Skip to Main content Skip to Navigation
Theses

Mécanique statistique de systèmes sous contraintes : topologie de l'ADN et simulations électrostatiques

Abstract : We study the geometry of an open DNA molecule with supercoiling constraints. We rederive the Cãlugãreanu--White theorem that links this global constraint to the local torsion. The rod-like chain model uses Fuller's formula and leads to a divergence in the continuum limit. We study this pathology numerically. We establish an analogy between the shape of a polymer and the trajectory of a light ray in multiple light scattering in order to reinterprete experiments with polarized light with geometric considerations. In the second part, we introduce an algorithm for the local simulation of Coulomb interacting systems. We present the usual numerical methods and discuss their caracteristics. We construct a new numerical model based on Gauss' law and let the system evolve according to a Monte-Carlo scheme. Thanks to its locality, this algorithm can rigourously simulate dielectric inhomogeneities and has a complexity of order O(N).
Complete list of metadatas

Cited literature [24 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-00002205
Contributor : Vincent Rossetto-Giaccherino <>
Submitted on : Friday, May 21, 2004 - 2:45:08 PM
Last modification on : Friday, May 29, 2020 - 4:01:23 PM
Long-term archiving on: : Monday, September 20, 2010 - 11:49:34 AM

Identifiers

  • HAL Id : tel-00002205, version 2

Citation

Vincent Rossetto-Giaccherino. Mécanique statistique de systèmes sous contraintes : topologie de l'ADN et simulations électrostatiques. Biophysique [physics.bio-ph]. Université Pierre et Marie Curie - Paris VI, 2002. Français. ⟨tel-00002205v2⟩

Share

Metrics

Record views

260

Files downloads

523