B. Ao, Absence of localization in energy space of a Bloch electron driven by a constant electric force, Physical Review B, vol.41, issue.7, pp.3998-4001, 1989.
DOI : 10.1103/PhysRevB.41.3998

J. Asch, F. Bentosela, P. Duclos, and G. Nenciu, On the Dynamics of Crystal Electrons, High Momentum Regime, Journal of Mathematical Analysis and Applications, vol.256, issue.1, pp.99-114, 2001.
DOI : 10.1006/jmaa.2000.7293

URL : https://hal.archives-ouvertes.fr/hal-00011162

. J. Ade, P. Asch, P. Duclos, and . Exner, Stability of driven systems with growing gaps: Quantum rings and Wannier ladders, J. Stat. Phys, vol.92, pp.1053-1069, 1998.

[. O. Amrein and V. Georgescu, On the characterization of bound states and scattering states in quantum mechanics, Helv. Phys. Acta, vol.46, pp.635-658, 1973.

[. E. Avron and J. Nemirovsky, Quasienergies, Stark Hamiltonians, and growth of energy for driven quantum rings, Physical Review Letters, vol.68, issue.14, pp.2212-2215, 1992.
DOI : 10.1103/PhysRevLett.68.2212

B. [. Avron and . Simon, Transient and recurrent spectrum, Journal of Functional Analysis, vol.43, issue.1, pp.1-31, 1981.
DOI : 10.1016/0022-1236(81)90034-3

]. R. Bak and . Baker, Discrepancy Modulo One and Capacity of Sets Slowly growing sequences and discrepancy modulo one, Quart. J. Oxford Acta Arithm, vol.22, issue.23, pp.597-603, 1971.

]. H. Beh and . Behnke, Zur Theorie der diophantischen Approximationen I Der Real und Imaginärteil von ?(x,?), Lect. Notes in Physics Abh. math. Semin. Hamburg Univ. Bd Abh. math. Semin. Hamburg Univ. Bd, vol.3, issue.3, pp.95-96, 1924.

]. J. Bel, . S. Bellissard-ed, P. Albeverio, and . Blanchard, Stability and instability in Quantum Mechanics in " Trends and developments in the eighties Berezanskii, On an Eigenfunction Expansion for Selfadjoint Operators, Amer, World Scientific Math. Soc. Transl, vol.93, issue.2, pp.1-106, 1970.

]. O. Bour, . Bourgetbb-]-g, D. Blatter, and . Browne, Floquet Operators with Singular Continuous Spectrum, Zener tunneling and localization in small conducting rings, pp.3856-3880, 1986.

J. [. Barbaroux, R. Combes, and . Montcho, Remarks on the Relation between Quantum Dynamics and Fractal Spectra, Journal of Mathematical Analysis and Applications, vol.213, issue.2, pp.698-722, 1997.
DOI : 10.1006/jmaa.1997.5571

. D. Bg, S. Bambusi, and . Graffi, Time Quasi-periodic unbounded perturbations of the Schrödinger operators and KAM methods, Comm. Math. Phys, vol.219, pp.465-480, 2001.

J. E. Bayfield, L. D. Gardner, and P. M. Koch, Observation of Resonances in the Microwave-Stimulated Multiphoton Excitation and Ionization of Highly Excited Hydrogen Atoms, Physical Review Letters, vol.39, issue.2, p.76, 1977.
DOI : 10.1103/PhysRevLett.39.76

F. [. Barbaroux, S. Germinet, and . Tcheremchantsev, Fractal dimensions and the phenomenon of Intermittency in Quantum Dynamics, Duke Math Generalized Fractal dimensions: equivalences and basic properties, J. J. Math. Pure Appl, vol.110, issue.10, pp.161-193, 2001.

. O. Bhj, J. Bourget, A. Howland, and . Joye, Spectral Analysis of Unitary Band Matrices Expectation Value of Observables in Time Dependent Quantum Mechanics, J. Stat. Phys, vol.906, issue.5, pp.1225-1249, 1998.

. S. Bk-]-m, M. G. Birman, and . Krein, On the theory of Wave Operators and Scattering theory, Soviet. Math. Dokl, vol.3, pp.740-744, 1962.

. P. Bl, J. Bougerol, and . Lacroix, Physics in One Dimension Connections between quantum dynamics and spectral properties of time evolution operators in Differential equations with applications to Mathematical Physics The quantum stability problem perturbations of the harmonic oscillators, Com] J.M. CombesCo1] M. CombescureCo2] M. Combescure, Spectral properties of a periodically kicked quantum Hamiltonian, pp.59-68, 1981.

]. M. Co3 and . Combescure, Recurrent versus diffusive quantum behaviour for time dependent Hamiltonians, Operator theory: advances and applications, pp.15-26, 1992.

]. M. Co4 and . Combescure, Recurrent versus diffusive dynamics for a kicked quantum oscillator, Ann. Inst. H. Poincaré, vol.57, issue.1, pp.67-87, 1992.

H. L. Cycon, R. G. Froese, W. Kirsch, B. Simon, S. Operators et al., Lacroix Spectral theory of random Schrödinger Operators Five Diagonal Matrices and Zeros of Orthogonal Polynomials on the Unit Circle, to appear in Linear Algebra Appl, Dixmier, Les algèbres d'opérateurs dans les espaces Hilbertiens, Gauthier- Villars, 1969. [DBF] S.DeBì evre, G. Forni, Transport Properties of Kicked and Quasiperiodic Hamiltonians, pp.1201-1223, 1968.

O. [. Duclos, P. Lev, M. Stovicek, and . Vittot, WEAKLY REGULAR FLOQUET HAMILTONIANS WITH PURE POINT SPECTRUM, Reviews in Mathematical Physics, vol.14, issue.06, pp.531-568, 2002.
DOI : 10.1142/S0129055X02001363

P. [. Duclos and . Stovicek, Floquet Hamiltonians with pure point spectrum, Communications in Mathematical Physics, vol.29, issue.2, pp.327-347, 1996.
DOI : 10.1007/BF02101896

URL : http://projecteuclid.org/download/pdf_1/euclid.cmp/1104286331

P. [. Duclos, . Stovicek, and M. Vittot, Perturbation of an eigenvalue from a dense point spectrum: a general Floquet Hamiltonian

. Théor, Perturbation of an eigenvalue from a dense point spectrum: an example, J. Phys. A, vol.71, issue.20, pp.241-301, 1997.

]. V. En? and . En?, Asymptotic completeness for quantum mechanical potential scattering I. Short-range potential, Comm. Math. Phys, vol.61, pp.285-291, 1978.

J. [. Erdös and . Koksma, On the Uniform Distribution modulo 1 of lacunary sequences On the Uniform Distribution modulo 1 of sequences f (n,?), Indag. Math. Indag. Math, vol.11, issue.11, pp.79-88, 1949.

[. En? and K. Veselic, Bound states and propagating states for time-dependent Hamiltonians, Ann. Inst. H. Poincaré, vol.39, pp.159-191, 1986.

. [. Guarneri, On the dynamical meaning of spectral dimensions

G. [. Guarneri and . Casati, Non Recurrent Behaviour in Quantum Mechanics, Comm. Math. Phys, vol.95, pp.121-127, 1984.

G. [. Guarneri and . Mantica, On the asymptotic properties of Quantum Dynamics in the presence of fractal spectrum, Ann. Inst. H. Poincaré Phys. Théor, vol.61, issue.4, pp.369-379, 1994.

I. Guarneri and H. Schulz-baldes, Lower bounds on wave packet propagation by packing dimensions of spectral measures, Math. Phys. Electron, vol.5, pp.1-16, 1999.
DOI : 10.1142/9789812777874_0001

A. [. Geronimo and . Teplyaev, A Difference Equation Arising from the Trigonometric Moment Problem Having Random Reflection Coefficients - An Operator Theoretic Approach, Journal of Functional Analysis, vol.123, issue.1, pp.12-45, 1994.
DOI : 10.1006/jfan.1994.1081

. S. Gy, K. Graffi, and . Yajima, Absolute Continuity of the Floquet Spectrum for a nonlinearly Forced Harmonic Oscillator, Comm. Math. Phys, vol.215, issue.2, pp.245-250, 2000.

]. G. Ha, M. Harman, and . Herman, Metric Number Theory Une méthode pour minorer les exposants de Lyapunov et quelques exemples montrant le caractère local d'un théorème d'Arnold et Moser sur le tore en dimension 2, Comment. Math. Helv, vol.58, pp.453-502, 1983.

]. J. Ho1 and . Howland, Scattering Theory for Hamiltonians Periodic in Time, Indiana Journal Math, vol.28, pp.471-494, 1979.

]. J. Ho2 and . Howland, Floquet operators with singular continuous spectrum, I, Ann Floquet operators with singular continuous spectrum, II Floquet operators with singular continuous spectrum, III, Inst. H. Poincaré Phys. Théor. Ann. Inst. H. Poincaré Phys. Théor. Ann. Inst. H. Poincaré Phys. Théor, vol.49, issue.2, pp.309-323, 1989.

]. J. Ho3 and . Howland, Stability of quantum oscillators, J. Phys. A, vol.25, pp.5177-5181, 1992.

]. Hu and . Huang, On stability for time-periodic perturbations of harmonic oscillators, Ann. Inst. H. Poincaré Phys. Théor, vol.50, issue.3, pp.229-238, 1989.

. A. Hls-]-g, M. Hagedorn, J. Loss, and . Slawny, Nonstochasticity of Time dependent quadratic Hamiltonians and the spectra of canonical transformations, J. Phys. A, vol.19, issue.4, pp.521-531, 1986.

]. K. Ish and . Ishii, Localization of Eigenstates and Transport Phenomena in Onedimensional disordered systems, p.77, 1973.

A. Joye, Absence of absolutely continuous spectrum of Floquet operators, Journal of Statistical Physics, vol.29, issue.5-6, pp.929-952, 1994.
DOI : 10.1007/BF02186751

URL : https://hal.archives-ouvertes.fr/hal-01222737

J. [. Jauslin and . Lebowitz, Generalized Floquet Operator for Quasiperiodically Driven Quantum Systems, Mathematical Physics X, pp.313-316, 1991.
DOI : 10.1007/978-3-642-77303-7_28

J. [. Jauslin, P. M. Lebowitz, and . Blekher, Floquet spectrum for two-level systems in quasi-periodic time dependent fields, J. Stat. Phys, vol.68, pp.1-2, 1992.

]. G. Kar and . Karner, Twist maps, kicked rotor and quantum chaos in Stochastic processes, physics and geometry: new interplays II On quantum twist maps and spectral properties of Floquet operators, CMS Conf. Proc. Ann. Inst. H. Poincaré Phys. Théor, vol.29, issue.68 2, pp.377-383, 1998.

]. T. Kato, J. Kato, and . Kingman, Perturbation Theory for Linear Operators Katznelson, An Introduction to Harmonic Analysis, pp.883-909, 1973.

]. J. Ko, D. Koksma, . Approximationen, . T. Kk, S. T. Kato et al., Krein : Linear Differential Equations in Banach Spaces Khinchin, Continued Fractions, Phoenix books Theory of simple scattering and eigenfunction expansions , in Functional analysis and related fields, Last, Solutions, spectrum and dynamics for Schrödinger operators on infinite domains, pp.125-150, 1936.

. L. Kn, H. Kuipers, and . Niederreiter, Uniform distribution of sequences Quantum dynamics and decomposition of singular continuous spectra, J. Func. Anal, vol.142, issue.2, pp.406-445, 1974.

F. [. Mneimné and . Testard, IntroductionàIntroduction`Introductionà la théorie des groupes de Lie classiques Nenciu, Floquet operators without absolutely continuous spectrum Adiabatic theory: stability of systems with increasing gaps, Ann. Inst. H. Poincaré Phys. Théor. Ann. Inst. H. Poincaré Phys. Théor, vol.59, issue.67, pp.91-97, 1986.

]. C. Do and . De-oliveira, On kicked systems modulated along the Thue-Morse sequence, J. Phys. A, vol.27, issue.22, pp.847-851, 1994.

R. Del-rio, S. Ya, Y. Jitomirskaya, B. Last, and . Simon, What is Localization?, Physical Review Letters, vol.75, issue.1, pp.117-119, 1995.
DOI : 10.1103/PhysRevLett.75.117

R. Del-rio, S. Ya, . Jitomirskaya, Y. Last, and B. Simon, Operators with singular continuous spectrum, IV. Hausdorff dimensions, rank one perturbations, and localization, Journal d???Analyse Math??matique, vol.89, issue.1, pp.153-200, 1996.
DOI : 10.1007/BF02787106

]. L. Pas and . Pastur, Spectral Properties of Disordered Systems in one-body approximations, Comm. Math. Phys, vol.75, p.179, 1980.

C. A. Pillet, Some results on the quantum dynamics of a particle in a Markovian potential, Communications in Mathematical Physics, vol.39, issue.2, pp.237-254, 1985.
DOI : 10.1007/BF01229379

URL : https://hal.archives-ouvertes.fr/hal-00005467

]. W. Rud and . Rudin, Real and Complex Analysis, Rue1] D. Ruelle,A Remark on Bound States in potential scattering theory, pp.655-662, 1969.

]. D. Rue2 and . Ruelle, Ergodic Theory of Differential Dynamical Systems, publications IHES, pp.27-58, 1979.

. [. Simon, . B. Sw, T. Simon, and . Wolff, Singular continuous spectrum under rank one perturbations and localization for random hamiltonians, Communications on Pure and Applied Mathematics, vol.44, issue.1, pp.75-90, 1986.
DOI : 10.1002/cpa.3160390105

]. S. Tc1 and . Tcheremchantsev, Markovian Anderson model: bounds for the rate of propagation Transport properties of Markovian Anderson model, Comm. Math. Phys. Comm. Math. Phys, vol.187, issue.1, pp.441-469, 1997.

]. S. Tc2 and . Tcheremchantsev, How to prove dynamical localization, Comm. Math. Phys, vol.221, issue.1, pp.27-56, 2001.

. [. Vinogradovwa-]-p and . Walters, The Method of Trigonometric Sums in Number Theory The Method of Trigonometric Sums in Number Theory, Nauka An Introduction to Ergodic Theory Yajima : Scattering Theory for Schrödinger Equations with Potential Periodic in Time, Selected Works Linear Operators in Hilbert Spaces, pp.729-743, 1977.

E. [. Yucel and . Andrei, Quantum tunneling of surface-state electrons in time-dependent fields, Physical Review B, vol.43, issue.14, p.12029, 1991.
DOI : 10.1103/PhysRevB.43.12029