the Helmholtz equation
with a wave numbek5 (2 m,/D1 ivn/cD!*? wherec is

the speed of light in vacuum, antis the refractive index of

the medium. In an in®nite homogeneous medium, the Green
function g satis®es

“ 2g~kug2 rqul k?g~ku2 rqu52 4pa~2ry, !

whererg and ry represent the source and detector points,
respectively. In 3D it is well known to be

exp@ku 2 rqyut
- /= s 97 -2
g~kug2 rqub T2t 2!

In terms of thecompleteGreen functionG(rg,rq) that cor-
responds to the full geometry in Fig. 1 with boundaries, the
expression of the average intensity at a pointnside the

medium is
FIG. 1. Scattering geometry.

1
proximation in the diffusion equation context, and study its U~ry!5 10 E%aG%ard!dra rqPV, 3!
limits of validity. In Sec. Il we present the exact expression P n
for the Green function for arbitrary diffusive volumes. In
Sec. Il we introduce the KA speci®cs and derive the expresivhereS(r8 represents the source distribution avids the
sion for the approximate Green function for an arbitrary ge-volume occupied by the diffusive medium. Of course, for a
ometry from the exact expression. The limits of validity of source in in®nite spad@(rs,rq)5 g(kus2 rqy.
the KA are studied in Sec. IV as a function of thieedium's The complete Green function inside the diffusive medium
size and optical properties. We demonstrate that these limit&an be expressed in terms of its surface integral by means of
are independent of the geometry and depend mainly on thereen's Theoremsee Refs@3, 27 for a detailed deriva-
size of the system in diffusion length units. KA is applied to tion! as
an arbitrary geometry, and compared with results obtained
when employing an accurate numerical method and the in®- 1 EE Jg~ku& rqu
nite homogeneous Green function. We investigate the accu-C s Ma!S g~kUs2 rqu2 ap = 5,18 ~ jn8
racy of the KA and compare the computational times of both
methods, demonstrating that the KA is more than two orders ]G~,,r8
of magnitude faster than accurate numerical methods and, 2 g~ku& rqu i 3 4
therefore, could be a very useful tool for DOT. Finally, we

conclude in Sec. V. wheren8is the surface unit outward normal pointing into the

nondiffusive mediumsee Fig. 1, and]/Jn& n&" ,g. The
Il. THEORY: EXACT EXPRESSION FOR THE GREEN boundary condition between the diffusive and nondiffusive
FUNCTION medium in the diffusion approximation is obtained by as-
) N _ . suming that all the "ux traversing the interface is outwards
Let us consider the geometry shown in Fig. 1, consistingniq the nondiffusive mediumsee Ref.@8#for a detailed
of a diffusive volumeV bounded by surfac& which sepa-  qerivation. This is always true as long as no sources are
rates it from an outer nondiffusive medium of refractive in- |5cated outside the diffusive medium. In terms of the Green
dex ney. This diffusive medium is characterized by its ab- ,nction this boundary condition is expressed@8:+ 36+
sorption coef®cientr,, the diffusion coef®cienD5 3(n8
1 am,) wherenBis the reduced scattering coef®cleand ]G~ r8
the refractive index, . In the expression fob, the factora G~s,r8u52 C,D —SU r& s,
does not have a closed-form expression and has values that In8
range froma5 0 to a5 1 depending on the approximation
used~see Ref@4#and references therein for more insight on where the coef®ciernt, takes into account the refractive
the subjedt Even so, since we have not found signi®cantindex mismatch between both med@84 In the case of
differences in the results presented here when introducing thedex matched media, i.eny,5 ny,, Cnd 2. Introducing
dependence dD on absorption, we shall us#5 0 for sim-  Eq.-5! into Eq. 4!, we obtain

5!
S
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1 E Jg~ku & r !
G~rs,rd!5 g“'kLI'SZ I'dLIl E = ndDT

(;G~rs,r8
1g~ku&rgu ) ds8 6!

In

A rigorous solution toG(rg,rgy) in Eq. ~6! is found by
determining the boundary valyes/] n8 by discretizing the , )
surfaceSinto a number of surface elements and inverting the FIG. 2. 4 De_ta" of the Io_cal tangent plane used in the kbt
resulting matrix-see Ref@3#and references therdirSimi- Representation in the coordinates of the tangent plane.
larly to Ref. @3# Eq.-6! makes an indirect use of the ex-
tinction theorem in order to solve the system; hereon we wil
refer to this method as thextinction theoremET! method. KA -
The ET method gives a rigorous numerical solution to the G A sMp!S kU2 rpU* @1 Ryortplh 7

forward problem, but is time consuming since it involves,yherex denotes convolution, anyp is the re ection coef-

matrix inversion, and, therefore, is also limited to surfacesgcient for diffusive waves in real space, which in Fourier

that can be segmented to a moderate number of discretisatiqiace has the expression for each plane wave compongnt of
points. For example, solving for more than 5000 surface@l#

points is generally excessive while considering the inverse

Ipoint. In terms of the Green function this is expressed as

problem, requiring _about 1 h for one forward calculation on iCndDW]- 1
a Pentium Il running at 650 MHz with 256 Mb memory. Rnp=K!5 - o 8!
Even so, it must be understood that the computation times iChDA A1 K?2 1

considered in this paper correspond to B8, which has
only one unknown variable. In the case of a diffusive volume
within a diffusive medium, the existence of two unknown KA |
variables-the average intensity and its derivativiacreases JGHs.ry! 5 Jgku2 rpd
the number of unknown variables by a factor of two. Hence, Ing Inp
assuming that in order for the ET to give accurate results, theh

minimum distance between two discretization points must b% aeticr)Tr]:rljl:festli%?];agffh(Ienitr?c?;gr?tliirgurce)neigg dd\l/f/fs\ﬁnvtvi?rzor%a-
in the order of the transport mean fr 1 the ET . - )
€ order of the transport mean free pfh 1/78, the gpect to the local plane. Equatiord and 9! are directly

method would become inappropriate to solve the invers : .
problem for diffusive/nondiffusive surface areas in the orderexpresseol in Fourier space as
of 50 cnt, or 25 cnf in the case of diffusive/diffusive pro-
®les. This fact limits the applicability of exact methods in  G*A~r,r !5 E @1 RypK!#8K , BrexpaK « BydK ,
large geometries, such as the adult head. Anyhow, the use of 2"
exact methods such as the ET is fundamental in order to
validate approximate methoesee Sec. 5 of Ref@3# where  JG*A~ 1, E JEK A
a brief discussion of the need for exact methods in optical——% 5 L= @2 RypK!#——— exp@K - BYdK .
tomography is presentedConversely, the computing time 2 1 A
required is practically independent of the number of detector -0
! : : . i :
Eeo;r&tii gsgngﬁ) Eg:t?].epl;%\alggzr;o; i?n illrtz(rite zzl:lgoqﬁrsﬂztggfér 6“1 order to numerically perform the Fourier transforms in Eq.
for all surface-value dependent methods ' ~10!, a typical number of values fdK is 512 for each di-
P ' mension, withudKy 0.123 cnt?, which corresponds to a
spatial discretization value aflRb 0.1 cm. The need for a
IIl. THE KIRCHHOFF APPROXIMATION low number ofK values is due to the fact th@tPDW's are
When many forward solution calculations are required,Nighly damped and do not contain high spatial frequencies.
such as in most tomographic schemexcept those reported 256 values foK were also tested, ®nd|ng differences smaller
in Ref. @6#! an approximation to Eqs6! that can handle than 1%. In all cases presented in this work Kl 2alues
arbitrary 3D geometries in a linear fashion is needed, towere employed. In Eg-10! (RA are the coordinates of
reduce computing time and memory requirements. One sudiis2 ,uwith respect to the plane de®nedify ;) as shown
approximation is the KA, also known as the physical-opticsin Fig. 2, namely,
or the tangent-plane metha@5# which is well known and

In a similar manner, the gradient of the Green function is

*@2 Ryppl# 9

used in both optics and acoustics. This approximation as- 75 2 rple@ vTHD!#,
sumes that the surface is replaced at each point by its tangent <41
plane. This means that the value of the total intenkitat Bs 2o 2 ol

any pointr, of the surfaceS is given by the sum of the
incident ®eldu(™ and the wave re ected from thiecal In Eq.~10 the Fourier transforndg{K,z) of the 3D homoge-
plane de®ned by the surface norm(r,) at that surface neous Green functiog(kus2 ryy is given by@0,21,31,3%
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s A i exp@fk22 K2R
, 5 - —— 1
o 2p  Acok?

Ms L exp@2 k2B 42!
JA  2p

Therefore, if we discretise the surfaBén Eq.-6! into N area
elementsDS, we can write the complete Green function
given by Eq.~6! inside the volumeV in terms of the KA as

N
DS Jg~ku,2 rqu
GKA  1y!5 g~ku2 rgul — Et D———
s»id g S d 4p pgl nd ]np
G~ 1!
1 g~kup2 rqd . ~3
Iny

Equation~13! is an explicit expression of the Green func-
tion where the computation time will increase only linearly
with the system size. Also, one of the main advantages of
Eq. -3 is that the values of G**/]n, given by Eq.~10!
need only to be calculated once for all possible source-plane
distancePand Bwvalues present in the geometry, recalling
or interpolating its value each time the source and plane po-
sitionsrg andr, hold Eq.~11. This considerably increases
the computation speed by reducing the number of Fourier
transforms, especially in the cases in which many different FIG. 3. Geometry used for the study of the limits of validity of
source positions need to be generated, such as in DOT. Wke KA.
would like to state that an analogous expression toE8.
can be easily _found fo_r diffusive_/diffusive interface_s _by function in 2D, g(ku2 r4y5 pngl)(kuSZ rq), where
means of the diffusive/diffusive re ection and transmission

coef@cients@a H{Y is the zero-order Hankel function of the ®rst kind.

In all cases, the KA results will be generated for a cylin-

der of heighth5 10 cm and no lids, consisting &5 9191
IV. NUMERICAL RESULTS surface discretisation points. The valuehofas such that no

In order to study the limits of validity of the KA, we Variation in the results was found by increasing its value. The
compare the performance of the exact solution, based on EfgSults generated with the ET in 2D consistedN# 360
-6!, with the approximate solution, based on Et@l, using  POINts. In these cases, a lookup table consisting of 257 values
the geometry shown in Fig. 3. The cylinder has a radRus for R\and a maximum value fdof R was generated, with
length h, and is illuminated by an in®nite longitudinal light a distance of 0.1 cm between values. We performed the study
source running parallel to the cylinder &6 R2 |, 5 0!,  in the continuous illumination mod€W!, since in this mo-
wherel ;5 1/nBis the transport mean free path. The refrac-dality light suffers less attenuation. For higher attenuation
tive indices inside and outside the diffusive volume are thavalues the multiple re ections between the surface boundary
of water, i.e.n,,5 1.333, and of airn, 5 1, respectively. An decays, and, therefore, the limits of validity here found will
angular scan is performed &45 R2 I, z5 O!. In order to ~ @pply to all frequency modulation values. A similar study

quantify the accuracy of the approximation, we shall de®@n#vas performed for different modulation frequencies, ®nding
the error in percentage as the error in amplitude in the order or smaller than in its

corresponding CW case, and a difference in phase in the
Ele KA - order of 1 to 5 degrees.
~Errort5 1003 - 2 UM Ry, ut/U™ Ry, uluuy, In Fig. 4 we show the error committed by the KA for
P 44 different values ofR, absorption, and scattering coef®cients
' as compared to the ET solution. The results shown here are
where UET is the exact solution obtained from the E@3%#  representative of biologically relevant optical properties. On
using 2D Green functionscorresponding to an in®nitely the whole, the approximation works wetl 5% errot for
long cylindet, andUA is the solution obtained from the KA R. 3Lg4, whereL45 AD/m, is the diffusion length in CW
using a 3D geometrycorresponding to a cylinder of length (v5 0). That is, to maintain an error below 5% f&
h. In order to solve for the ET by means of E§! fora 5 1.5cm, Ly should be larger than 0.5 cm farb 5 cn? 2,
cylinder and a line source, we used the corresponding Greemhich gives 78 0.13 cnt! ~see Fig. 4 When diffusive/
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FIG. 4. ~a Error in percentage committed for
different values ofm, and cylinder radiR. In all
cases7gb 10 cn?l. bl Same asa but for dif-
ferent values ofr8for R5 1 cm.

diffusive interfaces are considered the approximation worksnclude a geometry-dependent constant that will assign a
much better, and is valid forR 3Ly because lower re ec- zero value to those surface points not visible from the source
tivity is attained in this casesimilar results where obtained position. Such a geometry factor was included and the results
in Ref. @1#! presented in Fig. 5 repeated, ®nding no important improve-
In order to establish the effect of the surface topographyment. Another way of improving the KA is to include second
we have studied the same con®guration as in Fig. 4, but haygder re ections, but this would render the method time con-
added a sine pro®le of amplitude 0.5 cm and pepftito  suming and thus would loose its potential as a fast analytical
the surface. In this case, a lookup table consisting of 25¢50|.
values forB\and 76 values fo was generated, with a In Fig. 5 we also see that the approximation yields errors
distance of 0.1 cm between values. The error between the Eif the order of 5£10% close to the boundaries, where the
and the KA, is now depicted in Fig. 5 for two cases of sourceGreen function has low values due to the boundary condi-
position +ig. 5 top row R 2.3cm, bottom rowRg  tions that force the average intensity to zero at approximately
5 1.5 cnl. In addition, we have also represented this errorone extrapolated distanck,) from the interface@8#% When
when, instead of the KA, we simply use the homogeneoushe error obtained from the KA is compared with that ob-
Green function, Eqg=2!, to calculate the source radiation us- tained by using a mere homogeneous Green func@ae
ing Eq.-3!. Generally, the KA approximation calculates the Fig. 5b! and Fig. 5d!# we see that the KA is more accurate
average intensity with errors that are less than 8%e Fig. by one order of magnitude. Similar ®gures to those repre-
5-al and Fig. 5¢!# except in the shadow regions of the cor- sented in Fig. 5 were generated for a modulation frequency
rugations. Thisshadowing effecappears when certain sur- of v5 200 MHz. In this case we found that the error distri-
face areas are blocked from the source by the geometry dfution in amplitude was very similar to the cases presented
the interface. Since these shadow areas are not taken into Fig. 5, with slightly smaller values, and thus results are
account in the KA, the KA predicts higher values of the not shown. This is expected due to the lower re ectivity of
intensity. A ®rst approximation to this problem would be tothe boundaries. The maximum phase difference found for the

FIG. 5. Error committed in percentage when
using the KA @ and ~¢!# and when using the
homogeneous Green functig@* and ~d!# for a
cylinder of R5 2.5 cm with a sine pro®le on the
boundary of amplitude 0.5 cm, and peripd4.
The following source locations are considered:
R,5 2.3cm, 5 0! @+ and b'# RS5 1.5 cm,
U5 0! @+ and ~di# In all casesn§s 10 cntl,
m5 0.1cnf .
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FIG. 6. Error committed in percentage for the scattered Green
function @ee Eq.~15# when using the KA for a cylinder oR
5 2.5 cm with a sine pro®le in the boundary of amplitude 0.5 cm,
and period p/4. Source locationsR;5 1.5cm, u5 0!, nB
510cnfl, m50.1cnfl

KA Was_2 deg at the shadow regions and 1 deg near Fhe FIG. 7. Computation times for one source-detector pair versus
boundaries. When qompared to the in®nite Gregn functlog]e number of surface poinké @ee Eq-13#for the ET represented
we found 60 deg difference at the shadow regions and & minutes@olid linettand for the KA represented in seconds for the
minimum phase difference of 10 deg. cases: cylinder of radiuR5 2 cm, with its height increased from

~ Ingeneral terms of the KA, it is expected that lower spa-0+15 cm@pen circleg and a cylinder with its radius increased
tial frequencieX -or angles of incidence close to the normal from R5 0.5+4 cm and its height a5 2R @l circles# Results

in the electromagnetic cag®5,26#! will yield more accurate  obtained from a Pentium Il running at 650 MHz with 256 Mb
solutions than high spatial frequencies grazing angles of memory.

incidence in the electromagnetic ca@®,26¢. This may be

translated to diffusive waves in the following manner. In thePentium 11l running at 650 MHz, with 256 Mb memory.
cases in which the point source is close to the interface, higithese computation times include the generation of the
spatial frequencies play an important role. It is in these case@okup table for M @ee Eq-11#aforementioned in Sec.

in which the KA is expected to fail for diffusive waves, since || That is, the computation times presented make use of no
then multiple re ections are predominant. On the other handg priori calculations. In all cases shown here, the lookup

when the source is famore than one diffusion lengttirom @ é . .
the interface, due to high damping the high frequencies comt—able for (R3F) is generated by ®nding the range of values

ponents of the incident wave do not contribute Signi®cam|>@1inﬁ%na>$é%and@nin@/@na@#present in the geom-

to the incident wave at the interface, reducing the multiple8try, and generating all the corresponding values of-E@,
re"ections. This effect is shown in Fig. 6, where we repre-With an increase of one transport mean free paf) be-

sent the error when considering the perturbation caused byveen M values. This discretisation value can be under-

the interface, i.e., the scattered waBe: @ee Eq-13# stood since the diffusion equation in itself has no meaning
when considering distances smaller thanOnce the lookup
G§é~rs,rd!5 G rg!2 g~kug2 ryu. 15! table for Eq.~10! is built, the different values present in Eq.
~13! are found by interpolation. As mentioned in Sec. Ill, in

As seen in Fig. 6, the error obtained from the KA at |0ngorder to numerically perform _the Fc_)_urier transforms _EKL2
distances from the source where only low valuekofon- ~ values were used for each dimensio®., 512 512, with
tribute to the incident ®eld is very low 5%!. On the other WKU 0.123. The computation times are represented in Fig.
hand, values of the scattered wave in the regions where thé Versus the number of discretisation poihts@ee Eqs-6!
source is near the interface present larger er@084d, due and-~13# which in the ET are independent on the d|m_en5|0n
to the higher contribution of large values kit and shape of the geometry. In the case of the KA, since the

We have tested other values of the period and the amplieomputing time is dependent on the numb% values,
tude of the sine pro®le, reaching the same conclusion: outve present two cases: a case in which we have a cylinder of
side the shadow regions, and f@r 3L4, the error is con- radiusR5 2 cm, and increase its height from 0+15 eopen
sistently less than 5%. This also holds true for calculationsircles in Fig. T; and a cylinder that is increased in radRs
performed for a rough surface plane, such as in & from 0.5£4 cm and its height &5 2R ~full circles in Fig.

As mentioned before, besides its ability to handle arbi-7!. In all the KA cases the discretized areas are kept to be
trary geometries the KA is attractive due to its computationdS5 0.13 0.1 cnf. Due to the fact that both the KA and the
ef®ciency. In Fig. 7 we present a comparison of the compuET perform equivalently for any number of source-detector
tation times obtained by using the ET and the KA with apairs once the surface values are found, the computation
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times presented in Fig. 7 correspond to the forward problenproximation being very fast compared to the rigorous solu-
for one source-detector pair. When considering the compution, and increasing linearly with the size of the system. The
tational times for the ET in Fig. 7, we see that there is anmplications of this approximation are several: In the ®rst
approximately quadratic increase with respectenote the  place, these KA Green functions can be employed in more
difference in scale between the KA and the! EOn the other complex numerical schemes such as the @3 so as to
hand, when considering the KA, we see that the increase ieduce the number of discretization points needed to solve
approximately linear for both cases, the difference in slopghe forward problem. As an example, the problem of an ob-
due to the dependence on the number% values gen- jeCt embedded in an arbitrary volume would be reduced to an
erated. As a practical example, the number of discretizatio@bject on its own by using the KA Green function. In a
points for a Sphere of radius 2 cm needed in order to mainsimilar manner, it can be used to impl’ove the reconstruction
tain a 1, distance between points is in the order of 5000. IfSchemes based on Rytov or Born approximations, such as
we compare the speed of the KA and the ET in this case walgebraic reconstruction techniqu@RT! and simultaneous
obtain 70 s and 50 min, respectively, yielding the KA asiterative reconstructive techniqu&IRT! @1+15 Second,
approximately 40 times faster. A more realistic surface suci§ince the computation times and the memory requirements
as the adult head, would imply an equivalent radius of aincrease linearly with the size of the system, the KA may be
least 4 cm, and thul; 20 000. In this case, the KA takes in used to describe light propagation in large volumes such the
the order of 90 s, whereas the ET takes in the order of 45 Rdult head, the calf, etc. It is in these large volumes where
for one only forward solution. In this more realistic case thefigorous numerical methods have problems due to the great

KA is 1800 times faster. amount of memory required for matrix inversion, and the
need of extremely large computational times to solve the
V. CONCLUSIONS inverse problem. We believe that this approximation will aid

to the development of real time diagnostics with diffuse light
We have presented an approximate method that solves tlhie the presence of complex boundaries.

3D diffusion equation in geometries of arbitrary shape and
size in a linear fashion. This approximation has been com-
pared to the ET solution of the diffusion equati@B3# a
boundary-value dependent numerical method that has been J.R. acknowledges a European TMR grant under Project
extensively used in physical optics due to its high degree oNo. FMRX-CT96-. V.N. acknowledges support in part from
accuracy@5# We have found that when the average radiusDRG-1638 of the Cancer Research Fund of the Damon
of the geometry considered R. 3(D/m,)*? the method Runyon+Walter Winchell Foundation and the U.S. Army
performs with an error less than 5%. Therefore, with the KAXCDMRP BC995360 V.N. and M.N-V. also acknowledge a
we can generate general Green functions that take into ad-MR contract from the EU. This work has received partial
count complex geometries, the computation times of this apsupport from the Spanish DGICYT.
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Abstract

We study the propagation of light pulses through scattering media using the
time-dependent radiative transfer equation. A standard discrete-ordinate
method is used to solve this equation in the space-frequency domain. We
present calculations of diffuse transmission through scattering slabs, in the
presence of absorption and anisotropic scattering. We show that the
diffusive regime is attained at long times only for thick slabs. Comparisons
with diffusion theory show that the proper choice of the diffusion constant is
an important issue for time-dependent transport.

Keywords: Light diffusion, radiative transfer equation, scattering media,
biomedical imaging, diffusion coef cient

1. Introduction recently, see e.g. [13-15]. The diffusion approximation [16]
offers a great simpcation of the problem and a practical
Radiative transfer through scattering media has attractéepl to describe the diffuse part of the radiation intensity.
considerable interest recently, particularly for imaginghis approximation is widely used, for example, in optical
applications through turbid media[1]. Several techniques hal@aging for biomedical applications [2, 3]. Yet, the use of the
been developed in order to determine the location of objectéfusion approximation to handle short time and length scales
in strongly scattering biological tissues, using visible or neal questbnable, and its domain of validity has to be studied
infrared light 2, 3]. Pulse tramsission measurements on shorf@rellly. Moreover, although the diffusion approximation
timescales and optical coherennography give promising May be derived starting from different approaches, the proper

results [4-7]. In several other areas, diffusion waves—suff§Nition of the diffusion coef cient is still an open issue.
as thermal, acoustic or elastic waves—form the basis 15k particular, its dependence on absorption was questioned

imaging and measurement techniques [8]. With the rapriﬁcelrr]]ﬂt{“[lw'rk we study radiative transfer of visible or near
development of micro- and nano-technologies, understandingr S Work, we study radialive transter otvisibie or near-
. . nirared light through strongly scattering slabs, in the presence
the popagation of such waves at short (time and length) scal'efs : . .
. : of. absorption. We rst describe a method to solve the time-
has become a key issue. Heat conduction at short scale% N end based di di hod .
lids is also handled on theadis of a Boltman transport ependent RTE, based on 2 Iscrete-ordinate met od [11] n
Solads : : P the space-frequency domain. We show that this approach is
equat|or_1 for phonons, which under_go _scatterlng, emission Il suited to the stdy of pulse transmission and re ection
gbsorptlon 9, 10]. Transport theo_nes in all these tOp_'CS havﬁ]rough scattering slabs of arbitrary optical thicknesses. Then,
in common the use of a Boltzméike transport equation for \ye sty dy the validity of the diffusion approximation for time-
the wave intensity which describes scattering, absorption afigpendent transport. We show that the diffusive regime is
emission by the medium. This equation is usually referred fgcovered for the long-time behaviour of transmitted pulses
as the radiative transfer equation (RTE), whose formalism Wagd for thick slabs. We compare the results obtained for
r stdeveloped for astrophysics [11] and neutron transport [13]ifferent expressions of the diffusion coef cient. We show
Solving the RTE m conplex geometries and in thethatthe use of the pper expression is a crucial issue for time-
preence of scattering remains a challenging issue. For timgependent transport, especially in the presence of absorption
dependent light transport, some methods have been developrd anistropic scattering.
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2. The radiative transfer equation

The basic quantity of radiative transfer theory is the specic /
intensity | (r, u, t), from which the power radiated at point

r, through a surface elemenggdof unit normaln, attimet, T
in the freqguency interval [ +d ] and ina sdid angle d
around the directior writes 5
dP=1(r,u,t)u -ndSd d. 1)
-———
The speci cintensity obeys a transport equation, the RTE, nl n2 n3

which describes its variations due to absorption, scattering and
emission 1, 18]. In this work, we study the propagation
of visible and near-infrared light in absorbing and scattering 0 L

media, such as those encountered, for example, in optical ) )
imaging through biological tissues. At room temperature_'lz'gur.e 1. The geometry oftie system. The scattering slab is
thermal emission is negligible at these wavelengths, ';é@?gg‘ﬁégdfrom the left by a plane-wave pulse, at normal
that only absorption and scattering has to be considered. '

Note that the validity of the RTE to study light transpor%

X : . ote that the hypothesis of a quasi-monochromatic pulse
through scattering slabs was recently studied numerically vp 9 P

. . T . gpparent in equation (4). The subscriptrefers to the
comparison with exact electromagnetic simulations [19]. entral frequencyfdhe pulse, and the variable describes the

was shown thatexcept for coherentl effects such as bac requency analysis of the temporal pulse shape. We assume
Z?/Zgigpg se;tzzsnn\fv?lgsgt’(:2;5;5t?\li\éii;esr)i/s%ﬁﬁ;aé? dreerS%ES -dispersive materials within the pulse bandwidth, so that
one wavelength 9 e optical properties oft_he medlum are evaluatgd Qtthe central
' frequency . In the fdlowing, we omit the subscript in order
to simplify the notations. Introducing equation (4) into (2)

2.1. Radiative transfer equation in a slab geometry leads to

The geometry we consider is depicted in gure 1. Aslag 'GH.) _& ;5 )

of width L containing a scattering and absorbing medium is Y T

illuminated at normal incidence by a plane-wave pulse. The 5 + o

absorption and diffusion coef cients of the medium are *5 o PO )1 ) du. (5)

andys, resgectively. The associated absorption and scatteri

n
mean-free paths alg = pS! andl = pSt. The eal part T%is equation has the same structure as the static RTE, with a

of its effective index, accounting both for a homogeneod‘somplexsge,d c intensity and a complex extinction coef cient
background medium and scattering particles, is denoted §y = 1S1/(Vv) . It canbe solved by standard methods
no. The hdf-spacesz < 0 andz > L are lled with déveloped for the static RTE for each frequencyAn inverse

homogeneous and transparent materials of refractive indi¢girier transform allows one to recover afterwards the time-
n; andng, resgectively. For this geometry, the RTE gives dependent solution. A similar approach was used in [20] in
1 1(,pt) L (w t) the cae o a strongly forward-scattering medium, and more
1 1N M

=S (., t) recently in [21] in the case of patized light transfer through
v t a scdtering slab.
L2 . PO )l (Lu L t)du @) Assuming an illumination by a plane wave (representing,
2 31 ' Y for example, a collimated laser beam) it is useful to separate the
wherev is the trasport velocityy = cos , = Ha+ s iS collimated and the diffuse components of the speci c intensity

the extinction coef cienta = pg/ isthe albedoand = z inside the medium. One writes
is the opteal depth. p© is the phase function integrated oven () = 12,0 @ 8

the azimuthal angle: + |céo||( N +D)+(u,) ©)
PO ) = 1 2 p(u -u)d 3) where ( x) is the Dirac distribution. For the sake of clarity, the
' 2 two components of the collimated beam, propagating towards

. . N > < . i i
whereu andu areunit vectors corresponding to directions” 0 andz < 0, have been separated. Inserting equation (6)

(,) and( , ), resgctively. A useful parameter is theInto (5) leads to
aveaged scattering angle (or anisotropy factgr)de ned dif, () . .
byg= (4)S' (u-u)p(u-u)d . Strongly forward- —q - ° O tea(s) (7)
scdtering corresponds tg = 1, and isotropic scattering to )
g = 0. In order to solve the RTE in the space-frequendr the collimated components and to
domain, we introduce the time-domain Fourier transform of 14( )
v ISR S N
the speci c intensity: H = v a(h k)

+ +

1
Lo )= ¢ L (u,) exp(Si t)d. 4) +% < PO K ) la( 1) du +S(,1 ) ®)
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Time-dependent transport through scattering media

for the diffuse component, whe&( , |1, ) is asource term Ry (t) = Ryp(U = 1)Ig(t)+ Tor(U = 1)IC'§OII = 0,t) (15)
which describes the transfer of energy from the collimated toh is the incid | h he boundarm 0
the dffuse component by scattering. Equations (7) and ( erelo(t) is the incident pulse shape at the boundary 0.

are the RTE for the collimated and diffuse components of tﬁ t(;]e foIIow(;ng, we V\_/Illkl]concendtrate gnbthe diffuse transmitted
speci ¢ intensity, respectively. andre ected uxes. They are de ned by

n2 1
2.2. The source term and boundary conditions Tq(t) = n—i_' . HTos(M)la( = L,p,t)du (16)
2
Taking into account the internal re ections at the boundary of > o
i i n
the slab, the expressions of the cVoII|mated components are Ra(t) = n_% gl“T21(|” Dlg( = 0,1 ,t)dp (17)
(1) = Taall = Dlo() explS () ] ©) ? o
13,(,) = Toallt = Dlo() wherep = [1 + (n2/n2)(u? S 1)]¥2 in equation (16) and

- - =S [1+(n?nd)(u?S 1)]¥2in equatio (17).
xexp[S () 2 LS )Rt = 1) o M (1 +(ng/ n3) (K )] q 17)
where = [18 Ryp( = DRss(u = DexpS2()  L)I5Y,
and Rj(W) and T;(n) are the Fresnel reection and
transmission factors in energy, at the interface between tWfe giffusion approximation is usually obtained from transport
media of refractive indices; andn; . Their expressionis given theory in the limit of smooth space and time variations
in the gpendix. lo() is the time-domain Fourier transformyg the speci ¢ intensity, compared to the scattering mean-
of the incident pulse, at the boundary: 0. free pathls and the microscopic timescal@s/v) [16].

3. Diffusion approximation

The source term in equation (8) is given by In this approximation, the energy density(r,t) =
a 31 o ;
S(,u,) = Ep(O)(“’ DIz v I(r,u,t)d obeys the diffusion equation
a - & U(r,t) <
+ 5P SDIg(, ). (12) (t 1S D U@ 0+l D= a0, (18)

For the d|ffg_se components of the speci ¢ Intensity, th%vhereD is the diffusion coef cient andy(r, t) a ource term.
boundary conditions at the slab boundaries are

B In the diffusion approximation, the diffuse transmission
la( =01 ) =Ra@la( =0,Sy, ) for p>0 through a scattering slab can be evaluated analytically using the
(12) method of images and extrapolated boundary conditions [22].

& F f the f = i
la( = L) = Rea(uDla( = L,Sw) or a urce term of the forng(r, t) = (2) (t), one obtains
H(t)D ~ . L
for <O 13 1) = © exp(Spavt) Mein 1=
d ey @ d
2.3. Numerical calculation . 2m?D
xexp S m2 ! (19)
In order to solve equation (8), we have used a discrete- d

ordinate method. The rst step in this method is to replace thvehereH (t) is the Heavyside step functiod,= L + 27y, z =
integral involving the phaseifiction by a quadrature [11]. The0.71l, being the extrapalion distance antl, = 15/(1S g)
integro-differential equation (8) is thus replaced by a systetine transport mean-free path. The result in equation (19) is
of linear differential equations, one equation for each directidhe ransmission Green function (or impulse response) of the
M used in the quadrature. To solve this system of differentidiffusion equation in a slab geometry.
equations, we have used the matrix eigenproblem approach The diffusion approximation is very robust, in the sense
described in [24]. that it can be derived from anyamgort theory as the limit of
In our case, the entire procedure is as follows: smooth spatial and time variatis [12, 16, 18, 23]. However,
. . - all derivations do not necessarily lead to the same expression
M Ca!culate the.Founer transform of the. mmdgnt pmseft)rthe diffusion coef cientD. In paticular, the dependence on
which appeas in the surce term in equation (8); . .
. - . . absorption may change from onepeession to the other [17].
(if) Solve equation (8) for all relevant frequencies, using thGsing numerical results, we will show in the following that the

(i) g;?g?:ﬁgg?;:gﬁ?gﬁg ;r transform to recover the tim correct de nition of the diffusion coef cient is a crucial issue
Sor time-dependent transport.

domain evolution of the |z c intensity at eactboundary

of the dab. . . .
4. Numerical calculations of impulse responses

2.4. Obserable quantities In this section, we present numerical calculations of

In an experiment, the observable quantities are the transmittfiuse transmission, and compare them to the results of

and re ected uxes, either directional or integrated over a halfiffuson theory. In all cases, the calculated quantities

space. The transmitted and re ected collimated uxes a@®€ impulse responses, namely, the incident pulse is a
de ned by delta fundion in time. The validity of diffusion theory

for time-dependent light transport through scattering media

Teon(t) = Tas( = DIy = L,1) (14) has been studied previously, either by comparison to RTE
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