. Krauth, Introduction To Monte Carlo Algorithms,i n Advances in Computer Simulation, Lecture Notes in Physics, 1998.

L. Doussal and V. M. Vinokur, 17 H. Leschhorn, Physica A 195, Phys. Rev. Lett. Phys. Rev. Lett, vol.324, issue.87, 1963.

G. Blatter, Vortices in high-temperature superconductors, Reviews of Modern Physics, vol.66, issue.4, p.1125, 1994.
DOI : 10.1103/RevModPhys.66.1125

G. Grüner, The dynamics of charge-density waves, Reviews of Modern Physics, vol.60, issue.4, p.1129, 1988.
DOI : 10.1103/RevModPhys.60.1129

A. Barabási and H. E. Stanley, Fractal Concepts in Surface Growth, 1995.

H. Yoshino, Aging Effects of an Elastic String Diffusing in a Disordered Media, Physical Review Letters, vol.81, issue.7, p.1493, 1998.
DOI : 10.1103/PhysRevLett.81.1493

L. Roters, A. Hucht, S. Lübeck, U. Nowak, and K. D. , Depinning transition and thermal fluctuations in the random-field Ising model, Physical Review E, vol.60, issue.5, p.5202, 1999.
DOI : 10.1103/PhysRevE.60.5202

K. Sneppen, Self-organized pinning and interface growth in a random medium, Physical Review Letters, vol.69, issue.24, p.3539, 1992.
DOI : 10.1103/PhysRevLett.69.3539

L. Tang and H. Leschhorn, Pinning by directed percolation, Physical Review A, vol.45, issue.12, p.8309, 1992.
DOI : 10.1103/PhysRevA.45.R8309

S. V. Buldyrev, Anomalous interface roughening in porous media: Experiment and model, Physical Review A, vol.45, issue.12, p.8313, 1992.
DOI : 10.1103/PhysRevA.45.R8313

H. J. Jensen, The fate of the elastic string: roughening near the depinning threshold, Journal of Physics A: Mathematical and General, vol.28, issue.7, p.1861, 1995.
DOI : 10.1088/0305-4470/28/7/010

P. Chauve, P. L. Doussal, and K. J. Wiese, Renormalization of Pinned Elastic Systems: How Does It Work Beyond One Loop?, Physical Review Letters, vol.86, issue.9, p.1785, 2001.
DOI : 10.1103/PhysRevLett.86.1785

URL : https://hal.archives-ouvertes.fr/hal-00138796

M. Dong, M. C. Marchetti, A. A. Middleton, and V. M. Vinokur, Elastic string in a random potential, Physical Review Letters, vol.70, issue.5, p.662, 1993.
DOI : 10.1103/PhysRevLett.70.662

H. Leschhorn, Physica (Amsterdam) 195A, 1993.

L. Tang, M. Kardar, and D. Dhar, Driven Depinning in Anisotropic Media, Physical Review Letters, vol.74, issue.6, p.920, 1995.
DOI : 10.1103/PhysRevLett.74.920

L. A. Amaral, A. Barabási, and H. E. Stanley, Universality classes for interface growth with quenched disorder, Physical Review Letters, vol.73, issue.1, p.62, 1994.
DOI : 10.1103/PhysRevLett.73.62

M. Kardar, G. Parisi, and Y. C. Zhang, Dynamic Scaling of Growing Interfaces, Physical Review Letters, vol.56, issue.9, p.889, 1986.
DOI : 10.1103/PhysRevLett.56.889

L. A. Braunstein, R. C. Buceta, C. D. Archubi, and G. Costanza, Theoretical continuous equation derived from the microscopic dynamics for growing interfaces in quenched media, Physical Review E, vol.62, issue.3, p.3920, 2000.
DOI : 10.1103/PhysRevE.62.3920

B. Thomas and M. Paczuski, e-print cond-mat/9602023. 22 A. Rosso and W. Krauth, Phys. Rev. B, vol.65, 2002.

A. Middleton, For a complete proof of Middleton's theorem cf, Phys. Rev. Lett. Nonlinearity, vol.68, issue.949, 1992.